RAGE™128

Software Development Guide

Technical Reference Manual
P/N: SDK-G04000 Rev 0.01

© 1999 ATI Technologies Inc.

CONFIDENTIAL MATERIAL

All information contained in this manual is confidential material of ATI
Technologies Inc. Unauthorized use or disclosure of the information
contained herein is prohibited.

You may be held responsible for any loss or damage suffered by ATI for your
unauthorized disclosure hereof, in whole or in part. Please exercise the
following precautions:

« Store all hard copies in a secure place when not in use.

» Save all electronic copies on password protected systems.

» Do not reproduce or distribute any portions of this manual in paper or
electronic form (except as permitted by ATI).

» Do not post this manual on any LAN or WAN (except as permitted by
ATI).

Your protection of the information contained herein may be subject to
periodic audit by ATI. This manual is subject to possible recall by ATI.

The information contained in this manual has been carefully checked and is
believed to be entirely reliable. No responsibility is assumed for
inaccuracies. ATI reserves the right to make changes at any time to improve
design and supply the best product possible.

ATIl, mach64 PC2TV, 3D RAGE, andRAGE THEATER are
trademarks and/or registered trademarks of ATl Technologies Inc. All other
trademarks and product names are properties of their respective owners.

Record of Revisions

Release Date Description of Changes

0.01 Aug 1999 First draft completed.

Related Manuals

RAGE 128 Register Reference Manuals

Chapter 1: Overview

T oo o = PP 1-!
1.2 Major Features of the RAGE 128..........coooiiiiiiiie e e 1-2
1.3 A Chapter Summary of this Manual.............ccouciiiiiiiiii e, 1-3
1.4 Notations and Conventions Used in this Manual................ccccoiiiiiiiiiiies 1-4
1.5 Nomenclature and CONVENTIOMNSuuu ittt e e e e ees b e e e 1-5
1.5.1 Register and Field Names.........coooveeiiiii i 1-5
1.5.2 Numeric REpreSentatiQnS.........ovevieuiuieeiiiiie e ereis e e e e e e e e e eeeanaaeeees 1-5
1.5.3 Register DESCIPLANiiiiiii e e e e e e e e e e e e eaean 1-5

Chapter 2: Programming Basics

0 T Yo7 L 2-]
2.2 OVBIVIBW. ...ttt ettt oo oo et ettt et b oo oo e e et et ettt bt e e e e e e et e e ee e bt e e e aas 2-2
ARG I © T 1= = 1o o 1Y/ [T [N 2-4
2.3.1 VGA MOUE.... ettt e e e et et e e e e e e are s 2-4
2.3.2 ACCEIErator MOE........coieeiiiiieiiiee e e s 2-5
2.4 Drawing Modes in Acceleration-operation Made.............ccoovevviiiiieeeiiiiie e, 2-6
2.5 Review of Imaging TermiNOIOgy......ccuuuiiiiiiiii e e e e e e e s 2-10
S 0 N = - 1 (= [4= Vo 1= 2-10
252 Tru€ RGB COlQL.....cciiiiiiiiiiiie et 2-10
2.5.3 Representing PiXelS..........oiiiiiiiiii e 2-11
254 PIXEIS. e aaan 2-14
ST T = 1 (o o ST 2-15
2.5.6 VIdEO MEBMOIY. . .uiiiii ittt e 2-16
2.6 MEMOY APEITUIESciieiiii ettt et e s e et r e e re e e e e nn e e aeens 2-19
2.6.1 VGA MEMOIY APEITUIE.iiiiiiieeeite et e 2-20
2.6.2 VIdEO BIOS ... oottt a e e 2-21
2.6.3 REQISIEI APEITUIES. . .uuiiie ettt e e e 2-21
2.6.4 Linear MemOrY APEITUIES........cciiiiiiiiii e e ettt e e e e e e e eaeeenes 2-22
2.6.5 AGP System Memory IMage........coivieriiiiiiiriiiieiere e 2-23
2.6.6 RAGE 128 PCl GART......uiii ittt aaaeeaes 2-23
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential Preliminary TOC-3

Table of Contents

2.7 Display Mode and Mode SWItChINg...........oiiiiiiiii i 2-27
2.8 ENQINE DISCIPIINE. .. cieiiii e e e e e e e et e e e e e 2-28
2.9 BlIOS SEIVICES ... ittt ettt e e e e et et e et e e e e e et e e 2-29

Chapter 3: Accelerator Operation Mode

T T o7 o PP 3-1
3.2 Step 1: DeteCt the RAGE L128........ooiiiiiiiieeeeeeeee et 3-2
3.2.1 Using the PCI Configuration SPace..........ccovuuiiiiiiiiiiieieiii e eeeiin e 3-2
3.2.2 Scanning the BIOS SEgMENL........cooiiiiiiieeiieir e e e e 3-3
3.2.3 SCratCh REQISIEN TESL...iiuuueieeeiiiii e e e e e e e e e e e eaan s 3-3
3.3 Step 2: Obtain the Configuration Information............cccceeiveviiiii i, 3-5
3.4 Step 3: Set a Display MOAE.........coviiiiiiiii e 3-7
3.4.1 Using the BIOS FUNCHQN.......ccuuiieieieie e e e e e e e 3-7
3.4.2 Passing a CRT Parameter Table to Set a Display Mode....................... 3-10
3.4.3 Manually Setting a Display Mode..........ccccuoiiiiiiiiiiieieiie e, 3-11
3.4.4 Calculating the PLL Register Values...........coovevviiiiiiiiiiiii e 3-14
3.4.5 Determining the Post and Feedback Dividers...........ccccceeevviiiiiiiiiiinneenns 3-16
3.4.6 Programming the DDAo oo e 3-20
3.5 Step 4: Initialize the GUI ENQINE......cccouuiiieiiii e e e e e e 3-24

Chapter 4: Programming

T RS Yoo o1 4-1
4.2 Engine Command Queue MaiNtENANCE.............uuieeiiiriiieeeieiiieeeeeiiie e e eeeai e e eeeinaeeean 4-2
4.3 Programmed I/O Drawing OpPerationS..........cuuuiieiieuiiiereiiineeeeiineesessseesesnneeeennnns 4-4
4.3.1 Drawing RECIANGIES.......ccuvviiieiiii e e e e e e e 4-4
4.3.2 Drawing LINES......cuuii et e e 4-13
A4 HAIAWAIE CUISQL....cceetittii i eeeeeee ettt e e e e e e et e te ittt e e e e e e e e eaeasbbe e e e e e e eeeeeasbta e aeaeas 4-19

Chapter 5: CCE Engine Initialization and Usage

LT T o7 o PP 5-1
5.2 Starting the CCE MICIOENGINE.ciiiiiiiiii ettt 5-3
521 Waitfor ENgGiNe IdI8.........ooiiiieiiieee e 5-3
5.2.2 Load the Microcode into the MICrOeNngine............cccoveeeeiiiimiiiiiiiiieeeeeeeeeinins 5-3
5.2.3 Load the CCE REQISIEIS.......uiiiiieii i eeeiiii et e et e et e e e e e e et e eeeanes 5-4
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

TOC-4 Preliminary Proprietary and Confidential

Table of Contents

5.2.4 Cautions When Programming RAGE 128 in CCE Mode................cceennn... 5-8

5.3 Ring Buffer ManagemeNnt...........ccoeuiiiieiiii e ee eanns 5-9
5.3.1 The Ring Buffer CONCEPL........iciiiii e eaeas 5-9
5.3.2 RING BUfEr SEIVEL... oo e e 5-11
5.3.3 INAIrECE BUITEI....ciiii i 5-15

Chapter 6: CCE Packets

L0 TS Yo7 L 6-]
6.2 2D COoOrdiNate SYSIEIML.....ccuuiieeeeiii e e e e e e e e e e e e e et e e e 6-2
6.2.1 Essentials of 2D Drawing Operations.............cceuviieeeriiiieereiiineeeeeiiieeeeeannnnns 6-3
LSRRG I B = 1] [0 @ o =T 6-5
6.3.1 Drawing RECIANGIESciiiiii e e 6-5
6.3.2 Drawing POIYIINES.........iiiiii e 6-7
6.3.3 Drawing PoOlySCanINES........cuuiiiiiiiiii e e e e e e e e e e e e 6-10
6.4 BlOCK TranSTerS. ... e ettt a e e e e e e 6-14
6.4.1 Bit BlOCK TranSfer.o 6-14
6.4.2 Transparent Bit BIOCK TranSfel.........cuuiiiiiiiiiinieiii e 6-17
6.4.3 Scaled BIOCK TransSfel.........uiiiiiiiiieieiiin e 6-20
6.4.4 Transparent Scaled BIOCK Transfer...........oevviiiiiniiiiiii e 6-23
6.5 DIAWING TOXL ettt ee ettt ettt ettt e et e e et e e e e e e e e e n s 6-24
6.5.1 Drawing Text in SMall FONL.........ccoiiiiiiiiii e 6-25
6.5.2 Drawing Textin Large FOML.........oouiiruiiiiiieeiiiiieiii e 6-27
6.6 3D RENUEIINGttt ettt ettt e s 6-30
6.6.1 Setting Up the 3D CONEXE......uuuiiiieeeiiieieiii et 6-30
6.6.2 Drawing 3D PrimitiVES.ccoeeiiiiiiieiii et 6-30
6.6.3 TEXUIE MaPPING.. ... ceeeiiiieee et e e e ee e e et e e e e et e e e e e e e e e taa e e e eanan e 6-38
6.6.4 Setting 3D ReNdEr StAteS........ccivuiiie i e e e e e e e ees 6-48

Chapter 7: Advanced Topics

4 ST o7 o L= TP 7-]
7.2 Back-End Overlay and SCalAT...........oiiiiuiuiiiiiiiiiiee et eaenas 7-2
7.2.1 Feature Summary for the Back End Video Scalar..............ocoevvveiiiiiiiinnns 7-4
7.2.2 FUNCLONAI OVEIVIEW.uuiiiiiiiiiiees et e ettt e et e e et s e s e et e e e eane e e eeees 7-6
7.2.3 Additional Quality ENhanCementS............oveviiiiiieiiiiiiieeeeie et e 7-7
7.3 Auto-Flipping and Advanced Deinterlacing...........ooovvveviiiiieiiinneiiiii e 7-10
7.4 Overlay AUtONOMOUS UPAALING........coieeiiiiiiiiiiiie et e e e 7-12
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential Preliminary TOC-5

Table of Contents

7.5 Synchronizing Decoded Video Streams to the Display Refresh......................... 7-13
7.5.1 GUI Stall MEeChaNISIT.......ccoiiiiiiii e 7-13
7.6 Programming the SCalal...........coouuiiiiiiiiii e e e e 7-15
T.B.1 OVEBIVIEW...eettii ettt ettt e e e e e e et et bbb e e e e e aeeeennaas 7-15
T.6.2 SBUUP . ittt 7-15
7.6.3 BanUWIbth....oooueiiiiiii e 7-15
7.6.4 Managing BandWidthi............oouiiiiiiiiiiii e 7-15
7.6.5 Physical Scaling RAtIQS..........uuuiiiiieiiiiiiiiie e 7-17
7.6.6 Setting up the Horizontal ACCUMUIALOL..........oooeiviiiiiiiiiii e 7-17
7.6.7 Setting up the Destination WINAQW..........coovviiiiiiiiiiiiiieeceiin e 7-20
7.6.8 Setting up the Source WIiNAOMW.........ccceuuiiiiiiiiii e e e 7-20
7.6.9 Calculating the Filter CoefficientS.........coevviiiiiiiiii e, 7-21
7.6.10 Setting up the Vertical ACCUMUIALOL...........civeiiiiiii e, 7-23
7.6.11 AUtoNOMOUS UPAate.......uiiiiiiiiii e e e e e e s 7-24
7.6.12 Autoflipping and Advanced Deinterlacing...........ccccooeeeevviiiieeiiiiinn e, 7-25
7.7 COlOr CONLIOIS.... ettt e e e e e 7-28
7.8 KeYING CONIOIS......uiiiiiiiii et e et e e e e e e e et e e e eaaa e e e eanaeeeeees 7-29
7.9 Tabulating Cycles in the HBIANK............ciiiiiiiii e 7-30
T.9.1 PAI L et 7-30
T.9.2 PAIT 2. e 7-31
7.0.3 PaI B e 7-32
7.10 Tips for Getting More Bandwidthi...........ccoovuiiiiiiiiii e 7-35
7. 11 Front-end SCAIA.........cooiiiiiiiii et ae e 7-36
A0 T = U 1Y =T (=T o PP 7-37
7.12.1 BUS MaSter OPEratiOn........cuuuiiiiieiiieeeeiie e e e eiie s e e e e e e et e e eetaaeeeeaneaeeeens 7-37
7.12.2 Creating a Descriptor Table.........cocuviiiiiiiie e 7-37
7.12.3 Setting up a System Bus Master Transfer..........ccccoevvevviiiiiieviiiii e, 7-39

Appendix A: BIOS Function Calls

R o 0 o =P A-1
A2 AH Z 05 e Set Video Mode (AL = Video Adde)

NG T Y o PR Set CursbfZType
Ad AH = 2, Set Current Cursor Re&ition
A5 AH =3 e, Read Current Cursor Position at the specifi@dZpage
AB AH =4 e Read Current Light Pen Poe&ition
AT AH S5, e Select Active Displa§-Page
A8 AH = B i e Scroll Active PAge Up

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

TOC-6 Preliminary Proprietary and Confidential

Table of Contents

AL AH = 7 Scroll Active PagAERwn
A10 AH=8 oo Read Character/Attribute at Current Active Cursor Passtion
A.11 AH =29;..... Write Character/Attribute at Current Cursor Position of a specified{age
A.12 AH =0Ah;................ Write Character at Current Cursor Position of a specifiefl-dage
AL AH = OB e Set ColorAR4lette
A.Ld AH Z0Ch; o Write Dot (graphicsAnbde)
ALS AH = 0D, et Read Dot (graphicf\rdode)
AL6 AH = OE; . .iiiiiiiiiiiiee e Write Teletype to ActivA-Bage
AL7 AH = OFN; e Return Current Video Sditing
AL AH = d0N, et Set Palette Redisters
ALY AHSLIN; (o Character Generator Roidtines
A.20 AH =12h;...ccccuvvereenne Return Current EGA Settings/Print Screen Routine Séle8tion
A2L AH = 130, e Write String to Specifiefl-Rage
A.22 AHZLAR; o Display CombinatioAcdde
A.23 AH=1Bh; .., Return VGA Functionality and State Informafi@n
A24 AHZLCR; i Save and Restore VidéelState

2R ST oo T o PP B-]
B.2 BlOS EXIEBNSIONSttt e ettt e e e e e ettt e e e e e e e e e ee bbb bb e e e e e e e e eenbneanaans B-2

B.2.1 Video BIOS Base AQArESScccuiiiiiiiiiie ettt eeeeenees B-2
B.2.2 Calling Extended FUNCHIONS........uiiiiiiiiieiiiiiis et eeaens B-2
B.2.3 COMPALDIIITY. ... B-3
B.2.4 EXtended BIOS SEeIVICES.....c.uiiiiiiiiiiiiiiiiiie ettt e et e et e e e e e aaen e e B-3
B.2.5 Function O0h - Set Display MOe............cceiiimimiiiiiiiiieeeeeeeee e B-4
B.2.6 Function 01h - Set Display Controller State...........ccccoovvvieiiiniiiiiiiinieeeeiinn, B-4
B.2.7 Function 021 - Set DAC StAL......ccccevvuiiieiiiiiiieeeeiiiae et eaeeans B-5
B.2.8 Function 03h - Program Specified Clock ENtry.........ccccovveeveiiiiiereiiniieeennn, B-5
B.2.9 Function 04h - Short Query FUNCLON.0..........oveviiiiiii e B-6
B.2.10 Function 05h - Short Query FUNCHON. L...........oiveviiiii e B-6
B.2.11 Function 06h - Short Query FUNCHON. 2...........oieeviiiiiieciiie e B-6
B.2.12 Function 07h - Query Graphics Hardware Capability and Capture WidtB-lhfo
B.2.13 Function 08h - Query Installed ModEesS...........ccovviiieviiiiiieeic e, B-9
B.2.14 Function 09h - Query Supported MOGE............coviieieiiiiiiiii e B-9
B.2.15 Function OAh - Display Power Management Service (DPMS).............. B-10
B.2.16 Function 0Bh - Display Data Channel (DDC) Service............cccccuvvvunnnnn. B-10
B.2.17 Function OCh - Save and Restore Graphics Controller.Data................ B-12

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential Preliminary TOC-7

Table of Contents

B.2.18 Function ODh - Get/Set Refresh Rate (CRT only)........cccccovevvvviiveveennnnnn. B-12
B.2.19 Function 14h - Detect CRT/TV/DER.......cuo i B-13
B.2.20 Function 15h - Get/Set Active DiSplay(S)......ccccuurrrrmiiiiiiieeiiiiiiiieiee e B-14
B.2.21 Function 16h - Get/Set TV Standard............ccovveiiiiiiiiiiiiiieee e, B-15
B.2.22 Function 17h - Get TVOUL INfO......ivuiiniiiiii e B-15
B.3 MOOE TaAbIE StIUCTULR.......iuieieii ettt ettt et e e e e e et e e et e e e e eeens B-16
B.3.1 CRTC Parameter Tabla.......oouiiuiiiiiii e B-16
B.4 RAGE 128 Internal Parameter Table FOrmat.........coveuviniiiiiniiieiieeeeeeeeeeenaans B-17
B.4.1 CRTC Parameter Tabla.......ooeiieiiiiieii ettt e e B-17

Appendix C: BIOS Header, Scratch Registers and Information Tables

L A Yo o = C-1
(ORI o (Yo T 21 (@ LI [=T- Vo (=Y C-2
C.3 SCratCh REGISIEES. ... it C-6
(O o {0100 =X (oY AT IE=1 o] [P C-8
(O o R IV A Vo 012 =L {0 o C-8
(O N T = [01 (] 1 1 F= 140 1 C-9

Appendix D: VESA BIOS Extension

D200 BT 0 o= PP D-1
D.2 Status INfOrMatioN..........i i e e e e e e e e e D-2
D.3 Function 00h - Return Super VGA Informatian..............ccoeiiiiiiiiiiiicccii e D-3
D.4 Function 01h - Return Super VGA Mode Information..........ccoooovvvininiiiiineeeeennnnn. D-6
D.5 Function 02h - Set Super VGA Video MOE..........oiviiiiiiiiiiiiiiieeecciee e D-12
D.6 Function 03h - Return Current Video Mode..........coooeviviiiiiiiiiii e, D-13
D.7 Function 04h - Save/ReStOre Statl..........iieiieiii i e e e e D-14
D.8 Function 05h - Display WIindow CONEEQL.........ccuuiiiiiiiiiiieiiiiiie et D-15
D.9 Function 06h - Set/Get Logical Scan Line Length.............cccooviiiiiiiiiiiiiiiiineeee D-17
D.10 Function 07h - Set/Get Display Start...........ooiiiiiiiii e e e D-18
D.11 Function 08h - Set/Get AC Palette Format.............cocvviiiiiiiiiiiceeiee e, D-19

D.11.1 Subfunction 0 - Set AC Palette Format..............ooeveviiiieiiiiiieeeeeiee e, D-19

D.11.2 Subfunction 1 - Get AC Palette Format.............cccooeevviiiiiieiiiiineeeeiceeeeees D-19
D.12 Function 09h - Set/Get AC Palette Data..........coocvvvviiieeiiiiiieeeeeie e D-20
D.13 Power Management SEIVICES.cuuuuuuuiiiiieeeiieteeiiiie e ettt e e e ee e s D-21

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

TOC-8 Preliminary Proprietary and Confidential

Table of Contents

D.13.1 VBE/PM Function O - Report VBE/PM Capabilities..............ccccceeveeeeenn. D-21
D.13.2 VBE/PM Function 1 - Set Display Power State..............ccevveeviiviiiininennns D-21
D.13.3 VBE/PM Function 2 - Get Display Power State.............ccceuvviiiiiiieieienennns D-21
D.14 Display ldentification EXIENSIONSccuuuuieeieiiieeeeiiee e e e et e e e e e eeees D-23
D.14.1 VBE/DDC Function 0 - Report VBE/DDC Capabilities...........c..ccevvenn.... D-23
D.14.2 VBE/DDC Function 1 - Read EDID............ooiiiiiiiiiiiiii e D-24

Appendix E: BIOS Hardware Configuration and Multimedia Tables

N T o o] o = U E-]
E.2 BIOS Multimedia Table........c.uuiiiiiii e e e e e e e e e e eaeas E-2
E.3 BIOS Hardware Configuration Table...........ccouuiiiiiiiiiiiiiei e E-8
E.4 BIOS Tables for RAGE 128 / RAGE THEATER Board.............ccevvviiiieiieeeiinnenn. E-10
E.4.1 Multimedia Table. ... E-10
E.4.2 Hardware Configuration Tahle............ooouviiiiiiiiiiiiiiis e E-12

Appendix F: CCE Command Packets

T o7 o o L= N PP F-1
F.2 Notation used this SECHAN.........cciuiii e e anaas F-2
7.13 TYPE-0 CCE PACKEL ...t cieiii et e e e e e aaa s F-3
R I Y/ o = T A O 0 il == (o1 =) F-5
F.4 TYPE 2 CCE PACKEL......ccii ittt F-7
F.5 TYPE 3 CCE PACKEL.....ciiiiiieiiiet et F-8
F.6 Summary of the CEE PacCKetS.........ocuuiiiiii e F-10
I B o V] (= (= F-12
S T (@] = PSPPSR F-1¢
R T N 1 I F-20
IO TS A I I F-21
I [S I Ny N =T N F-24
52 = 1 I 1 PPN F-26
F LS S AL ..ot e a F-27
N I = N N RS Y O A I =P F-36
F.15 POLYSCANLINES.ot e e e e e e e e e e e aeaeaas F-39
G G O A PP F-40
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential Preliminary TOC-9

Table of Contents

FLL7 PAINT _IMULT Lottt e e ettt e e e e e e e ee st bbb e e e e eaaeenes F-41
F.L18 BITBLT _IMULT L ettt ettt e e e e e e et et e e e e e e aeeannns F-42
e B I A AN S T =] N N = P F-43
F.19.1 CLR _CMP _CNTL ittt bttt e e e e e ee e e e e eeeaeaaeeeeas F-43
I O I o I A AN I A PPN F-45
F.21 LOAD _PALETTE ..ottt e e e e e e F-46
F.22 SET_SCISSORS.... .ottt e e e et e et e e e e e e e eenbbbba s F-47
F.23 SET_MODE_24BPR.... ittt et et e e e eeeeeeeeeas F-48
F.24 3D_RNDR_GEN_PRIM.....cooiiiiiiiiiiiii e F-49
F.24.1 VC_FORMAToiitiiee ettt ettt ettt ettt ete e ne e, F-49
F.24.2 VC_CNTL oottt ee ettt n et F-50
T T e I I o P F-51
F.25 Interpretation Of VEItICEScooi it F-54
F.25.1 POINES (L) ieeiiieeetiiiie ettt ettt e e e ettt e e e e s F-54
F.25.2 LINES (2) i iiieeittitiiie ettt ettt ettt e e e e e eene F-54
F.25.3 POIYIINES (3. iiiiiiiiiiiiitie ettt F-54
R N TV T | L= T) F-55
F.25.5 Trangle Fan (5)....cccuuuiiiiiiiii e e e e s e e e e e e e e e e enean F-55
AN T N T Vg | LTS o N () F-56
F.26 3D_RNDR_GEN_INDX_PRIM....cctttitiiiiiiiiiiiiiiiii e, F-57
F.26.1 VerteX Array FOrMaL........coouuiiiiiiiiii i e e e e e et e e e e e eees F-58
F.27 NEXT_VERTEX_BUNDLE........cciiiiiiiiiiiiiitibi bbbt eeeeeeeeees F-59

Appendix G: List of Tables
Appendix H: List of Figures
Appendix |: List of Example Code

Appendix J: Revision History
J.1 SDK-G04000 Rev 0.01 (SDA000L.pA)......coerurrirerereeeieieiereeeereseseseees e, H-1

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
TOC-10 Preliminary Proprietary and Confidential

1.1 Scope

This manual is a programming guide for the RAGE 128 graphics controller. The examples
that are provided show how to program typical 2D and 3D drawing operations. This
manual also provides details about various multimedia concepts.

For details about programming older generations of ATI graphics controller, refer to the
mach64Programmer’s GuideTo request this manual, contact the ATI Developer
Relations Department.

Background

The RAGE 128 is a fully integrated 128-bit graphics and multimedia accelerator. It
combines astoundingly fast 3D and 2D acceleration with advanced multimedia
capabilities. This accelerator incorporates new technologies such as Concurrent Commant
Execution (CCE). CCE was previously known as Programming Model 4 (PM4). CCE
uses the RAGE 128’s bus mastering capabilities to deliver excellent drawing performance,
as well as simplifying the programming effort.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 1-1

Major Features of the RAGE 128

1.2 Major Features of the RAGE 128

Highly optimized 128-bit engine.

Triple 8-bit palette DAC with gamma correction for true WYSIWYG color. Pixel
rates up to 250MHz (optional); 230MHz standard.

Supports a variety of memory configurations for bandwidths of up to 2GB/s.

Single Data Rate (SDR) SGRAM or SDRAM at up to 125MHz on a 128-bit interface
(2GBIs).

Double Data Rate (DDR) SGRAM at up to 125 MHz on a 64-bit interface (2GB/s).
SDR SGRAM or SDRAM at up to 143MHz on a 64-bit interface (1.1GB/s)
Flexible graphics memory configurations:

e 2MB up to 32MB SDRAM or SDR/DDR SGRAM.

DDC1 and DDC2B+ for plug and play monitors.
Single-chip solution in 0.38n,2.5V CMOS technology.

e Package options available for specific features.

Hardware acceleration for the following:
* BItBIt

* Line Draw

« Polygon/Rectangle Fill

» Bit Masking

e Monochrome Expansion

» Panning/Scrolling

e Scissoring

* Full ROP support and hardware cursor (up to 64x64x2)

Game acceleration including support for Microsoft's DirectDraw, Double Buffering,
Virtual Sprites, Transparent Blit, and Masked Blit.

Acceleration in 8-, 16-, 24-, 32-bpp modes.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

1-2

Proprietary and Confidential

A Chapter Summary of this Manual

1.3 A Chapter Summary of this Manual

Table 1-1 Chapter Summary

Chapter Description
Scope of the manual.
1 .
Overview Overview of the contents.
Feature summary of the RAGE 128.
2 Basic programming guide.

Using the RAGE 128

A general understanding of the features and functions.

3
Getting Started

Using the RAGE 128 in accelerator mode:
Card detection, setting a display mode, engine initialization,
programming considerations.

Issues covering the accelerator engine:

Pro ran?med /o Command FIFO queue
9 : Programmed I/O operations (such as bit block transfers, line,
Operations .
pattern, and rectangle drawing).
5

Concurrent Command
Execution Initialization
and Usage

Overview of the CCE programming model:
Setup and initialization of the CCE in various operational modes.

6
CCE Packets

Description of the CCE packets.
Programming examples for general engine operations (blts,
rectangle and line draws, etc.).

7
Advanced Topics

Advanced topics covering special features and capabilities:
Using the overlay scalar and front-end scalar.
Using the bus mastering features.

Appendix A BIOS Function Calls

Appendix B Extended BIOS Function Calls

Appendix C BIOS Header, Scratch Registers and Information Tables
Appendix D VESA BIOS Extension

Appendix E BIOS Hardware Configuration and Multimedia Tables
Appendix F CEE Command Packets

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual
1-3

Notations and Conventions Used in this Manual

1.4 Notations and Conventions Used in this Manual

A mnemonic is used to identify the name of a hardware register. The naming conventions
for registers and/or bit fields within a register are as follows:

* Register_Mnemonic
* Register_Mnemonic[Bit_Numbers]

* Field_Name@Register_Mnemonic

The following example is the mnemonic for the Configuration Chip ID register:

« CONFIG_CHIP_ID

Continuing the above example, the Product Type Code field within the above register
occupies bit positions [0] through [15]. The examples below describe this field in two
ways:

« CONFIG_CHIP_ID[15:0]
« CFG_CHIP_TYPE@CONFIG_CHIP_ID

The second convention will be the preferred one, with the first convention used mostly for
describing unnamed fields.

Hexadecimal numbers will either be prefixed with “0x” (C-style) or appended with “h”
(Intel assembly-style). Binary numbers will be appended with “b”. All other numbers are
in decimal.

Sample code and functions will be typeset aoarier font.

Example: performing an operation

/I Sample Function

void Sample_function (void)

{
printf ("This is a sample function\n");
} /I Sample_function

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
1-4 Proprietary and Confidential

Nomenclature and Conventions

1.5 Nomenclature and Conventions

These conventions apply to the RAGE 128 Register Reference Manual.

1.5.1 Register and Field Names

An upper-case mnemonic represents the name of a hardware register and field names. Tt
naming conventions for registers and bit fields are as indicated below:

REGISTER_MNEMONIC
Example:CONFIG_CHIP_ID is the mnemonic for the Configuration Chip ID register.

REGISTER_MNEMONIC[Bit_Numbers]
- OR-
FIELD_NAME@REGISTER_MNEMONIC

For exampleCONFIG_CHIP_ID[15:0] refers to the bit field that occupies bit
positions [0] through [15] within this register.

CFG_CHIP_TYPHEICONFIG_CHIP_ID gives the field nam€FG_CHIP_TYPE
(Product Type Code) instead of the bits position.

1.5.2 Numeric Representations

* Hexadecimal numbers are appended with “h” whenever there is a risk of ambiguity.
Other numbers are assumed to be in decimal.

* Registers (or fields) of identical function are sometimes indicated by a single
expression in which the part of the signal name that differs is encloggtackets.
For example, the eight Host Data register$#6ST_DATAGhrough to
HOST_DATA7Z are represented by the single expressioxsT_DATA[7:0] .

1.5.3 Register Description

All registers in this document are described with the format of the self-explained sample
table below. All offsets are in hexadecimal notation, while programmed bits are in either
binomial or hexadecimal notation. (Note: sometimes not shown are the indirect type of
byte offsets, e.g., CFG, PLL, VGA, etc., which will be indicated on the appropriate
registers).

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 1-5

Nomenclature and Conventions

This page intentionally left blank.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
1-6 Proprietary and Confidential

Chapter 2

Programming Basics

2.1 Scope

This chapter details the basics about the RAGE 128'’s operation and drawing modes. The
following topics are covered:

e Functional block diagram of the RAGE 128.

e Operation modes.

e Accelerator programming modes.

* Review of imaging terminology.

e Display modes and switching modes.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-1

Overview

2.2 Overview

Host Application

AGP or PCI GART memory

1L 1

Ring Indirect
Buffer Buffer
1]
< = = -
110 PCI AGP Host Interface
Host Interface
CCE Bus Master
o
[a 8
3] Accelerator Controller
o
CCE FIFO Buffer
o CCE Microengine
o o
e i} 1!
9 Command FIFO Buffer
\ . \
Rage 128 ‘L iL
VGA 3D I 3D 2D
Setup —/ Render Render
Controller . .)
Engine Engine Engine
iL []]
= = = = = =

Frame Buffer

Figure 2-1. RAGE 128 Structure and Data Flow

RAGE 128 Software Development Manual

2-2

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Overview

This chapter presents a basic description of the functional blocks in this diagram. Detailed
descriptions are presented in subsequent chapters. For a summary of the RAGE 128's
functional blocksrefer to Table 2-1For a summary of the RAGE 128’s buffenefer to

Table 2-2

Table 2-1 RAGE 128 Functional Blocks

Functional Unit Purpose

Transfers data from the ring buffer (located in the system memory)
to the RAGE 128's CCE FIFO buffer without direct involvement of
the CPU.

Accelerated Graphics
Port (AGP) Interface

VGA Controller Manages pixel operations under VGA mode.

Parses the command packets from the host application and places

CCE Microengine the results into the Command FIFO buffer.

2D Render Engine Performs 2D primitive rasterization.
3D Render Engine Performs 3D primitive rasterization.
3D Setup Engine Performs 3D primitive setup operations.

Table 2-2 RAGE 128 Buffers

Buffer Name Size Purpose

Contains command packet data queued for processing
192 DWORDs by the micro controller. Only used in CCE-programming
mode.

CCE FIFO
Buffer

Contains register/data pairs for processing by the
3D-setup, 3D-render, and 2D-render engines (i.e., GUI

Command FIFO 192 DWORDs engine). Data is written directly in PIO-programming

Buffer mode, and streamed from the micro controller in
CCE-programming mode.

Depends on the
amount of video Contains all on-screen and off-screen rendering

Frame Buffer memory installed. buffers, such as: drawing, stencil and z buffers,
Ranges from 8MB bitmaps, and texture maps.
to 32MB.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential 2-3

Operation Modes

2.3

2.3.1

2.3.2

Operation Modes

The RAGE 128 operates in two distinct modes:

e VGA mode.

e Accelerator mode.

These modes are mutually exclusive. However, they share the same frame-buffer memory
and /O ports. They are described in the following sections.

VGA Mode

VGA (Video Graphics Adapter) is an established industry standard created by IBM. When
operating in VGA mode, the host application draws directly into the frame buffer using
the VGA controller. The accelerator controller is disabled and no rendering operations are
accelerated. The VGA controller and the data path from the host application to the frame
buffer are shown in the figureefer to Figure 2-1). The VGA Controller registers are
programmed using conventional 1/O.

There are many published texts that describe VGA programming. Consequently, this
manual does not cover programming the VGA controller. For a comprehensive,
informative source on this subject, refePimgrammer's Guide to the EGA, VGA, and
Super VGA Cardby Richard F. Ferraro.

For Super VGA programming, the RAGE 128 supports the Video Electronics Standard
Association (VESA) Video BIOS Extension (VBE) 2.0 programming interface. This
interface was created by VESA to provide a standrard, hardware independent method for
using Super VGA display modes. Contact VESA for more information about VBE.

Accelerator Mode

When operating in accelerator mode, rendering operations are performed by the RAGE
128's accelerator controller. The VGA controller is disabled. The host application is
limited to setting up the accelerator controller, and the controller renders directly to the
frame buffer.

The accelerator controller contains the following three engines:

* 2D Rendering Engine that performs 2D rasterization.
* 3D Setup engine that performs 3D primitive setup operations.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

2-4

Proprietary and Confidential

Operation Modes

* 3D Render Engine that performs 3D rasterization.

The three engines are collectively referred to as the Graphical User Interface (GUI) engine
(refer to Figure 2-1).

The following two modes are used to program the GUI engine:

¢ Programmable Input and Output (P1O) mode.

¢ Concurrent Command Execution (CCE) mode.

These programming modes are described in the following sections.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-5

Drawing Modes in Acceleration-operation Mode

2.4 Drawing Modes in Acceleration-operation Mode

Programmable I/0O (PIO) Mode

In this mode, the host application programs the GUI engine by writing directly to the
RAGE 128's memory-mapped registers. The registers are written through one of the
RAGE 128's two register apertures over the bus interface. The register writes are queued
in the RAGE 128's internal 192 entry Command FIFO buffer as register-datum pairs.
These Command FIFO buffer entries are processed by the GUI engine to draw into the
frame buffer.

To see the data path from the host application to the Command fefle©to Figure 2-1.
For more details about the PIO-mode programmiefgr to Chapter 4

For more details about the RAGE 128's register apertgies,to 2.6

Concurrent Command Execution (CCE) Programming Mode

In this mode, the host sends commands to the RAGE 128 in the f@omaiand

packets A command packet is a data block that consists of a header followed by a
variable size data body. Within the RAGE 128, the packets are queued in the 192 entry
CCE FIFO buffer. A micro controller processes the packets, produces the conventional
register data, and feeds this data to the Command FIFO buffer. The Command FIFO
buffer data is processed (as it is in PIO mode) to render into the frame buffer.

The host application transfers packets to the CCE FIFO buffer using the following two
methods:

e Write them directly into the CCE FIFO buffer through memory-mapped register
writes over the bus interface.

* Queue them in system memory buffers and bus-master them to the CCE FIFO bulffer.

The second method is by far the most efficient for programming the RAGE 128. ATI
highly recommends using the bus-mastered CCE programming mode as the primary
programming method. Streaming packets in this manner enables significant concurrency
between the host and the RAGE 128. In addition, there are several predefined
single-purpose packets that greatly simplify the programming of common drawing
operations.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-6 Proprietary and Confidential

Drawing Modes in Acceleration-operation Mode

The RAGE 128 uses the following two mechanisms for bus-mastering packets to the CCE
FIFO buffer:

* Ring buffer

e Indirect buffer

These mechanisms are described in the following sections.

Ring Buffer

The ring buffer is a continuous block of memory allocated by the host application in AGP
or PClI GART memory. The PCI GART is a mechanism for simulating AGP functionality
on the RAGE 128 over the PCI bus. For more details about the PCI GAfleiT{o 2.6.6

The host and RAGE 128 treat this buffer as a circular buffer by wrapping back to the
starting address when they reach the end. The starting address and the size of the buffer
are passed to the RAGE 128 when initializing the CCE bus-mastering mode.

The application copies packets into the ring buffer in consecutive order starting at the top.
It instructs the RAGE 128 where to read the next packet by writing to a CCE write-pointer
register. The RAGE 128 triggers bus-mastering operations to transfer packets from the
ring buffer to its CCE FIFO buffer according to watermarks set during CCE initialization.
After completing the transfer, the RAGE 128 uses bus-mastering to update a host
application read-pointer to indicate where it has read to in the ring buffer. The physical
address of this pointer is passed to the RAGE 128 during CCE initialization.

To view a diagram of the ring buffeefer to Figure 2-2.

For more details about programming the ring bufééer to Chapter 5

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-7

Drawing Modes in Acceleration-operation Mode

HOST RAGE 128

packet

Driver(s)

AGP/PCI
Interface

Queue
Server

CCE FIFO Buffer

]l

L]
.
'
'
free area
— I
.
.

Figure 2-2. The Ring Buffer

Ring Buffer Queue Server

For multitasking operating systems where multiple clients may require synchronized
access to the graphics resources, it may be beneficial to employ a queue server mechanism
to arbitrate and control access to the ring buffer. This mechanism could enumerate clients
and use semaphores to synchronize and protect access.

For an example of how to submit packets using such a mechaafemto Chapter 5

Indirect Buffer

The indirect buffer is a contiguous block of memory allocated by the host application in
AGP or PCI GART memory. The host and RAGE 128 treat this as a linear buffer. They do
not employ any buffer wrapping mechanisms for the indirect buffer.

The indirect buffer is similar to the ring buffer in that the host places packets in it and the
RAGE 128 transfers them out using bus-mastering. But while the ring buffer is meant to
be continuously updated, which results in content being constantly overwritten, the

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-8 Proprietary and Confidential

Drawing Modes in Acceleration-operation Mode

indirect buffer may be filled with static packets that are merely updated but not completely
overwritten. This is a more efficient way to handle common or frequently used packets
such as blits, rectangle fills, etc. One additional difference is that packets may be placed
and accessed from the indirect buffer in arbitrary order.

A packet transfer is initiated by writing the offset from the start of the indirect buffer and
the size of the packet to specific registers. For more details about this procefdure,
53

The most efficient combination is to use both the ring buffer and the indirect buffer. The
indirect buffer may be used for storing frequently used packets, and the ring buffer may be
used for general command streaming. Packets can be used to write to specific registers, s
the register writes that trigger indirect buffer transfers can also be streamed as ring buffer
packets. If the ring buffer is not used, these registers may be written through PIO.

To view a conceptual diagram of the indirect buffefer to Figure 2-3.

HOST RAGE 128

Indirect Buffer

P 4—'— packet

[N
Driver(s) i ﬁﬁ;gg CCE FIFO Buffer
P , '
free space '
Figure 2-3. The Indirect Buffer
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential 2-9

Review of Imaging Terminology

2.5

251

2.5.2

Review of Imaging Terminology

This section describes some background and terms about computer imaging.

Raster Image

Due to CRT Cathode Ray Tubgtechnology, an image is broken into a number of equally
spacedscanlines Each scanline may be further broken into a number of
smallest-viewable elements, callpidels This type of image is commonly referred to as
raster image

The process of breaking an ordinary image into a raster image isrealledzation This
process allows akll-by-N array to represent an image, where:

* M represents the width of the image.

* Nrepresents the height of the image (with its x-coordinate pointing to the right and
y-coordinate pointing downwards).

The value of an element in this array represents the pobabs intensity This setup
allows the video memory to contain the features of an image (i.e. image dimensions and
color depth).

Thescreen imagés the case where the raster image covers the entire CRT screen. The
origin of the coordinate system is at top-left corner of the screen, where:

* The width of the image equals the number of pixels per scanline of the screen.

* The height is the number of scanlines that the screen has.

True RGB Color

Color in the real world is callematural color and it is represented as an analog quantit
Color from a CRT screen is calleéayitized colorand it is represented as a digital
guantity. The digitized-color value is an approximate of the natural-color value. The
analog value can represent by an infinite number of color values. However, the digital
value is limited in the number of unique (i.e. distinctive) colors.

For example, the maximum number of distinctive colors currently defined for this
approximation is about 16 million (i.e®%.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

2-10

Proprietary and Confidential

Review of Imaging Terminology

2.5.3

Each digitized color is represented by a combination of #twke componentgRed

Green andBlue). The intensity of each component is divided into 256 levels. Zero
intensity represents the lowest value and ‘255’ represents the highest. Each component
needs 8 bits. Therefore, to represent a color made up of a R, G, and B component, 24 bit:
are needed. This representation of digitized color is referred to asuth&GB color

Representing Pixels

A RAGE 128 can display monochrome and color images.

¢ Monochrome images refer to text.

* Color images refer to digitized color photographs, movies, and computer-generated
color images.

Monochrome Images

Monochrome images are composed of pixels that can have just one of two digitized colors
(i.e. black and white). Each pixel’s color is represented by one bit (i.e. ‘0’ for black and
‘1’ for white).

The depth of the pixel is or®t per pixel(bpp). Monochrome pixels may be assigned
with any two digitized colors, one representingfibreground color such asvhite, and
the other representing thackground color such ablack

To display blue-colored text on a background of white, a ‘0’ represents thebhgdand

a ‘1’ representshe color white. This type of treatment to monochrome images is termed
color expansion In fact, the realization of pixels in a mono image is done by mapping 0’s
and 1's onto background and foreground colors represented in the RGB format, although
the memory representation of the pixels is one bpp.

Formats for Various Color Images

Color images may be represented in 8-, 15-, 16-, 24-, and 32-bpps formafs #'8. 2
216, 224 colors respectively).

The number of colors that can be displayed in the 32-bpp form&t ieeause the most
significant eight bits of the 32 bits are not used. Using the byte as a measure of memory:

* One byte to represent a pixel for the 8-bpp format.
¢ Two bytes for the 15- and 16-bpp formats.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-11

Review of Imaging Terminology

e Three bytes for the 24-bpp format.
e Four bytes for the 32-bpp format.

1-bpp Format
Table 2-3 1-bpp Format (left-to-right)

1-bpp, BYTE_PIX_ORDER = 0 (left-to-right), Draw Engine Only
Structure of the Drawing Data as Used by the RAGE 128
19 1A 1B 1C 1D 1E 1F 20 1112 13 14 15 16 17 18 9ABCDEFI10 12345678

Drawing Data Placed in Video Memory

12345678 191A 1B 1C 1D 1E 1F 20
LSB 9ABCDEFI10 111213141516 1718 MSB

Table 2-4 1-bpp Format (right-to-left)

1-bpp Format, BYTE_PIX_ORDER =1 (right-to-left), Draw Engine Only
Structure of the Drawing Data as Used by the RAGE 128
20 1F 1IE 1D 1C 1B 1A 19 181716151413 12 11 IOFEDCBAQ9 87654321

Drawing Data Placed in Video Memory
87654321 I0OFEDCBAY9 1817 1615141312 11 201F 1IE1D 1C 1B 1A 19

8-bpp Format

The value of a pixel does not represent the intensity of a color. Instead, it represents the
index of the color table, called tleelor palette The palette stores all of the possible

colors that could be used. The host application uses this value to point to a specific color
in the palette. Color represented in the 8-bpp format is knoywsesglo-color

Table 2-5 8-bpp Pseudo-color Format

8-bpp Pseudo-color Format
Structure of the Drawing Data as Used by the RAGE 128

4 3 2 1
(MSB) (LSB)
Drawing Data Placed in Video Memory
1 2 3 4
(LSB) (MSB)
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

2-12 Proprietary and Confidential

Review of Imaging Terminology

15-bpp, aRGB, or 1555 Format
This format uses two bytes to represent the three color components (Red, Green, and

Blue). Each component uses five bits to represent its intensity.
e Bit[15] is not used (shown in the table as ‘a’).

e Bits [14:10] represent red.

e Bits [9:5] represent green.

e Bits [4:0] represent blue.

Table 2-6 15-bpp, aRGB, or 1555 Format

15-bpp, aRGB, 1555 Format
Structure of the Drawing Data as Used by the RAGE 128

Pixel #2 Pixel #1
aRRRRRGGGGGBBBBB aRRRRRGGGGGBBBBB
Drawing Data Placed in Video Memory
Pixel #1 low Pixel #1 high Pixel #2 low Pixel #2 high
GGGBBBBB aRRRRRGG GGGBBBBB aRRRRRGG

Note: This format is similar to the 16-bpp format. But this format uses one alpha bit, the dummy bit (i.e. ‘a’).
Sometimes this dummy bit maybe used for 3D rendering. For typical applications, this bit not used.

16-bpp, RGB, or 565 format
This format is similar to the 15-bpp format:

e Bits [15:10] represent red
e Bits [10:5] represent green
e Bits [4:0] represent blue.

Table 2-7 16-bpp, RGB, 565 Format

16-bpp, RGB, 565 Format
Structure of the Drawing Data as Used by the RAGE 128

Pixel #2 Pixel #1
RRRRRGGGGGGBBBBB RRRRRGGGGGGBBBBB
Drawing Data Placed in Video Memory
Pixel #1 low Pixel #1 high Pixel #2 low Pixel #2 high
GGGBBBBB RRRRRGGG GGGBBBBB RRRRRGGG
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential 2-13

Review of Imaging Terminology

24-bpp Format
Each color component uses a byte to represent its intensity.

Table 2-8 24-bpp Format (display only)

24-bpp Format (display only)
Structure of the Drawing Data as Used by the RAGE 128

B2 R1 Gl B1

G3 B3 R2 G2

R4 G4 B4 R3
Drawing Data Placed in Video Memory

B1 Gl R1 B2

G2 R2 B3 G3

R3 B4 G4 R4

Note: B2 means pixel 2, blue component; R1 is pixel 1, red component, etc.

32-bpp, RGBa, or 8888 Format
This format is similar to the 24-bpp format with the addition of a dummy byte.

Table 2-9 32-bpp, RGBa, or 8888 Format

32-bpp, RGBa, or 8888 Format
Structure of the Drawing Data as Used by the RAGE 128

a R G B
Drawing Data Placed in Video Memory
B G R a
2.5.4 Pixels

The RAGE 128 supports pixel depths of 1, 8, 15, 16, and 32 bits per pixel. When operated
in the 24-bpp format mode, some software assistance is required.

The pixels are consumed from the most significant bit (MSB) to the least significant bit
(LSB) (or vise versa, depending on the rage 128’s configuration).

The following shows the bit definitions of the pixel formats in BYTE and DWORD
representations (i.e., this is the ‘little endian’ representation):

* The ordinal values represent the ordering of the pixels in memory for a left to right
pixel trajectory beginning on a DWORD boundary.

* The ordinal value ‘1’ represents the position in memory of the left-most pixel in the

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-14 Proprietary and Confidential

Review of Imaging Terminology

DWORD.

e The color components are denoted as R, G, and B.

2.5.5 Pitch

In ATI terminology,pitch measures the size of memory for representing a scanline of
pixels. Due to the RAGE 128's design, this measure must satisfy the following two
requirements:

¢ Pitch must be an integer multiple of eight pixels.
If the number of pixels per scanline does not meet this requirement, add the required
number of dummy pixels to the scanline.

e The memory size of a pitch must be a multiple of 16 bytes.

If we denote the number of pixels per scanlinerhbyhe number of added dummy pixels
by n, and the number of bytes used to representing a piXekhey two requirements can
be written as:

(m+n)MOD8=0 Equation 2.1
| x(m+n) MOD16=0 Equation 2.2

Sincel is restricted to values 1/8 for monochrome images, and 1, 2, 3, and 4 for color
images, it is easy to show that Equation 2.1 is implied by Equation 2.2.

Using Equation 2.2, the number of dummy pixels can be calculated by the following
equation:

[128-mMOD128 |=1/8
n= B'6_mMOD16 =13 Equation 2.3
$-mMOD 8 =2
54— mMOD 4 | =4
Using Equation 2.3, the pitch can be written as:
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential 2-15

Review of Imaging Terminology

Pitch= m+n Equation 2.4
The size of memory for the pitch is:
PitchMemSie=1 x Pitchx8 Equation 2.5

Equation 2.3, Equation 2.4, and Equation 2.5 are also applicable to the pitch of the bitmap,
wherem corresponds to the width of the bitmap. According to these equations, the pitch of
an 800x600 screen can be 100 units of eight pixels, and the corresponding memory size is
1600 bytes (2 x 100 x 8) provided each pixel is represented by 16-bit color. To enable the
block-write capability of the RAGE 128, the second requirement on defining a pitch must
be changed to 128-byte alignment. This leads to a modification of Equation 2.2, which can
be rewritten as:

| x(m+n)MOD128=0 Equation 2.6

In addition, a corresponding modification to the calculation of dummy pixels has to be
made; this effort is left for you.

2.5.6 Video Memory

The RAGE 128 uses thideo memory(i.e. theframe buffer) to display geometrical
images on the CRT’s screen. The frame buffer is further divided into the following areas:

e Theon-screemarearepresents the entire screen image.

* Thedummyareamakes up the pitch of screen due to the hardware requirement.

* Theoff-screenareastores information about the image (e.g. bitmaps). There are
some conditions when there is no off-screen area (e.g. the video memory may contain
the on-screen data and any unused areas contain data about the depth of the pixels).

As a result of the equations developed in the previous section, it is easy to calculate the
allocation of the video memory when a display configuration is given.

For example, the required display configuration is 800x600 pixels in the 16-bpp format
mode. Then, the calculated memory size for the on-screen area is 960,000 bytes.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-16 Proprietary and Confidential

Review of Imaging Terminology

Therefore, the minimum size for the video memory must be 1MB. If the size of the video
memory is 4MB, there will be more than 3MB left over for the off-screen area. The RAGE
128 can support up to a maximum of 32MB of video memory.

Video Memory Addressing

Conventionally, the lowest address of the video memory corresponds to the top-left corner
of the on-screen area, and the highest address to the bottom-right corner of the off-screer
area.

For example, the video memory is 4MB. Then, the following conditions are true:

* The top-left corner of screen corresponds to address 0.

* The bottom-right corner of the off-screen area corresponds to OXFFFFF.

The RAGE 128 addresses the video memory from zero to the upper bound. The video
memory address seen by RAGE 128 is calledPthysical Memory Address

To begin drawing to the top-left corner of the CRT screen, set reggR€&sOFFSERNd
DST_OFFSETo zero. These two registers can be set to any value within the address
space of video memory.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-17

Review of Imaging Terminology

Screen Pitch
Screen width
> X
‘ (0,0)
b
=)
5]
I
< On-screen area Dummy area
5
n
‘ (M-1, N-1)
Off-screen area
v
y
Figure 2-4. Video Memory
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

2-18 Proprietary and Confidential

Memory Apertures

2.6 Memory Apertures

The RAGE 128 requires memory apertures from the system. These apertures map the
video memory and registers onto the host's memory space. By using this mapping, the
host application can access the frame buffer and the memory-mapped registers as if they
were part of the system memory.

The following are the types of apertures that exist within the system space:
* Theregister aperturds used for the memory-mapped registers that are related to the

RAGE 128.

e Thevideo aperture

Normally, the apertures are located somewhere within the 4GB address space where it
does not conflict with the system (host) memory. Further, an aperture must be located on ¢
32MB boundary.

The following diagram shows the typical memory organization for the RAGE 128. Unless
otherwise specified, all addresses in the register definition refer to a 64MB virtual address
space.

The following groups are used:

* The first 32MB map to the frame buffer space.

* The next 32MB map to the AGP/PCI space, specifically:
Addresggp = AGP_base + (offset - 32MB)
Addressc = Physical address in BM_GUI_TABLE.

The following registers are used to point to the apertures:

¢ RegisterREG_BASEandCONFIG_REG_1 BASHoint to the register apertures.

* RegisterCONFIG_APER_0_BASEBNdCONFIG_APER_1_ BASHoint to the
video aperture.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-19

Memory Apertures

4 GB

(free space
or other devices)

Rendering Engine (GUI)
Registers
(FIFOed)

CONFIG_REG_1_BASE

REG_BASE
(in PCI Config space)

CONFIG_APER_1_BASE

CONFIG_APER_0_BASE

32 MB (varies)

1 MB

Register Aperture 1

ProMo 4 FIFO Access

(free space
or other devices)

Read-only Image of PCI
Configuration Space

Register Aperture 0

Configuration, Display &
Multimedia Registers

(free space
or other devices)

Linear Aperture 1

AGP System
Memory Image
Expansion Area

(free space
or other devices)

AGP System
Memory Image

Frame Buffer
Expansion Area

Linear Aperture 0

Frame Buffer

(free space
or other devices)

System BIOS

System Memory

Video BIOS

VGA Aperture

0 MB

2.6.1 VGA Memory Aperture

System Memory

Conventional Memory

Figure 2-5. Memory Map

CONFIG_REG_APER_SIZE

Offset 1400h
Offset 1000h

Offset OF00h

Offset Oh

CONFIG_APER_SIZE

Offset (AGP_APER_OFFSET +
AGP_APER_SIZE - 1)

Offset AGP_APER_OFFSET

Offset (CONFIG_MEMSIZE-1)

Offset (CONFIG_MEMSIZE_EMBEDDED-1)
Offset 0

FFFFh:FFFFh
E000h:0000h

C800h:0000h
C000h:0000h

A000h:0000h

0000h:0000h

When enabled for VGA, the RAGE 128 claims the standard VGA resources. The bits
contained ilGRPH_ADRSEtegister determine the position and size of the VGA memory
aperture. For most VGA graphics modes, the aperture is 128KB and starts at segment

0xA000.

RAGE 128 Software Development Manual

2-20

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Memory Apertures

2.6.2 Video BIOS

To relocate the RAGE 128’s video BIOS, using the PCI configuration space. The system
BIOS will normally shadow the entire BIOS image to the area starting at segment 0xC000
during system initialization.

2.6.3 Reqgister Apertures

There are two memory-mapped register apertures in the RAGE 128. Each references the
entire set of memory-mapped registers. Under the Intel architecture, one may be mapped
for UnCached (UC) access, and the other for Write Combining (WC) access. WC is also
uncached, but it is faster because it uses an out-of-order write buffer. The WC-mapped
aperture may be used where speed is essential (e.g, when setting 3D states or setting up
primitives). The UC-mapped aperture may be used when order is important (e.g, when
initiating drawing operations).

Under the PowerMac architecture, the second aperture may be used for big-endian
memory access.

Purpose

The register apertures contain all direct-accessed registers that are found in the RAGE
128, except for the VGA and PCI configuration registers. In addition, these registers also
have the index/data pairs used for all indirectly accessed registers and memories.

Location
These registers are re-locatable. Base address of register aperture 0 is:

e Determined by th@EG_BASEegister (found in the PCI configuration space), or

« Readable in the I/O register aperture usilg INDEX<= 0xF18 and reading
MM_DATA

Base address of register aperture 1 is determin€dByFIG_REG_1_BASEwhich can

be read in register aperture 0 once its base has been found as indicated above. Reading
CONFIG_REG_1_BASEs the only method of determining register aperture 1's location
that is forward compatible with future generations of the hardware.

Size
The size will grow for future generations of the RAGE 128. The contents of the
CONFIG_REG_APER_SIZEegister contains the sizes for each register aperture.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-21

Memory Apertures

Memory Map

The following table shows the memory map.

Table 2-10 Memory Map

From To Description

0x0000 OXOOFE SN;);C-SUI registers, also directly accessible in IOR
0x0100 OXOEFF Non-GUI registers.

0x0F00 OXOFFF Read-only copy of PCI configuration space.
0x1000 O0x13FF CCE FIFO direct access.

0x1400 Ox1FFF GUI registers.

2.6.4 Linear Memory Apertures

There are two copies of the linear memory aperture in the RAGE 128. Each copy is
identical. The reason for two copies is to allow each to be independently marked as
big-endian or little-endian in the PowerMac environment. For Wintel architectures, the
second aperture may be used, but there is no valid reason to do so.

Purpose

The linear memory apertures allow access to the frame buffer memory, and for AGP
systems to the AGP memory as seen by the RAGE 128.

Location

These apertures are re-locatable.

The CONFIG_APER_0_BASkEegister determines the base address of linear aperture 0.
The CONFIG_APER_1 BASEHegister determines the base address of linear aperture 1.
Both these registers can be read in any register aperture.

Size

The size of these registers will grow for future generations of the RAGE 128. The
CONFIG_APER_SIZEregister contains the size of each linear aperture.

Frame Buffer

RAGE 128 Software Development Manual

2-22

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Memory Apertures

2.6.5

2.6.6

The frame buffer image occupies the area in each aperture from offset 0 to
CONFIG_MEMSIZE-1.

If CONFIG_MEMSIZE_EMBEDDHgreater than zero, the RAGE 128 uses an on-chip
memory for the first piece of the frame buffer. This embedded memory is included in the
CONFIG_MEMSIZHotal. Currently, the RAGE 128 does not have any embedded
memory. A future RAGE 128 model is planned to incorporate this embedded memory.
The RAGE 128 supports up to 32MB of frame buffer memory.

AGP System Memory Image

Each linear aperture also contains an image of the AGP system memory as seen by the
RAGE 128.

Typically, the host application would directly access the AGP system memory using the
system processor. Since using this AGP image to access AGP memory generates an AG
slave and an AGP bus master cycle for each access (or group of accesses), it is highly
inefficient; therefore, this method is not recommended.

Use this AGP image for debugging and allowing a method for flushing out pending AGP
cycles still in the host chipset (before software directly accesses system memory).

The AGP image starts at offseGP_APER_OFFSEIRh each linear aperture.

The AGP_APER_SIZFEregister contains the size of the AGP memory. This register is not
a number, but an enumerated type that must be converted into a number (refer to the
register definition).

The RAGE 128 supports up to 32MB of AGP memory.

RAGE 128 PCI GART

The RAGE 128 provides a mechanism for accessing system memory as AGP memory
over the PCI bus. This mechanism allows up to 32MB of system memory on AGP cards,
and up to 4MB on PCI cards, to be used as an AGP area using a scatter gather mechanis

To use this feature, a 32KB table of page entries must be prepared and its physical base
address must be written to tRE€1_ GART_PAGHegister. The table must be 4KB

aligned. Each table entry must contain the physical base address of a 4KB page allocatec
from system memory for the AGP area.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-23

Memory Apertures

The PCI GART table is enabled by setting bit [OP&l_GART_PAGEo ‘0’. For AGP
systems, this bit must be explicitly set to ‘1’ during initialization to disable the PCI
GART.

To force use of the PCI GART on AGP-capable systems, these additional steps are
necessary:

« TheBM_CHUNK_O_VAL:BM_PTR_FORCE_TO_Pfild must be set to ‘1".
« TheBM_CHUNK_O_VAL:BM_RD_FORCE_TO_Pditld must be set to ‘1’.

« TheBM_CHUNK_O_VAL:BM_GLOBAL_FORCE_TO_Field must be set to ‘1",

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

2-24

Proprietary and Confidential

Memory Apertures

Driver Memory Space
(Virtual Mem
Linear Flat 32)

Memory Mapped Regs
8KB USWC
(may change in
future chips)

Memory Mapped Regs
8KB UC
(may change in
future chips)

CMD/DATA

Memory Pool
Ring Buffer +
WorkBuffers +

Textures
(32MB in AGP)

Linear Frame Buffer

(up to 32MB rage128)
(May Change in future)

Physical Memory Space

Unused-Reserved

PCI recognized Memory
Mapped Aperture
(USWC 8KB[may grow])

Ragel28 Registers

CONFIG_REG_APER_SIZE
(io reg)

Unused-Reserved

CONFIG_REG_1_BASE
[offset](io reg)

PCI recognized Memory
Mapped Aperture
(UC 8KB[may grow])

AGP - UC
32MB unused

AGP - USWC
32MB

Unused

Linear Aperture 1

AGP System Memory
Image Expansion Area
UNUSED BY DRIVER

AGP System Memory Imag
UNUSED BY DRIVERS

Unused Frame Buffer Area

Frame Buffer
(May include embedded)

Unused

REG_BASE (PCIConfig) Q

CONFIG_APER_1_BASE

o
[
=
=3

=
@
o

<<
=
@
=
O

AGP System Memory
Image Expansion Area
UNUSED BY DRIVER

(io reg)
CONFIG_APER_SIZE
(io req)

AGP_APER_SIZE
(offset) (io reqg)

AGP System Memory Imag
UNUSED BY DRIVERS

AGP_APER_OFFSET

(io req)
CONFIG_MEM_SIZE
(offset) (io reg)

Unused Frame Buffer Area

CONFIG_MEM_SIZE_EMBEDDED
(offset) (io reg)

Frame Buffer

(May include embedded)

CONFIG_APER_0_BASE
(io reg)

Figure 2-6. AGP Memory Architecture - Software Layout

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual

2-25

Memory Apertures

Driver Memory Space
(Virtual Mem
Linear Flat 32)

Memory Mapped Regs
8KB USWC
(may change in
future chips)

Memory Mapped Regs
8KB UC
(may change in
future chips)

CMD/DATA
Memory Pool
RIng Buffer +
WorkBuffers +
Textures
(32MB in AGP)

Linear Frame Buffer
uswc
(up to 32MB rage128)
(May Change in future)

Physical Memory Space

Unused-Reserved

PCI recognized Memory
Mapped Aperture
(USWC 8KB [may grow])

Ragel28 Registers

CONFIG_REG_APER_SIZE
io re

Unused-Reserved

(io reg)
CONFIG_REG_1_BASE
[offset](io reg)

PCI recognized Memory
Mapped Aperture
(UC 8KB [may grow])

AGP - UC
32MB unused

AGP - USWC
32MB

PCI Scatter Gather Table

(May include embedded)

Unused T
I
) PCI System Memory «Q
5 Image Expansion Area @
- UNUSED BY DRIVER >
= (=1
@ o
s PCI System Memory Image =
< UNUSED BY DRIVERS g
—
5 4
GC) Unused Frame Buffer Area w
3 _Frame Buffer =
(May include embedded) —
Unused o CONFIG_APER_1_BASE
o (io req)
32MB
PCI System Memor @
] y y ;
5 Image Expansion Area fixed in non AGP system
= UNUSED BY DRIVER S/W Control. Up to 32MB
3 PCI (scatter gather) / PCI*G&R[ZQ)PAGE
< System Memory Image
— UNUSED BY DRIVERS CO(N;:;[—)N;ETQQS)IZE
] CONFIG_MEM_SIZE_EMBEDDED
2 Unused Frame Buffer Area : (offsel) (io reg)
3 Frame Buffer H CONFIG_APER_0_BASE

(io req)

Figure 2-7. PCI Non-AGP Memory Architecture - Software Layouts

RAGE 128 Software Development Manual

2-26

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Display Mode and Mode Switching

2.7 Display Mode and Mode Switching

A display modealso referred to asdeo modedefines the following parameters:

e The type of display content.

e The screen resolution.

e The color depth of the pixels.

This implies that setting up a display mode is dependent on the available video memory.
Once an operating mode is determined, a display mode must also be set for the RAGE 12
according to the RAGE 128’s capability and the available memory resource.

The RAGE 128 supports the following display modes in the VGA operating mode:

¢ VGA-alphanumeric moddalso known as thext modé
The text mode may further be classified into a number of sub-modes with variation in
the size of character and in the color of text.

* VGA-graphics mode
This mode can also be further divided into sub-modes according to the screen
resolution and the depth of color used to represent a pixel.

In the accelerator-operation mode, the RAGE 128 supports the graphics mode with screer
resolutions (from 320x200 to 1600x1200 pixels), and with depths of color (8, 16, 24 and
32-bpp formats).

To switch from one display mode to another, call the BIOS service Set Display Mode (i.e.
function AL = 1), and/or Coprocessor CRTC Parameters (i.e. function AL = 0).

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-27

Engine Discipline

2.8 Engine Discipline

In the accelerator-operation mode, the RAGE 128's GUI engine may use the P10 drawing
mode or the CCE drawing mode.

If switching between these two operation modes is not handled properly, the RAGE 128
may hang (i.e. stop operating). To avoid hanging the RAGE 128, follow these pointers:

* To safely switch from one mode to another, make sure the Command FIFO buffer is
empty and it is in the idle state. This requires the program to check thafthé 81
registerGUI_STAT is set to zero.

* When the RAGE 128 operates in the PIO drawing mode, the program must check if
there are sufficient entries in the Command FIFO buffer before writing any data to it.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-28 Proprietary and Confidential

BIOS Services

2.9 BIOS Services

A number of BIOS services are available. These services help to avoid problems of
incorrectly setting up the RAGE 128 or configuring the display mode of the system.

For details abouBlOS Servicesee thé\ppendix for the “BIOS Function Calls”, on page
A-1

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential

2-29

BIOS Services

This page intentionally left blank.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-30 Proprietary and Confidential

3.1 Scope

This chapter contains information about setting up the RAGE 128 for
accelerator-operation mode. The intended audience for this information is X-type OS
driver developers.

This chapter shows how to detect the RAGE 128 without using the BIOS functions. The
majority of the necessary information can be retrieved from the PCI Configuration Space,
which is set at POST.

The following information can be retrieved through the PCI Configuration Space:

* PCI Vendor ID

* Device ID

* Revision ID

* BIOS segment

e Base address of the register

* Memory and I/O apertures

For host applications to access the registers and memories through the apertures, the
initialization program needs to configure the RAGE 128 for accelerator-operation mode,
and convert the aperture addresses from physical space to linear space.

The initialization stage consists of the following four major steps:

e Step 1: Detecting the RAGE 128.

* Step 2: Obtaining the configuration information about the physical and linear (i.e.
virtual) addresses of apertures.

* Step 3: Setting up a display mode.
e Step 4: Initializing the GUI engine.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-1

Step 1: Detect the RAGE 128

3.2 Step 1: Detect the RAGE 128

This step determines the following:

e The presence of a RAGE 128 within the system

* The various aperture addresses (memory, register, and 1/O).

To determine much of this information, use the PCI configuration space. For the purposes
of this document, the following lists several assumptions:

* The system uses the PCI host bus (since the RAGE 128 is only available in PCI and
AGP bus types).

e The OS being used provides an interface for querying the PCI configuration space. If
this is not the case, the programmer must gain access to this information.

3.2.1 Using the PCI Configuration Space

To use the PCI configuration space, follow these steps:

1. Detect if a device is installed that contains the ATI PCI Vendor ID (0x1002). As per
the PCI specification, offset’0’ of the configuration space for a given device contains
the PCI Vendor ID.

After identifying a device that has the ATl PCI Vendor ID, determine the Device ID.
Check to if the device ID matches the list of known RAGE 128 device IDs. The
current list of RAGE 128 device IDs are as follows:

Table 3-1 RAGE 128 Device IDs

Package ID Device ID Description
RE 0x5245 312pin, PCI 33 only
RF 0x5246 312pin, AGP 1X & 2X
RK 0x524B 256pin, PCI 33 only
RL 0x524C 256pin, AGP 1X & 2X

4. Note that the Device ID is located at offset 0x02 of the configuration space.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-2 Proprietary and Confidential

Step 1: Detect the RAGE 128

5. After obtaining the value of the Device ID, compare it against the above list. If there
is a match, we can continue. Otherwise, we have two options:

e Return an error, indicating that a RAGE 128 device was not found
OR

¢ Scan the BIOS segment to see if the ‘R128’ signature string is found (note: a way
to detect a RAGE 128 revision that may not be in the list). This protects against a
driver not detecting new or revised RAGE 128s. However, this also has the
potential for problems in that the new revision may require some modifications to
the driver to work properly. This point should be considered before
implementation.

For the latest list of Device IDs for the RAGE 128, contact Developer Relations at ATI
(www.atitech.com).

3.2.2 Scanning the BIOS Segment

By scanning the BIOS segment, the following information can be found:
* ROMID
The ROM ID is defined as ‘AA55’ in the first two bytes of the BIOS segment.

e ATl product signature
The ATI product signature is ‘761295520’

* RAGE 128 string
The RAGE 128 string is ‘R128'.

For a successful installation of the RAGE 128, all three of these items must be present.
They should all be present within the first 512 bytes of the BIOS segment.

3.2.3 Scratch Register Test

To confirm the presence of a RAGE 128 board on the PCI bus, perform a read-and-write
test on registeBIOS_0_SCRATCHPerform this test through the 1/O port. Use the
following steps:

1. Read and save the contents of regiBI&S 0 SCRATCH
2. Write the value (e.dx55555555) to BIOS 0 SCRATCH

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-3

Step 1: Detect the RAGE 128

3. Read bacBIOS_0_SCRATCHIf the value is not the same as what was written, a
RAGE 128 is not present.

4. Repeat steps 2 and 3, using the compliment of the previous value (e.g.
OXAAAAAAAA.

5. Restore the saved valueRiOS 0 _SCRATCH

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-4 Proprietary and Confidential

Step 2: Obtain the Configuration Information

3.3 Step 2: Obtain the Configuration Information

After locating the PCI configuration space for a RAGE 128, some additional configuration
information can be retrieved, such as:

* Memory aperture base address (PCI configuration space offset 0x10).
* Register aperture base address (PCI configuration space offset 0x18).
e |/O base address (PCI configuration space offset 0x14).

e BIOS segment address (PCI configuration space offset 0x30).

The memory aperture base address value at offset 0x10 within the PCI configuration space
is in bits [31:26] of its DWORD. Therefore, to isolate the proper bits, the value should be
logically ANDed with OxFC000000.

For the I/O base aperture, the actual value is within bits [31:8] of its DWORD (at offset
0x14). Therefore, to isolate the proper bits, the value should be logically ANDed with
OxFFFFFFOO.

The register aperture base value resides in bits [31:14] of its DWORD (at offset 0x18).
Therefore, to isolate the proper bits, the value should be logically ANDed with
OxFFFFCO000.

The BIOS segment, at offset 0x30, is in the upper WORD of this value (bits [31:17]), then
shifted right one bit.

After obtaining these physical memory addresses for the memory and register apertures,
convert them to virtual or linear addresses, so that the host application may use them.

Example Code: Converting the physical addresses to a usable virtual address

DWORD phys_to_virt (DWORD physical, DWORD size)
{

union REGS;

struct SREGS sr;

DWORD retval=0;

memset (&r, 0, sizeof (r));
memset (&sr, 0, sizeof (sr));
r.w.ax = 0x0800;

r.w.bx = physical >> 16;
r.w.cx = physical & OXFFFF;
r.w.si = size >> 16;

r.w.di = size & OXFFFF;

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-5

Step 2: Obtain the Configuration Information

int386x (0x31, &r, &r, &sr);
if ((r.w.cflag & INTR_CF) == 0)
{
retval = (long) (((long) r.w.bx << 16) | r.w.cx);
Y if
return (retval);
} /I phys_to_virt

At this point, you have successfully detected that a RAGE 128-based graphics adapter is
installed.

The following lists the configuration information about the adapter has been revealed:

* ASIC version (Device ID)

* BIOS segment

* Memory aperture address (both physical and virtual)
* Register aperture address (both physical and virtual)

¢ |/O base address

This gives sufficient information to begin the next step: setting up a display mode, and
initializing the graphics engine (GUI).

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

3-6

Proprietary and Confidential

Step 3: Set a Display Mode

3.4

341

Step 3: Set a Display Mode

This section covers how to set a display mode. To select a display mode, use one of the
following methods:

* Use the BIOS function (i.e. the easy method).
* Manually set up the display mode (i.e. the hard method).

Easy Method

To set the display mode using an easy method, use the BIOS function 0x00. Supply
parameters for the mode number and the color depth in the appropriate CPU registers.
Then, call the function. A variant of this method also allows you to pass a CRT parameter
table to supply custom CRT values, even custom resolutions.

Difficult Method

To set the display mode using a hard method, manually program the PLL and CRT to
achieve the desired mode. Typically, protected-mode operating systems (i.e. usually X
type OSs) must use this method (since they are unable to execute the BIOS functions
within their OS). If the programmer has any possibility of using the BIOS to set the mode,
this would be much preferred.

Using the BIOS Function

The RAGE 128 can be set up in a particular display mode by calling the extended BIOS
function 00h Set Display Mode Here are the inputs required for this function:

Table 3-2 Inputs for the Set Display Mode BIOS Function

Code Purpose

Display Device Mask.
di This determines what display will be affected by this call. Default is ‘0’, which
affects all displays.

cl[0:3] Color depth.

ch Resolution.

dx:bx Pointer to parameter table (if we choose to set the mode from a parameter table).

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-7

Step 3: Set a Display Mode

If you choose to use the BIOS installed modes, leave the simple set-register CH to the
appropriate resolution. For the appropriate values, refer to the Video BIOS appendix. To
pass a CRT parameter table, set CH = 0x81 and point to the parameter table using DX:BX
(this is covered in the next section).

The BIOS functions can be called in two different manners. A far call to offset 0x64 of the
BIOS Segment can be used, and the DOS interrupt 0x10 with AH = 0x10 is also
supported. The following code uses the latter.

Example Code: Setting the Mode

BYTE R128_SetMode (BYTE xres, BYTE yres, BYTE bpp)

{
union REGS;

memset (&, 0, sizeof (r));
r.w.ax = 0xA000; // Function 00h: Set Mode.
r.w.ch = 0x00;// Set initially to 0, will be filled in.

/I Determine requested resolution mode number.
if (xres == 320) || (xres == 640))
{
switch (yres)
{
case 200: r.h.ch = OxE2;
break;
case 240: r.h.ch = OxE3;
break;
case 350:r.h.ch = OXE6;
break;
case 400:r.h.ch = OxE1;
break;
case 480:r.h.ch = 0x12;
break;
default: break;
}
}
else
{
switch (xres)
{
case 512: r.h.ch = OxE4;
break;
case 800: r.h.ch = Ox6A;
break;
case 1024: r.h.ch = 0x55;
break;
case 1280: r.h.ch = 0x83;

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-8 Proprietary and Confidential

Step 3: Set a Display Mode

break;

case 1600: r.h.ch = 0x84;
break;

default: printf ("\nUnsupported resolution/\n");
return (0);
break;

}
} I iflelse

/l'if r.h.ch is still 0, an invalid xres or yres was passed.
/I we must return a failure
if (r.h.ch ==0)
{
printf ("\nUnsupported Resolution!\n");
return (0);

/I Determine requested pixel depth
switch (bpp)

{
case 8: r.h.cl =0x02;
break;
case 15: r.h.cl = 0x03;
break;
case 16: r.h.cl = 0x04;
break;
case 24: r.h.cl = 0x05;
break;
case 32: r.h.cl = 0x06;
break;
default: printf ("\nUnsupported pixel depth!\n");
return (0);
break;
} /1 switch

/I fill in the appropriate values for the global structure.

R128_Adapterinfo.xres = xres;

R128_Adapterinfo.yres = yres;

R128_Adapterinfo.pitch = xres/8; // we'll set pitch = xres/8 by
default.

R128_Adapterinfo.bpp = bpp;

/I Call the BIOS to set the mode.
int386 (0x10, &r, &r);
if (r.h.ah)
{
return (0); /I Error setting mode.

}

else

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-9

Step 3: Set a Display Mode

{
return (1);
Yiif

} /1 R128_SetMode

3.4.2 Passing a CRT Parameter Table to Set a Display Mode

While using the BIOS to set a display mode is straight forward, it does have some
limitations. The only modes that can be set are:

e Those that are directly supported by the BIOS.

« Those whose refresh rate that is supported by the BIOS, which is typically 60 Hz for
most modes.

In cases where a custom mode or refresh rate is required, the BIOS allows for passing a
CRT parameter table, from which the BIOS will derive the appropriate CRT values, and
program the CRT accordingly. For a full description of the structure of the CRT Parameter
table, refer to the Video BIOS appendix.

Example Code: Setting the display mode

BYTE R128_SetDisplayModeFromTable (CRTParameterTable table)
{

union REGS;

DWORD psize, segment, selector;

char *data;

intx,y;

/I We need to allocate some memory for the mode table, so we can
/I pass the BIOS a real mode address.
psize = 2; // require 28 bytes of memory.
if (DPMI_allocdosmem(psize, &segment, &selector) == 0)
{
/* can't allocate memory for mode table, shut down */
R128_ShutDown ();
printf ("\nUnable to allocate system memory for mode table!");

exit (1);
}
memset (&r, 0, sizeof (r));
r.w.ax = 0xA000; // Function 00h: Set Mode.
r.w.di = 0x0000; /I Set CRT only

/I Set DX equal to the segment that was allocated.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-10 Proprietary and Confidential

Step 3: Set a Display Mode

/I The offset (BX) will be 0.
r.w.dx = segment;

r.w.bx =0;

data = (char *)(segment << 4);

/I Copy the CRT Parameter Table data to the location pointed
/l to by DX:BX
memcpy (data, &table, sizeof(CRTParameterTable));

/I Set BIOS to load resolution from specified table and set depth
/I to the requested pixel depth.
r.w.cx = 0x8100 | R128_GetBPPValue (R128_Adapterinfo.bpp);

/I Call the BIOS to set the mode.
int386 (0x10, &r, &r);

if (r.h.ah)

{

/I We have encountered an error setting the display mode.
return (0);

}

else

{
/I Success!
return (1);

}
} /I R128_SetDisplayModeFromTable ()...

3.4.3 Manually Setting a Display Mode

In cases where the video BIOS cannot be executed, the display mode must be manually
programmed. This includes calculating the required CRTC and PLL values, and
programming the appropriate registers.

Programming the CRTC Registers

To set up the RAGE 128 for a display mode, the CRTC registers must be programmed sc
that they correspond with the requested display mode dimensions.

* While programming the CRTC registers, it is strongly recommended to disable the
display. This can be accomplished by setting the following bits in register
CRTC_EXT_CNTL

« CRTC_HSYNC_DIS
« CRTC_VSYNC_DIS
« CRTC_DISPLAY_DIS

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-11

Step 3: Set a Display Mode

After setting the display mode, enable the display.

First, start by clearing some “common” registers that, if active, may interfere with the
CRTC settings. These registers are:

¢ OVR_CLR disable the overscan color.

e OVR _WID_LEFT_RIGHT no overscan border.

e OVR_WID_TOP_BOTTOO overscan border.

e OVO0_SCALE_CNTL disable the overlay.

e MPP_TB_CONFIG- disable MPP usage for TV out.
e MPP_GP_CONFI&isable general purpose MPP.

* SUBPIC_CNTL- disable subpicture decoding (for MPEG/DVD).
* VIPH_CONTROIL disable VIP transfers.

e |2C_CNTL_1 - disable the 12C bus.

* GEN_INT_CNTL- disable interrupts.

e CAPO_TRIG_CNTL- disable capture buffer 0.

e CAPL1_TRIG_CNTL- disable capture buffer 1.

The next step is to program the following CRTC related registers:

e CRTC_GEN_CNTL -this register is used to:
* Enable the extended display mode (accelerator).
* Enable the CRTC.
» Disable the cursor.
e Set the pixel width (i.e. the color depth).

¢ Disable composite sync.

e CRTC_EXT_CNTL
e Perform a READ-MODIFY-WRITE to preserve some power-up settings:
* CRTC_HSYNC_DIS
e CRTC_VSYNC_DIS
* CTRC_DISPLAY_DIS

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-12 Proprietary and Confidential

Step 3: Set a Display Mode

¢ In addition, enable VGA_ATI_LINEAR, and VGA_XCRT_CNT_EN.

« DAC_CNTL
e Perform a READ-MODIFY-WRITE to preserve the lower 3 bits (and 0x7).
» SetDAC_8BIT_EN, disableDAC_TVO_ENndDAC_VGA_ADR_EN
¢ SettheDAC_MASHKo OxFF (enable all palette index bits).

e CRTC_H_TOTAL_DISP - set following two fields in this register:

e CRTC_H_DISPcontains the amount of visible horizontal ‘characters’. This
value is determined by taking the visible pixels (x-resolution), dividing by 8 (8
pixels = 1 ‘character’), then subtracting 1. This field occupies bits [0:8] of this
register.

e CRTC_H_TOTAIlcontains the total horizontal ‘characters’, which includes
overscan right, front porch, sync width, back porch and overscan left. The value
for this field is expressed in ‘characters’ as well, then subtract 1.
CRTC_H_TOTALesides in bits [16:23] ERTC_H_TOTAL_DISP

e CRTC_H_SYNC_STRT_WID - t he starting horizontal position and width, as well
as the sync polarity are written to this register:

e Bits [0:2] of CRTC_H_SYNC_STRT_PUIéllows for pixel accurate starting
positioning by delaying the start (in pixels) within the character value of bits
[3:11] contained ilCRTC_H_SYNC_STRT_CHAR

* The horizontal sync start is typically part of the parameter table that is passed to
the mode setting routine.

e Bits[16:21] of CRTC_H_SYNC_WIB3 calculated by taking the horizontal sync
end subtracted by the horizontal sync start, then converting that to characters
(divide by 8).

e Bit[23] of CRTC_H_SYNC_POQis ‘0’ for positive sync, and ‘1’ for negative
sync.

e CRTC_V_TOTAL_DISP - set following two fields in this register:

e Bits [16:26] of CRTC_V_DISPdetermines the amount of visible lines (not
including overscan).

e Bits [0:10] of CRTC_V_TOTAILs the vertical line total. This includes the display
height, overscan bottom, front porch, sync width, back porch and overscan top.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-13

Step 3: Set a Display Mode

e CRTC_V_SYNC_STRT_WID - set the following three fields for this register:

e Bits [0:10] of CRTC_V_SYNC_STRIib the sum of display height, overscan
bottom and front porch.

e CRTC_V_SYNC_WI the vertical sync width. This is typically dependent on
the monitor. However, most modern monitors have a fair tolerance for this value.

¢ CRTC_V_SYNC_POis the polarity of the vertical sync. ‘0’ is positive, and ‘1’
is negative.

* CRTC_OFFSET
This register determines the start of displayable video memory. In most cases, this
will be set to ‘0’. To set up some kind of virtual desktop, a non-zero value may be
appropriate for this value.

* CRTC_OFFSET_CNTL
Clear this register. There are various functions related t6RTC_OFFSEThat can
be enabled in this register. For the purposes of setting a display mode, initialize the
value (i.e. set it to ‘0’). For more details, refer to the RAGE 128 Register Reference
manual.

* CRTC_PITCH
The display pitch is set in this register. Bits [0:9] hold the pitch value, expressed in
pixels*8 (characters). For 24-bpp format modes, the CRTC uses pixels*8 for the
pitch, but the rendering engine uses bytes*8 for the pitch.

3.4.4 Calculating the PLL Register Values

To manually set a display mode, first determine the following parameters:

* Dot-clock reference frequency.
* Dot-clock reference divider.

¢ Minimum and maximum PLL output values for the dot clock for the installed adapter.

These values are used for reference to obtain the necessary CRT timing parameters for the
requested display mode.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-14 Proprietary and Confidential

Step 3: Set a Display Mode

A RAGE 128-based graphics adapter may use one of several base or reference
frequencies, depending on the features supported by the installed card. Common values
for the reference frequencies are:

e 29.50 MHz
 28.63 MHz
» 14.32 MHz

The RAGE 128’s BIOS uses these values expressed in kHz/10. Therefore, 29.50 MHz
would actually be 2950. To reliably determine this frequency, extract the value from the
BIOS by looking at the appropriate tables within the BIOS.

e The BIOS header is located at offset 0x48 from the BIOS segment address.

e The PLL information block pointer is located at offset 0x30 to 0x31 within the BIOS
header.

BIOS Header Pointer = BIOS segment address + 0x48

PLL Information Block Pointer = BIOS header pointer + 0x30

The dot clock reference frequency is located at offset OXOE within the PLL information
block.

Dot Clock Reference Frequency = PLL Information Block + OxOE

The dot clock reference frequency is located offset OXOE (word) within the PLL
information block. Use the reference frequency to determine what post and feedback
divider values will be required to provide the proper dot clock frequency for a given
display mode.

The value of the reference feedback divider is also required. This value is found at offset
0x10 (word) within the PLL information block.

Dot Clock Reference Divider = PLL Information Block + 0x10

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-15

Step 3: Set a Display Mode

Obtain the minimum and maximum output frequencies for the PLL.

Make sure that the desired output frequency can be provided given these values. The
maximum post-divider value is 12, so the desired output frequency multiplied by 12 must
be equal to or greater than the minimum PLL output frequency.

Also, the desired output frequency cannot be greater than the maximum PLL output
frequency. The minimum dot clock PLL output frequency is located offset 0x18 (dword).

Dot Clock Minimum PLL Output Frequency = PLL Information Block + 0x12

The maximum dot clock PLL output frequency is located at offset 0x16 (dword) within
the PLL information block.

Dot Clock Maximum PLL Output Frequency = PLL Information Block + 0x16

Regarding the output frequencies, two different output frequencies are discussed within
this section. Th&®equested Output Frequendy the dot clock frequency for a given
display mode.

For example, for a 640x480, 60 Hz refresh, the requested output frequency is 25.18 MHz.

ThePLL Output Frequencyis the frequency that the PLL will output, which is then
divided down by the feedback divider. It is important to distinguish these two output
frequencies. They are not the same and in the majority of cases, they are not equal. The
Requested Output Frequency (dot clock) is in fact a result of the PLL Output Frequency
divided down by the feedback divider.

3.4.5 Determining the Post and Feedback Dividers

The internal clock generator uses a PLL feedback system to produce the desired frequency
output according to the following equation:

Dot Clock Frequency =
(Reference Frequency * Feedback Divider) / (Reference Divider * Post Divider)

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-16 Proprietary and Confidential

Step 3: Set a Display Mode

The Feedback Divider must be from 128 to 255 inclusive, and the Post Divider can be one
of1, 2,3, 4,6, 8,or12.

To easily determine the post divider, multiply the required dot clock frequency by one of
the possible post divider values (i.e. 1, 2, 3, 4, 6, 8, 12) until it falls between the minimum
and maximum PLL output frequencies. Therefore:

PLL Output Frequency = Post Divider * Dot Clock Frequency

After calculating the post divider and PLL output frequency, use the following equation to
determine the feedback divider:

Feedback Divider =
Post Divider * Reference Divider*PLL Output Frequency) / (Reference Frequency)

At this point, all the required values to program the PLL to obtain the dot clock frequency
required for a given display mode are known.

Example Code: Finding the post and feedback divider for a given dot clock
frequency

void R128_PLLGetDividers (WORD Frequency)

1"

/I DESCRIPTION:

/I Generates post and feedback dividers for desired pixel clock frequency.
1"

/I PARAMETERS:

/I Frequency Desired frequency in units of 10 kHz.

1"

{
DWORD FeedbackDivider; /I Feedback divider value
DWORD OutputFrequency; /I Desired output frequency
BYTE PostDivider = 0; /I Post Divider for Pixel Clock

1"
/I The internal clock generator uses a PLL feedback system to
/I produce the desired frequency output according to the following
/I equation:
1
/I Output Frequency = (Reference Frequency * Feedback Divider) /
n (Reference Divider * Post Divider)
1"

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-17

Step 3: Set a Display Mode

/I Where Reference Frequency is the reference crystal frequency,
/I FeedbackDivider is the feedback divider (from 128 to 255 inclusive),
/I and Reference Divider is the reference frequency divider.

/I Post Divider is the post-divider value (1, 2, 3, 4, 6, 8, or 12).

1

/I The required feedback divider can be calculated as:

1

/I Feedback Divider = (Post Divider * Reference Divider *
n Output Frequency) / Reference Frequency

1

/I Make sure that the requested dot clock frequency does not exceed
/I the maximum possible output frequency.
if (Frequency > PLL_INFO.max_freq)

{
Frequency = (WORD)PLL_INFO.max_freq;

/I Make sure that the requested dot clock frequency is not less than
/I the lowest possible output frequency.
if (Frequency * 12 < PLL_INFO.min_freq)

{
Frequency = (WORD)PLL_INFO.min_freq/ 12;

OutputFrequency = 1 * Frequency;

if ((OutputFrequency >= PLL_INFO.min_freq) &&
(OutputFrequency <= PLL_INFO.max_freq))

{
PostDivider = 1;
goto _PLLGetDividers_OK;

OutputFrequency = 2 * Frequency;

if ((OutputFrequency >= PLL_INFO.min_freq) &&
(OutputFrequency <= PLL_INFO.max_freq))

{
PostDivider = 2;
goto _PLLGetDividers_OK;
}

OutputFrequency = 3 * Frequency;

if ((OutputFrequency >= PLL_INFO.min_freq) &&
(OutputFrequency <= PLL_INFO.max_freq))
{

PostDivider = 3;

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-18 Proprietary and Confidential

Step 3: Set a Display Mode

goto _PLLGetDividers_OK;

OutputFrequency = 4 * Frequency;

if ((OutputFrequency >= PLL_INFO.min_freq) &&
(OutputFrequency <= PLL_INFO.max_freq))
{
PostDivider = 4;
goto _PLLGetDividers_OK;

OutputFrequency = 6 * Frequency;

if ((OutputFrequency >= PLL_INFO.min_freq) &&
(OutputFrequency <= PLL_INFO.max_freq))
{
PostDivider = 6;
goto _PLLGetDividers_OK;

OutputFrequency = 8 * Frequency;

if ((OutputFrequency >= PLL_INFO.min_freq) &&
(OutputFrequency <= PLL_INFO.max_freq))
{
PostDivider = 8;
goto _PLLGetDividers_OK;

OutputFrequency = 12 * Frequency;
PostDivider = 12;

_PLLGetDividers_OK:

1"
/I OutputFrequency now contains a value which the PLL is capable of
/I generating.

/I Find the feedback divider needed to produce this frequency.

1

FeedbackDivider = RoundDiv (PLL_INFO.ref_div * OutputFrequency,
PLL_INFO.ref_freq);

PLL_INFO.fb_div = (WORD)FeedbackDivider;
PLL_INFO.post_div = (BYTE)PostDivider;

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-19

Step 3: Set a Display Mode

3.4.6

return;

} /I R128_PLLGetDividers()

We now have the necessary values to program the PLL to set the necessary pixel clock
frequency. The dot clock uses PLL 3 on the RAGE 128. See the source code file
“r128pll.c” for the steps required to program the actual PLL registers.

Programming the DDA

To determine how to access the display FIFO, the RAGE 128 uses a digital differential
analyzer (DDA). In order for the display to work properly, program the two DDA registers
with the proper values so that the display FIFO behaves properly and the resulting display
is correct.

The affected registers are:

« DDA _CONFIG
« DDA _ON_OFF

Calculate the following values:

¢ Number of memory clock cycles (XCLKS) per transfer to the display FIFO: x
¢ Minimum number of bits required to hold the integer portion of x: b

e Useable precision: (b+1)=p

» Display FIFO off point: g

» Display FIFO on point:g

* Loop latency factor for the hardwarg;qp,
To calculate these values, use the following series of equations. First, determine the
amount of memory clock cycles that are used in a transfer to the display FIFO.

X =
{Memory Clock (MHz) / Pixel Clock (MHz) } * {Display FIFO Width/Bits per Pixel}

Where x is equal to the number of memory clocks in a transfer. This is the display FIFO
width (in bits) for the RAGE 128 (for all display modes).

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

3-20

Proprietary and Confidential

Step 3: Set a Display Mode

Calculate the minimum number of bits required to hold the integer portion of x (i.e.
calculate b). This value is easily found by shifting the x to the right until x = ‘0’. At this
point, the number of shifts would represent the number of bits (b) required. The useable
precision (p) is equal to the minimum number of bits previously calculated plus 1
(le.p=b+1).

Use the following equation to calculate the display FIFO off point:

roff =X *(d—4)

In the above equation, d is equal to the number of transfers (octwords) for a display FIFO
entry. For extended accelerator modes, d = 32. For VGA modes, d = 64.

Calculating the display FIFO on point requires information about the type of memory
installed on the adapter. The table below shows the currently used memories on the RAGE

128, with the necessary specification values required to calculate the display FIFO on
setting. All the values in the table are expressed in memory clock cycles (XCLKS).

Table 3-3 Memory Specifications

128 bit SDR 1:1 64 bit SDR 1:1 64 bit SDR 2:1 64 bit DDR

Memory Read Latency (ML) 4 4 4 4
Maximum Burst Length (MB) 4 8 4 4
RAS to CAS delay (t,cq) 3 3 1 3
RAS precharge (t;p) 3 3 2 3
write recovery (t,) 1 1 1 2
CAS Latency (CL) 3 3 2 3
read to write delay (t;o) 1 1 1 1
Loop Latency 16 17 16 16
DSP_ON 26 38 20 27

Note: All values expressed in XCLKS.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-21

Step 3: Set a Display Mode

Use the following equation to calculate the display FIFO on point:

ron:4*MB+3*MAX(ter—2,O)+2*Fp+twr+CL+tI’2W+X

For memory types that might be used in the future, the values in the table above are
constant. In addition, they can be retrieved from the following registers (if you are using a
platform that has a video BIOS):

e ML =MEM_LATENCY

* MB = 8 for 64 bit SDR 1:1, 4 otherwise

* tq=1for SDR 2:1, MEM_TRCD otherwise

* tp=2for SDR 2:1, MEM_TRP otherwise

* t,=MEM_TWR

e CL=2forSDR 2:1, CAS_LATENCY otherwise
* tpy= MEM_TR2W

Be aware of a loop latency factor, which is incurred in the hardware. Ensure that the
display FIFO on point plus the loop latency factor is less than the display FIFO off point
(otherwise the display mode is not guaranteed to work).

Use the following equation to calculate tbep latency factor:

Moop = 12 + ML

However, for 64 bit SDR 1:1, use the following equation:

Mloop = 12 + ML + 1

Therefore, to guarantee an operational mode, make sure that the following equation is
true:

Fon * TNoop < Foff

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-22 Proprietary and Confidential

Step 3: Set a Display Mode

The values written to the DDA registers are as follows:

« DDA _ON: 1y, *2 1P

« DDA _OFF= 1y * 2 1P

« DDA_PRECISION=p

+ DDA_XCLKS_PER_XFERx* 2P
* DDA_LOOP_LATENCY fjg0p

Program the registers as follows:

« DDA _CONFIG= DDA_XCLKS_PER_XFERDDA_PRECISION<< 16) |
(DDA_LOOP_LATENC¥< 20)

« DDA _ON_OFE DDA_OFH (DDA_ON< 16)

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-23

Step 4: Initialize the GUI Engine

3.5 Step 4: Initialize the GUI Engine

After setting a display mode, this step involves using the acceleration capabilities of the
RAGE 128 to initialize the GUI engine. This consists of setting up the GUI to a known
drawing context. To initialize the GUI engine, follow these steps:

The
up t

Set the destination, source and default offset registers to equal the memory aperture
address.

Program the engine pitch registers

Observe the following characteristics of the engine pitch:

e It must be divisible by eight.

e The value written to the pitch registers is expressed in bytes per line, not pixels.

* In 24-bpp format modes, the engine pitch values must be multiplied by 3.

Program the source, destination and default pitch registers to the appropriate values
for the current display mode.

To enable a drawing area on the visible screen, program the scissors registers.

* Generally, when initially configuring the GUI, program the scissors registers to
the maximum values allowable, so that any part of display memory can be used as
a source, and also to allow drawing anywhere in memory if needed.

* The scissors can be set to the screen co-ordinates if required, however be careful
when using off screen memory to store bitmaps and other data. The source
scissors registers must be set to the appropriate dimensions in this case.

RAGE 128 contains the regisi2®_GUI_MASTER_CNTIlwhich can be used to set
he majority of the default drawing context registers in a single register write. A

breakdown of the register and it's various fields follow:

Table 3-4 DP_GUI_MASTER_CNTL
Field Name Purpose
This field allows setting the SRC_OFFSET =
DEFAULT_OFFSET and SRC_PITCH = DEFAULT_PITCH
GMC_SRC_PITCH_OFFSET_CNTL (0)

-OR-
leave alone (1).

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

3-24

Proprietary and Confidential

Step 4: Initialize the GUI Engine

Table 3-4 DP_GUI_MASTER_CNTL

(Continued)

Field Name

Purpose

GMC_DST_PITCH_OFFSET_CNTL

Same functionality as previous field, only relating to the
destination pitch and offset values.

GMC_SRC_CLIPPING

Determines whether the source scissor registers will equal
the default scissor registers, or will not use the default
value.

GMC_DST_CLIPPING

Same functionality as previous field, only relating to the
destination scissor register default values.

GMC_BRUSH_DATATYPE

Determines what brush type will be used for drawing
operations. Typically, a solid color brush would be used.
Consult the register reference for the possible values for
this field.

GMC_DST_DATATYPE

This field represents the destination pixel depth/format.
Pixel depths of 8 to 32 are supported, as well as various
YUV formats. Generally, the value for this field will equal the
display-mode pixel depth. Consult the register reference for
the complete list of available values.

GMC_SRC_DATATYPE

The source expansion value is initialized here. Values are:

0 = monochrome (source is expanded to foreground and
background).

1 = for source expanded to foreground, and the background
is left alone.

2 = color of the pixel is used (the pixel type is the same as
the destination).

GMC_BYTE_PIX_ORDER

Allows for pixel ordering with respect to most significant
byte (MSB) and least significant byte (LSB).
Default = 0 (MSB->LSB).

GMC_CONVERSION_TEMP

The default color conversion temperature is set here. This
deals with color space conversions when using the front or
back end scalars.

GMC_ROP3

The default raster operation is set here. The RAGE 128
supports all 256 ROPs as per the MS Win3.1 DDK. See
appendix D regarding available ROP values.

DP_SRC_SOURCE

Determines the pixel source for source data. Possible
sources are display memory and the host data registers.

GMC_3D_FCN_EN

Allows the clearing of the SCALE_3D_FCN register, which
is required when initially setting up the drawing engine.

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual
3-25

Step 4: Initialize the GUI Engine

Table 3-4 DP_GUI_MASTER_CNTL (Continued)

Field Name Purpose

GMC_CLR_CMP_CNTL_DIS Enables or disables the color compare function.
GMC_AUX_CLIP_DIS Enables or disables the auxiliary scissor registers.
GMC_WR_MSK_DIS Enables or disables the write mask.

6. Initialize (i.e. clear out) the following additional registers (specifically the line
drawing registers):

- DST_BRES_ERR
« DST_BRES_INC
- DST_BRES_DEC

7. Set the desired default color values for both brush and source data, in the following
registers:

« DP_BRUSH_FRGD_CLR
« DP_BRUSH_BKGD_CLR
« DP_SRC_FRGD_CLR
« DP_SRC_FRGD_CLR

Typically, the foreground color would be white (i.e. OxFFFFFFFF) and the background
color would be black (i.e. 0x00000000).

Example Code: Initializing the GUI engine

void R128_InitEngine (void)

{
DWORD temp, bppvalue;

/I determine engine pitch
temp = R128_Adapterinfo.pitch;
if (R128_Adapterinfo.bpp == 24)
{

temp = temp * 3;

}

/I setup engine offset registers

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-26 Proprietary and Confidential

Step 4: Initialize the GUI Engine

R128_ WaitForFifo (4);
regw (DEFAULT_OFFSET, 0x00000000);

/I setup engine pitch registers
regw (DEFAULT_PITCH, temp);

/I set the default scissor registers to maximum dimensions

regw (DEFAULT_SC_TOP_LEFT, 0x00000000);

regw (DEFAULT_SC_BOTTOM_RIGHT, (Ox1FFF << 16) | OX1FFF);

/I Set the drawing controls registers.
R128_ WaitForFifo (1);

bppvalue = R128_GetBPPValue (R128_Adapterinfo.bpp);

regw (DP_GUI_MASTER_CNTL, GMC_SRC_PITCH_OFFSET_DEFAULT |
GMC_DST_PITCH_OFFSET_DEFAULT |

GMC_SRC_CLIP_DEFAULT
GMC_DST_CLIP_DEFAULT
GMC_BRUSH_SOLIDCOLOR

(bppvalue << 8) |
GMC_SRC_DSTCOLOR

GMC_BYTE_ORDER_MSB_TO_LSB |

GMC_CONVERSION_TEMP_6500

ROP3_SRCCOPY
GMC_DP_SRC_RECT
GMC_3D_FCN_EN_CLR

GMC_DST_CLR_CMP_FCN_CLR

GMC_AUX_CLIP_CLEAR
GMC_WRITE_MASK_SET);

R128_ WaitForFifo (7);

/I Clear the line drawing registers
regw (DST_BRES_ERR, 0);
regw (DST_BRES_INC, 0);
regw (DST_BRES_DEC, 0);

/I set brush color registers
regw (DP_BRUSH_FRGD_CLR, OXFFFFFFFF);
regw (DP_BRUSH_BKGD_CLR, 0);

/I set source color registers
regw (DP_SRC_FRGD_CLR, OXFFFFFFFF);
regw (DP_SRC_BKGD_CLR, 0);

/I Wait for engine idle before returning
R128_ WaitForldle ();

return;

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual

3-27

Step 4: Initialize the GUI Engine

} /I R128_InitEngine ()

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-28 Proprietary and Confidential

4.1 Scope

This chapter describes how to program the RAGE 128 to perform drawing operations.
This chapter also discusses some aspects of programming the RAGE 128 using the
Programmed I/O (PIO) drawing mode. The following topics are covered:

¢ Engine command queue maintenance

e Engine Drawing Operations

* Rectangle Drawing
* Bit Block Transfers
e Line Drawing
e Pattern Drawing
e Compare Functionality

¢ Monochrome Expansion

¢ Handling the Hardware Cursor

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-1

4.2 Engine Command Queue Maintenance

The command queue buffers the “FIFOed” register writes and reads to the engine.
Generally, “FIFOed"” registers are involved in the drawing operations. The file
REGDEF.H specifically outlines the registers are “FIFOed”, and identifies the registers
that can be read directly.

For the RAGE 128, the command queue consists of 64 DWORD entries. The
GUI_FIFOCNT@GUI_STATegister field represents how many command queue entries
are free at a given point in time. Before reading or writing a register that is “FIFOed”,
check for the availability of a free queue entry. Once an entry is available, submit the
read/write operation to the queue.

The following code polls th&UI_STAT register to ensure that the requested amount of
FIFO entries are available. In addition, provisions are made for time-out errors, where the
engine cannot provide a free queue entry (e.g. this may occur when the engine has locke:
up or hung to due improper programming).

Example Code: Waiting for the FIFO

void R128_WaitForFifo (DWORD entries)

{
WORD starttick, endtick;

starttick = *((WORD *) (DOS_TICK_ADDRESS));
endtick = starttick;
while ((regr (GUI_STAT) & Ox00000FFF) < entries)

{
endtick = *((WORD *) (DOS_TICK_ADDRESS));
if (abs (endtick - starttick) > FIFO_TIMEOUT)

{
gui_stat = regr (GUI_STAT);
R128_ResetEngine ();
it
} I/ while

return;

} /I R128_WaitForFifo ()

In addition, some situations require the engine to become idle. For example, an idle engine
is required in the following cases:

* Reading a status register.

* Getting a true status value.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-2

In order to determine that the engine is idling, the following two conditions must be
satisfied:

* There must be 64 free command queue entries.

* The engine (GUI) must be inactive.

NOTE: An empty command queue DOES NOT imply an idle engine. Code that satisfies
these two conditions would do the following:

1. Poll (i.e. continually checkpUI_FIFOCNT@GUI_STATuntil its contents equal 64.
2. Then, pollIGUI_FIFOCNT@GUI_STATuntil its contents equal ‘0.

Under some conditions, the GUI engine may become unstable or lock. If the engine
become unstable or locks, reset the engine. The code below handles locked up engines
checking for a time-out condition. The code calls the appropriate function to handle an
engine time-out, thus allowing the program to continue to run after the engine has been
reset.

Example Code: Waiting for idle

void R128_WaitForldle (void)

{
WORD starttick, endtick;

/I Insure FIFO is empty before waiting for engine idle.
R128_ WaitForFifo (64);

/I Poll GUI_ACTIVE to wait for engine idle
/I Set the appropriate timeout values.
starttick = *((WORD *) (DOS_TICK_ADDRESS));
endtick = starttick;
while ((regr (GUI_STAT) & GUI_ACTIVE) != ENGINE_IDLE)
{
endtick = *((WORD *) (DOS_TICK_ADDRESS));
if (abs (endtick - starttick) > IDLE_TIMEOUT)
{
gui_stat = regr (GUI_STAT);
R128_ResetEngine ();
Y if
} I/ while

/I flush the pixel cache to ensure that all pending writes
/I to the frame buffer are complete.
R128_FlushPixelCache ();

return;

} /I R128_WaitForldle ()

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-3

4.3 Programmed I/O Drawing Operations

This section describes how to draw rectangles and lines.

¢ Methods for drawing rectangles:
* Bit Block Transfer
* BItBlIt - Bit Block Transfer
e Transparent BitBlt (Bit Block) Transfer

e Scaled Block Transfer

* Methods for drawing lines:

e Drawing Patterned Lines

¢ Monochrome Expansion

4.3.1 Drawing Rectangles

To draw a simple, solid-colored rectangle, the RAGE 128 uses the following steps:

1. Set up the desired drawing context.
2. Program the destination registers to the desired values.

To set up the context for drawing, determine the screen location where to draw the
rectangle.

For a clipped rectangle, program the scissor registers to the required parameters.

For a solid-filled rectangle, our data type is the current pixel depth, a solid brush is used,
and the raster operation is a source copy.

The following code demonstrates how to draw a solid color rectangle. It is assumed that
prior to calling this function, the engine has been initialized.

Example Code: Drawing a rectangle

void R128_DrawRectangle (DWORD x, DWORD y, DWORD width, DWORD height, DIWORD
color)
{

DWORD temp;

DWORD save_dp_datatype;

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-4

R128_ WaitForFifo (6);
/I Save the previous DP_DATATYPE setting
save_dp_datatype = regr (DP_DATATYPE);
temp = R128_GetBPPValue ();
regw (DP_DATATYPE,(temp|BRUSH_SOLIDCOLOR|ROP3_SRCCOPY));
regw (DP_BRUSH_FRGD_CLR, R128_GetcolorCode (color));
regw (DST_Y_X, (y << 16) | X);
regw (DST_WIDTH_HEIGHT, (width << 16) | height);
/I Restore the DP_DATATYPE register
regw (DP_DATATYPE, save_dp_datatype);
return;
} /I R128_DrawRectangle ()

Bit Block Transfer

One of the most widely used drawing features is the bit block transfer. This command
transfers a bitmap or block of data from one area of video memory to another.

To transfer data within frame buffer from one location to another, and to transfer data
from system memory to frame buffer, the RAGE 128 uses hardware support.

Source - the location where the data is taken from.

Destination - the location where the data is transferred to.

The size of the data transfer determines the size of a rectangular area on the screen. In th
senseBlock Transfemeans copying a group of pixels from one place to another with
some manipulation of the pixels.

The following types of pixels are involved in a block transfer:

e Source
¢ Destination

e Brush pattern

The resulting destination is the combination of one, two, or all of three components. In
this sense, all three are considered components of the source before the operation that
combines them, and only the result of the combination is considered as the destination.

For block data transfers, specify the following:

e Location
 Dimension of the source

e Destination

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-5

e Setup parameters

The following types of data transfer can occur:

* BitBIt
This is also called BitBIt asource copyThe source content is copied to the
destination without any changes to its dimensions.

* Scaled BitBlt
The source is stretched or compressed in the process of data transfer and fitted into th
destination dimensions.

e Transparent BitBIt
This transfer is similar to BitBIt except that it makes the background image at the
destination shown through the image copied from the source (i.e. as if the source
image is transparent).

BitBlt - Bit Block Transfer

This operatioriransfers pixels from a source rectangle to a destination. The dimension of
the transferred rectangle remains the same as the source. The transfer is controlled by a
ternary-raster operation code that specifies how the pixels from the source and the brush
pattern are mixed with those of the destination to form the final pixels at the destination.

In addition to normal data transfer (i.e. the data transfer that does not change the format o
the data taken from the source before placing it at the destination), the RAGE 128
supports monochrome to color expansion when transferring a monochrome bitmap to the
CRT screen. For color expansion, specify the foreground and background colors for the
bitmap. The RAGE 128 will convert the white bit (1) to the foreground color of the
corresponding pixel and the black bit (0) to the background color.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-6

Y2

Source =

le——w

X, » Destination <

Figure 4-1. BitBlIt - Bit Block Transfer Copying an Image from Source to Destination

Example Code: Copying an image from a source to a destination

void R128 BIt (WORD src_x, WORD src_y, WORD src_width, WORD src_height,
WORD dst_x, WORD dst_y)
{
DWORD temp;
DWORD save_dp_datatype, save_dp_cntl;
WORD bytepp;

/I save the registers we will be modifying
R128 WaitForFifo (2);

save_dp_datatype = regr (DP_DATATYPE);
save_dp_cntl = regr (DP_CNTL);

temp = R128_GetBPPValue ();

/I Set DP_DATATYPE for a SRCCOPY, current pixel depth, src=dst

/I Brush setting does not matter.

R128_WaitForFifo (6);

regw (DP_DATATYPE, temp | (BRUSH_SOLIDCOLOR << 16) | SRC_DSTCOLOR);

/I Set DP_MIX to SRCCOPY, rectangular source
regw (DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);

/I Set DP_CNTL for left to right x direction, top to bottom y direction
regw (DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);

/I Set the source and destination x and y values
regw (SRC_Y_X, (src_y << 16) | src_x);
regw (DST_Y_X, (dst_y << 16) | dst_x);

/I Perform the blt
regw (DST_HEIGHT_WIDTH, (src_height << 16) | src_width);

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-7

/I restore the registers we modified
R128_WaitForFifo (3);

regw (SCALE_3D_CNTL, save_scale_3d_cntl);
regw (DP_DATATYPE, save_dp_datatype);
regw (DP_CNTL, save_dp_cntl);

return;
}// R128_BIt ()

}// R128_BIt ()

Transparent BitBlt (Bit Block) Transfer

This operation conditionally copies pixels from the source to the destination with
reference to a designated (reference) color (e.g. the background color).

If the color of a pixel is equal to (or not equal to according to the comparison criterion) the
designated color, the pixel will not be copied to the destination. This operation filters out
unwanted color from the source.

This operation is useful for:

e Copying odd-shaped objects onto a background with patterns (e.g. games).

e Making objects look transparent.

Since a transparent BitBIt operation is more complicated than a BitBIt operation, some
terminology needs to be clarified before proceeding with an example.

For this operationsourcemeans a color pixel that may come from one of the following
sources:

¢ One of foreground or background colors used to expand a mono bitmap to a color
bitmap.

e A color pixel from either the frame buffer or the host memory.

* A color pixel of a color pattern (brush).

The source pixel may be combined with the destination pixel according to a given raster
operation code (e.g. AND operation) resulting inadbmbined source pixel

To prevent certain colors of combined source pixels from being written to the destination,
two color comparators are used for deciding whether to write a combined source pixel to
the destination or to keep the original destination pixel. The comparators compare the

source and destination pixels respectively against their reference colors (the source and

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-8

destination references), and decide whether the combined source pixel can be written to
the destination. The following lists the strategies for making such a decision:

Table 4-1 Source Comparator

Dl Description
Code P

0 Combined pixels are always written to the destination, i.e. no comparison is
performed.

1 No combined pixel is written to the destination, i.e. the destination pixel is
unchanged.
The combined pixel is written to the destination if the color of the source

4 pixel is equal to its reference color. Otherwise, the destination pixel is
unchanged.
The combined pixel is written to the destination if the color of the source

5 pixel is NOT equal to its reference color. Otherwise, the destination pixel is

unchanged.

Only the source pixels whose color is equal to the reference color will be
XORed with the foreground color of the source bitmap, and then written to

7 the destination. That is, destPixel = srcPixel XOR foreground Color if
srcPixel is equal to the foreground color of the source bitmap. This is
sometimes referred to as flipping.

Table 4-2 Destination Comparator

pEgEen Description
Code P

0 Combined pixels are always written to the destination, i.e. no comparison is
performed.

1 No combined pixel is written to the destination, i.e. the destination pixel is
unchanged.
The destination is unchanged if the color of the destination pixel is equal to

4 its reference color. Otherwise, the combined source pixel are written to the

destination.

The destination is unchanged if the color of the destination pixel is NOT
5 equal to its reference color. Otherwise, the combined source pixel are
written to the destination.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-9

The two tables give the decision strategy whenever either of the comparators is enabled.

« If both comparators are enabled, the final decision will depend on the agreement
between the two decisions made separately.

* If both comparators decide that the combined source pixel should be written to the
destination, the destination will be updated with the pixel (otherwise, the original
destination pixel is preserved).

Example Code: Transparent BitBIt Operation

void R128_TransparentBIt (_tbltdata TBLT)

{
DWORD temp, save_dp_mix, save_dp_cntl, save_dp_datatype;
WORD loop, space, num_images;

R128_ WaitForFifo (3);

save_dp_mix = regr (DP_MIX);
save_dp_cntl = regr (DP_CNTL);
save_dp_datatype = regr (DP_DATATYPE);

/I Set up the drawing context

R128_ WaitForFifo (4);

regw (DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);

regw (SRC_SC_BOTTOM_RIGHT, Ox1FFF << 16 | OX1FFF);

regw (DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
temp = R128_GetBPPValue ();

regw (DP_DATATYPE, temp | SRC_DSTCOLOR | BRUSH_SOLIDCOLOR);

R128_ WaitForFifo (4);

/I set up the transparency function in the color compare circuitry

regw (CLR_CMP_CLR_DST, R128_GetcolorCode (TBLT.dst_clr));

regw (CLR_CMP_CLR_SRC, R128_GetcolorCode (TBLT.src_clr));

regw (CLR_CMP_MASK, OxFFFFFFFF);

regw (CLR_CMP_CNTL, (TBLT.cmp_src << 24) |
(TBLT.dst_cmp_fcn << 8) |

TBLT.src_cmp_fcn);

/I Set up source and destination x and y values

R128_ WaitForFifo (3);

regw (SRC_Y_X, (TBLT.src_y << 16) | TBLT.src_x);

regw (DST_Y_X, (TBLT.dst_y << 16) | TBLT.dst_x);

regw (DST_HEIGHT_WIDTH, (TBLT.src_height << 16) | TBLT.src_width);

/I Restore the modified registers
R128 WaitForFifo (3);
regw (DP_MIX, save_dp_mix);
regw (DP_CNTL, save_dp_cntl);
regw (DP_DATATYPE, save_dp_datatype);

return;

} /I R128_TransparentBlt ()

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-10

Scaled Block Transfer

This operation copies a block of pixels from the source to the destination while scaling the
dimensions of the source to fit in the dimensions of the destination. In other words, the
source rectangle is stretched or compressed in the process of copying according to the
specified destination dimensions, and the resulting rectangle is placed at the location of
the destinationRefer to Figure 4-2. Scaled Image Transfer

%2 Destination =

—

Figure 4-2. Scaled Image Transfer

In a scaled data transfer:

e Source is defined by:
* Top-left corner coordinate is ¢XY)
* Height and width is (h W)

e Destination is defined by:
* Top-left corner coordinate XY5)
* Height and width (5 W>)

The scaling factors between the source and destination may be defined as:

* Width (i.e. x-direction) scaling factor i, & W4/W,
* Height (i.e. y-direction) scaling factor ig S Hq/H,

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-11

Since one of the three scaling parameters depends on the other two parameters, use only
two parameters to specify the scaling of the source and destination.

Example Code: Scaled BitBIt operation

void R128_ScaleBIt (WORD src_x, WORD src_y, WORD src_width, WORD
src_height,
WORD dst_x, WORD dst_y, WORD dst_width, WORD dst_height)

{

DWORD save_tex_cntl, save_scale_3d_cntl;

DWORD temp;

double factor = 65536.0;

double scalex, scaley;

/I Save the registers that we intend to modify
R128 WaitForFifo (2);

save_tex_cntl = regr (TEX_CNTL);
save_scale_3d_cntl = regr (SCALE_3D_CNTL);

R128 WaitForFifo (13);

/I Set DP_MIX for SRCCOPY, using rectangular source.
regw (DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);

/I Set SCALE_3D_DATATYPE to the current pixel depth
temp = R128 GetBPPValue (R128_Adapterinfo.bpp);
regw (SCALE_3D_DATATYPE, temp);

/I enable scaling with blending
regw (SCALE_3D_CNTL, 0x00000040);

/I Clear TEX_CNTL, so all texturing functions are disabled.
regw (TEX_CNTL, 0x00000000);

/I Disable any motion compensation functions
regw (MC_SRC1_CNTL, 0x00000000);

/I Set up the height and width of the source data
regw (SCALE_SRC_HEIGHT_WIDTH, (src_height << 16) | src_width);

/I set SCALE_PITCH equal to the screen pitch, as we are loading the
source

/l image in a rectangular trajectory in offscreen memory.

regw (SCALE_PITCH, R128_Adapterinfo.pitch);

/I calculate the scaling factors for both x and y directions
scalex = (double)src_width/(double)dst_width;
scaley = (double)src_height/(double)dst_height;

/I Both the increment registers are 12 bit fractional, 4 bit integer
/I so we multiply the scaling factor by 65536 to convert the value
/I to this format.

regw (SCALE_X_INC, (DWORD)(scalex * factor));

regw (SCALE_Y_INC, (DWORD)(scaley * factor));

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-12

/I Clear out the accumulator registers
regw (SCALE_HACC, 0x00000000);
regw (SCALE_VACC, 0x00000000);

/I Set the dst location
regw (SCALE_DST_Y_X, (dst_y << 16) | dst_x);

/I Perform the blt
regw (SCALE_DST_HEIGHT_WIDTH, (dst_height << 16) | dst_width);

/I Now restore the registers we changed.
R128_WaitForFifo (2);

regw (TEX_CNTL, save_tex_cntl);

regw (SCALE_3D_CNTL, save_scale_3d_cntl);

return;
}/l R128_ScaleBlt ()

4.3.2 Drawing Lines

Drawing lines can be accelerated by using the RAGE 128'’s hardware support for
bresenham lines. The GUI must be programmed with the appropriate increment,
decrement and error values to satisfy the bresenham algorithm as noted in the following
code.

Example Code: Accelerated line drawing

void R128_DrawLine (WORD x1, WORD y1, WORD x2, WORD y2, DWORD color)
{

int dx, dy;

int small, large;

int x_dir, y_dir, y_major;

int err, inc, dec, temp;

DWORD save_dp_cntl, save_dp_datatype, bppvalue;

/I Determine x & y deltas and x & y direction bits.
if (x1 <x2)
{
dx =x2 - x1;
x_dir=1 << 31;
}
else
{
dx =x1 - x2;
x_dir=0<<31;
Y if

if (y1 < y2)

dy =y2-yl;
y_dir=1<<15;

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-13

}
else
{
dy =yl-y2;
y_dir =0 << 15;
Yt

/l Determine x & y min and max values; also determine y major bit.
if (dx < dy)
{
small = dx;
large = dy;
y_major =1<<2;
}

else

small = dy;

large = dx;

y_major =0 << 2;
Yiif

/I Calculate Bresenham parameters and draw line.
err = (DWORD) (-large);

inc = (DWORD) (2 * small);

dec = (DWORD) (-2 * large);

R128 WaitForFifo (11);

save_dp_cntl = regr (DP_CNTL);
save_dp_datatype = regr (DP_DATATYPE);

/I Set DP_DATATYPE
bppvalue = R128_GetBPPValue (R128_Adapterinfo.bpp);
regw (DP_DATATYPE, (bppvalue | BRUSH_SOLIDCOLOR | ROP3_SRCCOPY));

/I Draw Bresenham line.
regw (DP_BRUSH_FRGD_CLR, R128_GetcolorCode(color));
regw (DST_Y_X, (y1 << 16) | x1);

/I Allow setting of last pel bit and polygon outline bit for line draw-
ing.

regw (DP_CNTL_XDIR_YDIR_YMAJOR, (y_major | y_dir | x_dir));

regw (DST_BRES_ERR, err);

regw (DST_BRES_INC, inc);

regw (DST_BRES_DEC, dec);

regw (DST_BRES_LNTH, (DWORD) (large + 1));

regw (DP_CNTL, save_dp_cntl);

regw (DP_DATATYPE, save_dp_datatype);

return;

} /I R128_DrawlLine ()

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-14

Drawing Patterned Lines

The RAGE 128 can also draw patterned lines. Pattern data is loaded into the brush data
registers, and the appropriate brush is selected using
DP_BRUSH_DATATYPE@DP_DATATYPE

Five brush types are suitable for patterned lines. They are:

e 8x1 mono pattern

¢ 8x1 mono pattern (leave background alone)
e 32x1 mono pattern

e 32x1 mono pattern (leave background alone)

e 8x1 color (pixel type is the same as the destination).

The following is some sample code to demonstrate drawing a patterned line:

Example Code: Drawing a patterned line

void R128_DrawPatternLine (WORD x1, WORD y1, WORD x2, WORD y2,
DWORD brushtype, DWORD *data)
{
int dx, dy;
int small, large;
int x_dir, y_dir, y_major;
int err, inc, dec, temp;
DWORD save_dp_cntl, save_dp_datatype, bppvalue;

R128_LoadPatternData (brushtype, data);

/I Determine x & y deltas and x & y direction bits.
if (x1 <x2)
{
dx =x2 - x1,;
x_dir=1 << 31;
}
else
{
dx =x1 - x2;
x_dir=0<<31;
Y if

if (yl <y2)
{
dy =y2-yl;
y_dir=1<<15;
}

else

{

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-15

dy =yl-y2;
y_dir=0 << 15;
it

/I Determine x & y min and max values; also determine y major bit.
if (dx < dy)

small = dx;
large = dy;
y_major = 1 << 2;
}
else
{
small = dy;
large = dx;
y_major = 0 << 2;
Y if

/I Calculate Bresenham parameters and draw line.
err = (DWORD) (-large);

inc = (DWORD) (2 * small);

dec = (DWORD) (-2 * large);

R128 WaitForFifo (11);

save_dp_cntl = regr (DP_CNTL);
save_dp_datatype = regr (DP_DATATYPE);

/I Set DP_DATATYPE
bppvalue = R128_GetBPPValue (R128_Adapterinfo.bpp);
regw (DP_DATATYPE, (bppvalue | brushtype | ROP3_PATCOPY));

/I Draw Bresenham line.
regw (DST_Y_X, (y1 << 16) | x1);

/I Allow setting of last pel bit and polygon outline bit for line draw-
ing.

regw (DP_CNTL_XDIR_YDIR_YMAJOR, (y_major | y_dir | x_dir));

regw (DST_BRES_ERR, err);

regw (DST_BRES_INC, inc);

regw (DST_BRES_DEC, dec);

regw (DST_BRES_LNTH, (DWORD) (large + 1));

regw (DP_CNTL, save_dp_cntl);

regw (DP_DATATYPE, save_dp_datatype);

return;

} /I R128_DrawPatternLine ()

Monochrome Expansion

This operation accepts monochrome data and expands this data into a two color bitmap.
This is particularly useful for displaying text. The monochrome expansion circuitry on the
RAGE 128 allows for expanding both the foreground and background data, or just the

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-16

foreground, leaving the background alone. The data must be sent to the controller via the

host data registers.

The controller does not support monochrome expansion of data that resides in the frame

buffer.

The following code shows how to perform a monochrome expansion blt using the host

data registers to move the data to the engine.

Example Code: Monochrome expanded Blt operation

void MEBItThruHostData (DWORD *pSrc, WORD NumDWORDS, blt_data * pData)

{
int loop;
DWORD temp;
R128 WaitForFifo (7);
temp = R128_GetBPPValue (R128_Adapterinfo.bpp);

/I First write GUI_MASTER_CNTL.
regw (DP_GUI_MASTER_CNTL,

(0<<0)| /IUse DEFAULT_OFFSET and DEFAULT_PITCH for SRC
(0<<1)| /IUse DEFAULT_OFFSET and DEFAULT_PITCH for DST

(0<<2)| I/ Use DEFAULT_SC_BOTTOM_RIGHT

(1<<3)| //Use SC_TOP_LEFT and SC_BOTTOM_RIGHT for DST

(OxC << 4) | /I Brush type ignored.
(temp << 8) | // Set DST_DATATYPE to the current bpp
(0<<12)| /I Expand to foreground and background.

(1<<14)| /I Consume monochrome data from LSbit to MSbit

(0 << 15)| /I Set Conversion temp to 6500k

(0xCC << 16) | // Set ROP3 to SRC_COPY

(3<<24)| [/l Source Data is from HOSTDATA registers.
(0<<27)| [/l Clear 3D_SCALE_CNTL (Disable 3D engine)

(1<<28)| /I Clear CLR_CMP_CNTL (Disable Color Compare)

(1<<29)| [/IClear AUX_SC_CNTL (Disable Auxilary Scissors
(1<<30)| [/ Set DP_WRITE_MASK to OXFFFFFFFF
(0<<31) /I No BRUSH_X_Y required.

);

/I Set the colors for the expanded data.
temp = R128_ GetcolorCode (pData->frgd);
regw (DP_SRC_FRGD_CLR, temp);

temp = R128_ GetcolorCode (pData->bkgd);
regw (DP_SRC_BKGD_CLR, temp);

/I Setup the destination trajectory.
regw (DST_X_Y, ((pData->x << 16) | pData->y));
regw (DST_WIDTH_HEIGHT, ((pData->w << 16) | pData->h));

/IWritethe data outtothe HostDataregisters. We write the number of

/| DWORDs less the last one, which we must write out to HOST_DATA_LAST

to

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential

4-17

/I tell the GUI engine that the HOSTDATA operation is complete.

for (loop = 0; loop < NumDWORDS-1; loop++)
{

R128 WaitForFifo (1);

regw (HOST_DATAQO, *pSrc);

pSrc += 1; // increment the data pointer

}

/I Write out the final piece of data.
R128_WaitForFifo (1);
regw (HOST_DATA_LAST, *pSrc);

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-18

4.4 Hardware Cursor

The RAGE 128 supports a hardware cursor. The cursor is represented by a bitmap of
64x64 pixels. This map normally resides in the off-screen area of frame buffer.

RegistelCUR_OFFSEToints to the memory location of the bitmap, with reference to the
beginning of frame buffer.

The cursor actually seen on the screen may be smaller than the bitmap, and occupies the
top right corner of the bitmap. Therefore, the reduction in the bitmap’s horizontal and
vertical dimensions needs to be specified inGhiR_HORZ_VERT_OHREgister. The
coordinate (i.e. screen location) of the displayed cursor is determined by the
CUR_HORZ_VERT_POS#&gister.

The hotspot (i.e. the “sensor” of the cursor) is inside the displayed cursor. The hotspot of
the RAGE 128's cursor is at the top-left corner of the display cursor.

CUR_OFFSET
CUR_VERT_POSN
Hotspot

| ‘ A
>
I CUR_HORZ_POSN——
X

Displayed
Cursor

CUR_HORZ_OFFSET

64 lines

CUR_VERT_OFFSET

Screen

64 pixels

A
v

Figure 4-3. Cursor Related Parameters

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-19

The cursor bitmap consists of 64 rows, and each row has 64 pixels. Each pixel is
represented by two bits. One is called the AND bit and the other is the XOR bit.
Therefore, each row of the bitmap is represented by 128 bits. The first 64 bits represent the
AND bits of the 64 pixels, and the remaining bits represent the XOR bits. The memory
organization of the bitmap is shown as follows. In the table, entries Pixel, Bit and Byte
denote the pixel, bit and byte positions of a pixel in a row.

* Row_x_A denote the positions of AND bits.
* Row_x_X denote the positions of XOR bits.

Table 4-3 Pixel Location in Memory

Pixel 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 .. 56 57 58 59 60 61 62 63
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Row_0_A byte 0 byte 1 byte 7
Row_0_X byte 8 byte 9 byte 15
Row_1 A byte 16 byte 17 byte 23
Row_1_X byte 24 byte 25 byte 31
Row_63_A byte 1008 byte 1009 byte 1015
Row_63_X byte 1016 byte 1017 byte 1023

The hardware cursor is specified by the following parameters:

e Cursor Pixel
e Cursor Pitch

e Cursor Position

Cursor Pixel

This pixel is represented by two bits. The following table shows the possible values and
their meanings. The colors stored in registers CUR_CLRO and CUR_CLR1 contain color
codes in the 24-bit RGB format (i.e. the true-color format), regardless of the current pixel
depth.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-20

Hardware Cursor

Table 4-4 Cursor Pixel

AND XOR Resulting Pixel

Cursor color 0 that is given in register CUR_CLRO.

Cursor color 1 that is given in register CUR_CLR1.

0 0
0 1
1 0 Transparent
1 1

Compliment of the current display pixel value.

Cursor Pitch

This is always 64 pixels. That is, each scan line of the hardware cursor definition is
defined with 64*2 bits (16 bytes) of data, regardless of the actual cursor width. The pixel
definition is specified in the Intel order.

Cursor Position

This specifies the coordinate of the top-left corner of the cursor on the screen. The
coordinate is stored in registetJR_HORZ_VERT_POSWhich tells the current

coordinate as the cursor moves around. When the cursor goes outside the screen, either i
horizontal or vertical coordinate may become negative.

In such a circumstance, RAGE 128 will not display the cursor at all. However, the hot spot
of the cursor, which is inside of the displayed cursor, may still be on the screen, but is
ineffective since the left-to corner of the cursor falls outside the screen. Therefore, some
adjustment to the cursor-related parameters has to be made to keep the cursor being
display partially when the left-top corner of the cursor falls outside the screen.

Example Code: Initializing a hardware cursor

void R128_SetHWCursor (BYTE cursor)

{
DWORD cur_offset, horz_offset, vert_offset;
DWORD temp;

/I Check that cursor size is within limits

if (CURSORDATA[cursor].width < 1) || (CURSORDATA|[cursor].width > 64))
return;
if (CURSORDATA[cursor].height < 1) || (CURSORDATA|[cursor].height > 64))
return;

/I determine offsets within cursor bitmap
horz_offset = 64 - CURSORDATA[cursor].width;
vert_offset = 64 - CURSORDATA[cursor].height;

CURSORDATA][cursor].cur_offset = R128_Adapterinfo.MEM_BASE +

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-21

Hardware Cursor

CURSORDATA[cursor].cur_offset;

/I Set cursor size offsets.
regw (CUR_HORZ_VERT_OFF, (horz_offset << 16) | vert_offset);

/I Set cursor offset to cursor data region.
regw (CUR_OFFSET, CURSORDATA[cursor].cur_offset);

} /1 R128_SetHWCursor ()

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
4-22 Proprietary and Confidential

5.1 Scope

The Concurrent Command Execution (CCE) Engine mode provides a simple method of
programming 2D drawing operations. Instead of making register writes as you would in
programmed I/O mode (PI10O), simply submit a packet to the CCE ring buffer.

The CCE microengine automatically parses the packet and programs the necessary
registers. This method of programming is very efficient because the CCE microengine
uses the bus mastering capabilities of the RAGE 128 to send the packets from system
memory to the graphics controller.

In the past, the CCE registers were known as the ProMo4 (PM4) registers. ProMo4 stood
for ‘Programming Model 4’ (i.e., programming the hardware thorough the submission of
packets).

The other three methods, collectively known as PIO modes, were register writes through:

e The I/O space.
* The small aperture in VGA space.

e The register aperture.

The following figure shows:

e The architecture of the RAGE 128

* How the CCE microengine relates to the rest of the controller.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-1

Scope

Host Application

AGP or PClI GART memory

1L 1

Ring Indirect
Buffer Buffer
[T [
< = = -
1/0 PCI AGP Host Interface
Host Interface
CCE Bus Master
®}
o
3 Accelerator Controller
O
CCE FIFO Buffer
o CCE Microengine
o o
e i} 1!
9 Command FIFO Buffer
\ | \
Rage 128 ‘L iL
VGA 3D I 3D 2D
Setup ——/ Render Render
Controller . .)
Engine Engine Engine
iL []]
= = = = = =

Frame Buffer

Figure 5-1. RAGE 128 Structure and Data Flow

RAGE 128 Software Development Manual

5-2

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Starting the CCE Microengine

5.2

521

5.2.2

Starting the CCE Microengine

For the purpose of this explanation, it is assumed that the RAGE 128 is working in PIO
(i.e., programmable Input and Output) mode, and that the GUI engine is busy executing
the commands in the command FIFO buffer.

Wait for Engine Idle

Prior to any writes to any CCE register, it is essential to check the state of the GUI engine
to ensure that the contents of the command FIFO have been processed and the engine is
a state of idleness.

Load the Microcode into the Microengine

The microcode for the microengine is 256 QWORDSs long, and can be loaded into the
microengine through writing to the following registers:

* PM4_MICROCODE_DATAH, and
* PM4_MICROCODE_DATAL

The RAGE 128 needs to be informed of the microcode’s starting address in
PM4_MICROCODE_ADDR before loading begins.

Example Code: Loading the microcode into the microengine

DWORD CCE_Microcode[256][2]={
{high DWORD, low DWORD},

{high DWORD, low DWORD}
h

void CCELoadMicrocode (void)

{
inti;
/I Wait for engine idle before loading the microcode.
R128_WaitForldle ();

/I Set starting address for writing the microcode.

regw (PM4_MICROCODE_ADDR, 0);

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-3

Starting the CCE Microengine

for (i=0;i<256;i+=1)
{
/I The microcode write address will automatically increment after
/I every microcode data high/low pair. Note that the high DWORD
/I must be written first for address autoincrement to work cor-
rectly.

regw (PM4_ MICROCODE_DATAH, CCE_Microcode[i][0]);
regw (PM4_ MICROCODE_DATAL, CCE_Microcodel[i][1]);
} /I for

return;
} /I CCELoadMicrocode
} /I CCELoadMicrocode

5.2.3 Load the CCE Registers

Assuming that the size of the ring buffer is 1IMB and it starts at address 0 in the virtual
memory space, the free-area pointer must point to the beginning of the ring buffer and the
RAGE 128 must be initiated to the CCE-bus mastering mode.

Also, the RAGE 128 must inform the host of the ring buffer’s status after the transfer of
the packets in the ring buffer is completed. That is, after a certain amount of data transfer,
the head of packet queue in the ring buffer must be updated using the bus-mastering
method.

In the following programming example, the RAGE 128 is set to update the queue head
pPacketQueue after every transfer of 64 DWORDs. There are four parameters that decide
the thresholds of initiating data transfer from the ring buffer, and when the pointer to the
packet queue in the ring buffer is to be updated. The parameters are:

e The minimum amount of data to be transferred from the ring buffer before updating
the packet queue pointer pPacketQueue at the host.

e The minimum number of DWORDSs, L, in the Ring Buffer before initiating a data
transfer.

e The minimum number of DWORDSs, M, in the Command FIFO buffer before
initiating a data transfer.

e The minimum number of DWORDSs, N, in the CCE FIFO buffer before initiating a
data transfer.

If we denote the actual numbers of DWORDSs in the ring buffer, command FIFO buffer,
and CCE FIFO buffer respectively by I, m and n, the condition for initiating a data transfer
is as follows:

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
54 Proprietary and Confidential

Starting the CCE Microengine

e |>L,o0r
e m<or=M,or

e n<or=N.

Now let L =16, M =8, and N = 8, the following example will set up the microengine
according to the specification.

Example Code: Initializing the microengine
/I Note that the ring buffer size must be power-of-2, min size 2 DWORDs

#define RING_SIZE 0x00040000 // 1MB ring buffer (256k DWORDS)
#define RING_SIZE_LOG2 17 /l'log2 (RING_SIZE) - 1

#define CCE_WATERMARK_L 16
#define CCE_WATERMARK_M 8
#define CCE_WATERMARK_N 8
#define CCE_WATERMARK_K 128

typedef struct tagRBINFO {
volatile DWORD *ReadIndexPtr; /I Current Read pointer index

DWORD ReadPtrPhysical; /I Physical address of read pointer
DWORD Writelndex; /I Current write pointer index
DWORD *LinearPtr; /I Virtual address of ring buffer
DWORD Size; /I Size of ring buffer in DWORDs

} RBINFO;

#define RING_SIZE 0x00000800
DWORD dwRingBuf[RING_SIZE];
struct {
DWORD *pPacketQueue,*pPacketQrec, *pFreeArea;
DWORD dwRingSize, dwSpaceAvail, *pRingStart;
} Svr = {dwRingBuf, dwRingBuf, dwRingBuf, RING_SIZE, RING_SIZE, dwRingBuf};

void InitMicroEngine (void)

{ /I Set the start address of ring buffer.
regw (PM4_BUFFER_OFFSET, dwRingBuf);
/I Set the pointer of the area for fill packets.

regw (PM4_BUFFER_DL_WPTR, svr.pFreeArea);

/I Set up the threshholds of initiating a data transfer
/I from the ring buffer to the PM4 FIFO buffer.

regw (PM4_BUFFER_WM_CNTL, 0x02020204);

/I Set Rage 128 to the CCE bus mastering mode with full use of the CCE

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-5

Starting the CCE Microengine

/I FIFO buffer (192 DWORDSs), and set the size of ring buffer to 8 K.
regw (PM4_BUFFER_CNTL, 0x2000000A);
/I Set the pointer to the head of the packet queue in the ring buffer

regw (PM4_BUFFER_DL_RPTR_ADDR, &svr.pPacketQueue);
} /I InitMicroEngine

int R128_CCElnit (int index)

{
DWORD cce_buf_size;

/I Load CCE Microcode
CCELoadMicrocode ();
/I Validate CCEmode and set up necessary parameters

if ((index < CCE_MODE_192PI0) ||
(index > CCE_MODE_64PIO_64VERPIO_64INDPIO))

{
return (CCE_FAIL_INVALID_CCE_MODE);
Yt

/I Perform a soft reset of the engine
R128_ResetEngine ();

CCEFifoSize = CCEmodelindex].fifosize;
CCEBMFlag = CCEmode[index].busmaster;
if (CCEBMFlag)
{
R128 CCESubmitPackets = CCESubmitPacketsBM;
if (CCESetupBusMaster ())
{
return (CCE_FAIL_BUS_MASTER_INIT);
I if
cce_buf_size = RING_SIZE_LOGZ2;
bm_save_state = regr (BUS_CNTL);
regw (BUS_CNTL, (bm_save_state & ~BUS_MASTER_DIS));
}

else

R128 CCESubmitPackets = CCESubmitPacketsPIO;
cce_buf_size = 0;
Y if

/I Set the Rage 128 to requested CCE mode.
CCERequestedMode = CCEmode[index].pm4buffermode + cce_buf_size;
regw (PM4_BUFFER_CNTL, CCERequestedMode);

/I Set the CCE to free running mode

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-6 Proprietary and Confidential

Starting the CCE Microengine

regw (PM4_MICRO_CNTL, PM4_MICRO_FREERUN);

return (CCE_SUCCESS);
} // R128_CCElnit
int CCESetupBusMaster (void)
{
_AGP_INFO *AGP_Info;
DWORD ring_buf_offset, read_ptr_offset;

/I For the sake of simplicity, put the ring buffer at the start of AGP
/I space, factoring in alignment restrictions.

ring_buf_offset = 0;

/I Align the offset to a 128-byte boundary. Strictly speaking, since an
/I offset of zero was chosen, the following step is unnecessary, but it
/l'is good form to perform this step in case the ring buffer needs to be
I elsewhere.

ring_buf_offset = align (ring_buf_offset, 128);
read_ptr_offset = align ((DWORD) readbuf, 32);
RingBuf.ReadIndexPtr = (DWORD *) read_ptr_offset;
R128_Delay (1);

RingBuf.ReadPtrPhysical = GetPhysical (read_ptr_offset);
RingBuf.Size = RING_SIZE;

RingBuf.Writelndex = 0;

if (R128_InitAGP (APERTURE_SIZE_4MB))
{
CCEAGPFlag = TRUE;
GetAGPINFO (&AGP_lInfo);
RingBuf.LinearPtr = (DWORD *) (AGP_Info->LogicalAddress +
ring_buf_offset);
regw (PCI_GART_PAGE, PCI_GART_DIS);
}

else

{
/I No AGP available, use PClI GART mapping instead.

CCEAGPFlag = FALSE;
if ((PClGartinfo = SetupPCIGARTTable (APERTURE_SIZE_4MB)))

/I 1f even a PCI GART table is not available, then bus mastering
/'is not possible.

return (CCE_FAIL_BUS_MASTER_INIT);
Y i

RingBuf.LinearPtr = PClGartInfo->pointer +
(ring_buf_offset/sizeof (DWORD));

/I Write the GART page address. Since this address is 4KB
// aligned, bit 0 is cleared. Hence, GART will be enabled.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-7

Starting the CCE Microengine

regw (PCI_GART_PAGE, PClGartinfo->paddress);
Yiif

/I Set the start offset of the ring buffer.
regw (PM4_BUFFER_OFFSET, (ring_buf_offset + 0x02000000));

regw (PM4_BUFFER_DL_WPTR, RingBuf.Writelndex);
regw (PM4_BUFFER_DL_RPTR, RingBuf.Writelndex);

/I Put the physical address of read pointer into PM4_BUFFER_DL_RPTR_ADDR

regw (PM4_BUFFER_DL_RPTR_ADDR, RingBuf.ReadPtrPhysical);

/I Set watermarks for CCE

regw (PM4_BUFFER_WM_CNTL, (CCE_WATERMARK_K/64) << 24 |
(CCE_WATERMARK_N/4) << 16 |
(CCE_WATERMARK_M/4) << 8|
CCE_WATERMARK_L/4);

return (CCE_SUCCESS);
} /Il CCESetupBusMaster

5.2.4 Cautions When Programming RAGE 128 in CCE Mode

e All packets must be checked for proper formatting prior to submission to the server.
Incorrectly-formatted packets will cause the RAGE 128 to hang.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-8 Proprietary and Confidential

Ring Buffer Management

5.3 Ring Buffer Management
5.3.1 The Ring Buffer Concept

When operating in CCE mode, the RAGE 128 receives commands from the host through
the CCE command packets. A command packet is a data block that consists of a header
followed by a data body of variable size. When operating in bus-mastering mode,
command packets are sent to the RAGE 128 through a ring buffer and/or an indirect
buffer.

Thering buffer is a contiguous block of system memory allocated by the host application
in AGP or PCI GART memory. For more details about PClI GART memfgr to
Section 2.6.6

The RAGE 128 treats this buffer as a ring by wrapping back to the starting address when it
reaches the end. The starting address and the size of the buffer are passed to the RAGE
128 when initializing it for CCE bus-mastering mode.

The host application copies packets into the ring buffer in consecutive order starting at the
top. The packets are bus-mastered to the RAGE 128's on-chip CCE FIFO buffer, where
they are processed by the microengine in the order they are received. The microengine
places it's output into the command FIFO as register-datum pairs. When the host reaches
the end of the block, it starts copying at the top again. The following figure shows a
conceptual representation of the ring buffer.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-9

Ring Buffer Management

Ring Buffer Pointer

Ring Buffer Size
Packet Pointer
Free Buffer Pointer

HOST I RAGE 128
[]
[]

~

DL_RPTR

d

PM4_BUFFER_OFFSET

|

L}
end of fstart of I DL_WPTR
buffer buffer

N\ T

P1
Ring

Buffer

AGP / PCI
Interface

Ring Buffer Server

CCE FIFO Buffer

PM4_BUFFER_CNTL_SIZE

]
]
]
)
free space
' @PM4_BUFFER_CNTL
]
)
]

-

DL_RPTR_ADDR

Ul

Figure 5-2. Ring Buffer and its Control Structure

The above figure shows that the command packets are placed into the buffer in clock-wise
order, forming a packet queue. The first packet in the queue is denoted by P1, and the last
by Pn. The start of the queue, P1, is pointed to by both a packet pointer maintained by the
application, and the RAGE 1284 BUFFER_DL_RPTRegister. The memory

portion that is not occupied by packets is called the free area. It is pointed to by both a free
buffer pointer maintained by the application and the Rage 128's
PM4_BUFFER_DL_WPTRegister. All incoming packets should be placed into this area.

Initially, both the packet and free area pointers point at the start of the memory block.
Thereafter, whenever the two pointers meet it implies that the ring buffer is either
completely empty or completely full. It is assumed that the data processing speed of the
RAGE 128 is faster than the speed of data transfer from the ring buffer to the RAGE 128.
Therefore, this condition is generally interpreted as the ring buffer being empty.

As packets are put into and taken out of the ring buffer, the packet and free area pointers
must be updated to keep track. The updates should be kept synchronized between the host

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-10 Proprietary and Confidential

Ring Buffer Management

5.3.2

application and the RAGE 128. On the host side, the application places a command packe
at the location pointed to by the current free area pointer, updates the free area pointer to
point just beyond this new packet, and updates the RAGE 128 free area pointer by writing
the new free area address to #i4 BUFFER_DL_WPTIRegister.

On the RAGE 128 side, packets are read one at a time from the head of the packet queu
pointed to by theM4_BUFFER_DL_RPTRegister, and sent to the CCE FIFO buffer.
ThePM4_BUFFER_DL_RPTRegister is updated automatically after each packet

transfer. The updated packet pointer must be sent back to the host application so that it
may keep track of the available free space. The RAGE 128 accomplishes this by updating
the application's packet pointer through a bus-mastering operation. The address of the
application's packet pointer must be written to the RAGE 128's
PM4_BUFFER_DL_RPTR_ADDRyister during CCE initialization. Note that the AGP
interface stops data transfer once poifteid BUFFER_DL_RPTReets
PM4_BUFFER_DL_WPTR

Ring Buffer Server

In an operating system environment, there may be a need to share the ring buffer among
several clients, such as a 2D display driver and a 3D driver. In this circumstance, a methoc
is required to arbitrate the use of the ring buffer. One method is to grant clients exclusive

access to the ring buffer through a server. Under this scheme, all clients submit packets tc
the server, and the server mediates and schedules delivery of the packets to the ring buffe

The following is a sample function defined for the server. The function needs two entrance
parameters. The address of client’s packet buffer *ClientBuf, and the size of the data
dwDataSize are submitted to the ring buffer. As the head of the packet queue is updated
by RAGE 128 through bus-mastering, the function keeps track of the updated queue heac
by keeping a copy for its own record, and updates the size of the available space at the
same time.

Example Code: Ring buffer management

#define FAIL 0
#define SUCCESS 1
DWORD dwRingBuUf[RING_SIZE];
struct {
DWORD *pPacketQueue,*pPacketQrec, *pFreeArea;
DWORD dwRingSize, dwSpaceAvail, *pRingStart;
} Svr = {dwRingBuf, dwRingBuf, dwRingBuf, RING_SIZE, RING_SIZE, dwRingBuf};

WORD SubmitPackets (DWORD *ClientBuf, DWORD dwDataSize)

{
long n1, n2;
inti};

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-11

Ring Buffer Management

/I update available space to synchronize the record with Rage 128
if (Srv.pPacketQueue > Srv.pPacketQrec)

{
Srv.dwSpaceAvail += Srv.pPacketQueue - Srv.pPacketQrec;
i if
if (Srv.pPacketQueue < Srv.pPacketQrec)
{
Srv.dwSpaceAvail += Srv.pPacketQueue - Srv.pPacketQrec + RING_SIZE;
i if
Srv.pPacketQrec = Srv.pPacketQueue;
if (Srv.dwSpaceAvail >= dwDataSize)
{
if (Srv.pFreeArea + dwDataSize <= Srv.pRingStart + RING_SIZE)
{
for (i = 0; i < dwDataSize; i++)
{
Srv.pFreeAreali] = ClientBuf[i];
} 11 for
Srv.pFreeArea += dwDataSize;
}
else
{
nl = Srv.pRingStart + RING_SIZE - Srv.pFreeArea;
n2 = dwDataSize - n1;
for (i=0;i<nl;i++)
{
Srv.pFreeAreali] = ClientBuf[i];
Y11 for
Srv.pFreeArea = Srv.pRingStart;
for (j = 0; i < n2; i++, j++)
{
Srv.pFreeArealj] = ClientBuf[i];
} /I for
Srv.pFreeArea += n2;
I if
WriteReg (PM4_BUFFER_DL_WPTR, svr.pFreeArea);
Srv.dwSpaceAvail -= dwDataSize;
return SUCCESS;
}

else

{
return FAIL;
it
} /I SubmitPackets

Example Code: Submitting packets using programmed I/O (P1O) mode

int CCESubmitPacketsPIO (DWORD *ClientBuf, DWORD DataSize)
{

/I Consume entries in the buffer two DWORDSs at a time, splitting up the
/I writes to the even and odd registers.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-12 Proprietary and Confidential

Ring Buffer Management

while (DataSize > 1)

{
CCEWaitForFifo (2);
regw (PM4_FIFO_DATA_EVEN, *ClientBuf++);
regw (PM4_FIFO_DATA_ODD, *ClientBuf++);

DataSize -= 2;
} /1 while

/I At this point, DataSize should be either 0 or 1, handle odd packet
/I accordingly.

if (DataSize & 1)
{

CCEWaitForFifo (2);

regw (PM4_FIFO_DATA_EVEN, *ClientBuf); // Write final packet

regw (PM4_FIFO_DATA_ODD, CCE_PACKET?2); // Write dummy packet
} /1 to align if

/I N.B. A more sophisticated packet submission algorithm might try to
/I reduce the number of times that CCEWaitForFifo () is called and still
/I handle packets that are larger than the maximum CCE FIFO size. A
/I somewhat inefficient approach (waiting for 2 free entries each time
/I through the loop) is used above since it simplifies the example and
/I can handle arbitrary sized buffers.

return (CCE_SUCCESS);
} /I CCESubmitPacketsPIO

Example Code: Submitting packets with Bus Mastering

int CCESubmitPacketsBM (DWORD *ClientBuf, DIWORD DataSize)

{
DWORD *tptr;

/I We shall arbitrarily fail if the incoming packet is bigger than our
/ ring buffer. A better algorithm would break up the incoming packet
/I into small enough chunks to feed to the buffer.

if (DataSize >= RingBuf.Size)
{

return (CCE_FAIL_BAD_PACKET);
Y if

tptr = RingBuf.LinearPtr + RingBuf.Writelndex;
while (DataSize > 0)
{
RingBuf.Writelndex += 1;
*tptr++ = *ClientBuf++;
if (RingBuf.Writelndex >= RingBuf.Size)
{
RingBuf.Writelndex = 0;
tptr = RingBuf.LinearPtr;
I if

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-13

Ring Buffer Management

while (RingBuf.Writelndex == *(RingBuf.ReadlndexPtr))
{
/I Some form of timeout checking should be done here in
/I case the read pointer gets stuck due to an engine panic.
} 1/ while
DataSize -= 1;
} /I while

/I Update pointer.
regw (PM4_BUFFER_DL_WPTR, RingBuf.Writelndex);

return (CCE_SUCCESS);
} /I CCESubmitPacketsBM

Example Code: Shutting down the microengine
void R128_CCEENd (int waitmode)

{
if (CCEBMFlag)
/I Signal CCE that we are done submitting bus-mastered packets
regw (PM4_BUFFER_DL_WPTR, RingBuf.Writelndex | PM4_BUFFER_DL_DONE);
it
if (waitmode == CCE_END_WAIT)
/I Wait for engine idle before ending. It does not matter if the
/I engine fails to idle as we will reset it shortly.
CCEWaitForldle ();
Yiif

/I Stop the CCE microengine by setting it to single-stepping mode
regw (PM4_MICRO_CNTL, 0x00000000);
/I Perform a soft reset of the engine
R128_ResetEngine ();
/I Set the Rage 128 to standard PIO mode.
regw (PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPMA4);
if (CCEBMPFlag)
{ regw (BUS_CNTL, bm_save_state);
if (CCEAGPFlag)
{ /I Shut down AGP

R128_EndAGP ();

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-14 Proprietary and Confidential

Ring Buffer Management

}

else

{
DPMI_freedosmem (PClGartinfo->handle);
HIif
it

return;
}// R128_CCEEnd

5.3.3 Indirect Buffer

In addition to transferring packets through the ring buffer, the host application may
transfer them through andirect buffer when using CCE bus-mastering mode. Similar to
the ring buffer, the indirect buffer is a contiguous block of memory allocated by the host
application in AGP or PCI GART space. However, unlike the ring buffer, the indirect
buffer is linear. There are no wrapping mechanisms governing its use and operation.

To view a diagram of the indirect buffesfer to Figure 5-3. on page 5-16

The benefit of the indirect buffer is that unlike the ring buffer, it is not continuously being
overwritten as a consequence of circular wrapping. This allows relatively static and
frequently used packets to be written once and referenced multiple times. Only the
operating parameters need to be changed for each instance of use (e.g., the top, left, widt!
and height parameters of a BITBLT type-3 packet). In contrast, the same packet would
have to be continuously copied into the ring buffer because the buffer's contents are
continuously overwritten.

The indirect buffer should be 4K page aligned.

The packet byte offset from the base of the indirect buffer is specified in the

PM4 _IW_INDOFFregister. The size in even number of DWORD:s is specified in the
PM4_IW_INDSIZE register. If a packet's size is an odd count of DWORDs, it should be
padded with a single type-2 NOP packet. Writiig4 IW_INDSIZE initiates the packet
transfer.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-15

Ring Buffer Management

HOST RAGE 128

Indirect Buffer '
.

free space }—I—>[PM4_IW_INDOFF]
.

Packet [PM4_IW_INDSIZE J
CCE FIFO Buffer

AGP/PCI
Interface

Driver(s) free space

Figure 5-3. The Indirect Buffer

The most efficient programming model for the RAGE 128 is to use both the ring buffer
and the indirect buffer. The ring buffer enables concurrency and command streaming,
whereas the indirect buffer reduces copying overhead for commonly used packets. The
packet transfers out of the indirect buffer may be streamed by wikikitidg IW_INDOFF
andPM4_IW_INDSIZE through a type-0 packet submitted to the ring buffer. If the ring
buffer is not used, indirect buffer transfers may still be executed by writing these two
registers through conventional PIO.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-16 Proprietary and Confidential

6.1 Scope

This section describes how to use the CCE packets and provides programming examples
for various engine operations (e.g. blts, rectangle and line draws, etc.). CCE packets are
used to draw two-dimensional (2D) images, such as:

* Lines

* Rectangles

e Polygons

* Text

e Moving pixels

The targeted operation area is the entire CRT screen, not just a limited screen area such «
a window. For all the 2D operations, this discussion will refer to a coordinate system that

is based on the entire CRT screen. CCE packets are used to draw three-dimensional (3D
images, such as:

e Shaded or textured mapped points.
¢ Shaded or textured mapped line lists and strips.

e Shaded or textured mapped triangle lists, strips, and fans.

CCE packets are used to control several features associated with 3D rendering such as:

* Texture map states
e Z buffering

e Stencil buffering

e Alpha blending

e Alpha testing

* Fog blending

e Culling

e Dithering

Programming examples will demonstrate how to use the CCE packets to draw 2D and 3D
images. For a detailed discussion about these packets, refer to Appendix F.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-1

2D Coordinate System

6.2 2D Coordinate System
The coordinate system used in 2-D operations is shoWwigure 6-1.

e Xx-axis points to the right.
e y-axis points downwards.

e Origin is located at the screen’s top-left corner.

Scales are integer intervals (a coordinate represents the position of a pixel).

For any objects to be drawn on the screen, the values of the x- and y-coordinates are

limited to positive integers. They range from zero to M-1, and from zero to N-1,
respectively.

For negative coordinates or coordinates beyond (M-1, N-1), the objects may not be
entirely drawn on the screen, but could still be drawn into frame buffer.

-t Screen width

v

Screen Area

Screen height —»‘
///
ot
S
e
v
x

\,
\,
\,

Figure 6-1. 2D Coordinate System

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-2

Proprietary and Confidential

2D Coordinate System

6.2.1 Essentials of 2D Drawing Operations

The termrendering describes general drawing operations to the screen or to the frame
buffer. This operation manipulates pixels from a number of sources. It is more complex
than a simple drawing operation such as drawing an object to the screen or copying data
from one location to another. Rendering 2-D images actually involves manipulating pixels
from different sources and placing the resulting pixels at a desired location.

When rendering, three types of source pixels are manipulated, such as:

e Source pixelsare taken from a location in the frame buffer or supplied by the host.
These pixels will not be modified after rendering.

e Brush are patterns are stored either in the relevant RAGE 128 registers or in system
memory. These pixels will not be modified after rendering.

e Destination pixelsare taken from the frame buffer as source data before rendering,
and they will be replaced by new pixels written to their position.

Generally, pixels that participate in the pixel manipulation are callesbilree
components The manipulated data is written to a location calleditstination areaor
destination

In the following discussion, @estination pixels a source component that comes from the
destination unless specified otherwise. Rendering may involve one, two or all of the
source components. The operation that manipulates the source components will be
referred to as easter operation(ROP). The RAGE 128 supports all 256 ROP3 raster
operations.

As rendering operations occur in a specific display mode, the program must specify the
following parameters to the RAGE 128 with respect to a specified operation. These
parameters are referred toraadering parametersThey are:

e The type of destination pixels (one of 8, 16, 24 and 32 BPP).
e If there is a source involved, the type of source pixels.
e The brush type selected for the rendering operation.

e If the brush is involved, the color of the selected brush represented in the destination
pixel type.

e The source where the source pixels will be loaded from (system memory or frame
buffer).

e The drawing order of pixels (from left to right or from right to left).

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-3

2D Coordinate System

If required, the source clipping rectangle that restricts the area where data are taken
from.

If required, the destination clipping rectangle that will specify the area where the
rendering operation is carried out.

The source offset and pitch that specify the source’s start location and pitch. If not
specified, the default offset and pitch (the screen offset and screen pitch) are assumed.
This is only applicable to the source loaded from frame buffer.

The destination offset and pitch that specify the destination’s start location in the
frame buffer and pitch. If not specified, the default offset and pitch (the screen offset
and screen pitch) are assumed.

The raster operation type carried out in combining the source, brush pattern and
destination pixels.

The location and geometry of the objects to be drawn.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

6-4

Proprietary and Confidential

Drawing Objects

6.3

6.3.1

Drawing Objects

RAGE 128 provides hardware assistance for drawing the following:

e Polylines.
e Polyscanlines.

¢ Rectangles.

The RAGE 128 does not support drawing the following:

e Circles.

* Ellipses.

While drawing the objects, the source pixels involved are the brush and destination
components. The source component is not involved. In this case, the brush pattern selecte
for drawing is considered as a source, and the pixels of the object being drawn are
considered as the destination. In addition to specifying the rendering parameters, also
specify the location and geometry of the intended object.

Drawing Rectangles

To draw a rectangle, specify the:

* Rendering parameters.
* Location of the rectangle.

e Geometry of the rectangles.

If the rectangle is to be filled with a pattern, specify where the source pattern is loaded
from for the brush. If the pattern is not stored in the brush registers, load the pattern from
system memory by supplying the raster data of the pattern to the packet.

The rectangle’s location is specified by the coordinate of its left-top corner.

The rectangle’s geometry is specified by either: its height and width, or by the coordinate
at its bottom-right corner (from which the height and width can be calculated). When the
coordinate of the rectangle’s right-bottom corner is specified, the bottom and right edges
of the rectangle will not be drawn.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-5

Drawing Objects

— Xa —»

T

he

)
\

P—Wz —»‘

Figure 6-2. Rectangles

Figure 6-2.shows two rectangles to be drawn on the screen.

The destinational-pixel type is aRGB (one of the 16 BPP modes). The dimensions of the
rectangles are specified by parameigrg, w;, andh;, fori =1, 2.

The PAINT packet can be used to draw these rectangles. Assume the rectangles are drawn
in the clipping rectangle specified by its top-left cornery,) and bottom-right corner

(Xo+W,, Yot+hy) with a brush in the type ablid pen The other parameters are similar to

those of drawing polyscanlines except that a clipping rectangle is specified.

The following programming code shows how to draw rectangles.

Example Code: Drawing rectangles

#define CCE_PACKET3_CNTL_PAINT 0xC0009100

#define DST_CLIPPING 0x00000008 // Clip the destination

#define PIXEL_TYPE_aRGB 3 /I Destination pixel type

#define SOLID_PEN 13 // Brush type selected

#define BLUE_COLOR Ox1F /I Colour in aRGB format

#define ROP_PAT_CPY OxFO /I Copy the brush pattern to the dest

#define SRC_TYPE_3 3 /I No difference between source and dest
#define DRAW_LEFT2RIGHT 0 /I Pixels are drawn from left to right
#define CLIP_TOP 10 /I Clipping rectangle parameters

#define CLIP_LEFT 20
#define CLIP_BOTTOM 300
#define CLIP_RIGHT 200
DWORD dwBuf[20];

struct {

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-6 Proprietary and Confidential

Drawing Objects

WORD wLeft, wTop, wRight, wBottom;
} Rect[2]= {{20, 10, 80, 80}, {120, 10, 200, 160}};

inti=0,j;
/I Compose the header
dwBuUf[i++] = CCE_PACKET3_CNTL_PAINT;
/I Compose GUI_CONTROL

dwBuf[i++] = DST_CLIPPING | SOLID_PEN << 4 | PIXEL_TYPE_aRGB << 8 |
SRC_TYPE_3 << 12| DRAW_LEFT2RIGHT << 14 | ROP_PAT_CPY << 16;

/I Data of the clipping rectangle.

dwBuf[i++] = CLIP_LEFT | CLIP_TOP << 16;
dwBuf[i++] = CLIP_RIGHT | CLIP_BOTTOM << 16;

/I Colour used to draw the polyline.
dwBuUf[i++] = BLUE_COLOR;
/I Fill rectangles' data

for (j = 0;j < 2; j++)

{
dwBUffi++] = rect[j].wLeft + (rect[j].wTop << 16);
dwBUffi++] = rect[j].wRight + (rect[j].wBottom << 16);

} /I for

dwBUf[0] |= (i - 2) << 16; // Fill the header with packet size

/I Submit the packet to the ring buffer.

SubmitPackets (dwBuUf, i);

6.3.2 Drawing Polylines

A polyline consists of a number of line segments that are connected at their end-points.
The ending point of the first segment is the starting point of the second segment, etc.
Therefore, if a polyline is composedmfine segments, it can be represented byl

points.

For example, the polyline iRigure 6-3.is composed of four line segments. It may be
represented by poings, p,, ..., pPs, Where eachy; denotes a coordinatg (y;) of pointi on

the screen. It is obvious that a line is just a special case of polyline, which is composed of
one line segment. The RAGE 128 draws a line from the start-point to the end-point. The

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-7

Drawing Objects

last point of the line may or may not be drawn (this depends on how the GUI engine was
set at initialization). IrFigure 6-3, the drawing of the first line segment startp,atind

ends at the point next 8. The drawing of the second line segment stans, @nd ends

at the point next tps. The remaining lines are draw in a similar fashion. Rairg part of

the first line segment; poim; is part of the second line segment, etc.

To program the RAGE 128 to draw a polyline with CCE packets, select the POLYLINE
packet and specify the following rendering parameters:

* The type of destination pixels is aRGB (one of the 16 BPP formats).
* The type of source pixels is the same as the destination.

* The brush selected is a Solid Pen.

* The color of the brush is Black.

* No source data is involved.

e The pixels are drawn from left to right.

e The source-clipping rectangle is not applicable.

e The destination clipping rectangle is specified by its top-left corner (10,10) and
bottom-right corner (600,400).

e The source offset and pitch are not applicable, and therefore use the default offset and
pitch.

e The destination offset and pitch are the screen offset and pitch (default offset and
pitch).

e The raster operation type is copying the brush pattern to the destination.

* The location and geometry of the object are specified by poins, ..., ps.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-8 Proprietary and Confidential

Drawing Objects

P

Figure 6-3. Polyline

Example Code: Drawing a polyline

#define CCE_PACKET3_CNTL_POLYLINE 0xC0009500

#define DST_CLIPPING 0x00000008 // Clip the destination

#define PIXEL_TYPE_aRGB 3 /I Destination pixel type

#define SOLID_PEN 13 // Brush type selected

#define BLACK_COLOR 0 /I Colour in aRGB format

#define CLIP_TOP 10 /I Clipping rectangle parameters

#define CLIP_LEFT 10

#define CLIP_BOTTOM 400

#define CLIP_RIGHT 600

#define ROP_PAT_CPY OxFO /I Copy brush pattern to destination
#define SRC_TYPE_3 3 /I No difference between source and dest
#define DRAW_LEFT2RIGHT 0 /I Pixels are drawn from left to right

extern WORD SubmitPackets (DWORD *ClientBuf, DWORD dwDataSize);

DWORD dwBuf{20];
struct {
intx,y;
} points[5] = {{10, 25}, {45, 57}, {156, 200}, {87, 260}, {160, 300}};

int i=0, j;

/I Compose the header

dwBuffi++]= CCE_PACKET3_CNTL_POLYLINE;

/l Compose GUI_CONTROL

dwBuUf[i++]=DST_CLIPPING |SOLID_PEN << 4 | PIXEL_TYPE_aRGB << 8|
SRC_TYPE_3 << 12| DRAW_LEFT2RIGHT <<14 | ROP_PAT_CPY <<16;

/I Data of the clipping rectangle.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-9

Drawing Objects

dwBuffi++]= CLIP_LEFT | CLIP_TOP << 16;
dwBUuffi++]= CLIP_RIGHT | CLIP_BOTTOM << 16;
/I Colour used to draw the polyline.
dwBuf[i++]= BLACK_COLOR,;
/I Fill points' data
for (j=0;j<5;j++)
{

dwBUf[i++]= points[j].x + (points[jl.y << 16);
} 1l for
/I Fill packet size into the packet header.
dwBuUf[0] |= (i - 2) << 16;
/I Submit the packet to the ring buffer.

SubmitPackets (dwBuf, i);
SubmitPackets (dwBuUf, i);

6.3.3 Drawing Polyscanlines

A polyscanline is composed of a number of horizontal line segments. It is specified by its:

* \Vertical positiony;
* Line thicknessh; (measured in number of pixels)

* Start-end positions of its segmentg, ;.,) forj =0, 2, ..., Zvwheren; denotes the
number of segments of theh polyscanline

Figure 6-4.shows three polyscanlines. The first consists of three segments with thickness
h,. The second and third consist of two segments and one segment, respectively (their
thicknessh, andh; are omitted from the figure).

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

6-10

Proprietary and Confidential

Drawing Objects

yz L
\

¥e \ L] | ¥
X11 X12 X13 X14 Xis X16
\i
| _i he
\ ! \ k)
Xo1 X22 Xo3 X24
v
Th
\ T
Xa1 X2

Figure 6-4. Polyscanlines

Assuming that the polyscanlineshkigure 6-4.are drawn completely without being
clipped, in Blue of the 16 BPP format, select the CCE packet POLYSCANLINES to draw
these images. Specify the related rendering parameters as follows:

* The type of destination pixels is aRGB (one of the 16 BPP format).
* The type of source pixels is the same as the destination.

* The brush selected is a Solid Pen.

* The color of the brush is Blue.

* No source data involved.

e The pixels are drawn from left to right.

e The source-clipping rectangle is not applicable.

e The destination-clipping rectangle is not specified.

e The source offset and pitch are not applicable, and therefore use the default offset anc
pitch.

e The destination offset and pitch are the screen offset and pitch (default offset and
pitch).

e The raster operation type is copying the brush pattern to the destination.

e The location and geometry of the scanlines are specified by the following parameters:
e y,=80,h;=3,X;,=100,%;,= 150,%;3= 170,%,= 230,%,5= 250,%,6= 300
e y,=100,h,=2,%,,=80,X,,= 160,X,5= 200,%,,= 290

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-11

Drawing Objects

e y3=120,h;=1,X3;,= 60,X3,= 330

Example Code: Drawing polyscanlines

#define CCE_PACKET3_CNTL_POLYSCANLINES 0xC0009800

#define PIXEL_TYPE_aRGB 3 /I Destination pixel type

#define SOLID_PEN 13 /I Brush type selected

#define BLUE_COLOR Ox1F /I Colour in aRGB format

#define ROP_PAT_CPY OxFO /I Copy brush pattern to destination
#define SRC_TYPE_3 3 /I No difference between source and dest
#define DRAW_LEFT2RIGHT 0 /I Pixels are drawn from left to right
DWORD dwBuf[20];

WORD linel[] = {100, 150, 170, 230, 250, 300}
WORD line2[] = {80, 160, 200, 290},
WORD line3[] = {60, 330};
struct _polyscnline{
DWORD numSegments;
WORD wTop,wHeight;
WORD *line;
} polyscnline[3] = {{3,80,3,linel}, {2,100,2,line2}, {1,120,1,line3}};

inti=0,j,k;

/I Compose the header
dwBuUf[i++] = CCE_PACKET3_CNTL_POLYSCANLINES;
/I Compose GUI_CONTROL
dwBuf[i++] = SOLID_PEN << 4 | PIXEL_TYPE_aRGB << 8 |
SRC_TYPE_3 << 12| DRAW_LEFT2RIGHT <<14 | ROP_PAT_CPY <<16;
/I Colour used to draw the polyscanlines.
dwBuUffi++] = BLUE_COLOR;
dwBuUf[i++] = 3; /I Number of subpackets

for(j=0;)<3;j++)
{
/I Fill subpacket
dwBUf[i++] = polyscnline[jl.numSegments;
dwBUf[i++] = polyscnline[jl.wTop + (polyscnline[jl.wHeight << 16);
for (k = 0; k < 2*polyscnline[jl.numSegments; k += 2)
{
dwBuffi++] = polyscnline[j].line[k] +
(polyscnline[j].line[k+1] << 16);
} /I for
} /11 for
dwBuUf[0] = CCE_PACKET3_CNTL_POLYSCANLINES | ((i-2) << 16);

/I Submit the packet to the ring buffer.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-12 Proprietary and Confidential

Drawing Objects

SubmitPackets (dwBuf, i);
SubmitPackets (dwBuf, i);

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-13

Block Transfers

6.4

6.4.1

Block Transfers

The RAGE 128 provides hardware support for transferring data within the frame buffer
(from one location to another), and for transferring data from the system memory to the
frame buffer.

The location where the data is taken from is referred to as the source, and the location
where the data is transferred to is referred to as the destination. The size of the data
transfer determines the size of a rectangular area on the screen. In this sense, Block
Transfer means copying pixels from one place to another with some pixel manipulation. If
a data transfer from system memory to frame buffer is required, the host must supply the
raster data as part of a CCE packet.

Three types of pixels (source, destination, and brush pattern) may get involved in a block
transfer. The resulting destination is the combination of one, two, or all three components.
In this sense, all three components are considered as the components of the source before
the operation that combines them, and only the result of the combination is considered as
the destination. In a block data transfer, specify the location and dimension of the source
and destination in addition to the setup parameters.

The following three types of data transfer may occur:

* BitBIt, also known asource copywhere the content of the source is copied to the
destination without any changes of its dimensions.

* Scaled BitBltwhere the source is stretched or compressed in the process of data
transfer and fitted into the destination dimensions.

* Transparent Scaled BitBlis a transfer that is similar to Scaled BitBlt except that it
makes the background image at the destination shown through the image copied from
the source as if the source image is transparent.

Bit Block Transfer

BitBIt operationtransfers pixels from a source rectangle to a destination. The dimension

of the transferred rectangle remains the same as the source. The transfer is controlled by a
ternary-raster operation code that specifies how the pixels from the source and the brush
pattern are mixed with those of the destination to form the final pixels at the destination.

The RAGE 128 supports:

* Normal data transfer (i.e., the data transfer that does not change the format of the data
taken from the source before placing it at the destination).

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

6-14

Proprietary and Confidential

Block Transfers

¢ Monochrome to color expansion when transferring a monochrome bitmap to the
screen.

For color expansion, specify the bitmap’s foreground and background colors. RAGE 128
will convert the white bit (‘1") to the foreground color of the corresponding pixel and the
black bit (‘0’) to the background color.

Source

. I
13

}‘_ W_" ¥

X2

—f

Destination h

\J

o

Figure 6-5. Copy an Image from Source to Destination

To copy the screen area nantalirceto the area namddestinationin Figure 6-5.1t is
obvious that the pixel types for the source and the destination are the same, say in the
aRGB format.

If the resulting destination matches the source, choose the CCE packet BLTBLT to
perform the operation.

Specify the following parameters:

* The type of the destination pixels is aRGB.
* The type of the source pixels is the same as the destination.
* No brush is selected.

e The color of the brush is not applicable.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-15

Block Transfers

e The source pixels are loaded from the video memory.

e The pixels are drawn from left to right.

e The source-clipping rectangle is not applicable.

* No destination-clipping rectangle is required.

e Use the default source pitch and offset as this is a screen-to-screen data transfer.

* Use the default destination pitch and offset as this is a screen-to-screen data transfer.
* The raster operation type is Source Copy (code 0xCC).

* The location and dimension of the source and destinatiox,ay)((h, w) and
(X2, ¥2), (h, W), respectively, as shown Figure 6-5.

Example Code: Copying an image from a source to a destination
#define CCE_PACKET3_CNTL_BITBLT_MULTI 0xC0009B00

#define PIXEL_TYPE_aRGB 3 /I Destination pixel type

#define NO_BRUSH 15 I/l Brush type selected

#define LD_FRM_VRAM 2 /I Source is loaded from the VRAM
#define ROP_SRCCOPY 0OxCC /I Copy the source to the destination
#define SRC_TYPE_3 3 /I No difference between source and dest
#define DRAW_LEFT2RIGHT 0 /I Pixels are drawn from left to right

DWORD dwBUf[20];

int x1 = 20, y1 = 40, h = 50, w = 80, x2 = 120, y2 = 200;
intl=0;

/I Compose the header
dwBuffi++] = CCE_PACKET3_CNTL_BITBLT_MULTI,
/I Compose GUI_CONTROL
dwBUf[i++] = NO_BRUSH << 4 | PIXEL_TYPE_aRGB << 8 |
SRC_TYPE_3 << 12| DRAW_LEFT2RIGHT << 14 | ROP_SRCCOPY << 16

LD_FRM_VRAM << 24;
/I Fill rectangles' data
dwBUffi++] = y1 | (x1 << 16); // Source location
dwBUf[i++] = y2 | (x2 << 16); // destination location
dwBUf[i++] = h | (w << 16); // dimensions of copied area
/I Submit the packet to the ring buffer.
dwBuUf[0] |= (i - 2) << 16; // Add packet size to header
SubmitPackets (dwBuf, i);

The above code can be extended to copy a number of source areas to corresponding
destinations respectively, provided that all the source areas share the same properties and
so do the destination areas. For example, the source areas refer to the same offset and pitch

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-16 Proprietary and Confidential

Block Transfers

6.4.2

as the starting memory address and the memory size of a scanline across the screen, as
well as the destinations. In other words, the settings specified for the field
GUI_CONTROL should be applicable to all the block transfers.

Transparent Bit Block Transfer

The Transparent Bit Block Transfer is also know esparent BitBlt This operation
conditionally copies pixels from the source to the destination with reference to a
designated (reference) color (e.g., the background color). If the color of a pixel is equal to
(or not equal to according to the comparison criterion), the designated color, the pixel will
not be copied to the destination. This operation filters out unwanted color from the source,
and is very useful in copying odd-shaped objects onto a background with patterns (e.g.,
games), making the objects look transparent. Since a transparent BitBlt operation is more
complicated than a BitBIt operation, the following discussion will clarify some

terminology before proceeding with an example.

Thesourcemeans a color pixel, which may come from one of the following sources:

* One of foreground or background colors used to expand a mono bitmap to a color
bitmap

« A color pixel from either the frame buffer or the host memory

¢ A color pixel of a specific color pattern (brush).

The source pixel may be combined with the destination pixel according to a given raster
operation code (e.g., the AND operation), resultingcirabined source pixelo prevent
certain colors of combined source pixels from being written to the destination, two color
comparators are used for deciding whether to write a combined source pixel to the
destination or to keep the original destination pixel. The comparators compare the source
and destination pixels respectively against their reference colors (the source and
destination references), and decide whether the combined source pixel can be written to
the destination. The following is a number of strategies for making such a decision:

Table 6-1 Source Comparator

Diziefion Description
Code P
0 Combined pixels are always written to the destination (i.e., no comparison is
performed).
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential 6-17

Block Transfers

Table 6-1 Source Comparator (Continued)

Diziefion Description
Code P
1 No combined pixel is written to the destination, i.e. the destination pixel is
unchanged.
4 The combined pixel is written to the destination if the color of the source pixel is
equal to its reference color. Otherwise, the destination pixel is unchanged.
5 The combined pixel is written to the destination if the color of the source pixel is

NOT equal to its reference color. Otherwise, the destination pixel is unchanged.

Only the source pixels whose color is equal to the reference color will be XORed
with the foreground color of a mono bitmap, and then written to the destination.
7 That is, destPixel = srcPixel XOR foregroundColor if srcPixel is equal to the
foreground color of a monochrome hitmap, specifically text. This is referred to as
flipping sometimes.

Table 6-2 Destination Comparator

Becision Description
Code P

0 Combined pixels are always written to the destination (i.e., no comparison is
performed).

1 No combined pixel is written to the destination, i.e. the destination pixel is
unchanged.
The destination is unchanged if the color of the destination pixel is equal to its

4 reference color. Otherwise, the combined source pixel are written to the
destination.
The destination is unchanged if the color of the destination pixel is NOT equal to

5 its reference color. Otherwise, the combined source pixel are written to the
destination.

The two tables give the decision strategy whenever either of the comparators is enabled. If
both comparators are enabled, the final decision will depend on the agreement between the
two decisions made separately. If both comparators decide that the combined source pixel
should be written to the destination, the destination will be updated with the pixel.
Otherwise, the original destination pixel is preserved.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-18 Proprietary and Confidential

Block Transfers

ot |
h

Source

}‘_ W_" v
. . +

h

v

Source

Destination ara/

Figure 6-6. Transparent Bit-Block Transfer

To perform a transparent BitBlt, as showrFigure 6-6, the source area is the top-left
rectangle, and the destination area is the bottom-right rectangle.

In the data transfer, remove the background pattern of the source and allow the word
Sourceto be copied. Therefore, the pattern of the destination is preserved after the data
transfer. Assume the text color is blue at the source, which is the desired color at the
destination.

For this operation, select the CCE pack@ANS_BITBLT. The rendering parameters for
this operation are the same as previous example, and are omitted here.

The combined source pixel will be the same as the source as the raster operation code is
called Source Cop{ERCCOPY. Supply data for field€ELR_CMP_CNTL
SRC_REF_CLRandDST_REF_CLRAs this operation only needs to compare the

source pixels with the reference color, only the source comparator is enabled. Therefore,
the destination reference color is not required. However, always supply this dummy data
to the packet to satisfy its format requirement.

Example Code: Transparent BitBIt
#define CCE_PACKET3_CNTL_TRANS_SCALING 0xC0009700

#define PIXEL_TYPE_aRGB 3 /I Destination pixel type
#define NO_BRUSH 15 /I Brush type selected
#define LD_FRM_VRAM 2 /I Source is loaded from the VRAM

#define ROP_SRCCOPY 0xCC /I Copy the source to the destination

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-19

Block Transfers

#define SRC_TYPE_3 3 /I No difference between source and dest
#define DRAW_LEFT2RIGHT 0 /I Pixels are drawn from left to right
#define PACKET_SIZE 8 /I Packet size including header

#define SRC_REF_COLOR Ox1F /I source reference

#define CLR_CMP_SRC 4 /I Pixels equal to reference get to dest
#define CMP_ENABLE 1 /I Enable source comparator

DWORD dwBUf[20];

int x1 = 20, y1 = 40, h2 = 100, w2 = 80, x2 = 120, y2 = 200;

int sx = 0Xx0CO00; // Representation of 3/4 (see Appendix B for details)
int sy = 0x0800; // Representation of 1/2 (see Appendix B for details)
inti=0;

/I Compose the header

dwBuf[i++] = CCE_PACKET3_CNTL_TRANS_SCALING;

/I Compose GUI_CONTROL

dwBuUf[i++] = NO_BRUSH << 4 | PIXEL_TYPE_aRGB << 8 |
SRC_TYPE_3 << 12 | DRAW_LEFT2RIGHT << 14 |
ROP_SRCCOPY << 16 | LD_FRM_VRAM << 24 ;

dwBuffi++] = CLR_CMP_SRC | CMP_ENABLE << 24;

dwBufi++] = SRC_REF_COLOR;

dwBuUf[i++] = 0; /I dummy destination reference

/I Fill rectangles' data

dwBuUffi++] = x1 | (y1 << 16); // Source location

dwBuUffi++] = x2 | (Y2 << 16); // destination location

dwBUuffi++] = w2 | (h2 << 16); // dimensions of destination area
dwBUf[0] | = (i-2) << 16; /I Add packet size to header

/I Submit the packet to the ring buffer.

SubmitPackets (dwBuf, i);

6.4.3 Scaled Block Transfer

The Scaled Block Transfer is a way to copy a block of pixels from the source to the
destination while scaling the dimensions of the source to fit in the dimensions of the
destination. In other words, the source rectangle is stretched or compressed in the process
of copying according to the specified destination dimensions, and the resulting rectangle is
placed at the location of the destination.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-20 Proprietary and Confidential

Block Transfers

Source h

}‘_ Wi _" Y

X2 >

Destination he

— w—

Figure 6-7. Scaled Image Transfer

In a scaled data transfer, the source is specified by its top-left corner coorxlingjeaqd
height and widthl{;, w,). The destination is specified bx,(y,) and f,, W,).

The scaling factors between the source and destination may be defined as:

e Sx=wl/w2

* s is the factor in the-direction

« Sy=hl/h2

* s, is the factor in thg-direction.

One of parametems,;, w, ands, is dependent on the other two. Use two of them to specify
the horizontal dimensions of the source and destination. The same method can be used t
specify the vertical dimensions of the source and destination.

The following example useg(i), (X Y2), (Sx W2) and §, h,) to specify the locations
and dimensions of the source and destination. Assuxping0,y, = 40, h, = 50, w, = 60,
X,=120,y,=200,h,= 100,w,= 80, thens, = % andsy= 1.

It is obvious that packet SCALE is suitable for this operation. The setup parameters are
the same as those given in the example of the previous section.

There are two types of scaled block transfer:

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-21

Block Transfers

e Mapping a texture (bitmap) onto a screen area.

e Transfer a block of data from one screen area to anther as shbiguria 6-6.

Both types of transfer require the user to specify for the packet the source location in terms
of memory offset, and the vertical advance step of the source in terms of pitch. In the case
of texture mapping, the memory offset points to the texture location in frame buffer and
the pitch is set to the pitch of the texture. In the case of screen-to-screen transfer, convert
the x- and y-coordinates of the source image to the memory offset to the screen origin and
to indicate the pitch of the screen.

It is assumed that the display mode is set to 800x600 for screen resolution and 16 BPP for
color. For this display mode:

* Each pixel is represented by 2 bytes.
e Each scanline of the screen is represented by 2x800 bytes.

e Screen pitch is 100.

Assuming the screen origin is at address 0 of the frame buffer, the memory offset of the
source is determined by:

» offset = 1600yl + 2x1

Example Code: Copying an image from the source to the destination with scaling
#define CCE_PACKET3_CNTL_SCALING 0xC0009600

#define PIXEL_TYPE_aRGB 3 /] Destination pixel type

#define NO_BRUSH 15 I/l Brush type selected

#define LD_FRM_VRAM 2 /I Source is loaded from the VRAM
#define ROP_SRCCOPY 0x0CC /I Copy the source to the destination
#define SRC_TYPE_3 3 /I No difference between source and dest
#define DRAW_LEFT2RIGHT 0 /I Pixels are drawn from left to right

#define SCREEN_PITCH 100
DWORD dwBUf[20];

int x1 = 20, y1 = 40, h2 = 100, w2 = 80, x2 = 120, y2 = 200;

int sx = 0x0CO00; // Representation of 3/4 (see Appendix B for details)
int sy = 0x0800; // Representation of 1/2 (see Appendix B for details)
inti=0,j;

/I Compose the header
dwBuUf[i++] = CCE_PACKET3_CNTL_SCALING;

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-22 Proprietary and Confidential

Block Transfers

/I Compose GUI_CONTROL

dwBUf[i++] = NO_BRUSH << 4 | PIXEL_TYPE_aRGB << 8 |
SRC_TYPE_3 << 12 | DRAW_LEFT2RIGHT << 14 |
ROP_SRCCOPY << 16 | LD_FRM_VRAM << 24;

dwBUf[i++] = O; /Il disable 3D operations
dwBUf[i++] = O; /I disable lighting
dwBuUf[i++] = O; /I disable texture mapping

dwBuUf[i++] = PIXEL_TYPE_aRGB; // set pixel type for source
/I Fill rectangles' data

dwBuUf[i++] = x1*2+y1*SCREEN_PITCH*2*8; // Mem offset of source
dwBuUf[i++] = SCREEN_PITCH; // screen pitch

dwBuUf[i++] = sX; /I Scaling factor in x-direction
dwBUf[i++] = sy; /I Scaling factor in y-direction
dwBUf[i++] = y2 | (x2 << 16); // destination location

dwBUuffi++] = w2 | (h2 << 16); // dimensions of destination area
dwBuUf[0] | = (i - 2) << 16;

/I Submit the packet to the ring buffer.

SubmitPackets (dwBuf, i);

6.4.4 Transparent Scaled Block Transfer

This packet combines the capabilities of both transparent BitBlts and scaled BitBlts.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-23

Drawing Text

6.5 Drawing Text

Text is composed of a number of words which in turn is composed of characters. A
character is represented by its raster image, and normally stored as a monochrome bitmap.
RAGE 128 supports printing characters whose raster images are stored in the format of
bit-packed monochrome bitmaps. This format is illustrated by the example shown in

Figure 6-8.

(0,0

AX1 — No—— \Xz—P

‘; Wi Ve W
D\D]

v »
P s T

<+——BAS_X

Y
-

Figure 6-8. Parameters of Text

In this figure, the raster images of characters ‘b’, ‘0’ and 'y’ are representexBhyb

and &9 arrays, respectively. Each cell of array is represented by a bit. If the cells in the
array are scanned from left to right and top to bottom, and each cell is marked with a
ordinal number according to its precedence in the scanning, the cells would form a queue.

The first eight cells (bits) are taken from the queue and are placed into the first byte of an
array (referred to as the bitmap). The first cell is at the most significant bit and the 8th cell
is at the least significant bit. Then, the next eight cells are taken from the queue and placed
into the second byte of the bitmap in a same manner. This process is repeated until all the
cells in the queue are taken out and placed into the bitmap. It is not necessary that the
number of cells in an array must be a multiple of eight. This means that remaining bits of

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-24 Proprietary and Confidential

Drawing Text

the last byte in the bitmap are undefined, and normally filled with 0's. The monochrome
bitmap created in this manner is said to be in the bit-packed format.

If the black cells in the arrays are coded as 1's, and the white cells are coded as 0’s, the
bit-packed codes for the raster images of characters in this example will be:

e 0x88, 0x8E, 0x99 and Ox9E for character ‘b’.
e 0x69, 0x99 and 0x60 for ‘0.
e 0x45, 0x16, OXOCA, 0x38, 0x43, 0x18 and 0x0CO for ‘y’.

To print the word “boy”, specify the reference location of the text. For this example, this
reference location is given by coordinateaq _x bas_Yy. In addition, specify the space
between two adjacent bitmaps. These are denotAd andAy;. Note that the values of

Ax; andAy; can be negative as they stand for deviations from a reference coordinate. For
the case oFigure 6-8.these parameters are:

e H,;=8,W,=4,Ax,=0, andAy, =8
e H,=5W,=4,Ax,=6, andAy,=5
e H3;=9,W;=6,Ax;=5, andAy,=5

The bitmap of a character may be categorized into two tyjaege Glyphor Small Glyph
according to its size. The difference between the two is the data type used to represent th
location, dimensions, and the bitmap size of a category. This will be shown in the
following description.

6.5.1 Drawing Text in Small Font

When both the height and width of a bitmap are limited to 255 pixels, the bitmap is stored
in the format of Small Glyph. Therefore, each dimension can be represented by one byte.
Now, use the pack&MALL_TEXTto print the text irFigure 6-8.on the screen with the
following setup parameters:

e The type of the destination pixels is aRGB.

e The type of the source pixels is monochrome with the foreground color defined as
Black (background color is the destination pixel color).

¢ No brush is selected.

e The color of the brush is not applicable.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-25

Drawing Text

e The source pixels are loaded from the host system memory (the data comes with the
packet).

e The pixels are drawn from left to right.

e The source-clipping rectangle is not applicable.

e The destination-clipping rectangle is required.

e Use the default source pitch and offset.

e Use the default destination pitch and offset.

* The raster operation type is Source Copy (code 0xCC).

e The location and dimension of the source and destination are given above.

Example Code: Drawing text in small font
#define CCE_PACKET3_CNTL_SMALLTEXT 0xC0009300

#define PIXEL_TYPE_aRGB 3 /I Destination pixel type

#define SRC_TYPE_1 1 /I Mono bitmap with foreground colour
#define NO_BRUSH 15 /I Brush type selected

#define LD_FRM_HOST 3 /I Source is loaded from the host
#define DRAW_LEFT2RIGHT 0 /I Pixels are drawn from left to right

#define DST_CLIPPING 0x00000008 // Clip the destination

#define ROP_SRCCOPY 0xCC /I Copy the source to the destination
#define PACKET_SIZE 4 /I Actual size is 6 including header
#define CLIP_TOP 10 /I Clipping rectangle parameters

#define CLIP_LEFT 20

#define CLIP_BOTTOM 300

#define CLIP_RIGHT 200

#define FRGD_COLOR 0 /Il Black
#define BAS_X 100 // starting location of the text (x)
#define BAS_Y 150 // starting location of the text (y)

/I Define raster data for each character

DWORD Raster_B = 0x9E998ES88;

DWORD Raster_O = 0x00609969;

DWORD Raster_Y[2] = {0x38CA1645, 0x00C01843};

DWORD dwBuf[20];

typedef struct {
char delta_x, delta_y;
BYTE width, height;
WORD nPixels;
DWORD *Rastimg;
} SMALLBITGLYPH;
SMALLGLYPH text[3] = {
{0, 8, 4, 8, 32, &Raster_B},

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-26 Proprietary and Confidential

Drawing Text

{6, 5, 4, 5, 20, &Raster_O},
{5, 5, 6, 9, 54, Raster_Y}};

inti, j, m, n, PacketSize = 0;

/I Compose the header

dwBuf[0] = CCE_PACKET3_CNTL_SMALLTEXT;

/I Compose GUI_CONTROL

dwBuf[1] = DST_CLIPPING | NO_BRUSH << 4 | PIXEL_TYPE_aRGB << 8|
SRC_TYPE_1<<12 | DRAW_LEFT2RIGHT << 14 | ROP_SRCCOPY << 16|
LD_FRM_HOST1 << 24;

/I set up the destination clipping rectangle

dwBuf[2] = CLIP_LEFT | CLIP_TOP << 16;

dwBuf[3] = CLIP_RIGHT | CLIP_BOTTOM << 16;

dwBuf[4] = FRGD_COLOR,; /I Foreground clour
dwBuUf[5] = BAS_X | (BAS_Y <<16); /I starting location of the text
m = 6;

PacketSize = m;
/I Fill raster data for each character
for (i=0;i<3;i++)
{
n = (text[i].nPixels + 31)/32;
PacketSize +=n + 1;
dwBuf[m++] = text[i].delta_x | text[i].delta_y << 8 |
text[i].width << 16 | text[i].height << 24;
for j=0;j<n;j++)
{
dwBuf[m++] = text[i].Rastimg([j];
} /I for
} /I for
dwBUf[0] |= PacketSize - 2 << 16; // put the packet size into header
/I Submit the packet to the ring buffer.
SubmitPackets (dwBuf, PacketSize);

6.5.2 Drawing Text in Large Font

The format Large Glyph is defined for the bitmap whose height and width may exceed the
limit of 255 pixels but are less than 65,535 pixels. The height and width of such a bitmap
can be represented by 2 bytes (i.e., a 16-bit word).

Use packeHOSTDATA_ BLTo print the text ifFigure 6-8.The parameter representation
of this packet is slightly different from packet SMALL_TEXT in that it requires the
coordinate of the left-top corner of each character, instead of the coordinate of text and
delta values of each character.

The setup parameters for this drawing is the same as thoferito “Drawing Text in
Small Font” on page 6-2%xcept for the raster operation code whicBRCAN§source

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-27

Drawing Text

AND destination) instead @RCCOPYsource copy), and the source type which requires
both the foreground and background colors to be supplied in the packet.

Example Code: Drawing text in large font
#define CCE_PACKET3_CNTL_HOSTDATA_BLT 0xC0009400

#define PIXEL_TYPE_aRGB 3 /I Destination pixel type
#define SRC_TYPE_O O /l Mono bitmap with foreground and
/I background colors defined
#define NO_BRUSH 15 /l Brush type selected
#define LD_FRM_HOST 3 /I Source is loaded from the host
#define DRAW_LEFT2RIGHT 0 /I Pixels are drawn from left to right

#define DST_CLIPPING 0x00000008 // Clip the destination
#define ROP_SRCAND 0x88 /I Source AND Destination (transparent)
#define PACKET_SIZE 4 /I actual size is 6 including header
#define CLIP_TOP 10 /I Clipping rectangle parameters
#define CLIP_LEFT 20

#define CLIP_BOTTOM 300

#define CLIP_RIGHT 200

#define FRGD_COLOR 0 /I Black

#define BKGD_COLOR 0x7C00 // Red

#define BAS_X 100 /I starting location of the text (x)
#define BAS_Y 150 /I starting location of the text (y)

/I Define raster data for each character

DWORD Raster_B = 0x9E998E88;

DWORD Raster_O = 0x00609969;

DWORD Raster_Y[2] = {0x38CA1645, 0x00C01843};

DWORD dwBuf{20];

typedef struct {
WORD X, y;
WORD width, height;
DWORD nPixels;
DWORD *Rastimg;
} LARGEBITGLYPH,;
LARGEGLYPH text[3] = {
{100, 142, 4, 8, 32, &Raster_B},
{106, 145, 4, 5, 20, &Raster_O},
{111, 145, 6, 9, 54, Raster_Y}};

inti=0,j,k,n;

/I Compose the header

dwBuf[i++] = CCE_PACKET3_CNTL_HOSTDATA_BLT;

/I Compose GUI_CONTROL

dwBuffi++] = DST_CLIPPING | NO_BRUSH << 4 | PIXEL_TYPE_aRGB << 8 |

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-28 Proprietary and Confidential

Drawing Text

SRC_TYPE_0 << 12 | DRAW_LEFT2RIGHT << 14 | ROP_SRCAND << 16

LD_FRM_HOST1 << 24;

/I set up the destination clipping rectangle
dwBuffi++] = CLIP_LEFT | CLIP_TOP << 16;
dwBUuffi++] = CLIP_RIGHT | CLIP_BOTTOM << 16;
dwBUuffi++] = FRGD_COLOR; // Foreground clour
dwBuUf[i++] = BKGD_COLOR; // Foreground clour
/I Fill raster data for each character
for (j=0;j<3;j++)
{

/I starting location of the text

dwBuUf[i++] = text[j].x | text[j].y << 16;

dwBUffi++] = text[j].width | text[j].height <<16;

n = (text[j].nPixels + 31)/32; // get size of raster image

dwBUffi++] = n;

for (k = 0; k < n; k++)

{

dwBUf[i++] = text[j].Rastimg[k];

} /I for
} 1l for
dwBUf[0] |= (i - 2) << 16; // put the packet size into header

/I Submit the packet to the ring buffer.
SubmitPackets (dwBuUf, i);

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-29

3D Rendering

6.6 3D Rendering

This section describes how to draw 3D primitives and set 3D rendering states on the
RAGE 128 by using CCE command packets. It is assumed you are familiar with 3D
rendering concepts, so this text will not present an in-depth tutorial. Instead, it will focus
on the implementation details.

6.6.1 Setting Up the 3D Context

Prior to performing any 3D operations, configure the RAGE 128 into a predefined 3D
context. This entails:

1. Enable the 3D operation on the RAGE 128. If this step is not taken, many 3D registers
will not be writeable.

e To enable 3D operation, set the
MISC_3D STATE_CNTL_REG:SCALE_3D_ Ffield to ‘2'.

2. Set a default set of 3D rendering states.

Once 3D operation has been enabled, individual 3D rendering states may be set as
described in the section called: Setting 3D Render States.

An example of how to set the 3D context may be found in therfte3d.c in the
CHAPG\3D\UTIL directory of the RAGE 128 DDK.

6.6.2 Drawing 3D Primitives

There are two Type-3 packets for drawing 3D primitives. Both render the following:

* Points.

* Independent lines (line lists).

* Polylines (line strips).

* Independent triangles (triangle lists).
e Triangle fans.

e Triangle strips.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-30 Proprietary and Confidential

3D Rendering

The first packet3D_RNDR_GEN_RPIMncludes vertex data as part of the information
body. The vertex data is copied into the ring buffer as part of the packet and bus masterec
to the CCE FIFO buffer.

The second packe8D_RNDR_GEN_INDX_PRIMequires that the vertex data be placed

in a dedicated buffer (called the vertex buffer) that is allocated either in the AGP space or
the PCI GART space. For more details about PCl GART spafes,to “RAGE 128 PCI
GART"” on page 2-23This method of rendering employs the RAGE 128's vertex walker
mechanism. There are two ways to consume vertices from the vertex buffer when using
the vertex walker:

e Specify the order of vertices through an index list provided in the information body of
the 3D_RNDR_GEN_INDX_PRIMoacket. This allows vertices to be accessed in
random order and to be used for more than one primitive without duplication.

e Consume vertices in sequential order from a specified location in the vertex buffer.
This obviates the need for an index list in the information body of the packet.

Prior to using the vertex walker, the 192 entry CCE FIFO must be split into three distinct
regions:

* 64 DWORDS for CCE command packet data.
* 64 DWORDS for vertex buffer data.

* 64 DWORDS for indirect bus-mastering data.

There are ten options for this field. Only the following three options are used with the
vertex walker. Th€M4_BUFFER_CNTIs usually written to when the CCE mode is
initialized.

There are three options for setting the
PM4_BUFFER_CNTLPM4_BUFFER_CNTL_FIFO_MODteld:

Option 1: Write ‘7’ to set the following configurations:

* 64 CCE packet PIO
e 64 \ertex Cache BM
e 64 Indirect BM.

Option 2: Write ‘8’ to set the following configurations:

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-31

3D Rendering

e 64 CCE packet BM
e 64 \ertex Cache BM
* 64 Indirect BM.

Option 3: Write ‘15’ to set the following configurations:

* 64 CCE packet PIO
e 64 \ertex Cache PIO
e 64 Indirect PIO.

For example, selecting 64 DWORD CCE packet PIO means only 64 DWORDs out of the
192 DWORDs of the CCE FIFO will be used for CCE packets. 64 out of the 192
DWORDS will be used for vertex data and the remaining 64 will be used for indirect bus
mastering. Therefore, these terms represent how you want the FIFO configured.

e PIO refers to Programmed 1/0.

 BM refers to Bus-Mastered.

Vertex Format

The RAGE 128 supports flexible vertex formats. This allows an application to tailor the
vertex format according to its specific requirements. The vertex format is specified by
setting the appropriate bits in th€_FORMATield of the primitive packet.

Drawing a Triangle List using the3D_RNDR_GEN_PRINacket

The3D_RNDR_GEN_PRIMacket is described in depth in Appendix F. The packet
consists of the following:

* HEADER field describing the kind of packet.
« VC_FORMAT field describing the vertex data block structure.
e« VC_CNTL field describing the type of primitive to draw.

e A vertex array or vertex list of vertex data blocks.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-32 Proprietary and Confidential

3D Rendering

Example Code: Setting up a packet to draw an independent triangle

#define CCE_PACKET3_3D_RNDR_GEN_PRIM 0xC0002500
#define CCE_VC_CNTL_PRIM_TYPE_TRI_LIST0Ox00000004
#define CCE_VC_CNTL_PRIM_WALK_RING 0x00000030

#define CCE_VC_FRMT_RHW 0x00000001

#define CCE_VC_FRMT_DIFFUSE_ARGB 0x00000008

#define CCE_VC_FRMT_SPEC_FRGB 0x00000040

#define CCE_VC_FRMT_S_T 0x00000080

#define CCE_VC_FRMT_S2_T2 0x00000100

#define VC_FORMAT_TLVERTEX2 CCE_VC_FRMT_RHW |\

CCE_VC_FRMT_DIFFUSE_ARGB |\
CCE_VC_FRMT_SPEC_FRGB |\

CCE_VC_FRMT_S_T |\

CCE_VC_FRMT_S2_T2;

/I Vertex data block structure.

typedef struct {
float x, vy, z;
float rhw;
DWORD diffuse;
DWORD specular;
float s1, t1;
float s2, t2;
} TLVERTEX2, *LPTLVERTEX2;

DWORD size=0;
TLVERTEX2* pv;
DWORD Buf[BUF_SIZE]
DWORD* pBuf = Buf;

/I Set the packet HEADER, VC_FORMAT, and VC_CNTL fields.

*pBuf++ = CCE_PACKET3_3D_RNDR_GEN_PRIM;

*pBuf++ = VC_FORMAT_TLVERTEX2;

*pBuf++ = CCE_VC_CNTL_PRIM_TYPE_TRI_LIST | CCE_VC_CNTL_PRIM_WALK_RING |
(0X00000003L << 16);

pv = (TLVERTEX2*) pBuf;

/I Copy triangle vertices into command packet buffer.
/I Vertex O:

pv->x = ((float)R128_Adapterinfo.xres/2.0f);

pv->y = ((float)R128_Adapterinfo.yres/4.0f);

pv->z = 0.5f;

pv->rhw = 1.0f;
pv->diffuse = 0x000000ff;

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-33

3D Rendering

pv->specular = 0x00000000;
pv->sl = 0.5f;

pv->tl = 1.0f;

pv->s2 = 0.5f;

pv->t2 = 0.0f;

pv++;

/I Vertex 1:

pv->x = (float)R128_Adapterinfo.xres * 0.75f;
pv->y = (float)R128_Adapterinfo.yres * 0.75f;
pv->z = 0.5f;

pv->rhw = 1.0f;

pv->diffuse = 0x0000ff00;

pv->specular = 0x00000000;

pv->sl = 1.0f;

pv->tl = 0.0f;

pv->s2 = 1.0f;

pv->t2 = 1.0f;

pv++;

Il Vertex 2:

pv->x = (float)R128_Adapterinfo.xres * 0.25f;
pv->y = (float)R128_Adapterinfo.yres * 0.75f;
pv->z = 0.5f;

pv->rhw = 1.0f;

pv->diffuse = 0x00ff0000;

pv->specular = 0x00000000;

pv->s1 = 0.0f;

pv->t1 = 0.0f;

pv->s2 = 0.0f;

pv->t2 = 1.0f;

pv++;

/I Compute size of buffer.

size = ((DWORD)pv - (DWORD)(&Buf[0]))/sizeof (DWORD);
/I Submit buffer.

Buf[0] |= ((size - 2) << 16);

R128 CCESubmitPackets (Buf, size);

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-34 Proprietary and Confidential

3D Rendering

Drawing a Triangle List using the3D_RNDR_GEN_INDX_PRINPacket

The3D_RNDR_GEN_INDX_PRIMacket is described in depth in Appendix F. The
packet consists of the following:

« HEADER field describing the kind of packet.

PM4_VC_VLOFFHield containing the offset of the vertex buffer from the base of AGP
memory.

PM4_VC_SIzEfield specifying the number of vertices in the vertex buffer.

*« VC_FORMATield describing the vertex data block structure.
¢ VC_CNTLfield describing the type of primitive to draw.

e IftheVC_CNTL:PRIM_WALKsub-field isCCE_VC_CNTL_PRIM_WALK_INR2n
array of indices into the vertex buffer. Two indices are packed as WORDs per
DWORD. For an odd number of indices, the high WORD of the last field is set to 0.

Example Code: Setting up a packet to draw an independent triangle using
explicit vertex indices

#define CCE_PACKET3_3D_RNDR_GEN_INDX_PRIM 0xC0002300
#define CCE_VC_CNTL_PRIM_TYPE_TRI_LIST 0x00000004

#define CCE_VC_CNTL_PRIM_WALK_IND 0x00000010

#define CCE_VC_FRMT_RHW 0x00000001

#define CCE_VC_FRMT_DIFFUSE_ARGB 0x00000008

#define CCE_VC_FRMT_SPEC_FRGB 0x00000040

#define CCE_VC_FRMT_S_T 0x00000080

#define CCE_VC_FRMT_S2_T2 0x00000100

#define VC_FORMAT_TLVERTEX2 CCE_VC_FRMT_RHW |\

CCE_VC_FRMT_DIFFUSE_ARGB |\
CCE_VC_FRMT_SPEC_FRGB |\
CCE_VC_FRMT_S_T |\
CCE_VC_FRMT_S2_T2;

/I Vertex data block structure.

typedef struct {
float x, y, z;
float rhw;
DWORD diffuse;
DWORD specular;
float s1, t1;
float s2, t2;
} TLVERTEX2, *LPTLVERTEX2;

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-35

3D Rendering

DWORD size=0;

TLVERTEX2* pv;

DWORD Buf[7]

/I This example assumes that a vertex buffer has been allocated
/l'in a contiguous region of memory in AGP space. The global

[/l variable VertexBufferPtr contains the linear address where

/I vertex data will be written into the vertex buffer. The

/I global variable VertexBufferOffset contains the offset from the
/I base of AGP memory to the address in VertexBufferPtr.

/I 'Initialize packet command fields.

Buf[0] = CCE_PACKET3_3D_RNDR_GEN_INDX_PRIM;

Buf[1] = VertexBufferOffset;

Buf[2] = 3;

Buf[3] = VC_FORMAT_TLVERTEX2;

Buf[4] = CCE_VC_CNTL_PRIM_TYPE_TRI_LIST |
CCE_VC_CNTL_PRIM_WALK_IND | 3L << 16;

/I Set the vertex index write pointer. This is where vertex
/I indices will be written into the packet information body.

pvertindex = (WORD¥*) &Buf[5];

/I Write vertex data to vertex buffer.
pv = (TLVERTEX2*) VertexBufferPtr;

/I Vertex 0:

pv->x = ((float)R128_Adapterinfo.xres/2.0f);
pv->y = ((float)R128_Adapterinfo.yres/4.0f);
pv->z = 0.5f;

pv->rhw = 1.0f;

pv->diffuse = 0x000000ff;

pv->specular = 0x00000000;

pv->s1 = 0.5f;

pv->tl = 1.0f;

pv->s2 = 0.5f;

pv->t2 = 0.0f;

pv++;

/I Vertex 1:

pv->x = (float)R128_Adapterinfo.xres * 0.75f;
pv->y = (float)R128_Adapterinfo.yres * 0.75f;
pv->z = 0.5f;

pv->rhw = 1.0f;

pv->diffuse = 0x0000ff00;

RAGE 128 Software Development Manual

6-36

© 1999 ATI Technologies Inc.
Proprietary and Confidential

3D Rendering

pv->specular = 0x00000000;
pv->sl = 1.0f;

pv->t1 = 0.0f;

pv->s2 = 1.0f;

pv->t2 = 1.0f;

pv++;

/I Vertex 2:

pv->x = (float)R128_Adapterinfo.xres * 0.25f;
pv->y = (float)R128_Adapterinfo.yres * 0.75f;
pv->z = 0.5f;

pv->rhw = 1.0f;

pv->diffuse = 0x00ff0000;

pv->specular = 0x00000000;

pv->s1 = 0.0f;

pv->tl = 0.0f;

pv->s2 = 0.0f;

pv->t2 = 1.0f;

pv++;

/I Write the WORD packed vertex indices into the packet
/I information body.

*pvertindex++ = 0; // first vertex

*pvertindex++ = 1; // second vertex
*pvertindex++ = 2; // third vertex

*pvertindex++ = 0; // DWORD alignment padding

/I Compute size of packet.

size = (DWORD)pvertindex - (DWORD)&pBuf[5]; // byte-size of
/Il indices written.

/I Convert size to DWORD count.
size = size/sizeof (DWORD);

/I Adjust size for HEADER, PM4_VC _VLOFF, PM4_VC_VSIZE,
/I PC_FORMAT and VC_CNTL in packet.

size +=5;
/I Set packet size parameter in packet HEADER.
Buf[0] |= ((size - 2) << 16);

/I Submit the packet to draw the batch.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-37

3D Rendering

R128 CCESubmitPackets (Buf, size);

Example Code: Setting up the packet to draw an independent triangle using the
implicit vertex list in the vertex buffer

/I This example is essentially the same as the last example.
/I Only the differences are shown here.

#define CCE_VC_CNTL_PRIM_WALK_LIST 0x00000020
DWORD Buf[5];

/I Initialize packet command fields.

Buf[0] = CCE_PACKET3_3D_RNDR_GEN_INDX_PRIM | (3L << 16);
Buf[1] = VertexBufferOffset;

]=3;

] .

Buf[3] = VC_FORMAT_TLVERTEX2;
4] = CCE_VC_CNTL_PRIM_TYPE_TRI_LIST |
CCE_VC_CNTL_PRIM_WALK_LIST | 3L << 16;

/I Fill vertex buffer with data.

/I Submit the packet to draw.

R128 CCESubmitPackets (Buf, 5);

6.6.3 Texture Mapping

The RAGE 128 contains powerful texture-combining units that can execute complex
multi-texturing operations involving two textures in a single pass. Textures may reside in
both local video and AGP memory. The RAGE 128 can texture map directly out of AGP
memory.

Texture dimensions must be a power of two and cannot be greater than 1024. Textures
may be rectangular (i.e., they need not have the same width and height). When
multi-texturing, both textures may have different dimensions and data types.

The two textures in the multi-texturing stages of the texture-combining unit are referred to
as the primary and secondary textures. Their features are configured by a largely similar
set of registers. The primary texture registers are prefixed by PRIM_. The secondary
texture registers are prefixed BfC .

For example, the general texture control registers for eadPRiMd TEX _CNTL_Cand
SEC_TEX_CNTL_CFor brevity, this text will describe common features in terms of the

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-38 Proprietary and Confidential

3D Rendering

primary texture registers only. Only secondary stage-specific features are described
separately for the secondary texture.

Enabling Texture Mapping

Texture mapping may be enabled and disabled throughEXKe CNTL_C:TEX_EN
field.

e ‘0’ disables texture mapping.

e ‘1’ enables texture mapping.

Texture Size and Pitch Parameters

For both the primary and secondary texture, the size and pitch parameters are entered in
theTEX_SIZE_PITCH_C register. For the primary texture, the byte offset to the start of
the texture data for the base texture is entered in re@isber0_OFFSET Byte offsets

for mipmaps are entered in regist€EsX_1_OFFSET to TEX_10_OFFSET. Byte

offsets for the secondary texture and its mipmaps are loaded into registers
SEC_TEX_0_OFFSET0o SEC_TEX_10_OFSET

Texture Format

The texture format is set through BRIM_TEX_CNTL_C:PRIMARY_DATATYPHhe
following formats are supported:

Table 6-3 PRIMARY_DATATYPE

State Description
0 2-bpp VQ
4-bpp pseudo color

8-bpp pseudo color
16-bpp ARGB 1555
16-bpp RGB 565
24-bpp RGB
32-bpp ARGB 8888
8-bpp RGB 332
Y8 gray scale

O O|I N[O W|IDN|PF

RGBS gray scale

=
o

16-bpp pseudo color

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-39

3D Rendering

Table 6-3 PRIMARY_DATATYPE (Continued)

State Description
11 YUV 422 packed
12 YUV 422 packed
14 AYUV 444
15 ARGB 4444

Texture Filtering

The texture magnification and minification filtering modes are set through the
PRIM_TEX_CNTL_C:PRIM_MIN_BLEND_FChnd
PRIM_TEX_CNTL_C:PRIM_MAG_BLEND_FCHelds. They may be set to the
following values:

Table 6-4 PRIM_MIN_BLEND_FCN

State Description
0 Pick nearest in largest map

Bilinear in largest map

Pick nearest in nearest map

Bilinear in nearest map

1x1 filtering

G| WIN|F

Trilinear

Table 6-5 PRIM_MAG_BLEND_FCN

State Description
0 Pick nearest in largest map

Bilinear in largest map

Pick nearest in largest map

Bilinear in largest map

Pick nearest in largest map

QB[W|IN|F

Bilinear in largest map

States 2 to 5 for minification are only valid when mipmapping is enabled. Mipmapping
may be enabled or disabled by writing ‘0’ or ‘1’ to
PRIM_TEX_CNTL_C:PRIM_MIP_MAP_DIS

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-40 Proprietary and Confidential

3D Rendering

Texture Addressing Modes

Texture addressing modes control how the texture is applied on the target primitive when
the vertex S or T coordinates are greater than 1.0. Clamp mode replicates the texel at
coordinate 1.0 to the edge of the primitive. Mirror mode ‘flips’ the texture about the 1.0
coordinate to produce a mirror image. Border color mode fills the remaining pixels after
1.0 with the texture's border color. Wrap addressing mode repeats, or tiles the texture
along the texture coordinate axis.

Texture clamping for the texture S and T coordinates are set through the
PRIM_TEX_CNTL_C:PRIM_TEXTURE_CLAMP_MODEa&l
PRIM_TEX_CNTL_C:PRIM_TEXTURE_CLAMP_MODEHf{idlds. Texture clamping
specifies how the texels should be drawn at coordinates beyond the range of 0.0 to 1.0f.
The following states may be set:

Table 6-6 PRIM_TEXTURE_CLAMP_MODE_S

State Description
Wrap the texture (tile)

Mirror the texture

Clamp the texture to the texel at 1.0

W[IN| | O

Use border color as texel color after 1.0

The border color is set through tHRRIM_TEXTURE_BORDER_COL@HRister in
RGBAB8888 format for RGB texture data types, or AYUV format for YUV datatypes.

Texture Wrapping

ThePRIM_TEX_CNTL_C:PRIM_TEX_WRAP_8nd
PRIM_TEX_ CNTL_C:PRIM_TEX WRAP_fields enable and disable cylindrical
texture wrapping for the S and T coordinates, respectively.

Texture Combining

The RAGE 128 contains two texture combine units, one for the primary and one for the
secondary texture. The units apply a color combining function for the RGB channels and
an alpha combining function for the alpha channel. Both the color and alpha combining
functions take two arguments as input. The first and second arguments are called the colo
factor and input factor for the color combining function, and the alpha factor and input
factor alpha for the alpha combining function. Both units have identical combining
functions for the most part, but the secondary texture unit has additional functions and
inputs to process the output from the primary unit.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-41

3D Rendering

The RAGE 128 can also combine the output of the texture combine units with the
interpolated color of the primitive. This post-multitexturing combining operation is
referred to as texture lighting in the RAGE 128 paradigm. Separate lighting functions are
applied for the color and alpha channels. For this post-multitexturing lighting, the first
argument is implicitly the output of the texture combine units, and the second is the
interpolated color or alpha values of the primitive (i.e., the equivalents of the two
arguments in the texture combine units).

The color combining function is set through BRRIM_TEXTURE_COMBINE_CNTL_C:
PRIMARY_COMB_FCN field . It may be set to one of the following values:

Table 6-7 PRIMARY_COMB_FCN

State Description
0 Disable.
The output color is the texture color or interpolated color if shading.
1 Copy.
Output color is the COLOR_FACTOR
2 Copy input.
Output color is the INPUT_FACTOR
3 Modulate.
Output color is COLOR_FACTOR * INPUT_FACTOR
4 Modulate * 2.
Output color is COLOR_FACTOR * INPUT_FACTOR * 2
5 Modulate * 4.
Output color is COLOR_FACTOR * INPUT_FACTOR * 4
6 Add.
Output color is COLOR_FACTOR + INPUT_FACTOR
7 Add signed.

Output color is COLOR_FACTOR + INPUT_FACTOR — 128

Blend vertex.
8 Output color is (COLOR_FACTOR * interpolator alpha) + (INPUT_FACTOR * (1 —
interpolator alpha))

Blend texture.
9 Output color is (COLOR_FACTOR * primary texel alpha) + (INPUT_FACTOR * (1
— primary texel alpha))

Blend constant.
10 Output color is (COLOR_FACTOR * CONSTANT_ALPHA) + (INPUT_FACTOR *
(1 — CONSTANT_ALPHA))

Blend premultiply.
Output color is COLOR_FACTOR + (INPUT_FACTOR * (1 — primary texel alpha))

11

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-42 Proprietary and Confidential

3D Rendering

Table 6-7 PRIMARY_COMB_FCN (Continued)

State

Description

12

Blend previous.
Output color is (COLOR_FACTOR * primary texel alpha) + (INPUT_FACTOR * (1
— primary texel alpha))

13

Blend pre-multiply inverse.
COLOR_FACTOR + (INPUT_FACTOR * primary texel alpha)

14

Add signed * 2.
Output color is (COLOR_FACTOR + INPUT_FACTOR — 128) * 2

15

Blend constant color.
Output color is (COLOR_FACTOR * CONSTANT_COLOR) + (INPUT_FACTOR *
(1 - CONSTANT_COLOR))

The color factor is set through the
PRIM_TEXTURE_COMBINE_CNTL_C:COLOR_FACT®@&d:

Table 6-8 COLOR_FACTOR

State

Description

Texture color (or interpolator color if shading)

NOT Texture color (or NOT interpolator color if shading)

Texture alpha (or interpolator alpha if shading)

NOT Texture alpha (or NOT interpolator alpha if
shading)

The input factor is set through the
PRIM_TEXTURE_COMBINE_CNTL_C:INPUT_FACTGRId:

Table 6-9 INPUT_FACTOR

State

Description

CONSTANT_COLOR

CONSTANT_ALPHA

Interpolator color

Al wW|N

Interpolator alpha

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-43

3D Rendering

The alpha combine function is set through the
PRIM_TEXTURE_COMBINE_CNTL_C:COMB_FCN_ALFieA, which may be set to
one of the following:

Table 6-10 COMB_FCN_ALPHA

State Description
0 Disable.
The output alpha is the texture alpha or interpolated alpha if shading.
1 Copy.
Output alpha is the ALPHA_FACTOR.
2 Copy input.
Output alpha is the INPUT_FACTOR_ALPHA
3 Modulate.
Output alpha is ALPHA_FACTOR * INPUT_FACTOR_ALPHA.
4 Modulate * 2.
Output alpha is ALPHA_FACTOR * INPUT_FACTOR_ALPHA * 2.
5 Modulate * 4.
Output alpha is ALPHA_FACTOR * INPUT_FACTOR_ALPHA * 4.
6 Add.
Output alpha is ALPHA_FACTOR + INPUT_FACTOR_ALPHA.
7 Add signed.
Output alpha is ALPHA_FACTOR + INPUT_FACTOR_ALPHA — 128.
1 *
14 Add signed * 2.

Output color is (COLOR_FACTOR + INPUT_FACTOR — 128) * 2.

The alpha factor is set through the
PRIM_TEXTURE_COMBINE_CNTL_C:ALPHA_FACT®&d:

Table 6-11 ALPHA_FACTOR

State Description
6 Texture alpha (or interpolator alpha if shading)
7 NOT Texture alpha (or NOT interpolator alpha if shading)

The alpha input factor is set through #RIM_TEXTURE_COMBINE_CNTL_C:
INPUT_FACTOR_ALPHAield:

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-44 Proprietary and Confidential

3D Rendering

Table 6-12 INPUT_FACTOR_ALPHA

State Description
1 CONSTANT_ALPHA
2 Interpolator alpha

The CONSTANT_COLGEd CONSTANT_ALPHAre the RGB and A components,
respectively, entered in RGBA8888 format in G®@NSTANT_COLORgister.

The secondary texture allows two additional states for the input factor and one additional
state for the alpha input factor.

TheSEC_TEX_COMBINE_CNTL_C:SECONDARY_INPUT_FACTaDR the

SEC_TEX_COMBINE_CNTL_C:SECONDARY_INPUT_FACTOR_ALPRé&lds may
be set to the following states:

Table 6-13 SECONDARY_INPUT_FACTOR

State Description
CONSTANT_COLOR
CONSTANT_ALPHA
Interpolator color

Interpolator alpha

Previous color

Ol wWDN

Previous alpha

Table 6-14 SECONDARY_INPUT_FACTOR_ALPHA

State Description
1 CONSTANT_ALPHA
2 Interpolator alpha
4 Previous alpha

The post-multitexturing lighting function is set through the
TEX_CNTL_C:TEX_LIGHT_FN It may be set to the following values:

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-45

3D Rendering

Table 6-15 TEX_CNTL_C:TEX_LIGHT_FN

State Description
0 Disable.
The output color is the texture color or interpolated color if shading.
1 Copy.
Output color is the COLOR_FACTOR
2 Copy input.
Output color is the INPUT_FACTOR
3 Modulate.
Output color is COLOR_FACTOR * INPUT_FACTOR
4 Modulate * 2.
Output color is COLOR_FACTOR * INPUT_FACTOR * 2
5 Modulate * 4.
Output color is COLOR_FACTOR * INPUT_FACTOR * 4
6 Add.
Output color is COLOR_FACTOR + INPUT_FACTOR
7 Add signed.

Output color is COLOR_FACTOR + INPUT_FACTOR - 128

Blend vertex.
8 ZOutput color is (COLOR_FACTOR * interpolator alpha) +
(INPUT_FACTOR * (1 - interpolator alpha))

Blend texture.
9 Output color is (COLOR_FACTOR * primary texel alpha) +
(INPUT_FACTOR * (1 - primary texel alpha))

Blend constant.
10 Output color is (COLOR_FACTOR * CONSTANT_ALPHA) +
(INPUT_FACTOR * (1 - CONSTANT_ALPHA))

Blend previous.
12 Output color is (COLOR_FACTOR * primary texel alpha) +
(INPUT_FACTOR * (1 - primary texel alpha))

Add signed * 2.
Output color is (COLOR_FACTOR + INPUT_FACTOR - 128) * 2

Blend constant color.
15 Output color is (COLOR_FACTOR * CONSTANT_COLOR) +
(INPUT_FACTOR * (1 - CONSTANT_COLOR))

14

The post-multitexturing alpha lighting function is set through the
TEX_CNTL_C:ALPHA_LIGHT_FNfield. It may be set to the following:

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-46 Proprietary and Confidential

3D Rendering

Table 6-16 TEX_CNTL_C:ALPHA_LIGHT_FN

State Description
0 Disable.
The output color is the texture color or interpolated color if shading.
1 Copy.
Output color is the COLOR_FACTOR
2 Copy input.
Output color is the INPUT_FACTOR
3 Modulate.
Output color is COLOR_FACTOR * INPUT_FACTOR
4 Modulate * 2.
Output color is COLOR_FACTOR * INPUT_FACTOR * 2
5 Modulate * 4.
Output color is COLOR_FACTOR * INPUT_FACTOR * 4
6 Add.
Output color is COLOR_FACTOR + INPUT_FACTOR
7 Add signed.

Output color is COLOR_FACTOR + INPUT_FACTOR - 128

Texture Coordinate Selection

In addition to the corresponding fields in tiRIM_TEX CNTL_Cregister, the
secondary texture contains the:

e SEC TEX CNTL_C:SEC_SRC_SEL_Sfield for selecting the primary or
secondary texture coordinate set.

e SEC TEX CNTL_C:SEC_SRC_SEL_Yild for selecting the primary or secondary
W coordinate.

For both fields:

e ‘0’ selects the primary

e ‘1’ selects the secondary.

Mipmapping

Mipmapping may be enabled separately for each texture stage. To enable mipmapping or
the primary texture, s&RIM_TEX_CNTL_C:PRIM_MIP_MAP_DISto ‘0’. A similar
field exists in theSEC_TEX_ CNTL_QCegister.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-47

3D Rendering

6.6.4

Loading Texture Data

Texture data can quite easily be copied into the frame buffer or AGP memory directly by
the host application. However, this method has a shortcoming. It does not provide a way
to synchronize the data load with the current drawing stream. There is no way to ensure
the current texture data is not being fetched by the current drawing operation without
taking extra, potentially performance-degrading precautions like waiting for engine idle.
A better method (recommended by ATI) is to load the data using@&TDATA_BLT

type-3 packet. The advantage of this method is that it streams the data load into the
drawing stream.

For an example of how to use tHOSTDATA_BLPpacket to load texture data, please see
thetexture.c file in the Chap6\3D\ULil directory of the RAGE 128 DDK.

After loading texture data, the pixel cache should be flushed to ensure that all cached data
is flushed to memory.

This may be done by setting tR€ GUI_CTLSTATE:PC_FLUSH_GUfield to ‘3'.
Also, whenever switching textures, the texel cache should be flushed.

To flush the texel cache, set fREX _CNTL_C:TEX_ CACHE_FLUSHield to ‘1’. This
will flush the texel cache at the start of the next primitive. This is a sticky bit. It will
remain asserted until the next primitive is issued, then it will automatically be cleared.

Setting 3D Render States

This section describes how to set rendering states for the 3D functional blocks on the
RAGE 128. The register presented here may be modified through Type-0 CCE packets, as
demonstrated by the following code:

inti=0;
DWORD BUf[BUF_SIZE];

Buf[i++] = CCE_PACKETO | (register_address >> 2);
Buf[i++] = register_content;

Buf[0] |= ((i - 2) << 16);

R128 CCESubmitPackets (Buf, i);

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

6-48

Proprietary and Confidential

3D Rendering

Alpha Blending

Alpha blending allows the source primitive data to be combined with the destination data
in various ways to achieve special effects like translucency.

The alpha blend equation is:

e CombFunc (SrcBlendFactor(SrcData), DestBlendingFactor (dstData))

Alpha blending is enabled by setting theX_CNTL_C:ALPHA_ENield to ‘1’. The
source and destination alpha blending factors are set through the
MISC_3D_STATE_CNTL_REG:ALPHA_BLND_SR4d
MISC_3D_STATE_CNTL_REG:ALPHA_BLND_DSields The following factors may
be set:

Table 6-17 ALPHA_BLND_SRC

State Description

BLEND_ZERO Blend factor is (0, 0, 0, 0)
BLEND_ONE Blend factor is (1, 1, 1, 1)
BLEND_SRCCOLOR Blend factor is (Rs, Gs, Bs, As)
BLEND_INVSRCCOLOR Blend factor is (1-Rs, 1-Gs, 1-Bs, 1-As)
BLEND_SRCALPHA Blend factor is (As, As, As, As)
BLEND_INVSRCALPHA Blend factor is (1-As, 1-As, 1-As, 1-As)
BLEND_DESTALPHA Blend factor is (Ad, Ad, Ad, Ad)
BLEND_INVDESTALPHA Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad)
BLEND_DESTCOLOR Blend factor is (Rd, Gd, Bd, Ad)
BLEND_INVSDESTCOLOR Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad)
BLEND_SRCALPHASAT Blend factor is (f, f, f, 1), f = min (As, 1-Ad)

SRC Blend factor is (As, As, As, As), force
DST blend factor to (1-As, 1-As, 1-As, 1-As)

SRC Blend factor is (1-As, 1-As, 1-As, 1-As),
force DST blend factor to (As, As, As, As)

BLEND_BOTHSRCALPHA

BLEND_BOTHINVSRCALPHA

Table 6-18 ALPHA_BLND_DST

State Description
BLEND_ZERO Blend factor is (0, 0, 0, 0)
BLEND_ONE Blend factoris (1, 1, 1, 1)
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential 6-49

3D Rendering

Table 6-18 ALPHA BLND_DST (Continued)

State Description

BLEND_SRCCOLOR Blend factor is (Rs, Gs, Bs, As)
BLEND_INVSRCCOLOR Blend factor is (1-Rs, 1-Gs, 1-Bs, 1-As)
BLEND_SRCALPHA Blend factor is (As, As, As, As)
BLEND_INVSRCALPHA Blend factor is (1-As, 1-As, 1-As, 1-As)
BLEND_DESTALPHA Blend factor is (Ad, Ad, Ad, Ad)
BLEND_INVDESTALPHA Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad)
BLEND_DESTCOLOR Blend factor is (Rd, Gd, Bd, Ad)
BLEND_INVSDESTCOLOR Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad)
BLEND_SRCALPHASAT Blend factor is (f, f, f, 1), f = min (As, 1-Ad)

The Alpha-combing function is set through the
MISC_3D_STATE_CNTL_REG:ALPHA_COMB_F(i¢ld. The following
alpha-combination functions may be set:

Table 6-19 ALPHA_COMB_FCN

State Description

0 Add and clamp

1 Add but don’t clamp

2 Subtract DST from SRC and clamp

3 Subtract DST from SRC but don't clamp

Alpha Testing

Alpha testing allows a pixel to be rejected based on a comparison of its alpha value to a
reference alpha value.

The pass/fail decision is represented by the following formula:

* Decision = AlphaTestOperation (Source Alpha, ReferenceAlpha))

The alpha reference is an 8-bit value ranging from zero to 255. It is set by writing the
MISC_3D_STATE_CNTL_REG:REF_ALPHAield. The alpha test function is set

through the MISC_3D_STATE_CNTL_REG:ALPHA TEST_Ofield. The following
states may be set:

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-50 Proprietary and Confidential

3D Rendering

Table 6-20 ALPHA_TEST_OP

State Description

Never pass

Pass if Src < ref

Pass if Src <= Ref

Pass if Src == Ref

Pass if Src >= Ref

Pass if Src > Ref
Pass if Src |= Ref
Always Pass

N[Ol W|IN|L|O

Fog Blending
Fog blending is performed according to the following equation:

e Finalcolor=fxCp +(1-f)xCf
» fis the fog factor at the pixel.
e Cpis the color of the source primitive pixel.

e Cfis the fog color.

The RAGE 128 supports both table fog and vertex fog. Table fog determines the fog
factor by using the interpolated z value at each pixel to index into a 256-element fog table.
The fog factor in the table is an 8-bit value ranging from 0 to 255. Note that the RAGE
128 uses the vertex z value, and not the vertex w value, to index into the fog table. Vertex
fog uses the interpolated alpha component of the vertex specular color as the fog factor a
each pixel.

The fog method may be selected through the
MISC_3D_STATE_CNTL_REG:FOG_TABLE_EfeId.

e ‘0’ selects vertex fog.

* ‘1’ selects table fog.

The fog color is set through the FOG_COLOR register in RGB 888 format.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-51

3D Rendering

To set up the table fog, first write the table index at which new entries will be entered to
the FOG_TABLE_INDEXegister. Next, write the fog table entries to the
FOG_TABLE_DATAegister. The index is post-incremented after each write.

The following example shows how to setup the fog table using a Type-0 packet. Note that

the CCE_PACKET_0_ONE_REG_W&y has been added to the packet header for the
table data packet, signifying that all data writes will go to the same register.

Example Code: Submitting a CCE packet

#define CCE_PACKETO 0x00000000
#define CCE_PACKET_0_ONE_REG_WR(0x00000001 << 15)
#define FOG_TABLE_INDEX Oxlal4d
#define FOG_TABLE_DATA 0Ox1al8

DWORD Buf[BUF_SIZE];
/I Copy the fog table passed into this function.

Buf[0] = CCE_PACKETO | (FOG_TABLE_INDEX >> 2);
Buf[1] = 0x00000000;
Buf[2] = CCE_PACKETO | CCE_PACKET_0_ONE_REG_WR | (FOG_TABLE_DATA >> 2);

for (i=3; i < 259; i++)
Buf[i] = 258 - i;

Buf[2] |= (255L << 16);
R128 CCESubmitPackets (Buf, 259);

Table fog parameters such as the fog start, end, and density may be set through the
FOG_3D_TABLE_STARTFOG_3D_TABLE_ENDandFOG_3D_TABLE_DENSITY
registers, respectively.

Shading

The shading mode determines the color or colors used to render the primitive and how the
colors are applied. The shading mode is set through the
PM4_VC_FPU_SETUP:PM4_COLOR_Fdsld. It may be set to the following states:

Table 6-21 PM4_COLOR_FCN

State Description
0 Solid shade
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

6-52 Proprietary and Confidential

3D Rendering

Table 6-21 PM4_COLOR_FCN (Continued)

State Description
1 Flat shade
2 Gouraud shade

Solid shading causes the primitive to be colored in the solid color set through the
CONSTANT_COLOR_teqgister.

Flat shading causes the primitive to be colored according to the color of the first or third
vertex. IfPM4_VC_FPU_SETUP:FLAT_SHADE_VERTEKX set to ‘0’, the D3D

convention is used, which selects the color of the first vertex as the vertex color. ‘1’ means
use the OpenGL convention. TBPenGLconvention selects the color of the third vertex

as the primitive color.

Gouraud shadingcolors the primitive by interpolates the color at each vertex across the
primitive.

Dithering

Dithering is a technique for reducing the banding artifacts that may appear when using a
limited number of colors. Dithering is typically necessary when using 16-bpp and smaller
display modes, such as RGB565, RGB1555, etc.

The RAGE 128 implements two dithering algorithms: error diffusion, and table lookup.
The algorithm may be selected through 8@ALE_3D_CNTL:SCALE_DITHERfield.
* ‘0 selects error diffusion.

* ‘1’ selects table look up.

If error diffusion dither is selected, setting 8€ALE_3D_CNTL:DITHER_INIT field
to:

e ‘0’ causes the current contents of the error register to be used at the start of the
scanline.

e ‘1’ causes the error value to be reset to ‘0’ at the start of the line.

If table dither is selected, settiSCALE_3D_CNTL:DITHER_INIT disables dithering
during alpha blending operations.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-53

3D Rendering

For best visual results, it is recommended that 32-bpp display modes be used instead of
16-bpp whenever possible. 32-bpp offers 16.7 million colors. This virtually eliminates all
banding artifacts and obviates the need for dithering. 32-bpp rendering performance on the
RAGE 128 is virtually identical to 16-bpp performance, resulting in negligible or no loss

in rendering frame rates.

Culling

Culling allows specific operations to be performed on triangles based on their orientation.
Itis frequently used to eliminate back facing triangles. The culling capabilities of the
RAGE 128 are configured through tHeM4_VC_FPU_SETURegister.

PM4_VC_FPU_SETUP:FRONT_DIRselects the front facing orientation of the
triangles.
e ‘0’ selects clockwise.

e ‘1’ selects counter clockwise.

FieldsPM4_VC_FPU_SETUP:BACKFACE_CULLING_Fand
PM4_VC_FPU_SETUP:FRONTFACE_CULLING_[i¢tate what actions to take for
back and front facing triangles, respectively. Both may be set to one of the following
states:

Table 6-22 BACKFACE_CULLING_FN and FRONTFACE_CULLING_FN

State Description

Cull the triangle

Draw the triangle as points

Draw the triangle as lines

W[IN| | O

Reverse area and draw the triangle as solid

Z Testing

Z testing is a method for performing hidden surface removal. The z values for source
primitives are compared against the z values for destination pixels stored in a z buffer, and
a decision is made to accept or reject, or occlude, the source pixel.

The z depth test is performed according to the following formula:

* Decision = ZDepthTestFunction (SourceZDepth, DestinationZDepth)

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-54 Proprietary and Confidential

3D Rendering

The z depth test function is set throughZh& TEN_CNTL_C:Z TESTfield. It may be
set to the following states:

Table 6-23 Z_TEST

State Description

0 Z test never passes

Pass if Source Z < destination Z

Pass if Source Z <= destination Z

Pass if Source Z == destination Z

Pass if Source Z >= destination Z

Pass if Source Z > destination Z

Pass if Source Z != destination Z

N oo~ W[N]|F

Z test always passes

The action to take following the z test with respect to updating the z buffer is controlled
through theTEX_CNTL_C:Z_MASKfield.

e ‘0’ disables writes to the z buffer.

e ‘1’ enables z writes.

Z testing is enabled and disabled throughTtB&X CNTL_C:Z_ ENfield.

e ‘0’ disables z testing

e ‘1’ enables z testing.

The RAGE 128 supports 16bit, 24 bit, and 32 bit z buffers. The z buffer bit depth is set
through theZ_STEN_CNTL_C:Z_PIX_WIDTHfield. It may be set to the following
values:

Table 6-24 Z_PIX_WIDTH

State Description
0 16 bit z depth
24 bit z depth

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-55

3D Rendering

Table 6-24 Z_PIX_WIDTH

State Description
2 32 bit z depth

The depth of the z buffer need not be the same as the depth of the drawing surface. For
instance, it is possible to use a 32-bit z buffer with an RGB 565 drawing surface.

Stencil Buffer

The stencil buffer is an auxiliary buffer used for performing special pixel by pixel
operations. It may be used to stencil out specific shapes for operations such as applying
shadow tones or masking out drawing regions. The RAGE 128 supports an eight-bit
stencil buffer. The stencil buffer is interleaved with a 24-bit z buffer in a combined 32-bit
buffer. The stencil buffer occupies the upper eight bits, and the z buffer occupies the lower
24 bits.

The stencil buffer operates according to the following equation:
* StencilCompareFunction ((StenciReference AND StenciMask), (StencilValue AND
StencilMask))

The stencil reference is an eight-bit value ranging from ‘0’ to ‘255'. It is set by writing
STENCIL_REF_MASK_C:STEN_REFThe stencil mask is set by writing the
STENCIL_REF_MASK_C:STEN_MSHield.

The stencil compare function is selected by se@in§TEN_CNTL:STENCIL_TEST
field to one of the following values:

Table 6-25 STENCIL_TEST

State Description

Never pass

Pass if <

Pass if <=

Pass if ==

Pass if >=

Pass if >

Pass if I=

N[O~ W|IN|[FL|O

Always pass

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-56 Proprietary and Confidential

3D Rendering

Different actions may be prescribed with respect to updating the stencil buffer based on a
number of pass/fail criteria. Specifically, a set of stencil operations may be set based on
whether the stencil test fails, both the stencil and z tests pass, or the stencil test passes b

the z test fails.

These operations may be set by writingZh&TEN_CNTL_C:STEN_SFAIL_OR
Z_STEN_CNTL_C:STEN_ZPASS_ORndZ_STEN_CNT_CL:STEN_ZFAIL_OP
fields. Each may be set to one of the following states:

Table 6-26 States for Stencil Buffer

State

Description

0

Stencil buffer value = current

Stencil buffer value = 0

Stencil buffer value = Stencil Reference

Increment current stencil value by 1

Decrement current stencil value by 1

Al WIN| -

Stencil buffer value = NOT current

Data written back to the stencil buffer is masked by the stencil write mask. The stencil
write mask is set through tI®TEN_REF_MASK_C:STEN_WRITE_MSiKId.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-57

3D Rendering

This page intentionally left blank.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-58 Proprietary and Confidential

Chapter 7
Advanced Topics

7.1 Scope

This section covers advanced topics, such as:

“Back-End Overlay and Scalar” on page 7-2

“Auto-Flipping and Advanced Deinterlacing” on page 7-10

“Overlay Autonomous Updating” on page 7-12

“Synchronizing Decoded Video Streams to the Display Refresh” on page 7-13
“Programming the Scalar” on page 7-15

“Front-end Scalar” on page 7-36

“Bus Mastering” on page 7-37

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-1

Back-End Overlay and Scalar

7.2 Back-End Overlay and Scalar

The Back End Overlay is a hardware technique that allows the simultaneous display of
two types of graphics on the CRT screen (i.e. composite video and computer graphics),
while keeping the video and graphics sources in separate buffers of the graphics memory.

The overlaid video is seen through a window which is on top of the computer graphics.
The theoverlay surfacebuffer corresponds to the overlay window. Tinemary-surface
buffer stores the graphics data.

As the two surfaces are independent of each other in display time, overlaying video on top
of the primary surface will not alter the physical bits in the surface underneath it.

The overlay registers define a rectangle on the primary surface such that the rectangle will
contain the overlay surface. When simultaneously displaying both computer graphics and
video, the following events occurs:

1. The DAC Qigital to Analog Converteyreads the data in the primary surface along
each scanline until it hits the left edge of the overlay rectangle.

2. Then, it switches to the overlay surface and reads from there until hitting the right
edge of the rectangle.

3. The DAC switches its reading back to the original primary surface image. This
switching from primary surface to the overlay and back may happen on every pass of
the scanline until the video is completely overlaid.

The overlay can have a different pixel depth than the primary surface. For example, while
8bpp may look fine for the primary surface, a video clip may need to be 16bpp to be
acceptable. The pixel depth switches seamlessly between the primary surface and the
overlay.

The RAGE 128 uses the following scalars:

Video Input Scalar

This scalar can down-scale video horizontally (and sometimes vertically as well) before
video is fed to the RAGE 128.

Horizontal Down Scalars

These scalars are located on the capture ports. Use them in case an external part such as an
MPEG or HDTV decoder don not have their own downscalars.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-2 Proprietary and Confidential

Back-End Overlay and Scalar

Blits Scalar

The 2D/3D engine can also perform scale blits. Use these techniques to scale and color
converted video.

Scan Conversion Scalars

These scalars are located in the “scan conversion” portion of a TV encoder product such
as ATI's ImpacTV.

Ratiometric Expander Scalars

These scalars are used in the RAGE 128 models that are dedicated for laptop computer
applications.

Back-end Video Scalar

This was the first scalar put into a mainstream product. It has since been enhanced with
every revision of ATI's graphics accelerators.

Subpicture Scalar
This scalar supports DVD applications.

Back-end Video Scalar

This scalar has evolved into a very capable and feature rich scaling engine.Video can be
displayed directly from theideo frame buffe¢s) while other graphics are displayed from
agraphics frame buffer Hardware will composite these two images on the way to the
display. The Back End Video Scalar does the job of scaling and color converting the
video.

e The main purpose for this scalausscaling It will read frames of video directly
out of the frame buffer (generally in their native resolution) scale them up, color
convert the images to RGB, and blend them with the primary display pixels.

e However, this scalar can aldownscale It requires a formidable amount of
signal processing to spatially resample (i.e. scale) an entire frame or field of
video.

e This processing is performed during a short period of time during each display
refresh. The more that the video is downscaled vertically, the less time there is to
perform this processing, and the more powerful the filter engines have to be.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-3

Back-End Overlay and Scalar

7.2.1

Recently Microsoft proposed new requirements related to video scalars. Before reading
the remainder of this chapter, read the following documents:

* To review these requirements, look under NDA (they are not included here).

¢ For more details, refer to Microsoft’s draft of PC99.

If you don't read these documents, you'll miss valuable background information, such as
the definition of terms (e.gap andaliasing) that are used in this manual. This
information is continually evolving.

Some highlights abowstcaling qualityare:

For corporate and laptop PC applications, us@x2etap-filter kernel This means
that the filter engine will interpolate from a 2x2 region of the source image (four
pixels in a square) to create an output pixel.

For PC used in an entertainment application, usdxBdap-filter kernel

Generate &runcated-sinccurve (sinc = sin(x)/x) as a function of scaling ratio). Filter
coefficients must be programmed with this curve in order to achieve an acceptable
quality level.

Minimize thespatial aliasing(artifacts created by imperfect resampling of some
types of patterns in the source image).

Enable the ability taoomby a variable factor of up to 8:1 in 2-pixel increments.
Enable the ability tahrink by a variable factor of up to 16:1 in 2-pixel increments.
For Digital-TV, the scaling engine must accept and scale 1280 horizontal pixels.

When shrinking by factors up to 2:1, image quality should not be perceptibly
degraded (4:1 for PC’s in an entertainment setting).

While these requirements are stringent, they can be realized with a combination of the
RAGE 128's hardware and advanced drivers.

Feature Summary for the Back End Video Scalar

New Features

* A GUI stall feature allows MPEG decode to be synchronized fiidtme
flipping.
* Subpicture decodeand scalar interface atpha-blending compositor

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

7-4

Proprietary and Confidential

Back-End Overlay and Scalar

¢ When the video window is cropped by the desktop, it can be updated without any
artifacts because there is sufficient double buffering of scalar control register
fields. There is a register locking mechanism to allow autonomous updates of the
overlay characteristics. Double buffering can be disabled.

* Weave in a variety of styles designed to eliminate motion artifacts, including
styles optimal for films provided vidTSCandPAL video standards and viewing
freeze frame on a VCR.

* 4-tap vertical filteringon all color components (Y, U, and V, RGB in RGB8888).
Some restrictions apply.

* Two color-temperaturesettings. The recommended setting uses an improved
color conversion equation.

* \Vertical-filter enginesare adaptively reconfigured to either filter more pixels
with lower quality or fewer pixels with high quality as needed to keep the
horizontal filters filled with as much data as possible data.

Other Features
* Performsdeinterlacingandcolor adjustmentsSupports the following color formats:
* RGB1555RGB565
» RGB8888
* PlanerYUV9, YUV12
* PackedYUYV, UYVY

e UsandV’s, or R’'s and B’s can be swapped in any format.

e Surfaces can be either linear or tiled surfaces. Tiled surfaces maximize the
performance of hardware assisted video decompression.

e 4-tap horizontal filtering on all color components (Y, U, and V, RGB in RGB8888).

e 4-tap vertical filtering on all color components (Y, U, and V, RGB in RGB8888 -
restrictions apply).

* 4-tap filter coefficientsare adaptively programmed to the optimal filter for the scaling
ratio.

e For all fourtap modessharpness enhancing filters can be programmed.

e Vertical filters engines are adaptively reconfigured to either filter more pixels with
lower quality or fewer pixels with high quality as needed to keep the horizontal filters
filled with as much data as possible data.

* In four tap modes sharpness enhancing filters can be programmed.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-5

Back-End Overlay and Scalar

* When downscaling, the scalar can read in up to four lines and blend them together to
produce a single output line. This means up to 25% vertical reduction without line
dropping is possible (50% only in RGB565 and 1555).

e The scalar can zoom in with sub-pixel windowing accuracy.

¢ When the video window is cropped by the desktop, it can be updated without any
artifacts because there is sufficient double buffering of scalar control register fields.
There is a register locking mechanism to allow autonomous updates of the overlay
characteristics. Double buffering can be disabled.

e Supports either one of twaapture ports or a software application as a video
provider.

* Eitherbobthe deinterlace fields (with vertical shift on either field\weavetwo
fields together.

* Can weave in a variety of styles designed to eliminate motion artifacts - including
styles optimal for films provided via NTSC and PAL video standards and viewing
freeze frame on a VCR.

* There are two color temperature settings. The recommended setting uses an improved
color conversion equation.

* Video-specificGamma CorrectionBrightness Contro] andSaturation Control

7.2.2 Functional Overview

Table 7-1 Supported Modes

Type of Filtering

Mode Scaling
Pick Nearest 2-Tap Horz 2-Tap Vert 4-Tap Horz 4-Tap Vert
Up Y Y (new) Y (new) Y (new) N
RGB 1555
Down Y Y (new) Y (new) Y (new) N
Up Y Y (new) Y (new) Y (new) N
RGB 565
Down Y Y (new) Y (new) Y (new) N
Up Y Y (new) Y (new) Y (new) Y (new)
RGB 32
Down Y Y (new) Y (new) Y (new) N
Up Y Y Y Y (new +uv) Y (new)
YUV9
Down Y Y Y Y (new +uv) N
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

7-6 Proprietary and Confidential

Back-End Overlay and Scalar

Table 7-1 Supported Modes (Continued)

Type of Filtering

Mode Scaling :
Pick Nearest 2-Tap Horz 2-Tap Vert 4-Tap Horz 4-Tap Vert
Up Y Y Y Y (new +uv) Y (new)
Yuvi2
Down Y Y Y Y (new +uv) N
Up Y Y Y Y (new +uv) Y (new)
YUYV
Down Y Y Y Y (new +uv) N
Up Y Y Y Y (new +uv) Y (new)
uyvy
Down Y Y Y Y (new +uv) N

Note: Y = YES, N = NO, new = new feature.

7.2.3 Additional Quality Enhancements

Filtering, especially 4-tap filtering, on a number of surface formats is now possible. These
are shown in the previous table. In addition, when using a 4-tap filter to scale 1:1 or above,
it is now possible to addsharpening special effecfThe new 4-tap filters support

extended coefficients that allastharpening filtersto be programmed as well as the
traditional 4-tap filters andpatial-resampling filters

As an additional benefit of moving to a 128-bit wide memory system, the quality has been
improved when dropping pixels to scale down horizontally. Both the RAGE PRO and
RAGE 128 have sufficient filtering power to scale down an image by 50% without
dropping pixels; however, below 50%, pixels are dropped. When pixels are dropped,
aliasing can occur. This is especially apparent if the source image contains an image with
a fine repeating pattern (e.g. striped shirt or text).

The following diagramFKigure 7-1) shows the RAGE 128'’s improvement in the
pixel-dropping techniqueThis figure compares the RAGE 128 to its predecessor, the
RAGE PRO.

e The vertical axis shows the quality of down scaling. As more pixels are dropped in a
row, the lower the quality of the down-scaled image.

e The horizontal axis shows the down-scale ratio.

RAGE 128 can selectively drop either Y or UV pixels. Between 1/2 to 3/8 horizontal scale
ratio, the RAGE 128 will drop the UV pixels, but not the Y pixels. Thus, aliasing of fine
patterns will be avoided in this range.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-7

Back-End Overlay and Scalar

0 Dropped '
|
1 Dropped |
Downscale | Rage 128
Quality —— -
(measured by the I
of missing Y 4 _——— = —
pixels in a row) Rage Pro |
8 Dropped LM — .

1:1 1/2 918 1/4 3/16 1/8 3/32 1/16
Horizontal Scale Ratio

Figure 7-1. Scaling Quality Improvement

Below 3/8, when the RAGE 128 starts dropping Y pixels in order to down-scale, every
second pixel is dropped rather than every sepaidof pixels. This also improves
quality, especially for text.

The following diagramFKigure 7-2) shows the images that demonstrate the this concept.

e The top image shows the original text.
¢ The middle image is what the RAGE PRO starts with at 1/4 scaling.
e The lower image is what the RAGE 128 starts with at 1/4 scaling.

The vertical bars to the left show the relative coarseness with which the original bitmap is
sampled.
e The upper “grill” samples two pixels, then drops two pixels.

* The lower “grill” uses every second pixel, and thus preserves finer detail of the
original image).

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-8 Proprietary and Confidential

Back-End Overlay and Scalar

TEST -<«———0riginal Image

Relative Coarseness——p» """”"" 133 -¢—RAGE PRO Image

Figure 7-2. Quality Comparison between Filter Techniques

TEST < RAGE 128 Image

This feature allows an end user to display videosmall window(e.g. a video

conference). The user can choose to simultaneously view a stock ticker or the progress o
a meeting, and use most of the desktop for regular work activities. With RAGE 128, the
window can be much smaller before problems occur, suctotisn aliasing(i.e. flicker)

and readability.

If the memory system can provide enough bandwidth, vertical downscaling is improved.
Previous ATI products were limited in that they could only fetch one line of source video
for every line output to the display. In the RAGE 128, the number of lines fetched is
programmable from one to four. Thus, in many display modes, it is possible to scale down
vertically by a significant amount without dropping any lines. Remember that the vertical
scalar is a 4-tap filter that drops down to a 2-tap filter when it is pushed to extremes.

If the scalar is simultaneously downscaling horizontally and vertically, then it may drop to
2-tap in order to avoid dropping pixels horizontally. Likewise, if the source is very wide,
then it will drop to 2-tap to increase the length of line that can be stored in the line buffer.
Even in 2-tap mode, the vertical filtering will be about twice as good as previous products
when the scalar can read in two or more lines.

If the video arrives via the RAGE 128 capture port, therehizrizontal capture
downscalarthat will also downscale video with high quality. The capture engine’s
high-quality horizontal scalar and the back-end scalar can split the job of downscaling the
video to achieve a very high level of overall quality.

If the source lines are pre-downscaled during capture, the back end scalar will be able to
fetch up to four new lines per output line and apply the 4-tap vertical filtering to these
lines. This means that the quality of the vertical downscaling will be excellent down to
1/4th the un-scaled size, and reasonably good below 1/4.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-9

Auto-Flipping and Advanced Deinterlacing

7.3

Auto-Flipping and Advanced Deinterlacing

The RAGE 128 supportsuffer flipping between and up to six bufferspacked modes
and between two buffers planer modes

It also supports both bob and weave, but now the scalar will perform weaving as well as
the capture hardware, and a full suite of bobbing and weaving modes is supported.

The RAGE 128 supports the following features:

Hop - one foot on the ground, other not used
* Where only the even or only odd fields are shown.

* Hopis best used for displayiffiggeze framefields from a VCR. It produces the
fewest artifacts when the two provided fields do not match.

Run - one foot on the ground at a time, alternating feet

e Where both fields are shown one at a time. During scaling, the even and odd
fields are positioned independently so that the resulting image does not bob up
and down.

* Runis a good default mode. It has the most tolerable set of artifacts over the
entire range of video content. It is a good choice when reliable knowledge about
the type of content is not available.

Jump - both feet on the ground, both move together
* Where two fields are weaved, but both fields are updated at the same time.

* Jump is best applied to video captured at a frame rate equal to half the video field
rate, such as film converted RAL/SECAM (exceptPAL M) video. Some video
is captured this way to improve slow motion replay.

* Jump may or may not weave compatible fields together. It will look good if is
initiated so that the woven fields are compatible.

Walk - both feet on the ground, move separately
* Where two fields are weaved, but each field is updated as it arrives.

« Walk weaves fields together without regard for compatibility and updates fields
as often as possible.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

7-10

Proprietary and Confidential

Auto-Flipping and Advanced Deinterlacing

Marriage Walk - both feet on the ground, field pairs are compatible

e Where only compatible fields are paired and weaved together. Display updates
may occur any time provided that the resulting display image does not contain a
mix of incompatible fields.

* Marriage Walk can be used if information about the compatibility of fields is
available. If the content is suitable, and if fields can be correctly paired, the
feathering artifact caused by weaving fields containing motion can be avoided.
With Marriage Walk, the vertical resolution of video on a progressive display can
be doubled over what is possible with Hop or Run.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-11

Overlay Autonomous Updating

7.4

Overlay Autonomous Updating

In order to solve past difficulties with makingdate-overlay commandsxecute
autonomously, more registers have been double buffered and provided with a lock/unlock
mechanism. This insures that a user will not notice any artifacts associated with scalar
registers being partially updated when properties of the video window are changed.

Previously, only the scalar position could be updated autonomously. Now it will be
possible to change the position, scale ratio, and source surfaces autonomously.

The address and pitch registers can be updated autonomously by alternating between
subsets of the six address registers and two pitch registers. After programming a new set
of values in unused address and pitch registers, software can point the hardware to these
registers through submit fieldmechanism which is lockable. Thus the submission of a
field and thus the change of the address and position can be included in an autonomous
update of the overlay.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

7-12

Proprietary and Confidential

Synchronizing Decoded Video Streams to the Display Refresh

7.5

7.5.1

Synchronizing Decoded Video Streams to the Display Refresh

To assist in a video-coded running in software so that synchronization is maintained with
the display refresh, feedback will be provided to the driver to indicate whether the
hardware began a new display refresh during the locked update.

If a software codec expects to be able to update the overlay properties within a single
display refresh, this feedback mechanism will provide a sanity check to reassure the
software that it did in fact complete it's update without dropping a frame.

GUI Stall Mechanism

When buffering frames of video, it may become necessary to stall the GUI engine in order
to prevent the active front buffer from being overwritten to quickly with a future frame.

« If the codec determines that there is a possibility of this happening, it can enable an
interlock mechanism which will temporarily stall the creation of this frame by the
GUI engine.

e To enable this mechanismyaitUntilEvent commandmust precede the frame
rendering commands in the GUI instruction queue.

The intent here is for the overlay to be able to tell the GUI that it is still using the surface
that the GUI wants to render to even though from the software perspective that surface ha:
been flipped and in no longer the front buffer.

What is proposed is that the overlay will senddaf0_SURFACE_IS_FREBignal to the
GUI. It will make this signal go low when there is a danger of front buffer overwrite as
determined by software.

There will be a new register bit call@/0_STALL_ GUI_UNTIL_FLIP . If software

wants to stall the GUI, then it will set this bit when if locks, updates, and unlocks overlay
and subpicture registel®V0_SURFACE_IS_FREHRuvill go low at unlock and then high
during VBlank (when the hardware double buffering flips the registers).

¢ Note that the behavior @V0_SURFACE_IS_FREEis undefined if
OVO_STALL_GUI_UNTIL_FLIP is written to when the lock bit is not set.
Hardware sims will not send X's after reset however.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-13

Synchronizing Decoded Video Streams to the Display Refresh

In the CCE/GUI environment, the evenE¥ENT_OVO0_FLIP. The event happens when
bit goes high. Upon a release (clearin@d0_LOCK bit is cleared. After the writes take
(i.e. the pageflip is visually complete to the user), this bit is set.

OVO0_SURFACE_IS_FREEs technically not an event trigger. If it is low, the
WaitUntilEvent command must stall the GUI until it is high. It does not wait until the
signal transitions from low to high (i.e. if it is already high, there is no stall).

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

7-14

Proprietary and Confidential

Programming the Scalar

7.6
7.6.1

7.6.2

7.6.3

7.6.4

Programming the Scalar
Overview

Setting up the parameters that define how a rectangle will be mapped onto the display is &
problem that is in some ways similar to setting up the renderer to define how a triangle
will be mapped into a rendering surface. Obviously, there are differences.

For example, the scalar doesn’t have to do perspective correction, but it does have to
perform 4x4-tap filtering and to minimize any spatial aliasing. The scalar does not have to
support a Z buffer, but it does have to support many different surface formats.

Setup

Some setup of the scalar needs to be done in software before it can be used. Part of this
setup is simply related to determining the increments that must be used for scaling.
Another part concerns reconfiguring the filter engines (based on a table lookup) to best
focus the filter engine’s scaling power for the task.

Bandwidth

We have to consider the memory bandwidth that is required by the two video-capture
ports, as well as the possibility of having wider (HDTV) formats that require more
bandwidth per line. Handling the bandwidth problem isn't all that hard. There are just a
few steps which will be explained in the following subsection. Another aspect of scalar
setup is the generation of the filter coefficients. Another subsection that follows will
discuss this topic.

Managing Bandwidth

Registers affected:

« OVO0_REG_LOAD_CNTL
« OVO_SCALE_CNTL

Information must be gathered to feed into the bandwidth calculations. This should be done
by reading the required registers and returning all of the parameters that are needed. It is
very important that, for some of these parameters (such BRIHE_HTOTA), the driver
insures that the parameter either will remain static or at least not change in a detrimental
way.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-15

Programming the Scalar

For example, if the user wants to resize the CRTC:

e Either that application must prevent 8®TC_HTOTAIlfrom shrinking to the point
that the scalar is starved, or

* It must update the overlay when it shrinks the overlay to this point.

After the relevant information is gathered, the bandwidth routines are called.

The first routineCalcFetchStartPoint determines the earliest point in time that line fetch
requests can be made without overwriting a portion of the previously fetched that is still in
use. The information that is returned must be programmed intd th®@AD_CMHeld of
theOVO_REG_LOAD_CNTiegister. The scalar®V0_SCALE_CNTland
OV0_PROGMBL_LOAD_STARIt must be set to one as well.

This routine contains a formula that calculates how much time (in pixel clocks) it will take
to fill the line buffer in the best case. The fetch generation latency and the minimum
memory latency are added to this time to generatke#tetime The lead time is

subtracted from the point in the horizontal timing that the scalar is finished with the last
line. A little bit of margin is added for safety. The result is converted to character clocks,
and programmed into thé LOAD_CMHeld.

The second routingineFetchSetup determines how many lines of data can be fetched,
and what it takes to fetch those lines. In order to realize a display mode with the scalar on,
it must be possible to fetch at least one line of video source data for each line of display
data. Do this calculation to insure support for some of the higher resolution display modes.
In lower-resolutions modes (where there is more bandwidth available), the calculation will
tell you if it is possible to read in more than one video source line per display line. If it is
possible, then the quality of the video when downscaling will be markedly increased.
More importantly, the scalar will be compliant with Microsoft's downscaling quality
requirements in these modes.

The LineFetchSetup routine is made up of a number of simple formulas that tally up the
memory cycles consumed by other higher priority clients in the worst case and add extra
cycles for page misses. This is subtracted from the total number of cycles to determine
what is left for the scalar. This remaining bandwidth limits the number of lines (if any)
that can be fetched. It calculates a value call¥® BURST_PER_PLANfat controls

the frequency at which Y, U, and V fetches alternate in planer modes. In the
higher-resolution display modes with high refresh rates, this parameter becomes critical. It
also becomes critical to reduce the size of the display FIFO buffer from 64 entries down to
probably 48 entries. Either way, the remaining bandwidth drives a table look up which
dictates the setting of a just a few fields that affect the fetch behavior and the amount of
bandwidth consumed.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-16 Proprietary and Confidential

Programming the Scalar

7.6.5 Physical Scaling Ratios

Once the bandwidth issue is resolved, the next step is to determine the vertical and
horizontal scaling ratios that are required from the scalar. These ratios are basically
functions of the source and destination window dimensions. However, there are a few
mode-specific parameters (such as the type of deinterlacing, the pixel clock speed, and
whether the CRT is in interlaced mode or not) that influence the calculation. As well the
source window dimensions may be affected by the addition of black borders.

7.6.6 Setting up the Horizontal Accumulator

Registers affected:

« OVO_H_INC
« OVO_STEP_BY

« OVO_P1 H _ACCUM_INIT
« OVO_P23 H_ACCUM_INIT

Next, there is a table based lookup (mentioned earlier) that determines how to configure
the scalar filter engines and pixel dropping hardware to achieve the required scaling. The
table lookup is presently implemented in a function catatt_H_INC_STEP_BY in

the fileovlcalch.c . This function’s prototype is provided below:

Example Code: Setting up the horizontal accumulator

Calc_H_INC_STEP_BY(
ovOfield->val_OV0_SURFACE_FORMAT,
H_scale_ratio,
DisallowFourTapVertFiltering,
DisallowFourTapUVVertFiltering,
&ovOfield->val_OVO0_P1_H_INC,
&ovOfield->val_OVO0_P1_H_STEP_BY,
&ovOfield->val_OVO0_P23_H_INC,
&ovOfield->val_OV0_P23_H_STEP_BY,
&P1GroupSize,
&P1StepSize,
&P23StepSize

);

P23GroupSize = 2; // Current value for all modes

Calc_H_INC_STEP_BY will return values that should be programmed into the
following fields:

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-17

Programming the Scalar

e OVO0_P1 H_INC

e OVO0_P23 H_INC

e OVO_P1 H_STEP_BY

e OVO0_P23 H _STEP_BYas well as some additional information.

These fields control two horizontal accumulators, and address generation logic that
fetches pixels from the line buffers to feed the vertical filter engine. These accumulators in
turn generate pixel and line shift signals as well as blend ratios for the horizontal filters.

Calc_H_INC_STEP_BY will determine first if the vertical filters must be put in 2-tap
mode or 4-tap mode.

* In 4-tap mode, the filters will blend using a more advanced 4-tap filtering kernel.

* In 2-tap mode, the filter engine blends using a less sophisticated liner filter (alpha
blend), but it generates twice as many pixels per clock (three times as many in the
case of RGB15/16).

There are a number of reasons why the filters should be put in the lower quality 2-tap
mode. These are:

e Source is wider that 768.

* Source is RGB15/16 which doesn't have a four tap option.

* The vertical filters can't keep the horizontal filters supplied with pixels because the
horizontal scaling ratio is too low.

When down scaling, it is better to drop from 4-tap filtering to 2-tap filtering, rather than
drop pixels.

If the downscaling ratio is large, then the vertical filters can’t keep up even in 2-tap mode.
When this happens it becomes necessary to drop pixels.

The accumulators and shifters require initialization values that are also a function of the
scaling ratio. These initialization values consist of two parts:

e« OVO0 _P1 H ACCUM_INITandOV0O_P23 H ACCUM_INITare used to initialize
the accumulators.

e OVO_PRESHIFT_P1_TOandOVO_PRESHIFT_P23 TOare used to preshift the
right amount of data into the horizontal filters at the beginning of each display line.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-18 Proprietary and Confidential

Programming the Scalar

The following lines of code (taken from ovOsetup.cpp) program these fields correctly.

Example Code: Setting up the horizontal accumulator

tempAdditionalShift = ovOfield->val_OV0_P1_X_START % P1GroupSize;
if (ovOparam->HORZ_PICK_NEAREST) {
tempP1HStartPoint = tempAdditionalShift + 3.0 +
(float)ovOfield->val_OVO_P1_H_INC / (1<<0xd);
}
else {
tempP1HStartPoint = tempAdditionalShift + 2.5 +
(float)ovOfield->val_OVO0_P1_H_INC / (1<<0xd);
}
tempP1Init = (double)((int)(tempP1HStartPoint * (1<<0x5) + 0.5)) /
(1<<0x5);

/I P23 values are always fetched in pairs. If the start pixel is odd,
then we need to shift an additional pixel
/I Note that if the pitch is a multiple of two, and if we store fields
using the traditional planer format where
/I the V plane and the U plane share the same pitch, then
ovOfield->val_OVO0_P2_X_START % P23GroupSize should equal
/I ovOfield->val_OVO0_P3_X_START % P23GroupSize. Either way it is a
requirement that the U and V start on the same
/I polarity byte (even or odd).
tempAdditionalShift = ovOfield->val_OV0_P2_X_START % P23GroupSize;
if (ovOparam->HORZ_PICK_NEAREST) {
tempP23HStartPoint = tempAdditionalShift + 3.0 +
(float)ovOfield->val_OVO0_P23_H_INC / (1<<0xd);
}
else {
tempP23HStartPoint = tempAdditionalShift + 2.5 +
(float)ovOfield->val_OVO0_P23 H_INC / (1<<0xd);
}
tempP23Init = (double)((int)(tempP23HStartPoint * (1<<0x5) + 0.5)) /
(1<<0x5);
ovOfield->val_OVO0_P1_H_ACCUM_INIT = (int)((tempP1Init -
(int)tempP1Init) * (1<<0x5));
ovOfield->val_OVO_PRESHIFT_P1_TO = (int)tempP1Init;
ovOfield->val_OVO0_P23 H_ACCUM_INIT = (int)((tempP23Init -
(int)tempP23Init) * (1<<0x5));
ovOfield->val_OVO_PRESHIFT_P23_TO = (int)tempP23Init;

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-19

Programming the Scalar

7.6.7

7.6.8

Setting up the Destination Window

Registers affected:

« OVO_Y_X_START
« OVO_Y_X_END

« OVO_EXCLUSIVE_HORZ (indirectly)
« OVO_EXCLUSIVE_VERT (indirectly)

Thedestination windowcoordinatesare specified using ‘inclusive’ display pixel
coordinates. There are horizontal restrictions when the pixel clock is running faster that
the scalar's maximum clock of 125MHz. In this case, the scalar’s destination window will
always start on the correct pixel, but the total number of pixels across will be rounded up
to the nearest multiple of two. For most applications this is not a problem because the
overlay is only displayed where the key color is, and thus the extra pixels are hidden.

Setting up theSource Window

Registers affected:

« OVO_P1 BLANK_LINES_AT TOP
« OVO0_P23 BLANK_LINES_AT TOP
« OVO0_VID_BUF* BASE_ADRS

« OVO_P* X_START_END

The scalar can zoom in on a source window with pixel accuracy. The zoom region is
referred to as theiew window Any source data outside the view window will be replaced
with black. The filter engine will blend black pixels with source pixels for the best
possible quality at the edges.

The top of left corner of the view window (e.g. the viewing window into the source image)
is approximately defined by th@Vv0_VID_BUF*_BASE_ADRSfield of the
OVO0_VID_BUF*_BASE_ADRSegister. This field points to the octword that contains

the top left pixel in the viewing window.

The memory system and the scalar handle data in octwords. Thus, both the start pixel and
end pixel in a line are specified relative to the beginning of the first octword in the line.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

7-20

Proprietary and Confidential

Programming the Scalar

7.6.9

The exact starting pixel in the first octword is defined by@QM® P* X STARTfield in
theOVO_P* X_START_ENDregister.

The last pixel is specified by tl@v0_P*_X_ENDfield in theOVO0_P*_X_START_END
register. TheP? in OVO_P* X _END stands for ‘Plane’. P1 represents the Y plane, P2
represents the U plane (and sometimes also the V plane), and P3 represents the V plane
(and sometimes it's not used).

Vertically, it is possible to have the scalar add black boarders (additional black lines) to
the video image without having to write them into the frame buffer. These boarders are
needed for the MPEG letterbox mode. This is done by indicating the number of black lines
required at the top and the height of the ‘active’ portion of the video.

Note that black lines require no read bandwidth, and thus they are never dropped during
downscaling. Thus, if the image is predecimated by doubling the pitch, also adjust the
number of black lines to be added.

Calculating the Filter Coefficients

Registers affected:

« OVO_FILTER_CNTL
« OVO0_FOUR_TAP_COEF *

To understand how to create suitable coefficients fapagial resampling filtey you'll

need to understand some backgrounspitial resampling Spatial resampling means
scaling. Scaling is done by interpolating new pixels from nearby pixels in an original
source image. This interpolation is generally performed by multiplying the nearby pixels
by filter coefficients summing the results, and then dividing by the sum of the
coefficients.

Video images tend to bdeand limited(i.e. separable filterscan be used).
¢ Band-limited video means that there are no frequencies in the image above the

maximum frequency that the raster can accurately represent.

e Separable filter means that first the image is filtered in the vertical direction and then
in the horizontal direction. Separating the filtering into two steps reduces the amount
of math, and thus the amount of signal processing, that the scalar must perform.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-21

Programming the Scalar

The RAGE 128 Back-End scalar uses separable 4-tap filters to interpolate new pixels from
a 4x4 region of nearby source pixels. First it interpolates vertically, and then it interpolates
horizontally.

The scalar allows you to select whether to use efthet-coded set or a programmable set
of coefficients for each of the mascaling operationsThe scaling operations are:

e \Vertical Y Scaling
e Vertical UV Scaling
* Horizontal Y Scaling

* Horizontal UV Scaling

TheOVO_FILTER_CNTL register allows you to control the selection.

A given set of filter coefficients are useful for interpolating a pixel at a given position
between source pixels. For example, the coefficients {-0.1, 0.6, 0.6, -0.1} would
interpolate a pixel that was 50% of the way between the second and third pixel in a set of
four.

For each position, a different set of four coefficients is needed. The RAGE 128 supports 8
possible positions, or “phases”. They are 0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, and
87.5% of the way between the second and third pixel in a set of four. The coefficients for
the three last positions are mirror images of the 2nd, 3rd, and 4th positions, thus extra
registers for these values are not needed.

The hard-coded coefficients are suitable for upscaling, or downscaling slightly (9/10ths of
the original). To downscale below 90%, different filter coefficients are needed to achieve
the best quality. Thus, if one scaling operation is performing a downscale, it should be
assigned the programmable coefficients. The coefficients should computed as a function
of the scaling ratio and the sharpness control setting.

If more than one scaling operation is downscaling, either they must share the set of
programmable coefficients, or one of them must use hard-coded coefficients. When you
examine all the possibilities, you'll discover that programmable coefficient contention
isn’t a large problem.

If no scaling operations are downscaling, all of the scaling operations can use the
programmable coefficients, and these coefficients can be programmed for upscaling with
a sharpness control.

All the coefficients values for a given position (or phase) must add up to 32.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-22 Proprietary and Confidential

Programming the Scalar

7.6.10 Setting up the Vertical Accumulator

Registers affected:

« OVO_V_INC
« OVO_P1_V_ACCUM_INIT

« OVO0_P23 V_ACCUM_INIT

« OVO0_VID_BUF_PITCHO_VALUE(indirectly)
« OVO0_VID_BUF_PITCH1_VALUE(indirectly)

The vertical-scaling ratio determines the value of a vertical increment value that is used by
the vertical accumulator. If you indicate to the hardware that there is bandwidth available
to fetch in more than one line each Hblank (by programming the
OVO0_P1_MAX_LN_IN_PER_LN_OU&ndOV0O_P23 MAX_LN_IN_PER_LN_OUT

fields), the scalar will fetch more than one line if necessary; otherwise, it will
automatically drop lines when scaling down.

For large vertical downscaling ratios there may be cases when the scalar can fetch more
than one line, but not all the lines it needs to downscale without dropping lines. In this
case the scalar may end dipping linesin clumps. If this situation happens, then the

driver should predecimate the image vertically by doubling, tripling, quadrupling, etc. the
pitch that it uses to program the scalar. This will spread out the groups of lines that are
fetched and reduce the size of the gaps in the source image. Note that if the scalar can onl
fetch one line per HBlank, then there is no “group of lines” to spread out.

The exact vertical position must be tweaked by settin@¥e P1 V_ACCUM_INIT
andOV0_P23_V_ACCUM_INITfields. These registers initialize the vertical
accumulators so that the image will be properly aligned.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-23

Programming the Scalar

7.6.11 Autonomous Update

Registers affected:

« OVO0 REG_LOAD CNTL.*LOCK*
« OVO0_SCALE_CNTL.OVO_DOUBLE_BUFFER_REGS

If a new display refresh were to start (while changing some scalar registers), some of your
changes would be in effect and others would not. The current refresh would be partially
updated and may appear distorted. To prevent this from happening, many important scalar
register fields have been double buffered.

A double buffered register field has a register field that the driver can modify and a second
internal register field that the hardware uses. The driver’s register field is copied to the
hardware’s register field at the start of the display VBlank if the
OV0O_REG_LOAD_CNTL.OVO_LOQHt is not set.

To update autonomously, you must:

1. SettheOVO REG_LOAD_CNTL.OVO_LOCKit

Check that the hardware saw that this bit was set by polling
OVO_REG_LOAD_CNTL.OVO_LOCK_READBA@KIl it goes high.

3. Update any double buffered registers that require updating.
4. Update theDVO_VID_BUF_PITCHO_VALUEregister that is not in use if needed.

5. Update one (or three for planer mod@sj0_VID_BUF* BASE_ADRSegister(s) if
needed.

6. Submit a field or frame iOVO_VID_BUF_PITCHO_VALUEor
OVO0_VID_BUF* BASE_ADRSwas modified. The submission is double buffered,
even though th©VO0_VID_BUF* registers are not.

7. Unlock the registers by resetting tt&/0_REG_LOAD_CNTL.OVO0_LOQCHt.

To find out if a VBlank occurred while you had the registers locked, read the
OVO0_VBLANK_DURING_LOCHeld.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-24 Proprietary and Confidential

Programming the Scalar

7.6.12 Autoflipping and Advanced Deinterlacing

Registers affected:

« OVO_AUTO_FLIP_CNTL
« OVO_DEINTERLACE_PATTERN

To use autoflipping and advanced deinterlacing, a video provider (either a capture port, or
software application) must be selected by the overlay using the
OVO0_VID_PORT_SELECTegister field. This video provider must submit fields to the
back end video scalar.

To submit a field, a small structure is filled out that indicates:

* WhichOVO0_VID_BUF?_BASE_ADDRESSSs) point(s) to the new field.

« Whether the field is even or odd (for non-planer surfaces), and if the current field is a
repeated fieldif the video follows a 3:2 pulldown pattern).

A software application provides this information by writing to fields in the
OVO_AUTOFLIP_CNTLregister, and then toggling a bit (change it to ‘0’ if itis *1’, or
change itto ‘1’ if it is ‘0’). The video capture hardware talks directly to the video scalar
hardware through a similar mechanism.

The scalar keeps a record of the last three submissions from each video provider. The
scalar can be directed to apply any of the alstmisterlacing techniquegdescribed
below) to the fields that are submitted.

A record of each video provider’s submissions is kept by shifting the submission
information into registers. Theses are referred to abléxé register theCurr register,
and thePrev register where:
* Nextis the most recent

e Curris the second most recent

¢ Prev in the third most recent.

TheOVO_VID_PORT_SELECThe register selects, which active video provider’s
submissions are dedicated to the deinterlace control block.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-25

Programming the Scalar

The repeat-field information is not recorded, but instead it is used immediately. It can
reset theDeinterlace Pattern Pointefwhich, BTW, is readable via
OVO_DEINT_PAT_PNTR Normally, the Deinterlace Pattern Pointer will increment

every time that a field is submitted by the selected video provider. This pointer selects one
of up to terDeinterlace Pattern Directivethat are stored in th@VO_DEINT_PAT

register field.

The deinterlace control block establishes what surfaces the scalar will pick up and how
they will be combined to create a display frame. The deinterlace control block is directed
by the 2-bitDirective Valueto do one of four actions. The decoding is as follows:

Weave theNext field with theCurr field.
Weave the Curr field with therev field
Bob the Next field.
Bob the Curr field.

P w DD

Different patterns can be used to achieve different types of deinterlacing. For example:

* OVO_DEINT_PAT = OXAAAAA (i.e. ten ‘2's)

e Indicates bob with the most recent field.

* OVO_DEINT_PAT = OXFFFFF (i.e. ten ‘3's)

¢ Indicates bob with the second most recent field.

* OVO_DEINT_PAT = OXEEEEE (i.e. 3232323232)

* Indicates bob using the second most recent field alternating with the most recent
field. Causes that single-field mode to occur.

* OVO_DEINT_PAT = 0x00000 (i.e. ten ‘0's)

e Indicates weave using the most recent two fields. Causes 50/60 frames to be
displayed per second.

* OVO_DEINT_PAT =0x11111 (i.e. 0101010101)

* Indicates weave by using the most recent two fields. Then, when the next field
arrives, it uses the 2nd and 3rd most recent fields (the same two). Then repeat.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-26 Proprietary and Confidential

Programming the Scalar

This weaves pairs of even and odd fields and displays the pairs at 30 frames per
second.

* OVO_DEINT_PAT = 0x04411 (i.e. 0710107101, where '?' = don't care = 0).

e This pattern will weave fields in a way that will undo a 3:2 pull down. The pattern
will need to be rotated to match the phase of the incoming video's pulldown
pattern. If a repeat field indication is available, then this can be used to sync the
pattern with the incoming video.

Currently, the length of the pattern is programmable, but there doesn’'t appear to be any
good reason to program it to less than the maximum value of ‘9’. The current pointer
value can be read and this information can be helpful if the driver needs to dynamically
change the pattern or style of deinterlacing on the fly. To switch between bob and weave,
change the vertical scaling ratio as well in a single autonomous operation.

Because fields are labeled even or odd as they are submitted, the hardware can be told
how to position even fields with respect to odd fields. When bobbing, the fields
OVO_SHIFT_EVEN_DOWahdOV0_SHIFT_ODD_DOW#&ie used.

* When set, appropriately labeled fields will be shifted by one half source line.

* When weaving, th©V0_FIRST_LINE_EVEN will control an even field’s
positioning relative to an odd field's.

Avoid allowing a software application from weaving together an even field with an even
field, or an odd field with an odd field. Never use weave on captured data if there is a risk
that the capture hardware will submit two fields of the same type in a row.

The video capture ports are not designed to provide planer data. However, a software
application, such as a hardware-assisted MPEG decoder, will provide planer data. It will
not be necessary to weave planer data with planer data. Even with field based motion
compensation, the data will be manipulated in the frame buffer in a pre-weaved fashion.

e To achieve weave deinterlacing, read frames directly out of the frame buffer.

* To achieve bob deinterlacing, read every second line of the Y frame and every line of
the UV frames.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-27

Color Controls

7.7 Color Controls
The Color controls in the RAGE 128 are the same as RAGE PRO.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-28 Proprietary and Confidential

Keying Controls

7.8 Keying Controls

The following registers are used to enable color keying with respect to the overlay:

« OVO_KEY_CNTL
- OVO0_VIDEO_KEY_CLR
« OVO0_VIDEO_KEY_MSK
« OVO0_GRAPHICS_KEY_CLR
« OVO_GRAPHICS_KEY_MSK

As noted above, there are color keys for both graphics and video. The graphics color key
applies to data that is retrieved from the engine or the frame buffer. The video color key is
applied to data that originates from the capture buffer(s). Overlay key-color registers is 24
bits wide, while the display key-color registers and key mask are 32 bits wide. The value
of the color key should be entered as it applies to the current graphics mode. The mask
registers should be set up to mask out the bits that you will not use in your color key. For
instance, in 16 bpp-mode (565), bits [16] to [31] should be masked out, as we will not be
using those bits when comparing the source data against the destination.

OVO_VIDEO_KEY_FN @ OVO_KEY_CNTL and OVO_GRAPHICS_KEY_FN @
OVO0_KEY_CNTL determine how the color keys are applied. It is also possible to
compare the graphics and video outputs by using OVO_CMP_MIX @ OV0_KEY_CNTL.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-29

Tabulating Cycles in the HBlank

7.9

7.9.1

Tabulating Cycles in the HBlank

The scalar is limited by the number of cycles available in its VBlank. If too many other
real-time clients are active and making requests in the worst possible way, there will be a
minimal amount of time for the scalar to fetch the data it needs to get started. This
sub-section explains how to determine how many cycles are left for the scalar if all the
other clients are engaged in worst case behavior.

Part 1

First, we must determine the earliest point that data transfers from the frame buffer into
the scalar-line buffer can occur. This point actually depends on the best-case behavior of
the memory system. If the first request is serviced immediately by the memory controller
and the data is returned without any page faults, the data will arrive at the earliest time
possible. The data must not overwrite data from the previous line that is still in use.

The scalar actually starts and finishes reading lines from its line buffer a little ahead of the
actual display timing due to the hardware’s pipeline delay. The line buffer fill for the next
line can begin before the current line has finished being read, provided that it doesn’t
overwrite the end of the current liffleigure 7-3.shows the fetch request beginning as

early as possible.

HActive — [1 [
HBlank 1

Overlay
Line Buf
Write Pntr

Request

Overlay :
Line Buf f
Read Pntr !

¢ Pipeline Delay

Maximum FillRate —_p,

Fetch Minimum Latency 4_,:

1

Calc_H_LOAD_CMP trigger A

Figure 7-3. The fetch request beginning as early as possible

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

7-30

Proprietary and Confidential

Tabulating Cycles in the HBlank

7.9.2

For planer fetches, the fill rate can be faster in the best case (when only lines of U and V
are fetched). The fetch may alternate between the U and V planes. To accurately
determine how soon the fetch can begin, take into account how often switching between
the planes will occur.

There are two switching mechanisms.

¢ One method causes a switch to occur to the plane that has the least data after a fixed
burst size in octwords. THeVO_BURST_PER_PLAN£eld in the
OVO_SCALE_CNTLlegister defines this burst size.

¢ Another method is by enablif@v0_SMART_SWITCH his mechanism causes the
switch to occur at page boundaries, and makes the switch to a plane that is in an
opposite memory bank.

In tiled mode, page boundaries occur frequently. Page faults are hidden when switches
between Y, U, and V planes occur.

If the switching behavior can be accurately described in a formula, it will be possible to
begin fetching at the earliest possible point in time. Currently, the start point is
conservatively determined (by tRalcScalarHBlank functior) using the assumption

that a whole line of U data is fetched, followed by a whole line of V data.

Part 2

The CalcScalarHBlank routinereturns the following values:

+ EarliestDataTransfer
e LatestDataTransfer
e VCLK Offset

EarliestDataTransfer (the left most dotted arrowigure 7-3) shows where the start of
the write into the line buffer can occur. There are a several cycles from when
Calc_H_LOAD_CMPtriggers a line fetch to when the first-data transfer occurs.

Subtract the minimum memory latency (about 10 cycles) from the scalar’'s computation
delay (dependent on the minimum number of lines dropped) to obtain the earliest fetch
request from the EarliestDataTransfer point. The earliest fetch request is converted to a
character clock by dividing by 8 and programmed ta OAD_CMP

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-31

Tabulating Cycles in the HBlank

7.9.3

The scalar’s computation delay is derived from a formula thatMsd#3roppedP1Lines
andMinDroppedP23Linesamong other variables. The address generator spends extra
cycles adding the pitch to the line address when there are dropped lines. Thus if the
minimum number of dropped lines is known, the trigger point can be moved a little
earlier. However, the minimum number of dropped lines iknotvn until after the
bandwidth calculation is complete and a decision is made about how many lines to fetch
and how many to drop.

Part 3

Find when the scalar will read the first bytes of data. This is the beginninglé&ttiee
scalarminus a variable pipeline delay minus 16-ECP cycle-lead time.

e For non-planer modes, this defines the latest point in time that the data must start
arriving by.

e For planer modes, it defines the latest point in time at which some Y, U, and V data
must have arrived by.

As long as the scalar has some Y, U, and V data in its line buffer, it can get started.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

7-32

Proprietary and Confidential

Tabulating Cycles in the HBlank

-

'ased 1SI0Mm
3y} ul Jou Ing ‘U3ppIYy 1o paploae
aq ued suolelado abed asay)
sawnawos 'yaea sajaka ¢ Ajjeardhy
J0 3502 abed e yum spus pue uado
abed e yum suibaq ssadoe A1ang

"Jue|gH S,43[B2S 3y} Ul YIpimpueq
3y} Jo Junowe wnwixew ayy dn sasn 1
sny3 pue ‘yutod siyj e yjo paddo) Buiaq saysiuly
os|e 0414 Ae|dsip ay) ‘ase2 1S10M 3y} U] "BUI|
© Buife|dsip 1ieis 01 elEp A pue ‘n ‘A ybnous
PaAI9281 3ABY ISNW 13[eas 8y} Julod siyl 1y

'00) B1EP JUBM 1| 1oy} SPIOAP
Jualjd awi [eas Aiond saybiy Jaylo A1ana ‘aul|
1Xau 8y} Joj erep 1dadae ued 31 yarym Je jurod
1591|1ed 8y} saydeal AB[IAA0 Ay} SB U0OS SY

Kouaye Alowsyw wnwiulp

[eubis
Alv_ 1sanbay

oHH

=

([[=EX]
odid
1814
ased

1SI0M

awly pea| 81942 423 9T —
Kejap auljadid 1ajeas J

>

li491d
[e=1E]

fel1an0
Kej1ano
E ainidgns
d ¢ deg 0apIA
v T ded oapIA
A :’: 10SINDMH

afesn yipim
-pueg Alowa

Kejdsig

|ana1
eEIE!
Kejdsig

{

49y
odid
1587
ase)

JSTOM

—— fejap auljadid Isjeas
. J3jsuel] ereq
% KeianQ isaljie3

aAIoy AepanQ 7 jue|g Aejiano

7 aAnoY AepanQ

annay Aeidig juelg Aejdsig

7 annoy Aejdiq

Figure 7-4. Modeling Worst Case Behavior

7-33

RAGE 128 Software Development Manual

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Tabulating Cycles in the HBlank

As show inFigure 7-4, it is important to model the worst case behavior of all the other
clients. This figure assumes the following:

* All the clients are turned on.

e All of their accesses will cause page faults.

¢ Each client will make the maximum number of small accesses to maximize the total
number of page faults.

* The timing of all accesses will be as inconvenient as possible for the scalar.

In Figure 7-4, the scalar is not full-screen width. If it was full width, there would be even
less time for scalar data transfers. However, then it would not be possible to illustrate how
the display’s last and first bursts exhibit worst case behavior.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

7-34

Proprietary and Confidential

Tips for Getting More Bandwidth

7.10 Tips for Getting More Bandwidth

Turn off the video capture units, or correctly specify the capture rate for these units.
Currently, you can report whether the capture port is turned on or off, but not what the
data rate is. The data rate is assumed to be 35MB/s (which is a worst case for PAL).

If the virtual desktop mode is off and all the display lines are aligned on 64 byte
boundaries, the display accesses will improve and the display bandwidth will
decrease.

If the hardware cursor is not in use, there will be more cycles left for the scalar.

Thedisplay FIFO sizeis currently set to 32 Octwords by the BIOS. In some cases, a
smaller value could be set. While this may reduce the overall memory efficiency
slightly, it would also free up more cycles in the HBlank for the scalar.

Run both the scalar and the display in tiled mode. In tiled mode, transactions are more
likely to dovetail together, and thus memory efficiency will improve. In fact, the

scalar will automatically switch between Y, U, and V fetches in a way that will hide
page turns. It is difficult to be 100% deterministic about how much of an efficiency
gain will be achieved. Thus, any assumption about the benefit of tiling should be
carefully tested.

If the vertical filter coefficients are programmed so that the last (lowest on the screen)
of four lines is always multiplied by a coefficient of zero, you don’t have to worry
about it not being fetched in time for the current display line.

e This only works so long as the vertical filters are in 4-tap mode. They are
generally in this mode when the scalar is short of bandwidth because the scalar is
scaling horizontally to the full-screen width. The exception to this is sources that
are wider that 768 pixels. These sources require the scalar to double up the lines.
This in turn forces the filters into 2-tap vertical filtering mode.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-35

Front-end Scalar

7.11 Front-end Scalar

The front-end scalar of the RAGE 128 can be used for a few different purposes. As
discussed in Chapter 4, it can be used to performed scaled-interpolated bit-block transfers
(i.e. blts).

One of the other important features of the front-end scalar is the color-space conversion
capability. While the overlay can be used for this purpose, the major difference between
the two is that the front-end scalar actually writes the converted data back into the frame
buffer, while the overlay does the conversion at the DAC level. Some applications may
require access to the converted data, thus the front-end scalar would be best suited for this
task.

The front-end scalar accepts the following input pixel formats:

e 8-, 15-, 16-, 24- and 32-bpp RGB
* 8-bpp RGB332
e Y8 greyscale

* RGB8 greyscale (8 bits of intensity, duplicated for all 4 channels, the RED channel is
used for writes)

e 16-bpp: a psuedocolor greyscale (8:8)
* YUV 422 packed (VYUY)

* YUV 422 packed (YVYU)

* aYUV 444 (8:8:8:8)

* aRGB 4444

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-36 Proprietary and Confidential

Bus Mastering

7.12 Bus Mastering
7.12.1 Bus Master Operation

The RAGE 128 can act as a bus master. The bus mastering capabilities allows the transfe
of data from system memory to the frame buffer and vice versa with minimal CPU usage.

The RAGE 128 performs two types of transfers:

e System transfers

* A system transfer involves moving memory between the system memory and the
frame buffer memory (an visa versa).

* Use a system transfer to move a bitmap that is loaded into system memory into
the frame buffer.

* Use the bus master to move data that was captured into the frame buffer over to
system memory for modification by the CPU or other devices.

e GUI transfers

* A GUI transfer involves moving data from system memory to the frame buffer
through the GUI (or engine).

e Use a GUI transfer (also known asidual fifo) to queue up a series of engine
register writes in system memory; then, bus master the list to the GUI using the
bus master. If an application constantly performs the same type of blt or screen
setup, use the bus master.

7.12.2 Creating a Descriptor Table

The bus master is instructed where to retrieve data through the use of descriptor tables. A
descriptor entry consists of four DWORDs, with the following values:

Table 7-2 Descriptor Table

Name Bit Function
DWORD 0 EglE_FRAME—BUF—OF 23:0 Frame buffer offset for data transfer
DWORD 1 BM_SYSTEM_MEM_A 31:0 Physical system memory address for
DDR data transfer
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential 7-37

Bus Mastering

Table 7-2 Descriptor Table (Continued)

Name Bit Function
11:0 Count of bytes to transfer (4KB max.)
DWORD 2 BM_COMMAND 30 Disable incrementing frame buffer offset.
31 End of descriptor list
DWORD 3 (reserved) 31:.0

Transfers use the same byte offsets for both the frame-buffer and system-memory
addresses.

e For transfers from system memory, the bus master hardware will use system memory
address bits [1:0] for the frame buffer offset bits [1:0].

* For transfers from the frame buffer, frame buffer offset bits [1:0] will be used in place
of the system memory bits [1:0].

Thus, the source address of the transfer will always dictate the byte alignment bit [1:0] and
override the destination setting.

A maximum of 4096 bytes of data can be transferred per descriptor. As a result, when
transferring an image that is larger than 4KB, create a table-of-descriptor entries. The last
entry must have bit [31] of tieM_COMMANDWORD set to ‘1’ to indicate to the bus

master hardware that this is the last descriptor efiry.entire descriptor table must be in
contiguous memory, and the physical memory address of the head of the table must be
known.

Pseudo Code to set up a Descriptor

loop:

Write the frame buffer destination offset addresBd FRAME_BUFF_OFFSET

Write the physical address of the memory to be transferr8dd ®TEM_MEM_ADDR
Write the amount of bytes to be transferre@kd COMMANBO096 bytes maximum).

If this is the last descriptor entry, set bit [31] to ‘1.

If you are writing to one memory address (e.g. for a GUI transfer), set bit [30] to ‘1.
Write a ‘0’ for the reserved DWORD.

If there is still more data to be transferred, increment the
BM_FRAME_BUFF_OFFSERdSYSTEM_MEM_ADDRRpropriately, and go to
loop to create another descriptor.

© N o g bk wDd R

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-38 Proprietary and Confidential

Bus Mastering

7.12.3 Setting up a System Bus Master Transfer

When a program requires a transfer of data from system memory to the frame buffer, the
bus mastering capabilities of the RAGE 128 can be used to allow the CPU to perform
other tasks while the RAGE 128 moves the data into the frame buffer.

The RAGE 128 now allows the use of several different bus mastering buffers, including:

e Three video capture buffers.
* Four VIP buffers.

These buffers do not have to be used for these (capture and VIP transfer) purposes, but al
customized somewhat to these tasks.

Use the following steps to set up the RAGE 128 to perform a bus-master operation from
system memory to the frame buffer. However, before performing these steps, make sure
that the descriptor table is set up and the physical memory address (of the descriptor table
is paragraph aligned.

1. To enable bus mastering, cl&ldS_MASTER_DIS@BUS_CNTL
To enable the interrupt, SBUSMASTER_EOL INT_EN@GEN_INT_CNTL

To clear the bus master end of a transfer-interrupt set,
BUSMASTER_EOL_INT_AK@GEN _INT_STATtdS1'.

4. SetSYSTEM_TRIGGER@BM_SYSTEM_TARLte desired transfer method (‘0’
in this case).

5. Then OR this value witBYSTEM_TABLE_ADDR@BM_SYSTEM_TARBhE
physical memory address of the head of the descriptor table - the first descriptor
entry).

6. Then, write result tBM_SYSTEM_TABLBNriting toBM_SYSTEM_TABLE
initiates the bus master operation.

At this point, allow the CPU to perform other tasks. To find out if the bus master transfer
is complete, reaBUSMASTER_EOL_INT@GEN_INT_STATUWSsee if it is set to ‘1.

A ‘1’ indicates that the transfer is complete. OB&SMASTER_EOL_INTas been
acknowledged (i.e. set to ‘1"), write a ‘1’ to this bit to clear the interrupt.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-39

Bus Mastering

This page intentionally left blank.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-40 Proprietary and Confidential

A.1l Scope

This section describes the various aspects of the VGA Controller.

A2 AH=0;

Table A-1 For IBM Compatible Modes

Set Video Mode (AL = Video mode)

AL MODE/TYPE RESOLUTION DIM/COLOR At
00h color/alpha 640x200 40x25/BW B800h:0
01h color/alpha 640x200 40x25/16 B800h:0
02h color/alpha 640x200 80x25/BW B800h:0
03h color/alpha 640x200 80x25/16 B800h:0
04h color/graphics 320x200 40x25/4 B800h:0
05h color/graphics 320x200 40x25/BW B800h:0
06h color/graphics 320x200 80x25/BW B800h:0
07h mono/alpha 720x350 80x25/BW B0OOOh:0
0Dh color/graphics 320x200 40x25/16 A000h:0
OEh color/graphics 640x200 80x25/16 AO000h:0
OFh mono/graphics 640x350 80x25/BW A000h:0
10h color/graphics 640x350 80x25/16 AO000h:0
11h color/graphics 640x480 80x30/BW AO000h:0
12h color/graphics 640x480 80x30/16 A000h:0
13h color/graphics 320x200 80x25/256 A000h:0
Table A-2 For ATI Enhanced Modes

AL MODE/TYPE RESOLUTION DIM/COLOR R s
21h color/alpha 800x400 100x25 B800h:0
22h color/alpha 800x480 100x30 B800h:0

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual

A-1

Table A-2 For ATI Enhanced Modes (Continued)

AL MODE/TYPE RESOLUTION DIM/COLOR At

23h color/alpha 1056x200 132x25/16 B800h:0
33h color/alpha 1056x352 132x44/16 B800h:0
55h color/graphics 1024x768 128x48/16 A000h:0
61h color/graphics 640x400 80x25/256 AO000h:0
62h color/graphics 640x480 80x30/256 A000h:0
63h color/graphics 800x600 100x42/256 AO000h:0
64h color/graphics 1024x768 128x48/256 A000h:0
6Ah color/graphics 800x600 100x42/16 A000h:0

A3 AH=1; SetCursor Type

= start line of cursor
CL = end line of cursor
= 1FO0Oh to turn off cursor

A4 AH=2; Set Current Cursor Position

BH = page number of the desired page
DH, DL = row and column of cursor

A5 AH=3; ReadCurrent Cursor Position at the specified page

BH = page number of the desired page

On Exit:

CH, CL = cursor type

DH, DL = row, column of cursor at the specified page

A6 AH=4; Read Current Light Pen Position

VGA does not support light pen.

A7 AH=5; Select Active Display Page

AL = page number to be active

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
A-2 Proprietary and Confidential

A8 AH=6;

AL

A.10 AH=8§;

BH

On Exit:

AL
AH

All AH=9;

AL
BL
BH
CX

Scroll Active Page Up

number of lines to be scrolled
0 :blanks the whole window
attribute of blanked line

row, column of upper left hand corner of scrolling window
row, column of lower right hand corner of scrolling window

Scroll Active Page Down

number of lines to be scrolled
0 :blanks the whole window
attribute of blanked line

row, column of upper left hand corner of scrolling window
row, column of lower right hand corner of scrolling window

Read Character/Attribute at Current Active
Cursor Position

page number of the desired page

character
attribute (for text mode only)

Write Character/Attribute at Current Cursor
Position of a specified page

character to be written
attribute of character
page number

count of character to write

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual

A-3

A.12 AH = 0Ah; Write Character at Current Cursor Position of a
specified page
AL = character to be written
BH = page number
CX = count of character to write
A.13 AH = 0Bh; Set Color Palette
This function is valid for modes 4 and 5 only.
BH = 0 ; selects the background color
BL = color value used with that color id
BH = 1 ; selects the palette to be used
BL = 0 ; palette value is GREEN(1)/RED(2)/BROWN(3)
= 1 ; palette value is CYAN(1)/MAGENTA(2)/WHITE(3)
A.14 AH = 0Ch; Write Dot (graphics mode)
BH = page number
DX, CX= row, column of dot position
AL = color value of dot (if bit 7 of AL is ON, the color value will XOR with
the current value of the dot)
A.15 AH =0Dh; Read Dot (graphics mode)
BH = page number
DX, CX = row, column of dot position
On Exit:
AL = color value of dot
A.16 AH = OEh; Write Teletype to Active Page
AL = character to write
BL = foreground color in graphics mode
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
A-4 Proprietary and Confidential

A.17 AH = 0Fh; Return Current Video Setting
On Exit:
AL = current mode
AH = number of column (in characters) on screen
BH = current active display page
A.18 AH =10h; Set Palette Registers
AL= O ; set individual palette register
BL = palette register
BH = palette value
AL= 1 ; set overscan register
BH = palette value
AL= 2 ; set all palette and overscan registers
ES:DX = pointer to palette value table (17 bytes long),
bytes O - 15 are palette values for 16 palette registers,
byte 16 is palette value for the overscan register
AL= 3 ; toggle between intensity/blinking bit
BL =0 ; set intensity on
=1 ; set blinking on
AL= 7 ; read individual palette register
BL = palette register
On Exit:
BH = palette value
AL= 8 ; read overscan register
On Exit:
BH = overscan value
AL= 9 ; read all palette and overscan registers
ES:DX = pointer to 17-byte buffer
On Exit:
ES:DX = pointer to palette value table (17 bytes long),

© 1999 ATI Technologies Inc.

Proprietary and Confidential

RAGE 128 Software Development Manual

A-5

bytes 0 - 15 are palette values for 16 palette registers,
byte 16 is palette value for the overscan register

AL = 10h ; set a color register
BX = color register
DH = redvalue
CH = (green value
CL = blue value
AL = 12h ; set a block of color registers
BX = first color register to be set
CX total number of color registers to be set
ES:DX = pointer to table of color register values in red, green, blue,
red, green, blue,... format
AL = 13h ; set color pages (only valid for 16 color modes)
BL =0 ; select color page mode
BH =0 ; select 4 pages of 64 color registers each
=1 ; select 16 pages of 16 color registers each
BL =1 ; select color page
BH = color page number
AL = 15h ; read a color register
BX = color register
On Exit:
DH = redvalue
CH = green value
CL = blue value
AL = 17h ; read a block of color registers
BX = first color register to be set
CX = total number of color registers to be set
ES:DX = pointer to buffer to store the color register values
On Exit:
ES:DX = pointer to table of color register values in red, green, blue,
red, green, blue,..., format
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

A-6

Proprietary and Confidential

AL = 18h ; update DAC mask register

BL = new mask value
AL = 19h ; read DAC mask register
BL = value read from DAC mask register
AL = 1Ah ; read current color page information
BL = current color page mode

BH current color page
AL= 1Bh ; change color values to gray shades
BX first color register to be changed
CX total number of color registers to be changed

A.19 AH=11h; Character Generator Routines

AL = 00 ; load user specified character set
ES:BP = pointer to character table
CX = number of characters to be stored
DX = character of offset into current table
BL = block to load
BH = bytes per character
AL = 01 ; load 8x14 character set
BL = block to load
AL = 02 : load 8x8 character set
BL = block to load
AL = 03 ; set block specifier
BL = character generator block specifier
AL= 04 ; load 8x16 character set
BL = block to load

Note: The following functions, AL = 1?h, are similar to the functions AL = 0?h, except
that with AL=17?h, the number of rows on the screen is recalculated.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential A-7

AL = 10h ; load user specified character set

ES:BP = pointer to character table
CX = number of characters to be stored
DX = character of offset into current table
BL = block to load
BH = bytes per character
AL = 11h : load 8x14 character set
BL = block to load
AL = 12h : load 8x8 character set
BL = block to load
AL = 14h ; load 8x16 character set
BL = block to load
AL = 20h ; update alternative character generator pointer (INT 1F)
ES:BP = pointer to table
AL = 21h ; update alternative character generator pointer (INT 43)
ES:BP = pointer to table
CX = bytes per character
BL = row specifier
= O0; DL =rows
= 1;rows =14
= 2;rows =25
= 3;rows =43
AL = 22h ; update alternative character generator pointer (INT 43)
with the 8x14 character
; generator in ROM
AL = 23h ; update alternative character generator pointer (INT 43)
with the 8x8 character
;generator in ROM
AL = 24h ; update alternative character generator pointer (INT 43)
with the 8x16 character
; generator in ROM
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

A-8 Proprietary and Confidential

AL = 30h ; return EGA character generator information

BH

On Exit:
ES:BP
CX

DL

0; return current INT 1F pointer

1; return current INT 43 pointer

2; return pointer to 8x14 character generator

3; return pointer to 8x8 character generator (lower)
4; return pointer to 8x8 character generator (upper)
5; return pointer to alternate 9x14 alpha

6; return pointer to 8x16 character generator

7; return pointer to alternate 9x16 alpha

pointer to table as requested
points (pixel column per char)
rows (scan line per char)

A.20 AH =12h; Return Current EGA Settings/Print Screen
Routine Selection

BL = 10h : return EGA information
On Exit:
BH 0; color mode in effect

1; monochrome mode in effect

BL 3; 256k video memory installed (always return 3)
CH simulated value of feature bits
CL simulated EGA/VGA dip switch setting
BL = 20h ; select alternate print screen routine for EGA graphics mode
BL = 30h ; select number of scan lines for alpha modes
AL = 0; 200 scan lines
= 1, 350 scan lines
= 2;400 scan lines
On Exit:
AL = 12h; function supported
BL = 31h ; default palette loading during mode set
AH = 0
AL = 0; enable

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual

A-9

= 1; disable

On Exit:
AL = 12h; function supported
BL = 32h ; video controller
AL = 0; enable video controller
= 1, disable video controller
On Exit:
AL = 12h; function supported
BL = 33h ; summing of color registers to gray shades
AL = 0; enable summing
= 1, disable summing
On Exit:
AL = 12h; function supported
BL = 34h ; cursor emulation
AL = 0; enable cursor emulation
= 1; disable cursor emulation
On Exit:
AL = 12h; function supported
BL = 36h ; video screen on/off
AL = 0, video screen on
= 1, video screen off
On Exit:
AL = 12h; function supported BX=5506h
: VGAWONDER BIOS extension
AL = video mode
BP = OFFFFh
DI =0
SI=0
On Exit:
if BP is not equal to OFFFFh then ES:BP = pointer to parameter table
if Sl is not equal to 0 then ES:SI = pointer to parameter table supplement
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

A-10 Proprietary and Confidential

A.21 AH =13h; Write String to Specified Page

ES:BP=pointer to string
CX = length of string
BH = page number
DH,DL=starting row and column of cursor in which the string is placed
AL= 0 ; cursor is not moved
BL = attribute
string = (char, char, char, char,...)

AL= 1 ; cursor is moved

BL = attribute
string = (char, char, char, char,...)

AL = 2 ; cursor is not moved
string = (char, attr, char, attr,...)

AL= 3 ; cursor is moved
string = (char, attr, char, attr,...)

A.22 AH=1Ah; Display Combination Code

AL= O ; read current display combination information
On Exit:
AL = 1Ah
BL current active display code

BH alternate display code

Display Codes (AH = 1Ah)

Code Function
00 No display
01 MDA mode
02 CGA mode
04 EGA in color mode
05 EGA in monochrome mode
07 VGA with analog monochrome monitor
08 VGA with analog color monitor
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential A-11

AL= 1
BL =
BH =
On Exit:
AL =

; set display combination information

active display
inactive display

1Ah

A.23 AH=1Bh; Return VGA Functionality and State Information

BX= 0
ES:DI

On Exit:
AL
ES:DI

pointer to buffer used to store the functionality and state
information (minimum 64 bytes)

1Bh
pointer to buffer with functionality and state information

Functionality and State Information (AH = 1Bh)

[DI+00h] word

= offset to static functionality information

[DI+02h] word

= segment to static functionality information

[DI+04h] byte

current video mode

[DI+05h] word

= character columns on screen

[DI+07h] word

= page size in number of bytes

[DI+09h] word

= starting address of current page

[DI+0Bh] word

= cursor position for eight display pages

[DI+1Bh] word

= current cursor type

[DI+1Dh] byte

= current active page

[DI+1Eh] word

= current CRTC address

[DI+20h] byte

= current 3x8 register setting

[DI+21h] byte

= current 3x9 register setting

[DI+22h] byte

= number of character rows on screen

[DI+23h] word

= number of scan lines per character

[DI+25h] byte

= active display combination code

[DI+26h] byte

= alternate display combination code

[DI+27h] word

= number of colors supported in current mode

[DI+29h] byte

number of pages supported in current mode

[DI+2Ah] byte

0 ; 200 scan lines in current mode
1 ; 350 scan lines in current mode
2 ;400 scan lines in current mode
3 ;480 scan lines in current mode

RAGE 128 Software Development Manual

A-12

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Functionality and State Information (AH = 1Bh) (Continued)
[DI+2Bh] byte = Reserved
[DI+2Ch] byte = Reserved
[DI+2Dh] byte

miscellaneous state information

bits 7, 6 = Reserved

bit 5= 0; background intensity

= 1; blinking

bit 4= 1 ; cursor emulation active

bit 3 = 1 ; mode set default palette loading disabled
bit 2= 1 ; monochrome display attached

bit 1= 1 ; summing active

bit 0 = 1 ; all modes on all display active

[DI+2Eh] byte = Reserved

[DI+2Fh] byte = Reserved

[DI+30h] byte = Reserved

[DI+31h] byte = 3; 256Kb of video memory available
[DI+32h] byte = save pointer information

bits 7, 6 = Reserved

bit 5 = 1; DCC extension active

bit 4 = 1; palette override active

bit 3= 1; graphics font override active
bit 2= 1; alpha font override active
bit 1 = 1; dynamic save area active
bit 0 = 1; 512 character set active

[DI+33h] 13 bytes = Reserved

static functionality table format:
0 - function not supported
1 - supported function

[00h] byte = supported video mode
bit 7 = mode 07h
bit 6= mode 06h
bit 5 = mode 05h
bit 4 = mode 04h
bit 3 = mode 03h
bit 2 = mode 02h
bit 1 = mode 01h
bit 0= mode 00h

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential A-13

Functionality and State Information (AH = 1Bh) (Continued)

[01h] byte

supported video mode
bit 7= mode OFh

bit 6= mode OEh

bit 5 = mode 0Dh

bit 4 = mode 0Ch

bit 3= mode 0Bh

bit 2 = mode OAh

bit 1= mode 09h

bit 0= mode 08h

[02h] byte

supported video mode
bits 7 to 4 = Reserved
bit 3 = mode 13h
bit 2= mode 12h
bit 1= mode 11h
bit 0= mode 10h

[03h] to [06h] bytes

Reserved

[07h] byte = scan lines available in text modes
bits 7 to 3 = Reserved
bit 2= 400 scan lines
bit 1 = 350 scan lines
bit 0 = 200 scan lines
[08h] byte = number of character fonts available in text modes
[09h] byte = maximum number of character fonts that can be active in text
modes
[0Ah] byte = miscellaneous functions
bit 7= color paging
bit 6= color palette (color register)
bit 5 = EGA palette
bit 4 = cursor emulation
bit 3 = default palette loading when mode set
bit 2 = character font loading
bit 1 = color palette summing
bit 0 = all modes supported on all displays
[0Bh] byte = scan lines available in text modes

bits 7 to 4 = Reserved

bit 3 = DCC supported

bit 2= background intensity/blinking control
bit 1= save/restore supported

bit 0= light pen supported

[0Ch] to [ODh] bytes

Reserved

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

A-14

Proprietary and Confidential

Functionality and State Information (AH = 1Bh) (Continued)

[OEh] byte = save pointer functions
bits 7 to 6 = Reserved
bit 5 = DCC extension supported
bit 4 = palette override
bit 3 = graphics font override
bit 2 = alpha font override
bit 1= dynamic save area
bit 0 = 512-character set

[OFh] = Reserved

A.24 AH=1Ch:; Save and Restore Video State

AL= 0 ; return video save state buffer size requirement
CX = requested states
bit 0 = video hardware state
bit 1 = video BIOS data area
bit 2 = video DAC state and color registers

On Exit:
AL = 1Ch
BX = number of 64 bytes block required for the states requested
in CX

AL= 1 ; save video state
CX = requested states (see AL=0)
ES:BX = pointer to buffer to store the video states information
On Exit:
AL = 1Ch

AL = 2 : restore video state
CX = requested states (see AL=0)
ES:BX = pointer to buffer with previous saved video states information
On Exit:
AL = 1Ch

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential A-15

This page intentionally left blank.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
A-16 Proprietary and Confidential

Appendix B
Extended BIOS Function Calls

B.1 Scope

This section provides details about the extended BIOS function calls.
For details about th8810S Extensions” refer to page B-2
For details about th&Mode Table Structure” refer to page B-16

For details about th&RAGE 128 Internal Parameter Table Format” refer to page B-17

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential B-1

B.2

B.2.1

BIOS Extensions

Video BIOS Base Address

Extended video BIOS call can be invoked by a FAR CALL instruction in x86's 16-bit real

or V86 mode. It can be accomplished in protected mode as well with proper handling of
physical addresses. The physical address of video BIOS is stored in register
BIOS 1 SCRATCH (base address + 014h) as a 16-bit real mode segment address value.
The following assembler code will save the segment address in register DS. The starting
address of the video BIOS will be DS:0

mov DX, BIOS_ 1 SCRATCH
in AX, DX
mov DS, AX

Based on this mechanism, the video BIOS can be in RAM or in ROM, or can be anywhere
in memory. For the current video BIOS, the initialization has to executed below 1M in real
mode. Applications using extended video BIOS functions should work without any
assumptions regarding video BIOS locations.

B.2.2 Calling Extended Functions

The video BIOS address is stored in register BIOS_1 SCRATCH and the extended video
BIOS services are accessible by far call to offset 64h with the following instructions.

CALL BIOS_ADDR:64h

Another way to invoke the extended BIOS service is by calling a INT 10h with ah=0A0h.
The support of INT 10h is also available with VGA disabled mode.(Multiple Display
Support Document). Registers AX, BX, CX, DX, Sl and DI may be destroyed during the
extended function call.

VGA/VESA BIOS functions can be invoked through a far call to the offset location 68h in
the BIOS.

CALL BIOS_ADDR:68h

Extended and VGA/VESA services support both x86’s 16-bit real and protected mode.
However, when invoked in protected mode, the applications need to call a protected mode
initialization function in the BIOS and setup some segment addresses. The details of this
protected mode support are described in the proposed VBE 3.0 documentation. In the
current implementation, the VESA BIOS is VBE 2.0 withx86’s real and protected modes
support.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

B-2

Proprietary and Confidential

B.2.3 Compatibility

The purposes of these extended ROM services are to provide a set of the most commonl;
used hardware dependent functions in a standard interface such that application
programmers need not to worry about the details of hardware programming. It is
recommended that drivers developed for Rage128 should use extended function AL =0 to
set display mode and the drivers have to work in VGA share mode.

B.2.4 Extended BIOS Services

BIOS_ADDR:64h

All functions return with error code in AH
AH = 0; no error

AH = 1; function completed with error
AH = 2; function is not supported

Definitions:

= O:.CRT
DISPLAY DEVICE ID = 1.TV

= 2:.DFP
DISPLAY DEVICE MASK [0] = O:CRT
[1] = 1,TV
[2] = 2:.DFP
CRT STANDARD 0:NO MONITOR

1;MONOCHROME MONITOR
2;,COLOR MONITOR

DFP STANDARDI[0] = L;TFT
[2] = 1;Scalable DFP
other bits a values = Reserved
TV STANDARD = 1;NTSC
= 2;PAL
= 3;PALM
= 4;PAL60
= 5;NTSC-J
= 6;SCART RGB
TVSTANDARDMASK]O0] = 1;NTSC
[1] = 1;PAL
2] = 1;PALM
[3] = 1;PAL60
[4] = 1;NTSC-J
[5] = 1;SCART RGB
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential B-3

B.2.5 Function 00h - Set Display Mode

To Call: AL = 00h Set Display Mode

CL[3-0] = Color depth
=1 ; 4bpp
=2 ; 8bpp
=3 ; 15bpp (555)
=4 ; 16bpp (565)
=5 ; 24bpp in RGB format
=6 ; 32 bpp in xRGB format

CH = Resolution
= Elh ; 640x400
= E2h ; 320x200
= E3h ; 320x240
= E4h ; 512x384
= E5h ; 400x300
= E6h ; 640x350
= 12h ; 640x480
= 6Ah ; 800x600
= 55h ; 1024x768
= 81h ; load CRTC table from buffer in DX:BX (see)
= 82h ; load CRTC table from frame buffer, pointer in DX:BX

(supported in VGA disable products)

= 83h ; 1280x1024

DX:BX pointer to parameter table if CH = 81h

32-bit linear address offset (in dword boundary) into frame buffer if
CH =82h

B.2.6 Function 01h - Set Display Controller State

This function is used to setup the pre-condition to allow the controller to go into VGA or
Extended mode. This function does not actually program the CRT Controller. However,
this function will program the DAC to the color depth required by the display. This
function will be automatically invoked if a set mode (AL=00h) is called through the

BIOS.
To Call: AL = 01h Set Display Controller State
CL =0 ; VGA
=1 ; Extended
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

B-4 Proprietary and Confidential

B.2.7 Function 02h - Set DAC State

To Call: AL = 02h Set DAC State
CL =0 ; set DAC to active mode (This function will not alter the
number of bit for the DAC)
=1 ; set DAC to sleep mode
=2 ; set DAC to 6 bit
=3 ; set DAC to 8 bit

B.2.8 Function 03h - Program Specified Clock Entry

To Call: AL = 03h Program Specified Clock Entry
CL[2-0] =0 ; MCLK, engine clock
=1 ; XCLK, memory clock
=2 : PCLK, dot clock
CH = entry in the frequency table for programming PCLK
BX = value in KHz/10
Returns: AL = clock chip type
BX, CL = programming word depending on type
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential B-5

B.2.9 Function 04h - Short Query Function 0

To Call: AL = 04h Short Query Function 0
Returns: CH [3-0] = DAC type
CH[7,6,5,4] = Sync on green, gamma correction, 8bit, sleep
CL = Color depth support
Bit7=1 ;4bpp
Bit4=1 ; 32bpp (unpack 24bpp in XRGB, X is byte MSB)
Bit3=1 ;24bppin RGB
Bit2=1 ; 16bpp (555)
Bitl1=1 ; 16bpp (565)
Bit0O=1 ;8bpp
DL [2-0] = 000b ; generic BIOS
= 001b ; fix frequency monitor BIOS, should only use
default CRTC in BIOS
= 010b ; fix frequency monitor BIOS, and can use external
CRTC values
BL [3-0] = bus type
BH][3-0] = memory type
DI = subsystem vendor ID
Sl = subsystem ID

B.2.10Function 05h - Short Query Function 1

To Call: AL = 05h Short Query Function 1
Returns: CL [3-0] = Card ID

DX = 1/O base address

DI = BIOS segment address

Sl = Bus/device information

B.2.11 Function 06h - Short Query Function 2

To Call: AL = 06h Short Query Function 2
Returns: AL = Revision ID
BX = Aperture address (frame buffer address in Mbytes)
CL = Memory size in number of 512K blocks
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

B-6 Proprietary and Confidential

CH = Reserved memory by hardware in number of 2K blocks

DX = PCI device ID

DI:SI = Alternative aperture address (memory mapped registers in
linear 32bit)

B.2.12Function 07h - Query Graphics Hardware Capability and Capture

Width Info
To Call: AL = 07h Query Graphics Hardware Capability and Capture
Width Info
Returns: DX:DlI = Pointer to table specifying max dot clock information, the table
is terminated by a zero in the first column
DX:[DI-1] = number of bytes per row
DX:[DI-2] = DX:[DI-2]
CL = support mask to be used
SUPPORTMASK MAX
H_DISP . MEMRE PIXEL WIDTH
- (use bit 7-4 only) Q |poTcLock
0 (end of table)
where,
H_DISP = Horizontal resolution in number of characters
SUPPORT MASK = A bit value to indicate the valid condition of the entry
MEMREQ = Minimum memory required to support the specified resolution
and color depth (in numbers of 512K blocks)
MAX DOTCLOCK = Max dot clock with the specified resolution and color depth
in MHz
PIXEL WIDTH = Color depth
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential B-7

To determine if a video mode is supported, the following algorithm can be used:

if (H_DISP <= horizontal disp(in char)&&
(SUPPORTMASK & CL)&&

(MEMREQ <= current memory size)&&

(MAX DOTCLOCK >= dot clock of the requested mode)&&
(PIXEL WIDTH >= requested color depth))

then

the mode can be supported;

else
the mode cannot be supported

DX:DI = Pointer to table specifying max capture width.
The table is terminated by a zero in the first column.
If SI =0, no table is provided and driver needs to use its
default settings.

DX:[SI-1] = Number of bytes per row

DX:[SI-2] = Format type

MAX
SCALER MAX PIXEL
R source | MEMREQ Tpotciock |wipth | SARTURE

0 (end of table)

where

H_DISP

SCALER SOURCE[7]
[6]

Horizontal resolution in number of characters

1; scaler source format is in 32bpp aRGB888

1; scaler source format is in 15bpp aRGB,

16bpp RGB565, YUV12, VYUY422 and YVYU422
Minimum memory required to support the specified

MEMREQ resolution and color depth (in numbers of 512K blocks)
MAX DOTCLOCK = Max dot clock with the specified resolution and color depth
in MHz
PIXEL WIDTH = Color depth
MAX CAPTURE SIZE = The max capture width in number of characters
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

B-8 Proprietary and Confidential

To determine the max capture width for a video mode, the following algorithm can be
used:

if (H_DISP >= horizontal disp(in char)&&

(SCALER SOURCE & scaler source)&&

(MEMREQ <= current memory size)&&

(MAX DOTCLOCK >= dot clock of the requested mode)&&
(PIXEL WIDTH >= requested color depth))

then

max capture width = MAX CAPTURE SIZE;

B.2.13Function 08h - Query Installed Modes

To Call: AL = 08h Query Install Modes
DI = DISPLAY DEVICE ID
DX:BX = Pointer to buffer (64 bytes)
Returns: DX:BX = Pointer to a list of supported modes terminated by a zero

B.2.14 Function 09h - Query Supported Mode

To Call: AL = 0%h Query Supported Mode
DI = DISPLAY DEVICE ID
CL = color depth (see function 0)
CH = Mode number as returned by Query Installed Modes (AL=08h)

or as specified in Set Display Mode (AL=00h)

DX:BX = Pointer to buffer (64 bytes)

Returns: DX:BX = Pointer to CRTC parameter table (if the mode is supported)

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential B-9

B.2.15Function OAh - Display Power Management Service (DPMS)

To Call: AL = 0Ah Display Power Management Service (DPMS)
CH =0 ; set DPMS mode
CL [2-0] =0 ; active
=1 ; stand-by
=2 ; suspend
=3 ; OFF
=4 ; blank the display (this is NOT a DPMS state)
CH =1 ; return current DPMS state
Returns: CL = Current DPMS state

B.2.16 Function 0Bh - Display Data Channel (DDC) Service

To Call: AL = 0Bh Display Data Channel (DDC) Service
BH = DISPLAY DEVICE ID
BL =0 ; return DDC format supported by Graphics

controller and monitor

Returns: BL =0 ; DDC not supported
BL [O] =1 ; DDC1 supported by monitor
BL [1] =1 ; DDC2B supported by monitor
AL =0 ; DDC not supported by BIOS
AL [0] =1 ; DDC1 supported by monitor
AL [1] =1 ; DDC2B supported by monitor
AL [2] =1 ; DDC2AB supported by BIOS
AL [3] =1 ; DDC2Bi supported by BIOS
AL [6] =1 ; BIOS supports detailed EDID timing at power-up
AL [7] =1 ; BIOS can us/uses EDID setup the board at

power-up
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

B-10 Proprietary and Confidential

To Call: AL = 0Bh Display Data Channel (DDC) Service
BL =1 ; read EDID data (support DDC1/DDC2B only,
first EDID block for DDC2B)
BH = DISPLAY DEVICE ID
CX = Buffer size
DX:DI = Pointer to buffer (not less than 128 bytes)
Returns: DX:DI = Pointer to EDID data
To Call: AL = 0Bh Display Data Channel (DDC) Service
BL =2 ; read from device to buffer (supported by
DDC2B/2AB/2Bi), master read
CX = Buffer size
DX:DlI = Pointer to buffer (monitor address in first byte of DX:DI when
calling)
Returns: DX:DlI = Pointer to buffer with data read
To Call: AL = 0Bh Display Data Channel (DDC) Service
BL = 3 ; write to device from buffer/[read from device to
buffer] (only supported by DDC2B/2AB/2Bi),
master write/[slave read (supported if DDC2AB is
supported)]
CX = Bulffer size
DX:DI = Pointer to buffer
DX:[DI]...DX:[Dl + CX - 1] = Data to write
DX:[DI+CX] = Max bytes to read after write (<= buffer size)
DX:[DI+CX+1] = Waiting limit for slave read in msec
Returns: DX:DlI = Pointer to buffer with data read (if required)
To Call: AL = 0Bh Display Data Channel (DDC) Service
BL =4 ; return DDC format supported by BIOS
Returns: AL[O] =1 ; DDC1 supported by BIOS
AL[1] =1 ; DDC2B supported by BIOS
AL[2] =1 ; DDC2AB supported by BIOS
AL[3] =1 ; DDC2Bi supported by BIOS
AL[6] =1 ; BIOS support detailed EDID timing at power-up
AL[7] =1 ; BIOS can use EDID information to setup the
board at power-up
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential B-11

B.2.17 Function OCh - Save and Restore Graphics Controller Data

To Call: AL = 0Ch Save and Restore Graphics Controller Data
CL =0 ; return buffer size required to fit saved data in
number of bytes
CH [0] =0 ; do not include GUI registers
=1 ; include GUI registers (not supported)
Returns: CX = buffer size
To Call: AL = 0OCh Save and Restore Graphics Controller Data
CL =1 ; save controller data
DX:DlI = pointer to buffer
Returns: DX:DlI = pointer to buffer with saved data
To Call: AL = 0Ch Save and Restore Graphics Controller Data
CL =2 ; restore controller data
DX:DI = pointer to buffer

B.2.18 Function ODh - Get/Set Refresh Rate (CRT only)

To Call: AL = 0Dh Get/Set Refresh Rate (CRT only)
CL =0 ; get current refresh rate information
=1 ; change current refresh rate information
=2 ; save refresh rate information
DX:DI = pointer to buffer (min 20 bytes required and is terminated by
OFFFFh)

Table B-1 Refresh Rate Information Table

Offset (word) | Content

0 12h(640x480),

1 12h(640x480) refresh mask
bit 2 = 85Hz
bit 1 = 75Hz
bit 0 = 72Hz
if bits = 0; 60Hz

2 6AN(800x600)

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

B-12 Proprietary and Confidential

Table B-1 Refresh Rate Information Table (Continued)

Offset (word)

Content

3

6Ah(800x600) refresh mask
bit 4 = 85Hz
bit 3 = 56Hz
bit 2 = 60Hz
bit 1 = 72Hz
bit 0 = 75Hz

55h(1024x768)

55h(1024x768) refresh mask
bit 4 = 85Hz

bit 3 = 87Hz Interlaced

bit 2 = 60Hz

bit 1 = 70Hz

bit 0 = 75Hz

83h(1280x1024)

83h(1280x1024) refresh mask
bit 5 = 85Hz
bit 4 = 43Hz
bit 3 =47Hz
bit 2 = 60Hz
bit 1 = 70Hz
bit 0 = 75Hz

OFFFFh

To Call: AL
CL

0Dh Get/Set Refresh Rate (CRT only)

=3 ; restore factory default refresh rate information

The following functions are available if TV or Flat Panel are supported

B.2.19 Function 14h - Detect CRT/TV/DFP

To Call: AL = 14h Detect CRT/TV/DFP
CH [0] =0 ; return monitor information based on previous
detection
=1 ; return current monitor information by detection

© 1999 ATI Technologies Inc.

Proprietary and Confidential

RAGE 128 Software Development Manual

B-13

Returns:

CH [1]

CH [2]

CH [7-3]

CH

CL
BL
BH

0 ; return TV information based on previous
detection

1 ; return current TV information by detection

0 ; return DFP information based on previous
detection

1 ; return current DFP information by detection

00000b ; reserved

000b ; no TV attached

001b ; TV attached to composite connector

100b ; TV attached to S-Video connector

101b ; TV attached to both composite and S-Video
connectors

CRT STANDARD

1 : DFP detected

TV STANDARD

B.2.20Function 15h - Get/Set Active Display(s)

To Call:

Returns:

To Call:

AL
CH

cL
CL[0]
CL[0]
CL[0]
CL[0]
CL [7-4]

AL
CH

cL
CL[0]
CL[1]
CL[2]
CL[3]
CL [7-4]

15h Get/Set Active Display(s)

0 return displays that will be set active at next mode
call

requested display

1 ; CRT

1 TV

1 ; DFP

1 ; auto-switch

0000b ; reserved

15h Get / Set Active Display(s)
1 ; set active display, will take effect at next setmode

requested display

1 ; CRT

1 TV

1 ; DFP

1 ; auto-switch

0000b ; reserved

RAGE 128 Software Development Manual

B-14

© 1999 ATI Technologies Inc.
Proprietary and Confidential

B.2.21 Function 16h - Get/Set TV Standard

This function returns an error if dynamic switching of TV standaMid3 supported.

To Call:

Returns:

To Call:

Returns:

AL
CH

CH
CL

CH
CL

None

16h Get / Set TV Standard
0 ; return current TV standard

current active standard value
TV standard mask that can be supported on the fly

16h Get / Set TV Standard
1 ; set TV standard, only active at next setmode
TV standard value

B.2.22 Function 17h - Get TVOut Info

This function will return arerror code if TVOut isSNOT supported.

To Call:

Returns:

Returns:
(cont'd)

To Call:

Returns:

AL
DI

CH
CL

DX

AL
DI

None

16h Get TVOuUt info
0 ; get TVOut Information

= TVOut chip revision code

Reference Frequency

0 ; 29.49892 MHz

; 28.63636 MHz

; 14.31888 MHz

; 27.00000 MHz

; no TVOut chip is detected

; TVOut chip is detected but not supported in BIOS
; TVOut chip is detected and is supported in BIOS

WEFRPr O WNEPRk

16h Get TVOuUt info

1 ; reset Graphics Controller DSP value based on
current setting

© 1999 ATI Technologies Inc.

Proprietary and Confidential

RAGE 128 Software Development Manual
B-15

B.3 Mode Table Structure

B.3.1 CRTC Parameter Table

Table B-2 CRTC Parameter

Offset (byte) ‘ Description

Installed Mode Table 1

0-1 Horizontal resolution, in pixels
2-3 Vertical resolution, in lines
4 Mode number of this mode table
Maximum pixel depth
-7 Reserved
8- Bits [15-0]Reserved
Bit 8 Disable pipeline delay adjustment in BIOS
Bits [7-6]Reserved
Bit 4Enable Composite Sync
Bits [3-2]Reserved
Bit 1Enable interlace
Bit 0 Enable double scan
0Ah CRTC_H_TOTAL
0Bh CRTC_H_DISP
0Ch CRTC_H_SYNC_STRT
0Dh CRTC_H_SYNC_WID
OEh - OFh CRTC_V_TOTAL
10h - 11h CRTC_V_DISP
12h - 13h CRTC_V_SYNC_STRT
14h - 15h Bits [15-8]- Reserved for CRTC_H_DISP
Bits [7-0]- CRTC_V_SYNC_WID
16h - 17h Dot Clock for coprocessor mode (for programmable clock chip)
18h - 19h Bits [15-8]- CRTC_H_SYNC_DLY
Bits [7-4]- OVR_WID_LEFT
Bits [3-0]- OVR_WID_RIGHT
1Ah - 1Bh Bits [15-8]- OVR_WID_TOP
Bits [7-0]- OVR_WID_BOTTOM
1Ch - 1Dh Bits [15-8]- OVR_CLR_G
Bits [7-0]- OVR_CLR_B
1Eh - 1Fh Bits [15-8]= 0
Bits [7-0]- OVR_CLR_R
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

B-16

Proprietary and Confidential

B.4 RAGE 128 Internal Parameter Table Format

B.4.1 CRTC Parameter Table

Table B-3 RAGE 128 internal CRTC parameter

(V?gf(f ;) Bits Description
0 15-8 Not used
7-0 Video Mode Number
1 15-8 Reserved
7 - CRT Refresh rate bit mask
2 15-9 Reserved
8 Disable Hsync delay adjust in BIOS
7-5 Reserved
4 Enable Composite Sync
2-3 Reserved
1 Enable interlace
0 Enable double scan
3 15-8 CRTC_H_DISP
7-0 CRTC_H_TOTAL
4 15-8 CRTC_H_SYNC_WID
7-0 CRTC_H_SYNC_STRT
5 15-0 CRTC_V_TOTAL
6 15-0 CRTC_V_DISP
7 15-0 CRTC_V_SYNC_STRT
8 15-8 Reserved for CRTC_H_DISP
7-0 CRTC_V_SYNC_WIDTH
9 15-0 Dot Clock in KHz /10
A 15-8 CRTC_H_SYNC_DLY
7-4 OVR_WID_LEFT
3-0 OVR_WID_RIGHT
B 15-8 OVR_WID_TOP,
7-0 OVR_WID_BOTTOM
C 15-8 OVR_CLR_G
7-0 OVR_CLR_B
D 15-8 0
7-0 OVR_CLR_R

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual

B-17

This page intentionally left blank.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
B-18 Proprietary and Confidential

Appendix C

BIOS Header, Scratch Registers and
Information Tables

C.1 Scope

This section provides details about the BIOS Header, Scratch Registers and Information
Tables.

For details about thigideo BIOS Header” refer to page C-2
For details about th&cratch Registers” refer to page C-6

For details about thénformation Tables” refer to page C-8

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential C-1

C.2 Video BIOS Header

There is information stored in the BIOS header. This information is not intended for
application program development.

Table C-1 Video BIOS Header

Byte offset Content

0 =2, Type definition
1 extended function code, 0aOh,0alh...etc.
2 OEM_ID1
3 OEM_ID2
4 BIOS_MAJOR_REV
5 BIOS_MINOR_REV
6-7 Size of structure in number of bytes
8-9 Pointer to SMI (BIOS entry + 1)
0Ah-0Bh Pointer to PMID
0Ch-0Dh Pointer to initialization table
OEh-OFh Pointer to CRC checksum block
10h-11h Pointer to config file name
12h-13h Pointer to logon message
14h-15h Pointer to misc. information
16h-17h PCI bus/device/function code
18h-19h BIOS runtime segment address
1Ah-1Bh I/0O base address

1Ch-1Dh Subsystem vendor ID
1Eh-1Fh Subsystem ID

20h-21h Post vendor ID

22h-23h Int 10h offset, Coprocessor Only BIOS
24h-25h Int 10h segment, Coprocessor Only BIOS
26h-27h Monitor information, OEM specific
28h-29h Pointer to configuration block (if non-zero)

2Ah-2Bh Pointer to DAC pipeline delay information

2Ch-2Dh Pointer to capability data structure
2Eh-2Fh Pointer to internal CRT tables
30h-31h Pointer to PLL information block
32h-33h Pointer to TV information table (if non-zero)
34h-35h Pointer to DFP information table (if non-zero)
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

c-2 Proprietary and Confidential

Table C-1 Video BIOS Header (Continued)

Byte offset Content
36h-37h Pointer to hardware configuration table
38h-39h Pointer to multimedia table (if non-zero)
TV standard BIOS table support signature "$TVS" (if dynamic bootup TV
3Ah-3Dh - . AP
standard is supported, otherwise this field is zero)
3EN-3Fh Pointer to TV standard BIOS table (if non-zero and if offset 3Ah-3Dh is

equal $TVS)

The following code will locate the BIOS header and extract the PCI bus/device/function
information from the ROM header.

unsigned

char

far *ip;

far *cp;

FP_SEG(ip) = BIOSLocation();/* assume BIOSLocation()

/* will return the BIOS segment
/* address */

FP_OFF(ip) = 0x48; [* pointer to offset to the BIOS

/* header */

FP_OFF(ip) = ip[0]; /* update word pointer to

/* point to the BIOS header */

FP_SEG(cp) = FP_SEG(ip); /* update byte pointer to

/* point to the BIOS header as
* well */

PciBusDev = ip[0x0b]; /* get the PCI bus/dev/func

/* word */

BIOS revision print out format
The BIOS revision number should be in the following format
(AAA.BBB.CCC.DDD.CONFIG.FILE)

printf("%03d.%603d.9603d%03d.%s", OEM_ID1, OEM_ID2, BIOS_MAJOR_REV,
BIOS_MINOR_REV,config.file);

Configuration block

dw2
dwbuffersize

dwbuffersize dup (0)

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential C-3

Code Layout

StringMeaning

‘1COD’primary runtime code ends

‘1INI'primary initialization code ends

‘DDCP’paged DDC code ends

‘AH1C’paged function ah=1ch and CXSTATE ends
‘BOOT’dual boot image ends

Misc Block

StringContent
‘R128'Rage 128 indicator
‘PCI' PCI bus

‘AGP’ AGP

‘SGS1'SDR SGRAM 1:1
‘SGS2’'SDR SGRAM 2:1
‘SGD1'DDR SGRAM

Table C-1 Initialization Block

Register (word) ‘OR’ Mask (dword)

‘AND’ Mask (dword)

BIOS_0_SCRATCH

BUS_CNTL

HW_DEBUG

GEN_RESET_CNTL

MEM_CNTL

EXT_MEM_CNTL

MEM_INTF_CNTL

MEM_STR_CNTL

MEM_INIT_LAT_TIMER

MEM_SDRAM_MODE_REG

MEM_ADDR_CONFIG

GUI_DEBUGO

GPIO_MONID_REG

SURFACE_DELAY

PC_GUI_MODE

00000h

RAGE 128 Software Development Manual

C-4

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Table C-2 PLL Block

Byte offset Content
0 6, Clock chip type
1 Size of the structure in byte
2 Dot lock entry used for accelerated modes
3 Dot lock entry used for extended VGA modes
4-5 Offset into internal clock table used by VGA parameter table
6-7 Offset into actual programmed frequency table at POST
8-9 XCLK setting, (memory clock in KHz / 10)
10-11 MCLK setting, (engine clock in KHz / 10)
12 Number of PLL information blocks to follow, currently value is 3
13 Size of each PLL information block
14 - 15 Reference frequency of the dot clock
16 - 17 Reference Divider of the dot clock
18-21 Min frequency can be supported before post divider for the dot clock
22-25 Max frequency can be supported for the dot clock
26 - 27 Reference frequency of the MCLK, engine clock
28 -29 Reference divider of the MCLK, engine clock
30 - 33 Min frequency can be supported before post divider for the MCLK,
engine clock
34 - 37 Max frequency can be supported for the MCLK, engine clock
38 -39 Reference frequency of the XCLK, memory clock
40 - 41 Reference divider of the XCLK, memory clock
42 - 45 Min frequency can be supported before post divider for the XCLK,
memory clock
46 - 49 Max frequency can be supported for the XCLK, memory clock
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential C-5

C.3 Scratch Registers

Table C-3 Scratch Registers

Scratch Register Content

bit 7 -Windows DOS emulation

bit 6 -Mode checking by pass

bit 5 -External CRTC table indicator
bit 4 -Reserved (DOS)

bit 3 -VBE linear frame buffer

bit 2 -VBE single R/W page

BIOS_0_SCRATCH(base address + 010h)

bit 1

bit 0

bit 3 -FP VGA auto scaling
BIOS_0_SCRATCH + 1(base address + bit 2 -FP autoswitch, internal use
+ 011h) bit 1- FP autoswitch pending

bit 0 - TV enable state

bit 7-TV S-Video connected
bit 6 -FP connected

bit 5 -TV composite connected
BIOS_0_SCRATCH + 2(base address + bit 4 -CRT connected

+ 012h) bit 3 -Autoswitch enabled

bit 2 -FP active

bit 1-TV active request

bit 0 -CRT active

Bits [7- 5]- DFP features

Bit 7 - panel scalable
BIOS_0_SCRATCH + 3(base address + Bit 6 - use the scalability of the chip itself
+ 013h) Bit 5 - use the scalability of the panel
Bits [4- 2] - TV STANDARD

Bits [1- O] - CRT STANDARD

BIOS_1 SCRATCH + O(base address + BIOS segment address (7 - 0)

+ 014h)
?l(())liﬂi_SCRATCH + 1(base address + BIOS segment address (15 - 8)
?'(?1%E§_SCRATCH + 2(base address + Bus/device/function information
?I(()Dliﬂ;_SCRATCH + 3(base address + Bus/device/function information
;B-I(()Dlng]?_SCRATCH + O(base address + 640 refresh mask
?I(())]_Sgﬂi_SCRATCH + 1(base address + 800 refresh mask

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

C-6 Proprietary and Confidential

Table C-3 Scratch Registers (Continued)

Scratch Register

Content

BIOS_2_SCRATCH + 2(base address +
+ 01Ah)

1024 refresh mask

BIOS_2_ SCRATCH + 3(base address +
+ 01Bh)

1280 refresh mask

BIOS_3 SCRATCH + O(base address +
+ 01Ch)

1600 refresh mask

BIOS_3 SCRATCH + 1(base address +
+ 01Dh)

PDF resolution supported by panel
Bits [7-4]- Reserved

Bit 3- 1280x1024

Bit 2- 1024x768

Bit 1- 800x600

Bit 0- 640x480

BIOS_3 SCRATCH + 2(base address +
+ 01Eh)

Reserved

BIOS_3_SCRATCH + 3(base address +
+ 01Fh)

Reserved

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual

Cc-7

C4

Information Tables

C.4.1 TV Information

Table C-4 TV Information Table

Byte offset Content
0-2 Signature “$TV”
3 Table version = 1
4-5 TV information table size
6 TVOut support information:
‘N’ - default TVOut chip not found
‘T’ - TVOut chip on board
7 BIOS built-in initialization TV standard
Bits [3-0] = 0001b for NTSC
=0010b for PAL
=0011b for PAL-M
=0100b for PAL-60
=0101b for NTSC-J
=0110b for SCART-PAL
Checksum
TVOut information
Bits [1-0] = 00b invalid
=01b TV off, CRT on
=10b TV on, CRT off
=11b TV on, CRT on
Bits [3-2] = 00b 29.498928713 MHz
=01b 28.636360000 MHz
=10b 14.318180000 MHz
=11b 27.000000000 MHz
10 Run time supported TV standard
Bit 0 NTSC
Bit 1 PAL
Bit 2 PAL-M
Bit 3 PAL-60
Bit 4 NTSC-J
Bit 5 SCART-PAL

RAGE 128 Software Development Manual

C-8

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Table C-4 TV Information Table (Continued)

Byte offset Content
Initialization time supported TV standard
Bit 0 NTSC
Bit 1 PAL
11 Bit 2 PAL-M
Bit 3 PAL-60

Bit 4 NTSC-J
Bit 5 SCART-PAL

C.4.2 DFP Information

Table C-5 DFP Information Table (Revision 0)

Byte offset Content
0 Table revision =0
1 Table size in bytes =5
Bits [3-0] - Type of hardware support

0 None
1 1042x768

2 2 1280x1024
3 1600x1200
4 800x600

5-Fh Reserved
Bits [7-4] - Reserved

DFP standard(s) supported
Bit0O=1 TFT

3 Bitl=1 DSTN
Bits [7-2] Reserved
4-5 DFP ID
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential C-9

Table C-6 DFP Information Table (Revision 1)

Byte offset Content
0 Table revision =1
1 Table size in bytes =5
Bits [3-0] - Type of hardware support
0 640x480
1 800x600
2 2 1024x768
3 1280x1024
4 1600x1200
5-Fh Reserved
Bits [7-4] - Reserved
DFP standard(s) supported
3 BitO=1 TFT
Bitl1=1 DSTN
Bits [7-2] Reserved
4 Vendor Specific Support Flag
Bit0=1 Toshiba System BIOS Support for EDID
5 Pointer to Vendor Specific Table

=0h for NO TABLE DEFINED, i.e. byte 4 should be 0

RAGE 128 Software Development Manual

C-10

© 1999 ATI Technologies Inc.
Proprietary and Confidential

D.1 Scope

This section provides details about the VESA BIOS Extension. The VESA BIOS supports
16 color and HiColor modes through this VBE extension. A brief description of the VESA
BIOS functions is included for completeness. For detailed information or any discrepancy,
please refer to the original published documentation (VBE Core Functions Standard Ver.
2.0).

For details about th&status Information” refer to page D2

For details about th#~unction 00h - Return Super VGA Information” refer to
page D3

For details about th#unction 01h - Return Super VGA Mode Information” refer to
page D6

For details about th#-unction 02h - Set Super VGA Video Mode” refer to page .D12
For details about th#-unction 03h - Return Current Video Mode” refer to page D13
For details about th#-unction 04h - Save/Restore State” refer to page D14

For details about th#=unction 05h - Display Window Control” refer to page D15

For details about th#-unction 06h - Set/Get Logical Scan Line Length” refer to
page D17

For details about th#-unction 07h - Set/Get Display Start” refer to page D18

For details about th#-unction 08h - Set/Get AC Palette Format” refer to page D19
For details about th#unction 09h - Set/Get AC Palette Data” refer to page D20
For details about th#?ower Management Services” refer to page D21

For details about thtbisplay Identification Extensions” refer to page D23

© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-1

Status Information

D.2 Status Information

Every function returns status information in the AX register. The format and description
of the status word is as follows:

AL==4Fh:; Function is supported

AL '=4Fh: Function is not supported

AH==00h: Function call successful

AH==01h: Function call failed

AH==02h: Function is not supported in the current hardware configuration
AH==03h: Function call invalid in current video mode

Software should treat a non-zero value in the AH register as a general failure condition.

RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-2 Proprietary and Confidential

Function 00h - Return Super VGA Information

D.3 Function 00h - Return Super VGA Information

Input: AH = 4Fh Super VGA support
AL = 00h Return Super VGA information
ES:DI = Pointer to 256-byte buffer

Output: AX Status

Comments: All other registers are preserved.

The information block has the following structure:

VgalnfoBlock struc

VESASignature db 'VESA ;4 signature bytes

VESAVersion db 200h ;VESA version number

OEMStringPtr dd ? ;Pointer to OEM string

Capabilities db 4 dup (?) ;Capabilities of the video;environment
VideoModePtr dd ” I;gF;cl)(i)r\lAt/()er to supported Super VGA modes (see table
TotalMemory dw ? ;Number of 64Kb memory blocks on board
OEMSoftwareRev dw ? ; VBE implementation Software revision
OEMVendorNamePtr dd ? ;Pointer to OEM Vendor Name String
OEMProductNamePtr dd ? ;Pointer to OEM Product Name String
OEMProductRevPtr dd ? ;Pointer to OEM Product Revision String
Reserved db 222 dup (?) ;Reserved for VBE implementation scratch area
OembData db 256 dup (?) ;Data Area for OEM Strings

VgalnfoBlock ends

* TheVESASignature field contains the characters VESA if this is a valid block. VBE
2.0 application should preset this field with the ASCII characters ‘VBEZ2' to indicate
to the VBE implementation that the VBE 2.0 extended information is desired, and the
VBE InfoBlock is 512 bytes in size. Upon return from VBE Function 00h, this field
should always be set to ‘VESA by the VBE implementation.

* VESAVersion is a binary field that specifies what level of the VESA standard the
Super VGA BIOS conforms to.

* OEMStringPtr is a far pointer to a null-terminated, OEM-defined string that
currently points to ATI MACHG64. This pointer may point into either the ROM or
RAM, depending on the specific implementation. VBE 2.0 BIOS implementations

© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-3

Function 00h - Return Super VGA Information

must place this string in the OemData area within the VbelnfoBlock if ‘VBE2' is
preset in the VbeSignature field on entry to Function 00h. This makes it possible to
convert the RealMode address to an offset within the VbelnfoBlock for Protected
mode applications.

The Capabilities field describes the general features supported in the video
environment. The bits are defined as follows:

DO

DAC is switchable
0 = DAC is fixed-width, with 6 bits per primary color
1 = DAC width is switchable

D1

0 = Controller is VGA compatible
1 = Controller is not VGA compatible

D2

0 = Normal RAMDAC operation
1 = When programming large blocks of information to the RAMDAC, use the
blank bit in Function 09h.

D[3:31] Reserved

VGA compatibility is defined as supporting all standard IBM VGA modes, fonts and
I/0 ports; however, VGA compatibility doesn’t guarantee that all modes which can be
set are VGA compatible, or that the 8x14 font is available.

TheVideoModePtr points to a list of supported Super VGA (VESA-defined as well
as OEM-specific) mode numbers. Each mode number occupies one word (16 bits).
The list of mode numbers is terminated by a -1 (OFFFFh) The pointer could point into
either the ROM or RAM, depending on the specific implementation. Either the list
would be a static string stored in ROM, or the list would be generated at run-time in
the information block (see above in RAM). It is the application’s responsibility to
verify the current availability of any mode returned by this function, through the
Return Super VGA mode information (Function 1) call. Some returned modes may
not be available, due to the video board’s current memory and monitor configuration.

The TotalMemory field indicates the maximum amount of memory physically
installed and available to the frame buffer in 64KB units.

The OemSoftwareReVfield is a BCD value which specifies the OEM revision level
of the VBE software.

The OemVendorNamePtris a pointer to a null-terminated string containing the

name of the vendor which produced the display controller board product. This field is
only filled in when ‘VBEZ2' is preset in the VbeSignatur field on entry to Function
00h.

The OemProductNamePtris a pointer to a null-terminated string containing the
product name of the display controller board. This field is only filled in when ‘VBE2’

RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.

D-4

Proprietary and Confidential

Function 00h - Return Super VGA Information

is preset in the VbeSignatur field on entry to Function 00h.

* TheOemProductRevPtris a pointer to a null-terminated string containing the
revision or manufacturing level of the display controller board product. This field is
only filled in when ‘VBEZ2' is preset in the VbeSignatur field on entry to Function
00h.

« TheOembDatafield is a 256 byte data area that is used to return OEM information
returned by VBE Function 00h when ‘VBEZ2’ is preset in the VbeSignatur field.

Table D-2 VESA Super VGA Modes

15,;1tl:'tm'\ég?e 7,5’['} ri\l/lg:edre Resolution Colors

100h - 640x400 256
101h - 640x480 256
102h - 800x600 16
103h - 800x600 256
104h - 1024x768 16
105h - 1024x768 256
107h - 1280x1024 256
110h - 640x480 32K (5:5:5)
111h - 640x480 64K (5:6:5)
112h - 640x480 16.8M (8:8:8)
113h - 800x600 32K (5:5:5)
114h - 800x600 64K (5:6:5)
115h - 800x600 16.8M (8:8:8)
116h - 1024x768 32K (5:5:5)
117h - 1024x768 64K (5:6:5)
118h - 1024x768 16.8M (8:8:8)
119h - 1280x1024 32K (5:5:5)
11Ah - 1280x1024 64K (5:6:5)
11Bh - 1280x1024 16.8M (8:8:8)

The Total Memory field indicates the amount of memory installed on the VGA

board. Its value represents the number of 64Kb blocks of memory currently installed.

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Programming Manual

D-5

Function 01h - Return Super VGA Mode Information

D.4 Function 01h - Return Super VGA Mode Information

This function returns information about a specific Super VGA video mode.

Input: AH = 4Fh Super VGA support
AL = 01h Return Super VGA Mode Information
CX = Super VGA video mode*
ES:DI = Pointer to 256-byte buffer

Output: AX Status

Comments: All other registers are preserved.
* Mode number must be one of those returned by Function 0

The mode information block has the following structure:

ModelnfoBlock struc

;mandatory information

ModeAttributes dw ? :mode attributes
WinAAttributes db ? ;window A attributes
WinBAttributes db ? :window B attributes
WinGranularity dw ? ;window granularity
WinSize dw ? :window size
WinASegment dw ? ;window A start segment
WinBSegment dw ? ;window B start segment
WinFuncPtr dd ? ;pointer to window function
BytesPerScanLine dw ? ;bytes per scan line

;formerly optional information (now mandatory)

XResolution dw ? ;horizontal resolution
YResolution dw ? :vertical resolution
XCharSize db ? character cell width
YCharSize db ? character cell height
NumberOfPlanes db ? number of memory planes
BitsPerPixel db ? bits per pixel
NumberOfBanks db ? number of banks
MemoryModel db ? memory model type
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.

D-6

Proprietary and Confidential

Function 01h - Return Super VGA Mode Information

BankSize
NumberOflimagePages
Reserved

:New Direct Color Fields

RedMaskSize

RedFieldPosition

GreenMaskSize

GreenFieldPosition

BlueMaskSize

BlueFieldPosition

RsvdMaskSize

RsvdFieldPosition
DirectColorModelnfo

db
db
db

db

db

db

db

db

db

db

db
db

;Mandatory information for VBE 2.0 and above

PhysBasePtr

OffScreenMemOffset

OffScreenMem

Reserved

ModelnfoBlock ends

dd

dd

dw

db

?

?

206 dup (?)

bank size, in KB
number of images
Reserved for page function

;bit position of Isb of red mask
;Size of direct color green mask,
in;bits

;bit position of Isb of green mask
;size of direct color blue mask, in
bits

;bit position of Isb of blue mask

:size of direct color Reserved
mask,;in bits

;bit position of Isb of Reserved
mask

:direct color mode attributes
;bit position of Isb of red mask

;physical address for flat
memory frame buffer

;pointer to start of off screen
memory

;amount of off screen memory in
1K units

:remainder of ModelnfoBlock

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Programming Manual

D-7

Function 01h - Return Super VGA Mode Information

* TheModeAttributes field describes certain important characteristics of the video
mode. The field is defined as follows:

DO Mode supported in hardware:
0 = Mode is not supported in hardware
1 = Mode is supported in hardware

D1 =1 (Reserved)

D2 Output functions supported by BIOS:
0 = Output functions not supported by BIOS
1 = Output functions supported by BIOS

D3 Monochrome/color mode (see note below):
0 = Monochrome mode
1 = Color mode

D4 Mode type:
0 = Text mode
1 = Graphics mode

D5 VGA compatible mode:

0=Yes

1=No

D6 VGA compatible windowed memory mode is available:
0=Yes

1=No

D7 Linear frame buffer mode is available:

0=Yes

1=No

D[8:15] Reserved

* TheBytesPerScanlindield specifies the number of bytes in each logical scanline.
The logical scanline could be equal to or larger than the displayed scanline.

* WinAAttributes andWinBAttributes describe the characteristics of the CPU
windowing scheme, such as whether the windows exist and are read/writable, as
follows:

DO Window supported:
0 = window is not supported
1 = window is supported

D1 Window readable:
0 = window is not readable
1 = window is readable

D2 Window writable:
0 = window is not writable
1 = window is writable

RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-8 Proprietary and Confidential

Function 01h - Return Super VGA Mode Information

D[3:31] ‘ Reserved

If windowing is not supported (b20 = 0) for both Window A and Window B, an
application can assume that the display memory buffer resides at the standard CPU
address appropriate for tMemoryModel of the mode.

WinGranularity specifies the smallest boundary, in KB, on which the window can be
placed in the video memory. The value of this field is undefined if Bit DO of the
appropriateNinAttributes field is not set.

WinSize specifies the size of the window, in KB.

WinASegmentandWinBSegmentaddresses specify the segment addresses where
the windows are located in the CPU address space.

WinFuncAddr specifies the address of the CPU video memory windowing function.
The windowing function can be invoked either throMSA BIOS function 05hor

by calling the function directly. A direct call will provide faster access to the hardware
paging registers than using Int 10h, and is intended tp be used by high-performance
applications. If this field is Null, Function 05h must be used to set the memory
window, if paging is supported.

XResolution andYResolution specify the height and width of the video mode, in
pixels.

XCharCellSize andYCharCellSize specify the size of the character cell, in pixels.

The NumberOfPlanesfield specifies the number of memory planes available to
software in that mode. For standard 16-color VGA graphics, this would be set to 4.
For standard packed pixel modes, the field would be set to 1.

TheBitsPerPixel field specifies the total number of bits that define the color of one
pixel. For example, a standard VGA 4-plane, 16-color graphics mode would have a 4
in his field, and a packed-pixel, 256-color graphics mode would specify 8 in this field.
The number of bits per pixeker planecan normally be derived by dividing the
BitsPerPixel field by theNumberOfPlanesfield.

The MemoryModel field specifies the general type of memory organization used in
this mode. The following models have been defined:

00h = Text mode
01lh = CGA graphics
02h = Hercules graphics
03h = 4-plane planar
04h = Packed pixel
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual

Proprietary and Confidential D-9

Function 01h - Return Super VGA Mode Information

05h = Non-chain 4, 256 color

06h = Direct Color

07h =YUV
08:0Fh = Reserved, to be defined by VESA
10:FFh = To be defined by OEM

In version 1.1 and earlier of the VESA Super VGA BIOS Extension, OEM-defined Direct
Color video modes with pixel formats 1:5:5:5 and 8:8:8:8 were describeBakad
Pixel model with 16, 24, and 32 bits per pixel, respectively.

* NumberOfBanks is the number of banks in which the scan lines are grouped. This
field is set to 1.

e TheBankSizefield specifies the size of a bank, in units of 1KB. This field is set to 0.

* TheNumberOflmagePagedield specifies the number of additional, complete
display images that will fit into the memory, at one time, in this mode. The application
may load more than one image into the memory if this field is non-zero, and flip the
display between the images.

* The Reserved field has been defined to support a future VESA BIOS extension
feature, and will always be set to 1 in this version.

e TheRedMaskSize GreenMaskSize BlueMaskSize andRsvdMaskSizefields
define the size, in bits, of the red, green, and value components of a direct color pixel.
A bit mask can be constructed from the MaskSize fields, using simple shift arithmetic.
For example, the MaskSize values for a Direct Color 5:6:5 mode would be 5, 6, 5, and
0, for the red, green, blue, and Reserved fields, respectively.

 TheRedFieldPosition GreenFieldPosition BlueFieldPosition, and
RsvdFieldPositionfields define the bit position within the direct color pixel or YUV
pixel of the Isb of the respective color component. A color value can be aligned with
its pixel field by shifting the value left by the FieldPosition. For example, the
FieldPosition values for a Direct Color 5:6:5 mode would be 11, 5, and O, for the red,
green, blue, and Reserved fields, respectively.

* TheDirectColorModelnfo field describes important characteristics of direct color
modesBit DO specifies whether the color ramp of the DAC is fixed or
programmable. If the color ramp is fixed, it cannot be changed. If the color ramp is
programmable, it is assumed that the red, green, and blue lookup tables can be loaded
using a standard VGA DAC color registers BIOS call (AX=101Blt)D1 specifies
whether the bits in thRsvd field of the direct color pixel can be used by the
application, or are Reserved, and thus unusable.

RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-10 Proprietary and Confidential

Function 01h - Return Super VGA Mode Information

DO Color ramp is fixed/programmable:
0 = color ramp is fixed
1 = color ramp is fixed

D1 Bits in Rsvd field are usable/Reserved:
0 = bits in Rsvd field are Reserved
1 = bits in Rsvd field are usable by the application

* ThePhysBasePtris a 32-bit physical address of the start of frame buffer memory
when the controller is in flat frame buffer memory mode. If this mode is not available,
then this fields will be zero.

* TheOffScreenMemOffsetis a 32-bit offset from the start of frame buffer memory.
Extra off-screen memory that is needed by the controller may be located either before
or after this off-screen memory, be sure to check OffscreenMemSize to determine the
amount of off-screen memory which is available to the application.

¢ TheOffScreenMemSizecontains the amount of available, contiguous off-screen
memory in 1k units, which can be used by the application.

© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-11

Function 02h - Set Super VGA Video Mode

D.5 Function 02h - Set Super VGA Video Mode

This function initializes a video mode. The BX register contains the mode to set.

Input:

Output:

Comments:

AH
AL
BX

ES:DI

AX

4Fh Super VGA support
02h Set Super VGA video mode
Video mode
D[0:8] = Video mode
D[9-13] = Reserved (must be 0)
D14 = frame buffer model:
0 = use windowed frame buffer model
1 = use linear/flat frame buffer model
D15 = Clear memory flag:
0 = clear video memory
1 =don’t clear video memory
Pointer to 256-byte buffer

Status

All other registers are preserved.

RAGE 128 Software Programming Manual

D-12

© 1999 ATI Technologies Inc.

Proprietary and Confidential

Function 03h - Return Current Video Mode

D.6 Function 03h - Return Current Video Mode

This function returns the current video mode in BX.

Input: AH = 4Fh Super VGA support
AL = 03h Return current video mode
Output: AX = Status

Current video mode
D[0-13] = Video mode
D14 = 0, use windowed frame buffer model
=1, use linear/flat frame buffer model

BX =

D15 =0, clear video memory
=1, don'’t clear video memory

Comments: All other registers are preserved.

© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-13

Function 04h - Save/Restore State

D.7 Function 04h - Save/Restore State

This function provides a complete mechanism to save and restore the display controller
hardware state.

Input: AH = 4Fh Super VGA support
AL = 04h Save and restore state
DL = 00h Return Save/Restore state buffer size
01lh Save state
02h Restore state
CX = Requested states

DO = Save/Restore controller hardware state
D1 = Save/Restore BIOS state

D2 = Save/Restore DAC state

D3 = Save/Restore Register state

ES:BX = Pointer to buffer (if DL <> 00h)
Output: AX = Status
BX = Number of 64-byte blocks to hold the state buffer (if DL = 00h)

Comments: All other registers are preserved.

RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-14 Proprietary and Confidential

Function 05h - Display Window Control

D.8 Function 05h - Display Window Control

This function sets or gets the position of the specified display window or page in the frame
buffer memory by adjusting the necessary hardware paging registers. To use this function
properly, the software should Ug&SA BIOS Function 01h(Return Super VGA mode
information) to determine the size, location, and granularity of the windows.

Input: AH = 4Fh Super VGA support
AL = 05h Super VGA display window control
BH = 00h Set memory window
BL = Window number:
0 = Window A
1 =Window B
DX = Window number in video memory (in window granularity units)
Output: AX Status

Comments: See notes below.

Input: AH = 4Fh Super VGA support
AL = 05h Super VGA display window control
BH = 01h Get memory window
BL = Window number:
0 = Window A
1 =Window B
Output: AX Status
DX = Window number in video memory (in window granularity units)

Comments: See notes below.

Notes:

* This function is also directly accessible through a far call from the application. The
address of the BIOS function may be directly obtained by using VESA BIOS function
01h (return Super VGA mode information). Afield in the ModelnfoBlock contains the
address of this function. Note that this function may be different among video modes
in a particular BIOS implementation, so the function pointer should be obtained after
each set mode.

e Inthe far call version, no status information is returned to the application. Also, in the
far call version, the AX and DX registers will be destroyed. Therefore, if AX and/or
DX must be preserved, the application must do so before making the call.

© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-15

Function 05h - Display Window Control

e The application must load the input arguments in BH, BL, and DX (for set window),
but does not need to load either AH or AL in order to use the far call version of this
function.

RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-16 Proprietary and Confidential

Function 06h - Set/Get Logical Scan Line Length

D.9 Function 06h - Set/Get Logical Scan Line Length

This function sets or gets the length of a logical scan line. It allows an application to set up
a logical video memory buffer that is wider than the displayed area. Function 07h then
allows the application to set the starting position that is to be displayed.

Input: AH = 4Fh Super VGA support
AL = 06h Logical scan line length
BL 00h Set scan line length in Pixel

02h Set scan line length in Byte

CX = Desired width, in pixels (if BL = 00h)
= Desired width, in byte (if BL = 02h)
Output: AX = Status
BX = Bytes per scan line
CX = Actual pixels per scan line
DX = Maximum number of scan lines

Comments: See notes below.

Input: AH = 4Fh Super VGA support

AL = 06h Logical scan line length

BL = 01h Get scan line length

= 03h Get maximum scan line length

Output: AX = Status

BX = Bytes per scan line

CX = Actual pixels per scan line

DX = Maximum number of scan lines

Comments: See notes below.

Notes:

e The desired width, in pixels, may not be achievable because of hardware limitations.
The next-larger value that will accommodate the desired number of pixels will be
selected, and the actual number of pixels will be returned in CX. BX returns a value,
which when added to a pointer into video memory, will point to the next scan line.

* Themach64dimplementation only supports this function in 256 color mode and above.

© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-17

Function 07h - Set/Get Display Start

D.10 Function 07h - Set/Get Display Start

This function selects the pixel to be displayed in the upper left corner of the display from
the logical page. This function can be used to pan and scroll around logical screens that
are larger than the displayed screen. This function can also be used to rapidly switch
between two, different displayed screens for double-buffered animation effects.

Input:

Output:

Comments:

Input:

Output:

Comments:

Note:

AH
AL
BH
BL

CX
DX

AX
BX
CX
DX

4Fh Super VGA support

07h Display start control

00h Reserved, must be 0

00h Set display start

80h Set display start during vertical retrace
First displayed pixel in scan line

First displayed scan line

Status

Bytes per scan line

Actual pixels per scan line
Maximum number of scan lines

See a note below.

AH
AL
BH
BL

AX
BH
CX
DX

4Fh Super VGA support
07h Display start control
00h Reserved, must be 0
01lh Get display start

Status

Reserved, and will be 0

First displayed pixel in scan line
First displayed scan line

See a note below.

* Themach64dimplementation only supports this function in 256 color mode and above.

RAGE 128 Software Programming Manual

D-18

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Function 08h - Set/Get AC Palette Format

D.11 Function 08h - Set/Get AC Palette Format

This function manipulates the operating mode or format of the DAC palette. Some DACs
are configurable to provide 6 bits, 8 bits, or more of color definition per red, green, and
blue primary colors. The DAC palette width is assumed to be reset to the standard VGA
value of 6 bits per primary color during any mode set.

D.11.1Subfunction O - Set AC Palette Format

Input: AH = 4Fh VESA Extension
AL = 08h Set/Get AC Palette Format
BL = 00h Set AC Palette Format
BH = Desired bits of color per primary
Output: AX = Status
BH = Current number of bits of color per primary

D.11.2Subfunction 1 - Get AC Palette Format

Input: AH = 4Fh VESA Extension
AL = 08h Set/Get AC Palette Format
BL = 01h Get AC Palette Format
Output: AX = Status
BH = Current number of bits of color per primary
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual

Proprietary and Confidential D-19

Function 09h - Set/Get AC Palette Data

D.12 Function 09h - Set/Get AC Palette Data

This required function is very important for any/all RAMDAC larger than a standard
VGA RAMDAC. The standard INT 10h BIOS Palette function calls assume standard
VGA ports and VGA palette widths. This function offers a palette interface that id
independent of the VGA assumptions.

Input: AH = 4Fh VESA Extension
AL = 09h Set/Get AC Palette Format
BL = 00h Set Palette Data

01h Get Palette Data

02h Set Secondary Palette Data

03h Get Secondary Palette Data

80h Set Palette Data during Vertical Retrace with

Blank Bit on
CX = Number of palette registers to update (to a maximum of 256)
DX = First of the Palette registers to update (start)
ES:DI = Table of palette value
Output: AX = Status
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.

D-20 Proprietary and Confidential

Power Management Services

D.13 Power Management Services

D.13.1VBE/PM Function

Input: AH =
AL =
BL =
ES:DI =

Output: AX =
BH =

BL =

ESDI =
D.13.2VBE/PM Function

0 - Report VBE/PM Capabilities

4Fh VESA Extension
10h VBE/PM Services
00h Report VBE/PM Capabilities

Null pointer; must be 0000:0000h in version 1.0 (Reserved for
future use).

Status

Power saving state signals supported by the controller:
1 = supported,
0 = not supported

bit0O = STANDBY

bitl =SUSPEND

bit2 =OFF

VBE/PM Version number (0001 0000b for this version)

bits 0:3 = Minor Version number

bits 4:7 = Major Version number

Unchanged

1 - Set Display Power State

Input: AH = 4Fh VESA Extension
AL = 10h VBE/PM Services
BL = 01h Set Display Power State
BH = Requested Power state:
00h = ON
01h = STANDBY
02h = SUSPEND
04h = OFF
Output: AX = Status
BH = Unchanged

D.13.3VBE/PM Function 2 - Get Display Power State

Input: AH =
AL =
BL =
Output: AX =

4Fh VESA Extension
10h VBE/PM Services
02h Get Display Power State

Status

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Programming Manual
D-21

Power Management Services

BH = Power state currently requested by the controller:
00h = ON
Olh = STANDBY
02h = SUSPEND
04h = OFF
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.

D-22 Proprietary and Confidential

Display Identification Extensions

D.14 Display Identification Extensions
The VESA VBE sub-function 15h is used to implement the VBE/DDC services. The

VBE/DDC services are defined below and are not included in the VBE Standard
documentation.

D.14.1VBE/DDC Function 0 - Report VBE/DDC Capabilities

Input: AH = 4Fh VESA Extension

AL = 15h VBE/DDC Services

BL = 00h Report DDC Capabilities

CX = 00h Controller unit number (00=primary controller)

ES:DI = Null pointer, must be 0:0 in version 1.0 (Reserved for future use).
Output: AX = Status

BH = Approximate time in seconds, rounded up, to transfer one EDID

block (128 byte)
BL = DDC level supported (*):

bit0 =0 DDC1 not supported;
=1 DDC1 supported;
bitl =0 DDC2 not supported;
=1 DDC2 supported;
bit2 =0 Screen not blanked during data transfer (**);
=1 Screen blanked during data transfer.
CX = Unchanged

ES:DI Unchanged

Comments: All other registers may be destroyed.

(*) DDC level supported by both the display and the controller.
(**) This refers to the behavior of the controller and the VBE/DDC SW.

© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-23

Display Identification Extensions

D.14.2VBE/DDC Function 1 - Read EDID

Input:

Output:

Comments:

AH
AL
BL
CX
DX

ES:DI

AX
BH
CX
ES:DI

4Fh
15h
01h
00h
00h

VESA Extension

VBE/DDC Services

Read EDID

Controller unit number (00=primary controller)

EDID block number. Zero is only a valid value in
version 1.0

Pointer to area in which the EDID block (128 bytes shall be
returned).

Status(*)

Unchanged
Unchanged
Pointer to area in which the EDID block is returned.

All other registers may be destroyed.

RAGE 128 Software Programming Manual

D-24

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Appendix E

BIOS Hardware Configuration and
Multimedia Tables

E.1 Scope

This section describes Multimedia Table and Hardware Configuration Table for
multimedia devices in the graphics controller BIOS. The Multimedia table is used to
describe the on board multimedia hardware configuration. It only exists in AIW type
configuration products. The Hardware Configuration table is used to describe the graphics
controller multimedia configuration.

For details about th@810S Multimedia Table” refer to page E-2
For details about th8810S Hardware Configuration Table” refer to page E-8

For details about th@BIOS Tables for RAGE 128 / RAGE THEATER Board” refer to
page E-10

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential E-1

E.2

BIOS Multimedia Table

The BIOS Multimedia table is used for any AIW type board and OEM solution equipped
with multimedia hardware. It specifies the configuration of the multimedia devices on
board. The table includes a header and a body. The header contains a unique 6 characters
signature, a revision byte and a table size byte. A pointer to the table byte 0 location can be
derived from the ROM header table.

Currently, the BIOS table is defined as a 8 bytes header and 7 bytes body with revision 1.
Revision 0 of this table must not be used to build BIOS of any board that uses either
RAGE 128 or RAGE THEATER.

The Multimedia table field definitions are shown below in . Please note that the signature
is removed from the header to save ROM space. The ROM header table pointer still points
to the byte O location. The table size and revision number can be calculated by subtracting
1 and 2 respectively from the pointer. Besides the table header, a physical connector ID
field and 5 video inputs are introduced.

Table E-1 Multimedia Table, Revision 1

Offset _. - -
(byte) Field Definition Code Description
-2 Hardware info table revision
-1 Hardware info table size
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

E-2

Proprietary and Confidential

Table E-1 Multimedia Table, Revision 1 (Continued)

Offset

(byte) Field Definition Code Description

, No Tuner Installed
, Philips FI1236 MK1 NTSC M/N North America
, Philips FI1236 MK2 NTSC M/N Japan
, Philips FI1216 MK2 PAL B/G
, Philips FI1246 MK2 PAL |
, Philips FI1216 MF MK2 PAL B/G, SECAM L/L'
, Philips FI1236 MK2 NTSC M/N North America
, Philips FI1256 MK2 SECAM D/K
, Philips FM1236 MK2 NTSC M/N North America
9, Philips FI1216 MK2 PAL B/G - External Tuner POD
=10, Philips FI1246 MK2 PAL | - External Tuner POD
Tuner Type = 11, Philips FI1216 MF MK2 PAL B/G, SECAM L/L'
- External Tuner POD
=12, Philips FI1236 MK2 NTSC M/N North America
0 - External Tuner POD
= 13, Temic FN5AL.RF3X7595 PAL I/B/G/DK & SECAM DK
= 14, Reserved
=15, Reserved
=16, Alps TSBH5 NTSC M/N North America
=17, Alps TSC?? NTSC M/N North America
=18, Alps TSCH5 NTSC M/N North America with FM
= 19-30, Reserved
= 31, Unknown Tuner Type

=0, Video input0
=1, Video inputl
Bit Video Inputfor = 2, Video input2
[7:5] Tuner = 3, Video input3
=4, Video input4
=5-15, Reserved

coO~NO O WNEFEO

Bit
[4:0]

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential E-3

Table E-1 Multimedia Table, Revision 1 (Continued)

OrEe! Field Definition Code Description
(byte)
= 0, Philips TEA5582 NTSC Stereo, no dbx, no volume
control
=1, Mono with audio mux
= 2, Philips TDA9850 NTSC NA. Stereo, dbx, EEPROM,
mux, no volume
= 3, Sony CXA2020S Japan NTSC Stereo, mux, no volume
Bit Audio Chip =4, ITT MSP3410D Europe Stereo, volume, internal mux
[3:0] Type =5, Crystal CS4236B
= 6, Philips TDA9851 NTSC stereo, volume control,
1 no dbx, no mux
=7, ITT MSP3415 (Europe)
=8, ITT MSP3430 (NA)
=9 - 14, Reserved
=15, No Audio Chip Installed
. =0, OEM Product
Bit [4] Product Type = 1. ATI Product
[B7I:t5] OEM Revision
=0, ATI Prototype Board
Product ID =1, ATI All ?n Wonder
(defined as =2, ATI All !n Wonder Pro, no MPEG{D\/D decoder
= 3, ATI All in Wonder Pro, CD11 or similar MPEG/DVD
OEM ID or ATI
Bit board ID that decoder on .MPP
2 [7:0] is dependent =4, ATI A!I in Wonder Plus
on Product =5, ATI Kitchener Board .
Type = 6, ATI Toronto Board (analog audio)
Setting) =7, ATl Ty-ander
= 8, ATl Victoria Board (RAGE XL plus RAGE THEATER)
= 9-255, Reserved
. Tuner Voltage =0, No Tuner Power down feature
Bit Regulator _
) =1, Tuner Power down feature
[1:0] Control _
= 2-3, Reserved
Control
Bit Hardware =0, No. Hardware Teletext
[3:2] Teletext =1, Philips SAA5281
3 ’ Support = 2-3, Reserved
. . =0, No FM Audio decoder
B'_t FM Audio =1, FM Audio decoder (Rohm BA1332F) installed
[5:4] Decoder _
= 2-3, Reserved
Bit[6] Reserved
Bit [7] Audio =0, Not Supported
Scrambling =1, Supported

RAGE 128 Software Development Manual

E-4

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Table E-1 Multimedia Table, Revision 1 (Continued)

OrEe! Field Definition Code Description
(byte)
Bt [0] 12S Input =0, Not Supported
Configuration =1, Supported
Bt [1] 1°S Output =0, Not Supported
Configuration =1, Supported
=0, TDA1309_32Strap.
. 2 . =1, TDA1309_64Strap
A [E[;;Z] Icﬁu Audio =2, ITT MSP3430
: P = 3, ITT MSP3415
= 4-7 Reserved
S/PDIF _
Bit[5] Output " 2 ggt S:rpt)ggrted
Configuration ~ ™ PP
Bit
[7:6] Reserved
=0, No Video Decoder
=1, Bt819
=2, Bt829
Bit Video = 3, Bt829A
[[3:0] Decoder Type =4, Philips SA7111
=5, Philip SA7112, or SA7112A
= 6, RAGE THEATER
= 7-15, Reserved
5 =0, NTSC and PAL Crystals Installed (for Bt8xx)
=1, NTSC Crystal Only (for Bt8xx)
= 2, PAL Crystal Only (for Bt8xx)
Bit Video-In =3, NTSC, PAL, SECAM single crystal for Bt829 & BT879
[7:4] Standard / =4, 28.63636 MHz Crystal
' Crystal =5, 29.49892713 MHz Crystal
=6, 27.0 MHz Crystal
=7, 14.31818 MHz Crystal
= 8-15, Reserved
=0, I°C Device
=1, MPP Device
Bit Video = 2, 2 bits VIP Device
[2:0] Decoder Host = 3, 4 bits VIP Device
6 ' Config =4, 8 bits VIP Device
= 5-6, Reserved
=7, PCI Device
Bit
[7:3] Reserved
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential E-5

Table E-1 Multimedia Table, Revision 1 (Continued)

OrEe! Field Definition Code Description
(byte)
=0, Unused / Invalid
Bit Video Input0 =1, Tuner Input
[1:0] Type = 2, Composite Input
= 3, S-Video Input
Bit [2] Video Input0 =0, Front Connector
7 F/B setting =1, Rear Connector
Bit .
[5:3] Physical Connector ID
Bit
[7:6] Reserved
=0, Unused / Invalid
Bit Video Inputl =1, Tuner Input
[1:0] Type = 2, Composite Input
= 3, S-Video Input
Bit [2] Video Inputl =0, Front Connector
8 F/B setting =1, Rear Connector
Bit .
[5:3] Physical Connector ID
Bit
[7:6] Reserved
=0, Unused / Invalid
Bit Video Input2 =1, Tuner Input
[1:0] Type = 2, Composite Input
= 3, S-Video Input
Bit [2] Video Input2 =0, Front Connector
9 F/B setting =1, Rear Connector
Bit .
[5:3] Physical Connector ID
Bit
[7:6] Reserved
=0, Unused / Invalid
Bit Video Input3 =1, Tuner Input
[1:0] Type = 2, Composite Input
= 3, S-Video Input
. Video Input3 =0, Front Connector
10 Bit[] F/B setting =1, Rear Connector
Bit .
[5:3] Physical Connector ID
Bit
[7:6] Reserved
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

E-6 Proprietary and Confidential

Table E-1 Multimedia Table, Revision 1 (Continued)

OrEe! Field Definition Code Description
(byte)
=0, Unused / Invalid
Bit Video Input4 =1, Tuner Input
[1:0] Type = 2, Composite Input
= 3, S-Video Input
. Video Input4 =0, Front Connector
1 Bit [2] F/B setting =1, Rear Connector
Bit .
[5:3] Physical Connector ID
Bit
[7:6] Reserved

Video decoder device offers a certain input selection that defines the video input and the
combination of composite and S-video source. The following table maps out the possible
video selection for each decoder type used by ATI products.

Table E-2 ATI-used decoder types and its video selections

BT819/829 BT829A/B RAGE THEATER
Video Input0 MuxO C/sV Mux0O C/sV CompO C
Video Inputl Mux1 C/SV Mux1 C/svV Compl C
Video Input2 Mux2 C/IsV Mux2 C/sV Comp2 C
Video Input3 X - Mux3 C/IsV Comp3 C/ISV
Video Input4 X - X - Comp4 C/sV

C/SV -Composite/S-Video. C can be used for tuner source or composite source.
For BT8x9, only one S-Video can be selected

© 1999 ATI Technologies Inc.

Proprietary and Confidential

RAGE 128 Software Development Manual

E-7

E.3 BIOS Hardware Configuration Table

Table E-3 Hardware Configuration Table

Offset
(byte)

Field

Definition

Code Description

0-3

Hardware info table signature string "$ATI”

4

Hardware info table revision

5

Hardware info table size

Bits
[3:0]

12C_Type

=0, Normal GP_IO (12C data=GP_lO2, clock=GP_IO1

=1, ImpactTV GP_IO

=2, Dedicated I12C Pin

= 3, GPIO (I2C data=GP_|012, clock=GP_l013
= 4, GPIO (12C data=GP1012, clock=GPI010

= 5, RAGE THEATER I2C Master

=6, Using Rage128 MPP2 Pin (MPP2 is not used in this

configuration)
= 7-14, Reserved
= 15, No I2C Configuration

Bits
[7:4]

Reserved

Bits
[3:0]

TVOut
Support

, No TVOut supported

, ImpactTV1 supported

, ImpactTV2 supported

, Improve Impact TV2 supported
, RAGE THEATER supported
-15, Reserved

Bits
[6:4]

Video Out
Crystal

Frequency

, TVOut not Installed

, 28.63636 MHz Crystal

, 29.49892713 MHz Crystal
, 27.0 MHz Crystal

, 1431818 MHz Crystal

-7, Reserved

Bit 7

Impact TV

Data Port

POl WONPFPO OOMWNPEFO

RAGE 128 Software Development Manual

E-8

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Table E-3 Hardware Configuration Table (Continued)

OrEe! Field Definition Code Description
(byte)
Bit 0 Video Port =0, AMC/DVSO Video Port (VP) un-supported
Capability =1, AMC/DVSO0 VP supported

Bit 1 =0, ZV VP un-supported.

=1, Zoom Video (ZV) VP supported
8 Bit 2 =0, AMC/DVSL1 not supported

=1, AMC/DVSL1 supported.

Bit 3 =0, VIP 16 bit not supported
=1, VIP 16 hit supported.

Bits

[7:4] Reserved
=0, No Host Port
=1, MPP Host Port

Bits Host Port =2, 2 bit VIP Host Port

[3:0] Configuration = 3, 4 bit VIP Host Port

9 = 4, 8 bit VIP Host Port

= 5-15, Reserved

Bits

[7:4] Reserved

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential E-9

E.4 BIOS Tables for RAGE 128 / RAGE THEATER Board

E.4.1 Multimedia Table

Please note the OEM default setting. The OEM default profile is defined when OEM ID
(Product ID) is equal 10 and OEM revision is equal 0. These conditions provide for
Multimedia table field values to be within the predefined seeing range and avoid any
OEM-specific configurations. If there is an OEM-specific setting, an OEM ID as well as
an OEM revision must be defined.

Table E-4 RAGE 128 / RAGE THEATER board Multimedia table

Offset - — OEM Kitchener Toronto Victoria AIWPro
(bytes) Tield Definition Default NA NA NA NA
-2 1 1 1 1 1
-1 12 12 12 12 12
0 Bit [4:0] Tuner Type X 6 6 6 6
Bit [7:5] Video Input for
Tuner X 0 0 0 0
1 Bit [3:0] Audio Chip Type X 2 8 2
Bit[4] Product Type 0 1 1 1 1
Bit [7:5] OEM Revision 0 0 0 0 0
Bit [7:0] Product ID 10 5 6 8 2

Bit [1:0] Tuner Voltage

Regulator Control X 0 0 0 1
Bit [3:2] Hardware Teletext
Support X 0 0 0 0
Bit [5:4] FM Audio Decoder X 0 0 0 0
Bit[6] Reserved X 0 0 0 0
Bit[7] Audio Scrambling X 0 0 0 0
4 Bit[0] 1°S Input
Configuration 0 0 1 0 0
Bit[1] 1%S Output
Configuration 0 0 0 0 0
Bit [4:2] 1%S Audio Chip 0 0 2 0 0
Bit[5] S/PDIF
Configuration 0 0 1 0 0
Bit [7:5] Reserved 0 0 0 0 0
g Bit[30] x:ggglgecoder ype 3 6 6 3
Bit [7:4] Standard/Crystal X ! 5 6 L
6 Bit [2:0] Video Decoder Host
Config 0 0 2 1 0
Bit [7:3] Reserved 0 0 0 0 0
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

E-10 Proprietary and Confidential

Table E-4 RAGE 128 / RAGE THEATER board Multimedia table (Continued)

ff . I EM Kitchener Toron Victoria AIWPr
(Obyfee;) Field Definition gefault NA Nc/)_\o e NXtO a NA 0
7 Bit [1:0] Video InputO Type X 1 1 1 1
Bit[2] Video Input0 F/B
setting 0 0 0 0 0
Bit [5:3] Physical Connector
ID 0 0 0 0 0
Bit [7:6] Reserved 0 0 0 0 0
8 Bit [1:0] Video Inputl Type
Bit[2] Video InputO F/B
setting 0 0 0 0 0
Bit [5:3] Physical Connector
ID 0 0 0 0 0
Bit [7:6] Reserved 0 0 0
9 Bit [1:0] Video Input2 Type
Bit [2] Video InputO F/B
setting 0 0 0 0 0
Bit [5:3] Physical Connector
ID 0 0 0 0 0
Bit [7:6] Reserved 0 0 0 0 0
10 Bit [1:0] Video Input3 Type
Bit[2] Video InputO F/B
setting 0 0 0 0 0
Bit [5:3] Physical Connector
ID 0 0 0 0 0
Bit [7:6] Reserved 0 0 0 0 0
11 Bit [1:0] Video Input4 Type
Bit[2] Video InputO F/B
setting 0 0 1 1 0
Bit [5:3] Physical Connector
ID 0 0 0 0 0
Bit [7:6] Reserved 0 0 0 0 0

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual

E-11

E.4.2 Hardware Configuration Table

Table E-5 RAGE 128 / RAGE THEATER board Hardware Configuration table

Default (without MM) Default (with MM)
Offset q e
(bytes) Field Description RACE LT RAGE RAGE RAGE pho RAGE | RAGE
XLIXC PRO Mobility 128 PRO XL Mobility | 128
0-3 Table Signature $ATI $ATI $ATI $ATI $ATI $ATI $ATI $ATI
4 Revision 2 2 2 2 2 2 2 2
Table size 10 10 10 10 10 10 10 01
6 Bit[3:0] 12C_Type 2 0 15 2 2 3 3 2
Bit [7:4] Reserved 0 0 0 0 0 0 0 0
Bit[3:0] TVOut Support 0 3 3 2 0 3 3 2
7 Bit [6:4] Crystal Frequency 0 0 0 1 0 0 0 1
Bit [7] Impact TV data
Port 0 0 0 0 0 0 0 0
Bit [0] AMC/DVSO0 Port 1 0 0 1 1 0 0 1
Bit [1] Zoom Video Port 0 1 1 0 0 1 1 0
8 Bit [2] AMC/DVS1 Port 0 0 0 0 0 0 0 0
Bit [3] VIP 16 bit Port 0 0 0 0 0 0 0 0
Bit [7:4] Reserved 0 0 0 0 0 0 0 0
Bit [3:0] Host Port
9 Configuration 0 0 0 0 0 0 0 0
Bit [7:4] Reserved 0 0 0 0 0 0 0 0
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

E-12 Proprietary and Confidential

F1 Scope

This section provides a summary of the CCE command packets. In CCE mode,
programming the RAGE 128 does not require writing directly to the registers to draw 2D
or 3D images. Instead, the data is prepared in the format ofCo@#nand Packeis

system memory, and the hardware microengine does the work of drawing.

There are four types of CCE command packets:

e TypeO
* Typel
e Type?2
e Type3

A CCE command packet consists of:

* A packet headeidentified by field HEADER. The packet header defines the
operations to be carried out by the CCE microengine.

¢ Aninformation bodyidentified by IT_BODY, that follows the header. The
information body contains the data to be used by the engine in carrying out the
operation.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-1

F.2 Notation used this Section

Brackets are us€gd to denote a DWORD in a packet.

Braced{ } are used to denote a size-varying field that may consist of a number of
DWORDs.

If a DWORD is shared by more than one field, the fields are separated by ‘|".

The field that appears on the far left takes the most significant bits, and the field that
appears on the far right takes the least significant bits.

e For example: DWORD [HI_WORD | LO_WORD] denotes that HI_WORD is
defined on bits 31:16, and LO_WORD on bits 15:0.

A C-style notation of referencing an element of a structure refers to a subfield of a
main field.

* For example: MAIN_FIELD.SUBFIELD refers to the subfield SUBFIELD of
MAIN_FIELD.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-2

Proprietary and Confidential

Type-0 CCE Packet

4.1 Type-0 CCE Packet

Purpose: For writingN DWORDs in the information body to tiNconsecutive registers
(or to the register) that is pointed to by the BASE_INDEX field of the packet
header. The use of this type of packet requires the complete understanding of
the registers to be written.

1 _[3]3[2]2[2]2[2]2[2]2]2]2]a[a x| 2 a 2]a]2]a
Bitposition ™1 |0|9|8|7|6|5|4|3]|2|1|0|9|8|7|6|5]4|3|2|1|0]|®|8|7 || |4|3]|2|1|O
Packet Header —0 0O COUNT a BASE_INDEX
/
REG_DATA_1
REG_DATA_2
IT_BoDY <
REG_DATA_n
g

Figure 4-1. Type 0 CCE Packet

Table 4-3 Format for a Type-0 CCE Packet

Ordinal Field Name
1 [HEADER]
2 [REG_DATA_1]
3 [REG_DATA_2]
N+1 [REG_DATA_N]

Table 4-4 Header Fields for a Type-0 CCE Packet

Bit(s) Field Name Description

Memory-mapped address (in units of DWORDS)
of the first register to be written.

14:11 Reserved N/A

0 - Write the data to N consecutive registers.
1 - Write all the data to the same register.

10:0 BASE_INDEX

15 ONE_REG_WR

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-3

Type-0 CCE Packet

Table 4-4 Header Fields for a Type-0 CCE Packet

Bit(s) Field Name Description
Count of DWORDs in the information body. Its
29:16 COUNT value should be N-1 if there are N DWORDs in
the information body.
31:30 TYPE Packet identifier. It should be 0.

Table 4-5 Information Body for a Type-0 CCE Packet

Bit(s) Field Name Description
The bits correspond to those defined for the
31:.0 REG_DATA_x relevant register. See the RAGE 128 Register

Reference for details.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-4 Proprietary and Confidential

Type-0 CCE Packet

F.3 Type 1 CCE Packet

Purpose For writing REG_DATA_1 and REG_DATA_2 in the information body
respectively to the registers pointed to by REG_INDEX1 and REG_INDEX2.

. . 3(3|2(2|2(2]|2|2|2|2 1(1|1f1{1|1{1|1{1
Packet Header —0 1 Reserved REG_INDEX2 REG_INDEX1
REG_DATA_1
IT_BODY
REG_DATA_2

Figure 4-2. Type 1 CCE Packet

Table 4-6 Format for a Type 1 CCE Packet

Ordinal

Field Name

[HEADER]

[REG_DATA 1]

[REG_DATA_2]

Table 4-7 Header Fields for a Type 1 CCE Packet

Bit(s) Field Name Description
. The field points to a memory-mapped register
10:0 REG_INDEX1 that REG_DATA_1 is written to.
. The field points to a memory-mapped register
2Ll REG_INDEX2 that REG_DATA_2 is written to.
29:22 Reserved N/A
31:30. TYPE Packet identifier. It should be 1.

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual

F-5

Type-0 CCE Packet

Table 4-8 Information Body for a Type 1 CCE Packet

Bit(s) Field Name Description

The bits correspond to those defined for the
31:.0 REG_DATA_x relevant register. See the RAGE 128 Register
Reference for details.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-6 Proprietary and Confidential

Type-0 CCE Packet

F.4 Type 2 CCE Packet

Purpose For filling up the trailing space left when the allocated buffer for a packet, or
packets, is not fully filled.

This allows the microengine to skip the trailing space and to fetch the next
packet. This is a filler packet. It has only the header. Its content is not important
except for bits 30 and 31.

1 _[3]3[2]2]2]2]2[2]2[2]2]2]x]2 []2 [22]2 22
Bitposition ™11 1019 (8|7|6|5(4[3[2|1|0|9|8|7|6|5]|4|3]2[1|0]|°|8|7|®|5|4|3|2|%|°

Packet Header —11 0 Reserved

Figure 4-3. Type 2 CCE Packet

Table 4-9 Format of a Type 2 CCE Packet

Ordinal Field Name
1 [HEADER]

Table 4-10 Header Fields of a Type 2 CCE Packet

Bit(s) Field Name Description
29:0 reserved N/A
) Packet identifier. It
3130 TYPE should be 2.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential F-7

Type-0 CCE Packet

F.5 Type 3 CCE Packet

Purpose For carrying out the operation indicated by field IT_OPCODE.

Type-3 packets have a common format in their headers. However, the size of
their information body may vary depending on the value of field IT_OPCODE.
The size of the information body is indicated by the field COUNT. If the size of
the information is N DWORDs, the value of COUNT is N-1. In the following
packet definitions, we will describe the field IT_BODY for each packet with
respect to a given IT_OPCODE, and omit the header.

| _[3]8]2]2]2]2]2]2]2]2]2[2[2 |2 [a a2 2 2 2]2]2
Bit position 1lo|o|8|7|6|5|4|3|2|1|0|9|8|7|6|5[4|3|2|1[0]®|8]|7|6[>]4]3]|2|1|0
Packet Header —1 1 COUNT IT_OPCODE Reserved
/
DATA_1
DATA_2
IT_BoDY <
DATA_n
.

Figure 4-4. Type 3 CCE Packet

I'I'able 4-11 Formal for a Type 3 CCE Packet

Ordinal Field Name
1 [HEADER]
) {IT_BODY}

Information Body

Table 4-12 Header Fields for a Type 3 CCE Packet

Bit(s) Field Name Description
7:0 reserved This field is undefined and is set to zero by
default.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-8 Proprietary and Confidential

Type-0 CCE Packet

Table 4-12 Header Fields for a Type 3 CCE Packet

Bit(s) Field Name Description
158 IT OPCODE Operatlgn to be carried out. See section B.2
- for details.
Number of DWORDs - 1 in the information
29:16 COUNT body. It is N-1 if the information body contains
N DWORDs.
31:30 TYPE Packet identifier. It should be 3.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential F-9

Type-0 CCE Packet

F.6 Summary of the CEE Packets

Table 4-13 Summary of the CEE Packets

IT_ _
Packet Name OPCODE Description
NOP 0x10 Skip N DWORDs to get to the next packet.
PAINT 0x91 Paint a number of rectangles with a color
brush.
SMALL TEXT 0x93 Draw a string of small characters on the
- screen.

Draw a string of large characters on the
HOSTDATA_BLT 0x94 screen, or copy a number of bitmaps to the
video memory.

Draw a polyline (lines connected with their

POLYLINE 0x95
ends).
Scale the given rectangular screen area by a
SCALE 0x96 factor. This packet is used by both 2D and 3D
operations.
A transparent scaling operation in which the
information of the source rectangle mixes with
TRANS_SCALE 0x97 the destination. This packet is actually used
only by 3D graphics.
POLYSCANLINES 0x98 Draw polyscanlines or scanlines.
Print a character at a given screen location
NEXTCHAR 0x19 using the default foreground and background
colors.
PLY_NEXTSCAN 0x1D Draw polyscanlines using current settings.
SET_SCISSORS Ox1E Set up scissors.
SET_MODE_24BPP Ox1F Set the 24bpp mode flag.
Paint a number of rectangles on the screen
with one color. The difference between this
PAINT_MULTI Ox9A function and PAINT is the representation of
parameters.
Copy a number of source rectangles to
BITBLT_MULTI 0x9B destination rectangles of the screen
respectively.
TRANS_BITBLT 0x9C 2D transparent bitblt operation.
3D_RNDR_GEN_INDX_PRIM 0x23 Draw 3D objects using the vertex walker.
3D RNDR GEN PRIM 0x25 Drgw 3D pplnts, lines, triangles, strips, fans
- - - using the ring buffer.
LOAD_PALETTE 0x2C Load a palette onto RAGE 128 for 2D scaling.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-10 Proprietary and Confidential

Type-0 CCE Packet

Table 4-13 Summary of the CEE Packets (Continued)

IT_ -
Packet Name OPCODE Description
PURGE 0x2D Purge the pixel cache.
Add more vertices to the end of a
NEXT_VERTEX_BUNDLE Ox2E 3D_RNDR_GEN_INDX_PRIM packet.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential F-11

Type-0 CCE Packet

F.7

2D Packets

Table 4-14 Information Body (IT_BODY) of 2-D packets

Ordinal Field Name
1 {SETTINGS}
2 {DATA_BLOCK}

Table 4-15 SETTINGS FIELD for the IT_BODY

Ordinal Field Name
1 [GUI_CONTROL]
2 {SETUP_BODY}

GUI_CONTROL

This subfield will be used to setup the RAGE 128 (regiBterGUI_MASTER_CNT)L
and it also decides the contentSETTINGS.SETUP_BODY

Table 4-16 GUI_CONTROL Subfield for the SETTINGS Field

Bit(s)

Field Name Description

The bit controls the pitch and offset of the blitting source.
0 - Use the default pitch and offset, and no datum

0 SRC_PITCH_OFF [SRC_PITCH_OFFSET] is supplied in SETUP_BODY.
1 - Use the datum [SRC_PITCH_OFFSET] supplied in
SETUP_BODY to set up a new pitch offset.

The bit controls the pitch and offset of the blitting
destination.

0 - Use the default pitch and offset, and no datum
[DST_PITCH_OFFSET] is supplied in SETUP_BODY

1 - Use the datum [DST_PITCH_OFFSET] supplied in
SETUP_BODY. The pitch may mean the bitmap pitch and
the offset may point to the off screen area of video
memory.

1 DST_PITCH_OFF

This bit controls the clipping parameters of the blitting

source.

0 - Use the default clipping parameters, and no relevant
2 SRC_CLIPPING clipping data supplied in SETUP_BODY.

1 - Use datum [SRC_SC_BOT_RITE] supplied in

SETUP_BODY to set up the bottom and right edges of the

clipping rectangle.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-12

Proprietary and Confidential

Type-0 CCE Packet

Table 4-16 GUI_CONTROL Subfield for the SETTINGS Field (Continued)

Bit(s) Field Name

Description

3 DST_CLIPPING

This bit controls the clipping parameters of the blitting
destination.

0 - Use the default clipping parameters, and no relevant
clipping data supplied in SETUP_BODY.

1 - Use data [SC_TOP_LEFT] and
[SC_BOTTOM_RIGHT] supplied in SETUP_BODY to set
up a new clipping rectangle.

74 BRUSH_TYPE

Types of brush used in drawing. The type code
determines how to supply data to the subfield
BRUSH_PACKET in SETUP_BODY. See detailed
definition of BRUSH_TYPE in the following.

11:8 DST_TYPE

The pixel type of the destination.

0, 1 - (reserved)

2 - 8 bpp pseudocolor

3 - 16 bpp aRGB 1555

4 - 16 bpp RGB 565

5- 24 bpp RGB

6 - 32 bpp aRGB 8888

7 - 8 bpp RGB 332

8 - Y8 greyscale

9 - RGB8 greyscale (8 bit intensity, duplicated for all 3
channels. Green channel is used on writes)

10 - (reserved)

11 - YUV 422 packed (VYUY)

12 - YUV 422 packed (YVYU)

13 - (reserved)

14 - aYUV 444 (8:8:8:8)

15 - aRGB4444 (intermediate format only. Not understood
by the Display Controller)

Note: choices 7-15 are only valid in 3D mode

13:12 SRC_TYPE

The field indicates the pixel type of blitting source.

0 - The source data type is mono opaque, and the fore-
and back-ground colors need to be redefined.

1 - The source data type is mono transparent, and only
the foreground color needs to be redefined.

2 - Reserved.

3 - The source pixel type is the same as that given in field
DST_TYPE.

14 PIX_ORDER

The bit decides the order of bits (or pixels) in DWORD to
be consumed. Only applicable to monochrome mode.

0 - Bits to be consumed from the Most Significant Bit
(MSB) to the Least Significant Bit (LSB).

1 - Bits to be consumed from LSB to MSB.

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual
F-13

Type-0 CCE Packet

Table 4-16 GUI_CONTROL Subfield for the SETTINGS Field (Continued)

Bit(s)

Field Name

Description

15

COLOR_CONVT

YUV to RGB conversion temperature
0 - Red at 6500K, GB at 9300K
1 - RGB at 9300K

23:16

WIN31_ROP

This field tells the GUI engine how the raster operation is
to be carried out. The code of this field follows the ROP3
code defined by Microsoft. See Windows 3.1 DDK for
reference.

26:24

SRC_LOAD

The field indicates where the source data come from.
0, 1 - Reserved

2 - loaded from video memory (rectangular trajectory)
3 - loaded through the HOSTDATA registers (linear
trajectory)

4 - loaded through the HOSTDATA registers (linear
trajectory and byte-aligned)

Note that during 3D/Scale Operations (whenever
SCALE_3D_FCN@MISC_3D_STATE_REG is non-zero),
this field is ignored and data is always loaded from the
3D/Scaler pipeline.

27

GMC_3D_FCN_EN(Re
served)

0 - clear SCALE_3D_FCN,Z_EN and STENCIL_EN fields
1 - leave SCALE_3D_FCN,Z_EN, and STENCIL_EN
fields alone

28

GMC_CLR_CMP_FCN
_DIS

0 - No change to CLR_CMP_FCN_SRC and
CLR_CMP_FCN_DST

1- clear CLR_CMP_FCN_DST and
CLR_CMP_FCN_SRCto 0

29

GMC_AUX_CLIP_DIS

0 - No change to AUXn_SC_ENB
1 - clear all AUXn_SC_ENB bits to 0

30

GMC_WR_MSK_DIS

0 - No Change to DP_WR_MSK/CLR_CMP_MSK
1-Set DP_WR_MSK/CLR_CMP_MSK to OXFFFFFFFF

31

BRUSH_FLAG

This field indicates whether there is a field BRUSH_Y_X
field in SETTINGS.SETUP_BODY.

0 - No such a field in SETTINGS.SETUP_BODY.

1- Thereis afield in SETTINGS.SETUP_BODY.

SETUP_BODY

This field may contain the following subfields. Their presence depends on the bits 0-7 of
SETTINGS.GUI_CONTROL

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-14

Proprietary and Confidential

Type-0 CCE Packet

Table F-1 SETUP_BODY Subfield for the SETTINGS Field

Ordinal

Field Name

Description

[SRC_PITCH_
OFFSET]

[20:0] - offset address in units of 32 bytes. This address points to
the memory reference location of the source rectangle.

[30:21] - pitch size (in units of 8 pixels) of the source. Note that in
monochrome mode the source pitch must be a multiple of 128
pixels. In 8bpp mode, source pitch must be a multiple of 16
pixels.

[31] - this is a flag bit that indicates whether the source memory
is in “tiled” format. 1: Tiled format; O: not a tiled format.

[DST_PITCH_
OFFSET]

[20:0] - offset address in the unit of 32 bytes. This address points
to the memory reference location of the destination rectangle.
[30:21] - pitch size (in unit of 8 pixels) of the destination. Note
that in monochrome mode the destination pitch must be a
multiple of 128 pixels. In 8bpp mode, source pitch must be a
multiple of 16 pixels.

[31] - this is a flag bit that indicates whether the destination
memory is in “tiled” format. 1: Tiled format; 0: not a tiled format.

[SRC_SC_BOT_RITE]

The parameters are used to setup the clipping area of the
source. The implied coordinates of the top-left corner of the
clipping rectangle is the same as the source.

[13:0] - x-coordinate of the right edge of the clipping rectangle (in
number of pixels).

[29:16] - y-coordinate of the bottom edge of the clipping
rectangle (in number of scanlines).

[SC_TOP_LEFT]
[SC_BOT RITE]

The parameters are used to setup the clipping area of
destination.

SC_TOP_LEFT:

[13:0] - x-coordinate of the left edge of the clipping rectangle (in
number of pixels).

[29:16] - y-coordinate of the top edge of the clipping rectangle (in
number of scanlines).

SC_BOT_RITE:

[13:0] - x-coordinate of the right edge of the clipping rectangle (in
number of pixels).

[29:16] - y-coordinate of the bottom edge of the clipping
rectangle (in number of scanlines).

{BRUSH_PACKET}

The content of this field is determined by field
SETTINGS. GUI_CONTROL.BRUSH_TYPEee the following
table for the possible content.

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual
F-15

Type-0 CCE Packet

Table F-1 SETUP_BODY Subfield for the SETTINGS Field (Continued)
Ordinal Field Name Description
[4:0] - x-coordinate for brush alignment.
[12:8] - y-coordinate for brush alignment.
[20:16] - Initial value used for BRUSH_X pointer in drawing
6 [BRUSH_Y X] Lines. When POLY_LINE is off, itis reloaded from BRUSH_X at

value.

the end of the line. When POLY_LINE is on, it is reloaded from
the current Brush pointer at the end of the line. Whenever
BRUSH_X is updated, the field should be written with the same

Table F-2 SETTINGS for SETUP_BODY.BRUSH_PACKET

BTR¢JPS£| Description of the brush Packet size Packet content
A 8 x 8 mono pattern with the foreground and [BKGRD_COLOR]
0 background colors specified in the packet. Here 4 DWORDS [FRGRD_COLOR]
the matrix is represented in the format [MONO_BMP_1]
column-by-row. [MONO_BMP_2]
A 8 x 8 mono pattern with the foreground color [FRGRD_COLOR]
1 specified in the packet and the background color 3 DWORDs [MONO_BMP_1]
the same as that of the area to be painted. [MONO_BMP_2]
A 8 x 1 (8 columns by 1 row) mono pattern with [BKGRD_COLOR]
2 the foreground and background colors specified 3 DWORDs [FRGRD_COLOR]
in the packet. [MONO_BMP_1]
A 8 x 1 mono pattern with the foreground color
3 specified in the packet and the background color 2 DWORDs [FS(();I\FIQ(?_BCI(\/IDIEOE]
the same as that of the area to be painted. - -
. [BKGRD_COLOR]
4 A 1 x 8 mono pattern WIFh thg foreground and 3 DWORDSs [FRGRD_COLOR]
background colors specified in the packet. [MONO_BMP_1]
A 1 x 8 mono pattern with the foreground color
5 specified in the packet and the background color 2 DWORDs ['[:Sgﬁg—gﬁéoﬁ]
the same as that of the area to be painted. - -
. [BKGRD_COLOR]
6 A 32 x 1 mono pattern V_II.T.h the foreground and 3 DWORDS [FRGRD_COLOR]
background colors specified in the packet. [MONO_BMP 1]
A 32x1 mono pattern with the foreground color
7 specified in the packet and the background color 2 DWORDs [FSSEOD_ISA(A);OE]
the same as that of the area to be painted. - -

RAGE 128 Software Development Manual

F-16

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Type-0 CCE Packet

Table F-2 SETTINGS for SETUP_BODY.BRUSH_PACKET (Continued)
B.I%JPS; Description of the brush Packet size Packet content
[BKGRD_COLOR]
. [FRGRD_COLOR]
8 A 32x32 mono pattern V\./It[h the foreground and 34 DWORDs [MONO_BMP_1]
background colors specified in the packet.
[MONO_BMP_32]
A 32x32 mono pattern with the foreground color [l[:l\|/?|(()3l\Fl{(E))_BCI(\/|)|golR]]
9 specified in the packet and the background color | 33 DWORDs - -
the same as that of the area to be painted. [MONO_BMP_32]
16*N DWORDs,
where N stands
for the number
A 8x8 color pattern. The pixel type is given by of bytes per {ggtgﬁ—SM§—;}
10 the field pixel with - -
SETTINGS.GUI_CONTROL.DST_TYPE. exceptlon.that.a [COLOR_BMP_16*N]
24-BPP pixel is
still represented
by 4 bytes.
[COLOR_BMP_1]
A 8x1 color pattern. The pixel type is given by . [COLOR_BMP_2]
H field SETTINGS.GUI_CONTROL.DST_TYPE 2* N DWORDs
[COLOR_BMP_2*N]
[COLOR_BMP_1]
A 1x8 color pattern. The pixel type is given by . [COLOR_BMP_2]
12 field SETTINGS.GUI_CONTROL.DST_TYPE 2*N DWORDs
[COLOR_BMP_2*N]
Use the color specified in the packet as the solid
13 (plain) color for the brush, i.e. a color brush 1 DWORD [FRGRD_COLOR]
without a pattern.
14 reserved not applicable
15 No brush used. 0

Table F-3 Pixel size in bytes

GUI_CONTROL.DST_TYPE

SETTINGS for N

0-1 not applicable
2 1
3 2

© 1999 ATI Technologies Inc.

Proprietary and Confidential

RAGE 128 Software Development Manual
F-17

Type-0 CCE Packet

Table F-3 Pixel size in bytes (Continued)

SETTINGS for N
GUI_CONTROL.DST_TYPE
4 2
5 3
6 4
7 1
8-15 not applicable

Table F-4 Contents of Brush Packet

Field Name Description

The foreground color of the text in RGBQUAD format.
[7:0] - intensity of Blue;

[FRGRD_COLOR] [15:8] - intensity of Green

[23:16] - intensity of Red.

[31:25] - reserved.

The background color of the text in RGBQUAD format.
[7:0] - intensity of Blue;

[BKGRD_COLOR] [15:8] - intensity of Green

[23:16] - intensity of Red.

[31:25] - reserved.

Raster data of monochrome pixels. One bit represents one pixel. If the number
[MONO_BMP_x] of pixels for the field is less than 32, the pixels take the lower bits. The
remaining bits should be filled with 0’s.

[COLOR_BMP_x] Raster data of color pixels. The representation depends on the pixel type.

DATA_BLOCK

The composition of this field depends on the operation Ebd®@PCODEgiven in the
header. Section B.2 gives detailsdATA_BLOCKuvith respect tdT_OPCODE In the
following, the fieldSETTINGSmay appear in the definition of a packet, but will not be
described further.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-18 Proprietary and Confidential

Type-0 CCE Packet

F.8 NOP

Packet Type 2D

Purpose For skipping a number of DWORDSs to get to the next packet.

Table F-5 format for NOP

Ordinal Field Name
1 [HEADER]
2 {DATA_BLOCK}

DATA BLOCK for NOP
This field may consists of a number of DWORDs, and the content may be anything.

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual
F-19

Type-0 CCE Packet
F9 PAINT

Packet Type 2D

Purpose For painting a number of rectangles with a color brush.

Table F-6 Format for PAINT

Ordinal Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}

Table F-7 DATA BLOCK for PAINT

Ordinal Field Name Description

The coordinates of the top-left corner of the 1st rectangle to be
painted.
LEFT_1: [15:0] - x-coordinate, ranging from -8192 to 8191. Bits

L [TOP_L|LEFT_1] [14] and [15] should be copies of bit [13].
TOP_1: [31:16] - y-coordinate, ranging from -8192 to 8191. Bits
[30] and [31] should be copies of bit [29].
The coordinates of the bottom-right corner of the 1st rectangle to
be painted.
RITE_1: [15:0] - x-coordinate, ranging from -8192 to 8191. Bits [14]

2 [BOTM_1[RITE_1] | 1nd [15] should be copies of bit [13].
BOTM_1: [31:16] - y-coordinate, ranging from -8192 to 8191. Bits
[30] and [31] should be copies of bit [29].

on-1 [TOP_n | LEFT n] Th_e coordinates of the top-left corner of the n-th rectangle to be

painted.

on [BOTM_n | RITE_n] The cpordlnates of the bottom-right corner of the n-th rectangle to
be painted.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-20 Proprietary and Confidential

Type-0 CCE Packet

F.10 SMALL_TEXT

Packet Type 2D

Purpose For printing a string of characters on the screen in the format of the bit-packed
Small Glyph.

Table F-8 Format for SMALL_TEXT

Ordinal | Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}

Table F-9 DATA_BLOCK for SMALL_TEXT

Ordinal | Field Name Description

The foreground color of the text in the RGBQUAD format.
BLUE: [7:0] - intensity of the blue component.

1 [FRGD_COLOUR] | GREEN: [15:8] - intensity of the green component.

RED: [23:16] - intensity of the red component.

bits [31:25] - reserved.

The base coordinates of the text rectangle in the screen coordinate
system. See the following illustration for details.

2 [BAS_Y | BAS_X] BAS_X: [15:0] - x-coordinate.
BAS_Y: [31:16] - y-coordinate.
3 {SMALLCHAR_1} | The 1st character of the text.

n+2 {SMALLCHAR_n} | The n-th character of the text, i.e., the last character.

Table F-10 DATA BLOCK for SMALLCHAR_x

Ordinal Field Name | Description

The geometry of the bitmap and the deviation of its top-left corner from
the base coordinates.

AX: [7:0] - deviation from the base x-coordinate of the preceding glyph
AY: [15:8] - deviation from the base y-coordinate.

W: [23:16] - width of the character bitmap

H: [31:25] - height of the character bitmap.

2 [RASTER_1] | The 1st DWORD of the mono bitmap data.

1 [H|W|AY | AX]

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-21

Type-0 CCE Packet

Table F-10 DATA BLOCK for SMALLCHAR_x (Continued)

Ordinal Field Name | Description

m+1 [RASTER_m] | The m-th DWORD of the mono bitmap data.

Parameters H, W,AY and AX

The relationship between the parameters and the reference coordinates BAS_X and
BAS _Y is shown in the following figure. In the figure, the starting position of text is at
(bas_x, bas)y The actual sizes of characters ‘b’, ‘0’ and ‘y’ respectively && 4x5

and &9. Therefore, the related parameters are:

e H,;=8,W,=4,Ax,=0, andAy,= 8
e H,=5W,=4,Ax=6, andAy,=5
e H3=9,W;=6,Ax;=5, andAy;=5

(0, 0) > X
} AXL — No—p-a— \Xz—
;l <_Wl_>{ <_W2—>{ <_Ws_V‘
i T T
M
AY1 H: ? 4
| IR
%{3
I A
*—BAS_X > l
\/
y
Figure 4-5. Drawing Small Text
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-22 Proprietary and Confidential

Type-0 CCE Packet

RASTER_x
Raster_x represents the data block of a mono bitmap. The bitmap represents the raster
image of a character. This data block corresponds to the bitmap data following structure

SMALLBITGLYPH in Windows95 DDK.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-23

Type-0 CCE Packet
F11 HOSTDATA_BLT

Packet Type 2D

Purpose For copying a number of bit-packed bitmaps to the video memory. It can be
used to print a string of large characters on the screen. In other words, the
function supports the LARGEBITGLYPH structure of Windows95 DDK.

Table F-11 Format

Ordinal | Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}

Table F-12 DATA_BLOCK

Ordinal Field Name Description

Foreground color in RGBQUAD format. For mono-to-color expansion
only. The field is ineffective if field SRC_TYPE at

L [FRGD_COLOUR] SETTINGS.GUI_CONTROL is set to a type other than mono opaque
or mono transparent (0 or 1).
Background color in RGBQUAD format. For mono-to color expansion
only. The field is ineffective if field SRC_TYPE at

2 [BKGD_COLOUR] SETTINGS.GUI_CONTROL is set to a type other than mono opaque
or mono transparent (0 or 1).

3 {BIGCHAR_1} Data block of the 1st character.

m+2 {BIGCHAR_m} Data block of the m-th character.

Table F-13 DATA BLOCK for BIGCHAR_x

Ordinal Field Name Description
The coordinate of the top-left corner of the character’s bitmap.
1 [BaseY | BaseX] | BaseX: [15:0] - x-coordinate.

BaseY: [31:16] - y-coordinate.
The geometry of the bitmap.

2 [HEIGHT | WIDTH] | WIDTH: [15:0] - width of the bitmap.
HEIGHT: [31:16] - height of the bitmap.
3 [NUMBER] The number of DWORDSs in the bitmap. It should be m in this case.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-24 Proprietary and Confidential

Type-0 CCE Packet

Table F-13 DATA BLOCK for BIGCHAR _x (Continued)

Ordinal Field Name Description
4 [RASTER_1] The 1st DWORD of the mono bitmap data.
m+3 [RASTER_m] The m-th DWORD of the mono bitmap data.

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual

F-25

Type-0 CCE Packet

F.12 POLYLINE

Packet Type 2D

Purpose

For drawing a polyline specified by a set of coordinatgs/d), (X1, Y1), ...,
(Xn Yn), Where coordinatex, y,) is the beginning of the polyline, and
coordinate X, yy) is the end.

Table F-14 Format for POLYLINE

Ordinal | Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}

Table F-15 DATA_BLOCK for POLYLINE

Ordinal Field Name Description
The starting coordinate of the polyline.
1 [YO | X0] XO0: [15:0] - x-component of the coordinate. YO: [31:16] -
y-component.
2 [Y1]|X1] The 2nd coordinate of the polyline.
n+1 [Yn| Xn] The ending coordinate of the polyline.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-26

Proprietary and Confidential

Type-0 CCE Packet

F.13 SCALE
Packet Type 2D

Purpose For stretch or compressing the texture pattern stored in a bitmap, and put the
scaled pattern to the destination area in the video memory.

Table F-16 Format

Ordinal | Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}

Table F-17 DATA_BLOCK for SCALE

Ordinal Field Name Description

1 [MISC_3D_STATE] This flleld specme.s the operation to be carried out. See
following for details.
The bits of this field enable or disable the operations (alpha

2 [TEX_CNTL] and fog) specified in field MISC_3D_STATE. See below for
details.
This field corresponds to register

3 [TEX_COMB_CTL] PRIMARY_TEXTURE_COMBINE_CNTL. See below for
details.

4 [SCALE_DATATYPE] | See below.

[25:0] - Offset of texture in video memory. (Alias to
TEX_O_OFFSET)
[31:30] - Texture mapping mode

5 [SCALE_OFFSET] 0 - Texture surface is not tiled.
1 - Texture surface is tiled by the host application.
2, 3 - Texture surface is stored in a tiled surface.

[SCALE_PITCH] See below.
(Reserved) This field should be set to 0.

Scaling factor in x-direction. Its value is SRC_W/DST_W,
where SRC_W and DST_W denote the widths of the source
and destination images respectively.

8 [SCALE_X_INC] [19:16] - Integer part of the factor.
[15:4] - Fractional part of the factor.
[Other bits] - reserved.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential F-27

Type-0 CCE Packet

Table F-17 DATA_BLOCK for SCALE (Continued)

Ordinal Field Name Description
Scaling factor in y-direction. Its value is SRC_H/DST_H,
where SRC_H and DST_H denote the heights of the source
and destination images respectively.
9 [SCALE_Y_INC] [19:16] - Integer part of the factor.
[15:4] - Fractional part of the factor.
[Other bits] - reserved.
The coordinate of the top-left corner of the destination bitmap.
10 [DST_X | DST_Y] DST_X: [29:16] - x-coordinate expressed in a signed integer.
DST_Y: [13:0] - y-coordinate expressed in a signed integer.
The width and height of the destination bitmap expressed in
11 [DST_H | DST_W] unsigned integers.

DST_W: [13:0] - width. DST_H: [29:16] - height

Table F-18 DATA BLOCK for MISC_3D_STATE

Bit(s) | Field Name Description
7.0 REF_ALPHA Reference Alpha value for alpha testing when the test is enabled.
9:8 SCALE_3D_FCN Setto 1 to enable the scaling operation.
11:10 | (Reserved)
13:12 | ALPHA_COMB._| This field defines how the resultant Alpha is computed in Alpha
FCN blending.
Let Alpha, Src and Dst denote the resultant, the source and destina-
tion alphas respectively, where Src=Ws*Sa and Dst=Wd*Sa. The
combining operation can be written as Alpha=Src OP Dst, where
operator OP is defined as:
0 - Add operation, and the resultant Alpha is limited to range [0, 1]
1 - Add operation
2 - Subtract operation and Alpha = Alpha MOD 1.0
3 - Subtract operation.
Note: Generally, Alpha is defined in range [0, 1]. However, it may
be represented in an integer ranging from 0 to 255. In this cage, the
right-operand of MOD should be 256.
14 FOG_TABLE_ |0-FOG_VERTEX
EN 1- FOG_TABLE
15 (Reserved)

RAGE 128 Software Development Manual

F-28

© 1999 ATI Technologies Inc.

Proprietary and Confidential

Type-0 CCE Packet

Table F-18 DATA BLOCK for MISC_3D_STATE (Continued)

Bit(s) | Field Name Description
19:16 | ALPHA_BLND_ | This field select the weighting factors (Wa, Wr, Wg, Wb) for the
SRC source pixel in the blending operation. Assume that source an

0 des-

tination pixels are denoted respectively as (Sa, Sr, Sg, Sb) and (Da,

Dr, Dg, Db).

0 - BLEND_ZERO (Wa=Wr=Wg=Wb=0)

1 - BLEND_ONE (Wa=Wr=Wg=Whb=1)

2 - BLEND_SRCCOLOUR (not applicable)

3 - BLEND_INVSRCCOLOUR (not applicable)

4 - BLEND_SRCALPHA (Wa=Wr=Wg=Wb=Sa)

5 - BLEND_INVSRCALPHA (Wa=Wr=Wg=Wb=1-Sa)

6 - BLEND_DESTALPHA (Wa=Wr=Wg=Whb=Da)

7 - BLEND_INVDESTALPHA (Wa=Wr=Wg=Whb=1-Da)

8 - BLEND_DESTCOLOUR (Wa=Da, Wr=Dr, Wg=Dg, Wb=Db

9 - BLEND_INVDESTCOLOUR (Wa=1-Da, Wr =1-Dr, Wg=1-D
Wh=1-Db)

10 - BLEND_SRCALPHASAT (Wa=1, Wr=Wg=Wb=min(Sa,
1-Da))

11 - BLRND_BOTHSRCALPHA (Wa=Wr=Wg=Wb=Sa, and

assign factor 1-Sa to each weighting factor of the destinatian

pixel)

12 - BLEND_BOTHINVSRCALPHA (Wa=Wr=Wg=Wb=1-Sa,
and assign factor Sa to each weighting factor of the desting
pixel)

13-15 - Reserved

ition

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual
F-29

Type-0 CCE Packet

Table F-18 DATA BLOCK for MISC_3D_STATE (Continued)

Bit(s)

Field Name

Description

23:20

ALPHA BLND_
DST

This field select the weighting factors (Wa, Wr, Wg, Wb) for the
destination pixel in the blending operation. Assume that so
and destination pixels are denoted respectively as (Sa, Sr,
Sb) and (Da, Dr, Dg, Db).

0 - BLEND_ZERO (Wa=Wr=Wg=Wb=0)

1 - BLEND_ONE (Wa=Wr=Wg=Wb=1)

2 - BLEND_SRCCOLOUR (Wa=Sa, Wr=Sr, Wg=Sg, Wh=Sb)

3 - BLEND_INVSRCCOLOUR (Wa=1-Sa, Wr=1-Sr, Wg=1-Sg,
Wb=1-Sh)

4 - BLEND_SRCALPHA (Wa=Wr=Wg=Wb=Sa)

5 - BLEND_INVSRCALPHA (Wa=Wr=Wg=Wb=1-Sa)

6 - BLEND_DESTALPHA (Wa=Wr=Wg=Wb=Da)

7 - BLEND_INVDESTALPHA (Wa=Wr=Wg=Wb=1-Da)

8 - BLEND_DESTCOLOUR (not applicable)

9 - BLEND_INVDESTCOLOUR (not applicable)

10 - BLEND_SRCALPHASAT (not applicable)

11-15 - Reserved

irce
Sg,

26:24

ALPHA_TST_OF

P Specifies the acceptance criterion in comparing the alpha cor
nent of the new pixel against the reference alpha stored at fielg
REF_ALPHA. The test form is: if (NEWa OPCODE REFa) the
{Accept New Pixel}. The OPCODE is defined as:

0 - The test always fails, i.e. the new pixel is always rejected.
1-CMP_LESS (Less than)

2 - CMP_EQUAL (Equal to)

3 - CMP_LESSEQUAL (Less than or equal to)

4 - CMP_GREATER (Greater than)

5 - CMP_NOTEQUAL (Not equal to)

6 - CMP_ALWAYS (The new pixel is always accepted.)

npo-
)

29:27

(Reserved)

RAGE 128 Software Development Manual

F-30

© 1999 ATI Technologies Inc.

Proprietary and Confidential

Type-0 CCE Packet

Table F-18 DATA BLOCK for MISC_3D_STATE (Continued)
Bit(s) | Field Name Description
31:30 | CLR_CMP_FCN NOTE: This type of color keying is available. when using the o|d
_3D texture interface (execute buffer, DrawPrimitve etc.). When the|new

multi-texture API is used, then the APP must use the texel alp

This is what MS is advocating

ALIASED to CLR_CMP_CNTL_3D) bits 1:0

0 - False (always write the source to the destination)

1 - True (never write the source to the destination)

2 - Texel I= CLR_CMP_CLR_3D (Write to the destination if texel
is equal to the color stored in register CLR_CMP_CLR_3D).

3 - Texel = CLR_CMP_CLR_3D (Write to the destination if texel is
NOT equal to the color stored in register CLR_CMP_CLR_(B8D).

na.

Table F-19 DATA BLOCK for TEX_CNTL

Bit(s) Field Name Description
6:0 NIL1 Set to constant 0.
0 - Disable fogging.
! FOG_EN 1 - Enable fogging.
0 - Disable dithering.
8 DITHER_EN 1 - Enable dithering.
0 - Disable Alpha blending.
9 ALPHA_EN 1 - Enable Alpha blending.
0 - Disable Alpha testing.
10 ALPHA_TST_EN 1 - Enable Alpha testing.
31:11 NIL2 Set to constant 0.

© 1999 ATI Technologies Inc.

Proprietary and Confidential

RAGE 128 Software Development Manual
F-31

Type-0 CCE Packet

Table F-20 DATA_BLOCK for SCALE_DATATYPE

Bit(s) Field Name Description

This field specifies the pixel type of the source bitmap.

0 - 2 bpp VQ (Not supported in the initial part)

1 - 4 bpp pseudocolor. Upper 4 bits of the byte are unused.
2 - 8 bpp pseudocolor

3-16 bpp aRGB 1555

4 - 16 bpp RGB 565

5 - (Reserved)

6 - 32 bpp aRGB 8888

7 - 8 bpp RGB 332

8 - Y8 greyscale

9 - RGB8 greyscale (8 bit intensity, duplicated for all 4 channels.
Green channel is used on writes)

10 - 16 bpp a:pseudocolor (8:8)

11 - YUV 422 packed (VYUY)

12 - YUV 422 packed (YVYU)

13 - 16 bpp a:RGB8 greyscale (8:8)

14 - aYUV 444 (8:8:8:8)

15 - aRGB4444

This field select a palette for pseudo color textures. The
interpretation of the code depends on field SRC_DATATYPE. If
SRC_DATATYPE =1 (4 bpp color), this field selects 1 of 16
possible palettes stored in the system.

If SRC_DATATYPE = 2 (8 bpp pseudo color/VQ textures), this field

3.0 SRC_DATATYPE

7:4 PALETTE :
selects one of the following:
0 - either of 2 palettes
1 - Palette 1
2 - Palette 2
3-15 - (Reserved)

31:8 Reserved

Table F-21 DATA BLOCK for SCALE_PITCH

Bit(s) Field Name Description

Pitch in units of 8 pixels of the source data for RGB and packed
8:0 SCALE_PITCH modes. The pitch is required to be programmed so that all source
lines are an integer number of QWORDs

16:9 Reserved

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-32 Proprietary and Confidential

Type-0 CCE Packet

Table F-21 DATA BLOCK for SCALE_PITCH (Continued)

Bit(s) Field Name Description

This field points to one of registers TEX_x_OFFSET, where x can
be one of values 0, 1, ..., 10. A TEX_x_OFFSET points to the
address of a texture stored in the video memory. This field should
be set to zero (0) for scaling.

0 - Use the texture pointed to by TEX_0_OFFSET as the source.
1 - Use the texture pointed to by TEX_1_OFFSET as the source.

SCALE_OFFSET_ | 10 - Use the texture pointed to by TEX_10_OFFSET as the
PTR source.
11 - Use the texture pointed to by SEC_TEX_0_OFFSET as the
source.
12 - Use the texture pointed to by SEC_TEX_1_OFFSET as the
source.

20:17

15 - Use the texture pointed to by SEC_TEX 14 OFFSET as the
source.

29:21 Reserved

Indicate whether SCALE_PITCH should be adjusted prior to use.
0 - no adjustment on SCALE_PITCH

31:30 SCALE_PITCH_ADJ | 1 - multiply SCALE_PITCH by 2 prior to use

2 - multiply SCALE_PITCH by 4 prior to use

3 - (Reserved)

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-33

Type-0 CCE Packet

Table F-22 DATA_BLOCK.TEX_COMB_CTL

Bit(s)

Field Name

Description

3.0

COMB_FCN

Specifies the function used to modify the color component of primary
texels during the texture combine stage.

0 - Disable. Output color is: texture color (or Interpolator Color if
shading)

1 - Copy. Output color is COLOR_FACTOR

2 - Copy Input. Output color is INPUT_FACTOR

3 - Modulate. Output color is COLOR_FACTOR*INPUT_FACTOR

4 - Modulate*2. Output color is COLOR_FACTOR*INPUT_FACTOR*2

5 - Modulate*4. Output color is COLOR_FACTOR*INPUT_FACTOR*4

6 - Add. Output color is COLOR_FACTOR + INPUT FACTOR

7 - Add Signed. Output color is COLOR_FACTOR + INPUT FACTOR -
128

8 - Blend Vertex. Output color is (COLOR_FACTOR*interpolator alpha)
+ (INPUT_FACTOR*(1 - interpolator alpha)).

9 - Blend_Texture. Output color is (COLOR_FACTOR*primary texel
alpha) + (INPUT_FACTOR*(1 - primary texel alpha)).

10 - Blend Constant. Output color is
(COLOR_FACTOR*CONSTANT_ALPHA) + (INPUT_FACTOR*(1
-CONSTANT_ALPHA)).

11 - Blend Pre Multiply. Output color is COLOR FACTOR +
(INPUT_FACTOR*(1 - primary texel alpha)).

12 - Blend_Previous. Output color is (COLOR_FACTOR*primary texel
alpha) + (INPUT_FACTOR*(1 - primary texel alpha)).

13 - Blend Pre Multiply Inverse. Output color is COLOR FACTOR +
(INPUT_FACTOR*(primary texel alpha)).

14 - Add Signed2X. Output color is (COLOR_FACTOR +
INPUT_FACTOR - 128)*2

15 - Blend Constant Color. Output color is
(COLOR_FACTOR*CONSTANT_COLOR) + (INPUT_FACTOR*(1
-CONSTANT_COLOR)).

7:4

COLOR_FACTOR

0-3 - (Reserved)

4 - Texture Color (or Interpolator Color if shading)

5 - ~Texture Color (or ~Interpolator Color if shading)
6 - Texture Alpha (or Interpolator Alpha if shading)

7 - ~Texture Alpha (or ~Interpolator Alpha if shading)
8-15 - (Reserved)

9:8

Reserved

13:10

INPUT_FACTOR

0-1 - (Reserved)

2 - CONSTANT_COLOR
3 - CONSTANT_ALPHA
4 - Interpolator Color

5 - Interpolator Alpha
6-15 - (Reserved)

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-34

Proprietary and Confidential

Type-0 CCE Packet

Table F-22 DATA_BLOCK.TEX_COMB_CTL

Bit(s)

Field Name

Description

17:14

COMB_FCN_ALP
HA

Specifies the function used to modify the alpha component of primary
texels during the texture combine stage.

0 - Disable. Output color is primary texture alpha (or Interpolator Alpha
if shading)

1 - Copy. Output color is ALPHA_FACTOR

2 - Copy Input. Output color is INPUT_FACTOR_ALPHA

3 - Modulate. Output color is
ALPHA_FACTOR*INPUT_FACTOR_ALPHA

4 - Modulate*2. Output color is
ALPHA_FACTOR*INPUT_FACTOR_ALPHA*2

5 - Modulate*4. Output color is
ALPHA_FACTOR*INPUT_FACTOR_ALPHA*4

6 - Add. Output color is ALPHA_FACTOR + INPUT_FACTOR_ALPHA
7 - Add Signed. Output color is ALPHA_FACTOR +
INPUT_FACTOR_ALPHA - 128

8-13 - (Reserved)

14 - Add Signed2x. Output color is (ALPHA_FACTOR +
INPUT_FACTOR_ALPHA - 128)*2

15 - (Reserved)

21:18

ALPHA_FACTOR

0-5 - (Reserved)

6 - Texture Alpha (or Interpolator Alpha if shading)

7 - ~Texture Alpha (or ~Interpolator Alpha if shading)
8-15 - (Reserved)

24:22

Reserved

27:25

INPUT_FACTOR_
ALPHA

0 - (Reserved)

1 - CONSTANT_ALPHA
2 - Interpolator Alpha

3 - (Reserved)

4 - (Reserved)

5-8 - (Reserved)

31:28

Reserved

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual
F-35

Type-0 CCE Packet
F.14 TRANS_SCALE

Packet Type 2D

Purpose For stretching or compressing the texture pattern (or bitmap), and put the
scaled pattern to the destination area in the video memory. The scaled pattern
may be transparent to the background of the destination according to some
conditions set out by the user.

Table F-23 Format for TRANS_SCALE

Ordinal | Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}

Table F-24 DATA_BLOCK for TRANS_SCALE

Ordinal Field Name Description

This field determines how the transparent scaled blitting is done. See

1 [CLR_CMP_CNTL] | | oow for details.

Source reference color in the RGBQUAD format. This is the color to

2 [SRC_REF_CLR] be stripped off from the source.
3 [DST_REF_CLR] Destination reference color in thg RQBQUAD format. This is the
color to be preserved at the destination.
This field specifies the operation to be carried out. See section
4 [MISC_3D_STATE] B.2.2.6 SCALE for details.
The bits of this field enable or disable the operations (alpha and fog)
5 [TEX_CNTL] specified in field MISC_3D_STATE. See section B.2.2.6 SCALE for

details.

This field corresponds to register
6 [TEX_COMB_CTL] | PRIMARY_TEXTURE_COMBINE_CNTL. See section B.2.2.6
SCALE for details.

[SCALE_DATATYPE

1 See section B.2.2.6 SCALE for details.

[25:0] - Byte pointer to the smallest texture map.
[31:30] - Texture mapping mode

8 [SCALE_OFFSET] | O - Texture surface is not tiled.

1 - Texture surface is tiled by the host application.
2,3 - Texture surface is stored in a tiled surface.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-36 Proprietary and Confidential

Type-0 CCE Packet

Table F-24 DATA_BLOCK for TRANS_SCALE (Continued)

Ordinal Field Name Description
9 [SCALE_PITCH] | See section B.2.2.6 SCALE for details.
10 (Reserved) This field should be set to zero (0).

Advancing step size (in units of pixels) in x-direction for the source
bitmap.

[19:4] - X accumulator increment, 12 bits fractional, 4 bits unsigned
integer. For packed or planar YUV pixels, this applies only to the Y
values.

[Other bits] - reserved.

11 [SCALE_X_INC]

Advancing step size (in units of pixels) in y-direction for the source
bitmap.

12 [SCALE_Y_INC] |[19:4]-Y accumulator increment, 12 bits fractional, 4 bits unsigned
integer.

[Other bits] - reserved.

The coordinate of the top-left corner of the destination bitmap.
13 [DST_X | DST_Y] | DST_X:[29:16] - x-coordinate expressed in a signed integer.
DST_Y: [13:0] - y-coordinate expressed in a signed integer.

The width and height of the destination bitmap, expressed in
14 [DST_H | DST_W] | unsigned integers.
DST_W: [13:0] - width. DST_H: [29:16] - height

CLR_CMP_CNTL

This field controls how the source pixels are written to the destination, depending on the
source and destination reference colors and comparison settings. The source pixels may kb
filtered against the source reference color, and the destination pixels with a specific color
may be preserved according to field CLR_CMP_DST.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-37

Type-0 CCE Packet

Table F-25 DATA_BLOCK for CLR_CMP_CNTL

Bit(s) | Field Name | Description

Strip off the source reference color from the source pixels.

0 - Do not strip off source pixels. All source pixels are written to the

destination.

1 - Block the blitting source. No source pixel is written to the
destination.

2, 3 - Reserved.

4 - The source pixels whose color is equal to the reference color are

CLR_CMP_S written to the destination.

RC 5 - The source pixels whose color is NOT equal to the reference color
are written to the destination.

6 - Reserved.

7 - The source pixels whose color is equal to the reference color will be
XORed with the foreground color of a mono bitmap, and then
written to the destination. That is, destPixel = srcPixel XOR
foregrndColor if srcPixel is equal to the foreground color of a mono
bitmap, specifically text. This is referred to as flipping sometimes.

2:0

7:3 Reserved

Preserve pixels at the destination.

0 - Do not preserve the destination pixels. All pixels from the source are
written to the destination.

1 - Preserve all the destination pixels. No source pixel is written to the
destination.

2, 3 - Reserved.

4 - The destination pixels whose color is equal to the reference color
are preserved. No source pixel is written on top of the pixels.

5 - The destination pixels whose color is NOT equal to the reference
color are preserved.

6, 7 - Reserved.

CLR_CMP_D

10:8 ST

23:11 Reserved

The bits controls what type of operation to be carried out.
0 - Enable function CLR_CMP_DST.
1 - Enable function CLR_CMP_SRC.

CMP_ENABL | 5 . Enable both CLR_CMP_SRC and CLR_CMP_DST. The final

25:24

E decision is based on the agreement between decisions made
separately.
3 - Reserved.
31:26 Reserved
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-38 Proprietary and Confidential

Type-0 CCE Packet

F.15 POLYSCANLINES
Packet Type 2D
Purpose For drawing a number of scanlines and polyscanlines. The number can be one.
The difference between a scanline and a polyscanline is that a scanline has only

one starting x-coordinate and one ending x-coordinate while a polyscanline has
a number of starting-ending x-coordinate pairs.

Table F-26 Format POLYSCANLINES

Ordinal | Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}

Table F-27 DATA_BLOCK for POLYSCANLINES

Ordinal Field Name Description
The number of scan subpackets identified by SCAN_x, where x
L [SCAN_COUNT] denotes the ordinal number of a SCAN subpacket.
2 {SCAN_1} The 1st scanline/polyscanline.
n+1 {SCAN_n} The n-th scanline/polyscanline.

Table F-28 DATA_BLOCK.SCAN_x

Ordinal | Field Name Description

1 [NUM_LINE] |The number of line segments in a polyscanline.

2 [HEIGHT | TOP: [15:0] - y-coordinate of the polyscanline.
TOP] HEIGHT: [31:16] - The thickness of the line measured in pixels.

3 [END_1| START _1: [15:0] - the starting x-coordinate of the 1st line segment,
START_1] END_1: [31:16] - the ending x-coordinate of the 1st line segment.

n+2 [END_n START_n: [15:0] the starting x-coordinate of the n-th line segment.

|[START_n] END_n: [31:16] - the ending x-coordinate of the n-th line segment.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-39

Type-0 CCE Packet
F.16 NEXTCHAR

Packet Type 2D

Purpose For printing a character at a given screen location using the default
foreground and background colors.

Table F-29 Format for NEXTCHAR

Ordinal | Field Name
1 [HEADER]
2 {DATA_ BLOCK}

Table F-30 DATA BLOCK for NEXTCHAR

Ordinal Field Name Description

The coordinates of the top-left corner of the destination bitmap.
DST_X: [15:0] - x-coordinate, ranging from -8192 to 8191. Bits
1 [DST_Y | DST_X] 14 and 15 should be copies of bit 13.

DST_Y: [31:16] - y-coordinate, ranging from -8192 to 8191. Bits
30 and 31 should be copies of bit 29.

The width and height of the destination bitmap, expressed in

2 [DST_H | DST_W] unsigned integers.
DST_W: [15:0] - width. DST_H [31:16] - height.
3 [BITMAP_DATA_1] | The 1st DWORD of the bitmap data.
n+2 [BITMAP_DATA_n] | The n-th DWORD of the bitmap data.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-40 Proprietary and Confidential

Type-0 CCE Packet

F17 PAINT_MULTI
Packet Type 2D
Purpose For painting a number of rectangles on the screen with one color. The color

used is specified in field SETTINGS while the location and geometry of the
rectangles are specified in field DATA_BLOCK.

Table F-31 Format for PAINT_MULTI

Ordinal | Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}

Table F-32 DATA_BLOCK for PAINT_MULTI

Ordinal Field Name Description

The coordinates of the top-left corner of the 1st rectangle.
DST_Y1: [15:0] - y-coordinate, ranging from -8192 to 8191. Bits
1 [DST_X1|DST_Y1] |14 and 15 should be copies of bit 13.

DST_X1: [31:16] - x-coordinate, ranging from -8192 to 8191.
Bits 30 and 31 should be copies of bit 29.

The width and height of the 1st rectangle, expressed in unsigned
integers.

DST_H1: [15:0] - height.

DST_W1: [31:16] - width.

2 [DST_W1 | DST_H1]

The coordinates of the top-left corner of the n-th rectangle.
DST_Yn: [15:0] - y-coordinate, ranging from -8192 to 8191. Bits
2n-1 [DST_Xn | DST_Yn] | 14 and 15 should be copies of bit 13.

DST_Xn: [31:16] - x-coordinate, ranging from -8192 to 8191.
Bits 30 and 31 should be copies of bit 29.

The width and height of the n-th rectangle, expressed in
unsigned integers.

2n [DST_Wn | DST_HN] | hor i [15:0] - height.
DST_Whn: [31:16] - width.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential F-41

Type-0 CCE Packet
F.18 BITBLT_MULTI

Packet Type 2D

Purpose For copying a number of source rectangles to destination rectangles of the
screen respectively. It is assumed that the geometry of the destination is
identical to its source.

Table F-33 Format for BITBLT_MULTI

Ordinal | Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}

Table F-34 DATA_BLOCK for BITBLT_MULTI

Ordinal Field Name Description

The coordinates of the top-left corner of the 1st source bitmap.
SRC_Y1: [15:0] - y-coordinate, ranging from -8192 to 8191. Bits
1 [SRC_X1|SRC_Y1] |14 and 15 should be copies of bit 13.

SRC_X1: [31:16] - x-coordinate, ranging from -8192 to 8191.
Bits 30 and 31 should be copies of bit 29.

The coordinates of the bottom-right corner of the 1st destination.

2 [DST_X1|DST_Y1] The definition of bits is the same as SRC_X1 and SRC_Y1.
The width and height of the 1st source bitmap, expressed in
3 [SRC_W1 | SRC_H1] unsigned integers.

SRC_H1:[13:0] - height.
SRC_W1: [29:16] - width.

The coordinates of the top-left corner of the n-th source bitmap.
SRC_Yn: [15:0] - y-coordinate, ranging from -8192 to 8191. Bits
3n-1 [SRC_Xn|SRC_Yn] |14 and 15 should be copies of bit 13.

SRC_Xn: [31:16] - x-coordinate, ranging from -8192 to 8191.
Bits 30 and 31 should be copies of bit 29.

The coordinates of the bottom-right corner of the n-th
3n-2 [DST_Xn | DST_Yn] destination.
The definition of bits is the same as SRC_Xn and SRC_Yn.

The width and height of the n-th source bitmap, expressed in
unsigned integers.

3n [SRC_Wn | SRC_HN] | o Hin: [13:0] - height.
SRC_Wn: [29:16] - width.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-42 Proprietary and Confidential

Type-0 CCE Packet

F.19 TRANS_BITBLT

Packet Type 2D

Purpose For copying pixels from the source rectangle to the destination with

transparency.

Table F-35 Format for TRANS_BITBLT

Ordinal | Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}

Table F-36 DATA BLOCK for TRANS_BITBLT

Ordinal

Field Name Description

1

[CLR_CMP_CNTL| This field decides how the transparent blitting is done. See following

] for details.

[SRC_REF_CLR]

Source reference color in the RGBQUAD format. This is the color to
be stripped off from the source.

[DST_REF_CLR]

Destination reference color in the RGBQUAD format. This is the
color to be preserved at the destination.

[SRC_Y | SRC_X]| SRC_X: [15:0] - x-coordinate represented by a signed integer.

The coordinates of the top-left corner of the source bitmap.

SRC_Y: [31:16] - y-coordinate represented by a signed integer.

[DST_Y | DST_X] | DST_X: [15:0] - x-coordinate expressed in a signed integer.

The coordinates of the top-left corner of the destination bitmap.

DST_Y: [31:16] - y-coordinate expressed in a signed integer.

[DST_H | DST_W]| unsigned integers.

The width and height of the destination bitmap, expressed in

DST_W: [15:0] - width. DST_H: [31:16] - height.

F.19.1CLR_CMP_CNTL

This field controls how the source pixels are written to the destination, depending on the
source and destination reference colors and comparison settings. The source pixels may kb
filtered against the source reference color, and the destination pixels with a specific color
may be preserved according to field CLR_CMP_DST.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-43

Type-0 CCE Packet

Table F-37 DATA BLOCK for CLR_CMP_CNTL

Bit(s) Bit-Field Name | Description

Strip off the source reference color from the source pixels.

0 - Do not strip off source pixels. All source pixels are written to the
destination.

1 - Block the blitting source. No source pixel is written to the
destination.

2, 3 - reserved.

4 - The source pixels whose color is equal to the reference color
are written to the destination.

2:0 CLR_CMP_SRC | 5 - The source pixels whose color is NOT equal to the reference
color are written to the destination.

6 - Reserved.

7 - The source pixels whose color is equal to the reference color
will be XORed with the foreground color of a mono bitmap, and
then written to the destination. That is, destPixel = srcPixel
XOR foregrndColor if srcPixel is equal to the foreground color
of a mono bitmap, specifically text. This is referred to as flipping

sometimes.
7:3 Reserved

Preserve pixels at the destination.

0 - Do not preserve the destination pixels. All pixels from the
source are written to the destination.

1 - Preserve all the destination pixels. No source pixel is written to
the destination.

. 2, 3 - Reserved.

10:8 CLR_CMP_DST 4 - The destination pixels whose color is equal to the reference
color are preserved. No source pixel is written on top of the
pixels.

5 - The destination pixels whose color is NOT equal to the
reference color are preserved.
6, 7 - Reserved.
23:11 Reserved
The bits controls what type of operation to be carried out.
0 - Enable function CLR_CMP_DST.
1 - Enable function CLR_CMP_SRC.

25:24 CMP_ENABLE 2 - Enable both CLR_CMP_SRC and CLR_CMP_DST. The final
decision is based on the agreement between decisions made
separately.

3 - Reserved.
31:26 Reserved
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-44 Proprietary and Confidential

Type-0 CCE Packet

F.20 PLY_ NEXTSCAN
Packet Type 2D

Purpose For drawing a number of scanlines or polyscanlines using the current settings.

Table F-38 Format for PLY _NEXTSCAN

Ordinal Field Name Description
1 [HEADER] The packet header
2 [HEIGHT | TOP] TOP: [15:0] - y-coordinate of the scanline/polyscanline.

HEIGHT: [31:16] - The thickness of the line measured in pixels.
START_1: [15:0] - the starting x-coordinate of the 1st dash.

3 [END_1 | START_1] END_1: [31:16] - the ending x-coordinate of the 1st dash.
START_n: [15:0] - the starting x-coordinate of the nth dash.
n+2 [END_n | START_nj END_n: [31:16] - the ending x-coordinate of the nth dash.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential F-45

Type-0 CCE Packet
F21 LOAD_PALETTE

Packet Type 2D

Purpose For setting up the 3D engine scaler and load a palette onto RAGE 128 for a
consequent 2D scaling operation.

Table F-39 Format LOAD_PALETTE

Ordinal | Field Name Description
1 [HEADER] The packet header
2 [SCALE_DATATY | 1 - The palette has 16 entries (4 bpp palette).
PE] 2 - The palette has 256 entries (8 bpp palette).

The 1st entry of the palette.

[7:0] - Blue component.

3 [COLOUR_1] [15:8] - Green component.

[23:16] - Red component.

[31:24] - Alpha component if applicable.

4 [COLOUR_2] | The 2nd entry of the palette. Bits are defined as above.
n+2 [COLOUR_n] The nth entry of the palette. n = 16 (4bpp) or 256 (8bpp)
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

F-46 Proprietary and Confidential

Type-0 CCE Packet

F.22 SET_SCISSORS

Packet Type 2D

Purpose For setting the scissors to the given parameters.

Table F-40 Format

Ordinal Field Name Description
1 [HEADER] The packet header
[13:0] - x-coordinate of the left edge of the clipping rectangle (in
2 [TOP_LEFT] FZUQleér-O;-Eg(oerl;i)r.\ate of the top edge of the clipping rectangle (in
number of scanlines).
[13:0] - x-coordinate of the right edge of the clipping rectangle (in
3 [BOTTOM_RIGHT] number of pixels).

[29:16] - y-coordinate of the bottom edge of the clipping rectangle
(in number of scanlines).

© 1999 ATI Technologies Inc.

Proprietary and Confidential

RAGE 128 Software Development Manual
F-47

Type-0 CCE Packet

F.23 SET_MODE_24BPP

Packet Type 2D

Purpose For setting the 24bpp flag in the microcode engine.

Table F-41 Format for SET_MODE_24BPP

Ordinal Field Name Description
1 [HEADER] The packet header
2 [FLAG] 1 - Set the 24bpp flag in the microcode engine.

0 - Clear the 24bpp flag.

RAGE 128 Software Development Manual

F-48

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Type-0 CCE Packet

F.24 3D _RNDR_GEN_PRIM
Packet Type 3D

Purpose For rendering 3D primitives points, lines and triangles through the ring
buffer.

The general form of 3D_RNDR_GEN_PRIM packets is as follows. It consists of

¢ A header field HEADER.

* Aflag field VC_FORMAT that indicates how the vertex data blocks should be
interpreted.

« A control field VC_CNTL that defines the type of primitive being drawn and the
drawing method to be used.

* A number of vertex data blocks that specify the coordinates and geometry of the
primitive.

As the vertex data blocks are arranged contiguously in memory, they may be referred to ac
vertex arrayor vertex list The size of a vertex block may vary depending on the flag field
VC_FORMAT. Therefore, such as vertex may be referred tizxble vertexHowever,

for a specific packet, all the vertex blocks are of the same size. So, the vertices of the
packet constitute a vertex array.

Table F-42 Format for 3D_RNDR_GEN_PRIM

Ordinal | Field Name

1 [HEADER]

2 [VC_FORMAT]
3 [VC_CNTL]

4 {FTLVERTEX_1}

n+3 | {FTLVERTEX_n}

F.24.1VC_FORMAT

This field is composed of a number of flags or subfields. Each flag determines the
presence of a corresponding data field in the data block FTLVERTEX_x. If a flag is ON
or one, the corresponding data field is present in FTLVERTEX_x. Otherwise, the data
field is not.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-49

Type-0 CCE Packet

Table F-43 VC_FORMAT

Bit(s) Field Name Description

1 - The FTLVERTEX block (defined below) contains a RHW field.
0 - The FTLVERTEX block does not contain such a field.

1 - The FTLVERTEX block contains a diffuse component of 3 colors
1 DIFFUSE_BGR (B,G,R) expressed in the float type.
0 - The FTLVERTEX block does not contain such a component (B,G,R).

1 - The FTLVERTEX block contains field DIFFUSE_ALPHA expressed
2 DIFFUSE_A in the float type.
0 - The FTLVERTEX block does not contain such a field.

1 - The FTLVERTEX block contains field DIFFUSE_ARGB.

0 RHW

3 DIFFUSE_ARGB 0 - The FTLVERTEX block does not contain such a field.
1 - The FTLVERTEX block contains a specular component of 3 colors
4 SPEC_BGR represented in the OpenGL format, i.e., each of colors B,G,R is

represented by a number between 0.0 and 1.0.
0 - The FTLVERTEX block does not contain such a component.

1- The FTLVERTEX block contains field SPEC_FOG represented by a
5 SPEC_F number between 0.0 and 1.0.
0 - The FTLVERTEX block does not contain such a field.

1 - The FTLVERTEX structure contains a combined fog/specular color
component in the form of DWORD FRGB.

6 SPEC_FRGB 0 - The FTLVERTEX structure does not contain a combined
fog/specular color component
1 - The FTLVERTEX block contains a set of texture coordinates (S, T).
7 ST They are stored in two FLOATSs.

0 - The FTLVERTEX block does not contain any texture coordinates (S,
T).

1 - The FTLVERTEX block contains the second set of texture
coordinates (S,T). They are stored in two FLOATs. Note that they

8 S2 T2 are mainly used by D3D’s multi-texture API.

0 - The FTLVERTEX block does not contain the second set of texture
coordinates (S,T).

1 - The FTLVERTEX block contains field floatRHW2 for the second set
9 RHW?2 of texture coordinates.
0 - The FTLVERTEX block does not contain such a field.

31:10 Reserved

F.24.2VC_CNTL

This field corresponds to RAGE 128 regidéi4 VC_CNTLIt selects the type of
rendering primitive and the method of using the hardware.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-50 Proprietary and Confidential

Type-0 CCE Packet

Table F-44 VC_CNTL

Bit(s) Field Name | Description

The field defines the types of rendering primitive.
0 - Draw nothing.
1 - Draw a number of points.
2 - Draw a number of independent lines.
VC_PRIM_TYP | 3 - Draw a number of polylines (line strips).
E 4 - Draw a number of independent triangles.
5 - Draw a triangle fan.
6 - Draw a triangle strip.
7 - Draw type-2 triangles. (for the vertex walker only)
8 -15 - Reserved

This field defines the method of rendering. The object being drawn
relates to the setting of VC_PRIM_TYPE.

0 - Reserved

1 - Draw the primitives pointed to by the given vertex indices using the

5:4 PRIM_WALK vertex walker method.

2 - Draw all the primitives given in the vertex list using the vertex walker
method.

3 - Use the ring buffer method to draw all the primitives. The following
data consists of a number of FTLVERTEX structures.

3.0

15:6 Reserved
31:16 NUM_VERTEX | The number of vertices in the packet. It should be n in this case.

F.24.3FTLVERTEX

A vertex data block is denoted BYLVERTEX_xwhere x is the ordinal number of the
block. FTLVERTEXsupplies the coordinates and associated attributes of a point in a 3-D
space. The presence of some fields FTRVERTEX_xblock depends on the fields of
PM4_VC_FORMATherefore, the size of@fLVERTEXblock may vary. The definition

of FTLVERTEXs given as follows and the ordering of the fields FiTaAVERTEXblock
follows their ordering in the following table.

Table F-45 FTLVERTEX

Field Name Data Type | Description
The x-coordinate of the vertex. Always present in

[X_COORDINATE] FLOAT FTLVERTEX
The y-coordinate of the vertex. Always present in

[Y_COORDINATE] FLOAT FTLVERTEX
The z-coordinate of the vertex. Always present in

[Z_COORDINATE] FLOAT FTLVERTEX

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential F-51

Type-0 CCE Packet

Table F-45 FTLVERTEX (Continued)

Field Name Data Type | Description

This value is equal to 1/ Z_COORDINATEConditional
presence if VC_FORMAT.RHW1

The Blue component of diffuse color. Color intensity
represented in the OpenGL format. Its value is between 0.0
[DIFFUSE_BLUE] FLOAT and 1.0, where 1.0 represents the highest intensity while 0.0
represents the lowest. Conditional presence if
VC_FORMAT.DIFFUSE_BGHL.

The Green component of diffuse color. Expressed in the
[DIFFUSE_GREEN] FLOAT OpenGL format. Conditional presence if
VC_FORMAT.DIFFUSE_BGHL.

The Red component of diffuse color. Expressed in the
[DIFFUSE_RED] FLOAT OpenGL format. Conditional presence if
VC_FORMAT.DIFFUSE_BGR1.

Diffuse component. Its value is between 0.0 and 1.0.
Conditional presence if VC_FORMADIFFUSE_A=1.

Diffuse component expressed in integer.

[31:24] - The Alpha component in unsigned integer.
[23:16] - The Red component in unsigned integer.

[15:8] - The Green component in unsigned integer.

[7:0] - The Blue component in unsigned integer.
Conditional presence if VC_FORMAT.DIFFUSE_ARGB 1.

The blue component of specular color in the OpenGL
format. Conditional presence if VC_FORMAT.SPEC_BGR.

The green component of specular color in the OpenGL
format. Conditional presence if VC_FORMAT.SPEC_BGR.

The red component of specular color in the OpenGL format.
Conditional presence if VC_FORMAT.SPEC_BGR.

The fog component of specular color. Its value is between 0
and 1. Conditional presence if VC_FORMAT.SPEC_£1.

The integer format of specular color.

[31:24] - The Fog component in unsigned integer.
[23:16] - The Red component in unsigned integer.
[15:8] - The Green component in unsigned integer.
[7:0] - The Blue component in unsigned integer.
Conditional presence if VC_FORMAT.SPEC_FRGB1.

The u-coordinate of the 1st texture. Conditional presence if
VC_FORMAT.S_T=1

The v-coordinate of the 1st texture. Conditional presence if
VC_FORMAT.S_T=1

The u-coordinate of the 2nd texture. Conditional presence if
VC_FORMAT.S2_T21

[RHW] FLOAT

[DIFFUSE_ALPHA] FLOAT

[DIFFUSE_ARGB] DWORD

[SPEC_BLUE] FLOAT

[SPEC_GREEN] FLOAT

[SPEC_RED] FLOAT

[SPEC_FOG] FLOAT

[SPEC_FRGB] DWORD

[TEXTURE1_U] FLOAT

[TEXTUREL_V] FLOAT

[TEXTURE2_U] FLOAT

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-52 Proprietary and Confidential

Type-0 CCE Packet

Table F-45 FTLVERTEX (Continued)

Field Name Data Type | Description
The v-coordinate of the 2nd texture. Conditional presence if
[TEXTUREZ_V] FLOAT VC_FORMAT.S2_T21
Not used for DirectX. Conditional presence if
[RHW?2] FLOAT VC_FORMAT.RHWZ
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential F-53

Type-0 CCE Packet

F.25 Interpretation of Vertices
The vertices in the packet are represented by an array of EIdSERTEX _1 through
FTLVERTEX n The interpretation of the vertex array depends on the field

VC_PRIM_TYPE The following list the interpretations with respect to a given
VC_PRIM_TYPEcode (in parentheses).

F.25.1 Points (1)

A point is specified by one vertex.

Table F-46 Points (1)

Ordinal Field Name Description
1 FTLVERTEX_1 The 1st point to be drawn.
2 FTLVERTEX_2 The 2nd point to be drawn.
n FTLVERTEX_n The n-th point to be drawn.

F.25.2 Lines (2)

A line is specified by 2 vertices, one representing the start point and the other representing
the end point. To specify m lines, we need 2m vertices.

Table F-47 Lines (2)

Ordinal Field Name Description
1 FTLVERTEX_1 The start of the 1st line.
2 FTLVERTEX_2 The end of the 1st line.
3 FTLVERTEX_3 The start of the 2nd line.
4 FTLVERTEX_4 The end of the 2nd line.
n-1 FTLVERTEX_2m-1 The start of the m-th line.
n FTLVERTEX_2m The end of the m-th line.

F.25.3 Polylines (3)

A polyline is composed of a number of line segments with their ends connected to each
other. Therefore, we need m+1 vertices to specify an m-segment polyline.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-54 Proprietary and Confidential

Type-0 CCE Packet

Table F-48 Polylines (3)

Ordinal Field Name Description
1 FTLVERTEX_1 The start of the 1st line segment.
2 FTLVERTEX 2 The end _of the 1st line segment, and the start of
- the 2nd line segment.
3 ETLVERTEX 3 The end.of the 2nd line segment, and the start of
- the 3rd line segment.
-1 ETLVERTEX m The end of the (m-l)-th line segment, and the
- start of the m-th line segment
n FTLVERTEX_m+1 | The end of the m-th line segment.

F.25.4 Triangles (4)

Three vertices are required to specify an independent triangle. Therefore, the total numbe
of vertices required for specifying m independent triangles is 3m.

Table F-49 Triangles (4)

Ordinal Field Name Description
1 FTLVERTEX_1 The 1st vertex of the 1st triangle.
2 FTLVERTEX_2 The 2nd vertex of the 1st triangle.
3 FTLVERTEX_3 The 3rd vertex of the 1st triangle.
4 FTLVERTEX 4 The 1st vertex of the 2nd triangle.
5 FTLVERTEX_5 The 2nd vertex of the 2nd triangle.
6 FTLVERTEX_6 The 3rd vertex of the 2nd triangle.
n-2 FTLVERTEX_3m-2 | The 1st vertex of the m-th triangle.
n-1 FTLVERTEX_3m-1 | The 2nd vertex of the m-th triangle.
n FTLVERTEX_3m | The 3rd vertex of the m-th triangle.

F.25.5 Triangle Fan (5)

In drawing a triangle fan, vertex 1 is shared by all the triangles, and two neighboring
triangles share two vertices (vertex 1 is one of them). That is, vertices 1, 2 and 3 are usec
to draw the first triangle; vertices 1, 3 and 4 to draw the second triangle; vertices 1, 4 and
5 to draw the third; and so on. If the triangle fan is composed of m triangle, the number of
vertices required for specifying the fan is n=m+2.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-55

Type-0 CCE Packet

Table F-50 Triangle Fan (5)

Ordinal Field Name Description
This vertex is shared by all the triangles, and
1 FTLVERTEX_1 is referred to as the 1st vertex by all the
triangles.
2 FTLVERTEX_2 The 2nd vertex of the 1st triangle.
3 ETLVERTEX 3 The 3rd vertex of the 1st triangle and the 2nd
- vertex of the 2nd triangle.
4 FTLVERTEX 4 The 3rd vertex of the 2nd triangle and the 2nd
- vertex of the 3rd triangle.
-1 FTLVERTEX n-1 The 3rd vertex of the (ml-l)—th triangle and the
- 2nd vertex of the m-th triangle.
n FTLVERTEX_n The 3rd vertex of the m-th triangle.

F.25.6 Triangle Strip (6)

A triangle strip is composed of a number of triangles where an adjacent pair share two
vertices. With a triangle strip, only the first triangle uses three vertices, the subsequent
triangles only need one new vertex for the rendering (two vertices from the previous
triangle are re-used). That is, the drawing of the first triangle makes use of vertices 1, 2
and 3. The drawing of the second makes use of vertices 2, 3 and 4; and so on. If a triangle
strip is composed of m triangle, the number of vertices required for specifying the strip is

n=m+2.

Table F-51 Triangle Strip (6)

Ordinal Field Name Description
1 FTLVERTEX_1 The 1st vertex of the 1st triangle.
2 FTLVERTEX 2 The 2nd vertex of the 1st triangle and the 1st
— vertex of the 2nd triangle
3 FTLVERTEX 3 The 3rd vertex of the 1st triangle and the 2nd
- vertex of the 2nd triangle.
4 ETLVERTEX 4 The 3rd vertex of the 2nd triangle and the 2nd
- vertex of the 3rd triangle.
-1 FTLVERTEX_n-1 The 3rd vertex of the (m-1)-th triangle and the 2nd

vertex of the m-th triangle.

FTLVERTEX_n

The 3rd vertex of the m-th triangle.

RAGE 128 Software Development Manual

F-56

© 1999 ATI Technologies Inc.
Proprietary and Confidential

Type-0 CCE Packet

F.26

3D_RNDR_GEN_INDX_PRIM
Packet Type 3D

Purpose Render 3-D primitives points, lines and triangles using the Vertex Walker
method. The data buffer pointed to by field PM4_VC_VLOFF is filled by the
application. The vertex walker draws primitives according to the settings of
field VC_CNTL of the packet. The indices in the packet serve as pointers to the
vertex data blocks in the associated vertex array which are selected for
rendering. The selected vertex data are used by the vertex walker to carry out
the rendering operation. If the packet does not have the index portion, i.e. the
packet only consists of 5 fields (HEADER and 4 fields that follow it), it implies
that the entire vertex array is used for rendering.

Table F-52 Format for 3D_RNDR_GEN_INDX_PRIM
Ordinal | Field Name Description
1 [HEADER] Header of the packet
The offset of the vertex array with respect to the physical address
2 [PM4_VC_VLOFF] | of the AGP space, as special service is required to convert the
array address from the virtual space to this offset.
[PM4_VC_VSIZE] | The total number of vertices in the vertex array
[VC_FORMAT] Same as field VC_FORMAT of packet 3D_RNDR_GEN_PRIM.
Same as field VC_CNTL of packet 3D_RNDR_GEN_PRIM.
Its subfields should be set to the values relevant to the vertex
5 [VC_CNTL] walker operation. Also, registers PM4_VC_VLOFF,
PM4_VC_VSIZE and PM4_VC_VFORMAT should be set up
accordingly.
INDX_1: [15:0] - the index of the 1st selected element in the vertex
list.
6 [INDX_2 | INDX_1] INDX_2: [31:16] - the index of the 2nd selected element in the
vertex list.
7 [INDX_4 | INDX_3] | The 3rd and 4th selected elements in the vertex list.
The last two selected elements in the vertex list.
Note: the chosen elements can be any vertices, and their indices
don’t have be contiguous. For example, one may select 5 vertices
[INDX_2n | . o .
n+5 INDX_2n-1] from 10 for rendering primitives. The indices of the selected
— vertices can be 0, 4, 5, 8 and 9. If the number of selected vertices
is not even, the high word of the last DWORD of the packet may be
filled with O.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential F-57

Type-0 CCE Packet

F.26.1 Vertex Array Format

Table F-53 Vertex Array Format

Ordinal Field Name Description
1 {FTLVERTEX_1} | The 15 vertex data block
2 {FTLVERTEX_2} | The 2nd vertex data block

2n {FTLVERTEX_2n}| The n-th vertex data block

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-58 Proprietary and Confidential

Type-0 CCE Packet

F.27 NEXT_VERTEX_BUNDLE

Packet Type 3D

Purpose This is a continuation of packet 3D_RNDR_GEN_INDX_PRIM. Using this
packet implies that the primitives in this packet will be rendered in the same
manner as those of the previous 3D_RNDR_GEN_INDX_PRIM packet.

Table F-54 Format for NEXT_VERTEX_BUNDLE

Ordinal Field Name Description
1 [HEADER] Header of the packet
INDX_1: [15:0] - the index of the 1st selected element in the vertex
list.
6 [INDX_2 | INDX_1] INDX_2: [31:16] - the index of the 2nd selected element in the
vertex list.
7 [INDX_4 | INDX_3] | The 3rd and 4th selected elements in the vertex list.
The last two selected elements in the vertex list.
Note: the chosen elements can be any vertices, and their indices
don’t have be contiguous. For example, one may select 5 vertices
[INDX_2n | . - .
n+5 INDX_2n-1] from 10 for rendering primitives. The indices of the selected
- vertices can be 0, 4, 5, 8 and 9. If the number of selected vertices
is not even, the high word of the last DWORD of the packet may be
filled with O.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential F-59

Type-0 CCE Packet

This page intentionally left blank.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-60 Proprietary and Confidential

Numerics

1555 Format, 2-13

15-bpp, aRGB, or 1555
Format, 2-13

16-bpp, RGB, or 565
format, 2-13

1-bpp Format,

24-bpp Format,
2D Render Engine, 2-3
2x2 tap-filter kernel, 7-4

32-bpp, RGBa, or 8888
Format, 2-14

3D Context, setting up, 6-30
3D Render Engine, 2-3

3D Render States, setting
of, 6-48

3D Setup Engine, 2-3
4-tap filter coefficients,
4-tap vertical filtering,
4x3 tap-filter kernel,
565 format, 2-13
8888 Format, 2-14
8-bpp Format, 2-12

2-12
2-14

7-5
7-5
7-4

AC Palette Data, D-20
AC Palette Format, D-19

Accelerated Graphics Port (AGP)

Interface, 2-3

Active Display Page, A-2
Active Display(s), B-14
Active Page, A-4

Active Page Down, A-3
Active Page Up, A-3
Addressing video memory, 2-17
Advanced Deinterlacing, 7-25
AH=0, A-1

AH = 0Ah, A-4

AH =0Bh, A-4
AH=0Ch, A-4

AH =0Dh, A-4

AH =0Eh, A-4

AH = 0Fh, A-5

AH=1, A-2

AH=10h, A-5
AH=12h, A-9
AH=13h, A-11

AH=2, A-2

AH=3, A-2

AH=4, A-2

AH=5 A-2

AH =6, A-3

AH=7, A-3

AH=8, A-3

AH=9, A-3

AH=11h, A-7

AH=1Ah, A-11

AH=1Bh, A-12

AH=1Ch, A-15

© 1998 ATI Technologies Inc.
Proprietary and Confidential

Preliminary

RAGE 128 Series Design Guide
ix-1

Index

AL =00h, B-4

AL =02h, B-5

aliasing, 7-4,7-7

Alpha Blending, 6-49
Alpha Testing, 6-50
ALPHA_BLND_DST, 6-49
ALPHA_BLND_SRC, 6-49
alpha-blending compositor, 7-4
aRGB format, 2-13
Autoflipping, 7-25
Autonomous Update, 7-24

Back End Overlay, 7-2
Back End Video Scalar, 7-3
Back-end Video Scalar, 7-3

BACKFACE_CULLING_FN, 6-5
4

background color, 2-11
band limited, 7-21
Band-end Overlay Scalar, 7-2

Bandwidth, 7-15
getting more, 7-35
managing, 7-15

BIOS Extensions, B-2
BIOS Header, C-1
BIOS Multimedia Table, E-2

BIOS_ADDR
64h, B-2,B-3
68h, B-2

Bit Block Transfer, 4-6
bit per pixel, 2-11
BitBIt, 4-6

BitBlt - Bit Block Transfer, 4-6

Blending
alpha, 6-49
Blits Scalar, 7-3
bob, 7-6
Brightness Control, 7-6
Buffer

CCE FIFO, 2-3
command FIFO, 2-3
frame, 2-3

buffer flipping, 7-10
Bus Master Operation, 7-37
Bus Mastering, 7-37

CalcFetchStartPoint, 7-16

CalcScalarHBIlank
function, 7-31

CalcScalarHBIlank routine, 7-31

CALL BIOS_ADDR
64h, B-2
68h, B-2

Calling Extended functions, B-2
capture ports, 7-6

Capture Width Info, B-7
Cathode Ray Tube, 2-10

Cautions When Programming
RAGE 128 in CCE Mod, 5-8

CCE Command Packets, F-1

CCE Engine
usage, 5-1
CCE Engine Initialization and
Usage, 5-1
CCE FIFO Buffer, 2-3

RAGE 128 Series Design Guide

ix-2

Preliminary

© 1998 ATI Technologies Inc.
Proprietary and Confidential

Index

CCE Microengine, 2-3
starting, 5-3

CCE Packets, 6-1

CCE Registers
loading, 5-4

Character Generator
Routines, A-7

character generator
routines, A-7

Character/Attribute at Current
Active Cursor Position, A-3

Character/Attribute at Current
Cursor Position of a specified
page, A-3

color adjustments, 7-5
color components, 2-11
Color Controls, 7-28
color expansion, 2-11
color intensity, 2-10
Color Palette, A-4
color-temperature, 7-5
Combination Code, A-11
Command FIFO Buffer, 2-3
Compatibility, B-3

CRT parameter table, B-16
B-17

CRT/TVIDFP, B-13
Culling, 6-54
CUR_HORZ_VERT_OFF, 4-19

CUR_HORZ_VERT_POSN, 4-1
9,4-21

CUR_OFFSET, 4-19
Curr register, 7-25

Current Active Cursor
Position, A-3

Current Cursor Position, A-2

Current Cursor Position at the
specified page, A-2

Current Cursor Position of a
specified page, A-3, A-4
Current EGA Settings/Print
Screen Routine Selection, A-9
Current Light Pen Position, A-2

Current Video Setting, A-5

Cursor
hardware, 4-19
pixel, 4-20

Cursor Pitch, 4-21
Cursor Position, 4-21
Cursor Type, A-2

DAC State, B-5

Data Channel (DDC)
Service, B-10

Deinterlace Pattern
Directives, 7-26

Deinterlace Pattern
Pointer, 7-26

deinterlacing, 7-5
deinterlacing techniques, 7-25

Descriptor Table
creating, 7-37

Destination Window
setting up, 7-20

destination window
coordinates, 7-20

Detect CRT/TV/DFP, B-13
DFP Information, C-9

© 1998 ATI Technologies Inc.
Proprietary and Confidential

Preliminary

RAGE 128 Series Design Guide
ix-3

Index

E

Digital to Analog Converter, 7-2
Digital-TV, 7-4

digitized color, 2-10

Directive Value, 7-26

Display Combination
Code, A-11

display combination code, A-11
Display Controller State, B-4

Display Data Channel (DDC)
Service, B-10

Display Identification
Extensions, D-23

Display Mode, B-4

Display Power Management
Service (DPMS), B-10

Display Start, D-18

Display Window Control, D-15
Dithering, 6-53

DL_RPTR, 5-105-11
DL_WPTR, 5-10 5-11

Dot (graphics mode), A-4
downscale, 7-3

DP_BRUSH_DATATYPE@DP_D
ATATYPE., 4-15

Drawing, 4-4
using programmed /0, 4-4

Drawing Lines, 4-13
Drawing Rectangles, 4-4
dropping lines, 7-23
dummy area, 2-16

EarliestDataTransfer, 7-31

EGA Settings/Print Screen
Routine Selection, A-9

Engine Command Queue
Maintenance, 4-2

Engine Idle, 5-3

Extended BIOS Function
Calls, B-1

Extended ROM Services, B-3

Filter Coefficients
calculating, 7-21

filter coefficients, 7-21
flicker, 7-9

Fog Blending, 6-51
foreground color, 2-11

Formats for Various Color
Images, 2-11

Frame Buffer, 2-3
frame buffer, 2-16
Front-end Scalar, 7-36

FRONTFACE_CULLING_FN, 6
-54

Function 00h - Return Super VGA
Information, D-3

Function 01h - Return Super VGA
Mode Information, D-6

Function 01h - Set Display
Controller State, B-4

Function 02h - Set DAC
State, B-5

Function 02h - Set Super VGA
Video Mode, D-12

Function 03h - Program Specified

RAGE 128 Series Design Guide

ix-4

Preliminary

© 1998 ATI Technologies Inc.
Proprietary and Confidential

Index

Clock Entry, B-5

Function 03h - Return Current
Video Mode, D-13

Function 04h - Save/Restore
State, D-14

Function 04h - Short Query
Function 0, B-6

Function 05h - Display Window
Control, D-15

Function 05h - Short Query
Function 1, B-6

Function 06h - Set/Get Logical
Scan Line Length, D-17

Function 06h - Short Query
Function 2, B-6

Function 07h - Query Graphics
Hardware Capability and Capture
Width Info, B-7

Function 07h - Set/Get Display
Start, D-18

Function 08h - Query Installed
Modes, B-9

Function 08h - Set/Get AC
Palette Format, D-19

Function 09h - Query Supported
Mode, B-9

Function 09h - Set/Get AC
Palette Data, D-20

Function OAh - Display Power
Management Service
(DPMS), B-10

Function 0Bh - Display Data
Channel (DDC) Service, B-10

Function OCh - Save and Restore
Graphics Controller Data, B-12

Function ODh - Get/Set Refresh
Rate (CRT only), B-12

Function 14h - Detect
CRT/TV/DFP, B-13

Function 15h - Get/Set Active
Display(s), B-14

Function 16h - Get/Set TV
Standard, B-15

Function 17h - Get TVOut
Info, B-15

Gamma Correction, 7-6
Generator Routines, A-7

Get AC Palette Format, D-19
Get Display Power State, D-21
Get TVOut Info, B-15
Get/Set Active Display(s), B-14

Get/Set Refresh Rate (CRT
only), B-12

Get/Set TV Standard, B-15
Gouraud shading, 6-53
Graphics Controller Data, B-12
graphics frame buffer, 7-3

Graphics Hardware
Capability, B-7

GUI_FIFOCNT@GUI_STAT, 4-
2

GUI_STAT, 4-2

Hactive scalar, 7-32
Hardware Cursor, 4-19
HBlank

© 1998 ATI Technologies Inc.
Proprietary and Confidential

Preliminary

RAGE 128 Series Design Guide
ix-5

Index

tabulating cycles, 7-30

Hop, 7-10

Horizontal Accumulator
setting up, 7-17

horizontal capture
downscalar, 7-9

Horizontal Down Scalars, 7-2
Horizontal UV Scaling, 7-22
Horizontal Y Scaling, 7-22

Information Tables, C-1, C-8
Installed Modes, B-9

Jump, 7-10

Keying Controls, 7-29
LatestDataTransfer, 7-31
lead time, 7-16
LineFetchSetup, 7-16
Lines

drawing, 4-13

Logical Scan Line Length, D-17

M

Managing
ring buffer, 5-9

Managing Bandwidth, 7-15
Marriage Walk, 7-11

Memory

pixel location, 4-20
Microcode

loading into microengine, 5-3
MinDroppedP23Lines, 7-32
Mipmapping, 6-47
Mode Table Structure, B-16
Monochrome Expansion, 4-16
Monochrome Images, 2-11

motion aliasing, 7-9

2-10
7-25

Nomenclature and
Conventions, 1-5

natural color,
Next register,

off-screen area, 2-16
on-screen area, 2-16
OVO_AUTO_FLIP_CNTL, 7-25
OVO_DEINT_PAT, 7-26

OVO_DEINTERLACE_PATTERN
, 1-25

OVO0_EXCLUSIVE_HORZ, 7-20

RAGE 128 Series Design Guide

ix-6

Preliminary

© 1998 ATI Technologies Inc.
Proprietary and Confidential

Index

OVO_EXCLUSIVE_VERT, 7-20
OVO_FILTER_CNTL, 7-21

OVO_FOUR_TAP_COEF_, 7-2
1

OVO_GRAPHICS_KEY_CLR, 7
-29

OVO_GRAPHICS_KEY_MSK,
7-29

OVO_H_INC, 7-17
OVO_KEY_CNTL, 7-29
OVO_P* X_START_END, 7-20

OVO_P1_BLANK_LINES_AT T
OP, 7-20

OVO_P1_H_ACCUM_INIT, 7-1
7

OVO_P1 H_INC, 7-18
OVO_P1 H_STEP_BY, 7-18

OVO_P1_V_ACCUM_INIT, 7-2
3

OVO_P23 BLANK_LINES_AT T
OP, 7-20

OVO0_P23 H_ACCUM_INIT, 7-
17

OV0_P23_H_INC, 7-18
OV0_P23 H_STEP_BY, 7-18

OVO_P23_V_ACCUM_INIT, 7-
23

OVO_REG_LOAD_CNTL, 7-15

OVO_REG_LOAD_CNTL.*LOCK
*x 7-24

OVO_SCALE_CNTL, 7-15

OVO_SCALE_CNTL.OVO_DOUB
LE_BUFFER_REGS, 7-24

OVO_STEP_BY, 7-17
OVO_V_INC, 7-23

OVO0_VID_BUF* BASE_ADRS,
7-20

OVO0_VID_BUF_PITCHO_VALUE
., 7-23

OVO0_VID_BUF_PITCH1_VALUE
, 7-23

OVO0_VIDEO _KEY_CLR, 7-29
OVO0_VIDEO_KEY_MSK, 7-29
OVO_Y_X_END, 7-20
OVO0_Y_X_ START, 7-20
overlay surface, 7-2

packed modes, 7-10
Packed YUYV, UYVY, 7-5
Palette Registers, A-5

Patterned Lines
drawing, 4-15

PCIl Host Bus Interface, 2-3

Pitch, 2-15
cursor, 4-21

Pixel
cursor, 4-20

Pixel Location in Memory, 4-20
pixel-dropping technique, 7-7
Pixels, 2-14

pixels, 2-10

planer modes, 7-10

Planer YUV9, YUV12, 7-5

PM4_MICROCODE_ADDR, 5-
3

PM4_MICROCODE_DATAH, 5-
3

© 1998 ATI Technologies Inc.
Proprietary and Confidential

Preliminary

RAGE 128 Series Design Guide
Ix-7

Index

PM4_MICROCODE_DATAL, 5-

: R
Position

cursor, 4-21

Power Management Service
(DPMS), B-10

Power Management
Services, D-21

Prev register, 7-25
primary-surface buffer,
Program Specified Clock

7-2

Entry, B-5
Programmed 1/O Drawing
Operations, 4-4

Programming, 4-1

scalar, 7-15

Programming RAGE 128 in CCE
Mode, 5-8

Pseudo Code to set up a
Descriptor, 7-38

Query Function 0, B-6
Query Function 1, B-6
Query Function 2, B-6

Query Graphics Hardware
Capability and Capture Width
Info, B-7

Query Installed Modes,
Query Supported Mode,
Queue Maintenance, 4-2

B-9
B-9

RAGE 128 Internal Parameter
Table Format, B-17

Raster Image, 2-10
raster image, 2-10
rasterization, 2-10

Ratiometric Expander
Scalars, 7-3

Read Character/Attribute at
Current Active Cursor
Position, A-3

read character/attribute at current
active cursor position, A-3

Read Current Cursor Position at
the specified page, A-2

read current cursor position at the
specified page, A-2

Read Current Light Pen
Position, A-2

read current light pen position
(VGA does not support light
pen), A-2

Read Dot (graphics mode),
read dot (graphics mode),
Read EDID, D-24

Rectangles
drawing, 4-4, 6-5

Refresh Rate (CRT only),
REGDEF, 4-2
repeated field, 7-25

Report VBE/DDC
Capabilities, D-23

Report VBE/PM
Capabilities, D-21

A-4
A-4

B-12

RAGE 128 Series Design Guide

ix-8

Preliminary

© 1998 ATI Technologies Inc.
Proprietary and Confidential

Index

Return Current EGA
Settings/Print Screen Routine
Selection, A-9

return current EGA settings/print
screen routine selection, A-9

Return Current Video

Mode, D-13

Return Current Video

Setting, A-5

return current video setting, A-5

Return Super VGA
Information, D-3

Return Super VGA Mode
Information, D-6

Return VGA Functionality and
State Information, A-12

return VGA functionality and state
information, A-12

RGB format, 2-13

RGB1555, 7-5
RGB565, 7-5
RGB8888, 7-5

RGBa format, 2-14

ring buffer, 5-9

Ring Buffer Management, 5-9
Ring Buffer Server, 5-11
ROM Header, C-1

Run, 7-10

Saturation Control, 7-6

Save and Restore Graphics
Controller Data, B-12

Save and Restore Video
State, A-15

save and restore video
state, A-15

Save/Restore State, D-14

Scalar

back-end video, 7-3
Blits, 7-3
horizontal down, 7-2
input video, 7-2
programming, 7-15
subpicture, 7-3

Scalars

ratiometric expander, 7-3
scan conversion, 7-3

Scaled BitBlt, 4-6

scaling operations, 7-22
scaling quality, 7-4

Scan Conversion Scalars, 7-3
scanlines, 2-10

Scratch Registers, C-1, C-6
screen image, 2-10

Scroll Active Page Down, A-3
scroll active page down, A-3
Scroll Active Page Up, A-3
scroll active page up, A-3
Select Active Display Page, A-2
select active display page, A-2
separable filters, 7-21

Server
ring buffer, 5-11

Set AC Palette Format, D-19
Set Color Palette, A-4

set color palette, valid for modes
4 and 5only, A-4

Set Current Cursor Position, A-2

© 1998 ATI Technologies Inc.
Proprietary and Confidential

Preliminary

RAGE 128 Series Design Guide
ix-9

Index

set current cursor position, A-2
Set Cursor Type, A-2

set cursor type, A-2

Set DAC State, B-5

Set Display Controller
State, B-4

Set Display Mode, B-4

Set display mode, B-4

Set Display Power State, D-21
Set Palette Registers, A-5

set palette registers, A-5

Set Super VGA Video
Mode, D-12

Set the DAC to different
states, B-5

set video mode, A-1

Set Video Mode (AL = Video
mode), A-1

Set/Get AC Palette Data, D-20
Set/Get AC Palette

Format, D-19

Set/Get Display Start, D-18

Set/Get Logical Scan Line
Length, D-17

Shading, 6-52

sharpening filters, 7-7
sharpening special effect, 7-7
Short Query Function 0, B-6
Short Query Function 1, B-6
Short Query Function 2, B-6
shrink, 7-4

sinc, 7-4

small window, 7-9

T

Source Window
setting up, 7-20

spatial aliasing, 7-4

7-21
spatial resampling filter, 7-21
spatial-resampling filters, 7-7
Specified Clock Entry, B-5

Starting the CCE
Microengine, 5-3

Status Information, D-2
Stencil Buffer, 6-56
Stencil Buffer, states, 6-57
STENCIL_TEST, 6-56
submit field, 7-12
Subpicture decoder, 7-4

spatial resampling,

Subpicture Scalar, 7-3
Super VGA Information, D-3

Super VGA Mode
Information, D-6

Super VGA Video Mode,
Supported Mode, B-9

Synchronizing Decoded Video
Streams, 7-13

System Bus Master Transfer
setting up, 7-39

D-12

tap, 7-4
tap modes, 7-5
Teletype, A-4

TEX_CNTL_C

ALPHA_LIGHT_FN,
TEX_LIGHT_FN,

6-47
6-46

RAGE 128 Series Design Guide

ix-10

Preliminary

© 1998 ATI Technologies Inc.
Proprietary and Confidential

Index

Texture Coordinate
Selection, 6-47

Texture Data, loading, 6-48
Texture Mapping, 6-38
Transparent BitBIt, 4-6

Transparent BitBlt (Bit Block)
Transfer, 4-8

True RGB Color, 2-10
True RGB color, 2-11
truncated-sinc curve, 7-4
TV Information, C-8

TV or Flat Panel
Functions, B-12

TV parameter table, B-16
TV Standard, B-15
TVOut Info, B-15

update-overlay
commands, 7-12

upscaling, 7-3
Usage, 5-1

VBE/DDC Function 0 - Report
VBE/DDC Capabilities, D-23

VBE/DDC Function 1 - Read
EDID, D-24

VBE/PM Function 0 - Report
VBE/PM Capabilities, D-21

VBE/PM Function 1 - Set Display
Power State, D-21

VBE/PM Function 2 - Get Display
Power State, D-21

VCLK_Offset, 7-31

Vertical Accumulator
setting up, 7-23

Vertical UV Scaling, 7-22
Vertical Y Scaling, 7-22

Vertical-filter engines, 7-5
VGA Controller, 2-3

VGA Functionality and State
Information, A-12

Video BIOS Base Address, B-2
Video BIOS Heade, C-2

video frame buffer, 7-3

Video Input Scalar, 7-2

video memory, 2-16

Video Memory Addressing, 2-17
Video Mode, D-13

Video Mode (AL = Video
mode), A-1

Video State, A-15
view window, 7-20

WaitUntilEvent command, 7-13
Walk, 7-10

weave, 7-6

Width Info, B-7

Window Control, D-15

Write Character at Current Cursor
Position of a specified page, A-4

write character at current cursor
position of a specified page, A-4

© 1998 ATI Technologies Inc.
Proprietary and Confidential

Preliminary

RAGE 128 Series Design Guide
ix-11

Index

Write Character/Attribute at
Current Cursor Position of a
specified page, A-3

write character/attribute at current
cursor position of a specified
page, A-3

Write Dot (graphics mode), A-4
write dot (graphics mode), A-4
Write String to Specified

Page, A-11

write string to specified
page, A-11

Write Teletype to Active
Page, A-4

write teletype to active
page, A-4

Z Testing, 6-54
Z TEST, 6-55
zoom, 7-4

RAGE 128 Series Design Guide

ix-12

Preliminary

© 1998 ATI Technologies Inc.
Proprietary and Confidential

Appendix G
List of Tables

G.1 List of Tables Sorted by Name

Table G-1 List of Tables Sorted by Name

Table Title Page
15-bpp, aRGB, or 1555 Format 2-13
16-bpp, RGB, 565 Format 2-13
1-bpp Format (left-to-right) 2-12
1-bpp Format (right-to-left) 2-12
24-bpp Format (display only) 2-14
32-bpp, RGBa, or 8888 Format 2-14
8-bpp Pseudo-color Format 2-12
ALPHA_BLND_DST 6-49
ALPHA_BLND_SRC 6-49
ALPHA_COMB_FCN 6-50
ALPHA_FACTOR 6-44
ALPHA_TEST_OP 6-51
BACKFACE_CULLING_FN and 6-54
FRONTFACE_CULLING_FN

Chapter Summary 1-3
COLOR_FACTOR 6-43
COMB_FCN_ALPHA 6-44
Cursor Pixel 4-21
Descriptor Table 7-37
Destination Comparator 4-9
Destination Comparator 6-18
Display Codes (AH = 1Ah) A-11
DP_GUI_MASTER_CNTL 3-24
Formal for a Type 3 CCE Packet F-8

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual

G-1

Table G-1 List of Tables Sorted by Name (Continued)

Table Title

Page

Format for a Type 1 CCE Packet

F-5

Format for a Type-0 CCE Packet

F-3

Format of a Type 2 CCE Packet

F-7

GUI_CONTROL Subfield for the SETTINGS Field

F-12

Header Fields for a Type 1 CCE Packet

F-5

Header Fields for a Type 3 CCE Packet

F-8

Header Fields for a Type-0 CCE Packet

F-3

Header Fields of a Type 2 CCE Packet

F-7

Information Body (IT_BODY) of 2-D packets

F-12

Information Body for a Type 1 CCE Packet

F-6

Information Body for a Type-0 CCE Packet

F-4

INPUT_FACTOR

6-43

INPUT_FACTOR_ALPHA

6-45

Inputs for the Set Display Mode BIOS Function

3-7

Memory Map

2-22

Memory Specifications

3-21

Pixel Location in Memory

4-20

PM4_COLOR_FCN

6-52

PRIM_MAG_BLEND_FCN

6-40

PRIM_MIN_BLEND_FCN

6-40

PRIM_TEXTURE_CLAMP_MODE_S

6-41

PRIMARY_COMB_FCN

6-42

PRIMARY_DATATYPE

6-39

RAGE 128 Buffers

2-3

RAGE 128 Device IDs

3-2

RAGE 128 Functional Blocks

2-3

SECONDARY_INPUT_FACTOR

6-45

SECONDARY_INPUT_FACTOR_ALPHA

6-45

SETTINGS FIELD for the IT_BODY

F-12

Source Comparator

4-9

Source Comparator

6-17

© 1999 ATI Technologies Inc.
Proprietary and Confidential

RAGE 128 Software Development Manual

G-2

Table G-1 List of Tables Sorted by Name (Continued)

Table Title Page
States for Stencil Buffer 6-57
STENCIL_TEST 6-56
Summary of the CEE Packets F-10
Supported Modes 7-6
TEX_CNTL_C:ALPHA_LIGHT_FN 6-47
TEX_CNTL_C:TEX_LIGHT_FN 6-46
VESA Super VGA Modes D-5
Video BIOS Header C-2
Z PIX_ WIDTH 6-55
Z TEST 6-55
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential G-3

This page intentionally left blank.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
G4 Proprietary and Confidential

Appendix H
List of Figures

H.1 List of Figures Sorted by Name

Table H-1 List of Figures Sorted by Name

Figure Title Page
2D Coordinate System 6-2
AGP Memory Architecture - Software Layout 2-25
BitBIt - Bit Block Transfer Copying an Image from Source to Destination 4-7
Copy an Image from Source to Destination 6-15
Cursor Related Parameters 4-19
Drawing Small Text F-22
Memory Map 2-20
Modeling Worst Case Behavior 7-33
Parameters of Text 6-24
PCI Non-AGP Memory Architecture - Software Layouts 2-26
Polyline 6-9
Polyscanlines 6-11
Quality Comparison between Filter Techniques 7-9
RAGE 128 Structure and Data Flow 2-2
RAGE 128 Structure and Data Flow 5-2
Rectangles 6-6
Ring Buffer and its Control Structure 5-10
Scaled Image Transfer 4-11
Scaled Image Transfer 6-21
Scaling Quality Improvement 7-8
The fetch request beginning as early as possible 7-30
The Indirect Buffer 2-9
The Indirect Buffer 5-16

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential H-1

Table H-1 List of Figures Sorted by Name (Continued)

Figure Title Page
The Ring Buffer 2-8
Transparent Bit-Block Transfer 6-19
Type 0 CCE Packet F-3
Type 1 CCE Packet F-5
Type 2 CCE Packet F-7
Type 3 CCE Packet F-8
Video Memory 2-18
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

H-2 Proprietary and Confidential

Appendix |
List of Example Code

.1 List of Example Code Sorted by Name

Table I-1 List of Example Code Sorted by Name

Example Code Page
Accelerated line drawing 4-13
Convert the physical addresses to a usable virtual address 3-5
Copying an image from a source to a destination 4-7
Copying an image from a source to a destination 6-16
Copying an image from the source to the destination with scaling 6-22
Drawing a patterned line 4-15
Drawing a polyline 6-9
Drawing a rectangle 4-4
Drawing polyscanlines 6-12
Drawing rectangles 6-6
Drawing text in large font 6-28
Drawing text in small font 6-26

Finding the post and feedback divider for a given dot clock frequency 3-17

Initializing a hardware cursor 4-21
Initializing the GUI engine 3-26
Initializing the microengine 5-5
Loading the microcode into the microengine 5-3
Monochrome expanded Blt operation 4-17
Ring buffer management 5-11
Scaled BitBIt operation 4-12
Setting the Display Mode 3-10
Setting the Mode 3-8
Setting up a packet to draw an independent triangle 6-33
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual

Proprietary and Confidential I-1

Table I-1 List of Example Code Sorted by Name (Continued)

Example Code Page
Setting- up a packet to draw an independent triangle using explicit 6-35
vertex indices

Setting up the horizontal accumulator 7-17
Setting up the horizontal accumulator 7-19

Setting up the packet to draw an independent triangle using the impli(‘é't_38
vertex list in the vertex buffer

Shutting down the microengine 5-14
Submitting a CCE packet 6-52
Submitting packets using programmed I/O (PIO) mode 5-12
Submitting packets with Bus Mastering 5-13
Transparent BitBIt 6-19
Transparent BitBIt Operation 4-10
Waiting for idle 4-3
Waiting for the FIFO 4-2

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.

-2 Proprietary and Confidential

Appendix J
Revision History

J.1 SDK-G04000 Rev 0.01 (SD40001.pdf)

First draft completed in Aug 1999.

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential J-1

This page intentionally left blank.

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
J-2 Proprietary and Confidential

	Overview
	1.1 Scope
	1.2 Major Features of the RAGE 128
	1.3 A Chapter Summary of this Manual
	1.4 Notations and Conventions Used in this Manual
	1.5 Nomenclature and Conventions
	1.5.1 Register and Field Names
	1.5.2 Numeric Representations
	1.5.3 Register Description

	Programming Basics
	2.1 Scope
	2.2 Overview
	2.3 Operation Modes
	2.3.1 VGA Mode
	2.3.2 Accelerator Mode

	2.4 Drawing Modes in Acceleration-operation Mode
	2.5 Review of Imaging Terminology
	2.5.1 Raster Image
	2.5.2 True RGB Color
	2.5.3 Representing Pixels
	2.5.4 Pixels
	2.5.5 Pitch
	2.5.6 Video Memory

	2.6 Memory Apertures
	2.6.1 VGA Memory Aperture
	2.6.2 Video BIOS
	2.6.3 Register Apertures
	2.6.4 Linear Memory Apertures
	2.6.5 AGP System Memory Image
	2.6.6 RAGE 128 PCI GART

	2.7 Display Mode and Mode Switching
	2.8 Engine Discipline
	2.9 BIOS Services

	Accelerator Operation Mode
	3.1 Scope
	3.2 Step 1: Detect the RAGE 128
	3.2.1 Using the PCI Configuration Space
	3.2.2 Scanning the BIOS Segment
	3.2.3 Scratch Register Test

	3.3 Step 2: Obtain the Configuration Information
	3.4 Step 3: Set a Display Mode
	3.4.1 Using the BIOS Function
	3.4.2 Passing a CRT Parameter Table to Set a Display Mode
	3.4.3 Manually Setting a Display Mode
	3.4.4 Calculating the PLL Register Values
	3.4.5 Determining the Post and Feedback Dividers
	3.4.6 Programming the DDA

	3.5 Step 4: Initialize the GUI Engine

	Programming
	4.1 Scope
	4.2 Engine Command Queue Maintenance
	4.3 Programmed I/O Drawing Operations
	4.3.1 Drawing Rectangles
	4.3.2 Drawing Lines

	4.4 Hardware Cursor

	CCE Engine Initialization and Usage
	5.1 Scope
	5.2 Starting the CCE Microengine
	5.2.1 Wait for Engine Idle
	5.2.2 Load the Microcode into the Microengine
	5.2.3 Load the CCE Registers
	5.2.4 Cautions When Programming RAGE 128 in CCE Mode

	5.3 Ring Buffer Management
	5.3.1 The Ring Buffer Concept
	5.3.2 Ring Buffer Server
	5.3.3 Indirect Buffer

	CCE Packets
	6.1 Scope
	6.2 2D Coordinate System
	6.2.1 Essentials of 2D Drawing Operations

	6.3 Drawing Objects
	6.3.1 Drawing Rectangles
	6.3.2 Drawing Polylines
	6.3.3 Drawing Polyscanlines

	6.4 Block Transfers
	6.4.1 Bit Block Transfer
	6.4.2 Transparent Bit Block Transfer
	6.4.3 Scaled Block Transfer
	6.4.4 Transparent Scaled Block Transfer

	6.5 Drawing Text
	6.5.1 Drawing Text in Small Font
	6.5.2 Drawing Text in Large Font

	6.6 3D Rendering
	6.6.1 Setting Up the 3D Context
	6.6.2 Drawing 3D Primitives
	6.6.3 Texture Mapping
	6.6.4 Setting 3D Render States

	Advanced Topics
	7.1 Scope
	7.2 Back-End Overlay and Scalar
	7.2.1 Feature Summary for the Back End Video Scalar
	7.2.2 Functional Overview
	7.2.3 Additional Quality Enhancements

	7.3 Auto-Flipping and Advanced Deinterlacing
	7.4 Overlay Autonomous Updating
	7.5 Synchronizing Decoded Video Streams to the Display Refresh
	7.5.1 GUI Stall Mechanism

	7.6 Programming the Scalar
	7.6.1 Overview
	7.6.2 Setup
	7.6.3 Bandwidth
	7.6.4 Managing Bandwidth
	7.6.5 Physical Scaling Ratios
	7.6.6 Setting up the Horizontal Accumulator
	7.6.7 Setting up the Destination Window
	7.6.8 Setting up the Source Window
	7.6.9 Calculating the Filter Coefficients
	7.6.10 Setting up the Vertical Accumulator
	7.6.11 Autonomous Update
	7.6.12 Autoflipping and Advanced Deinterlacing

	7.7 Color Controls
	7.8 Keying Controls
	7.9 Tabulating Cycles in the HBlank
	7.9.1 Part 1
	7.9.2 Part 2
	7.9.3 Part 3

	7.10 Tips for Getting More Bandwidth
	7.11 Front-end Scalar
	7.12 Bus Mastering
	7.12.1 Bus Master Operation
	7.12.2 Creating a Descriptor Table
	7.12.3 Setting up a System Bus Master Transfer

	BIOS Function Calls
	A.1 Scope
	A.2 AH = 0; Set Video Mode (AL = Video mode)
	A.3 AH = 1; Set Cursor Type
	A.4 AH = 2; Set Current Cursor Position
	A.5 AH = 3; Read Current Cursor Position at the specified page
	A.6 AH = 4; Read Current Light Pen Position
	A.7 AH = 5; Select Active Display Page
	A.8 AH = 6; Scroll Active Page Up
	A.9 AH = 7; Scroll Active Page Down
	A.10 AH = 8; Read Character/Attribute at Current Active Cursor Position
	A.11 AH = 9; Write Character/Attribute at Current Cursor Position of a specified page
	A.12 AH = 0Ah; Write Character at Current Cursor Position of a specified page
	A.13 AH = 0Bh; Set Color Palette
	A.14 AH = 0Ch; Write Dot (graphics mode)
	A.15 AH = 0Dh; Read Dot (graphics mode)
	A.16 AH = 0Eh; Write Teletype to Active Page
	A.17 AH = 0Fh; Return Current Video Setting
	A.18 AH = 10h; Set Palette Registers
	A.19 AH=11h; Character Generator Routines
	A.20 AH = 12h; Return Current EGA Settings/Print Screen Routine Selection
	A.21 AH = 13h; Write String to Specified Page
	A.22 AH=1Ah; Display Combination Code
	A.23 AH=1Bh; Return VGA Functionality and State Information
	A.24 AH=1Ch; Save and Restore Video State

	Extended BIOS Function Calls
	B.1 Scope
	B.2 BIOS Extensions
	B.2.1 Video BIOS Base Address
	B.2.2 Calling Extended Functions
	B.2.3 Compatibility
	B.2.4 Extended BIOS Services
	B.2.5 Function 00h - Set Display Mode
	B.2.6 Function 01h - Set Display Controller State
	B.2.7 Function 02h - Set DAC State
	B.2.8 Function 03h - Program Specified Clock Entry
	B.2.9 Function 04h - Short Query Function 0
	B.2.10 Function 05h - Short Query Function 1
	B.2.11 Function 06h - Short Query Function 2
	B.2.12 Function 07h - Query Graphics Hardware Capability and Capture Width Info
	B.2.13 Function 08h - Query Installed Modes
	B.2.14 Function 09h - Query Supported Mode
	B.2.15 Function 0Ah - Display Power Management Service (DPMS)
	B.2.16 Function 0Bh - Display Data Channel (DDC) Service
	B.2.17 Function 0Ch - Save and Restore Graphics Controller Data
	B.2.18 Function 0Dh - Get/Set Refresh Rate (CRT only)
	B.2.19 Function 14h - Detect CRT/TV/DFP
	B.2.20 Function 15h - Get/Set Active Display(s)
	B.2.21 Function 16h - Get/Set TV Standard
	B.2.22 Function 17h - Get TVOut Info

	B.3 Mode Table Structure
	B.3.1 CRTC Parameter Table

	B.4 RAGE 128 Internal Parameter Table Format
	B.4.1 CRTC Parameter Table

	BIOS Header, Scratch Registers and Information Tables
	C.1 Scope
	C.2 Video BIOS Header
	C.3 Scratch Registers
	C.4 Information Tables
	C.4.1 TV Information
	C.4.2 DFP Information

	VESA BIOS Extension
	D.1 Scope
	D.2 Status Information
	D.3 Function 00h - Return Super VGA Information
	D.4 Function 01h - Return Super VGA Mode Information
	D.5 Function 02h - Set Super VGA Video Mode
	D.6 Function 03h - Return Current Video Mode
	D.7 Function 04h - Save/Restore State
	D.8 Function 05h - Display Window Control
	D.9 Function 06h - Set/Get Logical Scan Line Length
	D.10 Function 07h - Set/Get Display Start
	D.11 Function 08h - Set/Get AC Palette Format
	D.11.1 Subfunction 0 - Set AC Palette Format
	D.11.2 Subfunction 1 - Get AC Palette Format

	D.12 Function 09h - Set/Get AC Palette Data
	D.13 Power Management Services
	D.13.1 VBE/PM Function 0 - Report VBE/PM Capabilities
	D.13.2 VBE/PM Function 1 - Set Display Power State
	D.13.3 VBE/PM Function 2 - Get Display Power State

	D.14 Display Identification Extensions
	D.14.1 VBE/DDC Function 0 - Report VBE/DDC Capabilities
	D.14.2 VBE/DDC Function 1 - Read EDID

	BIOS Hardware Configuration and Multimedia Tables
	E.1 Scope
	E.2 BIOS Multimedia Table
	E.3 BIOS Hardware Configuration Table
	E.4 BIOS Tables for RAGE 128 / RAGE THEATER Board
	E.4.1 Multimedia Table
	E.4.2 Hardware Configuration Table

	CCE Command Packets
	F.1 Scope
	F.2 Notation used this Section
	4.1 Type-0 CCE Packet
	F.3 Type 1 CCE Packet
	F.4 Type 2 CCE Packet
	F.5 Type 3 CCE Packet
	F.6 Summary of the CEE Packets
	F.7 2D Packets
	F.8 NOP
	F.9 PAINT
	F.10 SMALL_TEXT
	F.11 HOSTDATA_BLT
	F.12 POLYLINE
	F.13 SCALE
	F.14 TRANS_SCALE
	F.15 POLYSCANLINES
	F.16 NEXTCHAR
	F.17 PAINT_MULTI
	F.18 BITBLT_MULTI
	F.19 TRANS_BITBLT
	F.19.1 CLR_CMP_CNTL

	F.20 PLY_NEXTSCAN
	F.21 LOAD_PALETTE
	F.22 SET_SCISSORS
	F.23 SET_MODE_24BPP
	F.24 3D_RNDR_GEN_PRIM
	F.24.1 VC_FORMAT
	F.24.2 VC_CNTL
	F.24.3 FTLVERTEX

	F.25 Interpretation of Vertices
	F.25.1 Points (1)
	F.25.2 Lines (2)
	F.25.3 Polylines (3)
	F.25.4 Triangles (4)
	F.25.5 Triangle Fan (5)
	F.25.6 Triangle Strip (6)

	F.26 3D_RNDR_GEN_INDX_PRIM
	F.26.1 Vertex Array Format

	F.27 NEXT_VERTEX_BUNDLE

	List of Tables
	G.1 List of Tables Sorted by Name

	List of Figures
	H.1 List of Figures Sorted by Name

	List of Example Code
	I.1 List of Example Code Sorted by Name

	Revision History
	J.1 SDK-G04000 Rev 0.01 (SD40001.pdf)

