
Windows ® 95
Programmer’s Guide

Technical Reference Manuals

P/N: SDK-C02700 Rev. 1.30

3D RAGE™

ATI Technologies Inc.
33 Commerce Valley Drive East
Thornhill, Ontario
Canada L3T 7N6

Developer Support: 905-882-2600 ext.6000
Offices: 905-882-2600
Fax: 905-882-2620
BBS: 905-764-9404

ly
ny time

r
nc.

ft
pective
P/N: SDK-C02700

Revision: 1.30

© 1997 ATI Technologies Inc.

The information contained in this document has been carefully checked and is believed to be entire
reliable. No responsibility is assumed for inaccuracies. ATI reserves the right to make changes at a
to improve design and supply the best product possible.

All rights reserved. This document is subject to change without notice and is not to be reproduced o
distributed in any form or by any means without prior permission in writing from ATI Technologies I

ATI, VGAWonder, mach8, mach32, mach64, 3D RAGE, 8514ULTRA, GRAPHICS ULTRA ,
GRAPHICS VANTAGE , GRAPHICS ULTRA+ , GRAPHICS ULTRA PRO, GRAPHICS PRO
TURBO 1600, GRAPHICS PRO TURBO, GRAPHICS XPRESSION, WINTURBO, and
WINBOOST are trademarks of ATI Technologies Inc. Windows® 95 is a registered trademark of Microso
in the U.S. and other countries. All other trademarks and product names are properties of their res
owners.

Record of Revisions
������� ���� ����	
��
�����������

���� ������	
�����������������

���� ������	 ������
���������������������

���� �� ���	 ������!"#��������$��%��������������

���& "�����	 '��������������

���(������)���%���*�����������������
+����������

���	 �����	
������,
��%������%�-��*��)��+.��/��*�������
%��������������

���� 0�����	
������,�+���'1�����)��+.���
��%������%/�
�*�������%�������������������+���'1����

���� ������2

������,��'1�
����)��+.���
��%������%/�
�*�������%��������������������'1�
�0�
���������������3����������$�������+0!������
���������

���� "����2
'������������������4��'1�
�056�78�
�������������������.��.�������%��

���� �����2
������.�+9.0+1:00;1<)�=�����
.�+9)#71�)1>�����%��������������

����	��������
�
��
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential iii

System Publications Index
• ATI 3D RAGE Windows 95
Programmer’s Guide
(SDK-C02700)

�����������
���
�������

����
��������	����������
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
iv Proprietary and Confidential

.....ix
......x

......
.... xiv
... xiv

.. 1-1
... 1-1

... 1-2

.. 2-1
.. 2-1
. 2-1
. 2-1
2-4

.. 2-6

... 2-7

.... 2
... 2-9
.. 2-9
2-12
2-14

2-15
2-16

.. 2-16
.. 2
. 2-17
2-18

Table of Contents
Preface

ATI Company Background...
ATI Developer Support...

Introduction

3D RAGE PRO...xii
Manual Contents..
SDK System Requirements...

Chapter 1 Overview

Introduction... 1-1
3D Drawing Operations..

Texture Mapper...
Shader... 1-2
Alpha Blender..

Chapter 2 Programming with ATI3DCIF

Basic ATI3DCIF Operations...
Initializing ATI3DCIF ..
Creating a Rendering Context...
Rendering 3D Primitives...
Modifying the Rendering Context..
Getting ATI3DCIF Module and Graphics Subsystem Information.. 2-5

ATI3DCIF Primitive Types...
Vertex Data Formats...
Shading Modes..-8
Texture Mapping..

Registering a Texture..
Applying a Texture...
Unregistering a Texture..
Setting Texture Filtering, Lighting, and Perspective Correction Levels............................. 2-14
Transparent Texture Mapping...
Texture Coordinates..

Alpha Blending...
Applying Fog..-17
ATI3DCIF Viewport ..
ATI3DCIF Clipping Scissors..
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential v

Table of Contents

.

.3-1

....3-2

.

...4-1
...4-1

....4

...4-3
....4-3
..
....4-4
..4-4
4-5
.4-7

.
...5-1
..5-1
..5-2
..5-3
...5-7
....5-8
..5-9
5-10
5-11
5-12
5-13
.5-14
-15
-16
5-17
5-18
.5-19
-19
.5-20
5-22
..5-23
..5-24
..5-26
..5-27
..5-28
..
Chapter 3 3D RAGE II ATI3DCIF Programming

Introduction..3-1
Determining ATI3DCIF Capabilities..
Palettized Textures...
Z Buffers..3-5

Chapter 4 RAGE PRO ATI3DCIF Programming

Introduction..4-1
Determining Capabilities..
Texture Compositing..

Blend...4-2
Modulation..-3
Specular-Addition..

Texture Clamping..
LOD Biasing..4-3
Specular Lighting..
Destination Alpha Testing...
Vector Quantization (VQ) Compression..
TL Vertex Type (C3D_TLVERTEX)..

Chapter 5 ATI3DCIF API Reference

Introduction..5-1
Windows 95 Functions...

ATI3DCIF_ContextCreate..
ATI3DCIF_ContextDestroy..
ATI3DCIF_ContextSetState..
ATI3DCIF_GetInfo..
ATI3DCIF_Init..
ATI3DCIF_RenderBegin..
ATI3DCIF_RenderEnd...
ATI3DCIF_RenderPrimList..
ATI3DCIF_RenderPrimStrip..
ATI3DCIF_RenderSwitch...
ATI3DCIF_Term..
ATI3DCIF_TexturePaletteCreate..5
ATI3DCIF_TexturePaletteDestroy..5
ATI3DCIF_TextureReg...
ATI3DCIF_TextureUnreg...

ATI3DCIF Data Types..
ATI3DCIF Fundamental Data Types..5
C3D_3DCIFINFO..
C3D_CODEBOOKENTRY..
C3D_COLOR..
C3D_EACMP...
C3D_EADST..
C3D_EASEL...
C3D_EASRC..
C3D_EC..5-30
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
vi Proprietary and Confidential

Table of Contents

5-31
. 5-32
. 5-33
. 5-34
. 5-37
5-38
5-39

. 5-40
. 5-41
. 5-42
5-43

. 5-44
. 5-45
. 5-46
.. 5-4
.. 5-4
. 5-49
5-50
. 5-51
. 5-52
5-53
. 5-55
.. 5-
..
. 5-59
. 5-60
. 5-61
.. 5-

-1
. 6-1
...
6-3
. 6-3
6-3
C3D_ECI_TMAP_TYPE...
C3D_EPIXFMT..
C3D_EPRIM...
C3D_ERSID..
C3D_ESHADE..
C3D_ETEXCOMPFCN...
C3D_ETEXFILTER...
C3D_ETEXFMT...
C3D_ETEXOP..
C3D_ETLIGHT...
C3D_ETPERSPCOR..
C3D_EVERTEX..
C3D_EZCMP..
C3D_EZMODE...
C3D_HRC..7
C3D_HTX ..8
C3D_HTXPAL..
C3D_PALETTENTRY...
C3D_PRSDATA..
C3D_RECT...
C3D_TLVERTEX..
C3D_TMAP..
C3D_VCF...57
C3D_VF...5-58
C3D_VLIST..
C3D_VSTRIP..
C3D_VTCF...
C3D_VTF...62

Chapter 6 3D RAGE / ATI3DCIF
Porting and Performance Notes

Introduction... 6-1
Triangle Size, Performance and Image Quality.. 6
Porting Backgrounds and Scenery...
Game Objects... 6-2
Concurrency and Software Overhead...
Using the RAGE’s 2D Engine...
Additional Tips for Improving Performance...
Summary... 6-4
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential vii

Table of Contents
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
viii Proprietary and Confidential

Preface
 new
illions

he
 major

l and
pment

GE

 in
adian,
arter
uarter.

t line
PEG

EMs
n
ATI Technologies Inc. is pleased to present this Software Developers Kit for the 3D RAGE, ATI’s
2D, 3D and video graphics accelerator. Current market acceptance indicates that there will be m
of 3D RAGE-powered PCs and Power Macs installed in 1996-7. ATI is a unique vendor in this
marketplace in that we design and manufacture our own chips and boards, as well as develop t
accompanying software. This “one-stop shopping” benefit is one of the many reasons that ATI is a
chip supplier to OEMs and motherboard builders, as well as a being a preferred vendor of retai
OEM add-in graphics boards. Consequently, ATI’s products are actively supported by the develo
community.

This brief section provides company background and a review of ATI's product line. The 3D RA
will be described in detail in the next section.

ATI Company Background

ATI Technologies Inc. was founded in 1986 and now has 700 employees worldwide, with offices
Toronto, Munich, San Jose and Boston. ATI’s fiscal year 1995 revenues were $359 million (Can
over $250 million U.S.), an increase of 55% over the previous year. For the 1996 fiscal year qu
ending November 30, 1995, ATI’s revenues were almost $120 million (Canadian), another record q

ATI’s current product line is centered around the mach64 family of graphics controllers, including:

• ATI264-CT, a value priced 2D graphics accelerator

• ATI-264VT, a richly featured video and 2D graphics accelerator

• 3D RAGE (ATI-264GT) an integrated 2D, 3D and video graphics accelerator

The entire mach64 family is pin-compatible, allowing OEMs to easily upgrade motherboard
implementations from one chip to the next. In addition to the graphics accelerators, ATI’s produc
now includes multimedia products offering video-in, video conferencing, TV tuner capability and M
decoding. This broad product offering and upgrade capability has solidified relationships with PC O
world wide. ATI expects to ship over 8 million graphics chips in 1996. With additional fabricatio
capacity coming on-line by the end of 1996, ATI is planning to ship 15 million chips in 1997.
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential ix

ATI Developer Support

te and
lations

ences
nity.
s can
ATI Developer Support

ATI appreciates the support our products have received from the development community to da
we continue to improve our developer support program. Our headquarters-based Developer Re
group is adding staff and resources. In addition, ATI will be setting up regional Developer Confer
to promote support for the 3D RAGE and get additional feedback from the development commu
Please contact the Developer Relations group so that your input to our product planning proces
continue. Developer Relations may be reached at:

Developer Relations

ATI Technolgies Inc.
33 Commerce Valley Drive East
Thornhill, Ontario
Canada, L3T 7N6
Tel: 905-882-2600, x 6000, 8:30 a.m. to 6:00 p.m. Eastern Time
Fax: 905-882-9339
Email: devrel@atitech.ca
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
x Proprietary and Confidential

rt for
AGE

ars.

These
I also

 as
I,

etary
 for
hading,
ouble

 does
Draw

Introduction
The ATI 3D RAGE family of chips are highly integrated graphics accelerators with superior suppo
3D and motion video. It is ideal for gaming, consumer PCs, and multimedia workstations. The 3D R
will lead the implementation of 3D functionality across the ATI product line over the next two ye

The core hardware accelerated 3D features of the 3D RAGE include:

• seven texture filtering modes

• perspectively correct texture mapping

• video textures

• palettized textures (in the 3D RAGE II and later)

• Gouraud shading

• alpha blending

• fog effects

• dithering of limited colors (8 and 16 bpp)

• 16 bit z-buffer (in the 3D RAGE II and later)

• complete 2D and video feature set

• texture compositing (RAGE Pro and later)

• vector quantization (VQ) compression (RAGE Pro and later)

This rich feature set was determined by researching the needs of the development community.
are the most common 3D features utilized in 3D games, web content and other applications. AT
reviewed the needs of the major 3D API (Application Programming Interface) developers, such
Microsoft with their RealityLab and Direct3D APIs, Apple Computer with their QuickDraw3D AP
Intel with their 3DR API, and others.

For accessing accelerated 3D features on the 3D RAGE under Windows 95, ATI provides a propri
interface called ATI3DCIF (ATI 3D C InterFace). This low-level interface provides a set of functions
executing and managing 3D rendering operations such as primitive drawing, texture mapping, color s
and color blending. Under Windows 95, applications may use Microsoft’s DirectDraw to create the d
buffer and texture map surfaces required by ATI3DCIF.

ATI3DCIF is a 3D rendering interface. It does not perform 3D geometric transformations. It also
not implement any 2D blitting operations, as these services are provided by the GDI and Direct
under Windows 95.
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential xi

3D RAGE PRO

rated
3D
)

ing

al

igher

ments

s

3D RAGE PRO

The 3D RAGE PRO is the third generation chipset in the 3D RAGE product line. It is a highly integ
64-bit graphics accelerator featuring full 2D acceleration, TV quality motion video and superior
acceleration. It incorporates comprehensive support for Intel’s Accelerated Graphics Port (AGP
including 66 or 133 MHz fully pipelined operation with sideband.

The 3D RAGE PRO provides the following features:

General Features

• PCI version 2.1 with full bus mastering and scatter / gather support.

• Bi-endian support for compliance on a variety of processor platforms.

• Fast response to host commands:

• 128-level command FIFO

• 32-bit wide memory-mapped registers

• Programmable flat or paged memory model with linear frame buffer access

• Triple 8-bit palette DAC with gamma correction for true WYSIWYG color. Pixel rates up to
220MHz.

• Supports DRAM, EDO DRAM, SDRAM and SGRAM at up to 100MHz memory clock provid
bandwidths up to 800MB/sec across a 64-bit interface.

• Supports WRAM and 128-bit external DAC for ultra-high end configurations

• Flexible graphics memory configurations: 1MB up to 8MB; 256Kx4/8/16/32, 512Kx32; du
CAS.

• Memory upgrade via industry-standard SGRAM SO-DIMM, for reduced board area and h
memory speeds.

• DDC1 and DDC2B+ for plug and play monitors.

• Power management for full VESA DPMS and EPA Energy Star compliance.

• Integrated hardware diagnostic tests performed automatically upon initialization.

• High quality components through built-in SCAN, CRC and chip diagnostics

• Single chip solution in 0.35mm, 3.3V CMOS technology, with multiple package options.

• Comprehensive HDKs, SDKs and utilities augmented by full engineering support.

• Complete local language support (contact ATI for current list).

3D Acceleration

• Integrated 1 million triangles set-up engine, which reduces CPU and bus bandwidth require
and dramatically improves performance of small 3D primitives

• 4KB on-chip texture cache, which dramatically improves large triangle performance.

• Complete 3D primitive support: points, lines, triangles, and quadrilaterals in lists and strip

• Hidden surface removal using 16-bit z-buffering

NOTE: ATI3DCIF cannot be used with Direct3D within the same application (although ATI3DCIF
may be, and usually is, used with DirectDraw).
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
xii Proprietary and Confidential

3D RAGE PRO

nce

dows,

422

me
2).

l

 1MB

/

cations.

cost

rior

s:
• Edge anti-aliasing

• Sub-pixel and sub-texel accuracy

• Gouraud, specular, flat, and solid shaded polygons

• Perspectively correct mip-mapped texturing with chroma-key support

• Single pass bi- and tri-linear texture filtering for vastly improved bi- and tri-linear performa

• Texture compositing

• Special effects such as alpha blending, fog, video textures, texture lighting, reflections, sha
spotlights, LOD biasing and texture morphing

• Dithering support in 8bpp and 16bpp for near 24bpp quality in less memory

• Texture compression of up to 8:1 using vector quantization

• Filtered horizontal/vertical RGB scaler for high-quality stretching of 3D display

• Extensive 3D mode support: RGBA32, RGBA16, RGB16, RGB8, ARGB4444, YUV444, YUV

• Compressed texture modes: YUV422, CLUT4 (CI4), CLUT8 (CI8), VQ

2D Acceleration

• Hardware acceleration of Bitblt, Line Draw, Polygon / Rectangle Fill, Bit Masking, Monochro
Expansion, Panning/Scrolling, Scissoring, full ROP support and h/w cursor (up to 64x64x

• Game acceleration including support for Microsoft's DirectDraw: Double Buffering, Virtua
Sprites, Transparent Blit, Masked Blit and Context Chaining.

• Acceleration in 4/8/16/24/32 bpp modes. Packed pixel support (24bpp) enables true color in
configurations.

Motion Video Acceleration

• Smooth video scaling and enhanced YUV to RGB color space conversion for full-screen
full-speed video playback.

• Front and back end scalers support multi-stream video for video conferencing and other appli

• Filtered horizontal/vertical, up/down, scaling enhances playback quality.

• Enhanced line buffer allows vertical filtering of native MPEG-2 size (720x480) images.

• DVD / MPEG-2 decode assist provides dramatically improved frame rate without incurring
of dedicated hardware.

• Special filter circuitry eliminates video artifacts caused by displaying interlaced video on
non-interlaced displays.

• Intercast capable video capture interface.

• Bi-directional bus mastering engine with planar YUV to packed format converter for supe
MPEG2 and video conferencing.

• Hardware mirroring for flipping video images in video conferencing systems.

• Supports graphics and video keying for effective overlay of video and graphics.

• YUV to RGB color space converter with support for both packed and planar YUV:

• YUV422, YUV410, YUV420

• RGB32, RGB16/15, RGB8, Mono

ATI Multimedia Channel

• 16-bit, bi-directional video port allows direct connection to popular video upgrades such a
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential xiii

Manual Contents

pters:

 groups

rator.

rator.

porting
ce.
• video capture / video conferencing

• Hardware MPEG2 / DVD player

• TV tuner with Intercast support

Manual Contents

This manual serves as a programming guide to the ATI3DCIF. It is composed of the following cha

Chapter 1: Overview

This chapter presents an overview of the ATI3DCIF programming model. It describes the main
components of the 3D graphics pipeline on the 3D RAGE. The chapter also describes the function
in the interface and how they are used within the programming model.

Chapter 2: Programming with ATI3DCIF

This chapter describes the basic operations for setting up and using ATI3DCIF.

Chapter 3: 3D RAGE II ATI3DCIF Programming

This chapter covers programming issues which only apply to the ATI 3D RAGE II graphics accele

Chapter 4: RAGE Pro ATI3DCIF Programming

This chapter covers programming issues which only apply to the ATI RAGE Pro graphics accele

Chapter 5: ATI3DCIF API Reference

This chapter provides a comprehensive reference of the ATI3DCIF functions and data types.

Chapter 6: 3D RAGE /ATI3DCIF Porting and Performance Notes

This chapter covers ATI3DCIF and 3D RAGE porting and performance issues. It provides guidelines for
existing applications to the 3D RAGE and discusses factors which affect image quality and performan

SDK System Requirements
The following are the system requirements for this SDK:

• 486/Pentium system

• 32-bit PCI Local Bus 2.1

• 3D RAGE accelerator graphics board

• Microsoft DirectX Games Development kit (DirectX 2 for RAGESDK Beta 6 and greater)

• Microsoft Visual C/C++ 4.0 (for Windows 95 example projects)
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
xiv Proprietary and Confidential

Chapter 1
Overview
ion
nt

ring
form

 a rich
rdware
Blender

r by the
 Alpha

ble
exel
 passed
Introduction

ATI3DCIF is an ATI proprietary programming interface that exposes the 3D hardware rasterizat
functionality of the ATI 3D RAGE graphics accelerator. The focus of ATI3DCIF is to provide clie
applications with an interface for accelerating 3D rendering operations. Therefore, ATI3DCIF is a
rendering interface, and as such, does not perform any 3D geometric transformations, 2D rende
operations, or memory management. Applications may use Microsoft’s DirectX or the GDI to per
memory management and 2D blitting operations.

3D Drawing Operations

ATI3DCIF accelerates the drawing of quadrangles, triangles, and lines. The 3D RAGE supports
set of orthogonal 3D drawing operations for texture mapping, shading, and alpha blending. The ha
can be conceived as a three-stage graphics pipeline with a Texture Mapper, Shader, and Alpha
stage, where each stage is dedicated to carrying out one of the rendering operations.

When all three components are on, the Shader is applied to texels fetched from the frame buffe
Texture Mapper to simulate texture lighting effects, and the resulting pixels are passed on to the
Blender. The operation of each element is described below.

Texture Mapper

Texels from the frame buffer are read into the pixel pipeline and filtered by one of the programma
filtering algorithms. The resulting texel may optionally be compared against a chroma key. If the t
matches the chroma key, it is discarded and the destination is left unaltere; otherwise, the texel is
on to the Shader stage of the pipe.

Alpha
Blender

Shader
Texture
Mapper

Frame Buffer
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 1-1

3D Drawing Operations

 Texture
sed to
s solid,

ors
 stage

address

parency.

le.
tion
s.

re
for

xt.

al
Shader

The Shader generates colors that can be applied to texels supplied by the Texture Mapper. If the
Mapper is off, these colors are passed to the Alpha Blender stage unaltered. The mechanism u
generate colors by the Shader is programmable, and allows for different shading methods such a
flat, and Gouraud shading. If texture mapping is on, the method used to mix texels with the col
generated by the Shader (texture lighting) is also programmable. The resulting pixels from this
are passed on to the Alpha Blending stage.

Alpha Blender

The alpha blender simply blends the output of the Shader stage with the pixel at the destination
in the frame buffer. Various source and destination alpha blending methods are available on the
3D RAGE. Alpha blending may be used to achieve special effects such as translucency and trans

The ATI3DCIF interface is composed of the following functional groups:

• Library Initialization functions

• Texture Management functions

• Context Management and Rendering functions

Library Initialization functions allow the client application to load and unload the ATI3DCIF modu
Library initialization must be performed prior to using any other library functions. and library termina
must be performed after the client applications has finished using the interface to free resource

Texture Management functions are used by ATI3DCIF to manage the use of textures. Textures a
registered with ATI3DCIF and given a unique handle. This handles is used to select the texture
rasterization during the texture mapping process.

Context Management functions allow the client application to create and modify a rendering conte
A rendering context represents the collection of rendering states currently set for the 3D RAGE
accelerator. The Rendering functions allow the application to render line, triangle, or quadrilater
primitives in primitive lists or strips.
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
1-2 Proprietary and Confidential

Chapter 2
Programming with ATI3DCIF
cepts
ion can

y
re

 3D

lt state.
le to
ange

ts.

 calling
and

ing
ting,
in 3D

ation

,
Basic ATI3DCIF Operations

This section describes basic operations for setting up and using ATI3DCIF. It covers ATI3DCIF
initialization and describes the fundamentals of the ATI3DCIF rendering model, introducing con
such as the rendering context and 3D rendering blocks. Finally, it demonstrates how an applicat
retrieve ATI3DCIF module and graphics subsystem information.

Initializing ATI3DCIF

The first step to use ATI3DCIF is to load and initialize the ATI3DCIF.DLL module. This is done b
calling ATI3DCIF_Init. This DLL must be loaded before any ATI3DCIF functions are called. Befo
the application terminates, it must unload ATI3DCIF.DLL by calling ATI3DCIF_Term.

Creating a Rendering Context

After the ATI3DCIF module is loaded, the application must create a rendering context to use the
features of the 3D RAGE. A rendering context is created by calling ATI3DCIF_ContextCreate. When
a rendering context is created, the RAGE’s 3D rendering components are configured into a defau
This rendering context is identified by a unique handle, and the application must pass this hand
ATI3DCIF functions whenever referencing or modifying the rendering context. For example, to ch
the context shading mode, the application must call ATI3DCIF_ContextSetState with the context handle
as the first argument, and the appropriate state modification flag and data as the other argumen

When the application no longer needs the rendering context, the former may destroy the latter by
ATI3DCIF_ContextDestroy. An application must destroy the rendering context before terminating,
before calling ATI3DCIF_Term to unload the ATI3DCI module.

Rendering 3D Primitives

When an application is ready to render 3D primitives, it must set the 3D RAGE into a 3D operat
mode. While in this mode, the application will not be able to perform 2D operations, such as blit
rectangle fills, or page flipping. The application should perform all 3D rendering operations while
mode and switch back to 2D mode to perform 2D operations.

To switch to 3D mode, the application must call ATI3DCIF_RenderBegin. While in this mode, primitive
lists and strips may be rendered by calling ATI3DCIF_RenderPrimList or ATI3DCIF_RenderPrimStrip
respectively. To switch back to 2D rendering mode after rendering all the 3D primitives, the applic
must call ATI3DCIF_RenderEnd.

When switching between 2D and 3D modes, ATI3DCIF_RenderBegin saves the state of the 2D engine
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-1

Basic ATI3DCIF Operations

hile

 only
within
ing
ould be

g

rations:
and ATI3DCIF_RenderEnd restores the state of the 2D engine. To minimize the overhead incurred w
saving and restoring, the applications should minimize the number of ATI3DCIF_RenderBegin –
ATI3DCIF_RenderEnd blocks (3D rendering blocks) in each frame update. Ideally, there should be
one 3D rendering block per frame update, and all 3D primitive lists or strips should be rendered
this block. To accomplish this, the application may need to reorganize the order in which render
operations are performed. 2D and 3D operations should be separated, and all 3D operations sh
performed within one 3D rendering block whenever possible.

The following example demonstrates the recommended method for mixing 2D and 3D renderin
operations during frame updates:

Example 1: recommended

// 2D rendering operations (e.g. background rectangle fills, bitmap blits, etc.)
...

// now switch to 3D mode and draw the 3D primitives. hRC is a rendering
// context created by calling ATI3DCIF_ContextCreate
ATI3DCIF_RenderBegin (hRC);

// render 3D primitives
ATI3DCIF_RenderPrimList (PrimList1, PrimList1NumVerts);

ATI3DCIF_RenderPrimList (PrimList2, PrimList2NumVerts);

ATI3DCIF_RenderPrimStrip (PrimStrip1, PrimStrip1NumVerts);

...

// now switch back to 2D mode
ATI3DCIF_RenderEnd ();

// perform 2D operations (such as page flipping, etc.) ...

Here are a couple of examples showing non-optimal and incorrect ways to perform the same ope

Example 2: not recommended

// This example shows unnecessary ATI3DCIF_RenderBegin and ATI3DCIF_RenderEnd
// calls which incur unwanted overhead. Since no 2D operations are being
// performed in between the primitive rendering calls, all these calls can be
// lumped within one ATI3DCIF_RenderBegin - ATI3DCIF_RenderEnd block.

// 2D rendering operations (e.g. background rectangle fills, bitmap blits, etc.)
...
ATI3DCIF_RenderBegin (hRC);
ATI3DCIF_RenderPrimList (PrimList1, PrimList1NumVerts);
ATI3DCIF_RenderEnd ();

ATI3DCIF_RenderBegin (hRC);
ATI3DCIF_RenderPrimList (PrimList2, PrimList2NumVerts);
ATI3DCIF_RenderEnd ();
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-2 Proprietary and Confidential

Basic ATI3DCIF Operations
ATI3DCIF_RenderBegin (hRC);
ATI3DCIF_RenderPrimStrip (PrimStrip1, PrimStrip1NumVerts);
ATI3DCIF_RenderEnd ();

// perform 2D operations (such as page flipping, etc.) ...

Example 3: not recommended

// This example demonstrates a situation which may be optimized by reordering
// 2D and 3D rendering operations such that all 3D operation are performed
// within one 3D rendering block, as in Example 1.

// 2D rendering operation (e.g. blit, color fill, etc.)
...
ATI3DCIF_RenderBegin (hRC);
ATI3DCIF_RenderPrimList (PrimList1, PrimList1NumVerts);
ATI3DCIF_RenderEnd ();

// 2D rendering operation (e.g. blit, color fill, etc.)
...
ATI3DCIF_RenderBegin (hRC);
ATI3DCIF_RenderPrimList (PrimList2, PrimList2NumVerts);
ATI3DCIF_RenderEnd ();

// 2D rendering operation (e.g. blit, color fill, etc.)
...
ATI3DCIF_RenderBegin (hRC);
ATI3DCIF_RenderPrimStrip (PrimStrip1, PrimStrip1NumVerts);
ATI3DCIF_RenderEnd ();

Example 4: incorrect

// This example demonstrates the incorrect way to mix 2D and 3D rendering
// operations.

ATI3DCIF_RenderBegin (hRC);

ATI3DCIF_RenderPrimList (PrimList1, PrimList1NumVerts);

// perform a 2D operation such as a rect fill or 2D blit
...// ERROR: should not perform 2D operations within a 3D rendering

// block!!!
// If doing the 2D operation at this point is unavoidable, exit the
// 3D rendering block by calling ATI3DCIF_RenderEnd, perform the 2D
// operation, and begin a new 3D rendering block by calling
// ATI3DCIF_RenderBegin

ATI3DCIF_RenderPrimList (PrimList2, PrimList2NumVerts);

ATI3DCIF_RenderPrimStrip (PrimStrip1, PrimStrip1NumVerts);

...
ATI3DCIF_RenderEnd ();
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-3

Basic ATI3DCIF Operations

The
ill

which
ifying

 in the

re
ering
urred.
Modifying the Rendering Context

Rendering states within the rendering context may be modified by calling ATI3DCIF_ContextSetState.
The first argument to this function is the handle of the rendering context which will be modified.
second argument is a C3D_ERSID enumeration type specifying which rendering state or property w
be modified. The last argument is a C3D_UINT32 which has a different meaning depending on
state is being modified. Typically, it is a pointer to an ATI3DCIF enumeration or structure type spec
the new state or property.

ATI3DCIF_ContextSetState needs to save and restore the state of the 2D engine on entry and exit
same manner as the ATI3DCIF_RenderBegin and ATI3DCIF_RenderEnd functions. If
ATI3DCIF_ContextSetState is called outside of a 3D rendering block, it will explicitly save and resto
the 2D engine state, and the application will incur overhead. However, if it is called within a 3D rend
block, the save and restore operation will not be performed, and no additional overhead will be inc
Therefore, the application should attempt to group all ATI3DCIF_ContextSetState calls within a 3D
rendering block.

The following example shows the recommended method for calling ATI3DCIF_ContextSetState:

Example 5: recommended

// This example changes the context shading mode from the default smooth
// (gouraud) state to flat

C3D_ESHADE eshade = C3D_ESH_FLAT;

// switch to 3D mode
ATI3DCIF_RenderBegin (hRC);

// change the rendering context shading mode
ATI3DCIF_ContextSetState (hRC, C3D_ERS_SHADE_MODE, &eshade);

// render a primitive list using flat shading
ATI3DCIF_RenderPrimList (PrimList, PrimListNumVerts);

// restore smooth shading
eshade = C3D_ESH_SMOOTH;
ATI3DCIF_ContextSetState (hRC, C3D_ERS_SHADE_MODE, &eshade);

// now switch back to 2D mode
ATI3DCIF_RenderEnd ();

Example 6: not recommended

// This example also changes the context shading mode from the default smooth
// gouraud) state to flat. However, ATI3DCIF_ContextSetState calls are made
// outside of the 3D rendering block. As a result, the state of the 2D engines
// will be saved and restored with each of these calls in addition to the
// ATI3DCIF_RenderBegin and ATI3DCIF_RenderEnd calls.

C3D_ESHADE eshade = C3D_ESH_FLAT;
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-4 Proprietary and Confidential

Basic ATI3DCIF Operations

m by

system,
M

ld
pointer
he
ould
ould
// change the shading mode to flat
ATI3DCIF_ContextSetState (hRC, C3D_ERS_SHADE_MODE, &eshade);

// switch to 3D mode
ATI3DCIF_RenderBegin (hRC);

// render a primitive list using flat shading
ATI3DCIF_RenderPrimList (PrimList, PrimListNumVerts);

// now switch back to 2D mode
ATI3DCIF_RenderEnd ();

// restore smooth shading
eshade = C3D_ESH_SMOOTH;
ATI3DCIF_ContextSetState (hRC, C3D_ERS_SHADE_MODE, &eshade);

Getting ATI3DCIF Module and Graphics Subsystem Information

An application may retrieve information about ATI3DCIF capabilities and the graphics subsyste
calling ATI3DCIF_GetInfo. This function takes a pointer to a C3D_3DCIFINFO structure as its only
argument. Upon return, this structure contains information about the module and the graphics sub
including the ASIC identification number, ASIC revision, pointer to the frame buffer, and total RA
on the accelerator card.

The syntax for the C3D_3DCIFINFO structure is as following:

typedef struct {
C3D_UINT32 u32Size; // size of struct must be initialized by client
C3D_UINT32 u32FrameBuffBase; // Host pointer to frame buffer base
C3D_UINT32 u32OffScreenHeap; // Host pointer to off-screen heap
C3D_UINT32 u32OffScreenSize; // size of off-screen heap
C3D_UINT32 u32TotalRAM; // total amount of RAM on the card
C3D_UINT32 u32ASICID; // ASIC Id. code
C3D_UINT32 u32ASICRevision; // ASIC revision
C3D_UINT32 u32CIFCaps1; // ATI3DCIF capabilities field 1
C3D_UINT32 u32CIFCaps2; // ATI3DCIF capabilities field 2
C3D_UINT32 u32CIFCaps3; // ATI3DCIF capabilities field 3
C3D_UINT32 u32CIFCaps4; // ATI3DCIF capabilities field 4
C3D_UINT32 u32CIFCaps5; // ATI3DCIF capabilities field 5

} C3D_3DCIFINFO, * PC3D_3DCIFINFO;

u32Size must be set to the size of the C3D_3DCIFINFO before calling ATI3DCIF_GetInfo; otherwise,
ATI3DCIF_GetInfo will return a C3D_EC_BADPARAM error. On return, u32FrameBuffBase shou
contain a host pointer to the base of the frame buffer. u32OffScreenHeap should contain a host
to the start of the off-screen video memory heap. u32OffScreenSize should specify the size of t
off-screen heap. The total amount of RAM on the card should be in u32TotalRAM. u32ASICID sh
hold the RAGE ASIC ID code, and u32ASICRevision the ASIC revision code. u32CIFCaps1 sh
report the ATI3DCIF module’s capabilities. u32CIFCaps2 to u32CIFCaps5 are capability fields
(u32CIFCaps3 to u32CIFCaps5 are currently reserved for future use).
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-5

ATI3DCIF Primitive Types

earlier

 type
mitive

. In
 more
511

GE

ator

e see
The following table lists u32CIFCaps1 flags:

C3D_CAPS1_BASE represents the base line functionality available in versions 4.02.0217 and
of ATI3DCIF. All other capabilities were added after 4.02.0217.

ATI3DCIF Primitive Types

ATI3DCIF supports line, triangle, rectangle, point, and quadrilateral primitive types. The primitive
specifies the geometric interpretation of a vertex set during rasterization. For example, if the pri
type is set to triangle, subsequent calls to ATI3DCIF_RenderPrimList will interpret the list of vertices
as triangles and will consume three vertices for each triangle drawn.

The primitive types are represented by the C3D_EPRIM enumeration type. The following is a list of its
enumeration constants:

NOTE: In version 4.02.0217 of ATI3DCIF, the u32CIFCaps member was added to this structure
version 4.03.0039 of ATI3DCIF, the u32CIFCaps member was renamed u32CIFCaps1, and four
capabilities fields, u32CIFCaps2 to u32CIFCaps5, were added to this structure. In version 4.03.2
of ATI3DCIF, the u32CIFCaps2 member was defined to support additional capabilities under RA
Pro. u32CIFCaps3 to u32CIFCaps5 are currently unused and are reserved for future use. The
application must ensure that the ATI3DCIF module is version 4.03.0039 or greater to use the
u32CIFCaps1 member, and version 4.03.2511 or greater to use the u32CIFCaps2 member. The
ATI3DCIF.DLL version number may be determined by right clicking on the file under Windows
Explorer, selecting Properties, and clicking on the Version tab. ATI3DCIF.DLL is located in the
Windows 95 SYSTEM directory.

C3D_CAPS1_BASE base line functionality

C3D_CAPS1_FOG fog support

C3D_CAPS1_POINT point primitive support

C3D_CAPS1_RECT screen-aligned rectangle primitive support

C3D_CAPS1_Z_BUFFER Z buffer support

C3D_CAPS1_CI4_TMAP 4 bit color index texture support

C3D_CAPS1_CI8_TMAP 8 bit color index texture support

C3D_CAPS1_LOAD_OBJECT bus-master data loading support

C3D_CAPS1_DITHER_EN dithering on/off support

C3D_CAPS1_ENH_PERSP enhanced perspective levels available

C3D_CAPS1_SCISSOR fixed origin clipping region support

C3D_CAPS1_PROFILE_IF profile interface available

NOTE: Z buffers, CI8 and CI4 textures are only available on the ATI 3D RAGE II graphics acceler
or later. RAGE II programming issues are covered in the next chapter.The u32CIFCaps2 member was
added to the C3D_3DCIFINFO structure to support additional capabilities under RAGE Pro. Pleas
Chapter 4, RAGE PRO ATI3DCIF Programming, for more information on this member.
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-6 Proprietary and Confidential

Vertex Data Formats

at to
 texture
tex data

e

me
s1
The default primitive type set on rendering context creation is C3D_EPRIM_TRI. To modify the
primitive type, call ATI3DCIF_ContextSetState with the second argument set to
C3D_ERS_PRIM_TYPE and the third argument set to the address of a C3D_EPRIM enumeration
specifying the new primitive type.

Vertex Data Formats
ATI3DCIF offers a number of vertex data formats to represent vertices. The choice of which form
use depends on the vertex information needed. For example, if an application does not perform
mapping, it can represent vertices in a format that does not hold texture coordinate data. Thever
type may be changed by calling ATI3DCIF_ContextSetState.

The following structures may be used to represent vertex data:

typedef struct {
 C3D_FLOAT32 x, y, z; // FLOATING point type
} C3D_VF, * C3D_PVF; // identified by C3D_EV_VF

typedef struct {
 C3D_FLOAT32 x, y, z; // FLOATING point type
 C3D_FLOAT32 r, g, b, a; // identified by C3D_EV_VCF
} C3D_VCF, * C3D_PVCF;

typedef struct {
 C3D_FLOAT32 x, y, z; // FLOATING point type
 C3D_FLOAT32 s, t, w; // identified by C3D_EV_VTF
} C3D_VTF, * C3D_PVTF;

typedef struct {
 C3D_FLOAT32 x, y, z; // FLOATING point type
 C3D_FLOAT32 s, t, w; // identified by C3D_EV_VTCF
 C3D_FLOAT32 r, g, b, a;
} C3D_VTCF, * C3D_PVTCF;

The vertex data type set on context creation is C3D_VTCF. The vertex data type may be changed by
calling ATI3DCIF_ContextSetState. The C3D_EVERTEX enumeration type may be used to specify th
new vertex data type. C3D_EVERTEX includes the following enumeration constants:

C3D_EPRIM_LINE line primitive

C3D_EPRIM_TRI triangle list or strip primitive

C3D_EPRIM_QUAD quadrilateral list or strip primitive

C3D_EPRIM_RECT screen aligned rectangle strip or list primitive

C3D_EPRIM_POINT point list or strip primitive

NOTE: The C3D_EPRIM_RECT and C3D_EPRIM_POINT primitive types are not available on so
earlier versions of ATI3DCIF. Applications should call ATI3DCIF_GetInfo and query the u32CIFCap
member of the C3D_3DCIFINFO structure to verify the availability of these primitive types.
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-7

Shading Modes

rd
at.

 color.

ss of a

8888
r in

ading
dation

om
The second argument to ATI3DCIF_ContextSetState should be set to C3D_ERS_VERTEX_TYPE. The thi
argument should be set to the address of a C3D_EVERTEX enumeration specifying the new vertex data form

Shading Modes
Primitives can be rendered in solid, flat, or Gouraud shading under ATI3DCIF.

When solid shading is enabled, all primitives are rendered in the rendering context’s current solid
This color is set to black on context creation. It may be changed by calling ATI3DCIF_ContextSetState
with the second argument set to C3D_ERS_SOLID_CLR and the third argument set to the addre
C3D_COLOR structure specifying the new solid color. The C3D_COLOR structure has the following
syntax:

typedef union {
 struct {
 unsigned r: 8; // 8 red bits
 unsigned g: 8; // 8 green bits
 unsigned b: 8; // 8 blue bits
 unsigned a: 8; // 8 alpha bits
 };
 C3D_UINT32 u32All;
} C3D_COLOR , * C3D_PCOLOR;

Regardless of the pixel bit-depth of the display mode, colors must always be entered in RGBA
format in the C3D_COLOR structure. ATI3DCIF will perform the necessary conversions to rende
the pixel format of the display mode.

The shading mode may be set by calling ATI3DCIF_ContextSetState with the second argument set to
C3D_ERS_SHADE_MODE. The third argument must be set to the address of a C3D_ESHADE
enumeration type specifying the new shading mode. C3D_ESHADE includes the following constants:

Flat shading renders the entire primitive in the color of the last vertex in the primitive. Gouraud sh
interpolates the color of each vertex in the primitive from vertex to vertex, resulting in a smooth gra
of color across the face of the primitive. It is the default shading mode set on context creation.

C3D_EV_VF vertex represented by C3D_VF structure

C3D_EV_VCF vertex represented by C3D_VCF structure

C3D_EV_VTF vertex represented by C3D_VTF structure

C3D_EV_VTCF vertex represented by C3D_VTCF structure

C3D_ESH_NONE the shading color is undefined

C3D_ESH_SOLID shade using the solid color from the rendering context

C3D_ESH_FLAT shade using the color of the last vertex in the primitive to color the primitive

C3D_ESH_SMOOTH shade the primitive by linearly interpolating the color of its vertices fr
vertex to vertex
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-8 Proprietary and Confidential

Texture Mapping

ting,
 in the
.

placed
. Also,

gister

ey

e which

 this
mory.
y

use
rpret

 If
ex 0)
p is set

 is
idth or
Texture Mapping
The texture mapping operations supported by ATI3DCIF are perspective correction, texture ligh
texture filtering, texture transparency using either a chroma key in the RGB channel or a bit mask
alpha channel, and mipmapping. All these operations are performed by the 3D RAGE hardware

There are a number of requirements for texture mapping with the 3D RAGE. Textures must be
in video memory. For this reason, ATI3DCIF does not support textures stored in system memory
The width and height of each texture must be a power of two and cannot exceed 1024x1024.

Registering a Texture

The first step in using a texture is to load it into a region of video memory. The next step is to re
the texture with ATI3DCIF. Registration provides ATI3DCIF with important information about the
texture, such as its location in video memory, width, height, pixel format and bit depth, chroma k
color, and whether it is a mipmap or not. When registered, the texture is assigned a unique handl
is used to select it during rendering operations.

A texture is registered by calling ATI3DCIF_TextureReg. The first argument is a pointer to a C3D_TMAP
structure containing information about the texture that the client application must fill prior to calling
function. This structure specifies how the RAGE should interpret the texture stored in video me
The second argument is a pointer to a C3D_HTX texture handle which will be set to a unique value b
ATI3DCIF if the texture is successfully registered.

The C3D_TMAP structure has the following syntax:

typedef struct {
 C3D_UINT32 u32Size; // size of structure
 C3D_BOOL bMipMap; // is texture a mip map
 C3D_PVOID apvLevels[cu32MAX_TMAP_LEV]; // array of pointers to map
 //level
 C3D_UINT32 u32MaxMapXSizeLg2; // log 2 X size of largest map
 C3D_UINT32 u32MaxMapYSizeLg2; // log 2 Y size of largest map
 C3D_ETEXFMT eTexFormat; // texel format
 C3D_COLOR clrTexChromaKey; // specify texel transparency color
 C3D_HTXPAL htxpalTexPalette; // texture palette handle
} C3D_TMAP, * C3D_PTMAP;

u32Size should be set to the size of the C3D_TMAP structure. If this member is not set correctly,
ATI3DCIF_TextureReg will return the C3D_EC_BADPARAM error code.

bMipMap is a BOOL specifying whether the texture is a mipmap or not. Setting it to TRUE will ca
the RAGE to interpret the texture as a mipmap. Setting it to FALSE will cause the RAGE to inte
the texture as an ordinary texture map.

apvLevels is an array of host pointers to the individual maps which compose a mipmap texture.
bMipMap is set to TRUE, apvLevels contains one or more valid elements. The first element (ind
points at the base map and subsequent elements point at sequentially smaller maps. If bMipMa
to FALSE, only the first element in the array is valid, and the rest are ignored. When bMipMap
TRUE, the array contains n+1 pointers to mip levels, where n is equal to the log 2 of either the w
height of the base map, whichever is larger.
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-9

Texture Mapping

ipmap:

Map
ld
or to

The following tables show how the apvLevels array should be initialized for a 256x128 and a 512x512 m

Example for a mipmap with a 256x128 base map

Example for a mipmap with a 512x512 base map

u32MaxMapXSizeLg2 must be set to the log 2 of the width of the largest map in the mipmap if bMip
is TRUE, or to the log 2 of the texture’s width if bMipMap is FALSE. u32MaxMapYSizeLg2 shou
similarly be set to the log 2 of the height of the largest map in the mipmap if bMipMap is TRUE,
the log 2 of the texture’s height if bMipMap is FALSE.

eTexFormat should be set to a C3D_ETEXFMT enumeration specifying the texel format. The RAGE
supports the following texel formats:

apvLevels[0] address of 256x128 map

apvLevels[1] address of 128x64 map

apvLevels[2] address of 64x32 map

apvLevels[3] address of 32x16 map

apvLevels[4] address of 16x8 map

apvLevels[5] address of 8x4 map

apvLevels[6] address of 4x2 map

apvLevels[7] address of 2x1 map

apvLevels[8] address of 1x1 map

apvLevels[0] address of 512x512 map

apvLevels[1] address of 256x256 map

apvLevels[2] address of 128x128 map

apvLevels[3] address of 64x64 map

apvLevels[4] address of 32x32 map

apvLevels[5] address of 16x16 map

apvLevels[6] address of 8x8 map

apvLevels[7] address of 4x4 map

apvLevels[8] address of 2x2 map

apvLevels[9] address of 1x1 map
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-10 Proprietary and Confidential

Texture Mapping

ons,

r in
dered

ture
only
ed in

ap:
The YUV formats are especially suited for mapping motion video frames as textures onto polyg
allowing an application to use live or captured video as a texture source.

clrTexChromaKey is a C3D_COLOR structure specifying the texture transparency chroma key colo
the texture. If texture transparency is enabled, any texel with the chroma key color will not be ren
onto the primitive (that is, the destination pixel at the screen location is not overwritten). Texture
transparency is disabled by default on context creation, and must be enabled by calling
ATI3DCIF_ContextSetState. This will be described in more detail later.

htxpalTexPalette is a C3D_HTXPAL handle to the texture palette associated with this texture if the tex
format is C3D_ETF_CI4 or C3D_ETF_CI8. These two texture formats and texture palettes are
available on the 3D RAGE II graphics accelerator. 3D RAGE II programming issues are discuss
the next chapter.

The following example demonstrates the complete process for registering an ordinary texture m

Example 7: Registering an ordinary texture

// This example demonstrates how to fill a C3D_TMAP structure to register a
// 128x128 RGB 565 ordinary texture.

C3D_TMAP Tmap;
void *lpTexture;
C3D_HTX htx;

// load a 128x128 texture into a region of off-screen memory and set lpTexture
// to point to this region
...
ZeroMemory (&TMap, sizeof (Tmap));// zero out the structure
TMap.u32Size = sizeof (TMap);
TMap.apvLevels[0] = lpTexure;// address of 128x128 texture
TMap.bMipMap = FALSE;// not a mipmap
TMap.u32MaxMapXSizeLg2 = 7;// log2 of 128
TMap.u32MaxMapYSizeLg2 = 7;// log2 of 128
TMap.eTexFormat = C3D_ETF_RGB565;// texel format is RGB 565
SET_CIF_COLOR (TMap.clrTexChromaKey, 0, 0, 0, 0); // black chroma key

C3D_ETF_CI4 4 bpp index into palette (pseudo color)

C3D_ETF_CI8 8 bpp index into palette (pseudo color)

C3D_ETF_RGB1555 1 bit Alpha, 5 bits Red, 5 bits Green, 5 bits Blue (16 bits total)

C3D_ETF_RGB565 0 bits Alpha, 5 bits Red, 6 bits Green, 5 bits Blue (16 bits total)

C3D_ETF_RGB8888 8 bits Alpha, 8 bits Red, 8 bits Green, 8 bits Blue (32 bits total)

C3D_ETF_RGB332 0 bits Alpha, 3 bits Red, 3 bits Green, 2 bits Blue (8 bits total)

C3D_ETF_Y8 8 bits Y (8 bits total)

C3D_ETF_YUV422 YUV 422 Packed (YUYV) (16 bits total)

C3D_ETF_RGB4444 4 bits Alpha, 4 bits Red, 4 bits Green, 4 bits Blue (16 bits total)
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-11

Texture Mapping

apping

 in
ted.
// register the texture
if (ATI3DCIF_TextureReg (&TMap, &htx) != C3D_EC_OK)
{
// handle error
...
}

This example demonstrates how to register a mipmap texture:

Example 8: Registering a mipmap texture

// This example demonstrates how fill a C3D_TMAP structure to register a
// 256x128 RGB 565 mipmap.

C3D_TMAP Tmap;
void *lpTexture [cu32MAX_TMAP_LEV];
C3D_HTX htx;

// load the maps in a 256x128 mipmap texture into off-screen memory. Set each
// element of the lpTexture array to point to the address of each map, with
// index 0 pointing to the base map, and sequential indices pointing to
// sequentially smaller maps
...
ZeroMemory (&TMap, sizeof (TMap));
TMap.u32Size = sizeof (TMap);
TMap.apvLevels[0] = lpTexure [0];// address of 256x128 map
TMap.apvLevels[1] = lpTexure [1];// address of 128x64 map
TMap.apvLevels[2] = lpTexure [2];// address of 64x32 map
TMap.apvLevels[3] = lpTexure [3];// address of 32x16 map
TMap.apvLevels[4] = lpTexure [4];// address of 16x8 map
TMap.apvLevels[5] = lpTexure [5];// address of 8x4 map
TMap.apvLevels[6] = lpTexure [6];// address of 4x2 map
TMap.apvLevels[7] = lpTexure [7];// address of 2x1 map
TMap.apvLevels[8] = lpTexure [8];// address of 1x1 map
TMap.bMipMap = TRUE;// texture is a mipmap
TMap.u32MaxMapXSizeLg2 = 8;// log2 of 256
TMap.u32MaxMapYSizeLg2 = 7;// log2 of 128
TMap.eTexFormat = C3D_ETF_RGB565;// texel format is RGB 565
SET_CIF_COLOR (TMap.clrTexChromaKey, 0, 0, 0, 0);// black chroma key

// register the texture
if (ATI3DCIF_TextureReg (&TMap, &htx) != C3D_EC_OK)
{
// handle error
...
}

Applying a Texture

Mapping a texture on primitives takes two steps: (1) select the texture, and (2) enable texture m
in the rendering context. Any primitives rendered with ATI3DCIF_RenderPrimList or
ATI3DCIF_RenderPrimStrip will subsequently be textured until texture mapping is disabled again
the rendering context. By default, texture mapping is disabled when a rendering context is crea
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-12 Proprietary and Confidential

Texture Mapping

ed on
s, t, and
ing

pe set

e
ATI3DCIF will scale, orient, and apply perspective correction to the texture as it is rendered bas
the texture coordinates set for the primitive vertices. These coordinates are represented by the
w members of the C3D_VTCF, and C3D_VTF vertex structures. The application is responsible for sett
these coordinates correctly to map the texture in the manner intended.

A texture is selected by calling ATI3DCIF_ContextSetState with the second argument set to
C3D_ERS_TMAP_SELECT and the third argument set to the address of the C3D_HTX handle of the
texture. This handle must have been initialized beforehand by calling ATI3DCIF_TextureReg to register
the texture with ATI3DCIF. Texture mapping is enabled by calling ATI3DCIF_ContextSetState with the
second argument set to C3D_ERS_TMAP_EN and the third argument pointing to a BOOL data ty
to TRUE. The following example illustrates this:

Example 9: applying a texture to a primitive

BOOL bTexEnable = FALSE;
C3D_HTX htx1, htx2;
C3D_HRC hRC;

// create a rendering context (handle hRC), and load and register two
// textures, initializing htx1 and htx2
...
// switch to 3D mode
ATI3DCIF_RenderBegin (hRC);

// enable texture mapping
bTexEnable = TRUE;
ATI3DCIF_ContextSetState (hRC, C3D_ERS_TMAP_EN, &bTexEnable);

// select the first texture
ATI3DCIF_ContextSetState (hRC, C3D_ERS_TMAP_SELECT, &htx1);

// render 3D primitives, mapping the first texture on each primitive
ATI3DCIF_RenderPrimList (PrimList1, PrimList1NumVerts);

// select the second texture
ATI3DCIF_ContextSetState (hRC, C3D_ERS_TMAP_SELECT, &htx2);

// render 3D primitives, mapping the second texture on each primitive
ATI3DCIF_RenderPrimList (PrimList2, PrimList2NumVerts);

// disable texture mapping
bTexEnable = FALSE;
ATI3DCIF_ContextSetState (hRC, C3D_ERS_TMAP_EN, &bTexEnable);

// render 3D primitives without texture mapping
ATI3DCIF_RenderPrimStrip (PrimStrip1, PrimStrip1NumVerts);

...
// now switch back to 2D mode
ATI3DCIF_RenderEnd ();

Notice that all ATI3DCIF_ContextSetState calls were made between ATI3DCIF_RenderBegin and
ATI3DCIF_RenderEnd. Again, ATI3DCIF_ContextSetState will not incur overhead to save and restor
the state of the 2D engine when called within a 3D rendering block.
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-13

Texture Mapping

hting,

aps

to

o

h
r
Unregistering a Texture

Before the application terminates, it must unregister all registered textures by calling
ATI3DCIF_TextureUnreg with the handle of the texture to be unregistered.

The following example illustrates how to unregister a texture:

Example 10: unregistering a texture

C3D_HTX htx;

// load, register and use a texture
...
// unregister the texture
if (ATI3DCIF_TextureUnreg (htx) != C3D_EC_OK)
{
// handle error
...
}

Setting Texture Filtering, Lighting, and Perspective Correction Levels

All rendering states in the rendering context related to texture mapping, such as texture filtering, lig
and perspective correction level, may be modified by calling ATI3DCIF_ContextSetState.

To modify the texture filtering, call ATI3DCIF_ContextSetState with the second argument set to
C3D_ERS_TMAP_FILTER and the third argument pointing to a C3D_ETEXFILTER enumeration
specifying the new filtering mode. ATI3DCIF allows different filtering to be performed on texture
minification and magnification. For mipmapping, it supports filtering modes which filter within m
and blend the results of two maps.

The following table shows the C3D_ETEXFILTER enumeration constants:

C3D_ETFILT_MINPNT_MAGPNT pick-nearest filtering on both minification and
magnification

C3D_ETFILT_MINPNT_MAG2BY2 pick-nearest filtering on minification, bi-linear filtering
on magnification

C3D_ETFILT_MIN2BY2_MAG2BY2 bi-linear filtering on both minification and magnification

C3D_ETFILT_MIPLIN_MAGPNT 1x1 blend between maps on minification (only applies
mipmaps), pick-nearest filtering on magnification

C3D_ETFILT_MIPLIN_MAG2BY2 1x1 blend between maps on minification (only applies t
mipmaps), bi-linear filtering on magnification

C3D_ETFILT_MIPTRI_MAG2BY2 2x2 blend between maps, bi-linear filtering within eac
map on minification (only applies to mipmaps), bi-linea
filtering on magnification
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-14 Proprietary and Confidential

Texture Mapping

OR
tive
hich
n. No
ontext
vel of

thod
 texel’s

el, such
her may

ey
 key

hich
e texel

alpha

r

d 1
To modify the texture lighting, call ATI3DCIF_ContextSetState with the second argument set to
C3D_ERS_TMAP_LIGHT and the third argument pointing to a C3D_ETLIGHT enumeration
specifying the new lighting mode. The following table shows the C3D_ETLIGHT enumeration
constants:

The perspective correction level is set by calling ATI3DCIF_ContextSetState with the second argument
set to C3D_ERS_TMAP_PERSP_COR, and the third argument pointing to a C3D_ETPERSPC
enumeration specifying the new perspective correction level. ATI3DCIF provides seven perspec
correction levels, from C3D_ETPC_NONE, which provides no correction, to C3D_ETPC_NINE, w
provides full correction. The frame rate decreases with increased levels of perspective correctio
correction offers the best frame rate, while full correction offers the worst. The default level set on c
creation is C3D_ETCP_THREE, which offers a good compromise between frame rate and the le
perspective correction.

Transparent Texture Mapping

ATI3DCIF provides two ways for a client application to perform texture transparency. The first me
is to use a chroma key color in the texel’s RGB data. The second method is to use a bit mask in the
alpha data (needless to say, this method only works for texel formats which have an alpha chann
as RGB 4444, RGB 1555, and RGB 8888). Both methods are termed as texel operations, and eit
be selected by calling ATI3DCIF_ContextSetState with the second argument set to
C3D_ERS_TMAP_TEXOP, and the third argument pointing to a C3D_ETEXOP enumeration
specifying the operation.

To select chroma key texture transparency, C3D_ETEXOP should be set to
C3D_ETEXOP_CHROMAKEY. The chroma key used will be the color set in the clrTexChromaK
member of the C3D_TMAP structure used to register the texture. Any texel matching this chroma
color will not be rendered on the primitive.

To use the alpha channel for transparency, C3D_ETEXOP should be set to
C3D_ETEXOP_ALPHA_MASK. The data in the alpha channel is used as a bit field to decide w
texel is rendered and which is transparent. If the least significant bit in the channel is set to 0, th
is not drawn. If set to 1, the texel is drawn.

If C3D_ETEXOP is set to C3D_ETEXOP_ALPHA, the texture’s alpha value is passed on to the
blender if alpha blending is enabled. Alpha blending is described later in this chapter.

C3D_ETL_NONE the texture is not lighted: the texel color is applied directly.

C3D_ETL_MODULATE the texture is lighted: the texel color is multiplied by the colo
of the primitive on which the texture is being mapped. The
primitive color is determined by rendering context’s current
shading mode (gouraud, flat, etc.)

C3D_ETL_ALPHA_DECAL the texture is lighted: the texel color is determined by the
following equation:
output texel = (texel color x texel alpha) + (primitive color x
(1 - texel alpha)), where the texel alpha varies between 0 an
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-15

Alpha Blending

tration

rld
jected

ection
dinates

o source
n used

Texture Coordinates

ATI3DCIF accepts homogeneous texture coordinates (s, t, and inverse w). Here is a simple illus
of how to calculate homogeneous texture coordinates from true texture coordinates (u, v):

Let (X, Y, Z) represent a point in camera coordinates (camera coordinates are defined as 3D wo
coordinates with the camera, or eye, located at the origin). Camera coordinates (X, Y, Z) are pro
to screen coordinates (x, y, z) according to the following equations:

 x = k x X/w,

 y = k x Y/w,

 z = ((k1 x Z) + k2)/w

Where k, k1, and k2 are constants and w is proportional to Z. w should be positive. If the view dir
is along the –Z axis and the view plane is at Z = –1, then w = –Z. The homogeneous texture coor
to be sent to ATI3DCIF should be:

 s = u/w

 t = v/w

 inverse w = 1/w

Alpha Blending

The RAGE’s alpha blender may be used to combine source and destination pixels in accordance t
and destination blending factors which are functions of vertex alpha or RGB values. The equatio
to determine the output destination pixel is the following:

output destination color = (source color x source blending factor) + (current destination color x
destination blending factor)

ATI3DCIF allows the source and destination blending factors to be set by calling
ATI3DCIF_ContextSetState. Source blending factors are represented by the C3D_EASRC enumeration
type. Destination blending factors are represented by the C3D_EADST enumeration type. To set the
source factor, call ATI3DCIF_ContextSetState with the second argument set to
C3D_ERS_ALPHA_SRC and the third set to the address of a C3D_EASRC enumeration specifying the
blending factor. To set the destination blending factor, call ATI3DCIF_ContextSetState with the second
argument set to C3D_ERS_ALPHA_DST and the third set to the address of a C3D_EADST enumeration.

The following table lists the C3D_EASRC source blending factor enumeration constants:

C3D_EASRC_ZERO blend factor is (0, 0, 0)

C3D_EASRC_ONE blend factor is (1, 1, 1)

C3D_EASRC_DSTCLR blend factor is (Rd, Gd, Bd)

C3D_EASRC_INVDSTCLR blend factor is (1-Rd, 1-Gd, 1-Bd)

C3D_EASRC_SRCALPHA blend factor is (As, As, As)

C3D_EASRC_INVSRCALPHA blend factor is (1-As, 1-As, 1-As)
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-16 Proprietary and Confidential

Applying Fog

nt fog,

 enable
. This
utually
ading

 smooth.

er
 height
clipped

mple,
 screen
orner.

ering
d
om
is

y
ing
 states
The following table lists the C3D_EADST destination blending factor enumeration constants:

Please note that it is better to use ATI3DCIF’s fog support rather than alpha blending to impleme
as the fog support is much faster for this effect.

Applying Fog

Fog is applied through a two step process. The first step is to set a fog color, and the next step is to
fogging. Once enabled, the fog blending factor for each vertex is determined from its alpha value
does not cause a conflict between fogging and alpha blending because the two operations are m
exclusive. The manner in which the fog color is applied to the primitive depends on the current sh
mode. For example, to interpolate the fog across the primitive, the shading mode should be set to

To set the fog color, call ATI3DCIF_ContextSetState with the second argument set to
C3D_ERS_FG_CLR and the third argument pointing to a C3D_COLOR structure specifying the fog
color. Fogging is enabled by calling ATI3DCIF_ContextSetState with the second argument set to
C3D_ERS_FOG_EN and the third argument pointing to a BOOL set to TRUE.

ATI3DCIF Viewport

ATI3DCIF renders primitives relative to a rectangular region called the viewport. Its top left corn
defines the origin of the screen coordinate system in which primitives are drawn, and its width and
extents define the non-clipped rendering area. Parts of primitives which lie outside of this area are
by hardware during rendering.

The viewport can be moved to change the logical origin of the screen coordinate system. For exa
setting its top, left corner to (10, 10) will cause a vertex with x, y coordinates (0, 0) to be rendered at
location (10, 10). The viewport’s width and height extents are always defined relative to its top left c

C3D_EADST_ZERO blend factor is (0, 0, 0)

C3D_EADST_ONE blend factor is (1, 1, 1)

C3D_EADST_SRCCLR blend factor is (Rs, Gs, Bs)

C3D_EADST_INVSRCCLR blend factor is (1-Rs, 1-Gs, 1-Bs)

C3D_EADST_SRCALPHA blend factor is (As, As, As)

C3D_EADST_INVSRCALPHA blend factor is (1-As, 1-As, 1-As)

CAUTION: Enabling alpha blending adds another process to the graphics pipeline, causing rend
performance to decrease. For the trivial case of source blending factor = C3D_EASRC_ONE an
destination blending factor = C3D_EADST_ZERO, the alpha blender is disabled and removed fr
the graphics pipeline. If the application does not intend to use alpha blending, it should disable th
operation by forcing the source and destination blending factors to these states (which are set b
default during context creation). It is NOT recommended that the application disable alpha blend
by setting vertex alphas to trivial values, but leave the source and destination blending factors at
other than C3D_EASRC_ONE and C3D_EADST_ZERO. Otherwise, the alpha blender will be
enabled and chained into the pixel data path in the graphics pipeline.
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 2-17

ATI3DCIF Clipping Scissors

e

ed.
 section,
et by
and

g
line

by a
ever

n the

 call
The viewport can be changed by calling ATI3DCIF_ContextSetState. The new origin and extents are
specified by the C3D_RECT structure, which has the following syntax:

typedef struct {
 C3D_INT32 top;// top, left corner top coordinate
 C3D_INT32 left;// top, left corner left coordinate
 C3D_INT32 bottom;// height extent
 C3D_INT32 right;// width extent
} C3D_RECT , * C3D_PRECT;

The second argument to ATI3DCIF_ContextSetState should be set to C3D_ERS_SURF_VPORT. Th
third argument should contain the address of a C3D_RECT structure specifying the new viewport origin
and extents.

ATI3DCIF Clipping Scissors

The ATI3DCIF clipping scissors define a rectangular region outside of which primitives are clipp
The behavior and performance constraints are the same as for the viewport described in the last
except the origin is always fixed at the top left corner of the drawing surface. The scissors are s
calling ATI3DCIF_ContextSetState with the second argument set to C3D_ERS_SURF_SCISSOR
the third set to the address of a C3D_RECT structure defining the rectangular clipping region. On
rendering context creation, the scissors are set to the rectangular region of the desktop.

CAUTION: Pixels are clipped at the edges of the viewport during the last stage of the renderin
process. Prior to reaching this stage, these pixels are still processed through the graphics pipe
although they are not rendered. If vertex coordinates extend beyond the viewport boundaries
large amount, the graphics engine will end up processing a large number of pixels which will n
be rendered. This may have a detrimental effect on performance. For this reason, it may be
necessary to pre-clip primitives in software if the clipping overhead proves to be less costly tha
time spent processing unrendered pixels.

NOTE: The scissors are not available on some earlier versions of ATI3DCIF. Applications should
ATI3DCIF_GetInfo and query the u32CIFCaps1 member of the C3D_3DCIFINFO structure to verify
the availability of the scissors.
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
2-18 Proprietary and Confidential

Chapter 3
3D RAGE II ATI3DCIF Programming
rator.
sors.

AGE.

 query
CIF,
reports
erator

s added

R-ed
FOG

aps5. In

rved for
tance,

 two
ery
Introduction

This chapter covers programming topics which only apply to the ATI 3D RAGE II graphics accele
The 3D RAGE II is the next generation of 3D accelerators in ATI’s RAGE family of graphics proces
It offers the same core functionality as the 3D RAGE and adds the following new features:

• CI8 palettized textures

• CI4 palettized textures

• Z buffering

The 3D RAGE II doubles 3D performance and improves 2D performance by 20% over the 3D R
The new features in the 3D RAGE II are supported by extensions to ATI3DCIF added in version
4.02.0230 of the interface.

Determining ATI3DCIF Capabilities

Because of the feature differences between the 3D RAGE and 3D RAGE II, an application should
ATI3DCIF capabilities to determine if a desired feature is available. In version 4.02.0217 of ATI3D
the u32CIFCaps member was added to the C3D_CIFINFO structure to enable querying. This field
the capabilities available with the combination of the ATI3DCIF version in use and the RAGE accel
in the graphics subsystem. The functionality provided by ATI3DCIF prior to version 4.02.0217 is
considered the base-line functionality, and is represented by the flag C3D_CAPS_BASE. Feature
to ATI3DCIF in vision 4.02.0217 and later are represented by capabilities flags which are bit-wise O
together. For example, if fog and Z buffering are supported, u32CIFCaps will contain C3D_CAPS_
OR-ed with C3D_CAPS_Z_BUFFER.

In version 4.03.0039 of ATI3DCIF, four more capabilities fields were added to C3D_3DCIFINFO.
u32CIFCaps was renamed u32CIFCaps1. The new fields are labeled u32CIFCaps2 to u32CIFC
version 4.03.2511 of ATI3DCIF, the u32CIFCaps2 member was defined to support additional
capabilities under RAGE Pro. u32CIFCaps3 to u32CIFCaps5 are currently unused and are rese
future use. The flags have also been modified to indicate which field they correspond to. For ins
C3D_CAPS_BASE has been changed to C3D_CAPS1_BASE.

NOTE: Because both the 3D RAGE and 3D RAGE II will have a large installed base, it is
recommended that applications be designed to handle the feature set differences between the
accelerators rather than support only one. The ATI3DCIF capabilities fields may be used to qu
feature differences.
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 3-1

Palettized Textures

 CI4
ex into
e four
ssible
le and

lso be
xceed

 as that
the
nting
. Also,

F.

nt

st

 entries
t the

ed.
Palettized Textures

In addition to the texture formats supported by the 3D RAGE, the 3D RAGE II supports CI8 and
palettized textures. In the CI8 format, each texel is an 8-bit packed value which represents an ind
a 256 color palette. In the CI4 format, each texel is a 4-bit packed index into a 16 color palette. Th
bit texel values must be byte aligned and may be packed in either the low or high nibble. It is po
to compress two CI4 textures into the space of one CI8 texture by loading one into the low nibb
the other into the high nibble of each byte.

As with the non-palettized textures supported by the 3D RAGE, the CI8 and CI4 textures must a
loaded into video memory. Their width and height must similarly be powers of two and cannot e
1024x1024.

The procedure for texture mapping CI8 and CI4 textures under ATI3DCIF is essentially the same
for mapping non-palettized textures. Texture mapping with ATI3DCIF is covered in full detail in
section Texture Mapping in the previous chapter. The only difference is that a logical palette represe
the texture’s palette must be created in ATI3DCIF and attached to the texture before it is registered
the palette must be destroyed after the texture is unregistered and prior to terminating ATI3DCI

A logical palette is created by calling ATI3DCIF_TexturePaletteCreate. The first argument is a
C3D_ECI_TMAP_TYPE enum constant specifying the kind of palette to create. The
C3D_ECI_TMAP_TYPE enum has the following syntax:

typedef enum {
 C3D_ECI_TMAP_TRUE_COLOR = 0, // no palette
 C3D_ECI_TMAP_4BIT_HI = 1, // 16 entry palette
 C3D_ECI_TMAP_4BIT_LOW = 2, // 16 entry palette
 C3D_ECI_TMAP_8BIT = 3, // 256 entry palette
 C3D_ECI_TMAP_NUM = 4, // invalid enumeration
 C3D_ECI_TMAP_FORCE_U32 = C3D_FORCE_SIZE
} C3D_ECI_TMAP_TYPE;

The second argument is an array of C3D_PALETTENTRY structures specifying the color of each eleme
in the palette. The C3D_PALETTENTRY struct has the following syntax:

typedef union {
 struct {
 unsigned r: 8; // 8 red bits
 unsigned g: 8; // 8 green bits
 unsigned b: 8; // 8 blue bits
 unsigned flags: 8; // flag bits - see above defines
 };
 C3D_UINT32 u32All;
} C3D_PALETTENTRY , * C3D_PPALETTENTRY;

For a CI8 texture, a 256 element C3D_PALETTENTRY must be specified. For a CI4 texture, the array mu
contain 16 elements. The r, g, and b members of C3D_PALETTENTRY specify the red, green, and blue
components, respectively, of each palette entry. The flags member may be used to inhibit individual
in the palette from loading. If it is set to C3D_LOAD_PALETTE_ENTRY, the physical palette entry a
corresponding index will be replaced with the specified color. If flags is set to
C3D_NO_LOAD_PALETTE_ENTRY, the palette entry at the corresponding index will not be alter
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
3-2 Proprietary and Confidential

Palettized Textures

ly,

s handle
he
exture

stroyed.
nt.

erent
d
sults,
The last argument is a pointer to a C3D_HTXPAL palette handle. If the palette is created successful
the handle will be set to a valid non-zero value. Otherwise, it will be set to NULL.

Once created, the palette must be attached to its associated texture. This is done by assigning it
to the htxpalTexPalette member of the C3D_TMAP structure used to register the texture. To identify t
texture format as a CI8, the eTexFormat member must be set to C3D_ETF_CI8. To identify the t
format as a CI4, eTexFormat must be set to C3D_ETF_CI4.

After the application has finished using the texture and has unregistered it, its palette should be de
This is done by calling ATI3DCIF_TexturePaletteDestroy with the handle of the palette as the argume

The following examples demonstrate several operations related to palettized textures:

 Example 1: creating a palette

// This example demonstrates how to create a palette in ATI3DCIF. It assumes the
// texture being loaded is a 256 color Windows bitmap with a 256 element RGBQUAD
// array representing the palette.

 RGBQUAD rgbPalette [256];
 C3D_PALETTENTRY peTexturePalette [256];
 C3D_HTXPAL hTXPal;
 int I;

 // read bitmap palette RGB values from bitmap file into rgbPalette array
 ...

 // fill peTexturePalette array. Set flag to load all entries
 for (int i = 0; i < 256; i++)
 {
 peTexturePalette [i].r = rgbPalette [i].rgbRed ;
 peTexturePalette [i].g = rgbPalette [i].rgbGreen ;
 peTexturePalette [i].b = rgbPalette [i].rgbBlue ;
 peTexturePalette [i].flags = C3D_LOAD_PALETTE_ENTRY;
 }

 // create texture palette and get handle
 if (ATI3DCIF_TexturePaletteCreate (C3D_ECI_TMAP_8BIT, peTexturePalette,

&hTXPal) != C3D_EC_OK)
 {
 // handle error
 ...
 }

Example 2: registering a palettized texture

 // In this example, a CI8 128x128 texture is registered.

NOTE: If palettized textures contain their own unique palettes (i.e. each has a palette identified by a diff
handle), the physical palette is changed each time a different texture is selected. If textures are change
frequently, the fast rate of physical palette updates may cause visual artifacts on the screen. For best re
applications should use one palette for CI8 textures and 16 palettes for CI4 textures at most.
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 3-3

Palettized Textures
C3D_HTXPAL hTXPal;
C3D_HTX hTX;
pTexAddress;

// load the texture into video memory. Let pTexAddress point
// to this location
...

// create a palette for the texture by calling ATI3DCIF_TexturePaletteCreate,
// initializing handle hTXPal
...

// fill a C3D_TMAP struct
ZeroMemory (&TMap, sizeof (TMap));
TMap.u32Size = sizeof (TMap);
TMap.apvLevels[0] = pTexAddress;
TMap.bMipMap = FALSE;
TMap.u32MaxMapXSizeLg2 = 7;
TMap.u32MaxMapYSizeLg2 = 7;
TMap.eTexFormat = C3D_ETF_CI8;
SET_CIF_COLOR (TMap.clrTexChromaKey, 0, 0, 0, 0);
TMap.htxpalTexPalette = hTXPal;

// register the texture
ecRetVal = ATI3DCIF_TextureReg (&TMap, &hTX);
if (ecRetVal != C3D_EC_OK)
{

// destroy palette
ATI3DCIF_TexturePaletteDestroy (hTXPal);
// other error handling
...

}

Example 3: destroying a palette

// unregister the texture
ecRetVal = ATI3DCIF_TextureUnreg (hTX);
if (ecRetVal != C3D_EC_OK)
{

// handle error
...

}

ecval = ATI3DCIF_TexturePaletteDestroy (hTXPal);
if (ecval != C3D_EC_OK)
{

// handle error
...

}

SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
3-4 Proprietary and Confidential

Z Buffers

fers
n can
w

s gives
scaled

ouble
s be
 height

ified to

buffer’s

cal
mpares

fering
 tests,

 listed
Z Buffers

The 3D RAGE II supports Z buffers for sorting primitives by their z values while rendering. Z buf
must be allocated in video memory and must be aligned on eight byte boundaries. An applicatio
ensure Z buffers are aligned properly by using DirectDraw surfaces for the buffers, as DirectDra
surfaces are aligned on eight byte boundaries. Z buffers on the 3D RAGE II are 16 bits deep. Thi
a resolution of 216 for z values. Applications should ensure that the range of z values used can be
within this resolution (for example 0 to 216 - 1) to avoid inaccuracies due to truncation error.

Under ATI3DCIF, the Z buffer is always associated with the drawing surface. For example, in a d
buffer configuration where ATI3DCIF is only rendering to the back surface, the Z buffer will alway
associated with the back surface. Therefore, the Z buffer must have the same pitch in pixels and
in scan lines as the drawing surface.

To designate a memory region as a Z buffer, its starting address and pitch in pixels must be spec
ATI3DCIF. The starting address may be set by calling ATI3DCIF_ContextSetState with
C3D_ERS_SURF_Z_PTR as the second argument and the address of a pointer containing the
starting address as the third argument. To set the pitch, ATI3DCIF_ContextSetState must be called with
the second argument set to C3D_ERS_SURF_Z_PITCH and the third set to the address of a
C3D_UINT32 variable holding the pitch in pixels.

ATI3DCIF provides a variety of compare functions for testing z values. These functions are logi
operations which determine whether a pixel is selected or rejected based on the way its z value co
with the buffered z value at that location. ATI3DCIF Z compare functions are represented by the
C3D_EZCMP enumeration. The following table lists the C3D_EZCMP constants:

The Z compare function may be set by calling ATI3DCIF_ContextSetState with the second argument
set to C3D_ERS_Z_CMP_FNC and the third set to the address of a C3D_EZCMP enum specifying the
compare function.

Z buffering may be enabled and disabled through the C3D_EZMODE enumeration. When Z buf
is enabled, it can be set to either update the contents of the Z buffer after performing Z compare
or simply do the compare tests without modifying the Z buffer. The C3D_EZMODE constants are
in the following table:

C3D_EZCMP_NEVER Z compare never passes

C3D_EZCMP_LESS Z compare passes if test z is less than buffered z

C3D_EZCMP_LEQUAL Z compare passes if test z is less than or equal to buffered z

C3D_EZCMP_EQUAL Z compare passes if test z is equal to buffered z

C3D_EZCMP_GEQUAL Z compare passes if test z is greater than or equal to buffered z

C3D_EZCMP_GREATER Z compare passes if test z is greater than buffered z

C3D_EZCMP_NOTEQUAL Z compare passes if test z is not equal to buffered z

C3D_EZCMP_ALWAYS Z compare always passes
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 3-5

Z Buffers

test
update
fer may
ased on
The Z test mode may be set by calling ATI3DCIF_ContextSetState with the second argument set to
C3D_ERS_Z_MODE and the third set to the address of a C3D_EZMODE enum specifying the
mode. Applications should ensure that the Z buffer is initialized properly at the start of each frame
based on the manner in which frames are updated. For instance, some or all parts of the of Z buf
have to be reset to zeros or ones (or whatever value is appropriate for the specific application) b
the compare function used.

The following example shows how to set up a Z buffer with ATI3DCIF:

Example 4: setting up a Z buffer

// This example demonstrates how to set up a Z buffer with the Z testing
// mode set to update the buffer after each test and the Z compare function
// set to greater than.

C3D_HRC hrc;
C3D_EZCMP eZCompFnc;
C3D_EZMODE eZMode;
void *lpSurface;
C3D_UINT32 ui32Pitch;

// create rendering context (handle in hrc), allocate Z buffer in video
// memory (address in lpSurface), and get pitch (value in pixels in
// ui32Pitch. Must match pitch of drawing surface associated with Z
// buffer)
...

// set address of Z buffer
if (ATI3DCIF_ContextSetState (hrc, C3D_ERS_SURF_Z_PTR, (C3D_PRSDATA)

&lpSurface) != C3D_EC_OK)
{

// handle error
...

}

// set pitch
if (ATI3DCIF_ContextSetState (hrc, C3D_ERS_SURF_Z_PITCH, (C3D_PRSDATA)

&ui32Pitch) != C3D_EC_OK)
{

// handle error
...

}

// set Z buffering mode
eZMode = C3D_EZMODE_TESTON_WRITEZ;
if (ATI3DCIF_ContextSetState, hrc, C3D_ERS_Z_MODE, (C3D_PRSDATA)

&eZMode) != C3D_EC_OK)

C3D_EZMODE_OFF Disable Z testing

C3D_EZMODE_TESTON Test Z, do not update the Z buffer

C3D_EZMODE_TESTON_WRITEZ Test Z, update the Z buffer
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
3-6 Proprietary and Confidential

Z Buffers
{
// handle error
...

}

// set Z buffer compare function
ezCompFnc = C3D_EZCMP_GREATER;
if (ATI3DCIF_ContextSetState (hrc, C3D_ERS_Z_CMP_FNC, (C3D_PRSDATA)

&zCompFnc) != C3D_EC_OK)
{

// handle error
...

}

© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 3-7

Z Buffers
This page intentionally left blank.
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
3-8 Proprietary and Confidential

Chapter 4
RAGE PRO ATI3DCIF Programming
d in

rocess
re
ifying
nating

es, a

rt
Introduction

The following features have been added to ATI3DCIF to support the RAGE PRO:

• Determining capabilities

• Texture compositing

• Texture clamping

• LOD biasing

• Specular lighting

• Destination Alpha testing

• Vector Quantization (VQ) compression

• TL Vertex type (C3D_TLVERTEX)

Determining Capabilities

In version 4.03.2511 of ATI3DCIF, the u32CIFCaps2 member was added to the C3D_CIFINFO
structure to support additional capabilities under RAGE PRO, adding to the capabilites specifie
Getting ATI3DCIF Module and Graphics Subsystem Information in Chapter 2.

The following table lists u32CIFCaps2 flags:

Texture Compositing

Texture compositing is the process of combining two textures into one composite texture. This p
may be used to apply a light map to a texture or to dissolve from one texture into another. Textu
compositing allows an application to get more mileage out of its textures by combining and mod
them in unlimited ways. For example, a single light map may be applied to several textures, elimi
the need to create unique, modified versions of the same textures.

Texture compositing is possible only when texture mapping is enabled. To composite two textur

C3D_CAPS2_TEXTURE_COMPOSITE second texture and composite blend factor suppo

C3D_CAPS2_TEXTURE_CLAMP clamp texture coordinates to 1.0 enable/disable

C3D_CAPS2_DESTINATION_ALPHA_BLENDextended alpha blending modes supported

C3D_CAPS2_TEXURE_TILING texture tiling support
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 4-1

Texture Compositing

o a
tate

,

 selected

tions
fined.

ts, but

d

re

iltering

e

tor

6)
primary texture must be selected and texture mapping must be enabled by calling
ATI3DCIF_ContextSetState with the state flag C3D_ERS_TMAP_EN and the state data pointing t
BOOL variable set to TRUE. The primary texture is selected by calling ATI3DCIF_ContextSetS
with the state flag C3D_ERS_TMAP_SELECT and the state data pointing to the texture’s C3D_HTX
handle. The handle must be obtained beforehand by loading and registering the texture using
ATI3DCIF_TextureReg as described in Chapter 2, Texture Mapping. Once texture mapping is enabled
texture compositing may be turned on by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_COMPOSITE_EN and the state data pointing to a BOOL variable set to TRUE. The
composite texture must be loaded and registered in the same manner as the primary texture. It is
into the rendering context by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_COMPOSITE_SELECT and the state data pointing to its C3D_HTX handle. Applica
must ensure that the primary texture is selected when compositing, otherwise behavior is unde

The two texture maps may have different dimensions. They may also have different texel forma
with two restrictions:

1. if one texture is in a YUV format, then the other texture must be in a YUV format, an

2. if one texture is in an eight-bit format (CI8, CI4, RGB332, or Y8), then the other textu
must be in an eight-bit format, although it may be in a different eight-bit format.

The secondary composite texture’s filtering mode must be set separately than the primary’s. Its f
mode is set by calling ATI3DCIF_ContextSetState with the state flag C3D_ERS_COMPOSITE_FILTER
and the state data pointing to a C3D_ETEXFILTER enum specifying the filtering mode. Only four of
the six C3D_ETEXFILTER modes apply to the secondary texture. These are
C3D_ETFILT_MINPNT_MAGPNT, C3D_ETFILT_MINPNT_MAG2BY2,
C3D_ETFILT_MIN2BY2_MAGPNT, and C3D_ETFILT_MIN2BY2_MAG2BY2. For more on textur
filtering modes, see the sub-section Setting Texture Filtering, Lighting, and Perspective Correction
Levels in the section Texture Mapping in Chapter 2.

There are three possible texture composting functions in ATI3DCIF: blend, modulation, and
specular-addition. These states are represented by the C3D_ETEXCOMPFCN enum, which has the
following syntax:

typedef enum {
C3D_ETEXCOMPFCN_BLEND = 0, // use blend factor set in

 // C3D_ERS_COMPOSITE_FACTOR
C3D_ETEXCOMPFCN_MOD = 1, // modulate the two textures
C3D_ETEXCOMPFCN_ADD_SPEC = 2,
C3D_ETEXCOMPFCN_MAX = 3,
C3D_ETEXCOMPFCN_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ETEXCOMPFCN, * C3D_PETEXCOMPFCN;

The following is a description of the composite functions:

Blend

This is the default texture composite function. The two textures are combined by a blending fac
according to the following equation:

final texel = (primary texel x (1 - (blending factor/16))) + (secondary texel x blending factor/1
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
4-2 Proprietary and Confidential

Texture Clamping

t by
ate
reasing
her.

nabled

t to
Blend
n be

cting

texel at
 which

 be set

eger
ext
The blending factor may be any integer value between 0 and 15, giving 16 blending levels. It is se
calling ATI3DCIF_ContextSetState with the state flag C3D_ERS_COMPOSITE_FACTOR and the st
data set to the blend factor. The default blending factor on context creation is 8. By progressively inc
or decreasing the blending factor, the two texture maps may be gradually dissolved into one anot

An alternative to setting the blending factor explicitly through an ATI3DCIF_ContextSetState call is to
extract the blending factor from the alpha channel of the composite texture. This state can be e
by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_COMPOSITE_FACTOR_ALPHA and the state data pointing to a BOOL variable se
TRUE. This state can also be set as the default for the composite texture by setting the bAlpha
member of the C3D_TMAP structure to TRUE when registering the texture. Once set, the state ca
toggled on or off by calling ATI3DCIF_ContextSetState with the
C3D_ERS_COMPOSITE_FACTOR_ALPHA flag.

Modulation

The two textures are combined according to the following equation:

final texel = primary texel x secondary texel

The two textures are simply multiplied together for the final texel. There is no blending factor affe
the modulation.

Specular-Addition

The two textures are combined according to the following equation:

final texel = (primary texel x diffuse color) + secondary texel

Texture Clamping

Texture clamping allows a texture’s s and t coordinates to be clamped at 1.0, which causes the
coordinate 1.0 to be replicated towards the edge of the primitive. The effect is that of smearing,
can be used to extend the edges of the texture to fill in the gaps when tiling is not desired.

To clamp the s coordinate, the bClampS member of the C3D_TMAP structure must be set to TRUE
before the texture is registered. Similarly, to clamp the t coordinate, the bClmapT member must
to TRUE.

LOD Biasing

LOD (Level of Detail) biasing controls level switching during mipmapping. The LOD bias is an int
value between 0 and 15 which modifies the threshold stride at which the switch is made to the n
smallest map. The threshold stride is determined according to the following equation:

threshold stride = 1 + (LOD bias/16)

This equation bounds the threshold stride between 1 and 1 15/16.
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 4-3

Specular Lighting

 bias

ifying
lied. It

ither

uffer.
aintained
d is
e
ocess is
alues.
value,
lso, as
vertex z

s narrow

 the
ntrast
me z
The LOD bias is set by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_LOD_BIAS_LEVEL and the state data set to the LOD bias value. By default, the LOD
is 0, setting the threshold stride to 1.

Specular Lighting

Specular lighting is the process of applying an additive highlight to a primitive. This is done by spec
a specular color in the vertex description. Specular lighting must be enabled before it can be app
can be enabled by calling ATI3DCIF_ContextSetState with the state flag C3D_ERS_SPECULAR_EN
and the state data pointing to a BOOL variable set to TRUE. The desired color is set into the .specular
member of the C3D_TLVERTEX structure. Specular color may be referenced in this structure as e
a C3D_UINT32 or as individual C3D_UINT8 color components: b, g, r and a.

Destination Alpha Testing

Destination alpha testing is a mechanism for selectively writing source data to the destination b
This process compares the alpha value from one of six selectable sources to a reference value m
in the rendering context. If the comparison passes, the RGB data of the primitive being rendere
written to the destination RGB channels, and the alpha from the selected source is written to th
destination alpha channel. Otherwise, the destination remains unchanged. Conceptually, the pr
similar to z-buffering in that a decision is made to render a pixel based on the comparison of two v
But unlike z-buffering, the alpha comparison reference is not the target destination pixel’s alpha
but a single reference value in the rendering context which is compared against for all pixels. A
mentioned, there are six sources of alpha test values, as opposed to one source of z data (the
value).

The depth of the alpha channel varies depending on the pixel format. The alpha channel may be a
as one bit, as in the ARGB1555 format, or as wide as eight bits, as in the ARGB8888 format.

The alpha write source is selected by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_ALPHA_DST_WRITE_SELECT and the state data pointing to a C3D_EASEL enum
specifying the source.

The six alpha write sources represented by the C3D_EASEL enum has the following syntax:

typedef enum {
 C3D_EASEL_ZERO = 0, // write all bits 0
 C3D_EASEL_ONE = 1, // write all bits 1
 C3D_EASEL_SRCALPHA = 4, // write As
 C3D_EASEL_INVSRCALPHA = 5, // write 1-As
 C3D_EASEL_DSTALPHA = 6, // write Ad
 C3D_EASEL_INVDSTALPHA = 7, // write 1-Ad
 C3D_EASEL_FORCE_U32 = C3D_FORCE_SIZE
} C3D_EASEL, *C3D_PEASEL;

As represents the source primitive alpha channel, and Ad represents the destination alpha channel. A
note on using C3D_EASEL_DSTALPHA and C3D_EASEL_INVDSTALPHA — the alpha data in
destination alpha channel may be different for each buffer when double buffering, which is in co
to z-buffering, where both buffers usually share a single z-buffer and therefore reference the sa
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
4-4 Proprietary and Confidential

Vector Quantization (VQ) Compression

is
nel, an

the
e state
able

:

function

on
tate
inting

alette.
 savings
 the
d for

t to
 which
values.

If C3D_EASEL_SRCALPHA or C3D_EASEL_INVSRCALPHA is selected, the alpha write data
read from the source primitive. If the primitive data is a texel which does not have an alpha chan
alpha value of 0xff is used for comparison and alpha writing.

The alpha value from the selected write source is compared to a reference value maintained in
rendering context. This reference value may be set by calling ATI3DCIF_ContextSetState with th
flag C3D_ERS_ALPHA_DST_REFERENCE and the state data pointing to a C3D_UINT32 vari
indicating the desired reference value. The reference value default is 0.

The alpha compare functions are represented by the C3D_EACMP enum, which has the following syntax

typedef enum {
 C3D_EACMP_NEVER = 0,
 C3D_EACMP_LESS = 1,
 C3D_EACMP_LEQUAL = 2,
 C3D_EACMP_EQUAL = 3,
 C3D_EACMP_GEQUAL = 4,
 C3D_EACMP_GREATER = 5,
 C3D_EACMP_NOTEQUAL = 6,
 C3D_EACMP_ALWAYS = 7,
 C3D_EACMP_MAX = 8,
 C3D_EACMP_FORCE_U32 = C3D_FORCE_SIZE
} C3D_EACMP, * C3D_PEACMP;

These functions are similar to the z compare functions described in Chapter 3. The alpha compare
is set by calling ATI3DCIF_ContextSetState with the state flag C3D_ERS_ALPHA_DST_TEST_FNC
and the state data pointing to a C3D_EACMP enum specifying the function. The default compare functi
is C3D_EACMP_ALWAYS. To enable or disable destination alpha testing, ATI3DCIF_ContextSetS
should be called with the state flag C3D_ERS_ALPHA_DST_TEST_ENABLE and the state data po
to a BOOL variable indicating the enable state.

Vector Quantization (VQ) Compression

VQ textures are very similar to normal paletted textures in that they both have image data and a p
VQ texture are decompressed by the RAGE PRO at run time. Space savings and performance
can be signicant. For example, a 128x64 texture will fit into the RAGE PRO's cache, minimizing
number of cache misses. This technique also will reduce the memory bandwidth that is require
texture fetches, and allow more textures to be stored in local memory.

To create a VQ Texture, a palette must be created using ATI3DCIF_TexturePaletteCreate. The first
argument is an enumeration constant that defines the type of palette to create and should be se
C3D_ECI_TMAP_VQ. The second argument is an array of 256 entries specifying the code book,
has the following syntax:

typedef struct {
C3D_UINT16 ul; // upper-left of 2x2 block
C3D_UINT16 ur; // upper-right of 2x2 block
C3D_UINT16 ll; // lower-left of 2x2 block
C3D_UINT16 lr; // upper-right of 2x2 block
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 4-5

Vector Quantization (VQ) Compression

pmap
} C3D_CODEBOOKENTRY, *C3D_PCODEBOOKENTRY;

When finished with the texture, the palette should be destroyed by calling the
ATI3DCIF_TexturePaletteDestroy function, with the palette’s handle as an argument.

It is possible to create mipmapped VQ textures. The same code book will be used for all the mi
levels. Textures should be pre-compressed for better performance.

The following examples demonstrate several operations related to VQ textures:

Example 1: Creating a Palette

C3D_CODEBOOK cbCodeBook[256];
C3D_HTXPAL hTXPal;

// cbTempCodeBook: code book from read in from a VQ Texture file
// copy it into a code book structure for (int j = 0; j < 256; j++)
{

cbCodeBook[j].ul = cbTempCodeBook[j].ul;
cbCodeBook[j].ur = cbTempCodeBook[j].ur;
cbCodeBook[j].ll = cbTempCodeBook[j].ll;
cbCodeBook[j].lr = cbTempCodeBook[j].lr;

}

if (ATI3DCIF_TexturePaletteCreate(C3D_ECI_TMAP_VQ, cbCodeBook, &hTXPal)
!= C3D_EC_OK

{
// handle error
...

}

Example 2: Creating a VQ Texture

// this example registers a 64x64 VQ Texture
C3D_HTXPAL hTXPal;
C3D_HTX hTX;
pIndexMapAddress;

// pIndexMapAddress, this is a pointer to the index map of the VQ Texture
// read in from a VQ Texture file
// create the CODEBOOK structure and create the palette using
// ATI3DCIF_TexturePaletteCreate to receive a valid handle
ZeroMemory(&TMap, sizeof(TMap));
TMap.u32Size = sizeof(TMap);
TMap.apvLevels[0] = pIndexMapAddress;
TMap.bMipMap = FALSE;
TMap.u32MaxMapXSizeLg2 = 6;
TMap.u32MaxMapYSizeLg2 = 6;
TMap.eTexFormat = C3D_ETF_VQ;
SET_CIF_COLOR(TMap.clrTexChromaKey, 0, 0, 0, 0);
TMap.htxpalTexPalette= hTXPal;

// register the texture
ecRetVal = ATI3DCIF_TextureReg (&TMap, &hTX);
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
4-6 Proprietary and Confidential

TL Vertex Type (C3D_TLVERTEX)

d
the
hen
if (ecRetVal != C3D_EC_OK)
{

// destroy palette
ATI3DCIF_TexturePaletteDestroy(hTXPal);
// other error handling
...

}

Example 3: Destroying the Palette

// unregister texture
ecRetVal = ATI3DCIF_TextureUnreg(hTX);
if (ecRetVal != C3D_EC_OK)
{

// handle error
...

}

ecRetVal = ATI3DCIF_TexturePaletteDestroy (hTXPal);
if (ecRetVal != C3D_EC_OK)
{

// handle error
...

}

TL Vertex Type (C3D_TLVERTEX)

A new C3D_TLVERTEX vertex type has been implemented. This vertex type is highly portable an
faster than older vertex types on the RAGE PRO family of accelerators. The portable nature of
C3D_TLVERTEX vertex type helps eliminate the need for copying/reformatting of vertex data w
porting applications to the ATI3DCIF driver interface.

The C3D_TLVERTEX vertex type has the following syntax:

typedef struct {
union {

C3D_FLOAT32 sx; // screen X
C3D_FLOAT32 x;

};
union {

C3D_FLOAT32 sy; // screen Y
C3D_FLOAT32 y;

};
union {

C3D_FLOAT32 sz; // screen Z
C3D_FLOAT32 z;

};
union {

C3D_FLOAT32 rhw; // reciprocal of the homogenious W
C3D_FLOAT32 w;

};
union {

C3D_UINT32 color; // diffuse color
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 4-7

TL Vertex Type (C3D_TLVERTEX)

TEX

VTCF.

pport
struct {
C3D_UINT8b;
C3D_UINT8g;
C3D_UINT8r;
C3D_UINT8a;

};
};
union {

C3D_UINT32 specular;// specular color
struct {

C3D_UINT8spec_b;
C3D_UINT8spec_g;
C3D_UINT8spec_r;
C3D_UINT8spec_a;

};
};
union {

C3D_FLOAT32 tu; // texture U
C3D_FLOAT32 s;

};
union {

C3D_FLOAT32 tv; // texture V
C3D_FLOAT32 t;

};
struct {

C3D_FLOAT32 reserved1;
C3D_FLOAT32 reserved2;
C3D_FLOAT32 reserved3;

} composite;
} C3D_TLVERTEX;

In keeping with current industry standards, note that the texture coordinates for the C3D_TLVER
are now non-homogenous u and v (.tu and .tv) coordinates. In the C3D_VTCF and older vertex types,
texture coordinates were specified as homogenous s and t (i.e., s = u/w and t = v/w).

The current vertex type may be changed by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_VERTEX_TYPE and the state data pointing to a C3D_EVERTEX enum specifying the vertex
type. This must be done to choose the C3D_TLVERTEX vertex type, because the default is C3D_

The C3D_VTF, C3D_VCF and C3D_VF vertex types are no longer supported by RAGE PRO. Su
for the C3D_VTCF vertex type has been maintained, however.
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
4-8 Proprietary and Confidential

Chapter 5
ATI3DCIF API Reference

ing
Introduction

This chapter describes the ATI3DCIF functions and data types supported under Windows 95.

Windows 95 Functions

ATI3DCIF_ContextCreate

Version

1.0

Syntax

C3D_HRC DLLEXPORT WINAPI ATI3DCIF_ContextCreate (
void);

Arguments

None.

Return Value

A C3D_HRC handle identifying the rendering context if successful, otherwise NULL.

Description

This function creates an ATI3DCIF rendering context. If successful, it returns a C3D_HRC handle
which uniquely identifies the rendering context. The handle is used in subsequent ATI3DCIF
functions which reference the context.

Prior to creating the rendering context, the application must load and initialize the ATI3DCIF
module by calling ATI3DCIF_Init. Before terminating, the application must destroy the render
context by calling ATI3DCIF_ContextDestroy to free system resources.

See Also

ATI3DCIF_Init, ATI3DCIF_ContextDestroy
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-1

Windows 95 Functions

reated
xt
ATI3DCIF_ContextDestroy

Version

1.0

Syntax

void DLLEXPORT WINAPI ATI3DCIF_ContextDestroy (
C3D_HRC hRC);

Arguments

Return Value

None.

Description

This function destroys the rendering context identified by hRC. The context must have been c
by a previous call to ATI3DCIF_ContextCreate. An application must destroy the rendering conte
before terminating to free system resources.

See Also

ATI3DCIF_ContextCreate

hRC C3D_HRC handle to rendering context
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-2 Proprietary and Confidential

Windows 95 Functions

 is
e data
 pointed
tion.
ATI3DCIF_ContextSetState

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_ContextSetState (
C3D_HRC hRC,
C3D_ERSID eRStateID,
C3D_PRSDATA pRStateData);

Arguments

Return Value

C3D_EC_OK if successful, otherwise a C3D_EC error code.

Description

This function modifies a rendering state in the context identified by hRC. The state to be modified
specified by eRStateID. pRStateData points to a data object containing new state information. Th
type addressed by pRStateData depends on eRStateID. The following table lists the type of object
to by pRStateData for each eRStateID constant, as well as the default states set on context crea

hRC C3D_HRC handle to rendering context

eRStateID C3D_ERSID enumeration specifying state to set

pRStateData C3D_PRSDATA pointer to new state data

eRStateID pRStateData Context Default

C3D_ERS_FG_CLR pointer to a C3D_COLOR
structure specifying the fog color

{0, 0, 0, 0}

C3D_ERS_VERTEX_TYPE pointer to C3D_EVERTEX
enumeration specifying vertex
type

C3D_EV_VTCF

C3D_ERS_PRIM_TYPE pointer to a C3D_EPRIM
enumeration specifying primitive
type

C3D_EPRIM_TRI

C3D_ERS_SOLID_CLR pointer to a C3D_COLOR
structure specifying solid color

{0, 0, 0, 0}

C3D_ERS_SHADE_MODE pointer to C3D_ESHADE
enumeration specifying shading
mode

C3D_ESH_SMOOTH

C3D_ERS_TMAP_EN pointer to a BOOL enabling or
disabling texture mapping.

FALSE

C3D_ERS_TMAP_SELECT pointer to a C3D_HTX handle
specifying texture

NULL

(continued on next page)
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-3

Windows 95 Functions
C3D_ERS_TMAP_LIGHT pointer to C3D_ETLIGHT
enumeration specifying texture
lighting mode

C3D_ETL_NONE

C3D_ERS_TMAP_FILTER pointer to a C3D_ETEXFILTER
specifying texture filtering mode

C3D_ETFILT_MINPNT_
MAG2BY2

C3D_ERS_TMAP_PERSP_COR pointer to a C3D_ETPERSPCOR
enumeration specifying texture
perspective correction level

C3D_ETPC_THREE

C3D_ERS_TMAP_TEXOP pointer to a C3D_ETEXOP
enumeration specifying texel
rendering operation

C3D_ETEXOP_NONE

C3D_ERS_ALPHA_SRC pointer to a C3D_EASRC
enumeration specifying source
alpha blend mode

C3D_EASRC_ONE

C3D_ERS_ALPHA_DST pointer to a C3D_EADST
enumeration specifying
destination alpha blend mode

C3D_EADST_ZERO

C3D_ERS_ SURF_DRAW_PTR pointer to a C3D_PVOID pointer
specifying the address of the
drawing surface region. The
address must be an integer
multiple of 8 bytes

set to address of
on-screen desktop
region on rendering
context creation

C3D_ERS_ SURF_DRAW_PITCH pointer to a C3D_UINT32 specifying
the pitch of the drawing surface region
in pixels. The pitch must be an integer
multiple of 8 pixels

set to pitch of on-screen
desktop region on
rendering context
creation

C3D_ERS_ SURF_DRAW_PF pointer to a C3D_EPIXFMT
enumeration specifying the
drawing surface region pixel
format

set to pixel format of
on-screen desktop
region on rendering
context creation

C3D_ERS_SURF_VPORT pointer to a C3D_RECT structure
specifying a rectangular clipping
region on the drawing surface.
Primitives will not be rendered
outside of this viewport rectangle

set to coordinates of
visible desktop
rectangular region on
rendering context
creation

C3D_ERS_FOG_EN pointer to a BOOL enabling or
disabling fog

FALSE

C3D_ERS_DITHER_EN pointer to a BOOL enabling or
disabling dither

TRUE

C3D_ERS_Z_CMP_FNC pointer to a C3D_EZCMP
enumeration specifying the Z
compare function.

C3D_EZCMP_ALWAYS

C3D_ERS_Z_MODE pointer to a C3D_EZMODE
enumeration specifying the Z
testing mode

C3D_EZMODE_OFF

(continued on next page)

eRStateID pRStateData Context Default
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-4 Proprietary and Confidential

Windows 95 Functions
C3D_ERS_SURF_Z_PTR pointer to a C3D_PVOID pointer
specifying the address of the
Z buffer

NULL

C3D_ERS_SURF_Z_PITCH pointer to a C3D_UINT32
specifying the pitch of the Z buffer
in pixels

set to pitch of on-screen
desktop region on
rendering context
creation

C3D_ERS_SURF_SCISSOR pointer to a C3D_RECT structure
specifying a rectangular clipping
region on the drawing surface.
Primitives will not be rendered
outside of this scissors rectangle.
The scissors region differs from
the viewport region in that its
origin is always fixed at the top
left corner of the surface

set to coordinates of
visible desktop
rectangular region on
rendering context
creation

C3D_ERS_COMPOSITE_EN pointer to a BOOL enabling or
disabling texture compositing

FALSE

C3D_ERS_COMPOSITE_SELECT pointer to a C3D_HTX handle
specifying the secondary
composite texture

NULL

C3D_ERS_COMPOSITE_FNC pointer to a
C3D_ETEXCOMPFCN
enumeration specifying the texture
compositing function

C3D_ETEXCOMPFCN
_BLEND

C3D_ERS_COMPOSITE_FACTOR pointer to a C3D_UNIT32
specifying blend factor if
C3D_ETEXCOMPFCN_BLEND
compositing function selected.
This value must be an integer
between 0 and 15

8

C3D_ERS_COMPOSITE_FILTER pointer to a C3D_ETEXFILTER
specifying the filtering mode for the
secondary composite texture. The
only texturing modes supported for
the secondary filter are:
C3D_ETFILT_MINPNT_MAGPNT,
C3D_ETFILT_MINPNT_MAG2BY2,
C3D_ETFILT_MIN2BY2_MAGPNT
and
C3D_ETFILT_MIN2BY2_MAG2BY2

C3D_ETFILT_MIN2BY2
_MAG2BY2

C3D_ERS_COMPOSITE_FACTOR
_ALPHA

pointer to a BOOL enabling blend
factor to be taken from composite
texture’s alpha channel for blend
texture compositing function

FALSE

(continued on next page)

eRStateID pRStateData Context Default
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-5

Windows 95 Functions

s of this
The data types that may be addressed by pRStateData are described in detail in other section
reference.

NOTE: z-buffers are only supported in the 3D RAGE II graphics accelerator or later.

See Also

C3D_EACMP, C3D_EADST, C3D_EASEL, C3D_EASRC, C3D_EPIXFMT, C3D_EPRIM,
C3D_ESHADE, C3D_ETEXCOMPFCN, C3D_ETEXFILTER, C3D_ETLIGHT,
C3D_ETPERSPCOR, C3D_ETEXOP, C3D_EVERTEX, C3D_COLOR, C3D_HTX, C3D_EZCMP,
C3D_EZMODE

C3D_ERS_LOD_BIAS_LEVEL pointer to a C3D_UNIT32
specifying the LOD bias. This
value must be an integer between
0 and 15

0

C3D_ERS_ALPHA_DST_TEST_ENABLE pointer to a BOOL enabling or
disabling destination alpha testing

FALSE

C3D_ERS_ALPHA_DST_TEST_FNC pointer to a C3D_EACMP
enumeration specifying
destination alpha test compare
function

C3D_EACMP_ALWAYS

C3D_ERS_ALPHA_DST_WRITE_SELECTpointer to a C3D_EASEL
enumeration specifying the alpha
source for destination alpha test
alpha write

C3D_EASEL_ZERO

C3D_ERS_ALPHA_DST_REFERENCE pointer to a C3D_UNIT32
specifying reference alpha value
for destination alpha testing

0

C3D_ERS_SPECULAR pointer to a BOOL enabling or
disabling specular lighting

FALSE

eRStateID pRStateData Context Default
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-6 Proprietary and Confidential

Windows 95 Functions

hics
,
re.
ATI3DCIF_GetInfo

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_GetInfo (
C3D_P3DCIFINFO pCIFInfo);

Arguments

Return Value

C3D_EC_OK if successful, otherwise a C3D_EC error code.

Description

This function returns information about the graphics subsystem and the ATI 3D RAGE grap
accelerator in the C3D_3DCIFINFO structure pointed to by pCIFInfo. Prior to calling this function
the u32Size member of the C3D_3DCIFINFO structure must be set to the size of the structu
Otherwise, the function will fail.

See Also

C3D_3DCIFINFO

pCIFInfo pointer to a C3D_3DCIFINFO structure to be initialized with ATI3DCIF
module information.
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-7

Windows 95 Functions

 any

ng
ATI3DCIF_Init

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_Init (
void);

Arguments

None.

Return Value

C3D_EC_OK if successful, otherwise a C3D_EC error code.

Description

This function loads and initializes the ATI3DCIF module. This function must be called before
other ATI3DCIF functions are called. Otherwise, the ATI3DCIF functions will fail.

Before the application terminates, it must terminate and unload the ATI3DCIF driver by calli
ATI3DCIF_Term.

See Also

ATI3DCIF_Term
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-8 Proprietary and Confidential

Windows 95 Functions

called
ach

.
ATI3DCIF_RenderBegin

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_RenderBegin (
C3D_HRC hRC);

Arguments

Return Value

C3D_EC_OK if successful, otherwise a C3D_EC error code.

Description

This function prepares the hardware to draw using the context identified by hRC. It must be
prior to any other ATI3DCIF_Renderxxx functions. Typically, it is called at the beginning of e
frame update before rendering primitives with ATI3DCIF_RenderPrimList or
ATI3DCIF_RenderPrimStrip.

After completing rendering operations, the application should call ATI3DCIF_RenderEnd to end
the 3D hardware drawing operations. This will free the graphics hardware for 2D operations

See Also

ATI3DCIF_RenderEnd, ATI3DCIF_RenderPrimList, ATI3DCIF_RenderPrimStrip.

hRC C3D_HRC handle to rendering context
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-9

Windows 95 Functions

me

ATI3DCIF_RenderEnd

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_RenderEnd (
void);

Arguments

None.

Return Value

C3D_EC_OK if successful, otherwise a C3D_EC error code.

Description

This function terminates 3D hardware rendering operations initiated by a prior call to
ATI3DCIF_RenderBegin. After completing rendering operations, for instance at the end of fra
updates, the application should call ATI3DCIF_RenderEnd to end the 3D hardware drawing
operations. This will free up the graphics hardware to resume 2D operations.

See Also

ATI3DCIF_RenderBegin, ATI3DCIF_RenderPrimList, ATI3DCIF_RenderPrimStrip.
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-10 Proprietary and Confidential

Windows 95 Functions

By
 be

e list.

Data
ATI3DCIF_RenderPrimList

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_RenderPrimList (
C3D_VLIST vList,
C3D_UINT32 u32NumVert);

Arguments

Return Value

C3D_EC_OK if successful, otherwise a C3D_EC error code.

Description

This function draws a primitive list using the current primitive type of the rendering context.
default, the rendering context is initialized to draw triangle primitives. The primitive type may
modified by calling ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_PRIM_TYPE
and pRStateData set to the address of a C3D_EPRIM enumeration specifying the new primitive
type. vList is an array of pointers to vertex structures representing the vertices in the primitiv
The default rendering context vertex structure is C3D_VTCF. This may be changed by calling
ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_VERTEX_TYPE, and pRState
set to the address of a C3D_EVERTEX enumeration specifying the new vertex structure type.
u32NumVerts specifies the number of vertices in the primitive list.

See Also

ATI3DCIF_ContextCreate

vList array of pointers to primitive list vertex structures

u32NumVert number of vertices in the primitive
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-11

Windows 95 Functions

. By
 be

e

Data
ATI3DCIF_RenderPrimStrip

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_RenderPrimStrip (
C3D_VSTRIP vStrip,
C3D_UINT32 u32NumVert);

Arguments

Return Value

C3D_EC_OK if successful, otherwise a C3D_EC error code.

Description

This function draws a primitive strip using the current primitive type of the rendering context
default, the rendering context is initialized to draw triangle primitives. The primitive type may
modified by calling ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_PRIM_TYPE
and pRStateData set to the address of a C3D_EPRIM enumeration specifying the new primitive
type. vStrip is an array of vertex structures representing the vertices in the primitive strip. Th
default rendering context vertex structure is C3D_VTCF. This may be changed by calling
ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_VERTEX_TYPE, and pRState
set to the address of a C3D_EVERTEX enumeration specifying the new vertex structure type.
u32NumVerts specifies the number of vertices in the primitive strip.

See Also

ATI3DCIF_ContextCreate

vStrip array of primitive strip vertex structures

u32NumVert number of vertices in the primitive
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-12 Proprietary and Confidential

Windows 95 Functions

C. It

 a
ATI3DCIF_RenderSwitch

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_RenderSwitch (
C3D_HRC hNewRC);

Arguments

Return Value

C3D_EC_OK if successful, otherwise a C3D_EC error code.

Description

NOTE: This function is not yet implemented.

This function switches 3D rendering operations to the rendering context identified by hNewR
is the functional equivalent of calling ATI3DCIF_RenderEnd for the existing context followed by
ATI3DCIF_RenderBegin with the handle of the new context. This function is only valid while in
3D rendering state, that is, while a rendering operation has been initiated by calling
ATI3DCIF_RenderBegin.

See Also

ATI3DCIF_RenderBegin, ATI3DCIF_RenderEnd

hNewRC C3D_HRC handle of rendering context to switch to
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-13

Windows 95 Functions

aded
e
ATI3DCIF_Term

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_Term (
void);

Arguments

None.

Return Value

TRUE if successful, otherwise FALSE.

Description

This function terminates and unloads the ATI3DCIF module. The module must have been lo
previously by a call to ATI3DCIF_Init. An application must unload the ATI3DCIF module befor
terminating to free system resources.

See Also

ATI3DCIF_Init
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-14 Proprietary and Confidential

Windows 95 Functions

h CI4
reate.
nction.
e.

ld be

 with
AGE
ATI3DCIF_TexturePaletteCreate

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_TexturePaletteCreate
C3D_ECI_TMAP_TYPE epalette,
C3D_PPALETTENTRY pclrPalette,
C3D_PHTXPAL phtpalCreated);

Arguments

Return Value

C3D_EC_OK if successful, otherwise a C3D_EC error code.

Description

This function creates a 16 or 256 entry logical texture palette within ATI3DCIF. The handle
obtained by calling this function is assigned to the htxpalTexPalette member of a CI4 or CI8
texture’s C3D_TMAP structure before the texture is registered. 16 entry palettes are used wit
textures and 256 entry palettes with CI8 textures. epalette specifies what kind of palette to c
The colors of each entry in the palette are specified by the pclrPalette array passed to this fu
If successful, the C3D_HTXPAL handle addressed by phtpalCreated will be set to a valid valu
Otherwise, it is set to NULL.

After the application has finished using the texture and has unregistered it, the palette shou
destroyed by calling ATI3DCIF_TexturePaletteDestroy.

NOTE: Texture palettes, C3D_ETF_CI4, and C3D_ETF_CI8 texel formats are only available
the RAGE II or later graphics accelerators. All other formats are available with both the 3D R
and 3D RAGE II accelerators.

See Also

ATI3DCIF_TexturePaletteDestroy

epalette kind of palette to create (CI4, CI8, or VQ code book)

pclrPalette array of 16 or 256 C3D_PALETTENTRY structures, or 256-entry code
book (C3D_PCODEBOOKENTRY)

phtpalCreated palette handle to be initialized
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-15

Windows 95 Functions

, and
ATI3DCIF_TexturePaletteDestroy

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_Texture
C3D_HTXPAL htxpalToDestroy);

Arguments

Return Value

C3D_EC_OK if successful, otherwise a C3D_EC error code.

Description

This function destroys a logical texture palette created by calling ATI3DCIF_TexturePaletteCreate.
A texture palette must be destroyed after the texture it is assigned to has been unregistered
before terminating ATI3DCIF.

NOTE: Texture palettes are only available with the 3D RAGE II graphics accelerator.

See Also

ATI3DCIF_TexturePaletteCreate

htxpalToDestroy handle of texture palette to destroy
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-16 Proprietary and Confidential

Windows 95 Functions

g

ta
ATI3DCIF_TextureReg

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_TextureReg (
C3D_PTMAP ptmapToReg,
C3D_PHTX phtxTMap);

Arguments

Return Value

A C3D_EC_OK if successful, otherwise a C3D_EC error code.

Description

This function registers a texture with the ATI3DCIF module. ptmapToReg points to a C3D_TMAP
structure providing texture information required by the ATI3DCIF module. If successful, this
function initializes the C3D_HTX handle pointed to by phtxTMap with a unique value identifyin
the texture. Otherwise, the handle is set to NULL.

To map the texture, the application must (1) select the texture by calling
ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_TMAP_SELECT and pRStateDa
pointing to the texture’s C3D_HTX handle, and (2) enable texture mapping by calling
ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_TMAP_EN and pRStateData
pointing to a BOOL set to TRUE.

See Also

ATI3DCIF_ContextSetState, C3D_TMAP

ptmapToReg pointer to a C3D_TMAP structure describing the texture

phtxTMap pointer to C3D_HTX to be initialized
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-17

Windows 95 Functions

been
ATI3DCIF_TextureUnreg

Version

1.0

Syntax

C3D_EC DLLEXPORT WINAPI ATI3DCIF_TextureUneg (
C3D_HTX htxToUnreg);

Arguments

Return Value

C3D_EC_OK if successful, otherwise a C3D_EC error code.

Description

This function unregisters the texture map identified by htxToUnreg. This texture must have
registered with the ATI3DCIF module by a previous call to ATI3DCIF_TextureReg.

See Also

ATI3DCIF_TextureReg

htxToUnreg C3D_HTX handle of texture to unregister
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-18 Proprietary and Confidential

ATI3DCIF Data Types
ATI3DCIF Data Types

ATI3DCIF Fundamental Data Types

C3D_BOOL unsigned int

C3D_INT32 int

C3D_UINT32 unsigned int

C3D_UINT16 unsigned short

C3D_UINT8 unsigned char

C3D_FLOAT32 float

C3D_PBOOL unsigned int *

C3D_PINT32 int *

C3D_PUINT32 unsigned int *

C3D_PUINT16 unsigned short *

C3D_PUINT8 unsigned char *

C3D_PFLOAT32 float *

C3D_PVOID void *
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-19

ATI3DCIF Data Types

s
the

 four
sion
C3D_3DCIFINFO

Version

1.0

Syntax

typedef struct {
C3D_UINT32 u32Size;
C3D_UINT32 u32FrameBuffBase;
C3D_UINT32 u32OffScreenHeap;
C3D_UINT32 u32OffScreenSize;
C3D_UINT32 u32TotalRAM;
C3D_UINT32 u32ASICID;
C3D_UINT32 u32ASICRevision;
C3D_UINT32 u32CIFCaps1;
C3D_UINT32 u32CIFCaps2;
C3D_UINT32 u32CIFCaps3;
C3D_UINT32 u32CIFCaps4;
C3D_UINT32 u32CIFCaps5;

} C3D_3DCIFINFO, * C3D_P3DCIFINFO;

Members

Description

This structure is used by the ATI3DCIF_GetInfo function to retrieve information about the graphic
subsystem and the ATI 3D RAGE graphics accelerator. Prior to calling ATI3DCIF_GetInfo,
client application must set the u32Size member to the size of this structure. Otherwise,
ATI3DCIF_GetInfo will fail.

In version 4.02.0217 of ATI3DCIF, the u32CIFCaps member was added to this structure. In
version 4.03.0039 of ATI3DCIF, the u32CIFCaps member was renamed u32CIFCaps1, and
more capabilities fields, u32CIFCaps2 to u32CIFCaps5, were added to this structure. In ver

u32Size size of C3D_3DCIFINFO structure

u32FrameBuffBase host pointer to the base of the frame buffer

u32OffScreenHeap host pointer to the off-screen heap

u32OffScreenSize size of the off-screen heap

u32TotalRAM total amount of video RAM on the graphics board

u32ASICID RAGE ASIC ID

u32ASICRevision RAGE ASIC revision

u32CIFCaps1 ATI3DCIF module capabilities, field 1

u32CIFCaps2 ATI3DCIF module capabilities, field 2 (RAGE PRO)

u32CIFCaps3 ATI3DCIF module capabilities, field 3 (reserved for future use)

u32CIFCaps4 ATI3DCIF module capabilities, field 4 (reserved for future use)

u32CIFCaps5 ATI3DCIF module capabilities, field 5 (reserved for future use)
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-20 Proprietary and Confidential

ATI3DCIF Data Types

ilities
r future
 to use
er. The

ws
 the

nd

4.03.2511 of ATI3DCIF, the u32CIFCaps2 member was defined to support additional capab
under RAGE PRO. u32CIFCaps3 to u32CIFCaps5 are currently unused and are reserved fo
use. The application must ensure that the ATI3DCIF module is version 4.03.0039 or greater
the u32CIFCaps1 member, and version 4.03.2511 or greater to use the u32CIFCaps2 memb
ATI3DCIF.DLL version number may be determined by right-clicking on the file under Windo
Explorer, selecting Properties, and clicking on the Version tab. ATI3DCIF.DLL is located in
Windows 95 SYSTEM directory.

The following table lists u32CIFCaps1 flags:

C3D_CAPS1_BASE represents the baseline functionality available in versions 4.02.0217 a
earlier of ATI3DCIF. All other capabilities were added after version 4.02.0217.

The following table lists u32CIFCaps2 flags:

See Also

ATI3DCIF_GetInfo

C3D_CAPS1_BASE baseline functionality

C3D_CAPS1_FOG fog support

C3D_CAPS1_POINT point primitive support

C3D_CAPS1_RECT screen-aligned rectangle primitive support

C3D_CAPS1_Z_BUFFER Z buffer support

C3D_CAPS1_CI4_TMAP 4 bit color index texture support

C3D_CAPS1_CI8_TMAP 8 bit color index texture support

C3D_CAPS1_LOAD_OBJECT bus-master data loading support

C3D_CAPS1_DITHER_EN dithering on/off support

C3D_CAPS1_ENH_PERSP enhanced perspective levels available

C3D_CAPS1_SCISSOR fixed origin clipping region support

C3D_CAPS1_PROFILE_IF profile interface available

C3D_CAPS2_TEXTURE_COMPOSITE second texture and composite blend factor
support

C3D_CAPS2_TEXTURE_CLAMP clamp texture coordinates to 1.0
enable/disable

C3D_CAPS2_DESTINATION_ALPHA_BLEND extended alpha blending modes supported

C3D_CAPS2_TEXURE_TILING texture tiling support
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-21

ATI3DCIF Data Types

rray of
C3D_CODEBOOKENTRY

Version

1.0

Syntax

typedef struct {
C3D_UNIT16 ul;
C3D_UNIT16 ur;
C3D_UNIT16 ll;
C3D_UNIT16 lr;

} C3D_CODEBOOKENTRY, * C3D_PCODEBOOKENTRY;

Members

Description

This structure is used to specify a single code book entry for VQ compressed textures. An a
256 of these entries will be passed into ATI3DCIF_TexturePaletteCreate, along with the
C3D_ECI_TMAP_VQ enumeration constant, to specify that a VQ texture be created, Upon
successful creation, a valid codebook handle will be returned.

When finished with the texture, the codebook should be destroyed by calling the
ATI3DCIF_TexturePaletteDestroy function, with the codebook's handle as an argument.

See Also

None

ul upper-left of 2x2 block

ur upper-right of 2x2 block

ll lower-left of 2x2 block

lr lower-right of 2x2 block
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-22 Proprietary and Confidential

ATI3DCIF Data Types

lors of

lor,
ta
C3D_COLOR

Version

1.0

Syntax

typedef union
struct {

unsigned r: 8;
unsigned g: 8;
unsigned b: 8;
unsigned a: 8;

} ;
C3D_UINT32 u32All

} C3D_COLOR, * C3D_PCOLOR;

Members

Description

This structure is used to specify the RGBA colors when setting the background and solid co
the rendering context and the texel transparency chroma key color in the C3D_TMAP structure. The
C3D_TMAP structure is used to provide texture information to the ATI3DCIF module when
registering a texture map.

On context creation, the solid color is set to black (RGBA = {0, 0, 0, 0}). To modify the solid co
call ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_SOLID_CLR and pRStateDa
set to the address of a C3D_COLOR structure specifying the new color.

See Also

ATI3DCIF_ContextSetState, C3D_ERSID, C3D_TMAP

r red color component

g green color component

b blue color component

a alpha color component
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-23

ATI3DCIF Data Types

g. The
ence
data is
ritten

e
C3D_EACMP

Version

1.0

Syntax

typedef enum {
C3D_EACMP_NEVER = 0,
C3D_EACMP_LESS = 1,
C3D_EACMP_LEQUAL = 2,
C3D_EACMP_EQUAL = 3,
C3D_EACMP_GEQUAL = 4,
C3D_EACMP_GREATER = 5,
C3D_EACMP_NOTEQUAL = 6,
C3D_EACMP_ALWAYS = 7,
C3D_EACMP_MAX = 8,
C3D_EACMP_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EACMP, * C3D_PEACMP;

Constants

Description

C3D_EACMP constants specify the compare function to use during destination alpha testin
compare function compares the alpha value from the current alpha write source with a refer
alpha value maintained in the rendering context. If the compare passes, the primitive’s RGB
written to the destination RGB channels, and the alpha value from the alpha write source is w
to the destination alpha channel. Otherwise, the destination reamins unchanged.

The alpha write source is represented by the C3D_EASEL enumeration and is selected by calling
ATI3DCIF_ContextSetState with the state flag C3D_ERS_ALPHA_DST_WRITE_SELECT. Th
reference alpha value is set by calling ATI3DCIF_ContextSetState with the state flag

C3D_EACMP_NEVER alpha compare never passes

C3D_EACMP_LESS alpha compare passes if write select alpha is less
than reference alpha

C3D_EACMP_LEQUAL alpha compare passes if write select alpha is less
than or equal to reference alpha

C3D_EACMP_EQUAL alpha compare passes if write select alpha is
equal to reference alpha

C3D_EACMP_GEQUAL alpha compare passes if write select alpha is
greater than or equal to reference alpha

C3D_EACMP_GREATER alpha compare passes if write select alpha is
greater than reference alpha

C3D_EACMP_NOTEQUAL alpha compare passes if write select alpha is not
equal to reference alpha

C3D_EACMP_ALWAYS alpha compare always passes

C3D_EACMP_MAX invalid enumeration
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-24 Proprietary and Confidential

ATI3DCIF Data Types

g the
nel bit
rmat,

h the
C3D_ERS_ALPHA_DST_REFERENCE and the state data pointing to a DWORD representin
reference alpha value. Note that the reference value must be in the range of the alpha chan
depth. For example, if the channel is eight bits wide, as in the case of the ARGB8888 pixel fo
the reference alpha must be in the range of 0 to 255.

The compare function is set by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_ALPHA_DST_TEST_FNC and the state data pointing to a C3D_EACMP enum.
Destination alpha testing is enabled and disabled by calling ATI3DCIF_ContextSetState wit
state flag C3D_ERS_ALPHA_DST_TEST_ENABLE and the state data pointing to a BOOL
variable specifying the enable state.

See Also

ATI3DCIF_ContextSetState, C3D_EASEL
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-25

ATI3DCIF Data Types

or the

alpha

e

lue
C3D_EADST

Version

1.0

Syntax

typedef enum {
C3D_EADST_ZERO = 0,
C3D_EADST_ONE = 1,
C3D_EADST_SRCCLR = 2,
C3D_EADST_INVSRCCLR = 3,
C3D_EADST_SRCALPHA = 4,
C3D_EADST_INVSRCALPHA = 5,
C3D_EADST_DSTALPHA = 6, // (RAGE PRO)
C3D_EADST_INVDSTALPHA = 7, // (RAGE PRO)
C3D_EADST_NUM = 8,
C3D_EADST_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EADST, * C3D_PEADST;

Constants

Description

C3D_EADST constants represent the destination alpha blending factors which may be set f
rendering context. Alpha blending is performed according to the following equation:

destination color = (source color x source alpha factor) + (destination color x destination alpha factor)

The source alpha blending factors are represented by the C3D_EASRC enumeration.

The default mode set on context creation is C3D_EADST_ZERO. To modify the destination
blending factor, call ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_ALPHA_DST
and pRStateData set to the address of a C3D_EADST object specifying the new state.

See Also

ATI3DCIF_ContextSetState, C3D_EASRC, C3D_ERSID

C3D_EADST_ZERO Blend factor is (0, 0, 0)

C3D_EADST_ONE Blend factor is (1, 1, 1)

C3D_EADST_SRCCLR Blend factor is (Rs, Gs, Bs), where (Rs, Gs, Bs) is the sourc
RGB color

C3D_EADST_INVSRCCLR Blend factor is (1-Rs, 1-Gs, 1-Bs)

C3D_EADST_SRCALPHA Blend factor is (As, As, As), where As is the source alpha va

C3D_EADST_INVSRCALPHA Blend factor is (1-As, 1-As, 1-As)

C3D_EADST_DSTALPHA Blend factor is (Ad, Ad, Ad) (RAGE PRO)

C3D_EADST_INVDSTALPHA Blend factor is (1-Ad, 1-Ad, 1-Ad) (RAGE PRO)

C3D_EADST_NUM invalid enumeration
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-26 Proprietary and Confidential

ATI3DCIF Data Types

nation
rite
et to

um
 calling
the
ing

ying
C3D_EASEL

Version

1.0

Syntax

typedef enum {
C3D_EASEL_ZERO = 0,
C3D_EASEL_ONE = 1,
C3D_EASEL_SRCALPHA = 4,
C3D_EASEL_INVSRCALPHA = 5,
C3D_EASEL_DSTALPHA = 6,
C3D_EASEL_INVDSTALPHA = 7,
C3D_EASEL_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EASEL, *C3D_PEASEL;

Constants

Description

C3D_EASEL constants specify the alpha data written to the destination alpha channel if desti
alpha testing is enabled and the current alpha test compare function has passed the pixel w
operation. For example, if C3D_EASEL_ZERO is selected, all destination alpha bits will be s
zero. The alpha write data is selected by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_ALPHA_DST_WRITE_SELECT and the state data pointing to a C3D_EASEL en
set to the desired alpha write data. The destination alpha test compare function is selected by
ATI3DCIF_ContextSetState with the state flag C3D_ERS_ALPHA_DST_WRITE_FNC and
state data pointing to a C3D_EACMP enum set to the compare function. Destination alpha test
is enabled and disabled by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_ALPHA_DST_WRITE_EN and the state data pointing to a BOOL variable specif
the enable state.

See Also

ATI3DCIF_ContextSetState, C3D_EACMP

C3D_EASEL_ZERO write 0 to all alpha bits

C3D_EASEL_ONE write 1 to all alpha bits

C3D_EASEL_SRCALPHA write source alpha

C3D_EASEL_INVSRCALPHA write 1 - source alpha

C3D_EASEL_DSTALPHA write destination alpha

C3D_EASEL_INVDSTALPHA write 1 - destination alpha
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-27

ATI3DCIF Data Types

e

C3D_EASRC

Version

1.0

Syntax

typedef enum {
C3D_EASRC_ZERO = 0,
C3D_EASRC_ONE = 1,
C3D_EASRC_DSTCLR = 2,
C3D_EASRC_INVDSTCLR = 3,
C3D_EASRC_SRCALPHA = 4,
C3D_EASRC_INVSRCALPHA = 5,
C3D_EASRC_DSTALPHA = 6, // (RAGE PRO)
C3D_EASRC_INVDSTALPHA = 7, // (RAGE PRO)
C3D_EASRC_NUM = 8,
C3D_EASRC_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EASRC, * C3D_PEASRC;

Constants

Description

C3D_EASRC constants represent the source alpha blending factors which may be set for th
rendering context. Alpha blending is performed according to the following equation:

destination color = (source color x source alpha factor) + (destination color x destination alpha factor)

The destination alpha blending factors are represented by the C3D_EADST enumeration.

The default mode set on context creation is C3D_EASRC_ONE. To modify the source alpha
blending factor, call ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_ALPHA_SRC
and pRStateData set to the address of a C3D_EASRC object specifying the new state.

C3D_EASRC_ZERO Blend factor is (0, 0, 0)

C3D_EASRC_ONE Blend factor is (1, 1, 1)

C3D_EASRC_DSTCLR Blend factor is (Rd, Gd, Bd), where (Rd, Gd, Bd) is the
destination RGB color

C3D_EASRC_INVDSTCLR Blend factor is (1-Rd, 1-Gd, 1-Bd)

C3D_EASRC_SRCALPHA Blend factor is (As, As, As), where As is the source alpha
value

C3D_EASRC_INVSRCALPHA Blend factor is (1-As, 1-As, 1-As)

C3D_EASRC_DSTALPHA Blend factor is (Ad, Ad, Ad) (RAGE PRO)

C3D_EASRC_INVDSTALPHA Blend factor is (1-Ad, 1-Ad, 1-Ad) (RAGE PRO)

C3D_EASRC_NUM invalid enumeration
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-28 Proprietary and Confidential

ATI3DCIF Data Types
See Also

ATI3DCIF_ContextSetState, C3D_EADST, C3D_ERSID
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-29

ATI3DCIF Data Types

s.
C3D_EC

Version

1.0

Syntax

typedef enum {
C3D_EC_OK = 0,
C3D_EC_GENFAIL = 1,
C3D_EC_MEMALLOCFAIL = 2,
C3D_EC_BADPARM = 3,
C3D_EC_UNUSED0 = 4,
C3D_EC_BADSTATE = 5,
C3D_EC_NOTIMPYET = 6,
C3D_EC_UNUSED1 = 7,
C3D_EC_CHIPCAPABILITY = 8,
C3D_EC_NUM = 9,
C3D_EC_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EC, * C3D_PEC;

Constants

Description

C3D_EC constants represent the error codes which may be returned by ATI3DCIF function

See Also

None.

C3D_EC_OK success

C3D_EC_GENFAIL generic failure

C3D_EC_MEMALLOCFAIL memory allocation failure

C3D_EC_BADPARM invalid parameter passed to function

C3D_EC_UNUSED0 not used

C3D_EC_BADSTATE object entered invalid state

C3D_EC_NOTIMPYET functionality not implemented yet

C3D_EC_UNUSED1 not used

C3D_EC_CHIPCAPABILITY feature not available on this version of 3D RAGE

C3D_EC_NUM invalid enumeration
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-30 Proprietary and Confidential

ATI3DCIF Data Types

r.

te

e
C3D_ECI_TMAP_TYPE

Version

1.0

Syntax

typedef enum {
C3D_ECI_TMAP_TRUE_COLOR = 0,
C3D_ECI_TMAP_4BIT_HI = 1,
C3D_ECI_TMAP_4BIT_LOW = 2,
C3D_ECI_TMAP_8BIT = 3,
C3D_ECI_TMAP_VQ = 4, // (RAGE PRO)
C3D_ECI_TMAP_NUM = 5,
C3D_ECI_TMAP_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ECI_TMAP_TYPE;

Constants

Description

C3D_ECI_TMAP_TYPE constants are used in the function ATI3DCIF_TexturePaletteCreate to
specify what kind of texture palette to create.

NOTE: Texture palettes are only available with the 3D RAGE II graphics accelerator or late

See Also

ATI3DCIF_TexturePaletteCreate

C3D_ECI_TMAP_TRUE_COLOR texture format is true color: no palette

C3D_ECI_TMAP_4BIT_HI texture format is CI4 packed in high nibble: 16 entry palet

C3D_ECI_TMAP_4BIT_LOW texture format is CI4 packed in low nibble: 16 entry palett

C3D_ECI_TMAP_8BIT texture format is CI8: 256 entry palette

C3D_ECI_TMAP_VQ texture format is 256 entry codebook (RAGE PRO)

C3D_ECI_TMAP_NUM invalid enumeration
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-31

ATI3DCIF Data Types

 the

ect
C3D_EPIXFMT

Version

1.0

Syntax

typedef enum {
C3D_EPF_RGB1555 = 3,
C3D_EPF_RGB565 = 4,
C3D_EPF_RGB8888 = 5,
C3D_EPF_RGB332 = 6,
C3D_EPF_Y8 = 7,
C3D_EPF_YUV422 = 8,
C3D_EPF_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EPIXFMT, * C3D_PEPIXFMT;

Constants

Description

C3D_EPIXFMT constants are used to specify the pixel format of the drawing surface.

On context creation, the drawing surface pixel format is set to that of the desktop. To modify
drawing surface pixel format, call ATI3DCIF_ContextSetState with eRStateID set to
C3D_ERS_SURF_DRAW_PF and pRStateData set to the address of a C3D_EPIXFMT obj
specifying the new state.

See Also

ATI3DCIF_ContextSetState

C3D_EPF_RGB1555 1 bit alpha, 5 bits red, 5 bits green, 5 bits blue

C3D_EPF_RGB565 0 bits alpha, 5 bits red, 6 bits green, 5 bits blue

C3D_EPF_RGB8888 8 bit alpha, 8 bits red, 8 bits green, 8 bits blue

C3D_EPF_RGB332 0 bit alpha, 3 bits red, 3 bits green, 2 bits blue

C3D_EPF_Y8 8 bits Y

C3D_EPF_YUV422 the pixel format is YUV422 packed YUYV
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-32 Proprietary and Confidential

ATI3DCIF Data Types

ering

t

lier
C3D_EPRIM

Version

1.0

Syntax

typedef enum {
C3D_EPRIM_LINE = 0,
C3D_EPRIM_TRI = 1,
C3D_EPRIM_QUAD = 2,
C3D_EPRIM_RECT = 3,
C3D_EPRIM_POINT = 4,
C3D_EPRIM_NUM = 5,
C3D_EPRIM_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EPRIM, * C3D_PEPRIM;

Constants

Description

C3D_EPRIM constants represent the primitive types which may be rendered within the rend
context when drawing a primitive list or strip. The default mode set on context creation is
C3D_EPRIM_TRI. To modify the primitive type, call ATI3DCIF_ContextSetState with eRStateID
set to C3D_ERS_PRIM_TYPE and pRStateData set to the address of a C3D_EPRIM objec
specifying the new state.

See Also

ATI3DCIF_ContextSetState, C3D_ERSID

C3D_EPRIM_LINE line primitive

C3D_EPRIM_TRI triangle list or strip primitive

C3D_EPRIM_QUAD quadrilateral list or strip primitive

C3D_EPRIM_RECT screen aligned rectangle strip or list primitive

C3D_EPRIM_POINT point list or strip primitive

C3D_EPRIM_NUM invalid enumeration

NOTE: The C3D_EPRIM_RECT and C3D_EPRIM_POINT types are not available on some ear
versions of ATI3DCIF. Applications should call ATI3DCIF_GetInfo and query the u32CIFCaps1
member of the C3D_3DCIFINFO structure to verify the availability of these primitive types.
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-33

ATI3DCIF Data Types
C3D_ERSID
Version

1.0

Syntax
typedef enum {

C3D_ERS_FG_CLR = 0,
C3D_ERS_VERTEX_TYPE = 1,
C3D_ERS_PRIM_TYPE = 2,
C3D_ERS_SOLID_CLR = 3,
C3D_ERS_SHADE_MODE = 4,
C3D_ERS_TMAP_EN = 5,
C3D_ERS_TMAP_SELECT = 6,
C3D_ERS_TMAP_LIGHT = 7,
C3D_ERS_TMAP_PERSP_COR = 8,
C3D_ERS_TMAP_FILTER = 9,
C3D_ERS_TMAP_TEXOP = 10,
C3D_ERS_ALPHA_SRC = 11,
C3D_ERS_ALPHA_DST = 12,
C3D_ERS_SURF_DRAW_PTR = 13,
C3D_ERS_SURF_DRAW_PITCH = 14,
C3D_ERS_SURF_DRAW_PF = 15,
C3D_ERS_SURF_VPORT = 16,
C3D_ERS_FOG_EN = 17,
C3D_ERS_DITHER_EN = 18,
C3D_ERS_Z_CMP_FCN = 19,
C3D_ERS_Z_MODE = 20,
C3D_ERS_SURF_Z_PTR = 21,
C3D_ERS_SURF_Z_PITCH = 22,
C3D_ERS_SURF_SCISSOR = 23,
C3D_ERS_COMPOSITE_EN = 24,
C3D_ERS_COMPOSITE_SELECT= 25,
C3D_ERS_COMPOSITE_FNC = 26,
C3D_ERS_COMPOSITE_FACTOR = 27,
C3D_ERS_COMPOSITE_FILTER = 28,
C3D_ERS_COMPOSITE_FACTOR_ALPHA = 29,
C3D_ERS_LOD_BIAS_LEVEL = 30,
C3D_ERS_ALPHA_DST_TEST_ENABLE = 31,
C3D_ERS_ALPHA_DST_TEST_FNC = 32,
C3D_ERS_ALPHA_DST_WRITE_SELECT = 33,
C3D_ERS_ALPHA_DST_REFERENCE = 34,
C3D_ERS_SPECULAR_EN = 35,
C3D_ERS_NUM = 36,
C3D_ERS_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ERSID, * C3D_PERSID;
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-34 Proprietary and Confidential

ATI3DCIF Data Types

ite

re

Constants
C3D_ERS_FG_CLR set fog color

C3D_ERS_VERTEX_TYPE set vertex structure type

C3D_ERS_PRIM_TYPE set primitive type

C3D_ERS_SOLID_CLR set solid color

C3D_ERS_SHADE_MODE set primitive shading mode

C3D_ERS_TMAP_EN enable or disable texture mapping

C3D_ERS_TMAP_SELECT select texture map

C3D_ERS_TMAP_LIGHT set texture lighting method

C3D_ERS_TMAP_PERSP_COR set texture perspective correction level

C3D_ERS_TMAP_FILTER set texture filtering method

C3D_ERS_TMAP_TEXOP set texture rendering operation

C3D_ERS_ALPHA_SRC set source alpha blending factor

C3D_ERS_ALPHA_DST set destination alpha blending factor

C3D_ERS_SURF_DRAW_PTR set draw surface address

C3D_ERS_SURF_DRAW_PITCH set draw surface pitch

C3D_ERS_SURF_DRAW_PF set draw surface pixel format

C3D_ERS_SURF_VPORT set draw surface viewport coordinates

C3D_ERS_FOG_EN enable or disable fog

C3D_ERS_DITHER_EN enable or disable dither

C3D_ERS_Z_CMP_FNC set Z compare function

C3D_ERS_Z_MODE set Z testing mode

C3D_ERS_SURF_Z_PTR set Z buffer address

C3D_ERS_SURF_Z_PITCH set Z buffer pitch

C3D_ERS_SURF_SCISSOR set draw surface clipping coordinates

C3D_ERS_COMPOSITE_EN enable texture compositing

C3D_ERS_COMPOSITE_SELECT select secondary composite texture. Primary compos
texture is selected by C3D_ERS_TMAP_SELECT

C3D_ERS_COMPOSITE_FNC select texture composite function

C3D_ERS_COMPOSITE_FACTOR select blending factor for texture composite function

C3D_ERS_COMPOSITE_FILTER set texture filtering method for secondary composite textu

C3D_ERS_COMPOSITE_FACTOR_ALPHAforce blend factor for blend texture compositing function
to be taken from composite texture’s alpha channel

C3D_ERS_LOD_BIAS_LEVEL set LOD bias for mipmap level switching

C3D_ERS_ALPHA_DST_TEST_ENABLE enable destination alpha testing

C3D_ERS_ALPHA_DST_TEST_FNC select destination alpha test compare function

C3D_ERS_ALPHA_DST_WRITE_SELECTselect destination alpha test alpha write source

C3D_ERS_ALPHA_DST_REFERENCE set destination alpha testing reference alpha

C3D_ERS_SPECULAR_EN enable specular lighting

C3D_ERS_NUM invalid enumeration
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-35

ATI3DCIF Data Types

ociated
Description

This enumeration is used to specify the state to change when calling ATI3DCIF_ContextSetState.
A valid C3D_ERSID constant must be passed as the eRStateID argument to change the ass
state for the context referenced by hRC.

NOTE: z-buffers are only supported in the 3D RAGE II graphics accelerator or later.

See Also

ATI3DCIF_ContextSetState
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-36 Proprietary and Confidential

ATI3DCIF Data Types

dering
ading

, the
ode.

ive.

 On
g

g
rs.

x in

th
C3D_ESHADE

Version

1.0

Syntax

typedef enum {
C3D_ESH_NONE = 0,
C3D_ESH_SOLID = 1,
C3D_ESH_FLAT = 2,
C3D_ESH_SMOOTH = 3,
C3D_ESH_NUM = 4,
C3D_ESH_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ESHADE, * C3D_PESHADE;

Constants

Description

C3D_ESHADE constants represent the primitive shading modes which may be set for the ren
context. The default mode set on context creation is C3D_ESH_SMOOTH. To modify the sh
mode, call ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_SHADE_MODE and
pRStateData set to the address of a C3D_ESHADE object specifying the new state.

If texture mapping is enabled and the texture lighting state is set to C3D_ETL_MODULATE
color of each texel will be modulated by the color of the primitive as defined by the shading m
Therefore, texels may be modulated by the solid, flat, or Gouraud shaded color of the primit

See Also

ATI3DCIF_ContextSetState, C3D_ERSID, C3D_ETLIGHT

C3D_ESH_NONE shading mode is undefined

C3D_ESH_SOLID primitives are shaded according to the rendering context solid color.
context creation, this color is set to black. It may be modified by callin
ATI3DCIF_ContextSetState.

C3D_ESH_FLAT primitives are flat shaded according to the color of the last vertex in
each triangle or quadrilateral in the primitive list or strip. The renderin
context vertex structure type must include r, g, b, and a color membe

C3D_ESH_SMOOTH primitives are Gouraud shaded according to the color of each verte
the triangle or quadrilateral in the primitive list or strip. The primitive
color is interpolated from one vertex to the other, resulting in a smoo
gradation over the entire primitive. The rendering context vertex
structure type must include r, g, b, and a color members.

C3D_ESH_NUM invalid enumeration
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-37

ATI3DCIF Data Types
C3D_ETEXCOMPFCN

Version

1.0

Syntax

typedef enum {
C3D_ETEXCOMPFCN_BLEND = 0,
C3D_ETEXCOMPFCN_MOD = 1,
C3D_ETEXCOMPFCN_MAX = 3,
C3D_ETEXCOMPFCN_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ETEXCOMPFCN, * C3D_PETEXCOMPFCN;

Constants

Description

C3D_ETEXCOMPFCN constants specify the texture compositing function to use if texture
compositing is enabled. The default texture compositing function is set to
C3D_ETEXCOMPFCN_BLEND on context creation. For the blend compositing function
represented by C3D_ETEXCOMPFCN_BLEND, the blend factor must be an integer value
between 0 and 15, which is set by calling ATI3DCIF_ContextSetState with the state flag
C3D_ERS_COMPOSITE_FACTOR and the state data set to the desired blend factor.

See Also

ATI3DCIF_ContextSetState

C3D_ETEXCOMPFCN_BLEND composite texel = (primary texel x (1-(blend
factor/16))) + (secondary texel x blend factor/16)

C3D_ETEXCOMPFCN_MOD composite texel = primary texel x secondary texel

C3D_ETEXCOMPFCN_MAX invalid enumeration
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-38 Proprietary and Confidential

ATI3DCIF Data Types

ject
C3D_ETEXFILTER

Version

1.0

Syntax

typedef enum {
C3D_ETFILT_MINPNT_MAGPNT = 0,
C3D_ETFILT_ MINPNT_MAG2BY2 = 1,
C3D_ETFILT_MIN2BY2_MAG2BY2 = 2,
C3D_ETFILT_MIPLIN_MAGPNT = 3,
C3D_ETFILT_MIPLIN_MAG2BY2 = 4,
C3D_ETFILT_MIPTRI_MAG2BY2 = 5, // (RAGE PRO)
C3D_ETFILT_MIN2BY2_MAGPNT = 6, // (RAGE PRO
C3D_ETFILT_NUM = 7,
C3D_ETFILT_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ETEXFILTER, * C3D_PETEXFILTER;

Constants

Description

C3D_ETEXFILTER constants represent the texel filtering modes which may be set for the
rendering context. The default mode set on context creation is
C3D_ETFILT_MINPNT_MAG2BY2. This mode causes texels to be blended bi-linearly on
magnification, and selected by the pick-nearest criterion on minification.

To modify the texel filtering mode, call ATI3DCIF_ContextSetState with eRStateID set to
C3D_ERS_TMAP_FILTER and pRStateData set to the address of a C3D_ETEXFILTER ob
specifying the new state.

See Also

ATI3DCIF_ContextSetState, C3D_ERSID

C3D_ETFILT_MINPNT_MAGPNT pick-nearest on minification, pick-nearest on
magnification

C3D_ETFILT_MINPNT_MAG2BY2 pick-nearest on minification, bi-linear on magnification

C3D_ETFILT_MIN2BY2_MAG2BY2 bi-linear on minification, bi-linear on magnification

C3D_ETFILT_MIPLIN_MAGPNT mip-linear on minification, pick-nearest on
magnification

C3D_ETFILT_MIPLIN_MAG2BY2 mip-linear on minification, bi-linear on magnification

C3D_ETFILT_MIPTRI_MAG2BY2 tri-linear on minification, bi-linear on magnification
(RAGE PRO)

C3D_ETFILT_MIN2BY2_MAGPNT bilinear on minification, pick nearest on magnification
(RAGE PRO)

C3D_ETFILT_NUM invalid enumeration
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-39

ATI3DCIF Data Types

mber
CIF

 II
rator
C3D_ETEXFMT

Version

1.0

Syntax

typedef enum {
C3D_ETF_CI4 = 1,
C3D_ETF_CI8 = 2,
C3D_ETF_RGB1555 = 3,
C3D_ETF_RGB565 = 4,
C3D_ETF_RGB8888 = 6,
C3D_ETF_RGB332 = 7,
C3D_ETF_Y8 = 8,
C3D_ETF_YUV422 = 11,
C3D_ETF_RGB4444 = 15,
C3D_ETF_VQ = 20, // (RAGE PRO)
C3D_ETF_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ETEXFMT, * C3D_PETEXFMT;

Constants

Description

C3D_ETEXFMT constants are used to specify a texture’s texel format in the eTexFormat me
of the C3D_TMAP structure. This structure is used to provide texture information to the ATI3D
module when registering a texture map.

NOTE: The C3D_ETF_CI4 and C3D_ETF_CI8 formats are only available with the 3D RAGE
graphics accelerator or later. All other formats are available with the entire 3D RAGE accele
family.

See Also

ATI3DCIF_ContextSetState

C3D_ETF_CI4 4 bpp index into palette (pseudo color)

C3D_ETF_CI8 8 bpp index into palette (pseudo color)

C3D_ETF_RGB1555 1 bit alpha, 5 bits red, 5 bits green, 5 bits blue

C3D_ETF_RGB565 0 bits alpha, 5 bits red, 6 bits green, 5 bits blue

C3D_ETF_RGB8888 8 bits alpha, 8 bits red, 8 bits green, 8 bits blue

C3D_ETF_RGB332 0 bits alpha, 3 bits red, 3 bits green, 2 bits blue

C3D_ETF_Y8 8 bits Y

C3D_ETF_YUV422 the pixel format is YUV 422 packed YUYV

C3D_ETF_RGB4444 4 bits alpha, 4 bits red, 4 bits green, 4 bits blue

C3D_ETF_VQ VQ compressed texture
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-40 Proprietary and Confidential

ATI3DCIF Data Types

during

ha
C3D_ETEXOP

Version

1.0

Syntax

typedef enum {
C3D_ETEXOP_NONE = 0,
C3D_ETEXOP_CHROMAKEY = 1,
C3D_ETEXOP_ALPHA = 2,
C3D_ETEXOP_ALPHA_MASK = 3,
C3D_ETEXOP_NUM = 4,
C3D_ETEXOP_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ETEXOP, * C3D_PETEXOP;

Constants

Description

C3D_ETEXOP constants represent the texel rendering operations which may be performed
texture mapping. The default mode set on context creation is C3D_ETEXOP_NONE. Texel
operations include texel transparency based on chroma keying or alpha masking, and alpha
blending using the texel alpha channel.

To modify the texel render operation, call ATI3DCIF_ContextSetState with eRStateID set to
C3D_ERS_TMAP_TEXOP and pRStateData set to the address of a C3D_ETEXOP object
specifying the new state.

See Also

ATI3DCIF_ContextSetState, C3D_ERSID

C3D_ETEXOP_NONE all texels are rendered

C3D_ETEXOP_CHROMAKEY texels are not rendered if equal to the chroma key color

C3D_ETEXOP_ALPHA texels are alpha blended by passing the texel alpha to the
alpha blender

C3D_ETEXOP_ALPHA_MASK texels are not rendered if the least significant bit in the alp
channel is set to 0

C3D_ETEXOP_NUM invalid enumeration
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-41

ATI3DCIF Data Types

ering
e

ill be
efined

the

e

d
C3D_ETLIGHT

Version

1.0

Syntax

typedef enum {
C3D_ETL_NONE = 0,
C3D_ETL_MODULATE = 1,
C3D_ETL_ALPHA_DECAL = 2,
C3D_ETL_NUM = 3,
C3D_ETL_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ETLIGHT, * C3D_PETLIGHT;

Constants

Description

C3D_ETLIGHT constants represent the texture lighting modes which may be set for the rend
context. The default mode set on context creation is C3D_ETL_NONE. To modify the textur
lighting mode, call ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_TMAP_LIGHT
and pRStateData set to the address of a C3D_ETLIGHT object specifying the new state.

If the texture lighting method is set to C3D_ETL_MODULATE, the color of each texel will be
modulated by the color of the primitive as defined by the shading mode. Therefore, texels w
modulated by the solid, flat, or Gouraud shaded color of the primitive. Shading modes are d
by the C3D_ESHADE enumeration constants.

See Also

ATI3DCIF_ContextSetState, C3D_ERSID, C3D_ESHADE

C3D_ETL_NONE texel colors are not modulated

C3D_ETL_MODULATE texel colors are modulated according to the shading mode. If
shading mode is C3D_ERS_FLAT or C3D_ERS_SMOOTH,
texel colors are modulated by the color of the primitives in flat
or Gouraud shading, respectively. If the shading mode is
C3D_ERS_SOLID, texel colors are modulated according to th
rendering context solid color.

C3D_ETL_ALPHA_DECAL texel colors are modulated by a combination of the primitive
shading color and an alpha value supplied in the texture map.
The texel value becomes (texel color x texel alpha) + (primitive
color x (1 - texel alpha)), where the primitive color is determine
by the shading mode.

C3D_ETL_NUM invalid enumeration
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-42 Proprietary and Confidential

ATI3DCIF Data Types

y be set
odify

COR

ense of

hich
 and
C3D_ETPERSPCOR
Version

1.0

Syntax

typedef enum {
C3D_ETPC_NONE = 0,
C3D_ETPC_ONE = 1,
C3D_ETPC_TWO = 2,
C3D_ETPC_THREE = 3,
C3D_ETPC_FOUR = 4,
C3D_ETPC_FIVE = 5,
C3D_ETPC_SIX = 6,
C3D_ETPC_SEVEN = 7,
C3D_ETPC_EIGHT = 8,
C3D_ETPC_NINE = 9,
C3D_ETPC_NUM = 10,
C3D_ETPC_FORCE_U32 = C3D_FORCE_SIZE

} C3D_ETPERSPCOR, * C3D_PETPERSPCOR;

Constants

Description

C3D_ETPERSPCOR constants represent the texture perspective correction levels which ma
for the rendering context. The default mode set on context creation is C3D_ETL_NONE. To m
the perspective correction level, call ATI3DCIF_ContextSetState with eRStateID set to
C3D_ERS_TMAP_ PERSP_COR and pRStateData set to the address of a C3D_ETPERSP
object specifying the new state.

Texture perspective correction produces better image quality. However, this comes at the exp
frame rate. The frame rate will vary inversely to the level of perspective correction set. Level
C3D_ETPC_NONE will offer no correction but the fastest frame rate, whereas level
C3D_ETPC_NINE will offer full correction but the poorest frame rate. The recommended level w
offers the best compromise is level C3D_ETPC_THREE. For a full discussion of performance
image quality issues, see Chapter 6, 3D RAGE / ATI3DCIF Porting and Performance Notes.

See Also

ATI3DCIF_ContextSetState, C3D_ERSID, C3D_ESHADE

C3D_ETPC_NONE no perspective correction

C3D_ETPC_ONE level one perspective correction

C3D_ETPC_TWO level two perspective correction

C3D_ETPC_THREE level three perspective correction

C3D_ETPC_FOUR level four perspective correction

C3D_ETPC_FIVE level five perspective correction

C3D_ETPC_SIX level six perspective correction

C3D_ETPC_SEVEN level seven perspective correction

C3D_ETPC_EIGHT level eight perspective correction

C3D_ETPC_NINE level nine perspective correction

C3D_ETPC_NUM invalid enumeration
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-43

ATI3DCIF Data Types

 within
fy the

ct

a C in
ith a T

present

ucture
ontain
lors,

embers
C3D_EVERTEX

Version

1.0

Syntax

typedef enum {
C3D_EV_VF = 0,
C3D_EV_VCF = 1,
C3D_EV_VTF = 2,
C3D_EV_VTCF = 3,
C3D_EV_TLVERTEX = 4, // (RAGE PRO)
C3D_EV_NUM = 5,
C3D_EV_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EVERTEX, * C3D_PEVERTEX;

Constants

Description

C3D_EVERTEX constants represent the vertex structures which may represent vertex data
the rendering context. The default mode set on context creation is C3D_EV_VTCF. To modi
vertex structure type, call ATI3DCIF_ContextSetState with eRStateID set to
C3D_ERS_VERTEX_TYPE and pRStateData set to the address of a C3D_EVERTEX obje
specifying the new state.

All vertex structures contain x, y, and z location coordinate members. Vertex structures with
the structure name also contain r, g, b, and a color component members. Vertex structures w
in the structure name contain s, t, and w texture coordinate members. All vertex structures re
data in floating point format.

To perform flat or Gouraud shading and source or destination alpha blending, the vertex str
must contain r, g, b, and a members. To perform texture mapping, the vertex structure must c
s, t and w members (or tu and tv if using the C3D_TLVERTEX structure). To modulate texel co
the vertex structure must contain both color r, g, b, and a members and texture s, t, and w m
(or tu and tv if using the C3D_TLVERTEX structure).

See Also

ATI3DCIF_ContextSetState

C3D_EV_VF vertex defined by C3D_VF structure

C3D_EV_VCF vertex defined by C3D_VCF structure

C3D_EV_VTF vertex defined by C3D_VTF structure

C3D_EV_VTCF vertex defined by C3D_VTCF structure

C3D_EV_TLVERTEX vertex defined by C3D_TLVERTEX structure (RAGE PRO)

C3D_EV_NUM invalid enumeration
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-44 Proprietary and Confidential

ATI3DCIF Data Types

. The
are

 z
C3D_EZCMP

Version

1.0

Syntax

typedef enum {
C3D_EZCMP_NEVER = 0,
C3D_EZCMP_LESS = 1,
C3D_EZCMP_LEQUAL = 2,
C3D_EZCMP_EQUAL = 3,
C3D_EZCMP_GEQUAL = 4,
C3D_EZCMP_GREATER = 5,
C3D_EZCMP_NOTEQUAL = 6,
C3D_EZCMP_ALWAYS = 7,
C3D_EZCMP_MAX = 8,
C3D_EZCMP_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EZCMP, * C3D_PEZCMP;

Constants

Description

C3D_EZCMP constants specify what kind of Z compare function to use during z-buffer testing
default Z compare function is set to C3D_EZCMP_ALWAYS on context creation. The comp
function performs a logical operation to select or reject a pixel for rendering.

NOTE: z-buffers are only supported in the 3D RAGE II graphics accelerator or later.

See Also

None.

C3D_EZCMP_NEVER Z compare never passes

C3D_EZCMP_LESS Z compare passes if test z is less than buffered z

C3D_EZCMP_LEQUAL Z compare passes if test z is less than or equal to buffered z

C3D_EZCMP_EQUAL Z compare passes if test z is equal to buffered z

C3D_EZCMP_GEQUAL Z compare passes if test z is greater than or equal to buffered

C3D_EZCMP_GREATER Z compare passes if test z is greater than buffered z

C3D_EZCMP_NOTEQUAL Z compare passes if test z is not equal to buffered z

C3D_EZCMP_ALWAYS Z compare always passes

C3D_EZCMP_MAX invalid enumeration
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-45

ATI3DCIF Data Types

de is
 Z and
C3D_EZMODE

Version

1.0

Syntax

typedef enum {
C3D_EZMODE_OFF = 0,
C3D_EZMODE_TESTON = 1,
C3D_EZMODE_TESTON_WRITEZ = 2,
C3D_EZMODE_MAX = 3,
C3D_EZMODE_FORCE_U32 = C3D_FORCE_SIZE

} C3D_EZMODE, * C3D_PEZMODE;

Constants

Description

C3D_EZMODE constants specify the state of z-buffer testing. The default z-buffer testing mo
set to C3D_EZMODE_OFF on context creation. Z-buffer testing can be disabled, set to test
update the z-buffer, or set to test Z and not modify the z-buffer.

NOTE: z-buffers are only supported in the 3D RAGE II graphics accelerator or later.

See Also

None.

C3D_EZMODE_OFF Disable Z testing

C3D_EZMODE_TESTON Test Z, do not update the z-buffer

C3D_EZMODE_TESTON_WRITEZ Test Z, update the z-buffer

C3D_EZMODE_MAX invalid enumeration
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-46 Proprietary and Confidential

ATI3DCIF Data Types

C3D_HRC

Version

1.0

Syntax

typedef void* C3D_HRC;

Description

This handle identifies an ATI3DCIF rendering context created by calling
ATI3DCIF_ContextCreate. This handle must be used to reference the rendering context when
calling the following functions:

ATI3DCIF_ContextDestroy

ATI3DCIF_ContextSetState

ATI3DCIF_RenderBegin

ATI3DCIF_RenderSwitch

See Also

ATI3DCIF_ContextDestroy, ATI3DCIF_ContextSetState, ATI3DCIF_RenderBegin,
ATI3DCIF_RenderSwitch
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-47

ATI3DCIF Data Types

ained

ta
C3D_HTX

Version

1.0

Syntax

typedef void * C3D_HTX;
typedef C3D_HTX * C3D_PHTX;

Description

This handle identifies a texture map registered with the ATI3DCIF module. The handle is obt
by calling ATI3DCIF_TextureReg with a pointer to a C3D_TMAP structure describing the texture’s
attributes. To use the texture map, an application must select it by calling
ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_TMAP_SELECT and pRStateDa
set to the address of its C3D_HTX handle.

See Also

ATI3DCIF_TextureReg, ATI3DCIF_ContextSetState, C3D_TMAP
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-48 Proprietary and Confidential

ATI3DCIF Data Types

e

 with
C3D_HTXPAL

Version

1.0

Syntax

typedef void * C3D_HTXPAL;
typedef C3D_HTXPAL *C3D_PHTXPAL;

Description

This handle identifies a logical texture palette created internally within ATI3DCIF. Palettes
associated with CI8 or CI4 textures must be created and then assigned to the textures in th
htxpalTexPalette member of the C3D_TMAP structure before the textures are registered. The
handle is obtained by calling ATI3DCIF_TexturePaletteCreate.

NOTE: Texture palettes, C3D_ETF_CI4, and C3D_ETF_CI8 texel formats are only available
the 3D RAGE II graphics accelerator or later. All other formats are available with the entire
3D RAGE accelerator family.

See Also

ATI3DCIF_TexturePaletteCreate, C3D_TMAP
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-49

ATI3DCIF Data Types

alette
t

a CI4
and b
idual
ntry
ified
 be

 with
C3D_PALETTENTRY

Version

1.0

Syntax

typedef union {
struct {

unsigned r: 8;
unsigned g: 8;
unsigned b: 8;
unsigned flags: 8;

};
C3D_UINT32 u32All;

} C3D_PALETTENTRY , * C3D_PPALETTENTRY;

Members

Description

This structure is used to specify the color values of palette entries when creating a texture p
with ATI3DCIF_TexturePaletteCreate. When creating a palette for a CI8 texture, a 256 elemen
C3D_PALETTENTRY array is used to specify the palette colors. When creating a palette for
texture, a 16 element C3D_PALETTENTRY array is used to specify the palette colors. r, g,
specify the 8 bit RGB color components of each palette entry. flags control the loading of indiv
entries in the palette. If flags is set to C3D_LOAD_PALETTE_ENTRY, the physical palette e
corresponding to the C3D_PALETTENTRY element in the array will be replaced with the spec
color. If flags is set to C3D_NO_LOAD_PALETTE_ENTRY, the physical palette entry will not
modified.

NOTE: Texture palettes, C3D_ETF_CI4, and C3D_ETF_CI8 texel formats are only available
the 3D RAGE II graphics accelerator or later. All other formats are available with the entire
3D RAGE accelerator family.

See Also

ATI3DCIF_TexturePaletteCreate

r 8 bit red color component

g 8 bit green color component

b 8 bit blue color component

flags flag controlling palette entry loading
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-50 Proprietary and Confidential

ATI3DCIF Data Types
C3D_PRSDATA

Version

1.0

Syntax

typedef void* C3D_PRSDATA;

Description

The C3D_PRSDATA type is used in the function ATI3DCIF_ContextSetState to specify the
address of the data object containing the new state data to set.

See Also

ATI3DCIF_ContextSetState
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-51

ATI3DCIF Data Types

ed to

ort
C3D_RECT

Version

1.0

Syntax

typedef struct {
C3D_INT32 top;
C3D_INT32 left;
C3D_INT32 bottom;
C3D_INT32 right;

} C3D_RECT, * C3D_PRECT;

Members

Description

This structure defines the upper left and bottom right corners of a rectangular region. It is us
pass the rectangular viewport coordinates to the ATI3DCIF_ContextSetState function when setting
the viewport region of the drawing surface. Primitives are clipped to the bounds of the viewp
region when rendered.

See Also

ATI3DCIF_ContextSetState

top y coordinate of the upper left corner of the rectangle

left x coordinate of the upper left corner of the rectangle

bottom y coordinate of the bottom right corner of the rectangle

right x coordinate of the bottom right corner of the rectangle
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-52 Proprietary and Confidential

ATI3DCIF Data Types
C3D_TLVERTEX

Version

1.0

Syntax

typedef struct {
union {

C3D_FLOAT32 sx;
C3D_FLOAT32 x;

};
union {

C3D_FLOAT32 sy;
C3D_FLOAT32 y;

};
union {

C3D_FLOAT32 sz;
C3D_FLOAT32 z;

};
union {

C3D_FLOAT32 rhw;
C3D_FLOAT32 w;

};
union {

C3D_UINT32 color;
struct {

C3D_UINT8 b;
C3D_UINT8 g;
C3D_UINT8 r;
C3D_UINT8 a;

};
};
union {

C3D_UINT32 specular;
struct {

C3D_UINT8 spec_b;
C3D_UINT8 spec_g;
C3D_UINT8 spec_r;
C3D_UINT8 spec_a;

};
};
union {

C3D_FLOAT32 tu;
C3D_FLOAT32s;

};
union {

C3D_FLOAT32 tv;
C3D_FLOAT32 t;

};
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-53

ATI3DCIF Data Types

s u and

n alpha

s color
 highly
 will

 That is

odify
struct {
C3D_FLOAT32 reserved1;
C3D_FLOAT32 reserved2;
C3D_FLOAT32 reserved3;

} composite;
} C3D_TLVERTEX;

Members

Description

This structure may be used to describe a vertex in terms of its screen location coordinates, it
v texture coordinates, tu and tv, and its diffuse and specular color components. If the rendering
context uses this structure to represent vertices, flat or Gouraud shading, source or destinatio
blending, texture mapping and texel modulation can be performed. This structure represent
data members in unsigned format, all other data members are floating point. This structure is
portable and is intended to replace older vertex types, although the C3D_VTCF vertex type
continue to be supported.

The tu and tv members of this structure represent non-homogenous u,v texture coordinates.
s and t are derived from u and v as: s = u/w and t = v/w.

The default vertex type used to represent vertex data on context creation is C3D_VTCF. To m
the vertex structure type to use C3D_TLVERTEX, call ATI3DCIF_ContextSetState with eRStateID
set to C3D_ERS_VERTEX_TYPE and pRStateData set to the address of an C3D_EVERTEX object
containing C3D_EV_TLVERTEX.

See Also

ATI3DCIF_ContextSetState, C3D_ERSID, C3D_EVERTEX, C3D_VTCF

sx vertex x coordinate

sy vertex y coordinate

sz vertex z coordinate

rhw reciprocal of the homogeneous vertex w coordinate

color vertex diffuse color

specular vertex specular color

tu non-homogeneous texture u coordinate

tv non-homogeneous texture v coordinate

reserved reserved for future use
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-54 Proprietary and Confidential

ATI3DCIF Data Types

fer.

ember

s array
e address

ure

tor
C3D_TMAP

Version

1.0

Syntax

typedef struct {
C3D_UINT32 u32Size;
BOOL bMipMap;
C3D_PVOID apvLevels [cu32MAX_TMAP_LEV];
C3D_UINT32 u32MaxMapXSizeLg2;
C3D_UINT32 u32MaxMapYSizeLg2;
C3D_ETEXFMT eTexFormat;
C3D_COLOR clrTexChromaKey;
C3D_HTXPAL htxpalTexPalette;
C3D_BOOL_bClampS; // (RAGE PRO)
C3D_BOOL_bClampT; // (RAGE PRO)
C3D_BOOL_bAlphaBlend; // (RAGE PRO)
C3D_ETEXTILEeTexTiling; // (RAGE PRO)

} C3D_TMAP, * C3D_PTMAP;

Members

Description

The C3D_TMAP structure is used to provide information describing a texture map to the
ATI3DCIF module when registering the texture with the function ATI3DCIF_TextureReg. This
information specifies how the hardware should interpret the texture cached in the frame buf

u32Size specifies the size of the C3D_TMAP structure. The client application must set this m
to the size of the C3D_TMAP structure prior to calling ATI3DCIF_TextureReg. bMipMap set to
TRUE signals that the texture is a mip map. If this is the case, the first element in the apvLevel
contains the address of the base map in the frame buffer, and subsequent elements contain th

u32Size size of C3D_TMAP structure

bMipMap mip map enable flag

apvLevels array of pointers to individual maps which compose a mip map text

u32MaxMapXSizeLg2 the log 2 x-axis size of largest map

u32MaxMapYSizeLg2 the log 2 y-axis size of largest map

eTexFormat texel format

clrTexChromaKey texel transparency chroma key color

htxpalTexPalette handle to texture palette

bClampS smear/repeat s=1 if s>1 (RAGE PRO)

bClampT smear/repeat t=1 if t>1 (RAGE PRO)

bAlphaBlend use this texture’s alpha as blend factor for the blend compositing fac
(RAGE PRO)

eTexTiling texture minimized for local reference (RAGE PRO)
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-55

ATI3DCIF Data Types

the
wers of
ase 2
s the
ma key
_CI4

 with
of sequentially smaller maps. If bMipMap is FALSE, the first element contains the address of
texture map and the rest are ignored. The height and width of the texture maps must be in po
2 (e.g. 2, 4, 8, etc.) to a maximum of 1024 lines or pixels. u32MaxMapXSizeLg2 specifies the b
log of the width of the texture or the largest map in a mip map. u32MaxMapYSizeLg2 specifie
base 2 log of the height of the largest map. clrTexChromaKey specifies the transparency chro
color. htxpalTexPalette is the handle to the texture’s palette if the texture format is C3D_ETF
or C3D_ETF_CI8. The texture palette must have been created beforehand by calling
ATI3DCIF_TexturePaletteCreate.

NOTE: Texture palettes, C3D_ETF_CI4, and C3D_ETF_CI8 texel formats are only available
the 3D RAGE II graphics accelerator or later. All other formats are available with the entire
3D RAGE accelerator family.

See Also

ATI3DCIF_TextureReg
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-56 Proprietary and Confidential

ATI3DCIF Data Types

es and
te
his
at.

x

C3D_VCF

Version

1.0

Syntax

typedef struct {
C3D_FLOAT32 x;
C3D_FLOAT32 y;
C3D_FLOAT32 z;
C3D_FLOAT32 r;
C3D_FLOAT32 g;
C3D_FLOAT32 b;
C3D_FLOAT32 a;

} C3D_VCF, * C3D_PVCF;

Members

Description

This structure may be used to describe a vertex in terms of its x, y, and z location coordinat
its r, g, b, and a color components. Because this structure does not contain texture coordina
members (s, t, and w), texture mapping cannot be performed if the rendering context uses t
structure to represent vertices. This structure represents data members in floating point form

The default vertex structure type set on context creation is C3D_VTCF. To modify the verte
structure type, call ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_VERTEX_TYPE
and pRStateData set to the address of an C3D_EVERTEX object with the value C3D_EV_VCF.

See Also

ATI3DCIF_ContextSetState, C3D_ERSID, C3D_EVERTEX

x vertex x coordinate

y vertex y coordinate

z vertex z coordinate

r vertex red color component

g vertex green color component

b vertex blue color component

a vertex alpha value
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-57

ATI3DCIF Data Types

es.
re

ng, and
nt

C3D_VF

Version

1.0

Syntax

typedef struct {
C3D_FLOAT32 x;
C3D_FLOAT32 y;
C3D_FLOAT32 z;

} C3D_VF, * C3D_PVF;

Members

Description

This structure may be used to describe a vertex in terms of its x, y, and z location coordinat
Because this structure does not contain color component members (r, g, b, and a) and textu
coordinate members (s, t, and w), flat or Gouraud shading, source or destination alpha blendi
texture mapping cannot be performed if the rendering context uses this structure to represe
vertices. This structure represents data members in floating point format.

The default vertex structure type set on context creation is C3D_VTCF. To modify the vertex
structure type, call ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_VERTEX_TYPE
and pRStateData set to the address of an C3D_EVERTEX object with the value C3D_EV_VF.

See Also

ATI3DCIF_ContextSetState, C3D_ERSID, C3D_EVERTEX

x vertex x coordinate

y vertex y coordinate

z vertex z coordinate
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-58 Proprietary and Confidential

ATI3DCIF Data Types
C3D_VLIST

Version

1.0

Syntax

typedef void ** C3D_VLIST;

Description

The C3D_VLIST type is used in the function ATI3DCIF_RenderPrimList to specify the array of
pointers to the vertex structures representing the vertices in the primitive list.

See Also

ATI3DCIF_RenderPrimList
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-59

ATI3DCIF Data Types
C3D_VSTRIP

Version

1.0

Syntax

typedef void * C3D_VSTRIP;

Description

The C3D_VSTRIP type is used in the function ATI3DCIF_RenderPrimStrip to specify the array of
vertex structures representing the vertices in the primitive strip.

See Also

ATI3DCIF_RenderPrimStrip
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-60 Proprietary and Confidential

ATI3DCIF Data Types

s, its s,
ses this
 texture
floating

 vertex

C3D_VTCF

Version

1.0

Syntax

typedef struct {
C3D_FLOAT32 x;
C3D_FLOAT32 y;
C3D_FLOAT32 z;
C3D_FLOAT32 s;
C3D_FLOAT32 t;
C3D_FLOAT32 w;
C3D_FLOAT32 r;
C3D_FLOAT32 g;
C3D_FLOAT32 b;
C3D_FLOAT32 a;

} C3D_VTCF, * C3D_PVTCF;

Members

Description

This structure may be used to describe a vertex in terms of its x, y, and z location coordinate
t, and w texture coordinates and its r, g, b, and a color components. If the rendering context u
structure to represent vertices, flat or Gouraud shading, source or destination alpha blending,
mapping and texel modulation can be performed. This structure represents data members in
point format.

This structure is the default used to represent vertex data on context creation. To modify the
structure type, call ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_VERTEX_TYPE
and pRStateData set to the address of an C3D_EVERTEX object containing the new vertex type’s
enumeration constant.

See Also

ATI3DCIF_ContextSetState, C3D_ERSID, C3D_EVERTEX

x vertex x coordinate

y vertex y coordinate

z vertex z coordinate

s vertex s texture coordinate

t vertex t texture coordinate

w vertex w texture coordinate

r vertex red color component

g vertex green color component

b vertex blue color component

a vertex alpha value
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 5-61

ATI3DCIF Data Types

es and
embers
ulation
ructure

C3D_VTF

Version

1.0

Syntax

typedef struct {
C3D_FLOAT32 x;
C3D_FLOAT32 y;
C3D_FLOAT32 z;
C3D_FLOAT32 s;
C3D_FLOAT32 t;
C3D_FLOAT32 w;

} C3D_VTF, * C3D_PVTF;

Members

Description

This structure may be used to describe a vertex in terms of its x, y, and z location coordinat
its s, t, and w texture coordinates. Because this structure does not contain color component m
(r, g, b, and a), flat or Gouraud shading, source or destination alpha blending, and texel mod
cannot be performed if the rendering context uses this structure to represent vertices. This st
represents data members in floating point format.

The default vertex structure type set on context creation is C3D_VTCF. To modify the vertex
structure type, call ATI3DCIF_ContextSetState with eRStateID set to C3D_ERS_VERTEX_TYPE
and pRStateData set to the address of an C3D_EVERTEX object with the value C3D_EV_VTF.

See Also

ATI3DCIF_ContextSetState, C3D_ERSID, C3D_EVERTEX

x vertex x coordinate

y vertex y coordinate

z vertex z coordinate

s vertex s texture coordinate

t vertex t texture coordinate

w vertex w texture coordinate
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
5-62 Proprietary and Confidential

Chapter 6
3D RAGE / ATI3DCIF

Porting and Performance Notes
ers for
ndered
y step

on of

 of 3D
 more
g. For
ing the
 point
riangle

nd very

annot
etic and
hat it
ieve

ing
leverage
s and
Introduction
The ATI 3D RAGE is a very powerful 3D rendering chip with advanced capabilities including:

• Gouraud Shading
• Perspective Correct Texture Mapping
• Texture Lighting
• Texture Filtering
• Interpolated Alpha Blending
• Interpolated Fog

The ATI3DCIF interface is provided for low-level access to this functionality under Windows 95.

While all of these features are available on the 3D RAGE chip, some features run faster than oth
a variety of reasons, including the number of reads and writes of pixel and texel data per pixel re
and the number of registers that must be set up per polygon operation. For this reason, a step b
approach to porting a game or other application to the ATI3DCIF will result in the best combinati
high frame rate performance and superior image quality.

Triangle Size, Performance and Image Quality
In a nutshell, the larger the triangle being rendered, the more benefit will be realized from the use
RAGE’s hardware acceleration, since the driver time to setup the hardware is amortized across
pixels drawn by the hardware, allowing better parallelism of driver software and hardware drawin
Gouraud shading, the benefit threshold is at about 10 pixels per triangle and for textured render
benefit threshold is at about 30 pixels per triangle. The term “benefit threshold” refers to the first
at which the time taken to send the triangle to the hardware is less than the time to render the t
directly in software.

Having set a benefit threshold strictly by performance, it has to be remembered that there is a seco
important benefit to using the 3D RAGE hardware: image quality. Use of texture filtering and
mipmapping, modulation, alpha blending and fog allow new levels of image quality in games that c
be achieved in software rendering at acceptable frame rates due to the large numbers of arithm
logical operations required per pixel. Another way of thinking about the higher image quality is t
effectively reduces the benefit threshold, since it would take software considerably longer to ach
these quality levels.

Porting Backgrounds and Scenery
The first place to expect a huge improvement in both performance and image quality is in draw
backgrounds and scenery. These items are often composed of large or very large polygons that
the hardware very efficiently. If your game is partitioned for rendering and control into background
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 6-1

Game Objects

ires

ixel”
oves

ing.

ly

than a

 game
n. The
tion.
 worth
 for the
t and
 the
w and

ring,
ct must
ntinuity
objects, a good porting strategy is to begin by accelerating the backgrounds first.

• Turn on Gouraud shading or a texture map for the sky
• Turn on texture maps for mountains, trees, walls, and other sceneries as the game requ
• Use simple pick nearest texturing to begin with and measure the frame rate

Now experiment with more advanced features and check the effect on frame rate at each step:

• Turn on texture lighting (Modulation recommended over Alpha Decal)
• Turn on mipmapping if you have mipmapped textures available
• Turn on bilinear texture filtering
• Turn on interpolated Alpha Blending or Fog for transparency and mist effects
• Try other features of interest, such as texture compositing or specular highlighting

In conducting these experiments you will find:

• Texture lighting radically improves realism
• Mipmapping has a very small frame rate impact (<10%) and eliminates texture aliasing
• Bilinear Filtering has a frame rate impact of around 20% and eliminates the nasty “Blocky P

effect that occurs when you approach close to a textured surface. Bilinear filtering also rem
texture aliasing for distant texels and can be used alone or in combination with mipmapp
Experiment for best effects.

• Use of alpha blending and fog allow scenery items to approach gradually and realistical
through the Yon (far) clipping plane, rather than just popping up.

• Use of Fog runs faster than Alpha Blending, but uses a constant color for the fog rather
pre-rendered backdrop.

Game Objects
Once you are satisfied with the background effects and frame rate, it is time to experiment with
objects. In general, these will be smaller models with more polygons and fewer pixels per polygo
more highly tessellated the game figures are, the less benefit to be had from hardware accelera
However, since high quality textured rendering modes are now available in hardware, it may be
experimenting with fewer polygons per model and using texture mapping effects to compensate
use of fewer polygons. Additional performance improvements will be realized by optimizing objec
polygon culling prior to setting up polygon/primitive drawing lists. This will result in fewer writes to
frame buffer and z-buffer. Another way to reduce writes is to render front-to-back to avoid overdra
is especially important when z-buffering (see note below in “Additional Tips for Improving
Performance”).

In general the recommendations for accelerating game objects are:

• avoid use of highly tessellated objects
• avoid excessive overdraw
• turn on minimal acceleration (gouraud and pick nearest) and measure frame rate
• turn on higher quality rendering features and measure again

If as a result of these experiments you decide to employ a mix of hardware and software rende
remember to never mix hardware and software rendering within a meshed object. A meshed obje
always be rendered in its entirety through a consistent process (hardware or software) to ensure co
of color at boundaries and to ensure that all pixels at boundaries are rendered correctly.
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
6-2 Proprietary and Confidential

Concurrency and Software Overhead

of the
send
ardware

er lists

, these
is time

ilable

ctangle
g two
itmap
equired.
ry, and
lication
 while
everal

ge
t on
 frames,
s
nsfer
the
rs the
f the
ful for
r

lid
ing may
ough

s use
rhead.
Concurrency and Software Overhead
The amount of concurrency between the 3D RAGE accelerator and the CPU depends on the size
primitives being rendered. For small primitives, the 3D RAGE can render faster than the CPU can
instructions over the bus. In this case, it is more advantageous to dispatch a series of primitives to the h
in a single list or strip, that is, in a single ATI3DCIF_RenderPrimList or ATI3DCIF_RenderPrimStrip call.
The software overhead associated with the call is amortized over several primitives.

For large primitives, more concurrency is achieved by sending primitives to the hardware in small
or strips. The ATI3DCIF_RenderPrimList and ATI3DCIF_RenderPrimStrip functions queue the
primitives and do not return until the last one has been set up for rendering. Given a large primitive
functions can return before the 3D RAGE completes rendering. The CPU can take advantage of th
to perform additional calculations. Thus by rendering smaller lists or strips, more time will be ava
in between rendering calls for concurrent CPU operations.

Using the RAGE’s 2D Engine
Some primitives can be rendered faster using 2D rather than 3D operations. For example, a solid re
to clear the back buffer may be drawn faster by performing a 2D rectangle fill rather than renderin
triangles or one quadrilateral in 3D using solid or flat shading. Blitting a rectangular background b
is faster than mapping it as a texture onto a rectangle which covers the same area if no scaling is r
If scaling is required, the bitmap may first be texture mapped onto a rectangle in off-screen memo
then blitted to the destination in 2D. There are two advantages to using this method: (1) the app
can enhance or add special effects to the bitmap by applying bi-linear filtering or alpha blending
mapping it as a texture, and (2) if the bitmap will be repeatedly blitted without being altered over s
frames, these additional enhancements will only have been done once.

Under certain circumstances, blitting the back buffer to the primary buffer may be faster than pa
flipping due to the vertical blank synchronization delay in the flipping method. This is dependen
several factors, such as the amount of time required by the game to perform game logic between
and the resolution of the screen. Blitting will more likely be faster for smaller resolutions such a
320x240, 400x300, or possibly 512x384. With increasing resolution, the number of pixels to tra
increases, and blitting becomes less effective relative to page flipping. It is recommended that
developers experiment with both the page flipping and blitting methods to determine which offe
best results. In general, blitting will work without introducing noticeable flicker if the frame rate o
application is less then half the vertical refresh rate of the monitor. This method is particularly use
games that only update a portion of the screen (for example, games which have static cockpit o
dashboard consoles which frame the 3D scene).

Under Windows 95, 2D operations may be performed using DirectDraw. Note, however, that the
ATI3DCIF driver interface does not require DirectDraw as its surface management layer; any va
surface pointer may be used. If DirectDraw is chosen as the surface management layer, page flipp
be used only in full-screen applications, while blitting must be used for windowed application (alth
it is rumored that DirectDraw will soon support windowed page flipping).

Additional Tips for Improving Performance
• Whenever possible, arrange primitives into strips. Although more complex to setup, strip

less vertices to compose objects than lists. Consequently, there is less vertex setup ove
© 1997 ATI Technologies Inc. SDK-C02700 Rev. 1.30
Proprietary and Confidential 6-3

Summary

t
ases
 from
qual Z
pare

r close
their

tional

covery
le
the
• When Z buffering, render primitives from front to back and use a Z compare function tha
maximizes pixel rejection according to the direction Z increases. For example, if Z incre
from front to back, use a less-than or less-than-equal compare while rendering primitives
front to back. If Z increases towards the front plane, use a greater-than or greater-than-e
compare function. Rendering from back to front may cause pixels to trivially pass the Z com
test, resulting in unnecessary overdraw.

• Eliminate triangles that do not cover a pixel center, that is, triangles whose area is zero o
to zero. Such triangles will not be drawn, but will still incur overhead due to the setup of
vertices.

• Try keeping texture coordinates less than or equal to 10.0. Larger numbers require addi
processing by the ATI3DCIF driver.

Summary
A step by step approach to porting a game to the 3D RAGE as suggested above will allow the dis
of the best mix of image quality and fast frame rate. This may be more painstaking than a simp
“recompile and run” approach, but will allow the engineer doing the porting to get a real feel for
cost/benefit of each of the 3D RAGE features and find an optimal mix.
SDK-C02700 Rev. 1.30 © 1997 ATI Technologies Inc.
6-4 Proprietary and Confidential

	Table of Contents
	Preface
	ATI Company Background
	ATI Developer Support

	Introduction
	3D RAGE PRO
	Manual Contents
	SDK System Requirements

	Chapter 1
	Overview
	Introduction
	3D Drawing Operations
	Texture Mapper
	Shader
	Alpha Blender

	Chapter 2
	Programming with ATI3DCIF
	Basic ATI3DCIF Operations
	Initializing ATI3DCIF
	Creating a Rendering Context
	Rendering 3D Primitives
	Modifying the Rendering Context
	Getting ATI3DCIF Module and Graphics Subsystem Inf...

	ATI3DCIF Primitive Types
	Vertex Data Formats
	Shading Modes
	Texture Mapping
	Registering a Texture
	Applying a Texture
	Unregistering a Texture
	Setting Texture Filtering, Lighting, and Perspecti...
	Transparent Texture Mapping
	Texture Coordinates

	Alpha Blending
	Applying Fog
	ATI3DCIF Viewport
	ATI3DCIF Clipping Scissors

	Chapter 3
	3D�RAGE�II ATI3DCIF Programming
	Introduction
	Determining ATI3DCIF Capabilities
	Palettized Textures
	Z Buffers

	Chapter 4
	RAGE�PRO ATI3DCIF Programming
	Introduction
	Determining Capabilities
	Texture Compositing
	Blend
	Modulation
	Specular-Addition

	Texture Clamping
	LOD Biasing
	Specular Lighting
	Destination Alpha Testing
	Vector Quantization (VQ) Compression
	TL Vertex Type (C3D_TLVERTEX)

	Chapter 5
	ATI3DCIF API Reference
	Introduction
	Windows 95 Functions
	ATI3DCIF_ContextCreate
	ATI3DCIF_ContextDestroy
	ATI3DCIF_ContextSetState
	ATI3DCIF_GetInfo
	ATI3DCIF_Init
	ATI3DCIF_RenderBegin
	ATI3DCIF_RenderEnd
	ATI3DCIF_RenderPrimList
	ATI3DCIF_RenderPrimStrip
	ATI3DCIF_RenderSwitch
	ATI3DCIF_Term
	ATI3DCIF_TexturePaletteCreate
	ATI3DCIF_TexturePaletteDestroy
	ATI3DCIF_TextureReg
	ATI3DCIF_TextureUnreg

	ATI3DCIF Data Types
	ATI3DCIF Fundamental Data Types
	C3D_3DCIFINFO
	C3D_CODEBOOKENTRY
	C3D_COLOR
	C3D_EACMP
	C3D_EADST
	C3D_EASEL
	C3D_EASRC
	C3D_EC
	C3D_ECI_TMAP_TYPE
	C3D_EPIXFMT
	C3D_EPRIM
	C3D_ERSID
	C3D_ESHADE
	C3D_ETEXCOMPFCN
	C3D_ETEXFILTER
	C3D_ETEXFMT
	C3D_ETEXOP
	C3D_ETLIGHT
	C3D_ETPERSPCOR
	C3D_EVERTEX
	C3D_EZCMP
	C3D_EZMODE
	C3D_HRC
	C3D_HTX
	C3D_HTXPAL
	C3D_PALETTENTRY
	C3D_PRSDATA
	C3D_RECT
	C3D_TLVERTEX
	C3D_TMAP
	C3D_VCF
	C3D_VF
	C3D_VLIST
	C3D_VSTRIP
	C3D_VTCF
	C3D_VTF

	Chapter 6
	3D RAGE / ATI3DCIF Porting and Performance Notes
	Introduction
	Triangle Size, Performance and Image Quality
	Porting Backgrounds and Scenery
	Game Objects
	Concurrency and Software Overhead
	Using the RAGE’s 2D Engine
	Additional Tips for Improving Performance
	Summary

