
28 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

An Overview of the VISUALIZE fx Graphics
Accelerator Hardware

Three graphics accelerator products with different levels of performance are

based on varying combinations of five custom integrated circuits. In addition,

these products are the first ones from Hewlett-Packard to provide native

acceleration for the OpenGL API.

The VISUALIZE fx family of graphics subsystems consists of three

products, fx6, fx4, and fx2, and an optional hardware texture mapping module.

These products are built around a common architecture using the same

custom integrated circuits. The primary difference between these controllers

is the number of custom chips used in each product (see Table I).

Table I
Number of custom chips in the different

VISUALIZE fx products

Product

 Texture
Chip

Geometry
Chip

 Raster
Chip

 fx2 — 1 2

 fx4 1 2 2

 fx6 2 3 4

A chip-level block diagram of the VISUALIZE fx6 product is shown in Figure 1.

This is the most complex configuration and also the one with the highest

performance in the product line. The VISUALIZE fx4 and the VISUALIZE fx2

products use subsets of the chips used in the fx6. The fx6 and fx4 subsystems

have support for the optional hardware-accelerated texture map module,

which contains a local texture cache for storage of texture map images. If the

texture accelerator is not present, the bus between the interface chip and the

first raster chip is directly connected.

��� �� 	����

����� �� ����

�����
� ������

29 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

Figure 1

A chip-level diagram of the VISUALIZE fx6 product.

200 MHz/
41 Bits

200 MHz/
33 Bits

Up to 8

Geometry
Chip

Geometry
Chip

Geometry
Chip

Interface
Chip

PCI2.1
66 MHz/
64 Bits

Geometry Accelerator

Raster
ChipHost

SGRAM SGRAM SGRAM SGRAM

Rasterizer

Frame Buffer RAM

Texture
Chip

Texture
Chip

SDRAM SDRAM

Texture Accelerator

Texture Cache RAM

Filtered Texture Data

200 MHz/41 Bits

Video
Chip

Video Control Bus

RGB

Video
Data

Vi
de

o
Re

fr
es

h
D

at
a

Interface Chip
• I/O Buffering
• 3D Geometry Workload Distribution

and Concentration
• 2D and 3D Data Path Arbitration
• 2D Acceleration
• YUV to RGB Conversion Support
• Pixel Level Pan and Zoom
• Pixel Level Image Rotations

Geometry Chip
• 3D Geometry and Lighting Acceleration

Texture Chip
• Texture Rasterization
• Texture Map Cache Controller
• Texture Memory Control
• Texture Interpolation

Raster Chip
• Fragment Processing
• Frame Buffer Control Functions

Video Chip
• Color Lookup Tables
• Video Timing
• Digital-to-Analog Conversion
• Video-Out Data

Raster
Chip

Raster
Chip

Raster
Chip

Interface Chip

The interface chip provides a PCI 2.1 (also referred to as
PCI 2X) compliant interface.* It operates at up to 66 MHz
in 64-bit mode. Special efforts have been made in the

* PCI � Peripheral Component Interconnect.

design of the buffering and the interface to the PCI. As a
result, the driver is able to sustain writes of 3D geometry
commands to the PCI at almost the theoretical maximum
rates that could be computed for the PCI. The article on
page 51 discusses PCI capability.

30 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

Occlusion Culling

The HP fast-break program (page 8) enabled us to understand
customer requirements by analyzing what is important in
OpenGL graphics today. As a result, we developed a technol-
ogy called occlusion culling as an extension to OpenGL and
implemented it in the VISUALIZE fx graphics hardware.

We found that the data sets many graphics workstation cus-
tomers are trying to visualize are very complex. These data
sets have large numbers of small, complex components that
are not always visible in the final images. For instance, when
rendering an airplane, all of the MCAD parts are present in the
data set represented by potentially millions of polygons that
must be processed. However, when this airplane is viewed
from the outside only the outer surfaces are visible, not the fan
blades of the engine or the seats or bulkheads in the interior.

In a traditional 3D z-buffered graphics system, all polygons in
a scene must be processed by the graphics pipeline because it
is not known a priori which polygons will be visible and which
ones will be occluded (not visible). The notion of occlusion
culling, or removal of occluded objects, has been talked about
in the research community for several years. However, imple-
mentations tend to be in software where the performance is
not at a satisfactory level.

In the VISUALIZE fx series of graphics devices, HP developed
a very efficient algorithm that tests objects for visibility.
An application program can very quickly use the occlusion
culling visibility test to determine if a simple bounding box

representation of a more complex part is visible. Since a
bounding box, or more generally a bounding volume, com-
pletely encloses the more complex part, it is possible to know
a priori that if the bounding volume is not visible then the
complex part it encloses is not visible. Thus, the part that is
not visible does not need to be processed through the graphics
pipeline. The real benefit of occlusion culling comes when a
very complex part consisting of many vertices can be rejected,
avoiding the expenditure of valuable time to process it.

For very complex data sets, such as the airplane mentioned
above or an automobile, a tremendous performance increase
can be realized by using the HP occlusion culling technology.
To date, several ISVs have begun using occlusion culling in
their applications and are seeing a 25 to 100 percent increase
in graphics performance. This magnitude of performance bene-
fit typically costs a customer several thousand dollars for the
extra computational horsepower. HP includes this technology
as standard in all VISUALIZE fx series graphics accelerators,
giving even better price and performance results to our
customers.

The future of 3D graphics will continue toward visualizing ever
more complex objects and environments. Occlusion culling
together with HP’s DirectModel technology (page 19) are
well positioned to be industry leaders in providing the technol-
ogy for 3D modeling applications.

The primary responsibility of the interface chip is to sepa-
rate the streams of data that arrive from the host SPU into
three paths and arbitrate access among those paths.

3D Path. Typically data from the host CPU looks very
much like the OpenGL API functions themselves. Data
following this first path is routed to the geometry chips.
The geometry chips process the data and return the re-
sults to the interface chip. These results are then sent on
to the texture chips or directly to the raster chips if the
texture mapping subsystem is not installed. In either case
the data is transmitted to and through all the texture and
raster chips in the system.

Unbuffered Path. This path passes data directly through
the interface chip to the texture and raster chips. This
provides a bypass method that allows traffic to get around

other pending operations. An example would be a texture
cache download that is required to complete a primitive
that is currently being rasterized, a situation that would
lead to deadlock without the unbuffered path.

2D Path. This path runs directly through the interface chip
to the texture and raster chips. The 2D path differs from
the unbuffered path in the way its priority is handled. The
interface chip manages priority among the three paths as
they all converge on the same set of wires between the
interface chip and the first texture chip. The unbuffered
path goes directly through the interface chip to those
wires and has priority over the other two paths. Data
targeting the 2D path is held off until all preceding 3D
work in the geometry chip has been flushed through to
the first texture chip.

31 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

There is also special circuitry in the interface chip that is
used to accelerate many operations commonly done by
X11 or other 2D APIs.

Buses

The three primary buses in the system are each run at
200 MHz, allowing sustainable transfer rates of more
than 800 Mbytes per second. To control the loading on
the interconnections for these buses, they are built as
point-to-point connections from one chip to the next.

Each chip receives the signals and then retransmits them
to the next chip in the sequence. This requires more pins
on each part, but limits the number of loads on each wire
to a single receiver as well as limiting the wiring length
that signals must traverse. This allows for reliable com-
munications despite the high frequency of the buses.

The first of these three buses distributes work to the
geometry chips. This bus starts at the interface chip
and runs through all the geometry chips in the system.
Each geometry chip monitors the data stream as it flows
through the bus and picks off work to operate upon based
on an algorithm that selects the least busy geometry chip.

The second of these buses starts at the last geometry chip
and passes through the others back to the interface chip.
The results of the work done by the geometry chips is
placed on this bus in the same sequence as it was moved
along the first bus. This strict ordering control prevents
certain artifacts from showing up in the final image.

The third bus ties the interface chip to the texture and
frame buffer subsystems. It is wired in a loop that goes
back to the interface chip from the last chip in the chain.
3D operations typically flow from the interface chip to
the chips along this bus, and when they eventually get
back to the end of the loop, they are thrown away.

For 2D operations, such as moving blocks of pixels
around the frame buffer, the operation of the third bus is
somewhat different. The movement of pixel data operates
as a sequence of reads followed by a sequence of writes.
The reads cause data to be dumped from the frame buffer
locations onto the bus and the results travel back to the
interface chip. This data is then associated with new
addresses and sent as writes back down the bus, ending
up back at the frame buffer but in different locations.

Besides the three primary buses mentioned above,
there are three secondary buses in the system. The first

bus connects the interface chip to the video chip. This
provides video control, download of color maps, and
cursor control. The second bus is a connection from each
raster chip to the video chip. This path is used to provide
video refresh data to display frame buffer contents. The
final secondary bus is a connection from each texture
chip to two of the raster chips. This path allows the flow
of filtered texture data into the raster chips for combina-
tion with nontexture fragment data.

Geometry Chip

The geometry and lighting chips are responsible for taking
in geometric primitives (points, lines, triangles, and quad-
rilaterals) and executing all the operations associated
with the transform stage of the graphics pipeline (see the
article on page 9 for more about the graphics pipeline).
These operations include:

� Transformation of the coordinates from model space to
eye space

� Computing a vertex color based on the lighting state,
which consists of up to eight directional or positional
light sources

� Texture map calculations that include:

� Environment map calculations for texture mapping

� Texture coordinate transformation

� Linear texture coordinate generation

� Texture projection

� View volume clipping and clipping against six arbitrary
application-specified planes to determine whether a
primitive is completely visible, rejected because it is
completely outside the view area, or needs to be
reduced into its visible components

� Perspective projection transformation to cause
primitives to look smaller the further away from
the eye they are

� Setup calculations for rasterization in the raster chip.

There were some interesting problems to solve in the
design of the distribution and coalescing of work up and
down the geometry chip daisy chain. For example, load
balancing, maintaining strict order in the output stream,
and ensuring that operations, such as binding of colors
and normals to vertices, perform as required by OpenGL.

32 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

Fast Virtual Texturing

Texture mapping, which is wrapping a picture over a three
dimensional object, has been used over the years as a key
feature to enhance photorealism, reduce data set sizes, per-
form visual analysis, and aid in simulations (see Figure 1).
Since texturing calculations are computationally expensive
and memory access for large textures can be prohibitively
slow, various workstation graphics vendors have provided
hardware-accelerated texture mapping as a key differentiator
for their product.

A primary drawback of these attempts at hardware accelera-
tion is that dedicated local hardware texture memory is limited

Figure 1

A 3D textured skull. The VISUALIZE fx4 and fx6 subsystems
support a texture map acceleration option. Pictured here
is the use of 3D texture mapping OpenGL extensions with
this option. This feature allows visualization of 3D data
sets such as MRI images.

in size and is expensive. To take advantage of the perfor-
mance boost, graphics applications were constrained to tex-
tures that fit in the local hardware texture memory. In other
words, the application was responsible for managing this
hardware resource.

Noticing this obvious artificial application limitation in texturing
functionality, performance, and portability, Hewlett-Packard
introduced, in the VISUALIZE-48, a new concept in hardware
texture mapping called virtual texture mapping. Virtual texture
mapping uses the dedicated local hardware texture memory
as a true texture cache, swapping in and out of the cache the
portions of textures that are needed for rendering a 3D image.
Thus, for texturing applications, these limitations were elimi-
nated. The application could define and use a texture map of
any size (up to a theoretical limit of 32K texels × 32K texels*)
that would be hardware accelerated, eliminating the need for
the application to be responsible for managing local texture
memory.

Using the local hardware texture memory as a cache also
means that this memory uses only the portions of the texture
maps needed to render the image. This efficiency translates
to more and larger texture maps being hardware accelerated
at the same time. Applications that previously could not run
because of texture size limits can now run because of the
unlimited virtual texture size. Also, with only the used por-
tions of the texture map being downloaded to the cache, far
less graphics bus traffic occurs.

The system design of virtual texture mapping involved changes
in the HP-UX operating system to support graphics interrupts,
onboard firmware support for these interrupts, the introduction
of an asynchronous texture interrupt managing daemon pro-
cess, and the associated texturing hardware described in this

*A texel is one element of a texture.

The output of the geometry chip’s daisy chain is passed
back through the interface chip. Generally, for triangle
based primitives, the output takes the form of plane equa-
tions. As these floating-point plane equations are returned
from the geometry chip to the interface chip and passed
on to the texture chips, certain addressed locations in the
interface chip will result in the floating-point values being

converted to fixed-point values as they pass through.
These fixed-point values are in a form the raster chips
need to rasterize the primitive.

The daisy-chain design allows up to eight of the geometry
chips to be used although only three are applied in the
case of the VISUALIZE fx6 product at this time.

33 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

Figure 2

 A shadow texture image.

Figure 3

 A specular lit texture image. Correct specular lighting of
textured images can be achieved with VISUALIZE fx4 and
fx6 texture mapping options.

article. Having a centralized daemon process manage the
cache allows for cache efficiency, parallel handling of texture
downloads while 3D graphics rendering is occurring, and shar-
ing textures among graphics contexts.

The VISUALIZE fx4 and VISUALIZE fx6 texture mapping
options incorporate the second generation advances in virtual
texture mapping. Full OpenGL 1.1 texture map hardware sup-
port has brought about dramatic improvements in texture
map download performance and switching between texture
maps and new extended features such as 3D texture mapping,
shadows (Figure 2), and proper specular lighting on textures

(Figure 3). These features have made these products very
appealing systems for texturing applications on workstation
graphics.

The texture mapping performance on these systems is very
competitive. The VISUALIZE fx6 texture fill rate is about twice
that of the VISUALIZE fx4 texture option. However, fill rates
alone do not describe how these systems perform in a true
application environment. Aggressive texture mapping applica-
tion performance comparisons show two to three times per-
formance superiority over similarly priced graphics workstation
products.

Texture Chip

The texture chip is responsible for accelerating texture
mapping operations. Towards this end, it performs three
basic functions:

� Maintains a cache of texture map data, requesting cache
updates for texture values required by current rendering
operations as needed (see “Fast Virtual Texturing” on
page 32)

� Generates perspective corrected texture coordinates
from plane equations representing triangles, points, or
lines

� Fetches and filters the texture data as specified by the
application based on whether the texture needs to be
magnified or minimized to fit the geometry it is being
mapped to and passes the result on to the raster chips.

34 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

Raster Chip

The raster chip rasterizes the geometry into the frame
buffer. This means it determines which pixels are to be
potentially modified and, if so, whether they should be
modified based on various current state values (including
the contents of the z buffer). The raster chip also controls
access to the various buffers that make up the frame
buffer. This includes the image buffer for storing the image
displayed on the screen (potentially two buffers if double
buffering is in effect), an overlay buffer that contains im-
ages that overlay the image buffer, the depth or z buffer
for hidden surface removal, the stencil buffer,* and an
alpha buffer** on the VISUALIZE fx6. To accomplish its
work the raster chip performs four basic functions:

� Rasterize primitives described as points, lines, or
triangles

� Apply fragment operations as defined by OpenGL (such
as blending and raster operations)

� Control of and access to buffer memory, including all
the buffers described earlier

� Refresh the data stream for the video chip, including
handling windows and overlays.

Video Chip

The video chip provides video functions for controlling
the data flow from the frame buffer to the display and

* A stencil buffer is per pixel data that can be updated when pixel data is written and used
to restrict the modification of the pixel.

** An alpha buffer contains per pixel data that describes coverage information about the
pixel and can be used when blending new pixel values with the current pixel value.

mapping data from values to color. The features of the
video chip include:

� Data mapping to colors:

� Two independent 4096-by-24-bit lookup tables

� Four independent 256-by-3-by-8-bit lookup tables
for image planes

� A bypass path for 24-bit true color data

� Two independent 256-by-8-bit lookup tables for
overlay planes

� Digital-to-analog conversion

� Video timing

� Video output.

Conclusion

The VISUALIZE fx family of products currently has a sub-
stantial lead in not only price/performance measurements,
but it also leads in performance independent of cost.

For information regarding how these systems compare
against the competition, visit the SPEC (an industry stan-
dard body of benchmarks) web page at:

http://www.spec.org/gpc

Acknowledgments

We would like to thank Paul Martz for the shadow texture
image (Figure 2 on page 33).

��� �� 	����

Noel Scott is a senior

engineer at the HP Work-

station Systems Division.

He is responsible for product definition,

performance projections, and modeling. He

designed the I/O bus for the geometry chip

described in the article. He came to HP in

1981 after receiving a BS degree in computer

engineering from the University of Kansas.

����� �� ����

A software engineer in

the graphics products

laboratory at the HP

Workstation Systems Division, Daniel Olsen

is responsible for the development of new 3D

products for HP workstations. He has been

with HP since 1994. He has a BSEE degree

(1991) from North Dakota State University

and an MS degree in computer engineering

(1997) from Iowa State University. Daniel

was born in Des Moines, Iowa, is married and

has two daughters. His leisure time activities

include skiing, home projects, scuba diving,

and aviation.

�����
� ������

Ethan Gannett is a lead

engineer for graphics

software development

at the HP Workstation Systems Division. He

came to HP in 1988 after receiving an MS

degree in computer science from Iowa State

University. He also holds a BS degree in

physics (1983) and a BS degree in astronomy

(1983) from the University of Iowa. Born in

Davenport, Iowa, he is married and has one

daughter. He enjoys kayaking, backcountry

camping, telemarking, and hiking.

� Go to Next Article � Go to Journal Home Page

http://www.spec.org/gpc
http://www.hp.com/hpj/98may/ma98a4.htm
http://www.hp.com/hpj/journal.html

