

Trademark Acknowledgements

 $MGA, ^{TM}$ $MGA-G200, ^{TM}$ $MGA-1164SG, ^{TM}$ $MGA-2064W, ^{TM}$ $MGA-2164W, ^{TM}$ $MGA-VC064SFB, ^{TM}$ $MGA-VC164SFB, ^{TM}$ MGA $Marvel, ^{TM}$ MGA $Millennium, ^{TM}$ MGA $Mystique, ^{TM}$ MGA Rainbow $Runner, ^{TM}$ MGA $DynaView, ^{TM}$ $PixelTOUCH, ^{TM}$ MGA Control $Panel, ^{TM}$ and Instant $ModeSWITCH, ^{TM}$ are trademarks of Matrox Graphics Inc.

Matrox[®] is a registered trademark of Matrox Electronic Systems Ltd.

VGA,[®] is a registered trademark of International Business Machines Corporation; Micro ChannelTM is a trademark of International Business Machines Corporation.

Intel[®] is a registered trademark, and $386, ^{TM}$ 486, TM Pentium, TM and 80387^{TM} are trademarks of Intel Corporation.

WindowsTM is a trademark of Microsoft Corporation; Microsoft,[®] and MS-DOS[®] are registered trademarks of Microsoft Corporation.

AutoCAD[®] is a registered trademark of Autodesk Inc.

UnixTM is a trademark of AT&T Bell Laboratories.

X-WindowsTM is a trademark of the Massachusetts Institute of Technology.

AMDTM is a trademark of Advanced Micro Devices. Atmel[®] is a registered trademark of Atmel Corporation. CatalystTM is a trademark of Catalyst Semiconductor Inc. SGSTM is a trademark of SGS-Thompson. ToshibaTM is a trademark of Toshiba Corporation. Texas InstrumentsTM is a trademark of Texas Instruments. NationalTM is a trademark of National Semiconductor Corporation. MicrochipTM is a trademark of Microchip Technology Inc.

All other nationally and internationally recognized trademarks and tradenames are hereby acknowledged.

This document contains confidential proprietary information that may not be disclosed without written permission from Matrox Graphics Inc.

© Copyright Matrox Graphics Inc., 1997. All rights reserved.

Disclaimer: Matrox Graphics Inc. reserves the right to make changes to specifications at any time and without notice. The information provided by this document is believed to be accurate and reliable. However, no responsibility is assumed by Matrox Graphics Inc. for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license is granted under any patents or patent rights of Matrox Graphics Inc. or Matrox Electronic Systems Ltd.

Chapter 1: MGA Overview

1.1	Introduction
1.2	System Block Diagram
1.3	Application Areas
1.4	Target Markets
1.5	Block Diagram
1.6	Features
	1.6.1 PCI / AGP Bus Controller 1-7
	1.6.2 Triangle Setup Engine
	1.6.3 3D and Texture Mapping Engine
	1.6.4 2D Engine
	1.6.5 VGA Engine
	1.6.6 Video Engine
	1.6.7 Display Engine
	1.6.8 Memory Controller
	1.6.9 Other Features
1.7	Typographical Conventions Used
1.8	Locating Information
Chapte	er 2: Resource Mapping
2.1	Memory Mapping
	2.1.1 Configuration Space Mapping
	2.1.2 MGA General Map
	2.1.3 MGA Control Aperture
2.2	Register Mapping

Chapter 3: Register Descriptions

3.1	Power Graphic Mode Register Descriptions	3-2
	3.1.1 Power Graphic Mode Configuration Space Registers	3-2
	3.1.2 Power Graphic Mode Memory Space Registers	-28
3.2	VGA Mode Register Descriptions	225
	3.2.1 VGA Mode Register Descriptions	225
3.3	DAC Registers	303
	3.3.1 DAC Register Descriptions	303

Chapter 4: Programmer's Specification

4.1	HOST	Interface	-2
	4.1.1	Introduction	-2
	4.1.2	PCI Retry Handling	-3
	4.1.3	PCI Burst Support	-3

4.1.4 PCI Target-Abort Generation	
4.1.5 Transaction Ordering	
4.1.6 Direct Access Read Cache	4-5
4.1.7 Big-Endian Support	
4.1.8 Host Pixel Format	
4.1.9 Programming Bus Mastering for DMA Transfers	
4.2 Memory Interface	4-18
4.2.1 Frame Buffer Organization	
4.2.2 Pixel Format	
4.3 Chip Configuration and Initialization	4-23
4.3.1 Reset	
4.3.2 Operations After Hard Reset	
4.3.3 Power Up Sequence	
4.4 Direct Frame Buffer Access	4-28
4.5 Drawing in Power Graphic Mode	4-29
4.5.1 Drawing Register Initialization Using General Purpose Pseu	do-DMA4-29
4.5.2 Overview	
4.5.3 Global Initialization (All Operations)	
4.5.4 Line Programming	
4.5.5 Trapezoid / Rectangle Fill Programming	
4.5.6 Bitblt Programming	
4.5.7 ILOAD Programming	
4.5.8 Loading the Texture Color Palette	
4.6 CRTC Programming	4-61
4.6.1 Horizontal Timing	
4.6.2 Vertical Timing	
4.6.3 Memory Address Counter	
4.6.4 Programming in VGA Mode	
4.6.5 Programming in Power Graphic Mode	4-65
4.7 Video Interface	4-70
4.7.1 Operation Modes	
4.7.2 Palette RAM (LUT)	
4.7.3 Hardware Cursor	
4.7.4 Keying Functions	
4.7.5 Zooming	
4.7.6 Feature Connector	
4.7.7 Test Functions	
4.7.8 PLL Clock Generators	
4.8 Video Input Interface	4-81
4.8.1 Overview of the Video-Grabber	
4.8.2 MAFC Mode Selection.	

4.8.3 Programming sequence 4-81
4.9 CODEC Interface
4.9.1 Memory Organization 4-83
4.9.2 Command Execution
4.9.3 Output mode
4.9.4 Codec Interface IDLE State 4-89
4.9.5 Recovery Width Programming 4-89
4.9.6 Miscellaneous Control Programming 4-89
4.9.7 Compressing data 4-90
4.9.8 Decompressing data 4-93
4.9.9 Error Recovery 4-95
4.10 Backend Scaler
4.10.1 Introduction
4.10.2 Horizontal Scaling 4-99
4.10.3 Vertical Scaling 4-102
4.10.4 Keying
4.10.5 Miscellaneous Functions 4-110
4.10.6 BES Parameter Example: 4-112
4.11 Interrupt Programming 4-113
4.12 Power Saving Features 4-116
4.12.1 Entering Power Saving Mode 4-116
4.12.2 Coming Out of Power Saving Mode 4-117
4.13 Accessing the Serial EEPROM 4-118

Chapter 5: Hardware Designer's Notes

5.1 Introduction
5.2 Host Interface
5.2.1 PCI Interface
5.2.2 AGP Interface
5.3 Snooping
5.4 EEPROM Devices
5.5 Memory Interface
5.5.1 SGRAM Configurations
5.6 Video interface
5.6.1 Slaving the MGA-G200 5-12
5.6.2 Genlock Mode 5-12
5.6.3 Crystal Resonator Specification 5-13

Appendix A: Technical Information

A.1	Pin List	<u>\-2</u>
	A.1.1 Host (PCI / AGP) A	۰-3

A.1.2 Host (Local Mode)	A-4
A.1.3 Memory Interface	A-4
A.1.4 Video Display Interface	A-4
A.1.5 Video In Interface	A-4
A.1.6 Video Out Interface	A-4
A.1.7 CODEC Interface	A-5
A.1.8 SEEPROM	A-5
A.1.9 Analog Signals	A-5
A.1.10 Miscellaneous Functions	A-6
A.1.11 TEST	A-6
A.1.12 AGP VDD/GND	
A.1.13 PCI VDD/GND	
A.2 PCI Pinout Illustration and Table	
A.3 AGP Pinout Illustration and Table.	A-9
A.4 Electrical Specification	A-11
A.4.1 DC Specifications	A-11
A.4.2 AC Specifications	A-20
A.5 Mechanical Specification	
A.6 Test Feature	A-43
A.6.1 Nand Tree Order (for MGA-G200-AGP only)	A-44
A.6.2 Nand Tree Order (for MGA-G200-PCI only)	A-46
A.7 Ordering Information	A-48
Appendix B: Changes	

B.1 Changes in the Document Since Revision 0300 B-2 A.1.1 Chip Revision Notes and Changes B-2 B.2 Changes in the Document B-2 A.2.1 Chip revision Notes and Changes B-2 B.2 Changes in the Document B-2 A.2.1 Chip revision Notes and Changes B-2

Chapter 1: MGA Overview

Figure 1-1: System Block Diagram	. 1-3
Figure 1-2: MGA-G200 Block Diagram	. 1-6

Chapter 2: Resource Mapping

Not Applicable

Chapter 3: Register Descriptions

Not Applicable

Chapter 4: Programmer's Specification

Figure 4-1: OPTION<12:10> memconfig [2:0] = '000'	4-19
Figure 4-2: OPTION<2:0> memconfig [2:0] = '001'	4-19
Figure 4-3: OPTION<12:10> memconfig [2:0] = '010' or '110'	4-20
Figure 4-4: OPTION<2:0> memconfig [2:0] = '011' or '111'	4-20
Figure 4-5: OPTION<2:0> memconfig [2:0] = '100' or '101'	4-20
Figure 4-6: Drawing Multiple Primitives	4-38
Figure 4-7: CRTC Horizontal Timing	4-61
Figure 4-8: CRTC Vertical Timing	4-62
Figure 4-9: Video Timing in Interlace Mode	4-6 9
Figure 4-10: Clock Division Scheme	4-76
Figure 4-11: CODEC Interface Organization	4-84
Figure 4-12: CODEC Command Format	4-85
Figure 4-13: Address Space of I33 CODEC in Code Slave Mode	4-86
Figure 4-14: Compression of a Live Video Source	4-90
Figure 4-15: Decompressing Data from the Memory	4-93

Chapter 5: Hardware Designer's Notes

Figure 5-1: PCI Interface	5-2
Figure 5-2: AGP Interface	5-3
Figure 5-3: External Device Configuration 5	5-4
Figure 5-4: Memory Interface Connection (memconfig = '00X')	5 -8
Figure 5-5: Memory Interface Connection (memconfig = '01X')	5-9
Figure 5-6: Memory Interface Connection (memconfig = '10X')	-10
Figure 5-7: Memory Interface Connection (memconfig = '11X')	-11
Figure 5-8: VIDRST, Internal Horizontal/Vertical Active, and VOBLANKN5-	·12
Figure 5-9: Video Interface	-14
Figure 5-10: Video Connector	·15

Chapter A: Technical Information

Figure A-1: PCI Pinout Illustration	A-7
Figure A-2: AGP Pinout Illustration	A-9
Figure A-3: SSTL Buffer I/V Curve Pull-Up (Class 1)	A-14
Figure A-4: SSTL Buffer I/V Curve Pull-Up (Class 2)	A-14
Figure A-5: SSTL Buffer I/V Curve Pull-Down (Class 1)	A-15
Figure A-6: SSTL Buffer I/V Curve Pull-Down (Class 2)	A-15
Figure A-7: V/I Curves for AGP Buffers (Best Case)	A-16
Figure A-8: V/I Curves for AGP Buffers (Worst Case)	A-16
Figure A-9: VV/I Curves for AGP Buffers (Typical Case)	A-17
Figure A-10: PCI 33 MHz Waveform (MGA-G200-PCI only)	A-21
Figure A-11: AGP 1X Timing (MGA-G200-AGP only)	A-23
Figure A-12: AGP 2X Timing Diagram	A-24
Figure A-13: AGP 2X Strobe/Data Turnaround Timing Diagram	A-25
Figure A-14: Serial EEPROM Waveform	A-26
Figure A-15: MAFC Waveform	A-27
Figure A-16: Panel Link Mode	A-27
Figure A-17: Bypass Mode	A-28
Figure A-18: Memory Interface Waveform	A-28
Figure A-19: Read Followed by Precharge (Tcl=3)	A-29
Figure A-20: Read Followed by a Precharge (Tcl = 2)	A-30
Figure A-21: Write Followed by Precharge	A-30
Figure A-22: Read Followed by Write (Tcl =3)	A-31
Figure A-23: Read Followed by Write (Tcl =2)	A-31
Figure A-24: Write Followed by Read (same chip select)	A-32
Figure A-25: Write Followed by Read (different chip select)	A-32
Figure A-26: Read to Both Banks(same chip select)	A-33
Figure A-27: Read to Different Banks (different chip select)	A-33
Figure A-28: Write to Both Banks(same chip select)	A-34
Figure A-29: Write to Different Banks (different chip select)	A-34
Figure A-30: Power-On Sequence	A-35
Figure A-31: Block Write and Special Mode Register command	A-35
Figure A-32: Memory Refresh Sequence	A-36
Figure A-33: I33 Mode, Writes	A-37
Figure A-34: I33 Mode, Reads	A-37
Figure A-35: VMI Mode A Writes	A-38
Figure A-36: VMI Mode A, Reads.	A-38

Figure A-37: VMI Mode B, Writes	A-39
Figure A-38: VMI Mode B, Reads	A-39
Figure A-39: Video In Timings	A-41
Figure A-40: MGA-G200 Mechanical Drawing	A-42

Chapter B: Changes

Not Applicable

Chapter 1: MGA Overview

Chapter 2: Resource Mapping

Table 2-1: MGA-G200 Configuration Space Mapping	. 2-2
Table 2-2: MGA General Map	. 2-3
Table 2-3: MGA Control Aperture (extension of Table 3-2)	. 2-4
Table 2-4: Register Map.	. 2-5

Chapter 3: Register Descriptions

Not Applicable

Chapter 4: Programmer's Specification

Table 4-1: Display Modes. 4-25
Table 4-2: ILOAD Source Size 4-56
Table 4-3: ILOAD Supported Formats 4-58
Table 4-4: Bitblt with Expansion Supported Formats 4-59
Table 4-5: MAFC Video Output Port Pins 4-73
Table 4-6: Contents of the Command Area 4-88
Table 4-7: Contents of the Read Data Area
Table 4-8: Supported Functionality for each Interrupt Source 4-115
Chapter 5: Hardware Designer's Notes
Chapter 5: Hardware Designer's Notes Table 5-1: Supported SGRAM/SDRAM Commands
Table 5-1: Supported SGRAM/SDRAM Commands5-5Table 5-2: 10-Bit Address Configuration
Table 5-1: Supported SGRAM/SDRAM Commands5-5Table 5-2: 10-Bit Address Configuration (memconfig <2:0>= 00x for 2-bank 8Mb(x32) device5-6Table 5-3: 11-Bit Address Configuration

Table 5-5: 11-Bit Address Configuration	
(memconfig<2:0>=11x) for 4-bank, 16Mb(x32) device	

Chapter A: Technical Information

Table A-1: Pin Count Summary MGA-G200-PCI A	4-2
Table A-2: Pin Count Summary MGA-G200-AGP	4-2
Table A-3: PCI Pinout Legend (Bottom View)	4-8
Table A-4: AGP Pinout Legend (Bottom View)	-10
Table A-5: Absolute Maximum Rating A	-11
Table A-6: Recommended Operating Conditions. A-	-12

Table A-7: DC Characteristics
(VDD3 = 3.3 ±0.3V, VDD5 = 5.0 ±0.25V, TA = 0 to 55°)(PCI) (VDD3 = 3.3 ±0.15V, VDD5 = 5.0 ±0.25V, TA = 0 to 55°)(AGP)A-13
Table A-8: PCI Buffer Type and Pin Load A-18
Table A-9: AGP Buffer Type and Pin Load A-19
Table A-10: DAC Parameter List A-20
Table A-11: PLL Parameter List A-20
Table A-12: PCI 33 MHz 5V Signaling Environment Timing (MGA-G200-PCI only)A-22
Table A-13: AGP 1X Timing (MGA-G200-AGP only) A-24
Table A-14: AGP 2X Timing (MGA-G200-AGP only) A-25
Table A-15: Serial EEPROM Clock Period Cycle A-26
Table A-16: Serial EEPROM Parameter List A-27
Table A-17: MAFC Waveforms data information. A-28
Table A-18: Memory Interface Parameter List A-29
Table A-19: MGA-G200 Sync. RAM Clock-Based Parameter TableA-36
Table A-20: Codec Parameters. A-40
Table A-21: Video In Parametrs A-41
Table A-22: AGP Nand Tree Order A-44
Table A-23: PCI Nand Tree Order. A-46

Chapter B: Changes

Not Applicable

Chapter 1: MGA Overview

Introduction	1-2
System Block Diagram	1-3
Application Areas	1-4
Target Markets	1-4
Block Diagram	1-5
Features	1-7
Typographical Conventions Used	1-10
Locating Information	1-10

1.1 Introduction

The Matrox MGA-G200 which is compatible with the MGA-G100 product but with a significant improvement in performance:

- Supports full AGP features
- Includes high performance triangle setup engine
- Accelerates 3D texture mapped consumer applications such as PC games with the Enhanced Matrox Fast Texture Architecture
- Improves 2-D performance
- Provides superior Windows performance
- Is fully Microsoft DirectDraw, Direct 3D, and Open GL compliant
- Has fast VGA acceleration
- Accelerates digital video features
- Includes integrated frontend and backend scaler
- Includes digital video input port and video output port
- Includes hardware CODEC interface port
- Includes an integrated DAC
- Connects to SSTL or LVTTL SGRAM

The Matrox MGA-G200 has special features specifically designed to provide superior 3D performance in a 4 MByte frame buffer. The Matrox MGA-G200 is intended to provide a complete solution for home PC users who are interested in top performance Windows 95 and DOS 3D game and multimedia applications, but who are also interested in leveraging their home PC as a home office and education centre. It is also suitable for environments such as Windows NT, IBM OS/2 PM, Unix X-Windows, AutoCAD, and more.

The MGA-G200 series has an improved 3D acceleration core over the Matrox MGA-G100, key video capabilities of the MGA-VC064FB video engine and a significantly faster frame buffer interface fo applications requiring a high display bandwidth. It controls up to 16 megabytes of SGRAM.

The integrated DAC in the MGA-G200 eliminates the need for an external DAC. This substantially lowers the cost and space required for the graphics sub-system.

The MGA-G200A is optimized to exploit the AGP bus features and bandwidth. Alternatively, the PCI version or MGA-G200P also provides superior performance in a PCI-based system. In order to optimize performance, both DMA model and execute model are supported. The bus controller uses bus-mastering techniques to fetch command lists from PCI or AGP space, load textures into the texture cache or into the frame buffer, and to blit data between system memory and the frame buffer. The AGP transfers are performed in 2X mode, with sideband signalling and command pipelining to further parallelize and accelerate operations. The graphic engine has been designed to accept the longer latency periods that occur when accessing the system bus. This enables the application to store information, such as texture, in the system memory without any loss in performance.

A fully programmable setup engine increases 3D performance and off-loads the CPU for other tasks. Combined with a new bus controller, it can directly interpret triangle list information. Its instruction cache enables transparent transition between multiple micro-code programs. Multiple pipelined ALUs operate in parallel on floating point or integer data giving the MGA-G200 high performance and versatility.

A full-featured 3D rendering engine, the Enhanced Matrox Fast Texture Architecture, is the centerpiece of the MGA-G200. This 3D engine is an advanced renderer with full perspective correct texture mapping, lighting, Gouraud shading, specular lighting, fogging, stipple and true alpha blending, optional 16-bit or 32 bit Z-buffering, capable of bus mastering and keying on texture color or texel alpha key bit. Combined with the video engine, the 3D engine has the ability to use video as a source for texturing. The Matrox

texture compression model saves on memory usage, allowing low cost and high performance even within a frame buffer as small as 2MBytes.

The MGA-G200 core engine fully implements the Matrox Video Architecture with its integrated digital video scaling, filtering and color space conversion engine. This architecture supports both shared frame buffer and split frame buffer (overlay) modes of operation to provide maximum flexibility in combining video with graphics. This architecture supports video sprites, video texture maps, graphics overlay, and many other methods of combining video with graphics. The MGA-G200 can be upgraded with the Matrox Video Encoder (Maven) which provides high quality output to a TV or VCR.

This specification covers two chips: the MGA-G200P that connects to a PCI bus and MGA-G200A to an AGP bus. The specification applies the term MGA-G200 to both chips. For PCI specific information, the term MGA-G200P will apply, while the term MGA-G200A will apply to AGP specific information.

1.2 System Block Diagram

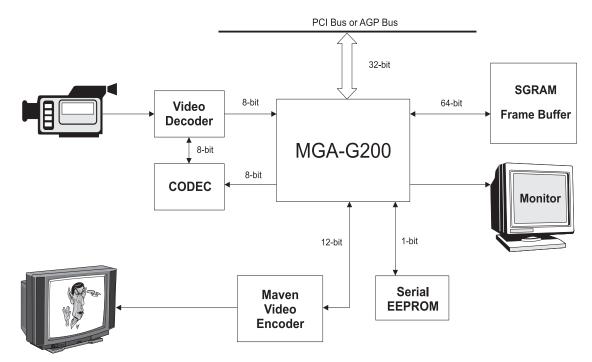
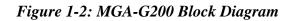
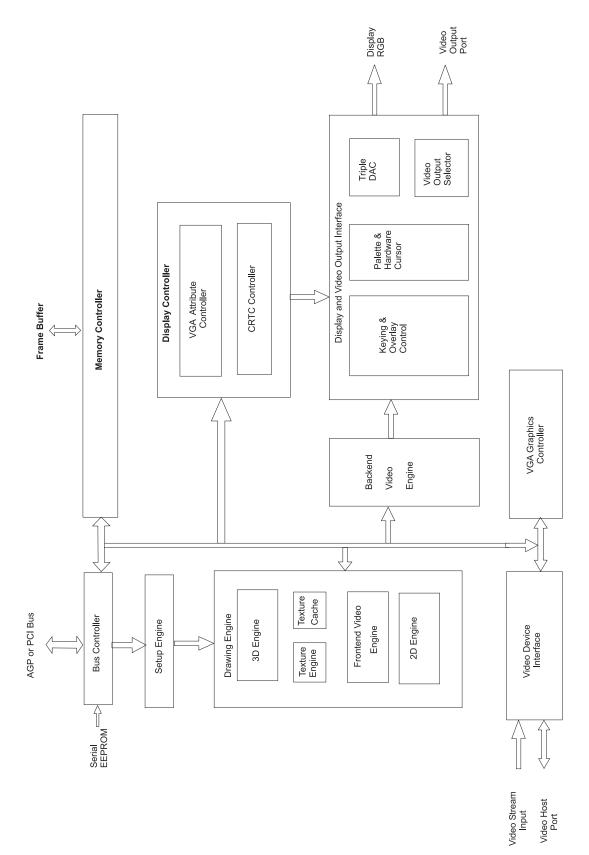


Figure 1-1: System Block Diagram

1.3 Application Areas

- A Windows accelerator with high performance levels. The MGA-G200 will complement the MGA family by delivering a strong price/performance point for users who need top performance at high resolution and color depths.
- Full acceleration of Windows multimedia and game applications. Specifically, 3D texture mapped games achieve a significant boost in performance and image quality with the MGA-G200 3D and triangle setup engine. In addition, all other types of games will be accelerated by a combination of the MGA-G200's DirectDraw, Direct 3D, and Direct Video engine.
- Digital video playback is accelerated to full screen, full motion, with high-quality scaling. The architecture supports all of today's popular CODECs.
- Full acceleration of all MS-DOS applications via MGA-G200's ultra-fast 32-bit VGA core.
- Video capture
- DVD and MPEG2 playback
- Video editing
- Video out to a TV with MAVEN


1.4 Target Markets


- Home, SOHO, and multimedia PC markets
- Mainstream business markets
- Computer gaming
- Workstation market
- Professional multimedia PC markets
- Desktop publishing
- CAD

1.5 Block Diagram

The MGA-G200 is composed of 9 sections:

- Bus Controller
- Setup Engine
- Drawing Engine
- Video Device Interface
- VGA Graphics Controller
- Backend Video Engine
- Memory Controller
- Display Controller
- Display and Video Output Interface

1.6 Features

1.6.1 PCI / AGP Bus Controller

- PCI 2.1 compliant
- AGP 1.0 compliant
- Supports AGP 2X mode
- Supports AGP sideband signalling
- PCI and AGP bus mastering support for texture fetching, command list execution and system memory to frame buffer and frame buffer to system memory transfers
- Supports AGP command pipelining
- Big and Little Endian support

1.6.2 Triangle Setup Engine

- Fully programmable setup engine with floating point and integer operations
- Instruction cache
- Off-loads the CPU
- Pipelined for increased performance
- Parallel execution of multiple instructions
- Fast access to the 3D rendering engine

1.6.3 3D and Texture Mapping Engine

- 16-bit or 32-bit Z-buffer (optionally enabled or disabled)
- 3D polygons with Gouraud shading
- Double and triple buffering
- Sub-pixel positioning
- Hardware dithering including dithering of LUT textures
- Perspective correct texture mapping
- Storage of source textures in off-screen frame buffer and system memory
- Texture cache for increased performance
- Selectable high quality texture filtering modes, including on-the-fly minify-magnify filter selection
- True color lighting of textures
- Specular lighting
- Depth cuing and fogging
- Stipple and true Alpha blending
- Transparency
- Keying on textures is supported
- Source textures may be in the following formats:
 - Color Look Up Table (compressed) 4 bpp (bit/pixel) or 8 bpp
 - True Color: 5:6:5, 1:5:5:5, 4:4:4:4, 8:8:8:8
 - Video: YCbCr 4:2:2 using hardware color space conversion
- Direct 3D support and acceleration
- Open GL support and acceleration

1.6.4 2D Engine

- Line draw engine with patterning
- 2D polygons with patterning capabilities
- BITBLT engine
- Stretch BLT
- System memory to frame buffer BLT
- Frame buffer to system memory BLT
- Color expansion
- Clipping
- Transparency and color keying
- Dithering
- Direct Draw support

1.6.5 VGA Engine

- Fully VGA compatible
- Accelerated performance

1.6.6 Video Engine

- Video scaling is supported in both frontend and backend video engines
- Independent X and Y scaling with high quality filtering
- Support YCbCr 4:2:2 and YCbCr 4:2:0 formats
- Support for true graphics overlay in a rectangular window, and optionally with color keying
- Synchronized video/graphics updates (no tearing) are supported
- Supports any number of video windows/sprites simultaneously
- Sync reset input for video genlock and overlay
- Hardware color space conversion
- ITU-R 656 compatible video input port
- Parallel video device host port with DMA capability
- Video pass-through mode to video output port
- Proprietary 12-bit video output port
- Support and acceleration of DVD and MPEG2 playback
- Direct Video support and acceleration

1.6.7 Display Engine

- Integrated DAC
- 250 MHz operation
- Supports shared memory and graphic overlay modes
- \blacksquare 3 x 256 x 8 look-up table
- Hardware color cursor
- VGA compatible
- Hardware pan and zoom
- DDC level 2B compliant

1.6.8 Memory Controller

- Supports from 2 to 16 MBytes of memory
 - up to 4 banks of 2bank x 128Kword x 32bit SGRAM
 - up to 4 banks of 2bank x 256Kword x 32bit SGRAM
 - up to 4 banks of 4bank x 128Kword x 32bit SGRAM
 - up to 2 banks of 2bank x 512Kword x 16bit SDRAM
- Supports block write and write per bit for added performance
- Supports operating frequencies up to 143 MHz
- Configurable SSTL or LVTLL support

1.6.9 Other Features

- PCI bus power management compliant
- PC98 compliant
- Serial EEPROM interface
- VESA 2.0-compliant

1.7 Typographical Conventions Used

Table 1-1: Typographical Conventions

Description	Example
Active low signals are indicated by a trailing forward slash. Signal names appear in upper-case characters.	VHSYNC/
Numbered signals appear within angle brackets, separated by a colon.	MA<8:0>
Register names are indicated by upper-case bold sans-serif letters.	DEVID
Fields within registers are indicated by lower-case bold sans-serif letters.	vendor
Bits within a field appear within angle brackets, separated by a colon.	vendor<15:0>
Hexadecimal values are indicated by a trailing letter 'h'.	CFFFh
Binary values are indicated by a trailing letter 'b' or are enclosed in single quotes, as: '00' or '1'. In a bulleted list within a register description field, 0: and 1: are assumed to be binary.	0000 0010ь
Special conventions are used for the register descriptions. Refer to the sample re in Sections 3.1.1, 3.2.1, and 3.3.1.	gister description pages
In a table, X = "don't care" (the value doesn't matter)	1X = Register Set C
Emphasized text and table column titles are set in bold italics.	This bit <i>must be set</i> .
In the DWGCTL illustrations (in Chapter 4), the '+' and '#' symbols have a spe- cial meaning. This is explained in 'Programmer's Specification' on page 4-1.	trans # # # #

1.8 Locating Information

The MGA-G200 register descriptions are located in Chapter 3. These descriptions are divided into several sections, and arranged in alphabetical order within each section.

- To find a register by name (when you know which section it's in): go the section and search the names at the top of each page for the register you want.
- To find a register by its index or address, refer to the tables in Chapter 2. Indirect access register indexes are duplicated on the description page of the direct access register that they refer to.
- To find a particular field within a register, search in the Alphabetical List of Register Fields at the back of the manual.

Information on how to program the MGA-G200 registers is located in Chapter 4. Hardware design information is located in Chapter 5. Appendix A contains pinout, timing, and other general information.

At the beginning of this manual you will find a complete Table of Contents, a List of (major) Figures, and a List of (major) Tables.

Chapter 2: Resource Mapping

Memory Mapping	<mark>2-2</mark>
Configuration Space Mapping	2-2
MGA General Map	
MGA Control Aperture	
Register Mapping	2-5

2.1 Memory Mapping

Note: All addresses and bits within dwords are labelled for a Little-Endian processor (X86 series, for example).

2.1.1 Configuration Space Mapping

Table 2-1: MGA-G200 Configuration Space Mapping

Address	Name/Note	Description	
00h-03h	DEVID	Device Identification	
04h-07h	DEVCTRL	Device Control	
08h-0Bh	CLASS	Class Code	
0Ch-0Fh	HEADER	Header	
10h-13h	MGABASE2	MGA Frame Buffer Aperture Address	
14h-17h	MGABASE1	MGA Control Aperture Base	
18h-1Bh	MGABASE3	MGA ILOAD Aperture Base Address	
1Ch-2Bh	Reserved ⁽¹⁾	—	
2Ch-2Fh	SUBSYSID	Location for reading the Subsystem ID. Writing has no effect.	
30h-33h	ROMBASE	ROM Base Address	
34h-37h	CAP_PTR	Capabilities Pointer	
38h-3Bh	Reserved ⁽¹⁾	—	
3Ch-3Fh	INTCTRL	Interrupt Control	
40h-43h	OPTION	Option register number 1	
44h-47h	MGA_INDEX ⁽²⁾	MGA Indirect Access Index	
48h-4Bh	MGA_DATA ⁽²⁾	MGA Indirect Access Data	
4Ch-4Fh	SUBSYSID	Location for writing the Subsystem ID. Reading will give 0's.	
50h-53h	OPTION2	Option register number 2	
54h-DBh	Reserved ⁽¹⁾	—	
DCh-DFh	PM_IDENT	Power Management Identifier	
E0h-E3h	PM_CSR	Power Management Control / Status	
E4h-EFh	Reserved ⁽¹⁾	—	
F0h-F3h	AGP_IDENT ⁽³⁾	AGP Capability Identifier	
F4h-F7h	AGP_STS ⁽³⁾	AGP Status	
F8h-FBh	AGP_CMD ⁽³⁾	AGP Command	
FCh-FFh	Reserved ⁽¹⁾	—	

⁽¹⁾ Writing to a reserved location has no effect. Reading from a reserved location will give '0's. Access to any location (including a reserved one) will be decoded.

- ⁽²⁾ Not supported when powerpc is '1'. Reading to these locations will return unkown values; writing to these locations may modify any register described in the MGABASE1 range.
- ⁽³⁾ These locations exist only for the MGA-G200-AGP. For the MGA-G200-PCI, all these locations are reserved and '0' will be returned when read.

2.1.2 MGA General Map

Address	Condition	Name/Notes
Aauress		
000A0000h-000BFFFFh	GCTL6 <3:2> = '00', MISC <1> = '1'	VGA frame buffer $^{(1)(2)}$
000A0000h-000AFFFFh	GCTL6 <3:2> = '01', MISC <1> = '1'	(Note 2 applies only if MGAMODE = '1')
000B0000h-000B7FFFh	GCTL6 <3:2> = '10', MISC <1> = '1'	
000B8000h-000BFFFFh	GCTL6 <3:2> = '11', MISC <1> = '1'	
ROMBASE + 0000h to	biosen = 1 (see OPTION) and	BIOS EPROM ⁽¹⁾
ROMBASE + FFFFh	romen = 1 (see ROMBASE)	
MGABASE1 + 0000h to	MGA control aperture	(1)
MGABASE1 + 3FFFh	(see Table 2-3)	
MGABASE2 + 000000h to	Direct frame buffer access aperture	(1)(2)(3)
MGABASE2 + FFFFFFh		
MGABASE3 + 000000h to	8 MByte Pseudo-DMA window	(1)(4)(5)
MGABASE3 + 7FFFFFh		

Table 2-2: MGA General Map

⁽¹⁾ Memory space accesses are decoded only if **memspace** = 1 (see the **DEVCTRL** configuration register).

⁽²⁾ Hardware swapping for Big-Endian support is performed in accordance with the settings of the **OPMODE** register's **dirDataSiz** bits.

⁽³⁾ The usable range depends on how much memory has been installed. Reading or writing outside the usable range will yield unpredictable results.

⁽⁴⁾ Hardware swapping for Big-Endian support is performed in accordance with the settings of the OPMODE register's dmaDataSiz bits.

⁽⁵⁾ This memory space is Write Only. Reads will return *unknown* values.

2.1.3 MGA Control Aperture

 Table 2-3: MGA Control Aperture (extension of Table 3-2)

MGABASE1 +	Attr.	Mnemonic	Device name
0000h-1BFFh	W	DMAWIN	7KByte Pseudo-DMA window ⁽¹⁾⁽⁴⁾
1C00h-1DFFh	W	DWGREG0	First set of drawing registers ⁽²⁾⁽³⁾⁽⁴⁾
1E00h-1EFFh	R/W	HSTREG	Host registers ⁽²⁾⁽³⁾
1F00h-1FFFh	R/W	VGAREG	VGA registers ⁽³⁾⁽⁵⁾
2000h-207Fh	R/W	WIMEMDATA	WARP instruction memory ⁽²⁾⁽³⁾
2080h-2BFFh			Reserved ⁽⁶⁾
2C00h-2DFFh	W	DWGREG1	Second set of drawing registers ⁽²⁾⁽³⁾⁽⁴⁾
2E00h-3BFFh		_	Reserved ⁽⁶⁾
3C00h-3C0Fh	R/W	DAC	RAMDAC registers ⁽³⁾
3C10h-3CFFh			Reserved ⁽⁶⁾
3D00h-3DFFh	R/W	BESREG	Backend Scaler register ⁽²⁾⁽³⁾
3E00h-3EFFh	R/W	VINCODEC	Video-in and codec interface $^{(2)(3)}$
3F00h-3FFFh		—	Reserved ⁽⁶⁾

⁽¹⁾ Hardware swapping for Big-Endian support is performed in accordance with the settings of the **OPMODE** register's **dmaDataSiz** bits.

⁽²⁾ Hardware swapping for Big-Endian support is performed when the **OPTION** configuration register's **powerpc** bit is '1'.

⁽³⁾ See the register map in Table 2-4 for a more detailed view of this memory space.

⁽⁴⁾ Reads of these locations return *unknown* values (*except* for range 2C40 to 2C4F and 2CD0 to 2CD7).

⁽⁵⁾ VGA registers have been memory mapped to provide access to the CRTC registers in order to program MGA video modes when the VGA I/O space is not enabled.

⁽⁶⁾ Reserved locations are decoded. The returned values are unknown.

2.2 Register Mapping

Note: For the values in Table 2-4, reserved locations should not be accessed. Writing to reserved locations may affect other registers. Reading from reserved locations will return unknown data. All footnote references can be found at the end of the table.

		Memory	I/O			
Register Mnemonic Name	Access	$Address^{(1)}$	$Address^{(2)}$	Index	Description/Comments	Page
DWGCTL	WO	1C00h		00h	Drawing Control	3-99
MACCESS	WO	1C04h	_	01h	Memory Access	3-119
MCTLWTST	WO	1C08h	_	02h	Memory Control Wait State	3-121
ZORG	WO	1C0Ch	_	03h	Z-Depth Origin	3-223
PAT0	WO	1C10h	_	04h	Pattern	3-128
PAT1	WO	1C14h		05h	Pattern	"
	WO	1C18h			Reserved	
PLNWT	WO	1C1Ch	_	07h	Plane Write Mask	3-130
BCOL	WO	1C20h	_	08h	Background Color / Blit Color Mask	3-43
FCOL	WO	1C24h		09h	Foreground Color / Blit Color Key	3-107
		1C28h	_		Reserved	
	WO	1C2Ch	_	0Bh	Reserved (SRCBLT)	
SRC0	WO	1C30h		0Ch	Source	3-153
SRC1	WO	1C34h	_	0Dh	Source	"
SRC2	WO	1C38h	_	0Eh	Source	"
SRC3	WO	1C3Ch	_	0Fh	Source	"
XYSTRT ⁽³⁾	WO	1C40h		10h	XY Start Address	3-217
XYEND ⁽³⁾	WO	1C44h	_	11h	XY End Address	3-216
	1C48	3h-1C4Fh			Reserved	
SHIFT ⁽³⁾	WO	1C50h	_	14h	Funnel Shifter Control	3-142
DMAPAD ⁽³⁾	WO	1C54h	_	15h	DMA Padding	3-81
SGN ⁽³⁾	WO	1C58h		16h	Sign	3-139
LEN ⁽³⁾	WO	1C5Ch		17h	Length	3-118
AR0 ⁽³⁾	WO	1C60h		18h	Multi-Purpose Address 0	3-36
AR1 ⁽³⁾	WO	1C64h		19h	Multi-Purpose Address 1	3-37
AR2 ⁽³⁾	WO	1C68h		1Ah	Multi-Purpose Address 2	3-38
AR3 ⁽³⁾	WO	1C6Ch		1Bh	Multi-Purpose Address 3	3-39
AR4 ⁽³⁾	WO	1C70h		1Ch	Multi-Purpose Address 4	3-40
AR5 ⁽³⁾	WO	1C74h		1Dh	Multi-Purpose Address 5	3-41
AR6 ⁽³⁾	WO	1C78h		1Eh	Multi-Purpose Address 6	3-42
		1C7Ch			Reserved	
CXBNDRY ⁽³⁾	WO	1C80h		20h	Clipper X Boundary	3-74

<i>Table 2-4:</i>	Register Map	(Part 1 of 13)
-------------------	--------------	----------------

		Memory	<i>I/O</i>			
Register Mnemonic Name	Access	$Address^{(1)}$	Address ⁽²⁾	Index	Description/Comments	Page
FXBNDRY ⁽³⁾	WO	1C84h	_	21h	X Address (Boundary)	3-113
YDSTLEN ⁽³⁾	WO	1C88h	_	22h	Y Destination and Length	3-220
PITCH ⁽³⁾	WO	1C8Ch	_	23h	Memory Pitch	3-129
YDST ⁽³⁾	WO	1C90h		24h	Y Address	3-219
YDSTORG ⁽³⁾	WO	1C94h		25h	Memory Origin	3-221
YTOP ⁽³⁾	WO	1C98h		26h	Clipper Y Top Boundary	3-222
YBOT ⁽³⁾	WO	1C9Ch		27h	Clipper Y Bottom Boundary	3-218
CXLEFT ⁽³⁾	WO	1CA0h		28h	Clipper X Minimum Boundary	3-75
CXRIGHT ⁽³⁾	WO	1CA4h		29h	Clipper X Maximum Boundary	3-76
FXLEFT ⁽³⁾	WO	1CA8h		2Ah	X Address (Left)	3-114
FXRIGHT ⁽³⁾	WO	1CACh		2Bh	X Address (Right)	3-115
XDST ⁽³⁾	WO	1CB0h		2Ch	X Destination Address	3-215
	1CB4	h-1CBFh			Reserved	
DR0	WO	1CC0h		30h	Data ALU 0	3-85
FOGSTART	WO	1CC4h		31h	Fog Start	3-110
DR2	WO	1CC8h		32h	Data ALU 2	3-86
DR3	WO	1CCCh		33h	Data ALU 3	3-87
DR4	WO	1CD0h		34h	Data ALU 4	3-88
FOGXINC	WO	1CD4h		35h	Fog X Inc	3-111
DR6	WO	1CD8h		36h	Data ALU 6	3-89
DR7	WO	1CDCh		37h	Data ALU 7	3-90
DR8	WO	1CE0h		38h	Data ALU 8	3-91
FOGYINC	WO	1CE4h		39h	Fog Y Inc	3-112
DR10	WO	1CE8h		3Ah	Data ALU 10	3-92
DR11	WO	1CECh	_	3Bh	Data ALU 11	3-93
DR12	WO	1CF0h		3Ch	Data ALU 12	3-94
FOGCOL	WO	1CF4h		3Dh	Fog Color	3-109
DR14	WO	1CF8h	_	3Eh	Data ALU 14	3-95
DR15	WO	1CFCh	_	3Fh	Data ALU 15	3-96
	1D00	h-1DBFh		(6)	Same mapping as 1C00h-1CBFh ⁽⁴⁾	
WIADDR	WO	1DC0h		70h	WARP Instruction Address	3-203
WFLAG	WO	1DC4h		71h	WARP Flags	3-200
WGETMSB	WO	1DC8h	_	72h	WARP GetMSB Value	3-202
WVRTXSZ	WO	1DCCh	_	73h	WARP Vertex Size	3-210
_	WO	1DD0h		74h	Reserved (WDBR)	
	1DD4	h - 1E0Fh			Reserved	

 Table 2-4: Register Map (Part 2 of 13)

		Memory	I/O			
Register Mnemonic Name	Access	$Address^{(1)}$	$Address^{(2)}$	Index	Description/Comments	Page
FIFOSTATUS	RO	1E10h			Bus FIFO Status	3-108
STATUS	R/W	1E14h			Status	3-155
ICLEAR	WO	1E18h	_		Interrupt Clear	3-116
IEN	R/W	1E1Ch			Interrupt Enable	3-117
VCOUNT	RO	1E20h			Vertical Count	3-188
—	1E24	h - 1E2Fh			Reserved	
DMAMAP30	R/W	1E30h			DMA Map 3h to 0h	3-77
DMAMAP74	R/W	1E34h			DMA Map 7h to 4h	3-78
DMAMAPB8	R/W	1E38h			DMA Map Bh to 8h	3-79
DMAMAPFC	R/W	1E3Ch			DMA Map Fh to Ch	3-80
RST	R/W	1E40h			Reset	3-134
MEMRDBK	R/W	1E44h			Memory Read Back	3-124
TEST0	R/W	1E48h			Test0	3-157
AGP_PLL	R/W	1E4Ch	_		AGP 2X PLL Control/Status	3-30
PRIMPTR	R/W	1E50h			Primary List Status Fetch Pointer	3-133
OPMODE	R/W	1E54h	_		Operating Mode	3-126
PRIMADDRESS	R/W	1E58h			Primary DMA Current Address	3-131
PRIMEND	R/W	1E5Ch			Primary DMA End Address	3-132
WIADDRNB	R/W	1E60h			WARP Instruct. Add. (Non-Blocking)	3-205
WFLAGNB	R/W	1E64h			WARP Flags (Non-Blocking)	3-201
WIMEMADDR	WO	1E68h			WARP Instruction Memory Address	3-206
WCODEADDR	RO	1E6Ch			WARP Microcode Address	3-199
WMISC	R/W	1E70h			WARP Miscellaneous	3-208
	1E7C	h - 1E7Fh			Reserved	_
DWG_INDIR_WT<0>	WO	1E80h			Drawing Register Indirect Write 0	3-98
	WO	1E84h	-1EB8h			
DWG_INDIR_WT<15>	WO	1EBCh			Drawing Register Indirect Write 15	3-98
	1EC0	h - 1FBFh	_		Reserved	_
ATTR (Index)	R/W	1FC0h	3C0h		Attribute Controller	3-226
ATTR (Data)	WO	1FC0h	3C0h		Attribute Controller	"
ATTR (Data)	RO	1FC1h	3C1h		Attribute Controller	"
—		1FC1h	3C1h		Reserved	_
ATTR0	R/W			00h	Palette entry 0	3-226
ATTR1	R/W			01h	Palette entry 1	"
ATTR2	R/W			02h	Palette entry 2	"
ATTR3	R/W			03h	Palette entry 3	"

 Table 2-4: Register Map (Part 3 of 13)

Register Minemonic NameAccessAddress ⁽²⁾ IndexDescription/CommentsPageATTR4R/W0thPalette entry 4"ATTR5R/W0thPalette entry 5"ATTR6R/W0thPalette entry 5"ATTR6R/W0thPalette entry 6"ATTR7R/W0thPalette entry 7"ATTR9R/W0thPalette entry 9"ATTR9R/W0thPalette entry 9"ATTR4R/W0thPalette entry 10"ATTR5R/W0thPalette entry 10"ATTR5R/W0thPalette entry 10"ATTR6R/W0thPalette entry 10"ATTR5R/W0thPalette entry 10"ATTR1R/W0thPalette entry 10"ATTR5R/W0thPalette entry 10"ATTR5R/W0thPalette entry 10"ATTR6R/W0thPalette entry 10"ATTR5R/W0thPalette entry 103:231ATTR5R/W10thAttribute Mode Control3:231ATTR6R/W-			Memory	I/O			
ATTR4 R/W 04h Palette entry 4 " ATTR5 R/W 05h Palette entry 5 " ATTR6 R/W 05h Palette entry 6 " ATTR6 R/W 07h Palette entry 6 " ATTR7 R/W 08h Palette entry 7 " ATTR9 R/W 08h Palette entry 9 " ATTRA R/W 08h Palette entry 9 " ATTRA R/W 08h Palette entry 9 " ATTRA R/W 08h Palette entry 16 " ATTRD R/W 08h Palette entry 16 " ATTR1 R/W 08h Palette entry 16 " ATTR1 R/W 10h Attribute Mode Control 3-232 ATTR11 R/W <	Register Mnemonic Name	Access	-		Index	Description/Comments	Page
ATTR5 R/W 05h Palette entry 5 " ATTR6 R/W 06h Palette entry 6 " ATTR7 R/W 07h Palette entry 7 " ATTR8 R/W 08h Palette entry 8 " ATTR9 R/W 08h Palette entry 9 " ATTR4 R/W 08h Palette entry 9 " ATTR5 R/W 08h Palette entry 16 " ATTR0 R/W 08h Palette entry 16 " ATTR0 R/W 00h Palette entry 16 " ATTR10 R/W 01h Attribute Mode Control 3-239 ATTR11 R/W 11h Overstan Color 3-231 ATTR12 R/W 13h Horizontal Pel Panning 3-234 ATTR14 R/W <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>	-					-	
ATTR6R/W06hPalette entry 6"ATTR7R/W07hPalette entry 7"ATTR8R/W08hPalette entry 8"ATTR9R/W08hPalette entry 9"ATTR4R/W08hPalette entry 9"ATTR5R/W08hPalette entry A"ATTRCR/W08hPalette entry A"ATTRCR/W08hPalette entry D"ATTRDR/W08hPalette entry D"ATTR1R/W08hPalette entry F"ATTR5R/W07hPalette entry F"ATTR1R/W10hAttribute Mode Control3-229ATTR1R/W13hHorizontal Pel Panning3-233ATTR14R/W14hColor Select3-23414hColor Select3-239MISCW/OIFC2h3C2hInput Status Output3-299MISCR/WIFC2h3C2hInput Status Output3-296SEQ (Index)R/WIFC2h3C2hSequencer3-296SEQ (Index)R/WIFC2h3C3hSequencer3-296SEQR/W						•	"
ATTR7 R/W 07h Palette entry 7 * ATTR8 R/W 08h Palette entry 8 *' ATTR9 R/W 09h Palette entry 9 *' ATTRA R/W 09h Palette entry 0 *' ATTRB R/W 00h Palette entry 0 *' ATTRD R/W 00h Palette entry 0 *' ATTRE R/W 00h Attribute Mode Control 3-229 ATTR10 R/W 11h Overscan Color 3-233 ATTR11 R/W 13h Horizontal Pel Paning 3-233 ATTR12 R/W						•	"
ATTR8 R/W 08h Palette entry 8 " ATTR9 R/W 09h Palette entry 9 " ATTRA R/W 09h Palette entry 9 " ATTRB R/W 08h Palette entry B " ATTRD R/W 08h Palette entry C " ATTRD R/W 08h Palette entry D " ATTRD R/W 08h Palette entry F " ATTR1 R/W 08h Palette entry F " ATTR1 R/W 08h Palette entry F " ATTR1 R/W 10h Attribute Mode Control 3-232 ATTR14 R/W 11h Overscan Color 3-231 ATTR12 R/W 13h Horizontal Pel Panning 3-233 ATTR14 R/W						•	"
ATTR9R/W09hPalette entry 9"ATTRAR/W0AhPalette entry A"ATTRBR/W0BhPalette entry B"ATTRCR/W0ChPalette entry C"ATTRDR/W0DhPalette entry D"ATTRDR/W0DhPalette entry D"ATTRER/W0DhPalette entry E"ATTR1R/W10hAttribute Mode Control3-229ATTR10R/W11hOverscan Color3-231ATTR11R/W13hHorizontal Pel Panning3-233ATTR13R/W14hColor Plane Enable3-232ATTR14R/W14hColor Select3-23414hColor Select3-239MISCWOIFC2h3C2hInput Status 03-292MISCWOIFC2h3C2hMiscellaneous Output3-294R/WIFC3h3C3hReserved, not decoded for I/OSEQ (Index)R/WIFC3h3C3hSequencer3-299SEQ(Inda)R/W00hSEQO3-299SEQ1R/W00hCharacter Map Select3-300<						•	"
ATTRAR/W0AhPalette entry A"ATTRBR/W0BhPalette entry B"ATTRCR/W0ChPalette entry C"ATTRDR/W0DhPalette entry D"ATTRER/W0EhPalette entry D"ATTRFR/W0EhPalette entry F"ATTR10R/W10hAttribute Mode Control3-229ATTR11R/W12hColor Plane Enable3-231ATTR12R/W13hHorizontal Pel Panning3-233ATTR13R/W14hColor Select3-234ATTR14R/W14hColor Select3-23414hColor Select3-234INSTS0RO1FC2h3C2hInput Status 03-292MISCWO1FC2h3C2hMiscellaneous Output3-294R/W1FC3h3C3h ⁽⁵⁾ Reserved, not decoded for I/OSEQ (Index)R/W1FC4h3C4hSequencerSEQR/W00hSEQ03-298SEQ2R/W02hMap Mask3-299SEQ3R/W03hCharacter Map Select3-300							"
ATTRBR/W0BhPalette entry B"ATTRCR/W0ChPalette entry C"ATTRDR/W0DhPalette entry D"ATTRER/W0EhPalette entry E"ATTRFR/W0FhPalette entry F"ATTR10R/W10hAttribute Mode Control3-229ATTR11R/W11hOverscan Color3-231ATTR12R/W12hColor Plane Enable3-233ATTR13R/W13hHorizontal Pel Panning3-233ATTR14R/W14hColor Select3-24912hColor Select3-234INSTS0RO1FC2h3C2hInput Status 03-292MISCWO1FC2h3C2hMiscellaneous Output3-294R/W1FC3h3C3h ⁽⁵⁾ Reserved, not decoded for I/OSEQ (Index)R/W1FC3h3C5hSequencerSEQR/W00hSEQ03-297SEQ1R/W00hSEQ03-298SEQ2R/W03hCharacter Map Select3-300SEQ4R/W03hCharacter Map Select3-300SEQ4<						-	"
ATTRC R/W OCh Palette entry C " ATTRD R/W ODh Palette entry D " ATTRE R/W ODh Palette entry D " ATTRE R/W ODh Palette entry E " ATTRF R/W Oth Attribute Mode Control 3-229 ATTR10 R/W 10h Attribute Mode Control 3-231 ATTR12 R/W 11h Overscan Color 3-231 ATTR14 R/W 13h Horizontal Pel Panning 3-233 ATTR14 R/W 14h Color Select 3-234 - - 14h Color Select 3-234 - - 14h Color Select 3-234 - - Ibni Staus 0 3-239 3-234 MISC RO IFC2h 3C2h - Input Staus 0 3-296 3294						•	"
ATTRD R/W ODh Palette entry D " ATTRE R/W OEh Palette entry E " ATTRF R/W OFh Palette entry E " ATTRF R/W OFh Palette entry F " ATTR10 R/W 10h Attribute Mode Control 3-229 ATTR11 R/W 12h Color Plane Enable 3-233 ATTR12 R/W 13h Horizontal Pel Panning 3-233 ATTR14 R/W 14h Color Select 3-234 - 14h Color Select 3-234 - 14h Color Select 3-234 - 15h - 1Fh: Reserved INSC RO IFC2h 3C2h - Input Staus 0 3-294 R/W I							"
ATTRE R/W 0Eh Palete entry E " ATTRF R/W 0Fh Palete entry F " ATTR10 R/W 10h Attribute Mode Control 3-229 ATTR11 R/W 11h Overscan Color 3-231 ATTR12 R/W 12h Color Plane Enable 3-232 ATTR13 R/W 13h Horizontal Pel Panning 3-233 ATTR14 R/W 14h Color Select 3-234 14h Color Select 3-234 Input Status 0 3-294 RO 1FC2h 3C2h - Miscellaneous Output 3-294 R/W 1FC5h 3C5h - Sequencer SEQ (Index) R/W IFC5h 3C5h - <t< td=""><td>ATTRD</td><td>R/W</td><td></td><td></td><td></td><td>•</td><td>"</td></t<>	ATTRD	R/W				•	"
ATTRF R/W OFh Palette entry F " ATTR10 R/W I0h Attribute Mode Control 3-229 ATTR11 R/W I1h Overscan Color 3-231 ATTR12 R/W I1h Overscan Color 3-231 ATTR12 R/W 12h Color Plane Enable 3-232 ATTR13 R/W 13h Horizontal Pel Panning 3-233 ATTR14 R/W 14h Color Select 3-234 14h Color Select 3-234 14h Color Select 3-234 14h Color Select 3-234 R/W IFC2h 3C2h - Input Status 0 3-292 MISC WO IFC3h 3C3h'5) - Sequencer 3-296 SEQ (Index)<	ATTRE	R/W					"
ATTR10 R/W I0h Attribute Mode Control $3-229$ ATTR11 R/W I1h Overscan Color $3-231$ ATTR12 R/W I2h Color Plane Enable $3-232$ ATTR12 R/W I2h Color Plane Enable $3-233$ ATTR14 R/W I3h Horizontal Pel Panning $3-233$ ATTR14 R/W I4h Color Select $3-234$ 14h Color Select $3-234$ I4h Color Select $3-234$ I4h Color Select $3-234$ Iput Status 0 $3-292$ MISC WO IFC2h $3C2h$ Input Status 0 $3-294$ R/W IFC3h $3C2h$ Reserved, not decoded for I/O SEQ (Index) R/W IFC3h $3C3h^{(5)}$ Sequencer	ATTRF						"
ATTR11 R/W 11h Overscan Color 3-231 ATTR12 R/W 12h Color Plane Enable 3-232 ATTR13 R/W 13h Horizontal Pel Panning 3-233 ATTR14 R/W 14h Color Select 3-234 14h Color Select 3-234 14h Color Select 3-234 14h Color Select 3-234 14h Color Select 3-234 14h Color Select 3-234 Iftright 3C2h Input Status 0 3-292 MISC WO IFC2h 3C2h Miscellaneous Output 3-294 SEQ (Index) R/W IFC3h 3C3h Sequencer 3-296 SEQ (Data) R/W IFC5h 3C5h - Sequencer 3-297	ATTR10	R/W				· ·	3-229
ATTR13 R/W 13h Horizontal Pel Panning 3-233 ATTR14 R/W 14h Color Select 3-234 14h Color Select 3-234 14h Color Select 3-234 14h Color Select 3-234 14h Color Select 3-234 Ipput Status 0 3-234 R/W IFC2h 3C2h Input Status 0 3-292 MISC WO IFC2h 3C2h Miscellaneous Output 3-294 R/W IFC3h 3C3h ⁽⁵⁾ Reserved, not decoded for I/O SEQ (Index) R/W IFC4h 3C4h Sequencer 3-296 SEQ (Index) R/W IFC5h 3C5h Sequencer SEQ (Index) R/W 00h SEQ0 3-299 SEQ1<	ATTR11	R/W			11h		
ATTR14 R/W 14h Color Select 3-234 15h - 1Fh: Reserved INSTS0 RO 1FC2h 3C2h Input Status 0 3-292 MISC WO 1FC2h 3C2h Miscellaneous Output 3-294 R/W 1FC3h 3C3h ⁽⁵⁾ Reserved, not decoded for I/O SEQ (Index) R/W 1FC4h 3C4h Sequencer 3-296 SEQ (Data) R/W 1FC5h 3C5h Sequencer SEQ (Data) R/W 1FC5h 3C5h - Sequencer SEQ (Data) R/W 00h SEQ0 3-297 SEQ1 R/W 01h Clocking Mode 3-298 SEQ2 R/W 02h Map Mask 3-299 SEQ3 R/W 03h Character Map Select 3-300 SEQ4 R/W	ATTR12	R/W			12h	Color Plane Enable	
ATTR14 R/W 14h Color Select 3-234 15h - 1Fh: Reserved INSTS0 RO 1FC2h 3C2h Input Status 0 3-292 MISC WO 1FC2h 3C2h Miscellaneous Output 3-294 R/W 1FC3h 3C3h ⁽⁵⁾ Reserved, not decoded for I/O SEQ (Index) R/W 1FC4h 3C4h Sequencer 3-296 SEQ (Data) R/W 1FC5h 3C5h Sequencer SEQ (Data) R/W 1FC5h 3C5h - Sequencer SEQ (Data) R/W 00h SEQ0 3-297 SEQ1 R/W 01h Clocking Mode 3-298 SEQ2 R/W 02h Map Mask 3-299 SEQ3 R/W 03h Character Map Select 3-300 SEQ4 R/W	ATTR13	R/W			13h	Horizontal Pel Panning	3-233
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ATTR14	R/W				-	3-234
MISC WO 1FC2h 3C2h — Miscellaneous Output 3-294 — R/W 1FC3h $3C3h^{(5)}$ — Reserved, not decoded for I/O — SEQ (Index) R/W 1FC4h $3C4h$ — Sequencer 3-296 SEQ (Index) R/W 1FC5h $3C5h$ — Sequencer - SEQ (Data) R/W 1FC5h $3C5h$ — Sequencer - SEQ (Data) R/W IFC5h $3C5h$ — Sequencer - SEQ1 R/W IFC5h $3C5h$ - Sequencer 3-297 SEQ1 R/W — - 00h SEQ0 3-297 SEQ2 R/W - - 02h Map Mask 3-299 SEQ3 R/W - - 03h Character Map Select 3-300 SEQ4 R/W - - 04h Memory Mode 3-301 — IFC6h -<						15h - 1Fh: Reserved	
R/W 1FC3h $3C3h^{(5)}$ Reserved, not decoded for I/O SEQ (Index) R/W 1FC4h 3C4h Sequencer 3-296 SEQ (Data) R/W 1FC5h 3C5h Sequencer SEQ (Data) R/W 1FC5h 3C5h Sequencer SEQ (Data) R/W 00h SEQ0 3-297 SEQ1 R/W 01h Clocking Mode 3-298 SEQ2 R/W 02h Map Mask 3-299 SEQ3 R/W 03h Character Map Select 3-300 SEQ4 R/W 04h Memory Mode 3-301 R/W 05h - 07h: Reserved 1FC6h - Reserved 1FC7h 3C7h - DAC St	INSTS0	RO	1FC2h	3C2h		Input Status 0	3-292
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MISC	WO	1FC2h	3C2h		Miscellaneous Output	3-294
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		R/W	1FC3h	3C3h ⁽⁵⁾		Reserved, not decoded for I/O	
SEQ (Data) R/W 1FC5h 3C5h — Sequencer — SEQ0 R/W — — 00h SEQ0 3-297 SEQ1 R/W — — 01h Clocking Mode 3-298 SEQ2 R/W — — 01h Clocking Mode 3-299 SEQ3 R/W — — 02h Map Mask 3-299 SEQ4 R/W — — 03h Character Map Select 3-300 SEQ4 R/W — — 04h Memory Mode 3-301 SEQ4 R/W — — 04h Memory Mode 3-301 — R/W — — 04h Memory Mode 3-301 — R/W — — 04h Memory Mode 3-301 — M/W — — 05h - 07h: Reserved — — IFC6h — — Reserved — MO 1FC7h 3C7h — DAC Status(requires a byte access) 3-279	SEQ (Index)	R/W	1FC4h			Sequencer	3-296
SEQ0 R/W — — 00h SEQ0 3-297 SEQ1 R/W — — 00h Clocking Mode 3-298 SeQ2 R/W — — 01h Clocking Mode 3-298 SeQ2 R/W — — 01h Clocking Mode 3-298 SeQ2 R/W — — 02h Map Mask 3-299 SeQ3 SEQ3 R/W — — 02h Map Mask 3-299 SeQ4 R/W — — 02h Map Mask 3-299 SeQ4 R/W — — 03h Character Map Select 3-300 Seq4 SEQ4 R/W — — 04h Memory Mode 3-301 … <td>, ,</td> <td>R/W</td> <td></td> <td>3C5h</td> <td></td> <td>*</td> <td></td>	, ,	R/W		3C5h		*	
SEQ2 R/W — — 02h Map Mask 3-299 SEQ3 R/W — — 03h Character Map Select 3-300 SEQ4 R/W — — 04h Memory Mode 3-301 $-$ R/W — — 05h - 07h: Reserved — DACSTAT RO 1FC7h 3C7h — DAC Status(requires a byte access) 3-279 $-$ WO 1FC7h — — Reserved — — $-$ 1FC9h — — Reserved	, ,	R/W			00h		3-297
SEQ2 R/W — — 02h Map Mask 3-299 SEQ3 R/W — — 03h Character Map Select 3-300 SEQ4 R/W — — 04h Memory Mode 3-301 $-$ R/W — — 05h - 07h: Reserved — DACSTAT RO 1FC7h 3C7h — DAC Status(requires a byte access) 3-279 $-$ WO 1FC7h — — Reserved — — $-$ 1FC9h — — Reserved	SEQ1	R/W			01h	Clocking Mode	3-298
SEQ4R/W——04hMemory Mode3-301—R/W——05h - 07h: Reserved——1FC6h——Reserved—DACSTATRO1FC7h3C7h—DAC Status(requires a byte access)3-279—WO1FC7h——Reserved——1FC%+1—Memory Mode—FEATRO1FCAh3CAh—Feature Control3-280—WO1FCAh3CAh—Reserved—	SEQ2	R/W			02h		3-299
SEQ4R/W——04hMemory Mode3-301—R/W——05h - 07h: Reserved——1FC6h——Reserved—DACSTATRO1FC7h3C7h—DAC Status(requires a byte access)3-279—WO1FC7h——Reserved——1FC%+1—Memory Mode—FEATRO1FCAh3CAh—Feature Control3-280—WO1FCAh3CAh—Reserved—	SEQ3	R/W			03h	Character Map Select	3-300
1FC6hReservedDACSTATRO1FC7h3C7hDAC Status(requires a byte access)3-279WO1FC7hReserved1FC8b-1FC9hReservedFEATRO1FCAh3CAhFeature Control3-280WO1FCAh3CAhReserved	SEQ4	R/W			04h	_	3-301
DACSTATRO1FC7h3C7h—DAC Status(requires a byte access)3-279—WO1FC7h——Reserved——1FC7h——Reserved——1FC8+1FC9h——Reserved—FEATRO1FCAh3CAh—Feature Control3-280—WO1FCAh3CAh—Reserved—		R/W				05h - 07h: Reserved	
— WO 1FC7h — — Reserved — — 1FC8+1FC9h — — Reserved — FEAT RO 1FCAh 3CAh — Feature Control 3-280 — WO 1FCAh 3CAh — Reserved —			1FC6h			Reserved	
— 1FC9h — — Reserved — FEAT RO 1FCAh 3CAh — Feature Control 3-280 — WO 1FCAh 3CAh — Reserved —	DACSTAT	RO	1FC7h	3C7h		DAC Status(requires a byte access)	3-279
FEATRO1FCAh3CAh—Feature Control3-280—WO1FCAh3CAh—Reserved—		WO	1FC7h			Reserved	
— WO 1FCAh 3CAh — Reserved —		1FC8	3h-1FC9h			Reserved	
	FEAT	RO	1FCAh	3CAh		Feature Control	3-280
- $-$ 1FCBh 3CBh ⁽⁵⁾ $-$ Reserved, not decoded for I/O $-$		WO	1FCAh	3CAh		Reserved	
			1FCBh	3CBh ⁽⁵⁾		Reserved, not decoded for I/O	_

 Table 2-4: Register Map (Part 4 of 13)

		Memory	I/O			
Register Mnemonic Name	Access	$Address^{(1)}$	$Address^{(2)}$	Index	Description/Comments	Page
MISC	RO	1FCCh	3CCh		Miscellaneous Output	3-294
	WO	1FCCh	3CCh		Reserved	—
		1FCDh	3CDh ⁽⁵⁾		Reserved, not decoded for I/O	
GCTL (Index)	R/W	1FCEh	3CEh		Graphics Controller	3-281
GCTL (Data)	R/W	1FCFh	3CFh		Graphics Controller	"
GCTL0	R/W			00h	Set/Reset	3-282
GCTL1	R/W		_	01h	Enable Set/Reset	3-283
GCTL2	R/W			02h	Color Compare	3-284
GCTL3	R/W			03h	Data Rotate	3-285
GCTL4	R/W			04h	Read Map Select	3-286
GCTL5	R/W			05h	Graphics Mode	3-287
GCTL6	R/W			06h	Miscellaneous	3-289
GCTL7	R/W	_		07h	Color Don't Care	3-290
GCTL8	R/W		_	08h	Bit Mask	3-291
				09h -	0Fh: Reserved	
	1FD()h-1FD3h			Reserved	
CRTC (Index)	R/W	1FD4h	3D4h		CRTC Registers (or 3B4h ⁽⁶⁾)	3-236
CRTC (Data)	R/W	1FD5h	3D5h		CRTC Registers (or 3B5h ⁽⁶⁾)	"
CRTC0	R/W			00h	Horizontal Total	3-238
CRTC1	R/W			01h	Horizontal Display Enable End	3-239
CRTC2	R/W			02h	Start Horizontal Blanking	3-240
CRTC3	R/W			03h	End Horizontal Blanking	3-241
CRTC4	R/W			04h	Start Horizontal Retrace Pulse	3-242
CRTC5	R/W			05h	End Horizontal Retrace	3-243
CRTC6	R/W			06h	Vertical Total	3-244
CRTC7	R/W			07h	Overflow	3-245
CRTC8	R/W			08h	Preset Row Scan	3-246
CRTC9	R/W			09h	Maximum Scan Line	3-247
CRTCA	R/W			0Ah	Cursor Start	3-248
CRTCB	R/W			0Bh	Cursor End	3-249
CRTCC	R/W			0Ch	Start Address High	3-250
CRTCD	R/W			0Dh	Start Address Low	3-251
CRTCE	R/W			0Eh	Cursor Location High	3-252
CRTCF	R/W			0Fh	Cursor Location Low	3-253
CRTC10	R/W			10h	Vertical Retrace Start	3-254
CRTC11	R/W			11h	Vertical Retrace End	3-255

 Table 2-4: Register Map (Part 5 of 13)

		Memory	<i>I/O</i>			
Register Mnemonic Name	Access	$Address^{(1)}$	$Address^{(2)}$	Index	Description/Comments	Page
CRTC12	R/W	_		12h	Vertical Display Enable End	3-256
CRTC13	R/W			13h	Offset	3-257
CRTC14	R/W		_	14h	Underline Location	3-258
CRTC15	R/W			15h	Start Vertical Blank	3-259
CRTC16	R/W			16h	End Vertical Blank	3-260
CRTC17	R/W			17h	CRTC Mode Control	3-261
CRTC18	R/W		_	18h	Line Compare	3-265
-	-			19h -	21h: Reserved	—
CRTC22	R/W		_	22h	CPU Read Latch	3-266
-	-		_	23h	Reserved	_
CRTC24	R/W		_	24h	Attributes Address/Data Select	3-267
-	-		_	25h	Reserved	
CRTC26	R/W		_	26h	Attributes Address	3-268
			_	27h -	3Fh: Reserved	—
		1FD6h	3D6h ⁽⁵⁾	_	Reserved, not decoded for I/O (or 3B6h ⁽⁶⁾)	_
		1FD7h	3D7h ⁽⁵⁾		Reserved, not decoded for I/O (or 3B7h ⁽⁶⁾)	_
	1FD8	8h-1FD9h			Reserved	
INSTS1	RO	1FDAh	3DAh		Input Status 1 (or 3BAh ⁽⁶⁾)	3-293
FEAT	WO	1FDAh	3DAh		Feature Control (or 3BAh ⁽⁶⁾)	3-280
		1FDBh	3DBh ⁽⁵⁾		Reserved, not decoded for I/O (or 3BBh ⁽⁶⁾)	_
	1FDC	h-1FDDh			Reserved	
CRTCEXT (Index)	R/W	1FDEh	3DEh		CRTC Extension	3-269
CRTCEXT (Data)	R/W	1FDFh	3DFh		CRTC Extension	"
CRTCEXT0	R/W			00h	Address Generator Extensions	3-270
CRTCEXT1	R/W			01h	Horizontal Counter Extensions	3-271
CRTCEXT2	R/W			02h	Vertical Counter Extensions	3-272
CRTCEXT3	R/W			03h	Miscellaneous	3-273
CRTCEXT4	R/W			04h	Memory Page	3-275
CRTCEXT5	R/W			05h	Horizontal Video Half Count	3-276
CRTCEXT6	R/W			06h	Priority Request Control	3-277
CRTCEXT7	R/W			07h	Requester Control	3-278
	1FE0	h - 1FFEh			Reserved	_
CACHEFLUSH	R/W	1FFFh			Cache Flush	3-235
WIMEMDATA	R/W	2000h	-207Fh		WARP Instruction Memory Data	3-207

 Table 2-4: Register Map (Part 6 of 13)

		Memory	I/O			
Register Mnemonic Name	Access	$Address^{(1)}$	$Address^{(2)}$	Index	Description/Comments	Page
	2080	h-2BFFh			Reserved	
TMR0	WO	2C00h		80h	Texture Mapping ALU 0	3-177
TMR1	WO	2C04h		81h	Texture Mapping ALU 1	3-178
TMR2	WO	2C08h		82h	Texture Mapping ALU 2	3-179
TMR3	WO	2C0Ch		83h	Texture Mapping ALU 3	3-180
TMR4	WO	2C10h		84h	Texture Mapping ALU 4	3-181
TMR5	WO	2C14h		85h	Texture Mapping ALU 5	3-182
TMR6	WO	2C18h		86h	Texture Mapping ALU 6	3-183
TMR7	WO	2C1Ch		87h	Texture Mapping ALU 7	3-184
TMR8	WO	2C20h	_	88h	Texture Mapping ALU 8	3-185
TEXORG	WO	2C24h		89h	Texture Origin	3-169
TEXWIDTH	WO	2C28h	_	8Ah	Texture Width	3-176
TEXHEIGHT	WO	2C2Ch	_	8Bh	Texture Height	3-168
TEXCTL	WO	2C30h	_	8Ch	Texture Map Control	3-161
TEXTRANS	WO	2C34h		8Dh	Texture Transparency	3-174
TEXTRANSHIGH	WO	2C38h	_	8Eh	Texture Transparency	3-175
TEXCTL2	WO	2C3Ch	_	8Fh	Texture Map Control 2	3-165
SECADDRESS	R/W	2C40h		90h	Secondary DMA Current Address ⁽⁷⁾	3-135
SECEND	R/W	2C44h	_	91h	Secondary DMA End Address ⁽⁷⁾	3-136
SOFTRAP	R/W	2C48h	_	92h	Soft Trap Handle ⁽⁷⁾	3-143
DWGSYNC	R/W	2C4Ch		93h	Drawing Synchronisation	3-106
DR0_Z32 LSB	WO	2C50h	_	94h	Extended Data ALU 0	3-82
DR0_Z32 MSB	WO	2C54h		95h	Extended Data ALU 0	"
TEXFILTER	WO	2C58h		96h	Texture Filtering	3-166
TEXBORDERCOL	WO	2C5Ch	_	97h	Texture Border Color	3-160
DR2_Z32 LSB	WO	2C60h	_	98h	Extended Data ALU 2	3-83
DR2_Z32 MSB	WO	2C64h	_	99h	Extended Data ALU 2	"
DR3_Z32 LSB	WO	2C68h	_	9Ah	Extended Data ALU 3	3-84
DR3_Z32 MSB	WO	2C6Ch	_	9Bh	Extended Data ALU 3	"
ALPHASTART	WO	2C70h		9Ch	Alpha Start	3-33
ALPHAXINC	WO	2C74h	_	9Dh	Alpha X Inc	3-34
ALPHAYINC	WO	2C78h	_	9Eh	Alpha Y Inc	3-35
ALPHACTRL	WO	2C7Ch		9Fh	Alpha CTRL	3-31
SPECRSTART	WO	2C80h	_	A0h	Specular Lighting Red Start	3-150
SPECRXINC	WO	2C84h	_	Alh	Specular Lighting Red X Inc	3-151
SPECRYINC	WO	2C88h		A2h	Specular Lighting Red Y Inc	3-152

 Table 2-4: Register Map (Part 7 of 13)

		Memory	<i>I/O</i>			
Register Mnemonic Name	Access	$Address^{(1)}$	Address ⁽²⁾	Index	Description/Comments	Page
SPECGSTART	WO	2C8Ch		A3h	Specular Lighting Green Start	3-147
SPECGXINC	WO	2C90h	_	A4h	Specular Lighting Green X Inc	3-148
SPECGYINC	WO	2C94h		A5h	Specular Lighting Green Y Inc	3-149
SPECBSTART	WO	2C98h		A6h	Specular Lighting Blue Start	3-144
SPECBXINC	WO	2C9Ch		A7h	Specular Lighting Blue X Inc	3-145
SPECBYINC	WO	2CA0h		A8h	Specular Lighting Blue Y Inc	3-146
TEXORG1	WO	2CA4h	_	A9h	Texture Origin 1	3-170
TEXORG2	WO	2CA8h		AAh	Texture Origin 2	3-171
TEXORG3	WO	2CACh	_	ABh	Texture Origin 3	3-172
TEXORG4	WO	2CB0h	_	ACh	Texture Origin 4	3-173
SRCORG	WO	2CB4h	_	ADh	Source Origin	3-154
DSTORG	WO	2CB8h	_	AEh	Destination Origin	3-97
—	2CBC	h - 2CCFh	_		Reserved	_
SETUPADDRESS	R/W	2CD0h	_	B4h	Setup DMA Current Address ⁽⁷⁾	3-137
SETUPEND	R/W	2CD4h		B5h	Setup DMA End Address ⁽⁷⁾	3-138
—	2CD8	h - 2CFFh	_		Reserved	_
WR0	WO	2D00h	_	C0h	WARP Register 0	3-209
WR1	WO	2D04h		C1h	WARP Register 1	"
WR2	WO	2D08h		C2h	WARP Register 2	"
WR63	WO	2DFCh		FFh	WARP Register 63	3-209
—	2E00	h-3BFFh			Reserved	—
PALWTADD	R/W	3C00h	3C8h		Palette RAM Write Address	3-307
PALDATA	R/W	3C01h	3C9h		Palette RAM Data	3-305
PIXRDMSK	R/W	3C02h	3C6h		Pixel Read Mask	3-308
PALRDADD	R/W	3C03h	3C7h		Palette RAM Read Address. This register is WO for I/O accesses.	3-306
—	3C04	h - 3C09h	_		Reserved	—
X_DATAREG	R/W	3C0Ah	_		Indexed Data	3-309
—			_	00h -	03h: Reserved	_
XCURADDL	R/W	_	_	04h	Cursor Base Address Low	3-320
XCURADDH	R/W			05h	Cursor Base Address High	3-319
XCURCTRL	R/W			06h	Cursor Control	3-322
				07h	Reserved	
XCURCOL0RED	R/W			08h	Cursor Control 0 Red	3-321
XCURCOL0GREEN	R/W			09h	Cursor Control 0 Green	"
XCURCOL0BLUE	R/W			0Ah	Cursor Control 0 Blue	"

 Table 2-4: Register Map (Part 8 of 13)

2-12 Register Mapping

MGA-G200 Specification

		Memory	I/O			
Register Mnemonic Name	Access	Address ⁽¹⁾	Address ⁽²⁾	Index	Description/Comments	Page
				0Bh	Reserved	
XCURCOL1RED	R/W			0Ch	Cursor Control 1 Red	3-321
XCURCOL1GREEN	R/W		_	0Dh	Cursor Control 1 Green	3-321
XCURCOL1BLUE	R/W		_	0Eh	Cursor Control1 Blue	"
				0Fh	Reserved	
XCURCOL2RED	R/W			10h	Cursor Control 2 Red	3-321
XCURCOL2GREEN	R/W			11h	Cursor Control 2 Green	"
XCURCOL2BLUE	R/W			12h	Cursor Control 2 Blue	"
				13h -	17h: Reserved	
XVREFCTRL	R/W			18h	Voltage Reference Control	3-340
XMULCTRL	R/W			19h	Multiplex Control	3-329
XPIXCLKCTRL	R/W		_	1Ah	Pixel Clock Control	3-330
				1Bh	- 1Ch: Reserved	
XGENCTRL	R/W			1Dh	General Control	3-324
XMISCCTRL	R/W			1Eh	Miscellaneous Control	3-328
			_	1Fh ·	- 29h: Reserved	_
XGENIOCTRL	R/W			2Ah	General Purpose I/O Control	3-325
XGENIODATA	R/W			2Bh	General Purpose I/O Data	3-326
XSYSPLLM	R/W	_		2Ch	SYSPLL M Value	3-336
XSYSPLLN	R/W	_		2Dh	SYSPLL N Value	3-337
XSYSPLLP	R/W			2Eh	SYSPLL P Value	3-338
XSYSPLLSTAT	RO	_		2Fh	SYSPLL Status	3-339
		_			37h: Reserved	—
XZOOMCTRL	R/W			38h	Zoom Control	3-341
	—			39h	Reserved	
XSENSETEST	R/W			3Ah	Sense Test	3-335
				3Bh	Reserved	—
XCRCREML	RO			3Ch	CRC Remainder Low	3-318
XCRCREMH	RO			3Dh	CRC Remainder High	3-317
XCRCBITSEL	R/W			3Eh	CRC Bit Select	3-316
				3Fh	Reserved	
XCOLMSK	R/W			40h	Color Key Mask	3-314
				41h	Reserved	
XCOLKEY	R/W			42h	Color Key	3-312
	—			43h	Reserved	
XPIXPLLAM	R/W	—		44h	PIXPLL M Value Register Set A	3-331

b i v b <i>i</i>	<i>Table 2-4:</i>	Register Map	(Part 10 of 13)	
-------------------------	-------------------	--------------	-----------------	--

		Memory	<i>I/O</i>			
Register Mnemonic Name	Access	$Address^{(1)}$	Address ⁽²⁾	Index	Description/Comments	Page
XPIXPLLAN	R/W			45h	PIXPLL N Value Register Set A	3-332
XPIXPLLAP	R/W		_	46h	PIXPLL P Value Register Set A	3-333
			_	47h	Reserved	
XPIXPLLBM	R/W		_	48h	PIXPLL M Value Register Set B	3-331
XPIXPLLBN	R/W			49h	PIXPLL N Value Register Set B	3-332
XPIXPLLBP	R/W			4Ah	PIXPLL P Value Register Set B	3-333
				4Bh	Reserved	
XPIXPLLCM	R/W			4Ch	PIXPLL M Value Register Set C	3-331
XPIXPLLCN	R/W			4Dh	PIXPLL N Value Register Set C	3-332
XPIXPLLCP	R/W			4Eh	PIXPLL P Value Register Set C	3-333
XPIXPLLSTAT	RO			4Fh	PIXPLL Status	3-334
				50h	Reserved	
XKEYOPMODE	R/W			51h	KEYING Operating Mode	3-327
XCOLMSKORED	R/W			52h	Color Mask 0 Red	3-315
XCOLMSK0GREEN	R/W			53h	Color Mask 0 Green	"
XCOLMSK0BLUE	R/W			54h	Color Mask 0 Blue	"
XCOLKEY0RED	R/W			55h	Color Key 0 Red	3-313
XCOLKEY0GREEN	R/W			56h	Color Key 0 Blue	"
XCOLKEY0BLUE	R/W			57h	Color Key 0 Green	"
				58h -	5Fh: Reserved	
XCURCOL3RED	R/W			60h	Cursor Color 3 Red	3-321
XCURCOL3GREEN	R/W			61h	Cursor Color 3 Green	"
XCURCOL3BLUE	R/W			62h	Cursor Color 3 Blue	"
XCURCOL4RED	R/W			63h	Cursor Color 4 Red	"
XCURCOL4GREEN	R/W			64h	Cursor Color 4 Green	"
XCURCOL4BLUE	R/W		_	65h	Cursor Color 4 Blue	"
XCURCOL5RED	R/W		_	66h	Cursor Color 5 Red	"
XCURCOL5GREEN	R/W		_	67h	Cursor Color 5 Green	"
XCURCOL5BLUE	R/W			68h	Cursor Color 5 Blue	"
XCURCOL6RED	R/W	_		69h	Cursor Color 6 Red	"
XCURCOL6GREEN	R/W			6Ah	Cursor Color 6 Green	"
XCURCOL6BLUE	R/W			6Bh	Cursor Color 6 Blue	"
XCURCOL7RED	R/W			6Ch	Cursor Color 7 Red	"
XCURCOL7GREEN	R/W			6Dh	Cursor Color 7 Green	"
XCURCOL7BLUE	R/W			6Eh	Cursor Color 7 Blue	"
XCURCOL8RED	R/W			6Fh	Cursor Color 8 Red	"

Table 2-4: Register Map (Part 11 of 13)						
Register Mnemonic Name	Access	Memory Address ⁽¹⁾	I/O Address ⁽²⁾	Index	Description/Comments	Page
XCURCOL8GREEN	R/W			70h	Cursor Color 8 Green	"
XCURCOL8BLUE	R/W			71h	Cursor Color 8 Blue	"
XCURCOL9RED	R/W			72h	Cursor Color 9 Red	"
XCURCOL9GREEN	R/W			73h	Cursor Color 9 Green	"
XCURCOL9BLUE	R/W			74h	Cursor Color 9 Blue	"
XCURCOL10RED	R/W			75h	Cursor Color 10 Red	"
XCURCOL10GREEN	R/W			76h	Cursor Color 10 Green	"
XCURCOL10BLUE	R/W			77h	Cursor Color 10 Blue	"
XCURCOL11RED	R/W			78h	Cursor Color 11 Red	"
XCURCOL11GREEN	R/W			79h	Cursor Color 11 Green	"
XCURCOL11BLUE	R/W			7Ah	Cursor Color 11 Blue	"
XCURCOL12RED	R/W	_		7Bh	Cursor Color 12 Red	"
XCURCOL12GREEN	R/W	_		7Ch Cursor Color 12 Green		"
XCURCOL12BLUE	R/W	_		7Dh	Cursor Color 12 Blue	"
XCURCOL13RED	R/W			7Eh	Cursor Color 13 Red	"
XCURCOL13GREEN	R/W	V — 7Fh Cursor Color 13 Green		Cursor Color 13 Green	"	
XCURCOL13BLUE	R/W			80h	Cursor Color 13 Blue	"
XCURCOL14RED	R/W			81h	Cursor Color 14 Red	"
XCURCOL14GREEN	R/W			82h	Cursor Color 14 Green	"
XCURCOL14BLUE	R/W			83h	Cursor Color 14 Blue	"
XCURCOL15RED	R/W			84h	Cursor Color 15 Red	"
XCURCOL15GREEN	R/W		_	85h	Cursor Color 15 Green	"
XCURCOL15BLUE	R/W			86h	Cursor Color 15 Blue	"
		3C0Bh			Reserved	
CURPOSXL	R/W	3C0Ch			Cursor Position X LSB	3-304
CURPOSXH	R/W	3C0Dh			Cursor Position X MSB	"
CURPOSYL	R/W	3C0Eh			Cursor Position Y LSB	"
CURPOSYH	R/W	3C0Fh			Cursor Position Y MSB	"
	3C1	0-3CFFh			Reserved	
BESA1ORG	WO	3D00h			BES Buffer A-1 Org.	3-45
BESA2ORG	WO	3D04h			BES Buffer A-2 Org.	3-47
BESB1ORG	WO	3D08h			BES Buffer B-1 Org.	3-49
BESB2ORG	WO	3D0Ch			BES Buffer B-2 Org.	3-51
BESA1CORG	WO	3D10h			BES Buffer A-1 Chroma Org.	3-44

_

 Table 2-4: Register Map (Part 11 of 13)

WO

WO

3D14h

3D18h

BESA2CORG

BESB1CORG

BES Buffer A-2 Chroma Org.

BES Buffer B-1 Chroma Org.

3-46

3-48

		Memory	<i>I/O</i>			
Register Mnemonic Name	Access	$Address^{(1)}$	Address ⁽²⁾	Index	Description/Comments	Page
BESB2CORG	WO	3D1Ch			BES Buffer B-2 Chroma Org.	3-50
BESCTL	R/W	3D20h		_	BES Control	3-52
BESPITCH	WO	3D24h			BES Pitch	3-60
BESHCOORD	WO	3D28h		_	BES Horiz. Coordinates	3-55
BESVCOORD	WO	3D2Ch			BES Vert. Coordinates	3-66
BESHISCAL	WO	3D30h			BES Horiz. Inv. Scaling Factor	3-56
BESVISCAL	WO	3D34h			BES Vert. Inv. Scaling Factor	3-67
BESHSRCST	WO	3D38h			BES Horiz. Source Start	3-59
BESHSRCEND	WO	3D3Ch			BES Horiz. Source Ending	3-57
_		3D40h	- 3D44h		Reserved	
BESV1WGHT	WO	3D48h			BES Field 1 Vert. Weight Start	3-64
BESV2WGHT	WO	3D4Ch		_	BES Field 2 Vert. Weight Start	3-65
BESHSRCLST	WO	3D50h			BES Horiz. Source Last	3-58
BESV1SRCLST	WO	3D54h			BES Field 1 Vert. Source Last Pos.	3-62
BESV2SRCLST	WO	3D58h			BES Field 2 Vert. Source Last Pos.	3-63
—		3D5Ch ·	- 3DBCh	_	Reserved	_
BESGLOBCTL	R/W	3DC0h		_	BES Global Control	3-54
BESSTATUS	RO	3DC4h			BES Status	3-61
—	3DC8	h - 3DFFh		_	Reserved	_
VINCTL0	WO	3E00h		_	Video Input Control Window 0	3-194
VINCTL1	WO	3E04h			Video Input Control Window 1	3-195
VBIADDR0	WO	3E08h		_	VBI Address Window 0	3-186
VBIADDR1	WO	3E0Ch		_	VBI Address Window 1	3-187
VINADDR0	WO	3E10h			Video Input Address Window 0	3-191
VINADDR1	WO	3E14h		_	Video Input Address Window 1	3-192
VINNEXTWIN	WO	3E18h		_	Video Input Next Window	3-196
VINCTL	WO	3E1Ch			Video Input Control	3-193
	3E20	h - 3E2Fh			Reserved	
VSTATUS	RO	3E30h			Video Status	3-197
VICLEAR	WO	3E34h			Video Interrupt Clear	3-189
VIEN	R/W	3E38h			Video Interrupt Enable	3-190
		3E3Ch			— Reserved	
CODECCTL	WO	3E40h			CODEC Control	3-69
CODECADDR	WO	3E44h			CODEC Buffer Start Address	3-68
CODECHOSTPTR	WO	3E48h			CODEC Host Pointer	3-72
CODECHARDPTR	RO	3E4Ch			CODEC Hard Pointer	3-71

 Table 2-4: Register Map (Part 12 of 13)

Register Mnemonic Name	Access	Memory Address ⁽¹⁾	I/O Address ⁽²⁾	Index	Description/Comments	Page
CODECLCODE	RO	3E50h			CODEC LCODE Pointer	3-73
—	3E5	4 - 3FFF			Reserved	

Table 2-4: Register Map (Part 13 of 13)

⁽¹⁾ The Memory Address for the direct access registers is a byte address offset from **MGABASE1**.

(2) I/O space accesses are decoded only if VGA emulation is active (see the OPTION configuration register) and iospace = 1 (see the DEVCTRL configuration register).

- ⁽³⁾ Since the address processor finishes its processing before the data processor, we recommend that you initialize these registers first, in order to take advantage of the instruction overlay capability of the address processor.
- (4) Accessing a register in this range instructs the drawing engine to start a drawing operation. For the General Purpose index value, use the index value found in the corresponding register and/or the index with 40h.
- ⁽⁵⁾ Word or dword accesses to these specific reserved locations will be decoded. (The PCI convention states that I/O space should only be accessed in bytes, and that a bridge will not perform byte packing.)
- ⁽⁶⁾ VGA I/O addresses in the 3DXh range are for CGA emulation (the MISC<0> register (ioaddsel field) is '1'). VGA I/O addresses in the 3BXh range are for monochrome (MDA) emulation (the ioaddsel field is '0'). *Exception:* for CRTCEXT, the 3BEh and 3BFh I/O addresses are reserved, *not* decoded.
- (7) These registers are not writable through MGABASE1 + 2C40h to 2C48h and MGABASE1 + 2CDxh. They can only be written via bus mastering operations from the MGA-G200. They *can* be read through MGABASE1 + 2C4xh and MGABASE1 + 2CDxh.

Legend:

A shaded cell indicates an index used by the General Purpose DMA.

MGI Confidential

Chapter 3: Register Descriptions

Power Graphic Mode Register Descriptions	3-2
Power Graphic Mode Configuration Space Registers Power Graphic Mode	3-2
Memory Space Registers	3-28
VGA Mode Registers	3-225
VGA Mode Register Descriptions	3-225
DAC Registers	3-303
DAC Register Descriptions	3-303

Note: All the register descriptions within this chapter are arranged in alphabetical order by mnemonic name. For more information on finding registers see 'Locating Information' on page 1-10.

3.1 Power Graphic Mode Register Descriptions

3.1.1 Power Graphic Mode Configuration Space Registers

Power Graphic Mode register descriptions contain a (double-underlined) main header which indicates the register's mnemonic abbreviation and full name. Below the main header, the memory address (30h, for example), attributes, and reset value for the register are provided. Next, an illustration identifies the bit fields, which are then described in detail underneath. Reserved fields are identified by black underscore bars; all other fields display alternating white and gray bars.

Sample Pov	Sample Power Graphic Mode Config. Space Register					
Address	<value>(CS)</value>	X				
Attributes	R/W	Main header				
Reset Value	<value></value>					
	d 2	∠ Underscore bars				
Reserved	field3 j	field1				
31 30 29 28 27	26 25 24 23 22 21 20	19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
field1 <22:0>		cription of the field1 field of the SAMPLE_CS register, which 0. <i>Font and case changes within the text indicate a register or</i>				
field2<23>	Field 2. Detailed des	cription of field2 in SAMPLE_CS , which is bit 23.				
field3 <26:24>	Field 3. Detailed des comprises bits 26 to	cription of the field3 field of the SAMPLE_CS register, which 24.				
Reserved <31:27>		ting to this register, the bits in this field <i>must</i> be set to '0'. lways appear at the end of a register description.)				

Memory Address

The addresses of all the Power Graphic Mode registers are provided in Chapter 2.

◆ *Note:* CS indicates that the address lies within the configuration space.

Attributes

The Power Graphic Mode configuration space register attributes are:

- RO There are no writable bits.
- WO: There are no readable bits.
- R/W: The state of the written bits can be read.
- BYTE: 8-bit access to the register is possible.
- WORD: 16-bit access to the register is possible.
- DWORD: 32-bit access to the register is possible.
- STATIC: The contents of the register will *not* change during an operation.

Reset Value

Here are some of the symbols that appear as part of a register's reset value:

000? 0000 000S ???? 1101 0000 S000 0000b (b = binary,? = unknown, S = bit's reset value is affected by a strap setting, N/A = not applicable)

Address Attributes Reset Value	F8h (CS) (applies to MG R/W, BYTE/WORD/DW 0000 0000 0000 00	ORD, STATIC		0000)b		
Reserved P_pr	epth Re	eserved		sba_enable agp_enable	Rese	rved	data_rate
31 30 29 28 27 2	6 25 24 23 22 21 20 19 18	17 16 15 14 13	3 12 11 10	9 8	7 6 5	5 4 3	2 1 0
data_rate	Indicates the operational da	ata rate of the d	evice. Only	one bi	t in this	field mu	st be set:
<2:0>		data_rate	description				
		'000'	reset value	;			
		'001'	1 x data ra				
		<u>'010'</u>	2 x data ra	te			
		'1XX'	Reserved				
		'X11'	Reserved				
agp_enable <8>	When set, this bit enables the	he MGA-G200	to initiate A	AGP og	peration	l.	
sba_enable <9>	When set, the side address	bus of the devi	ce is enable	d.			
rq_depth <28:24>	This should be programmed the MGA-G200 is allowed reported in the rq field of A	to queue. This	value should				
Reserved	<31:29> <23:10> <7:3>						
	Reserved. Writing has no e	ffect. Reading	will give '0'	's.			
	► Note: To initiate the AC be set together wi Furthermore, for the AGP_PLL register	th the proper d the AGP-2X cy	ata_rate va	alue (e	ither 1X	C or 2X).	t

Address	F0h (CS	S) for M	GA-G200)-AGP	only								
Attributes	RO, BY	TE/WO	RD/DW	ORD,	STATI	С							
Reset Value	0000	0000 0	001 00	000 0	000	0000	0000	001	0b				
Reserved		ag	p_rev		а	gp_ne	ext_ptr		-	agp	_cap	_id	
31 30 29 28 27 20	5 25 24 23	22 21 2	20 19 18	17 16	15 14	13 12	11 10	9 8	76	5 5	4 3	2 1	0
agp_cap_id <7:0>		This field contains the AGP capabilities identifier: 02h, which describes the information contained in the capability entry (F0h-F8h)											
agp_next_ptr <15:8>	This field contains the hard-coded value of 00h, which indicates that there is no other capabilities in the list.												
agp_rev <23:16>	This field (as in 1.0)		s the AGI	P speci	ficatio	n revis	ion to v	which	this	devic	e com	plies:	10h
Reserved <31:24>	Reserved.	Writing	has no e	ffect. I	Readin	g will g	give '0'	s.					

Address Attributes Reset Value	F4h (CS) for MGA-G200-AGP only RO, BYTE/WORD/DWORD, STATIC 0001 1111 0000 0000 0000 0010 0000 0011b
rq	Reserved sparterers Reserved sparterers spar
31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rate_cap <1:0>	The hard-coded '11b' indicates that the device supports both AGP transfer rate modes (1X, 2X).
sba_cap <9>	The hard-coded '1' indicates that the device supports AGP Side band addressing.
rq <31:24>	The hard-coded '1Fh' indicates that the device can manage 32 outstanding AGP Requests.
Reserved	<23:10> <8:2>
	Reserved. Writing has no effect. Reading will give '0's.

_

Address	34h (CS)	
Attributes	RO, BYTE/WORD/DWORD, STATIC	
Reset Value	0000 0000 0000 0000 0000 0000 1101 1100b	
	Reserved	cap_ptr
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6	6 5 4 3 2 1 0
cap_ptr RO<7:0>	This field contains the hard-coded offset byte (DCh) within the c space of the PCI Bus Power Management Interface Specification register.	U
Reserved <31:8>	Reserved. Writing has no effect. Reading will give '0's.	

Address Attributes Reset Value	08h (CS) RO, BYTE/WORD/DWORD, STATIC 0000 0011 S000 0000 0000 0000 0000 0001	b
	class	revision
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
revision <7:0>	Holds the current chip revision (01h).	
class <31:8>	Identifies the generic function of the device and a specific reg interface as per the PCI specification. Two values can be read the vgaboot strap, which is sampled on hard reset.	

vgaboot strap	Value	Meaning
' 0'	038000h	Non-Super VGA display controller
'1'	030000h	Super VGA compatible controller

The sampled state of the vgaboot strap (pin HDATA[0], described on page A-5) can be read through this register.

DEVCTRL

Address Attributes	04h (CS) R/W, BYTE/WORD/DWORD, DYNAMIC
Reset Value	0000 0010 1001 0000 0000 0000 0000 000
detparerr sigsyserr recmastab rectargab sigtargab	devseltim Reserved fastbackcap udfsup cap66mhz cap66mhz cap1ist cap1ist serrenable waitcycle resparerr vgasnoop memwrien specialcycle busmaster memspace iospace
31 30 29 28 27 2	16 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
iospace R/W <0>	I/O space. Controls device response to I/O SPACE accesses (VGA registers).0: disable the device response1: enable the device response
memspace R/W <1>	Memory space. Controls device response to memory accesses (EPROM, VGA frame buffer, MGA control aperture, MGA direct access aperture, and 8 MByte Pseudo-DMA window).
	0: disable the device response1: enable the device response
busmaster R/W <2>	Bus master. Controls a device's ability to act as a master on the PCI bus (used to access system memory):
	0: prevents the device from generating PCI accesses1: allows the device to behave as a bus master
specialcycle RO <3>	The hard-coded '0' indicates that the MGA will <i>not</i> respond to a special cycle.
memwrien RO <4>	The hard-coded '0' indicates that an MGA acting as a bus master will never generate the write and invalidate command.
vgasnoop R/W <5>	Controls how the chip handles I/O accesses to the VGA DAC locations. The vgasnoop field is only used when vgaioen (see OPTION on page 3-18) is '1'.
	 0: The chip will reply to read and write accesses at VGA locations 3C6h, 3C7h, 3C8h, and 3C9h. 1: The chip will snoop writes to VGA DAC locations. It will <i>not</i> assert PTRDY/, PSTOP/, and PDEVSEL/, but will internally decode the access and program the on-board DAC. In situations where the chip is not ready to snoop the access, it will acknowledge the cycle by asserting PDEVSEL/, and force a retry cycle by asserting PSTOP/. Read accesses to VGA DAC locations are <i>not</i> affected by vgasnoop.
resparerr RO <6>	The hard-coded '0' indicates that the MGA will <i>not</i> detect and signal parity errors (MGA does generate parity information as per the PCI specification requirement). Writing has no effect.
waitcycle RO <7>	This bit reads as '0', indicating that no address/data stepping is performed for read accesses in the target (data stepping) and the master (address stepping). Writing has no effect.

serrenable RO <8>	This hard-coded '0' indicates that MGA does <i>not</i> generate SERR interrupts. Writing has no effect.
caplist RO <20>	The hard-coded '1' indicates that the device has a capability list in the configuration space. The list is located at the offset in the CAP_PTR register.Writing has no effect.
cap66mhz RO <21>	The hard-coded '0' indicates that the device does <i>not</i> comply with the PCI 66 MHz timing specification. Writing has no effect.
	Note: PCI transactions at 66 Mhz are supported as per the AGP timing specification.
udfsup RO <22>	The hard-coded '0' indicates that the MGA does <i>not</i> support user-definable features.
fastbackcap RO <23>	The hard-coded '1' indicates that the MGA supports fast back-to-back transactions when part of the transaction targets a different agent. Writing has no effect.
devseltim RO <26:25>	Device select timing. Specifies the timing of devsel. It is read as '01'.
sigtargab R/W <27>	Signaled target abort. Set to '1' when the MGA terminates a transaction in target mode with target-abort. This bit is cleared to '0' when written with '1'.
rectargab R/W <28>	Received target abort. Set to '1' when the MGA is a master and a transaction is terminated with target-abort. This bit is cleared to '0' when written with '1'.
recmastab R/W <29>	Received master abort. Set to '1' when a transaction is terminated with master-abort by the MGA. This bit is cleared to '0' when written with '1'.
sigsyserr RO <30>	MGA does not assert SERR/. Writing has no effect. Reading will return '0's.
detparerr RO <31>	MGA does not detect parity errors. Writing has no effect. Reading will return '0's.
Reserved	<19:9> <24>
	Reserved. Writing has no effect. Reading will return '0's.

-

Address	00h (CS)	
Attributes	RO, BYTE/WORD/DWORD,	, STATIC
Reset Value	0000 0101 0010 000?	0001 0000 0010 1011b
	device	vendor
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16	6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
vendor <15:0>	This field contains the Matrox m	nanufacturer identifier for PCI: 102Bh.
device <31:16>	This field contains the Matrox de 0520h; for the MGA-G200-AGP	levice identifier, which for the MGA-G200-PCI is: P it is: 0521h.

Address	0Ch (CS)							
Attributes	R/W, BYTE/WORD/DWORD, STATIC							
Reset Value	0000 0000 0000 0000 0000 0000 0000b							
Reserved	ہے۔ مح ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا							
31 30 29 28 27 20	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
cacheline <6:0>	This read/write field specifies the system cacheline size in units of 32-bit words. This field, together with enhmemacc (OPTION), controls the type of PCI command used by the bus master (could issue either memory read, memory read multiply, or memory read line). Any value can be programmed, but the value used by the controller will be the power of 2 smaller or equal to the value programmed. Values smaller than 4 will be considered as 0.							
latentim R/W <15:11> RO <10:8>	Value of the latency timer in PCI clocks. The count starts when PFRAME/ is asserted. Once the count expires, the master must initiate transaction termination as soon as its PGNT/ signal is removed.							
header RO <23:16>	This field specifies the layout of bytes 10h through 3Fh in the configuration space and also indicates that the current device is a single function device. This field is read as 00h.							

Reserved <7> <31:24>

Reserved. Writing has no effect. Reading will return '0's.

_

Address	3Ch (CS)								
Attributes	R/W, BYTE/WORD/DWORD, STATIC								
Reset Value	0010 0000 0001 0000 0	0000 0001 1111 111	1b						
maxlat	mingnt	intpin	intline						
31 30 29 28 27 2	6 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0						
intline R/W <7:0>	Interrupt line routing. The field is read/writable and reset to FFh upon hard reset. It is up to the configuration program to determine which interrupt level is tied to the MGA interrupt line and program the intline field accordingly ◆ <i>Note:</i> The value 'FF' indicates either 'unknown' or 'no connection'.								
intpin RO <15:8>	Selected interrupt pins. Read as 1h to indicate that one PCI interrupt line is used (PCI specifies that if there is one interrupt line, it must be connected to the PINTA/ signal).								
mingnt RO <23:16>	This field specifies the PCI devic rate of 33 MHz.	e's required burst length ir	n 1/4 μ s, assuming a clock						
maxlat RO <31:24>	This field specifies how often the μ s, assuming a clock rate of 33 M	0	ess to the PCI bus in 1/4						

Address48h (CS)

Attributes R/W, BYTE/WORD/DWORD, STATIC

Reset Value unknown

mga_data

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

mga_data
<31:0>Data. Will read or write data at the control register address provided by MGA_INDEX.
If MGA_INDEX does *not* point to a valid range, unknown data will be returned.

◆ Note: The MGA_INDEX and MGA_DATA registers cannot be used to access Pseudo-DMA windows (DMAWIN). (see page 4-29)

MGA_INDEX

Address	44h (CS)										
Attributes	R/W, BYTE/WORD/DWORD, STATIC										
Reset Value	0000 0000 0000 0000 0000 0000 0000	b									

_		eserved
Reserved	mga_index	R
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1	4 13 12 11 10 9 8 7 6 5 4 3 2	1 0

mga_index
 Algorithm of the registers that are mapped into the MGA control aperture through the configuration space. This mechanism should be used for initialization purposes only, since it is inefficient. This 'back door' access to the control register can be useful when the control aperture cannot be mapped below the 1 MByte limit of the real mode of an x86 processor (during BIOS execution, for example).

Reserved <1:0> <31:14>

Reserved. When writing to this register, the bits in this field *must* be set to '0'. Reading will return '0's.

- Note: The MGA_INDEX and MGA_DATA registers cannot be used to access Pseudo-DMA windows (DMAWIN)(see page 4-29).
- *Note:* The valid range for MGA_INDEX is 1C00h to 3FFCh (see Table 2-3 for device addresses).

Address	14h (CS)											
Attributes	R/W, BYTE/WORD/DWORD, STATIC											
Reset Value	000 0000 0000 0000 0000 0000 000	00b										

			prefetchable type memspaceind
	mgabase1	Reserved	μ Σ Σ Σ Σ Σ
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 1	6 15 14 13 12 11 10 9 8 7 6 5	4 3 2 1 0
memspace ind RO <0>	The hard-coded '0' indicates the	at the map is in the memory space.	
type RO <2:1>	The hard-coded '00'instructs th anywhere within the 32-bit addr	e configuration program to locate the ress space.	aperture
prefetchable RO <3>	The hard-coded '0' indicates the	at this space <i>cannot</i> be prefetchable.	
mgabase1 <31:14>	Specifies the base address of the control aperture).	MGA memory mapped control regist	ers (16 Kilobyte
		ontrol aperture overlaps the MGA fram are, the following order of precedence riority):	
	4. VGA frame	l aperture eudo-DMA window	
	*	<i>by</i> if the preceding ones are <i>not</i> decode l <i>not</i> respond to memory accesses.	d. If no aperture
	U 1	ed to the address (if it corresponds to o ome of the control bits, such as mem s	
Reserved <13:4>	Reserved. When writing to this Reading will return '0's.	register, the bits in this field <i>must</i> be s	set to '0'.

Address	10h (CS)					
Attributes	R/W, BYTE/WORD/DWORD, STATIC					
Reset Value	0000 0000 0000 0000 0000 0000 1000b					
mgabas	be 2 Reserved defined by the second defined					
IIIgabas						
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0					
memspace ind RO <0>	The hard-coded '0' indicates that the map is in the memory space.					
type RO <2:1>	The hard-coded '00' instructs the configuration program to locate the aperture anywhere within the 32-bit address space.					
prefetchable RO <3>	A '1' indicates that this space can be prefetchable (better system performance can be achieved when the bridge enables prefetching into that range).					
mgabase2 <31:24>	Specifies the PCI start address of the 16 megabytes of MGA memory space in the PCI map.					
	In situations where the MGA control aperture overlaps the MGA frame buffer aperture and/or the ROM aperture, the following precedence order will be used, listed from highest to lowest priority:					
	 BIOS EPROM MGA control aperture 8 MByte Pseudo-DMA window 					

- 4. VGA frame buffer aperture
- 5. MGA frame buffer aperture

An aperture will be decoded *only* if the preceding ones are *not* decoded. If no aperture is decoded, the MGA-G200 will not respond to memory accesses.

Decoding of an aperture is related to the address (if it corresponds to one of the base addresses), the command, and some of the control bits, such as memspace, biosen, romen, and rammapen.

When **mgamode** = 0 (**CRTCEXT3**<7>), the MGA frame buffer Aperture is *not* usable.

Reserved Reserved. When writing to this register, the bits in this field *must* be set to '0'. <23:4> Reading will return '0's.

_

Address	18h (CS)											
Attributes	R/W, BYTE/WORD/DWORD, STATIC											
Reset Value	0000 0000 0000 0000 0000 0000 0000ь											

	be Beserved Bese									
mgabas	se3 Reserved ā ≩ Ĕ									
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
memspace ind RO <0>	The hard-coded '0' indicates that the map is in the memory space.									
type RO <2:1>	The hard-coded '00' instructs the configuration program to locate the aperture anywhere within the 32-bit address space.									
prefetchable RO <3>	The hard-coded '0' indicates that this space <i>cannot</i> be prefetchable.									
mgabase3	Specifies the base address of the 8 MByte Pseudo-DMA window.									
<31:23>	In situations where the MGA control aperture overlaps the MGA frame buffer aperture and/or the ROM aperture, the following precedence order will be used, listed from highest to lowest priority:									
	1. BIOS EPROM									
	 MGA control aperture 8 MByte Pseudo-DMA window 									
	4. VGA frame buffer aperture									
	5. MGA frame buffer aperture									
	An aperture will be decoded <i>only</i> if the preceding ones are <i>not</i> decoded. If no aperture is decoded, the MGA-G200 will <i>not</i> respond to memory accesses.									
	Decoding of an aperture is related to the address (if it corresponds to one of the base addresses), the command, and some of the control bits, such as memspace , biosen , romen , and rammapen .									
Reserved <22:4>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'. Reading will return '0's.									

OPTION

Address Attributes Reset Value	40h (CS) R/W, BYTE/WORD/DWORD, STATIC 0S00 0000 0000 0000 0000 0000 0000b											
powerpc biosen noretry	enhmemacc enhmemacc Reserved Reserved Reserved Reserved rogaioen pllsel pllsel pllsel sysclkdis sysclksl											
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
sysclksl <1:0>	 System clock selection. These bits select the source of the system clock: '00': select the PCI clock '01': select the output of the system clock PLL '10': selects an external source from the MCLK pin (permitted only if MCLK has been configured as an input) '11': Reserved 											
sysclkdis <2>	System clock disable. This bit controls the system clock output:											
<2>	0: enable system clock oscillations1: disable system clock oscillations											
gclkdiv <3>	Graphics clock divider select. Selects the ratio by which the system clock is divided in order to produce the graphics clock when sysclksl = '01'.											
	 0: divide by 2 1: divide by 3/2 											
mclkdiv <4>	Memory clock divider select. Selects the ratio by which the system clock is divided in order to produce the memory clock when sysclksl = '01'.											
	 0: divide by 2 1: divide by 3/2 											
sysplipdN	System PLL power down.											
<5>	0: power down1: power up											
plisel	PLL Select. When set to '1', the pixel clock comes from syspll .											
<6>	 0: PLL P1 drives the pixel clock PLL P2 drives the system clock 1: PLL P1 drives the system clock PLL P2 drives the pixel clock 											
	Note: This bit must be set to '0' for normal operation. (A '1' will swap pixpll with syspll).											

vgaioen <8> VGA I/O map Enable.

vgaioen	Status
' 0'	VGA I/O locations are not decoded (hard reset mode if vgaboot = 0)
'1'	VGA I/O locations are decoded (hard reset mode if vgaboot = 1)

On hard reset, the sampled vgaboot strap (HDATA[0]) will replace the **vgaioen** value.

◆ Note: The MGA control registers and MGA frame buffer map are *always* enabled for *all* modes.

memconfig
<12:10>Memory Configuration. This field *must* be loaded before initiating a memory reset or
attempting to read or write to the frame buffer.

Address boundaries for the bank select, chip select, row address, and column address are determined using **memconfig**. This signal should *not* change during normal operation.

Definition of **memconfig** (2:0)

memconfig (0)	Number of banks on Base-board
	one bank on base-board (as in: mscN[2:1] re-mapped to mcsN[3:2])
'1'	two banks on the base-board

memconfig (2:1)	Memory Organization of parts used in Frame Buffer
·00 '	(8Mb) 2 x 128K x32; 512 rows, 256 columns
·01'	(16Mb) 2 x 256K x 32; 1024 rows, 256 columns
'10'	(16Mb) 2 x 512K x 16; 2048 rows, 256 columns
'11'	(16Mb) 4 x 128K x 32; 512 rows, 256 columns

hardpwmsk Hardware Plane Write Mask. This field is used to enable SGRAM special functions. This field must *always* be set to '0' when SDRAM is used. (when SGRAM is used, software *must* set hardpwmsk to '1' in order to take advantage of special SGRAM functions).

This field must *always* be loaded *before* attempting to write to the frame buffer and should *not* be changed during normal operation.

- 0: Special SGRAM functions are *not* available; however, a plane write mask cycle will be emulated in the MGA-G200 at a reduced performance level.
- 1: Special SGRAM functions are enabled, so plane write mask operations will be performed by the memory (with optimal performance) and block mode operations are available.
- ► Note: hardpwmsk must never be set to '1' when the memory does not consist of SGRAM.

OPTION

rfhcnt <20:15>	Refresh counter. Defines the rate of the MGA-G200's memory refresh. Page cycles will <i>not</i> be interrupted by a refresh request unless a second request is queued (in this case, the refresh request becomes the highest priority after the screen refresh). Since all banks have to be pre-charged, both queued refreshes will keep this new highest priority.									
	When programming the rfhcnt register, the following rule must be respected:									
	ram refresh period $ >= (\mathbf{rfhcnt} < 5:0 > * 64 + 1) * MCLK period $									
	• Note: Setting rfhcnt to zero halts the memory refresh.									
enhmemacc <22>	Enable the use of advance Read commands by the PCI Master (MRL & MRM).									
noretry <29>	Retry disable. A '1' disables generation of the retry sequence and the delayed read on the PCI bus (except during a VGA snoop cycle). At this setting, PCI latency rules may be violated.									
biosen <30>	BIOS Enable. On hard reset, the sampled bios boot strap (HDATA[1]) is loaded into this field.									
	 0: The ROMBASE space is automatically disabled. A small serial eeprom can be present on board. 1: The ROMBASE space is enabled - rombase must be correctly initialized since it contains <i>unpredictable</i> data. A big serial eeprom is present on board. 									
powerpc	Power PC mode.									
<31>	 O: No special swapping is performed. The host processor is assumed to be of Little-Endian type. 1: Enables byte swapping for the memory range MGABASE1 + 1C00h to MGABASE1 + 1EFFh, as well as MGABASE1 + 2000h to MGABASE1 + 3BFFh and MGABASE1 + 3D00h to MGABASE1 + 3FFFh. This swapping allows a Big-Endian processor to access the information in the same manner as a Little-Endian processor. 									
	• <i>Note:</i> There is <i>no</i> swapping in the configuration space.									
Reserved	<7> <9> <13> <21> <28:23>									
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'.									

Address Attributes Reset Value	50h (CS) R/W, BYTE/WORD/DWORD, STATIC 0000 0000 00SS S000 1011 0000 0000 0000											
Rese	erved Reserved wolkdiv modclkp nowclkdiv mbuftype Beserved Beserve											
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
eepromwt <8>	EEPROM write enable. When set to '1', a write access to the BIOS EPROM aperture will program that location. When set to '0', write access to the BIOS EPROM aperture has <i>no</i> effect.											
mbuftype <13:12>	Memory Buffer Type. This field <i>must</i> be loaded before initiating a memory reset or attempting to read or write to the frame buffer.											
	 mbuftype(0). Memory control signal Buffer Type. This bit controls the buffer type for the mrasN, mcasN, mweN, mdsf, mcsN[3:0], mdqm[7:0] and ma[11:0] pins. 0: LVTTL buffer configuration 1: SSTL-3 buffer configuration requiring vref pin 											
	 mbuftype(1). Memory data and byte enable signal buffer type. This bit controls the buffer type for the mdq[63:0] pins. 0: LVTTL buffer configuration 1: SSTL-3 buffer configuration requiring vref pin 											
nogclkdiv	No Graphics Clock Divider. Selects whether or not to bypass the clock divider.											
<14>	 0: use the GCLKDIV field (GCLK = SYSCLK/GCLKDIV) 1: do <i>not</i> divide SYSCLK for GCLK (GCLK = SYSCLK). 											
nomclkdiv	No Memory Clock Divider select. Selects whether or not to bypass the clock divider.											
<15>	 0: use the MCLKDIV field (MCLK = SYSCLK/MCLKDIV) 1: do <i>not</i> divide SYSCLK for MCLK (MCLK = SYSCLK). 											
nowclkdiv	No WARP Clock Divider select. Selects whether or not to bypass the clock divider.											
<16>	 0: use the WCLKDIV field (WCLK = SYSCLK/WCLKDIV) 1: do <i>not</i> divide SYSCLK for WCLK (WCLK = SYSCLK). 											
wclkdiv <17>	WARP Clock Divider select. Selects the ratio by which the system clock is divided in order to generate the WARP clock:											
	 0: divide by 2 1: divide by 3/2 											
	◆ Note: The WARP clock must be programmed so that it is always faster than the PCI clock.											
modclkp <21:19>	Module Clock Period. On hard reset, the sampled module clock period strap (MDQ<31:29>) value will replace the value of modclkp .											
	This field is used to determine the frequency at which an LVTTL memory expansion											

module is designed to operate.

Reserved <7:0> <11:9> <18> <31:22>

Reserved. When writing to this register, the bits in these fields *must* be set to '0'.

PM_CSR	
--------	--

Address	E0 h (CS)										
Attributes	R/W, BYTE/WORD/DWORD, STATIC										
Reset Value	0000 0000 0000 0000 0000 0000 0000 0000b										

													R	ese	erve	ed														nowaretata	howel state
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

powerstate (1:0)This two bit field is used to determine the current power state of the device, and to set the device into a new power state. Writing to this register will place the device in the appropriate power state.

powerstate	Video Controller Power State definition ^{(1)(2) (3)}
	D0
	• Back-end: On
' 00'	Video Controller Context: Preserved
	• Video Memory Contents: Preserved
	• Interrupts: Possible
	D3 (Power may be removed)
	• Back-end: Off
	Video Controller Context: Lost
	• Video memory Contents: Lost
	• Interrupts: Disabled
	Mask bits of DEVCTRL register:
	• iospace = '0'
	• memspace = '0'
	• busmaster = '0'
	Power down of SSTL buffers (memory bus)
	 data/address/command
	• by selecting LVTTL buffers
'11'	Power down of RAMDAC section:
11	• pixclkdis = '1'
	• dacpdN = '0'
	• ramcs ='0'
	• pixpllpdN = '0'
	Power down of MEMORY/GRAPHIC/WARP section:
	• sysclkdis = '1'
	• sysplipdN = '0'
	Power down of TCACHE:
	Power down of ZORAN_I_33 and ZORAN_I_34:

⁽¹⁾ Since D1 and D2 mode are not supported, only writes with valid values will modify the powerstate field.

- ⁽²⁾ PCI BPMI Spec. states that hardware has at least 16 PCI clocks after the powerstate bits were written to D3 before **PCLK** may be stopped.
- ⁽³⁾ An internal reset (used like the hard reset) is generated for 16 PCI clocks when returning from D3 (with power) to D0.
 - ◆ Note: The above table complies with the Display Device Class Power Management Reference Specification.

Reserved: Reserved. When writing to this register, the bits in this field *must* be set to '0'. **<31:2>**

Address	DC h (CS)			
Attributes	RO, BYTE/WORD/	DWORD		
Reset Value	0000 0000 0010	0001 ????	0000 0000 0001	b
	d2_sup d1_sup Reserved dsi Reserved	pm_version		
Reserved			pm_next_ptr	pm_cap_id
31 30 29 28 27	26 25 24 23 22 21 20 19	18 17 16 15 1	4 13 12 11 10 9 8	7 6 5 4 3 2 1 0
pm_cap_id <7:0>	Power Management Ca Management Interface information contained	Specification C	Capabilities Identifier: (s the PCI Bus Power 91h, which describes the
pm_next_ptr <15:8>	1	rd-coded "00h"	indicates that there are	ility in the link list. For no other capabilities in the AGP capabilities.
pm_version <18:16>	Version. Version "001t the PCI Power Manage		1	lies with revision 1.0 of
dsi <21>	Device Specific Initial specific initialization s			G200 requires a device
d1_sup <25>	The D1 Power Manage	ement state is <i>ne</i>	ot supported.	
d2_sup <26>	The D2 Power Manage	ement state is <i>ne</i>	ot supported.	
Reserved	<31:27> <24:22> <20):19>		

en

Address	30h (CS)					
Attributes	R/W, BYTE/WORD/DWORD, STATIC					
Reset Value	0000 0000 0000 0000 0000 0000 0000 0000b					

_	rombase							Reserved 2																						
	31 30 29	28 27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

romen
 ROM enable. This field can assume different attributes, depending on the contents of the biosen field. This allows booting with or without the BIOS EPROM (typically, a motherboard implementation will boot the MGA without the BIOS, while an add-on adapter will boot the MGA with the BIOS EPROM).

biosen	romen attribute
' 0 '	RO (read as 0)
'1'	R/W

rombaseROM base address. Specifies the base address of the EPROM. This field can assume<31:16>different attributes, depending on the contents of biosen.

biosen	rombase attribute
' 0 '	RO (read as 0)
'1'	R/W

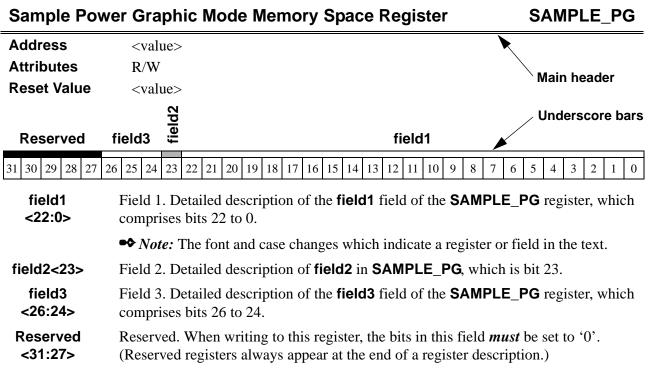
◆ Note: The exact size of the EPROM used is application-specific (could be 128 bytes, 32 KBytes, or 64 KBytes).

In situations where the MGA control aperture overlaps the MGA frame buffer aperture and/or the ROM aperture, the following precedence order will be used, listed from highest to lowest:

- 1. BIOS EPROM (highest precedence)
- 2. MGA control aperture
- 3. 8 MByte Pseudo-DMA window
- 4. VGA frame buffer aperture
- 5. MGA frame buffer aperture (lowest precedence)

An aperture will be decoded *only* if the preceding ones are *not* decoded. If no aperture is decoded, the MGA-G200 will *not* respond to memory accesses.

Decoding of an aperture is related to the address (if it corresponds to one of the base addresses), the command, and some of the control bits, such as **memspace**, **biosen**, **romen**, and **rammapen**.


Even if MGA supports only a serial EPROM, this does *not* constitute a system performance limitation, since the PCI specification requires the configuration software to move the EPROM contents into shadow memory and execute the code at that location.

ReservedReserved. When writing to this register, the bits in this field *must* be set to '0'.<15:1>Reading will return '0's.

Address	2Ch (CS) RO; 4Ch (CS) WO	
Attributes	BYTE/WORD/DWORD, STA	TIC
Reset Value	0000 0000 0000 0000	0000 0000 0000 0000Ъ
	subsysid	subsysvid
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
subsysvid <15:0>	0078h (128 bytes ROM used), o word location FFF8h of the BIO	I is reset with the value that is found in word location r 7FF8h of the BIOS ROM (32K ROM used), or at S ROM (64K ROM used). It indicates a subsystem CI Special Interest Group to the manufacturer of the MGA-G200 chip.
subsysid <31:16>	(128 bytes ROM used), at word or at word location FFFAh of the	with the value that is found in word location 007Ah location 7FFAh of the BIOS ROM (32K ROM used), e BIOS ROM (64K ROM used). It indicates a the manufacturer of the add-in board which contains
	ROM, is present (usual ROM is present, the va this case, the system bi	'0', this may mean that no ROM, or a small lly on a motherboard implementation). If no lue found on the register will be incorrect. In os <i>must write the correct values</i> to this register the delay following a hard reset.
	board does not have a	ain all zeros if the manufacturer of the add-in subsystem vendor ID, or if the manufacturer rt the SUBSYSID register.
	•	ollowing a hard reset before this register is serial eeprom, this delay is 50µs. For a big ay is 15µs.
	6	FF8h to FFFBh is supported for 128 bytes, 32k If the address is bigger than the size of the bund).

3.1.2 Power Graphic Mode Memory Space Registers

Power Graphic Mode register descriptions contain a (double-underlined) main header which indicates the register's mnemonic abbreviation and full name. Below the main header, the memory address (1C00h, for example), attributes, and reset value for the register are provided. Next, an illustration identifies the bit fields, which are then described in detail underneath. Reserved fields are identified by black underscore bars; all other fields display alternating white and gray bars.

Memory Address

The addresses of all the Power Graphic Mode registers are provided in Chapter 2.

• *Note:* MEM indicates that the address lies in the memory space; IO indicates that the address lies in the I/O space.

Attributes

The Power Graphic Mode attributes are:

• RO	There are no writable bits.
• WO:	The state of the written bits cannot be read.
• R/W:	The state of the written bits can be read.
• BYTE:	8-bit access to the register is possible.
• WORD:	16-bit access to the register is possible.
• DWORD:	32-bit access to the register is possible.
• STATIC:	The contents of the register will <i>not</i> change during an operation.
• DYNAMIC:	The contents of the register might change during an operation.
• FIFO:	Data written to this register will pass through the BFIFO.

Reset Value

Here are some of the symbols that appear as part of a register's reset value. Most bits are reset on hard reset. Some bits are also reset on soft reset, and they are underlined when they appear in the register description headers.

0000 0<u>0</u>00 <u>00</u>00 ???? 1101 0000 0000 0000b (b = binary,? = unknown, _ = reset on soft/hard reset (see above), N/A = not applicable)

Address	MGABASE1 + 1E4Ch (MEM)						
Attributes	R/W, STATIC, BYTE/WORD/DWORD						
Reset Value	0000 0000 0000 0000 0000 0000 0000 0000b						

	-	agp2xpllen
	Reserved	agl
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
agp2xpllen	AGP 2x mode PLL Enable.	
<0>	0: disable the AGP 2x mode PLL oscillations1: enable the AGP 2x mode PLL oscillations	
Reserved <31:1>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.	

Note: For MGA-G200-PCI, this register has no effect.

Address Attributes Reset Value	WO, FIFO	SE1 + 2C7Ch (D, STATIC, DV 000 0000 00		00 00	00 000	1b	
Reserved	alphasel	atref	atmode	aten astipple	Reserved alphamode	dstblendf	srcblendf
31 30 29 28 27 26	i 25 24 23 22	2 21 20 19 18	17 16 15 14 13	12 11 1	10 9 8	7 6 5 4	3 2 1 0
srcblendf	Source Blen	d Function.					
<3:0>		srcblendf	source blending fu	unction			
		' 0000'	ZERO				
		' 0001 '	ONE				
		'0010'	DST_COLOR				
		'0011'	ONE_MINUS_I	DST_C	OLOR		
		'0100'	SRC_ALPHA				
		'0101'	ONE_MINUS_S	SRC_A	LPHA		

• *Note:* To disable alpha blending, **srcblendf** must be programmed with 1 and dstblendf with 0.

ONE_MINUS_DST_ALPHA SRC_ALPHA_SATURATE

DST_ALPHA

dstblendf

'0110'

'0111**'**

'1000'

<

De

<	7	:	4	>	
_	•	•			

estination Blend Function.

dstblendf	destination blending function
,0000,	ZERO
'0001'	ONE
' 0010'	SRC_COLOR
' 0011 '	ONE_MINUS_SRC_COLOR
'0100'	SRC_ALPHA
'0101'	ONE_MINUS_SRC_ALPHA
'0110'	DST_ALPHA
'0111'	ONE_MINUS_DST_ALPHA

alphamode <9:8>

Select the alpha mode that will be written in the frame buffer.

alphamode	description
·00'	FCOL
·01'	alpha channel
'10'	video alpha (1-((1-SrcAlpha) * (1-DstAlpha)))
'11'	RSVD

ALPHACTRL

Alpha Stipple Mode. Approximation of alpha blending using a dithering matrix. When
 <11> the alpha stipple mode is selected, only the following Src and Dst function combinations are supported:

Src function	Dst function	screen-door mask
ZERO	ONE	100% opaque mask
ONE	ZERO	0% mask
SRC_ALPHA	ONE_MINUS_SRC_ALPHA	src_alpha% opaque mask
ONE_MINUS_SRC_ALPHA	SRC_ALPHA	(1-src_alpha)% opaque mask

aten Alpha Test Enable. Enables the first alpha test.

<12>

atmode Alpha Test Mode. Update the pixel when the alpha test comparison with **atref** is true. **<15:13>**

atmode		
Value	Mnemonic	Pixel Update
'000'	NOACMP	Always
'001'		Reserved
'010'	AE	When alpha is =
'011'	ANE	When alpha is <>
'100'	ALT	When alpha is <
'101'	ALTE	When alpha is <=
'110'	AGT	When alpha is >
'111'	AGTE	When alpha is >=

atref Alpha Test Reference. Reference value for the alpha test.

<23:16>

alphasel Alpha Select. Determine the alpha for the pixel.

<25:24>

alphasel	description
' 00'	alpha from texture
' 01 '	diffused alpha
'10'	modulated alpha
'11'	transparency? 0: diffused alpha

► Note: Alpha testing is done in *two* separate places. Both use the same reference value (atRef) and alpha test mode (atMode). The first test is done right after texture filtering and can be disabled by setting the 'atEn' bit to '0', or by setting 'atmode' to "ALWAYS". The second test is done before alpha blending and can be disabled by programming 'atmode' to "ALWAYS".

Reserved <10> <31:26>

Reserved. When writing to this register, the bits in this field *must* be set to '0'.

Address Attributes Reset Value	MGABASE1 + 2C70h (MEM) WO, FIFO, DYNAMIC, DWORD unknown	
Reserved	alphastart	
31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	
alphastart <23:0>		
	For 3D primitives, the ALPHASTART register is used to scan the left edge of the trapezoid for the alpha component of the source. This register must be initialized with its starting alpha value.	
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.	

Address	MGABASE1 + 2C74h (MEM)		
Attributes	WO, FIFO, STATIC, DWORD		
Reset Value	unknown		
Reserved	alphaxinc		
31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0		
alphaxinc <23:0>	Alpha X Increment register. this field holds a signed 9.15 value in two's complement notation.		
For 3D primitives, the ALPHAXINC register holds the alpha increment alor axis.			
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.		

Address	MGABASE1 + 2C78h (MEM)		
Attributes	WO, FIFO, STATIC, DWORD		
Reset Value	unknown		
Reserved	alphayinc		
31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0		
alphayinc <23:0>			
	For 3D primitives, the ALPHAYINC register holds the alpha increment along the y-axis.		
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.		

Address	MGABASE1 + 1C60h (M	EM)	
Attributes	WO, FIFO, DYNAMIC, I	OWORD	
Reset Value	unknown		
	Reserved		ar0
31 30 29 28 27	26 25 24 23 22 21 20 19 18 1	7 16 15 14 13 12 11 10	9 8 7 6 5 4 3 2 1 0
ar0 <17:0>	 Address register 0. The ar0 field is an 18-bit signed value in two's complement notation. For AUTOLINE, this register holds the x end address (in pixels). See the XYEND register on page 3-212. For LINE, it holds 2 x 'b'. For a filled trapezoid, it holds 'dYl'. For a BLIT, ar0 holds the line end source address (in pixels). 		
Reserved <31:18>	Reserved. When writing to the	his register, the bits in th	is field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 1C64h (MEM) WO, FIFO, DYNAMIC, DWORD unknown
Reserved	ar1
31 30 29 28 27 20	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ar1 <23:0>	Address register 1. The ar1 field is a 24-bit signed value in two's complement notation. This register is also loaded when ar3 is accessed.
 For LINE, it holds the error term (initially 2 x 'b' - 'a' -[sdy]). This register does <i>not</i> need to be loaded for AUTOLINE. For a filled trapezoid, it holds the error term in two's complement notation; initiality of the error term in the transmission of the error term in the error term in the transmission of the error term in the error term in the transmission of the error term in the transmission of the error term in term in the error term in term in the error term in term in	
	'errl' = [sdxl] ? 'dXl' + 'dYl' - 1 : - 'dXl'
	• For a BLIT, ar1 holds the line start source address (in pixels). Because the start source address is also required by ar3 , and because ar1 is loaded when writing ar3 this register doesn't need to be explicitly initialized.
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address	MGABASE1 + 1C68h (MEM)	
Attributes	WO, FIFO, DYNAMIC, DWORD	
Reset Value	unknown	
	Reserved ar2	
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0
ar2 <17:0>	Address register 2. The ar2 field is an 18-bit signed value in two's complemen notation.	t
 For AUTOLINE, this register holds the y end address (in pixels). See the XYEND register on page 3-212. For LINE, it holds the minor axis error increment (initially 2 x 'b' - 2 x 'a'). For a filled trapezoid, it holds the minor axis increment (- dXl). 		END
Reserved <31:18>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.	

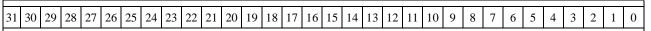
Address Attributes Reset Value		1 + 1C6Ch (MEM) DYNAMIC, DWORD	
Reserved	spage	ar3	
31 30 29 28 27	26 25 24 23 22	21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	
ar3 <23:0>	Address register 3. The ar3 field is a 24-bit signed value in two's complement notation or a 24-bit unsigned value.		
	 This register In the two-c address (in particular) 	r is used during AUTOLINE, but does not need to be initialized. c is <i>not</i> used for LINE without auto initialization, <i>nor</i> is it used by TRAP. perand Blit algorithms and ILOAD ar3 contains the source current bixels). This value must be initialized as the starting address for a Blit. current address is always linear.	
spage <26:24>These three bits are used as an extension to ar3 in order to generate a 27-bi pattern address (in pixels). They are <i>not</i> modified by ALU operations.		0	
	In BLIT oper	ations, the spage field is only used with monochrome source data.	
	The spage fi	eld is <i>not</i> used for TRAP, LINE or AUTOLINE operations.	
Reserved <31:27>	Reserved. WI	hen writing to this register, the bits in this field <i>must</i> be set to '0'.	

Address	MGABASE1 + 1C70h (MEM)	
Attributes	WO, FIFO, DYNAMIC, DWORD	
Reset Value	unknown	
	Reserved a	ar4
31 30 29 28 27	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9	8 7 6 5 4 3 2 1 0
ar4 <17:0>	Address register 4. The ar4 field is an 18-bit signed val notation.	lue in two's complement
	• For TRAP, it holds the error term. Initially:	
errr' = [sdxr] ? dXr' + dYr' - 1 : - dXr'		
	 This register is used during AUTOLINE, but doesn't i This register is <i>not</i> used for LINE or BLIT operations 	
Reserved <31:18>	Reserved. When writing to this register, the bits in this	field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 1C74h (MEI WO, FIFO, DYNAMIC, DW unknown	,
	Reserved	ar5
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17	6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ar5 <17:0>	Address register 5. The ar5 fie notation.	d is an 18-bit signed value in two's complement
	 XYSTRT register on page 3-2 with the x end, so it is not nec This register is <i>not</i> used for L For TRAP, it holds the minor In BLIT algorithms, ar5 holds 	axis increment (- dXr). s the pitch (in pixels) of the source operand. A negative ource is scanned from bottom to top while a positive
Reserved <31:18>	Reserved. When writing to this	register, the bits in this field <i>must</i> be set to '0'.

Address	MGABASE1 + 1C78h (.	MEM)
Attributes	WO, FIFO, DYNAMIC,	DWORD
Reset Value	unknown	
	Reserved	ar6
31 30 29 28 27	26 25 24 23 22 21 20 19 18	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ar6 <17:0>	e	ld is an 18-bit signed value in two's complement notation. s before being used by the ALU.
 At the beginning of AUTOLINE, ar6 holds the y start at XYSTRT register on page 3-213. During AUTOLINE pulloaded with the signed y displacement. At the end of AU loaded with the y end, so it is <i>not</i> necessary to reload the polyline. This register is <i>not</i> used for LINE without auto initializate. For TRAP, it holds the major axis increment ('dYr'). 		e 3-213. During AUTOLINE processing, this register is displacement. At the end of AUTOLINE the register is it is <i>not</i> necessary to reload the register when drawing a or LINE without auto initialization.
Reserved <31:18>	Reserved. When writing to	this register, the bits in this field <i>must</i> be set to '0'.

unknown


Address MGABASE1 + 1C20h (MEM)

WO, FIFO, STATIC, DWORD

Reset Value

Attributes

backcol

bltcmsk

backcol <31:0>	Background color. The backcol field is used by the color expansion module to generate the source pixels when the background is selected.
	 In 8 bits/pixel only backcol<7:0> is used. In 16 bits/pixel, only backcol<15:0> is used. In 24 bits/pixel, when not in block mode, backcol<31:24> is not used. In 24 bits/pixel, when in block mode, all backcol bits are used.
	Refer to 'Pixel Format' on page 4-21 for the definition of the slice in each mode.
bltcmsk <31:0>	Blit color mask. This field enables blit transparency comparison on a planar basis ('0' indicates a masked bit). Refer to the description of the transc field of DWGCTL for the transparency equation.
	• In 8 bits/pixel only bltcmsk <7:0> is used.

• In 16 bits/pixel, only **bltcmsk**<15:0> is used.

Address	MGABASE1 + 3D10h (MEM)

Attributes WO, STATIC, BYTE, WORD, DWORD

Reset Value unknown

Reserve	d								besa	a1c	cor	g									
31 30 29 28 27 2	26 25 24 2	3 22	21 20	19 1	8 17	16	15	14	13 1	2 1	1	10	9 8	7	6	5	4	3	2	l	0
besa1corg <23:0>	Backend field 1 ch correspo provides plane dat must be	nroma nds to an oi a to l	a plane o a byt ffset v be read	e data te ado alue d froi	a use dress (the l n the	d by in 1 base e bu	/ the nen ade ffer	e ba nor dre A :	icken y and ss) in field	d s l ho l or 1 o	scal olds der of th	ler. s a r to he v	The 24-b posi wind	fiel it un tion ow	d b nsig the	esa gnec e fir	1 co l va st p	org lue ixel	whic l chro	h oma	a
	➡ Note:	mirr	or is u vord w	sed (the 3	B LS	Bs	mu	st be	set	t to	' 00')0') a	nd o	on t	he l	ast	byte	e of		
Reserved <31:24>	Reserved	l. Wh	nen wr	iting	to th	is re	egis	ter,	the b	oits	in	thi	s fie	ld <i>m</i>	ust	be	set	to'	0'.		

Address Attributes Reset Value	MGABASE1 + 3D00h (MEM) WO, STATIC, BYTE, WORD, DWORD unknown
Reserved	besa1org
31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
besa1org <23:0>	Backend Scaler buffer A field 1 Origin. Top left corner of the buffer A field 1 data used by the backend scaler. The field besa1org corresponds to a byte address in memory and it holds a 24-bit unsigned value which provides an offset value (the base address), in order to position the first pixel to read of the buffer A field 1 of the window to scale. In 4:2:0 mode, this register is the luma plane origin.
	► Note: This address must be aligned on a qword boundary when no horizontal mirror is used (the 3 LSBs must be set to '000'), and on the last byte of a qword when horizontal mirror is used (the 3 LSBs must be set to '111').
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address	MGABASE1 + 3D14h (MEM)
	WO OTATIO DUTE WORD DWORD

Attributes WO, STATIC, BYTE, WORD, DWORD

Reset Value unknown

Reserved	besa2corg
31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
besa2corg <23:0>	Backend Scaler buffer A field 2 Chroma plane Origin. Top left corner of the buffer A field 2 chroma plane data used by the backend scaler. The field besa2corg corresponds to a byte address in memory and holds a 24-bit unsigned value which provides an offset value (the base address) in order to position the first pixel chroma plane data to be read from the buffer A field 2 of the window to scale. This register must be initialized when in planar 4:2:0 format (2 planes).
	Note: This address must be aligned on a qword boundary when no horizontal mirror is used (the 3 LSBs must be set to '000') and on the last byte of a qword when horizontal mirror is used (the 3 LSBs must be set to '111').
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 3D04h (MEM) WO, STATIC, BYTE, WORD, DWORD unknown
Reserved	besa2org
31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
besa2org <23:0>	Backend Scaler buffer A field 2 Origin. Top left corner of the buffer A field 2 data used by the backend scaler. The field besa2org corresponds to a byte address in memory and holds a 24-bit unsigned value which provides an offset value (the base address) in order to position the first pixel to be read from the buffer A field 2 of the window to scale. In 4:2:0 mode, this register is the luma plane origin.
	► Note: This address must be aligned on a qword boundary when no horizontal mirror is used (the 3 LSBs must be set to '000') and on the last byte of a qword when horizontal mirror is used (the 3 LSBs must be set to '111').
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address	MGABASE1 + 3D18h (MEM)
Attributes	WO, STATIC, BYTE, WORD, DWORD

Reset Value unknown

Reserve	d besb1corg
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
besb1corg <23:0>	Backend Scaler buffer B field 1 Chroma plane Origin. Top left corner of the buffer B field 1 chroma plane data used by the backend scaler. The field besb1corg corresponds to a byte address in memory and holds a 24-bit unsigned value which provides an offset value (the base address) in order to position the first pixel chroma plane data to be read from the buffer B field 1 of the window to scale. This register must be initialized when in planar 4:2:0 format (2 planes).
	Note: This address must be aligned on a qword boundary when no horizontal mirror is used (the 3 LSBs must be set to '000') and on the last byte of a qword when horizontal mirror is used (the 3 LSBs must be set to '111').
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 3D08h (MEM) WO, STATIC, BYTE, WORD, DWORD unknown
Reserved	besb1org
31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
besb1org <23:0>	Backend Scaler buffer B field 1 Origin. Top left corner of the buffer B field 1 data used by the backend scaler. The field besb1org corresponds to a byte address in memory and holds a 24-bit unsigned value which provides an offset value (the base address) in order to position the first pixel to be read from the buffer B field 1 of the window to scale. In 4:2:0 mode, this register is the luma plane origin.
	Note: This address must be aligned on a qword boundary when no horizontal mirror is used (the 3 LSBs must be set to '000') and on the last byte of a qword when horizontal mirror is used (the 3 LSBs must be set to '111').
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 3D1Ch (MEM) WO, STATIC, BYTE, WORD, DWORD unknown
Reserve	d besb2corg
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
besb2corg <23:0>	Backend Scaler buffer B field 2 Chroma plane Origin. Top left corner of the buffer B field 2 chroma plane data used by the backend scaler. The field besb2corg corresponds to a byte address in memory and holds a 24-bit unsigned value which provides an offset value (the base address) in order to position the first pixel chroma plane data to be read from the buffer B field 2 of the window to scale. This register must be initialized when in planar 4:2:0 format (2 planes).
	Note: This address must be aligned on a qword boundary when no horizontal mirror is used (the 3 LSBs must be set to '000') and on the last byte of a qword when horizontal mirror is used (the 3 LSBs must be set to '111').

Reserved. When writing to this register, the bits in this field *must* be set to '0'. Reserved <31:24>

Address Attributes Reset Value	MGABASE1 + 3D0Ch (MEM) WO, STATIC, BYTE, WORD, DWORD unknown
Reserved	besb2org
31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
besb2org <23:0>	Backend Scaler buffer B field 2 Origin. Top left corner of the buffer B field 2 data used by the backend scaler. The field besb2org corresponds to a byte address in memory and holds a 24-bit unsigned value which provides an offset value (the base address) in order to position the first pixel to be read from the buffer B field 2 of the window to scale. In 4:2:0 mode, this register is the luma plane origin.
	Note: This address must be aligned on a qword boundary when no horizontal mirror is used (the 3 LSBs must be set to '000') and on the last byte of a qword when horizontal mirror is used (the 3 LSBs must be set to '111').
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 3D20h (MEM) R/W, STATIC, BYTE, WORD, DWORD ???? ???0 ???? ???? ???? ???? ????				
Reserved	besfsel besfselm Reserved besblank besblank besblank besblank besblank besblank besblank besblank beshfit besdith besdith bestrop besvfen besvfen besvfen besvfen besvfen besvfen besvfen besvfen besvfen besvfen besverved besvfen besverved besvfen besv besv besv besv besv besv besv besv				
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
besen	Backend Scaler Enable.				
<0>	0: The backend scaler is disabled1: The backend scaler is enabled				
besv1srcstp <6>	Backend Scaler field 1 vertical source start polarity.				
~02	0: source start line is even1: source start line is odd				
besv2srcstp <7>	Backend Scaler field 2 vertical source start polarity.				
	0: source start line is even1: source start line is odd				
beshfen <10>	Backend Scaler Horizontal Filtering Enable.				
	 • 0: The horizontal filtering is disabled •Drop algorithm is used in downscaling and replicated in upscaling. • 1: The horizontal filtering is enabled (<i>only</i> when horizontal scaling is performed). • Interpolation algorithm is used 				
besvfen	Backend Scaler Vertical Filtering Enable.				
<11>	 0: The vertical filtering is disabled Drop algorithm is used in downscaling and replicated in upscaling. 1: The vertical filtering is enabled (<i>only</i> when vertical scaling is performed) Interpolation algorithm is used. 				
beshfixc <12>	Backend Scaler Horizontal Fixed Coefficient. Forces the horizontal weight to 0.5 for the interpolation regardless of the actual calculated weight.				
	0: The horizontal actual calculated weight is used for interpolation.1: The horizontal fixed coefficient is used for interpolation				
bescups <16>	Backend Scaler Chroma Upsampling enable. Horizontally interpolates a new chroma value with a fixed coefficient of 0.5 in between each sample pair.				
	0: Chroma upsampling is disabled1: Chroma upsampling is enabled				
bes420pl	Backend Scaler 4:2:0 Planar data format.				
<17>	 0: The source data is in 4:2:2 format 1: The source data is in 4:2:0, 2 plane format 				

BES Control

besdith <18>	Backend Scaler Dither enable. Dithering is applied to smooth out some non- linearities.
	0: Dithering is disabled1: Dithering is enabled
beshmir <19>	Backend Scaler Horizontal Mirror enable. The source data is read linearly with descendant addressing instead of ascendant. Origin registers must point to the latest pixel of the line instead of the first.
	Address origins must be aligned on a qword boundary when no horizontal mirror is used (the 3 LSBs must be set to '000') and on the last byte of the qword when horizontal mirror is used (the LSBs must be set to '111').
	0: The horizontal mirror is disabled1: The horizontal mirror is enabled
besbwen	Backend Scaler Black and White enable. This bit forces both chromas to 128.
<20>	0: window is in color1: window is in black and white
besblank <21>	Backend Scaler Blanking enable. When blanking is applied, the image in the window becomes black.
	0: Blanking is disabled1: Blanking is enabled
besfselm	Backend Scaler Field Select Mode.
<24>	 0: Software field select 1: Hardware automatic field select triggered by the video in port.
besfsel	Backend Scaler Field Select.
<26:25>	 '00': Buffer A field 1 is displayed '01': Buffer A field 2 is displayed '10': Buffer B field 1 is displayed '11': Buffer B field 2 is displayed
Reserved	<31:27> <23:22> <15:13> <9:8><5:1>
	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

BESGLOBCTL

Address	MGABASE1 + 3DC0h (MEM)		
Attributes	R/W, STATIC, BYTE, WORD, DWORD		
Reset Value	??????????????????????????????????????		

			besreghup bescorder Reserved beshzoomf beshzoom		
Reserved	besvcnt	Reserved	be be be		
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6	5 4 3 2 1 0		
beshzoom <0>	Backend Scaler accelerated 2x Ho clock is faster than 135 MHz.	rizontal Zoom enable. Must be u	sed when the pixel		
	0: Accelerated 2x horizontal zoo1: Accelerated 2x horizontal zoo				
beshzoomf <1>	Backend Scaler accelerated 2x Ho interpolation of the new pixels for	e	nables the		
	 0: Accelerated 2x horizontal zoom filtering is disabled 1: Accelerated 2x horizontal zoom filtering is enabled 				
bescorder	Backend Scaler Chroma samples Order (4:2:0 mode only).				
<3>	 0: Cb samples are in bytes 0, 2, 4, 6 of the slice and Cr in 1, 3, 5, 7 1: Cb samples are in bytes 1, 3, 5, 7 of the slice and Cr in 0, 2, 4, 6 				
besreghup <4>	Backend Scaler Register Update of backend scaler double buffer regists sync.	•			
	► <i>Note:</i> Used for testing <i>only</i> .				
	0: Registers update at the vertica1: Registers update at each horiz				
besvcnt <27:16>	Backend Scaler Vertical Counter r take effect with their new program this register.	0	U U		
December	04 00 45 5 0				

Reserved <31:28> <15:5> <2>

Reserved. When writing to this register, the bits in this field *must* be set to '0'.

Address Attributes Reset Value	MGABASE1 + 3D28h (ME WO, STATIC, BYTE, WOR ???? ?000 0000 0000	RD, DWORD	00 0000
Reserved	besleft	Reserved	besright
31 30 29 28 27 2	16 25 24 23 22 21 20 19 18 17	16 15 14 13 12 11 1	0 9 8 7 6 5 4 3 2 1 0
besright <10:0>	Backend Scaler Right edge coo window in the desktop. Must b horizontal desktop.	·	tel coordinate of the destination it and not higher than the max.
besleft <26:16>	Backend Scaler Left edge coordinate. This is a pixel coordinate of the destination window in the desktop. Must be lower than besright .		
Reserved	<31:27> <15:11> Reserved. When writing to this	s register, the bits in t	this field <i>must</i> be set to '0'.

BESHISCAL

Address	MGABASE1 + 3D30h (MEM)
Attributes	WO, STATIC, BYTE, WORD, DWORD
Reset Value	unknown

Ros	served beshiscal 2	
Nea		
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)
beshiscal <20:2>	Backend Scaler Horizontal Inverse Scaling factor. This is a 5.14 value. (For information on calculating this field, see Chapter 4: Programmer's Specification).	
Reserved	<31:21> <1:0>	
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'.	

Address	MGABASE1 + 3D3Ch (MEM)
Attributes	WO, STATIC, BYTE, WORD, DWORD
Reset Value	unknown

Reserved	beshsrcend	Reserved
31 30 29 28 27 20	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0
beshsrcend <25:2>	Backend Scaler Horizontal Ending source position. Ending position in the sour the last pixel that will contribute to the last right destination pixel. This is a 10. value. (For information on calculating this field, see Chapter 4: Programmer's Specification).	
Reserved	<31:26> <1:0> Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0)'.

Address	MGABASE1 + 3D50h (MEM)							
Attributes	WO, STATIC, BYTE, WORD, DWORD							
Reset Value	unknown							
Reserved	beshsrclst		R	Reserv	ed			
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16	15 14 13 12	11 10 9	8 7	6 5	4 3	2 1	0
beshsrclst <25:16>	Backend Scaler Horizontal Source Last position. Position in the source of the last pixel of the complete image. This field must be programmed with horizontal source width - 1.							
Reserved	<31:26> <15:0>							
	Reserved. When writing to this re	egister, the bit	ts in these	e fields	must	be set	to '0'.	

Address	MGABASE1 + 3D38h (MEM)
Attributes	WO, STATIC, BYTE, WORD, DWORD
Reset Value	unknown

Reserved	beshsrcst	Reserved
31 30 29 28 27 2	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0
beshsrcst <25:2>	Backend Scaler horizontal starting source position. Starting position in the sour the first pixel that will contribute to the left first destination pixel. This is a 10.1 value. Must be '0' when no left cropping is necessary. The cropping can be on t source, because a part of the destination is not visible or is on both.	4
Reserved	<31:26> <1:0> Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0)'.

-

Address	MGABASE1 + 3D24h (MEM)
Attributes	WO, STATIC, BYTE, WORD, DWORD
Reset Value	unknown

Reserved														bes	spi	tch								
31 30 29 28 27 2	26 25 2	24 23	22	21	20 19	9 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
bespitch <11:0>	Back curren 4 in 4	ntly r	read	foi	r the s	our	ce d	ata	wii	ndo	w (i	n n	um	ber	of	pix								
Reserved <31:12>	Reser	rved.	Whe	en	writi	ng te	o th	is re	egis	ster	, the	bit	s ir	ı th	is f	ielc	l <i>m</i>	ust	be	set	to '	0'.		

Address	MGABASE1 + 3DC4h (MEM)
Attributes	RO, DYNAMIC, BYTE, WORD, DWORD
Reset Value	unknown

	Reserved	besstat
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0
besstat <1:0>	 Backend Scaler Status. '00': window is currently displaying buffer A field 1 '01': window is currently displaying buffer A field 2 '10': window is currently displaying buffer B field 1 '11': window is currently displaying buffer B field 2 	
Reserved <31:2>	Reserved. When reading this register, the bits in this field will return <i>unknown</i> , '1'.	'0', or

Address	MGABASE1 + 3D54h (MEM)
Attributes	WO, STATIC, BYTE, WORD, DWORD
Reset Value	unknown

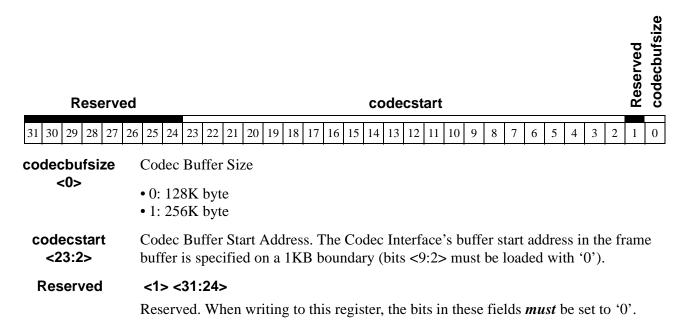
	Reserved	besv1srclast
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1	1 10 9 8 7 6 5 4 3 2 1 0
besv1 srclast <9:0>	Backend Scaler field 1 vertical source last position complete image) in the source, in reference to the 1 origin.	· · · · · · · · · · · · · · · · · · ·
Reserved <31:10>	Reserved. When writing to this register, the bits	in this field <i>must</i> be set to 0.

Address	MGABASE1 + 3D58h (MEM)
Attributes	WO, STATIC, BYTE, WORD, DWORD
Reset Value	unknown

	Reserved		besv2srclst
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14	13 12 11 10	9 8 7 6 5 4 3 2 1 0
besv2srclst <9:0>	Backend Scaler field 2 Vertical Source 1 the complete image) in the source, in re field 2 origin.		I · · ·
Reserved <31:10>	Reserved. When writing to this register,	the bits in th	is field <i>must</i> be set to 0.

Address Attributes Reset Value	MGABASE1 + 3D48h (M WO, STATIC, BYTE, WC unknown		WORD	
	Reserved	bes1wghts	besv1wght	Reserved
31 30 29 28 27 2	16 25 24 23 22 21 20 19 18 11			2 1 0
besv1wght <15:2>	bits of the fractional part. Us	ed for a	ght starting value. This field contains only a window starting with vertical subpixel oning of the frame based on the field 1 in d	
bes1wghts <16>		-	ght starting sign. Used for a window startin just the positioning of the frame on the fie	0
Reserved	<31:17> <1:0> Reserved. When writing to the	his regi	ster, the bits in these fields <i>must</i> be set to	' 0'.

Address Attributes Reset Value	MGABASE1 + 3D4Ch (M WO, STATIC, BYTE, WO unknown		·	/ORI)												
	Reserved	bes2wghts					be	svž	2w	ght						Doctroad	Leser ved
31 30 29 28 27 2	6 25 24 23 22 21 20 19 18 17	16	15	14 13	12	2 11	10	9	8	7	6	5	4	3	2	1	0
besv2wght <15:2>	Backend Scaler field 2 Vertic bits of the fractional part. Use positioning and to adjust the p interlacing mode.	ed fo	or a	windo	ow	star	ting	g wi	ith	ver	tica	l sub	pix	el	•		14
bes2wghts <16>		Backend Scaler field 2 vertical Weight starting sign. Used for a window starting with vertical subpixel positioning and to adjust the positioning of the frame based on the															
Reserved	<31:17> <1:0> Reserved. When writing to th	is re	egist	er, th	e t	oits i	n th	ese	e fie	elds	mı	<i>ist</i> be	e se	et to	o '(°.	


Address	MGABASE1 + 3D2Ch (M	IEM)	
Attributes	WO, STATIC, BYTE, WO	RD, DWORD	
Reset Value	unknown		
Reserved	bestop	Reserved	besbot
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17	<u>16</u> 15 14 13 12 11 10	9 8 7 6 5 4 3 2 1 0
besbot <10:0>	e	1	ixel coordinate of the destination and not higher than the max.
bestop <26:16>	Backend Scaler Top edge coo window in the desktop. Must	*	coordinate of the destination
Reserved	<31:27> <15:11>		
	Reserved. When writing to the	nis register, the bits in th	nese fields <i>must</i> be set to '0'.

Address	MGABASE1 + 3D34h (MEM)
Attributes	WO, STATIC, BYTE, WORD, DWORD
Reset Value	unknown

Res	served besviscal d	Reserved
31 30 29 28 27 2 besviscal <20:2>	2625242322212019181716151413121110987654321Backend Scaler Vertical Inverse Scaling. This is a 5.14 value. (For information on calculating this field, see Chapter 4: Programmer's Specification).	0
Reserved	<31:21> <1:0> Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'.	

CODECADDR

Address	MGABASE1 + 3E44h (MEM)
Attributes	WO, BYTE/WORD/DWORD, STATIC
Reset Value	unknown

Address Attributes Reset Value	MGABASE1 + 3E40h (MEM) WO, BYTE/WORD/DWORD, STATIC 0000 0000 0000 0000 0000 0000 0000b												
	codecrwidth codecrwidth codectransen stopcodec codecatain codecen codecen												
miscctl	Reserved S S Z S to S S	\$]											
31 30 29 28 27 20	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												
codecen <0>	Codec Enable. This bit resets the Codec Interface engine, the CODECHARDPTR register, the Codec Interface interrupts, and the Codec Interface interrupt enables.												
	0: disable (default)1: enable												
codecmode	Codec Mode.												
<1>	• 0: VMI mode • 1: I33 mode												
cmdexectrig	Command Execution Trigger												
<2>	 0: do <i>not</i> execute commands in memory 1: execute register commands in memory 	•											
	Note: If this bit is written while data transfers are in progress the codec interface will automatically stop data transfers, trash its fifo contents and execute the commands in the command buffer.												
codecdatain	Codec Data In.												
<3>	 0: decompression (off Screen Frame buffer to CODEC) 1: compression (CODEC to off screen Frame buffer) 												
vmimode	VMI mode valid only when codecmode = '0'.												
<4>	• 0: Mode A• 1: Mode B												
stopcodec <5>	Stop Codec (either compression or decompression). During transfers, this bit determines whether or not more than 1 field will be transferred.												
	 0: do <i>not</i> stop after current field 1: stop after current field 												
codec transen <6>	Codec Transfer Enable. This field enables transfers to begin. After transfers are underway, this bit suspends the transfers to allow software to either fill the frame buffer with more data (during decompression) or empty the frame buffer of data (during compression).												
	0: disable transfer1: enable transfer												

CODECCTL

codecfifo addr <11:8>	Compression/Decompression Fifo Address of the Codec. When in VMI mode, the address output is codecfifoaddr <11:8>. When in I33 mode, only 3 bits are output, codecfifoaddr <10:8>.
codecrwidth <13:12>	Pulse recovery width. This bit determines the number of gclkbuf clock cycles between the rising edge of a strobe and the falling edge of the next strobe of consecutive bytes when performing compression or decompression.
	I33 mode and VMI mode B:
	 '00': 4 gclkbuf cycles between read/write strobes '01': 5 gclkbuf cycles between read/write strobes '10': 6 gclkbuf cycles between read/write strobes
	VMI mode A:
	 '00': 5 gclkbuf cycles between data strobes '01': 6 gclkbuf cycles between data strobes '10': 7 gclkbuf cycles between data strobes
miscctl <31:24>	Miscellaneous control. This byte is used to program on 8 bit flip-flop on the board for controlling the chip selects and other functions (SLEEP, START, etc.) of the CODEC chips. The Codec interface must be enabled for the programming sequence to be executed.
Reserved	<7> <23:14>
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 3E4Ch (MEM RO, BYTE/WORD/DWORD, 0000 0000 0000 0000	DYNAMIC
	Reserved	codechardptr
31 30 29 28 27 2	6 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
codechardptr <15:0>	direction of the CODEC interfac	unction of this register changes, depending on the e. The value of this register is incremented by the vays point to the next location to be accessed ecen
	to be written to the codec interf	ta, this register will point to the offset of the next
Reserved <31:16>	Reserved. When writing to this r	egister, the bits in this field <i>must</i> be set to 0.

CODECHOSTPTR

Address	MGABASE1 + 3E48h (MEM))									
Attributes	WO, BYTE/WORD/DWORD, STATIC										
Reset Value	unknown										
	Reserved	codechostptr									
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
codechostptr <15:0>	CODEC Host Pointer. An interrupt is generated (if enabled) when the dword offset pointed to by this register is accessed by the Codec Interface in its circular buffer.										
Reserved <31:16>	Reserved. When writing to this r	egister, the bits in this field <i>must</i> be set to 0.									

Address	MGABASE1 + 3E50h (MEN	(Iv	
Attributes	RO, BYTE/WORD/DWORD), DYNAMIC	
Reset Value	0000 0000 0000 0000	0000 0000 0000	0000b
	Reserved	C	odeclcode
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 1	6 15 14 13 12 11 10	9 8 7 6 5 4 3 2 1 0
codeclcode <15:0>	Used only in compression. It w buffer following the last DWOI CODEC asserts its EOI (LCOD	RD of the field. This re	D offset in the CODEC circular egister will be updated after the
Reserved <31:16>	Reserved. When writing to this	register, the bits in this	s field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 1C80h (MEN WO, FIFO, STATIC, DWOR unknown	,										
Reserved	cxright	Reserved	cxleft									
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 1	6 15 14 13 12 1	1 10 9 8 7 6 5 4 3 2 1 0									
	The CXBNDRY register is <i>not</i> a physical register; it is a more efficient way to load the CXRIGHT and CXLEFT registers.											
cxleft <11:0>	Clipper x left boundary. See the	Clipper x left boundary. See the CXLEFT register on page 3-75.										
cxright <27:16>	Clipper x right boundary. See th	ne CXRIGHT reg	gister on page 3-76.									
Reserved	<31:28> <15:12>											

Reserved. When writing to this register, the bits in these fields *must* be set to '0'.

cxleft

Address	MGABASE1 + 1CA0h (MEM)						
Attributes	WO, FIFO, STATIC, DWORD						
Reset Value	unknown						

Reserved

31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
cxleft <11:0>	Clipper x left boundary. The cxleft field contains an unsigned 12-bit value which is interpreted as a positive pixel address and compared with the current xdst (see YDST on page 3-215). The value of xdst must be greater than or equal to cxleft to be inside the drawing window.											
	•• <i>Note:</i> Since the cxleft value is interpreted as positive, any negative xdst value is automatically outside the clipping window.											
	Note: Clipping can be disabled by the clipdis bit in DWGCTL without changing cxleft.											
Reserved <31:12>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.											

Address	MGABASE1 + 1CA4h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

	Reserved	cxright												
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12	11 10 9 8 7 6 5 4 3 2 1 0												
cxright <11:0>														
	Note: Clipping can be disabled by the clipdis bit in DWGCTL without changing cxright.													
Reserved <31:12>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.													

Address Attributes Reset Value		ASE1 + 1E30h (MEM) CATIC, BYTE/WORD/		
map_reg3		map_reg2	map_reg1	map_reg0
31 30 29 28 27 26	25 24 23	22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
map_regN <31:0>	addressing DMAMAP	, through the range of \mathbb{N}	tries 0h to 3h of this looku	GABASE1 + 1EBFh. The
	The value	to place in a map_reg	field is determined as foll	ows:
	if (in the DWGREG0 rang awing_reg byte addr	
	else		within DWGREG1 rar wing byte address > 80	-
	else	error, can't use	e indirect mapping	

Address MGABASE1 + 1E34h (MEM)

Attributes R/W, STATIC, BYTE/WORD/DWORD

Reset Value unknown

map_reg7							map_reg6						map_reg5							map_reg4											
	31 30	0 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Map Register NMap Register N. The 16-8-bit map registers form a look-up table used
 <31:0> Map Register NMap Register N. The 16-8-bit map registers form a look-up table used when addressing through the range of MGABASE1 + 1E80h to MGABASE1 + 1EBFh. The DMAMAP74 register contains entries 4h to 7h of this lookup table. Refer to DWG_INDIR_WT for more information.

The value to place in a **map_reg** field is determined as follows:

if (address is within the DWGREGO range)
 map_reg? = (drawing_reg byte address >> 2)
 & 0 x 7F
else if (address is within DWGREG1 range)
 map_reg? = (drawing byte address >> 2)
 & 0 x 7F | 0 x 80
else
 error, can't use indirect mapping

Address	MGABASE1 + 1E38h (MEM)
Attributes	R/W, STATIC, BYTE/WORD/DWORD
Reset Value	unknown
map_regb	map_rega map_reg9 map_reg8
31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
<31:0>	Map Register N. The 16-8-bit map registers form a look-up table used when addressing through the range of MGABASE1 + 1E80h to MGABASE1 + 1EBFh. The DMAMAPB8 register contains entries 8h to Bh of this lookup table. Refer to DWG_INDIR_WT for more information.
	The value to place in a map_reg field is determined as follows:
	if (address is within the DWGREG0 range) map_reg? = (drawing_reg byte address >> 2) & 0 x 7F
	else if (address is within DWGREG1 range) map_reg? = (drawing byte address >> 2) & 0 x 7F 0 x 80
	else

error, can't use indirect mapping

AddressMGABASE1 + 1E3Ch (MEM)

Attributes R/W, STATIC, BYTE/WORD/DWORD

Reset Value unknown

map_regf r									m	ap_	_re	ge			map_regd								map_regc									
31 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

map_regN
 <31:0> Map Register N. The 16-8-bit map registers form a look-up table used when addressing through the range of MGABASE1 + 1E80h to MGABASE1 + 1EBFh. The DMAMAPFC register contains entries Ch to Fh of this lookup table. Refer to DWG_INDIR_WT for more information.

The value to place in a **map_reg** field is determined as follows:

if (address is within the DWGREGO range)
 map_reg? = (drawing_reg byte address >> 2)
 & 0 x 7F
else if (address is within DWGREG1 range)
 map_reg? = (drawing byte address >> 2)
 & 0 x 7F | 0 x 80
else
 error, can't use indirect mapping

Address	MGABASE1 + 1C54h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

unknown

dmapad

0.1	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

dmapad DMA Padding. Writes to this register, which have no effect on the drawing engine, <31:0> can be used to pad display lists. Padding should be used only when necessary, since it may impact drawing performance.

DR0_Z32LSB, DR0_Z32MSB

Address Attributes Reset Value	MGABASE1 + 2C50h MGABASE1 + 2C54h (MEM) WO, FIFO, DYNAMIC, DWORD unknown									
Reserv	ed dr0_z32									
63	48 47 0									
dr0_z32 <47:0>	 Data ALU 0 For TRAP or TEXTURE_TRAP with z, the DR0_Z32 register is used to scan the left edge of the trapezoid and must be initialized with its starting z value. In this case, DR0_Z32 is signed 33.15 in two's complement notation. For LINE with z, the DR0_Z32 register holds the z value for the current drawn pixel and must be initialized with the starting z value. In this case, DR0_Z32 is a signed 33.15 value in two's complement notation. 									
	 Note: The field dr0_z32 is part of two registers: dr0_z32[47:32] = DR0_Z32MSB[15:0] dr0_z32[31:0] = DR0_Z32LSB[31:0] 									
Reserved <63:48>	 Reserved. When writing to this register, bits 63 to 48 are completely ignored. Note: The Reserved field is part of one register: dr0 z32[63:48] = DR0 Z32MSB[31:16] 									

Address Attributes Reset Value	MGABASE1 + 2C60h MGABASE1 + 2C64h (MEM) WO, FIFO, STATIC, DWORD unknown													
Reserv	ed dr2_z32													
63	48 47 0													
dr2_z32 <47:0>	Data ALU 2													
NH1.0 2	 For TRAP or TEXTURE_TRAP with z, the DR2 register holds the z increment value along the x-axis. In this case, DR2 is a signed 33.15 value in two's complement notation. For LINE with z, the DR2 register holds the z increment value along the major axis. In this case, DR2 is a signed 33.15 value in two's complement notation. 													
	 Note: The field dr2_z32 is part of two registers: dr2_z32[63:32] = DR2_Z32MSB[31:0] dr2_z32[31:0] = DR2_Z32LSB[31:0] 													
Reserved <63:48>	Reserved. When writing to this register, bits 63 to 48 are completely ignored. Reading will return '0's.													
	 Note: The Reserved field is part of one register: dr2_z32[63:48] = DR2_Z32MSB[31:16] 													

DR3_Z32LSB, DR3_Z32MSB

Address Attributes Reset Value	MGABASE1 + 2C68h MGABASE1 + 2C6Ch (MEM) WO, FIFO, STATIC, DWORD unknown												
Reserv	ed dr3_z32												
63	48 47 0												
dr3_z32 <47:0>	 Data ALU 3. For TRAP or TEXTURE_TRAP with z, DR3 register holds the z increment value along the y-axis. In this case, DR3 is a signed 33.15 value in two's complement notation. For LINE with z, DR3 register holds the z increment value along the diagonal axis. In this case, DR3 is a signed 33.15 value in two's complement notation. 												
	 Note: The field dr3_z32 is part of two registers: dr3_z32[63:32] = DR3_Z32MSB[31:0] dr3_z32[31:0] = DR3_Z32LSB[31:0] 												
ReservedReserved. When writing to this register, bits 63 to 48 are completely ignored.<63:48>will return '0's.													
	 Note: The Reserved field is part of one register: dr3_z32[63:48] = DR3_Z32MSB[31:16] 												

_

Address	MGABASE1 + 1CC0h (MEM)
Attributes	WO, FIFO, DYNAMIC, DWORD
Reset Value	unknown

dr0

31 30 29 28 27	26 2	25	24	23	22	21	20 1	9 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
dr0 <31:0>	•	Fo edg DF Fo mu	or T ge (RO i or L ust l	RA of t is a INI be i	AP o he sig E w init	or T trap gneo vith ializ	EXT EXT Dezoid 117. z, th zed w emen	l and 5 va e DF rith t	d mu alue RO ru the s	ust l in t egis start	be i two ter	niti o's c hol	aliz com ds t	ed ple he	wit me z v	h it nt n alue	s s nota e fo	tarti ation or th	ing n. ne c	z v urre	alue ent	e. Ir drav	n thi wn	is c pix	ase el a	nd
	-	• /	Not	(of I	DR(to 1) map pits 1	to ł	oits	31 t	o 1	6 0	f D	R0_												

Address MGABASE1 + 1CC8h (MEM) **Attributes** WO, FIFO, STATIC, DWORD **Reset Value** unknown

dr2

31	30	20	28	27	26	25	24	23	22	21	20	10	18	17	16	15	14	13	12	11	10	0	8	7	6	5	Δ	3	2	1	0
51	30	29	20	21	20	25	24	23	22	21	20	19	10	1/	10	15	14	15	12	11	10	9	0	/	0	5	4	5	2	1	U

Data ALU register 2. <31:0>

- For TRAP or TEXTURE_TRAP with z, the **DR2** register holds the z increment value along the x-axis. In this case, **DR2** is a signed 17.15 value in two's complement notation.
- For LINE with z, the **DR2** register holds the z increment value along the major axis. In this case, **DR2** is a signed 17.15 value in two's complement notation.

◆ *Note:* Bits 31 to 16 of DR2 map to bits 15 to 0 of DR2_32MSB; bits 15 to 0 of DR2 map to bits 31 to 16 of DR2_32LSB. Writing to this register clears bits 15 to 0 of DR2_32LSB.

dr2

Address	MGABASE1 + 1CCCh (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

dr3

31 30	29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	lr3 1:0>		•	For alor not For	r TI ng † atic r LI	RA the on.	reg P or y-a E wi se, I	T xis	EX7 . In z, D	TUF this R3	s ca re	ase. gist	, D l ter l	R3 nole	is a ds t	i sig he z	gneo z in	d 17 cre	7.15 mei	5 va nt v	lue alu	in e al	two long	o's c g th	com e di	nple iago	eme	nt	
			•	¢Λ	lote		Bits :														_)	

• Note: Bits 31 to 16 of DR3 map to bits 15 to 0 of DR3_32MSB; bits 15 to 0 of DR3 map to bits 31 to 16 of DR3_32LSB. Writing to this register clears bits 15 to 0 of DR3_32LSB.

Address	MGABASE1 + 1CD0h (MEM)
Attributes	WO, FIFO, DYNAMIC, DWORD
Reset Value	unknown
Reserved	d dr4
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
dr4 <23:0>	Data ALU register 4. This field holds a signed 9.15 value in two's complement notation.
	 For TRAP with z, the DR4 register is used to scan the left edge of the trapezoid for the red color (Gouraud shading). This register must be initialized with its starting red color value. For LINE with z, the DR4 register holds the current red color value for the currently drawn pixel. This register must be initialized with the starting red color. For TEXTURE_TRAP with texture modulation (tmodulate = '1', see TEXCTL), the DR4 register is used to scan the left edge of the trapezoid for the red modulation factor value. For TEXTURE_TRAP using the decal feature (tmodulate = '0'), the DR4 register is used to scan the left edge of the red (Gouraud shaded surface) color. This register must be initialized with its starting red color value.
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 1CD8h (MEM) WO, FIFO, STATIC, DWORD unknown
Reserved	dr6
31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
dr6 <23:0>	Data ALU register 6. This field holds a signed 9.15 value in two's complement notation.
	 For TRAP with z, the DR6 register holds the red increment value along the x-axis. For LINE with z, the DR6 register holds the red increment value along the major axis. For TEXTURE_TRAP with modulation or decal, the DR6 register holds the red increment value along the x-axis.
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 1CDCh (MEM) WO, FIFO, STATIC, DWORD unknown											
Reserved	dr7											
31 30 29 28 27 20	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
dr7 <23:0>	Data ALU register 7. This field holds a signed 9.15 value in two's complement notation.											
	 For TRAP with z, the DR7 register holds the red increment value along the y-axis. For LINE with z, the DR7 register holds the red increment value along the diagonal axis. For TEXTURE_TRAP with modulation or decal, the DR7 register holds the red increment value along the y-axis. 											
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.											

-

Address Attributes Reset Value	MGABASE1 + 1CE0h (MEM) WO, FIFO, DYNAMIC, DWORD unknown
Reserved	dr8
31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
dr8 <23:0>	Data ALU register 8. This field holds a signed 9.15 value in two's complement notation.
	 For TRAP with z, the DR8 register is used to scan the left edge of the trapezoid for the green color (Gouraud shading). This register must be initialized with its starting green color value. For LINE with z, the DR8 register holds the current green color value for the currently drawn pixel. This register must be initialized with the starting green color. For TEXTURE_TRAP with texture modulation (tmodulate = '1', see TEXCTL), the DR8 register is used to scan the left edge of the trapezoid for the green modulation factor. This register must be initialized with its starting green modulation factor value. For TEXTURE_TRAP using the decal feature (tmodulate = '0'), the DR8 register is used to scan the left edge of the green (Gouraud shaded surface) color. This register must be initialized with its starting green color value.
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address	MGABASE1 + 1CE8h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown
Reserved	dr10
31 30 29 28 27 20	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
dr10 <23:0>	Data ALU register 10. This field holds a signed 9.15 value in two's complement notation.
	 For TRAP with z, the DR10 register holds the green increment value along the x-axis. For LINE with z, the DR10 register holds the green increment value along the major axis. For TEXTURE_TRAP with modulation or decal, the DR10 register holds the green
	increment value along the x-axis.
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 1CECh (MEM) WO, FIFO, STATIC, DWORD unknown
Reserved	i dr11
31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
dr11 <23:0>	Data ALU register 11. This field holds a signed 9.15 value in two's complement notation.
	• For TRAP with z, the DR11 register holds the green increment value along the y-axis.
	• For LINE with z, the DR11 register holds the green increment value along the diagonal axis.
	• For TEXTURE_TRAP with modulation or decal, the DR11 register holds the green increment value along the y-axis.
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

_

Address	MGABASE1 + 1CF0h (MEM)
Attributes	WO, FIFO, DYNAMIC, DWORD
Reset Value	unknown
Reserved	dr12
31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
dr12 <23:0>	Data ALU register 12. This field holds a signed 9.15 value in two's complement notation.
	 For TRAP with z, the DR12 register is used to scan the left edge of the trapezoid for the blue color (Gouraud shading). This register must be initialized with its starting blue color value. For LINE with z, the DR12 register holds the blue color value for the currently drawn pixel. This register must be initialized with the starting blue color. For TEXTURE_TRAP with texture modulation (tmodulate = '1', see TEXCTL), the DR12 register is used to scan the left edge of the trapezoid for the blue modulation factor. This register must be initialized with its starting blue modulation factor. This register must be initialized with its starting blue modulation factor. This register must be initialized with its starting blue modulation factor. This register must be initialized with its starting blue modulation factor value.
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

<31:24>

Address Attributes Reset Value	MGABASE1 + 1CF8h (MEM) WO, FIFO, STATIC, DWORD unknown											
Reserved	dr14											
31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
dr14 <23:0>	Data ALU register 14. This field holds a signed 9.15 value in two's complement notation.											
	 For TRAP with z, the DR14 register holds the blue increment value along the x-axis. For LINE with z, the DR14 register holds the blue increment value along the major axis. For TEXTURE_TRAP with modulation or decal, the DR14 register holds the blue increment value along the x-axis. 											
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.											

Address	MGABASE1 + 1CFCh (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown
Reserved	dr15
31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
dr15 <23:0>	Data ALU register 15. This field holds a signed 9.15 value in two's complement notation.
	 For TRAP with z, the DR15 register holds the blue increment value along the y-axis. For LINE with z, the DR15 register holds the blue increment value along the diagonal axis. For TEXTURE_TRAP with modulation or decal, the DR15 register holds the blue increment value along the y-axis.
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address	MGABASE1 + 2CB8h (MEM)									
Attributes	WO, FIFO, STATIC, DWORD									
Reset Value	0000 0000 0000 0000 0000 0000 0000 0000b									

		dst	org		Reserved dstacc dstmap					
31 30 29 28 27 2	26 25 24 23 22 21 20	19 18 1	7 16 15	14 13 12 11 10 9 8 7 6	5 4 3 2 1 0					
dstmap <0>	 Destination Map. A memory space indicator, this field indicates the map location. 0: the destination is in the frame buffer memory. 1: the destination is in the system memory. 									
dstacc <1>	 Destination Access type. This field specifies the mode used to access the map. 0: PCI access. 1: AGP access. AGP access. Mote: This field is <i>not</i> considered if the destination resides in the frame 									
dstorg <31:3>	 buffer source. Destination Origin. This field provides an offset value for the position of the first pixel of a destination surface. The dstorg field corresponds to a qword address in memory. The DSTORG register must be loaded with a multiple of 3, 4, 8 or 24 qwords according to the following table: 									
		pwidth	atype	DSTORG (multiples of qwords)						
		PW8	!BLK	4 ⁽¹⁾						
		PW16	!BLK	4(1)						
		PW24	!BLK	$3^{(2)}$						
		PW32 PW8	!BLK BLK	4 ⁽¹⁾ 8						
		PW16	BLK	8						
		PW24	BLK	24 ⁽²⁾						

(1) The DSTORG register must be loaded with a multiple of 4 qwords due to a limitation when alpha belnding is enabled.

8

(2) This restriction is due to the limitation of the CRTC in PW24. If the destination is offscreen then the real limitations are 1 in a !BLK and 8 in BLK mode.

Reserved. When writing to this register, the bits in this field *must* be set to '0'.

PW32

BLK

Reserved

<2>

Address MGABASE1 + 1E80h (MEM) (entry 0) ...

MGABASE1 + 1EBCh (MEM) (entry 15)

Attributes WO, DWORD

N/A

Reset Value

lut entry N

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Iutentry N
<31:0>These 16 registers are a lookup table that can be used in conjunction with the
DMAMAP registers. Writing to these locations address the register that is programmed
in the Nth byte of the DMAMAP. This indirect write register provides a means to
access non-sequential drawing registers sequentially.

Address	DWG_INDIR_WT Register
MGABASE1 + 1C00h + map_reg0	DWG_INDIR_WT<0>
MGABASE1 + 1C00h + map_reg1	DWG_INDIR_WT<1>
MGABASE1 + 1C00h + map_reg2	DWG_INDIR_WT<2>
MGABASE1 + 1C00h + map_reg3	DWG_INDIR_WT<3>
MGABASE1 + 1C00h + map_reg4	DWG_INDIR_WT<4>
MGABASE1 + 1C00h + map_reg5	DWG_INDIR_WT<5>
MGABASE1 + 1C00h + map_reg6	DWG_INDIR_WT<6>
MGABASE1 + 1C00h + map_reg7	DWG_INDIR_WT<7>
MGABASE1 + 1C00h + map_reg8	DWG_INDIR_WT<8>
MGABASE1 + 1C00h + map_reg9	DWG_INDIR_WT<9>
MGABASE1 + 1C00h + map_rega	DWG_INDIR_WT<10>
MGABASE1 + 1C00h + map_regb	DWG_INDIR_WT<11>
MGABASE1 + 1C00h + map_regc	DWG_INDIR_WT<12>
MGABASE1 + 1C00h + map_regd	DWG_INDIR_WT<13>
MGABASE1 + 1C00h + map_rege	DWG_INDIR_WT<14>
MGABASE1 + 1C00h + map_regf	DWG_INDIR_WT<15>

opcod

1 0

2

3

4

6 5

7

Address	MGABASE1 + 1C00h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	<u>0000 0000 0000 0000 0000 0000 0000 00</u>
clipdis transc pattern pompig	Reserved Shftzero sgnzero arzero atype atype

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

opcod <3:0>

Operation code. The **opcod** field defines the operation that is selected by the drawing engine.

			opcod
Function	Sub-Function	Value	Mnemonic
Lines		'0000'	LINE_OPEN
	AUTO	<u>'0001'</u>	AUTOLINE_OPEN
	WRITE LAST	'0010'	LINE_CLOSE
	AUTO, WRITE LAST	' 0011'	AUTOLINE_CLOSE
T		'0100'	TRAP
Trapezoid	Texture mapping	'0110'	TEXTURE_TRAP
Blit	$RAM \rightarrow RAM$	'1000'	BITBLT
	$HOST \rightarrow RAM$	'1001'	ILOAD
		'0101'	
		'0111'	
		'1010'	
		'1011'	
	Reserved	'1100'	
		'1101'	
		'1110'	
		'1111'	

	aty	ре						
	Value	Mnemonic	RAM Access					
	' 000'	RPL	Write (replace) ⁽¹⁾					
	·001'	RSTR	Read-modify-write (raster)(1)					
	·010'		Reserved					
	·011'	ZI	Depth mode with Gouraud ⁽²⁾					
	'100'	BLK	Block write mode ⁽³⁾					
	'101'		Reserved					
	'110'		Reserved					
	'111'	Ι	Gouraud (with depth compare) ^{$(2)(4)$}					
 (1) The Read-Modify-Write sequence depends on the value of the box if atype equals RPL, RSTR, ZI, or I. The Read will be performed to the table in the bop field (see page 3-102). (2) The raster operation also supports ZI and I operations (see page 3) (3) When block mode is selected, only RPL operations can be perform the bop field is programmed to a different value, RPL will be used 								
	 (4) Depth comparison works according to the zmode setting (same as 'ZI'); however, the depth is never updated. 							
linear <7>	Linear mode. Specifies	whether the b	olit is linear or xy.					
<1>	0: xy blit1: linear blit							
zmode	The z drawing mode. T	his field must	be valid for drawing using depth. This field					

ld

zmo	de	
Value	Mnemonic	Pixel Update
<i>`</i> 000'	NOZCMP	Always
·001'		Reserved
·010'	ZE	When depth is =
·011'	ZNE	When depth is <>
'100'	ZLT	When depth is <
'101'	ZLTE	When depth is <=
'110'	ZGT	When depth is >
'111'	ZGTE	When depth is >=

solid Solid line or constant trapezoid. The solid register is *not* a physical register. It provides an alternate way to load the SRC registers (see page 3-153).

- 0: No effect
- 1: SRC0 <= FFFFFFFh SRC1 <= FFFFFFFFh SRC2 <= FFFFFFFFh SRC3 <= FFFFFFFFh

Setting solid is useful for line drawing with no linestyle, or for trapezoid drawing with no patterning. It forces the color expansion circuitry to provide the foreground color during a line or a trapezoid drawing.

arzero
 AR register at zero. The arzero field provides an alternate way to set all AR registers (see descriptions starting on page 3-36).

- 0: No effect
- 1: **AR0** <= 0h **AR1** <= 0h **AR2** <= 0h **AR4** <= 0h **AR5** <= 0h **AR6** <= 0h

Setting arzero is useful when drawing rectangles, and also for certain blit operations.

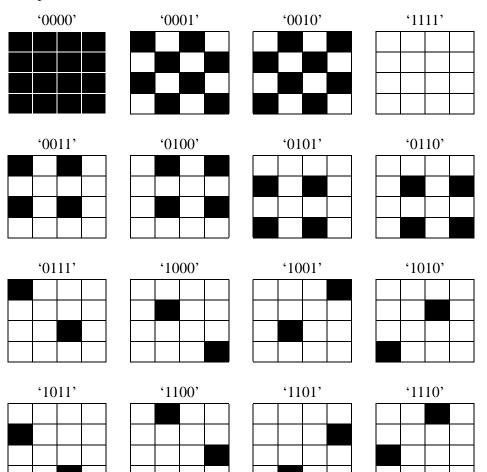
In the case of rectangles (TRAP **opcod**):

 $\begin{array}{l} dYl <= 0 \; (\text{AR0}) \\ errl <= 0 \; (\text{AR1}) \\ -|dXl| <= 0 \; (\text{AR2}) \\ errr <= 0 \; (\text{AR4}) \\ -|dXr| <= 0 \; (\text{AR5}) \\ dYr <= 0 \; (\text{AR6}) \end{array}$

- sgnzeroSign register at zero. The sgnzero bit provides an alternate way to set all the fields in
the SGN register.
 - 0: No effect
 - 1: **SGN** <= 0h

Setting **sgnzero** is useful during TRAP and some blit operations.

For TRAP:	brkleft (see SGN on page 3-139)
	scanleft = 0 Horizontal scan right
	sdxl = 0 Left edge in increment mode
	sdxr = 0 Right edge in increment mode
	sdy = 0 iy (see PITCH on page 3-129) is added to
	ydst (see YDST on page 3-215)
For BLIT:	scanleft = 0 Horizontal scan right
	sdxl = 0 Left edge in increment mode
	sdxr = 0 Right edge in increment mode
	sdy = 0 iy is added to ydst


shftzero <14>	Shift register at zero. The shftzero bit provides an alternate way to set all the fields of the SHIFT register.
	 0: No effect 1: SHIFT <= 0h

bop
 Boolean operation between a source and a destination slice. The table below shows
 <19:16> Boolean operations performed by the Boolean ALU for 8, 16, 24 and, 32 bits/pixel. During block mode operations, bop must be set to Ch. A raster operation is performed when atype = ZI, I, RPL or RSTR.

bop	Function	Destination read
<i>`0000'</i>	0	No
'0001'	~(D S)	Yes
' 0010'	D & ~S	Yes
' 0011 '	~S	No
'0100'	(~D) & S	Yes
<u>'0101'</u>	~D	Yes
'0110'	D ^ S	Yes
'0111'	~(D & S)	Yes
'1000'	D & S	Yes
'1001'	~(D ^ S)	Yes
'1010'	D	Yes
'1011'	D ~S	Yes
'1100'	S	No
'1101'	(~D) S	Yes
'1110'	D S	Yes
'1111'	1	No

trans <23:20>

Translucency. Specify the percentage of opaqueness of the object. The opaqueness is realized by writing one of 'n' pixels. The **trans** field specifies the following transparency pattern (where black squares are opaque and white squares are transparent):

bltmod <28:25>

Blit mode se	Blit mode selection. This field is defined as used during BLIT and ILOAD operations.				
blt	mod				
Value	Mnemonic	Usage			
,0000,	BMONOLEF	Source operand is monochrome in 1 bpp. For ILOAD, the source data is in Little-Endian format.			
' 0100 '	BMONOWF	Source operand is monochrome in 1 bpp. For ILOAD, the source data is in Windows format.			
' 0001'	BPLAN	Source operand is monochrome from one plane.			
·0010'	BFCOL	Source operand is color. Source is formatted when it comes from host.			
' 0011 '	BU32BGR	Source operand is color. For ILOAD, the source data is in 32 bpp, BGR format.			
' 0111 '	BU32RGB	Source operand is color. For ILOAD, the source data is in 32 bpp, RGB format.			
'1011'	BU24BGR	Source operand is color. For ILOAD, the source data is in 24 bpp, BGR format.			
'1111'	BU24RGB	Source operand is color. For ILOAD, the source data is in 24 bpp, RGB format.			
<i>`</i> 0101 <i>`</i>		Reserved			
'0110'		25			
ʻ1000'		23			
ʻ1001'		25			
ʻ1010'		25			
'1100'		>>			
'1101'		>>			
'1110'		Reserved			

• For line drawing with line style, this field must have the value BFCOL in order to handle the line style properly.

Refer to the subsections contained in 'Drawing in Power Graphic Mode' on page 4-29 for more information on how to use this field. That section also presents the definition of the various pixel formats.

patternPatterning enable. This bit specifies if the patterning is enabled when performingBITBLT operations.

• 0: Patterning is disabled.

• 1: Patterning is enabled.

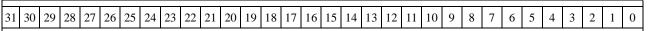
Drawing Control

Transparency color enabled. This field can be enabled for blits, vectors that have a transc linestyle, and trapezoids with patterning. For operations with color expansion, this bit <30> specifies if the background color is used. • 0: Background color is opaque. • 1: Background color is transparent. For other types of blit, this field enables the transparent blit feature, based on a comparison with a transparent color key. This transparency is defined by the following equation: if (transc==1 && (source & bltcmsk==bltckey)) do not update the destination else update the destination with the source Refer to the FCOL and BCOL register descriptions for the definitions of the bltckey and **bltcmsk** fields, respectively. clipdis Clipping Disable. This bit has the following effect on the value of CXLEFT, <31> CXRIGHT, CYBOT, and CYTOP: **'**0' **'1' CXLEFT** last value programmed in CXLEFT Oh (minimum value) CXRIGHT last value programmed in CXRIGHT FFFh (maximum value) CYBOT last value programmed in CYBOT FFFFFh (maximum value) CYTOP last value programmed in CYTOP Oh (minimum value) Reserved <15> <24> Reserved. When writing to this register, the bits in these fields *must* be set to '0'.

AddressMGABASE1 + 2C4CAttributesR/W, FIFO, DYNAMIC, DWORDReset Valueunknown

						dv	vg	syn	icad	ldr	•												Docread	עפספו עפע
31 31 29 28 27 2	26 25	24 2	23 22	21	20	19 1	.8	17	16 1	5 1	14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
dwgsyncaddrThis register serves as a synchronisation pointer. The value of dwgsyncaddr is updated with the value programmed in dwgsyncaddr <i>only</i> when the drawing engine has completed the primitive sent before DWGSYNC was programmed.						ine																		
When the primptren1 bit is set, this register is written by a PCI access in the location pointed to by PRIMPTR . The write is triggered when the drawing engine updates dwgsyncaddr .							ion																	
Reserved <1:0>	Res	serve	d. W	hen	writ	ing	to	this	s reg	ist	er,	the b	its i	in th	is f	ield	1 <i>m</i>	ust	be	set	to ().		

unknown


Address MGABASE1 + 1C24h (MEM)

WO, FIFO, STATIC, DWORD

Reset Value

Attributes

forcol

bltckey

forcol	Foreground color. The forcol field is used by the color expansion module to generate
<31:0>	the source pixels when the foreground is selected.

- In 8 bits/pixel, only **forcol**<7:0> is used.
- In 16 bits/pixel, only **forcol**<15:0> is used.
- In 24 bits/pixel, when *not* in block mode, **forcol**<31:24> is *not* used.
- In 24 bits/pixel, when in block mode, all forcol bits are used.

Refer to 'Pixel Format' on page 4-21 for the definition of the slice in each mode.

Part of the **forcol** register is also used for Gouraud shading to generate the alpha bits. In 32 bpp (bits/pixel), bits 31 to 24 originate from **forcol**<31:24>. In 16 bpp, when 5:5:5 mode is selected, bit 15 originates from **forcol**<31>.

bltckey
 Blit color key. This field specifies the value of the color that is defined as the
 'transparent' color. Planes that are *not* used must be set to '0'. Refer to the description of the transc field of DWGCTL for the transparency equation

- In 8 bits/pixel, only **bltckey**<7:0> is used.
- In 16 bits/pixel, only **bltckey**<15:0> is used.

FIFOSTATUS

Address	MGABASE1 + 1E10h (MEM)										
Attributes	RO, DYNAMIC, BYTE/WORD/DWORD										
Reset Value	0000 0000 0000 0000 0000 00 <u>10</u> 0 <u>100</u> ъ										

		oempty ofull	eserved					
	Reserved	bem bfull	Res	fifocount				
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11	10 9 8	76	5 4 3 2 1 0				
fifocount <6:0>	Indicates the number of free locations in the Bus F contents of the Bus FIFO are flushed and the FIFO							
bfull <8>	Bus FIFO full flag. When set to '1', indicates that	the Bus I	FIFO is	full.				
bempty <9>	Bus FIFO empty flag. When set to '1', indicates the identical to fifocount <6>.	at the Bus	s FIFO	is empty. This bit is				
	There is no need to poll the bfull or fifocount val circuitry in the MGA watches the BFIFO level and location becomes available, or until a retry limit h might indicate an abnormal engine lock-up).	d generat	es targe	t retries until a free				
	Even if the machine that reads the Bus FIFO is asynchronous with the PCI interface, a sample and hold circuit has been added to provide a correct, non-changing value during the full PCI read cycle (the fifocount value, bfull , and bempty flag states are sampled at the start of the PCI access).							
Reserved	<7> <31:10>							
	Reserved. When writing to this register, the bits in	these fie	lds <i>mu</i> s	<i>st</i> be set to '0'.				

Reserved. When writing to this register, the bits in these fields *must* be set to '0' Reading will return '0's.

Address	MGABASE1 + 1CF4h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

	fogcol							
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
fogcol <23:0>	Fog Color. When fogging is enabled, the fog field represents the color that is blended, using the fog blending factor, with the current rasterized fragment's color.							
	◆ <i>Note:</i> FOGCOL is in true color (RGB: 888) format.							
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.							

Address	MGABASE1 + 1CC4h (MEM)									
Attributes	WO, FIFO, DYNAMIC, DWORD									
Reset Value	unknown									
Reserved	fogstart									
31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
fogstart	Fog Start. This field holds a signed 9.15 value in two's complement notation.									
<23:0>	or 3D primitives, the FOGSTART register is used to scan the left edge of the rapezoid for the fog blending factor (when fogging is enabled).									
	• <i>Note:</i> This register must be initialized with its starting fog factor value.									
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.									

Address	MGABASE1 + 1CD4h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown
Reserved	fogxinc
31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fogxinc <23:0>	Fog X Increment register. This field holds a signed 9.15 value in two's complement notation.
	For 3D primitives, the FOGXINC register holds the fog blending factor increment along the x (or major) axis.
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address	M	MGABASE1 + 1CE4h (MEM)																								
Attributes	W	WO, FIFO, STATIC, DWORD																								
Reset Value	unl	kno	own																							
Reserved													1	og	yin	С										
31 30 29 28 27 26	25 2	24	23	22 2	1 2	20	19	18	17	16	5 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•	Tog Y Increment register. This field holds a signed 9.15 value in two's complement otation.																								
		or 3D primitives, the FOGYINC register holds the fog blending factor increment ong the y (or diagonal) axis.																								
Reserved <31:24>	Rese	rve	ed. V	Whe	n v	vri	ting	g to	o thi	is 1	regis	ster	, th	e bi	ts i	n th	is fi	ield	l <i>m</i>	ust	be	set	to'	0'.		

Address Attributes Reset Value	MGABASE1 + 1C84h (MEM) WO, FIFO, DYNAMIC, DWO unknown					
	fxright		fxleft			
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9	8 7 6 5 4	3 2 1 0		
	The FXBNDRY register is <i>not</i> a p FXRIGHT and FXLEFT registers	•	a more efficient w	ay to load the		
fxleft <15:0>	Filled object x left-coordinate. Refer to the FXLEFT register for a detailed description.					
fxright <31:16>	Filled object x right-coordinate. S	See the FXRIGHT regi	ister on page 3-11	5.		

-

Address Attributes Reset Value	MGABASE1 + 1CA8h (MEN WO, FIFO, DYNAMIC, DW unknown	,						
	Reserved		fxleft					
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 1	6 15 14 13 12 11 10 9	8 7 6 5 4 3 2 1 0					
fxleft <15:0>	5	Filled object x left-coordinate. The fxleft field contains the x-coordinate (in pixels) of the left boundary of any filled object being drawn. It is a 16-bit signed value in two's complement notation.						
	 The fxleft field is <i>not</i> used for line drawing. During filled trapezoid drawing, fxleft is updated during the left edge scan. During a BLIT operation, fxleft is static, and specifies the left pixel boundary of the area being written to. 							
Reserved <31:16>	Reserved. When writing to this	register, the bits in this f	field <i>must</i> be set to '0'.					

Address Attributes Reset Value	MGABASE1 + 1CACh (MEM) WO, FIFO, DYNAMIC, DWOR unknown								
	Reserved	fxright							
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 1	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
fxright <15:0>		Filled object x right-coordinate. The fxright field contains the x-coordinate (in pixels) of the right boundary of any filled object being drawn. It is a 16-bit signed value in two's complement notation.							
	 The fxright field is <i>not</i> used for line drawing. During filled trapezoid drawing, fxright is updated during the right edge scan. During a BLIT operation, fxright is static, and specifies the right pixel boundary of the area being written to. 								
Reserved <31:16>	Reserved. When writing to this reg	gister, the bits in this field <i>must</i> be set to '0'.							

-

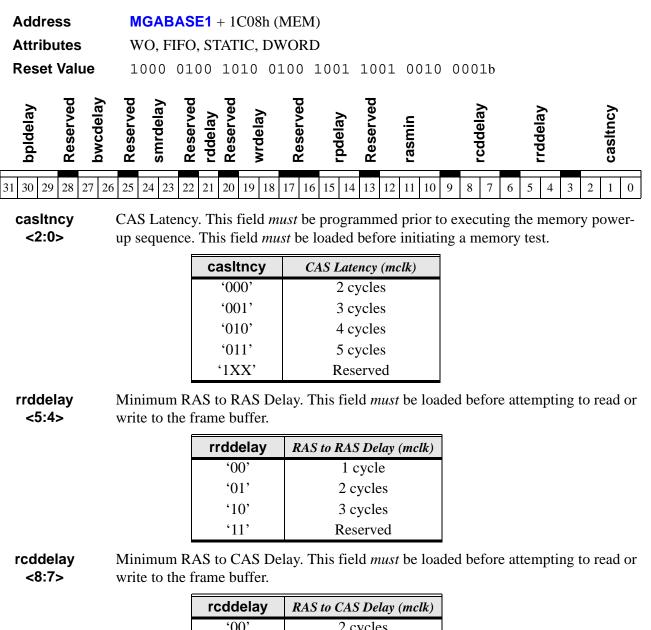
Address	MGABASE1 + 1E18h (MEM)
Attributes	WO, STATIC, BYTE/WORD/DWORD
Reset Value	0000 0000 0000 0000 0000 0000 0000 0000b

	Reserved	wcici Lin	wiclr Reserved	vlineiclr Reserved	pickiclr Reserved softrapiclr
31 30 29 28 27 26 25 24	3 22 21 20 19 18 17 16 15	4 13 12 11 10 9 8	7 6	5 4 3	2 1 0

softrapiclr <0>	Soft Trap Interrupt Clear. When a '1' is written to this bit, the soft trap interrupt pending flag is cleared.	
pickiclr <2>	Pick Interrupt Clear. When a '1' is written to this bit, the pick interrupt pending flag is cleared.	
vlineiclr <5>	Vertical Line Interrupt Clear. When a '1' is written to this bit, the vertical line interrupt pending flag is cleared.	
wiclr <7>	WARP Interrupt Clear. When a '1' is written to this bit, the WARP interrupt pending flag is cleared.	
wciclr <8>	WARP Cache interrupt Clear. When a '1' is written to this bit, the WARP cache interrupt pending flag is cleared.	
Reserved	<1> <4:3> <6> <31:9>	
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'. Reading will return '0's.	

Address	MGABASE1 + 1E1Ch (MEM)
Attributes	R/W, STATIC, BYTE/WORD/DWORD
Reset Value	0000 0000 0000 0000 0000 000 <u>0</u> <u>000</u> 0 0 <u>0</u> 0 <u>0</u>

	wcien wrien vlineien Reserved Reserved Softrapien		
31 30 29 28 27 2	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0		
softrapien <0>	Soft trap interrupt enable. When this field is set to '1', the PCI interrupt is enabled on the PINTA/ line when the SOFTRAP register is written to.		
pickien <2>	Picking Interrupt Enable. When set to '1', enables interrupts if a picking interrupt occurs.		
vlineien <5>	Vertical Line Interrupt Enable. When set to '1', an interrupt will be generated when the vertical line counter equals the vertical line interrupt count.		
extien <6>	External Interrupt Enable. When set to '1', an external interrupt will contribute to the generation of a PCI interrupt on the PINTA/ line.		
wien <7>	WARP Interrupt Enable. When set to '1', a WARP interrupt will contribute to the generation of a PCI interrupt on the PINTA/ line.		
wcien <8>	WARP Cache interrupt enable. When set to '1' a WARP CACHE miss will contribute to the generation of a PCI interrupt on the PINTA/ line.		
Reserved	<1> <4:3> <31:9>		
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'. Reading will return '0's.		


Address	MGABASE1 + 1C5Ch (MEM)
Attributes	WO, FIFO, DYNAMIC, DWORD
Reset Value	0000 0000 0000 0000 0000 0000 0000b
	Reserved length
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
length <15:0>	 Length. The length field is a 16-bit unsigned value. The length field does <i>not</i> require initialization for auto-init vectors. For a vector draw, length is programmed with the number of pixels to be drawn. For blits and trapezoid fills, length is programmed with the number of lines to be filled or blitted. To load the texture color palette, length is programmed with the number of locations in the LUT to be filled.
Reserved <31:16>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 100 WO, FIFO, STATIC 0000 0000 000	C, DWORD	<u>оо оооо оооо</u> ъ	
dit555 nodither tlutload Reserved	ୁ ଅ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ ଜ	memreset	zwidth Reserved Bwidth	
31 30 29 28 27 2	26 25 24 23 22 21 20 19	9 18 17 16 15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	
pwidth <1:0>	Pixel width. Specifies	the normal pi	xel width for drawing	
	pwie	dth		
	Value	Mnemonic	Mode	
	·00'	PW8	8 bpp	
	·01'	PW16	16 bpp	
	'10'	PW32	32 bpp	
	'11'	PW24	24 bpp	
zwidth	Z depth width. Specifi	ies the size of	Z values:	
<3>	zwic	dth		
	Value	Mnemonic	Mode	
	'0'	ZW16	16 bit Z	
	'1'	ZW32	32 bit Z	
memreset <15>	Resets the RAM. Whe reset cycle to the RAM		t to '1', the memory sequencer will generate a	
	Caution: Refer to Section 4.3.3 on page 4-24 for instructions on when to use this field. The memreset field must always be set to '0' except under specific conditions which occur during the reset sequence.			
fogen <26>	Fogging Enable. Fogging can be performed on any 3D operation.			
tlutload <29>		Texture LUT load. When this bit is set to '1' during an ILOAD or BITBLT operation, the destination becomes the texture LUT rather than the frame buffer.		
nodither	Enable/disable ditheri	ng.		
<30>		 0: Dithering is performed on unformatted ILOAD, ZI, and I trapezoids. 1: Dithering is disabled. 		

MACCESS

dit555 <31>	Dither 5:5:5 mode. This field should normally be set to '0', except for 16 bit/pixel configurations, when it affects dithering and shading.
	0: The pixel format is 5:6:51: The pixel format is 5:5:5
Reserved	<2> <14:4> <25:16> <28:27>

Reserved. When writing to this register, the bits in these fields *must* be set to '0'.

rcddelay	RAS to CAS Delay (mclk)
·00'	2 cycles
' 01 '	3 cycles
'10'	4 cycles
'11'	Reserved

rasmin <12:10> RAS Minimum active time. This field *must* be loaded before initiating a memory reset.

rasmin	RAS Minimum (mclk)
,000,	3 cycles
' 001 '	4 cycles
'010'	5 cycles
'011'	6 cycles
'100'	7 cycles
'101'	8 cycles
'110'	9 cycles
'111'	10 cycles

rpdelayMinimum RAS precharge Delay. This field *must* be loaded before initiating a memory<15:14>reset.

rpdelay	Precharge to Activate Delay (mclk)
' 00'	2 cycles
'01'	3 cycles
'10'	4 cycles
'11'	5 cycles

wrdelay Minimum Write Recovery Delay. This field *must* be loaded before attempting to read or write to the frame buffer.

wrdelay	Write to Precharge Delay (mclk)
' 00 '	1 cycle
'01'	2 cycles
'1X'	Reserved

rddelay Minimum Read to Precharge Delay. This field *must* be loaded before attempting to read or write to the frame buffer.

rddelay	Read to Precharge Delay					
·0'	<i>n</i> cycles					
'1'	$n + (CL - 2) cycles^{(1)}$					

⁽¹⁾ Where n = the amount of data to be read and CL = CAS latency (2, 3, 4, 5).

Memory Control Wait State

smrdelay <24:23> Minimum Special Mode Register Delay. This field *must* be loaded before attempting to read or write to the frame buffer.

smrdelay	SMR to Command Delay (mclk)					
' 00 '	1 cycle					
' 01 '	2 cycles					
'1X'	Reserved					

bwcdelay Minimum Block Write Cycle Delay. This field *must* be loaded before attempting to read or write to the frame buffer.

bwcdelay	Block Write Cycle Delay (mclk)					
' 00'	1 cycle					
'01'	2 cycles					
'1X'	Reserved					

bpldelay Minimum Block write to Precharge Delay. This field *must* be loaded before attempting to read or write to the frame buffer.

bpldelay	Block Write to Precharge Delay (mclk)
'000'	1 cycle
'001'	2 cycles
'010'	3 cycles
'011'	4 cycles
ʻ100'	5 cycles
'101'	6 cycles
'11X'	Reserved

Reserved <3> <6> <9> <13> <17:16> <20> <22> <25> <28>

Reserved. When writing to this register, the bits in these fields *must* be set to '0'.

Address Attributes Reset Value	R/W, FIF	MGABASE1 + 1E44h (MEM) R/W, FIFO, STATIC, BYTE/WORD/DWORD 0000 0000 0000 0000 0001 0000 1000b							
Reserved	mrsopcod Reserved strmfctl		Reserved m	clkbrd1 2 mclkbrd0					
31 30 29 28 2	7 26 25 24 23 2	2 21 20 19 18	17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0					
mclkbrd0 <3:0>	•		l Delay 0. This field <i>must</i> be loade attempting any other access to the	-					
	back data, N determines	IDQ(31:0), from where the dela	the delay on the clock/strobe used om the two banks on the base boar y-line for the read-back clock will dds approximately 0.2ns to the del	d. The pointer, mclkbrd0 , l be tapped. Each					
		000': minimun 111': maximur	•						
			be <i>INVISIBLE</i> to the user. Softwork trails (which vary the field).	are will set the field					
mclkbrd1 <8:5>	•		l Delay 1. This field must be loade attempting another access to the fi	-					
	back data, M mclkbrd1, Each incren clock. • '00	This field is used to adjust the delay on the clock/strobe used to register/latch the read- back data, MDQ(63:31), from the two banks on the base board. The pointer, mclkbrd1 , determines where the delay-line for the read-back clock will be tapped. Each increment of mclkbrd1 adds approximately 0.2ns to the delay on the read-back							
			be <i>INVISIBLE</i> to the user. Softw trails (which vary the field)	are will set the field					
strmfctl	Streamer Fl	ow Control. T	his field is used to ensure that CR	TC latencies are respected.					
<23:22>		strmfctl description							
		,00,	Do not block access to streamer pipe.						
		·01'	A maximum of TWO non- CRTC commands can be in the streamer pipe at any time.						
		'10'	A maximum of ONE non- CRTC commands can be in the						

streamer pipe at any time.

Reserved

'11'

mrsopcod <28:25>	Mode Register Set command OPCODe. This field <i>must</i> be loaded before initializing a memory reset or attempting to read or write to the frame buffer.
	This field is used to fill in the 4 MSB (MA(10:7)) of the Mode register set command's opcode.
	This field <i>must</i> be programmed with '0000' during normal operation.
Reserved	<4> <21:9> <24> <31:29>
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'.

Address Attributes Reset Value	R/W, STA	SE1 + 1E54h ATIC, WORD 000 0000	D/DWO	RD	0000	<u>00</u> 0	0Ъ			
	Reserved		dirdatasiz	Reserv	ed	dmadatasiz	Res	erved	dmamod	Reserved
31 30 29 28 27	26 25 24 23 2	22 21 20 19 1	8 17 16	5 15 14 13 12	11 10	9 8	7 6	5 4	3 2	1 0
dmamod <3:2>	Select the F	Pseudo-DMA	transfe	mode.					_	
		dmamod<1	:0> DM	IA Transfer Mo	ode Desc	ription				
		'00'	DN	AA General P	urpose	Write				
		·01'	DN	AA BLIT Wr	ite					
		'10'	DN	A Vector W	rite					
		'11'	DN	A Vertex W	rite					

Note: Writing to byte 0 of this register will terminate the current DMA sequence and initialize the machine for the new mode (even if the value did *not* change). This effect should be used to break an incomplete packet.

dmadatasiz
 DMAWIN data size. Controls a hardware swapper for Big-Endian processor support during access to the DMAWIN space or to the 8 MByte Pseudo-DMA window. Normally, dmadatasiz is '00' for any DMA mode except DMA BLIT WRITE.

dmadatasiz	Endian	Data	Internal Data Written to Register						
<1:0>	Format	Size	reg<31:24>	reg<23:16>	reg<15:8>	reg<7:0>			
' 00'	little	any	PAD-31.24>	PAD-23.16>	PAD<15:8>	PAD<7:0>			
00	big	8 bpp	PAD<51.24>	FAD<23.10>					
' 01 '	big	16 bpp	PAD<23:16>	PAD<31:24>	PAD<7:0>	PAD<15:8>			
'10'	big	32 bpp	PAD<7:0>	PAD<15:8>	PAD<23:16>	PAD<31:24>			
'11'	big	Reserved							

dirdatasiz <17:16> Direct frame buffer access data size. Controls a hardware swapper for Big-Endian processor support during access to the full frame buffer aperture or the VGA frame buffer aperture.

dirdatasiz <1:0>	Endian Format	Data Size	Internal Data Written to Register mem<31:24>mem<23:16> mem<15:8> mem<7:0>					
·00'	little	any	PAD-31.24>	PAD-22.16	PAD<15:8>	PAD<7:0>		
00	big	8 bpp	PAD<51.24>	TAD<23.10>				
·01'	big	16 bpp	PAD<23:16>	PAD<31:24>	PAD<7:0>	PAD<15:8>		
'10'	big	32 bpp	PAD<7:0>	PAD<15:8>	PAD<23:16>	PAD<31:24>		
'11'	big	Reserved						

• *Note:* dirdatasiz must be modified *only* when there are *no* frame buffer reads pending.

Reserved <1:0> <7:4> <15:10> <31:18>

Reserved. When writing to this register, the bits in these fields *must* be set to '0'. Reading will return '0's.

16

24

32

40

48

56

...

patreg(x)

...

...

...

...

Address Attributes Reset Value	MGABASE1 + 1C10h MGABASE1 + 1C14h (MEM) WO, FIFO, DYNAMIC, DWORD unknown						
	patreg1		patreç	J O			
63	32 3	1		0			
patreg <63:0>	Pattern register. The PAT registers alternate way to load the SRC regi	-	• •				
	The following illustration shows he into the frame buffer. The screen re			0 11			
	x_off = 0	01	2 3 4 5	6 7			
	x_off = 0 y_off = 0 1	7		0			
	1	15		8			

2 23

3 31

4 39

5 47

6 55

7 63

The pattern-pixel pinning can be changed using the **x_off** and **y_off** fields of the **SHIFT** register. See the **SRC0**, **SRC1**, **SRC2**, **SRC3** register on page 3-153.

Address	MGABASE1 + 1C8Ch (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

31 30 29 28 2	Reserved 7 26 25 24 23 22 21 20 19 18	Xiii A 17 16 15 14 13	12 11 10 9 8	iy 7 6 5 4 3 2 1 0				
iy <12:0>	The y-increment. This field is a 13-bit unsigned value. The y-increment value is measured in pixel unit and must be a multiple of 32 (the five $LSB = 0$). It must be less than or equal to 4096. The iy field specifies the increment to be added to or subtracted from ydst (see YDST on page 3-215) between two destination lines. The iy field is also used as the multiplication factor for linearizing the ydst register.							
	► Note: Every pitch that inclusive) is sup	t is a multiple of 3 oported for lineari						
		k mode, according	g to the table bel	of 32 or 64 due to a ow. See 'Constant Shaded for additional restrictions				
		pwidth	value	1				
		PW8	64					
		PW16	32	-				
		PW24	64	-				
		PW32	32					
ylin	The y-linearization. This	The y-linearization. This bit specifies whether the address must be linearized or not.						
<15>	•	0: The address is an xy address, so it must be linearized by the hardware1: The address is already linear						
_	• 1: The address is already	y linear						

Reserved <14:13> <31:16>

Reserved. When writing to this register, the bits in these fields *must* be set to '0'.

AddressMGABASE1 + 1C1Ch (MEM)AttributesWO, FIFO, STATIC, DWORD

Reset Value unknown

plnwrmsk

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

plnwrmsk <31:0> Plane write mask. Plane(s) to be protected during any write operations. The plane write mask is *not* used for z cycles, or for direct write access (all planes are written in this case).

• 0 =inhibit write

• 1 = permit write

The bits from the **plnwrmsk**<31:0> register are output on the MDQ<31:0> signal and also on MDQ<63:32>. In 8 and 16 bit/pixel configurations, all bits in **plnwrmsk**<31:0> are used, so the mask information must be replicated on all bytes. In 24 bits/pixel, the plane masking feature is limited to the case of all three colors having the same mask. The four bytes of **plnwrmsk** must be identical.

Refer to 'Pixel Format' on page 4-21 for the definition of the slice in each mode.

Address	MGABASE1 + 1E58h (MEM)
Attributes	R/W, DYNAMIC, BYTE/WORD/DWORD
Reset Value	<u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> b

	primaddress					
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
primod <1:0>	Primary Pseudo-DMA mode. This static field indicates the Pseudo-DMA mode to b used to transfer data from system memory to the MGA in mastering mode through th primary DMA channel.					
	primod DMA Transfer Mode					
	'00' DMA General Purpose Write					
	'01' DMA Blit Write					
	'10' DMA Vector Write					
	'11' DMA Vertex Write					
primaddress <31:2>	Primary current address. This field indicates the address to be used to access the primary DMA channel in the system memory when the MGA-G200 is performing by mastering.	us				
	The start address value of the primary display list must be written to this register before PRIMEND is written to.					
	The primaddress field is increased by one every time the MGA-G200 terminates a read access at primaddress in the system memory.					
	If, when increased, primaddress becomes equal to primend , the primary channel empty. Bus mastering stops, and endprdmasts is set (refer to the STATUS register description).					
	Refer to 'Programming Bus Mastering for DMA Transfers' on page 4-11 for more details.					

 Address
 MGABASE1 + 1E5Ch (MEM)

 Attributes
 R/W, STATIC, BYTE/WORD/DWORD

 Reset Value
 0000
 0000
 0000
 0000
 0000
 0000
 0000

	pagpxfer primostart		
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0		
primnostart <0>	Primary No Start. Writing the PRIMEND register with this bit set to '1' will <i>not</i> restart the primary DMA Channel while a Softrap Interrupt is pending.		
pagpxfer <1>	Primary AGP Transfer. When '1', the AGP bus cycle will be used for primary DMA data transfer, otherwise, the PCI cycle will be used.		
primend<31:2>Primary end address. The primend field holds the end address + 1 of the primardisplay list in the system memory, when doing bus mastering.			
	Writing to this field will <i>start</i> the transfers from the primary DMA channel in the MGA-G200 (<i>unless</i> primnostart = 0), therefore, PRIMEND is the <i>last</i> register to be written to (<i>unless</i> primnostart = 0).		
	Refer to 'Programming Bus Mastering for DMA Transfers' on page 4-11 for more details.		

Address	MGABASE1 + 1E50h (MEM)
Attributes	R/W, STATIC, BYTE/WORD/DWORD
Reset Value	5355 5355 5355 5355 5355 5355 5355 5000P

	Reserved Primptren1	primptren0
31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
primptren0 <0>	Primary list status fetch Pointer Enable 0. When set to '1', a qword of status data information is written to the system memory (using PCI cycle) at the address corresponding to primptr every time a Softrap or Secend or Setupend register writt occurs.	e
	Status data information:	
	 1st dword: PRIMADDRESS register 2nd dword: DWGSYNC register 	
primptren1 <1>	Primary list status fetch Pointer Enable 1. When set to '1', a qword of status data information is written to the system memory (using PCI cycle) at the address corresponding to primptr every time a DWGSYNC register write occurs.	
primptr <31:3>	Primary list status fetch Pointer. This is the qword address where the status data wi be placed in system memory.	11
	• <i>Note:</i> This address <i>must</i> be in a PCI accessible range	
Reserved <2>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.	

Address	MGABASE1 + 1E40h (MEM)
Attributes	R/W, STATIC, BYTE/WORD/DWORD
Reset Value	0000 0000 0000 0000 0000 0000 0000 0000b

31 30 29 28 27 2	Reserved 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
softreset <0>	Soft reset. When set to '1', this resets all bits that allow software resets. This has the effect of flushing the BFIFO and the direct access read cache, and aborting the current drawing instruction. A soft reset will <i>not</i> generate invalid memory cycles; memory contents are preserved. The softreset signal takes place at the end of the PCI write cycle. The reset bit must be maintained at '1' for a minimum of 10 µs to ensure correct reset. After that period, a '0' must be programmed to remove the soft reset. This will: • reset the set-up engine and set-up engine fifo • terminate any bus mastering or pseudo-dma transfer • return some register bits to their soft-reset values (see individual registers).
	 Refer to Section 4.3.3 on page 4-24 for instructions on when to use this field. WARNING! A soft reset will not re-read the chip strapping.
softextrst <1>	External Software Reset. When set to '1', this will activate the external reset pin (EXTRSTN). The external reset will remain active until this bit is reset to '0'.
Reserved <31:2>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'. Reading will return '0's.

Address	MGABASE1 + 2C40h (MEM)
Attributes	R/W, FIFO, DYNAMIC, DWORD
Reset Value	<u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> b

					secmod	
			secaddress		S	
31 30 29 28 27 2	26 25 24 23 22	2 21 20 19	18 17 16 15 14 13 12 11 10 9	8 7 6 5 4 3 2	1 0	
secmod <1:0>	•	ansfer data	A mode. This static field indicates from system memory to the MGA annel.			
		secmod	DMA Transfer Mode			
		' 00'	DMA General Purpose Write			
		' 01 '	DMA Blit Write			
		'10'	DMA Vector Write			
		' 11 '	DMA Vertex Write			
secaddress <31:2>	 Secondary DMA Address. This field indicates the address to be used to access the secondary DMA channel in the system memory when the MGA-G200 is perform bus mastering. The start address value of the secondary DMA channel must be written to this register before SECEND is written to. 					
	The field sec	caddress is i	increased by one every time the M in the system memory.	GA-G200 terminates	a read	
			ecaddress becomes equal to sec g then continues, using the primary		ıannel	
	The data that is written to the SOFTRAP register will also be loaded into the secaddress field.					
	<i>ab</i> dis	<i>solutely</i> be play list <i>mi</i>	ble to write to this register directly performed through mastering moc <i>ust be programmed</i> . Refer to 'Pro DMA Transfers' on page 4-11 for	le. That is, a primary gramming Bus		

Address	MGABASE1 + 2C44h (MEM)
Attributes	R/W, FIFO, STATIC, DWORD
Reset Value	<u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> b

	secend secend						
	secend ö 🗠						
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
sagpxfer <1>	Secondary AGP Transfer. When '1', the AGP bus cycle will be used for secondary DMA data transfer, otherwise, the PCI cycle will be used.						
secend <31:2>	Secondary End address. The secend field holds the end address + 1 of the secondary DMA channel in the system memory, when doing bus mastering.						
	Writing to this field will <i>start</i> the secondary DMA transfers by the MGA-G200 using bus mastering. The SECEND register must always be written to after SECADDRESS .						
	Note: It is not possible to write to this register directly. Write access must absolutely be performed through mastering mode. That is, a primary display list must be programmed. Refer to 'Programming Bus Mastering for DMA Transfers' on page 4-11 for more details.						
Reserved <0>	Reserved. When writing to this register, the bit in this field <i>must</i> be set to '0'. Reading will give '0's.						

Address	MGABASE1 + 2CD0h (MEM)
Attributes	R/W, FIFO, DYNAMIC, DWORD
Reset Value	<u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> b

				setupmod
		seti	upaddress	S S
31 30 29 28 27	26 25 24 23 2	2 21 20 19 18	17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
setupmod <1:0>	Setup Pseudo-DMA mode. This static field indicates the Pseudo-Dma mode to be used to transfer data from system memory to the MGA in mastering mode through the setup DMA channel.			
		setupmod	Setup DMA Transfer Mode	
		<i>`</i> 00'	DMA Vertex Fixed Length Setup List	
		·01'	Reserved	
		'10'	Reserved	
		'11'	Reserved	
setup address <31:2>	-		field indicates the addresses to be nemory when the MGA-G200 is p	-
		dress value of pend is writte	the setup DMA channel must be v n to.	vritten to this register
	-		uses by one every time the MGA-O n the system memory.	G200 terminates a read
	channel is e	mpty. When th	, setupaddress becomes equal t e last setup DMA generated by th ontinues using the primary channe	e current setup list is
	<i>ab</i> dis	<i>solutely</i> be per splay list <i>must</i>	to write to this register directly. V formed through mastering mode. <i>be programmed</i> . Refer to 'Progra MA Transfers' on page 4-11 for m	That is, a primary mming Bus

Address	MGABASE1 + 2CD4h (MEM)
Attributes	R/W, FIFO, STATIC, DWORD
Reset Value	<u>0000 0000 0000 0000 0000 0000 0000</u> b

	setupend setuped
31 30 29 28 27 2	
setupagpxfer <1>	Setup AGP transfer. When '1', the AGP bus cycle will be used for setup DMA data transfer, otherwise, the PCI cycle will be used.
setupend <31:2>	Setup End address. The setupend field holds the end address + 1 of the setup DMA channel in the system memory, when bus mastering.
	Writing to this field will start the setup DMA transfer by the MGA-G200 using bus mastering. The SETUPEND register must always be written to after SETUPADDRESS .
	Note: It is not possible to write to this register directly. Write access must absolutely be performed through mastering mode. That is, a primary display list must be programmed. Refer to 'Programming Bus Mastering for DMA Transfers' on page 4-11 for more details.
Reserved <0>	Reserved. When writing to this register, the bit in this field <i>must</i> be set to '0'. Reading will give '0's.

Address Attributes Reset Value	MGABASE1 + 1C58h (MEM) WO, FIFO, DYNAMIC, DWORD 0??? ???? ???? ???? ???? ???0 ???? ????b
errorinit	brkleft brkleft Reserved sdxr sdxl sdxl scanleft
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	sdydxl
sdydxl <0>	Sign of delta y minus delta x. This bit is shared with scanleft . It is defined for LINE drawing only and specifies the major axis. This bit is automatically initialized during AUTOLINE operations.
	 0: major axis is y 1: major axis is x
scanleft <0>	Horizontal scan direction left (1) vs. right (0). This bit is shared with sdydxl and affects TRAPs and BLITs; scanleft is set according to the x scanning direction in a BLIT.

Normally, this bit is always programmed to zero except for BITBLT when **bltmod** = BFCOL (see **DWGCTL** on page 3-99). For TRAP drawing, this bit must be set to '0' (scan right).

Sign of delta x (line draw or left trapezoid edge). The sdxl field specifies the x
 direction for a line draw (opcod = LINE) or the x direction when plotting the left edge in a filled trapezoid draw. This bit is automatically initialized during AUTOLINE operations.

- 0: delta x is positive
- 1: delta x is negative
- sdy Sign of delta y. The sdy field specifies the y direction of the destination address. This
 tis automatically initialized during AUTOLINE operations. This bit should be programmed to zero for TRAP.
 - 0: delta y is positive
 - 1: delta y is negative

sdxr <5>	Sign of delta x (right trapezoid edge). The sdxr field specifies the x direction of the right edge of a filled trapezoid.
	0: delta x is positive1: delta x is negative
brkleft <8>	Broken left. For trapezoid with subpixel positioning, the start value of the bottom-trap must be adjusted due to the change of the left slope.
	0: No pixel adjustment1: Adjust the left edge with the new FXLEFT value
errorinit <31>	This bit is used when opcod = AUTOLINE_OPEN or AUTOLINE_CLOSE. It specifies the content of AR1 at the end of the initialization sequence.
	 0: AR1 holds 2x'b'-'a'- sdy 1: AR1 holds 2x'b'-'a'-MGAQuadrantError
	where MGAQuadrantError takes the following values:
	0 1

0

0

1


0 1

"1"- Indicates the quadrants in which the error term

should be biased.

The MGA's convention for numbering the quadrants is as follows, where 'sdydxl_Major_X' = 1, 'sdxl_SUB' = 2, 'sdy_SUB' = 4

then:

MGAQuadrantError (sdydx1 + (sdx1 << 1) + (sdy <<2)) = { 1,1,0,1,1,0,0,0 }

Reserved <4:3> <7:6> <30:9>

Reserved. When writing to this register, the bits in these fields *must* be set to '0'.

AddressMGABASE1 + 1C50h (MEM)

Attributes WO, FIFO, DYNAMIC, DWORD

Reset Value unknown

Reserv	ved	stylelen	Reserved	funcnt
31 30 29 28 27	26 25 24 23 22	21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
Rese	rved	funoff	Reserved	y_off x_off
x_off <3:0>			for TRAP operations with ust be in the range 0-7 (bi	nout depth, to specify the x it 3 is always '0').
	This field wil	l be modified during	Blit operations.	
funcnt	Funnel count	value. This field is u	used to drive the funnel sh	ifter bit selection.
<6:0>	• For LINE of initialized to	-	untdown register. For 3D	vectors, this field must be
	This field wil	l be modified during	Blit operations.	
y_off <6:4>	Pattern y offs offset in the p		for TRAP operations with	nout depth, to specify the y
	This field wil	l be modified during	Blit operations.	
funoff <21:16>		-	ations, this field is used to unoff is interpreted as a 6	o specify a bit offset in the bit signed value.
stylelen <22:16>	indicates a lo	cation in the SRC reg		the linestyle length. It to its value is the number of field must be initialized to
Reserved	<15:7> <31:	23/22>		
	Reserved. WI	hen writing to this re	gister, the bits in these fie	lds <i>must</i> be set to '0'.

Address	MGABASE1 + 2C48h (MEM)
Attributes	R/W, FIFO, DYNAMIC, DWORD
Reset Value	unknown

		Reserved
	softraphand	Re
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0
softraphand <31:2>	Soft trap handle. When this field is written, a soft trap interrupt is generated, and primary DMA channel is stopped (the softrapen and endprdmasts fields of STATUS are set to '1'). To restart the primary DMA channel, PRIMEND must written.	
	SOFTRAP can be written by either the primary or secondary DMA channel. If p the secondary channel, both the primary and the secondary channel will stop.	part of
	Data written to the softraphand field is actually loaded into the secaddress field is SECADDRESS (which is temporarily borrowed for use by this function). This mechanism could be used by software to transfer information to the interrupt has	same
	Note: It is not possible to write to this register directly. Write access must absolutely be performed through mastering mode. That is, a primary display list must be programmed. Refer to 'Programming Bus Mastering for DMA Transfers' on page 4-11 for more details.	
Reserved <1:0>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'. Reading will return '0's.	

Address Attributes Reset Value	MGABASE1 + 2C98h (MEM) R/W, FIFO, DYNAMIC, DWORD unknown												
Reserved	specbstart												
31 30 29 28 27 20	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0												
specbstart <23:0>	Specular Lighting Blue Start value. This field holds a signed 9.15 value in two's complement notation.												
	For TEXTURE_TRAP primitives, the SPECBSTART register must be initialized with the starting specular light value for the blue component.												
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.												

Address Attributes Reset Value	MGABASE1 + 2C9Ch (MEM) R/W, FIFO, STATIC, DWORD unknown
Reserved	l specbxinc
31 30 29 28 27 20	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
specbxinc <23:0>	Specular Lighting Blue X Increment value. This field holds a signed 9.15 value in two's complement notation.
	For TEXTURE_TRAP primitives, the SPECBXINC register holds the blue increment value along the x-axis.
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address	MGABASE1 + 2CA0h (MEM)
Attributes	R/W, FIFO, STATIC, DWORD
Reset Value	unknown
Reserved	specbyinc
31 30 29 28 27 20	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
specbyinc <23:0>	Specular Lighting Blue Y Increment value. This field holds a signed 9.15 value in two's complement notation.
	For TEXTURE_TRAP primitives, the SPECBYINC register holds the blue increment value along the y-axis.
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	R/	MGABASE1 + 2C8Ch (MEM) R/W, FIFO, DYNAMIC, DWORD unknown																						
Reserved											sp	ecę	gst	art										
31 30 29 28 27 20	5 25 2	24 23	3 22	21	20 1	9 18	17	1	6 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
specgstart <23:0>			0		g Gre ation.	en l	Star	t v	value	. Th	is 1	field	d ho	olds	a s	ign	ed	9.1:	5 v	value	; in	two	o's	
	For 7 with				TRA speci											\sim		r m	usi	t be :	init	iali	zed	
Reserved <31:24>	Rese	ervec	. W	hen	writi	ng t	o th	is	regis	ster,	the	e bi	ts ii	n th	is fi	eld	m	ust	be	set	to '	0'.		

Address	MGABASE1 + 2C90h (MEM)
Attributes	R/W, FIFO, STATIC, DWORD
Reset Value	unknown
Reserved	specgxinc
31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
specgxinc <23:0>	Specular Lighting Green X Increment value. This field holds a signed 9.15 value in two's complement notation.
	For TEXTURE_TRAP primitives, the SPECGXINC register holds the green increment value along the x-axis.
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address	MGABASE1 + 2C94h (MEM)
Attributes	R/W, FIFO, STATIC, DWORD
Reset Value	unknown

Reserved	specgyinc																									
31 30 29 28 27 20	5 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
specgyinc <23:0>		pecular Lighting Green Y Increment value. This field holds a signed 9.15 value in wo's complement notation.													n											
	For inci							-				he	SPE	CC	GYI	NC	reg	gist	er h	old	ls th	ne g	ree	n		
Reserved <31:24>	Res	erv	ed.	Wł	nen	wri	tin	g to	o thi	is re	egis	ster	, the	e bi	ts i	n th	is f	ielc	1 <i>m</i>	ust	be	set	to '	0'.		

Address Attributes Reset Value		, FI	A <mark>SE1</mark> FO, D			`		·)														
Reserved	I									sp	ecr	sta	art										
31 30 29 28 27 20	6 25 24	23	22 21	20 1	9 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
specrstart <23:0>	Specul comple		0	0		ırt v	alu	le. T	This	fie	ld h	old	ls a	sigi	ned	9.	15 v	valu	ıe iı	n tw	vo's	•	
	For TE with th			-											0		r m	ust	be i	initi	ializ	zed	
Reserved <31:24>	Reserv	ed.	When	writi	ng to	o thi	is r	egis	ster,	the	bit	s ir	1 th	is fi	eld	m	ust	be	set	to '	0'.		

Address Attributes Reset Value	R/V	MGABASE1 + 2C84h (MEM) R/W, FIFO, STATIC, DWORD unknown																					
Reserved										sp	ec	rxiı	nc										
31 30 29 28 27 26	5 25 24	4 23	22 21	20 1	9 18	17	16	5 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
specrxinc <23:0>	Spect two's		0	U			en	nent	val	ue.	Thi	s fi	eld	hol	ds	a si	gne	ed 9	9.15	i va	lue	in	
	For T value		-	_		imit	ive	es, tl	he S	SPE	CF	XI	NC	reg	iste	er h	old	s th	ne re	ed i	ncr	eme	ent
Reserved <31:24>	Reser	ved.	When	n writi	ng to	o th	is 1	regis	ster,	the	bi	ts ir	n th	is fi	eld	m	ust	be	set	to '	0'.		

Address	MGABASE1 + 2C88h (MEM)									
Attributes	R/W, FIFO, STATIC, DWORD									
Reset Value	unknown									
Reserved	specryinc									
31 30 29 28 27 20	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
specryinc <23:0>	Specular Lighting Red X Increment value. This field holds a signed 9.15 value in two's complement notation.									
	For TEXTURE_TRAP primitives, the SPECRYINC register holds the red increment value along the y-axis.									
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.									

Address Attributes Reset Value	MGABASE1 + 1C30h, + WO, FIFO, DYNAMIC, E unknown		C3Ch (MEM)						
srcreg3	srcreg2	srcreg1	I	srcreg0					
127	96 95	64 63	32 31	0					
srcreg <127:0>									
	For TRAP with the RPL or R pattern (the odd bytes of the Section 4.5.5.3 on page 4-41	SRC registers must be	U U						
	For all BLIT operations, and is used internally for interme		ing depth mode,	the source register					

A write to the **PAT** registers (see page 3-128) will load the **SRC** registers.

SRCORG

Address	AGABASE1 + 2CB4h (MEM)	
Attributes	VO, FIFO, STATIC, DWORD	
Reset Value	0000 0000 0000 0000 0000 0000 0000 00	

	Reserved srcacc srcmap										
· · · · · · · · · · · · · · · · · · ·	srcorg 22 o o										
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
srcmap	Source Map. A memory space indicator, this field indicates the map location.										
<0>	0: the source surface is in the frame buffer memory.1: the source surface is in the system memory.										
srcacc	Source Access type. This field specifies the mode used to access the map.										
<1>	• 0: PCI access.• 1: AGP access.										
	Note: This field is not considered if the source resides in the frame buffer space.										
srcorg <31:3>	Source Origin. This field provides an offset value for the position of the first pixel for a source surface. The srcorg field is used during BitBlit operations. The srcorg field corresponds to a qword address in memory.										
	► <i>Note:</i> srcorg [4:3] must always be loaded with '00'.										
Reserved <2>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.										

Address Attributes Reset Value	MGABASE1 + 1E14h (MEM) R/W, DYNAMIC, BYTE/WORD/DWORD 0000 0000 0000 0 <u>010</u> 0000 000 <u>0</u> <u>0</u> ? <u>00</u> <u>00</u> 0 <u>0</u> b
	Beserved wbusy endprdmasts dwgengsts wcpen wpen vsyncpen vsyncsts pickpen softrapen
swflag	
	16 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
softrapen RO <0>	Soft trap interrupt pending. When set to '1', this field indicates that the MGA-G200 has stopped reading through the primary channel.
	This field is set to '1' when the SOFTRAP register is written. This field is cleared through the softrapiclr field (see ICLEAR on page 3-116) or upon soft or hard reset.
pickpen	Pick interrupt pending. When set to '1', indicates that a pick interrupt has occurred.
RO <2>	This bit is cleared through the pickiclr bit (see ICLEAR on page 3-116) or upon soft or hard reset.
vsyncsts RO <3>	VSYNC status. Set to '1' during the VSYNC period. This bit follows the VSYNC signal.
vsyncpen RO <4>	VSYNC interrupt pending. When set to '1', indicates that a VSYNC interrupt has occurred. (This bit is a copy of the crtcintCRT field of the INSTS0 VGA register).
	This bit is cleared through the vintclr bit of CRTC11 or upon hard reset.
vlinepen RO <5>	Vertical line interrupt pending. When set to '1', indicates that the vertical line counter has reached the value of the vertical interrupt line count. See the CRTC18 register on page 3-265. This bit is cleared through the vlineiclr bit (see ICLEAR on page 3-116) or upon soft or hard reset.
extpen RO <6>	External interrupt pending. When set to '1', indicates that the external interrupt line is driven. This bit is cleared by conforming to the interrupt clear protocol of the external device that drive the EXTINT/ line. After a hard reset, the state of this bit is unknown (as indicated by the question mark in the 'Reset Value' above), as it depends on the state of the EXTINT/ pin during the hard reset.
wpen RO <7>	WARP interrupt Pending. When set to '1', indicates that a WARP interrupt has occurred. This bit is cleared through the wiclr bit (see ICLEAR) or upon soft or hard reset.
wcpen RO <8>	WARP Cache interrupt Pending. When set to '1', indicates that a WARP cache interrupt has occurred. This bit is cleared through the wciclr bit (see ICLEAR) or upon soft or hard reset.
dwgengsts RO <16>	 Drawing engine status. Set to '1' when the drawing engine is busy. A busy condition will be maintained during any of these conditions: bfifo is <i>not</i> empty warpfifo is <i>not</i> empty the drawing engine is still processing and sending commands

	 the memory has not completed the last memory access (from the drawing engine). The AGP chipset has not completed the last memory access (from the drawing engine).
endprdmasts RO <17>	End of primary DMA channel status. When set to '1', this bit indicates that the MGA-G200 has completed its DMA transfers (primaddress = primend and secaddress = secend and setupaddress = setupend), or when a soft trap interrupt occurs. Restarting the primary DMA by accessing PRIMEND will reset endprdmasts to '0'.
	Note: Refer to 'Programming Bus Mastering for DMA Transfers' on page 4- 11 for more details.
wbusy RO <18>	WARP Busy. When set to '1', indicates that the WARP is <i>not</i> idle; it may be RUNning, WAITing, STALLed or loading microcode (cachemiss).
swflag R/W <31:28>	Software Flag. These bits have no effect on the chip.
Reserved	<1> <15:9> <27:19>
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'. Reading will return '0's.
	• • • • • • • • • • • • • • • • • • • •

• *Note:* A sample and hold circuit has been added to provide a correct, nonchanging value during the full PCI read cycle (the status values are sampled at the start of the PCI access).

Address Attributes	MGABASE1 + 1E48h (R/W, DYNAMIC, WOI		,												
Reset Value	0000 0000 0000 0	00	0 0000	0000 0	000	0 0	00	0b							
biosboot ringcntclksl	ringcnt	ringcnten	tclksel	tmode	hiten	aplibyp	ringen	Reserved	besramtstpass	luttstpass	tluttstpass	tcachetstpass	wramtstpass	ramtstdone	ramtsten
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18	17	16 15 14	13 12 11	10	9	8	7	6	5	4	3	2	1	0
ramtsten <0>	Memory self Test Enable (valid when tmode = '010') • 0: Disable memory self test • 1: Enable memory self test														
ramtstdone	Memory self Test Done														
RO <1>	 0: The memory self test is <i>not</i> finished yet 1: The memory self test is done 														
wramtstpass RO	WARP Ram self Test Pass. This field is composed of the PASS output of the ram macro of the WARP engine.														
<2>	0: Test failed1: Test passed														
tcachetst pass	Texture Cache ram self Test Pass. This field is composed of the PASS output of the ram macro of the texture cache.														
RO <3>	0: Test failed1: Test passed														
tluttstpass RO	Texture LUT self Test Pass. This field is composed of the PASS output of the ram macro of the texture LUT.														
<4>	0: Test failed1: Test passed														
luttstpass	LUT self Test Pass. This fi	eld	is compos	sed of the	PAS	SS c	outn	out o	of th	ne r	am	ma	cro	of	the

luttstpass LUT self Test Pass. This field is composed of the PASS output of the ram macro of the RO RAMDAC LUT. <5>

• 0: Test failed • 1: Test passed besramtst Back End Scaler Ram self Test Pass. This field is composed of the PASS output of the pass ram macro of the backend scaler. RO • 0: Test failed <6>

• 1: Test passed

TEST0

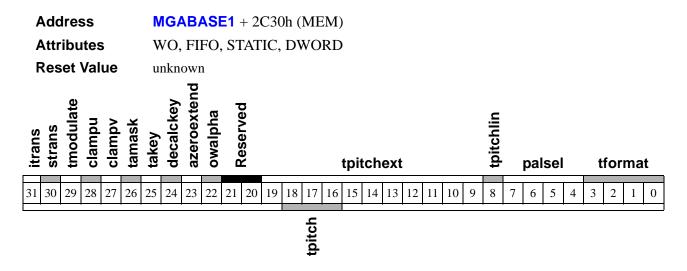
ringen	Ring oscillator enable (valid when tmode = '001')											
<8>	0: Disable the ring oscillator1: Enable the ring oscillator											
apllbyp	AGP PLL bypass mode											
<9>	 0: The AGP PLL is <i>not</i> bypassed. The output of the PLL is used as the agp 2x clock. 1: The AGP PLL is bypassed by VDCLK (VDCLK is used as the agp 2x clock). 											
hiten RO <10>	Hit Enable. Cache hit signal											
tmode <13:11>	Extra Test Mode. This field is used to reconfigure the pins to access internal signals for test purposes.											
	 '000': Normal mode '001': Observe mode '010': Memory self-test mode (others): Reserved 											
tclksel <16:14>	Test Clock Select (valid when tmode = '001'). This field selects which clock to output on DCC_0 when in observe mode (tmode = '001')											
	 000: pixpll 001: pixpll / 4 010: syspll 011: syspll / 4 100: agppll 101: agppll / 4 110: rsrv 111: rsrv 											
ringcnten <17>	Ring Oscillator Counter Enable.											
<17>	0: disables the ring counter1: enables the ring counter											
ringcnt RO dynamic <29:18>	Ring Count (value in the ring counter). Number of cycles of the ring oscillator while pixclk goes through 2048 cycles.											
ringcntclksl	Ring Count Clock Select. Select the clock to use for frequency measurement.											
<30>	0: use the ring oscillator1: use the PCI clock											
biosboot	Bios Boot. Indicates the size of the serial eeprom, if present											
RO <31>	 0: indicates either the absence of a serial eeprom, or the presence of a 128 Byte (up to 512 Bytes) serial eeprom on board. 1: indicates the presence of a 32KB or 64KB serial eeprom containing the BIOS. 											
Reserved	<7> <30>											

Reserved. When writing to this register, the bits in this field *must* be set to '0'. Returns

'0's when read.

TEXBORDERCOL

_


Attributes	MGABASE1 + 2C5Ch (MEM)
Reset Value	WO, FIFO, STATIC, DWORD
Reset Value	unknown

texbordercol

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

texbordercol Texture Border Color. The texture's border color in 32-bit ARGB format.
<31:0>

Texel Format. Specifies the texture's texel format.

tformat <3:0>

tfor	rmat		
Value	Mnemonic	Mode	Format
<i>`0000'</i>	TW4	4 bits/texel	(Goes through the LUT)
·0001'	TW8	8 bits/texel	(Goes through the LUT)
<i>'0010'</i>	TW15	1:5:5:5	(A:R:G:B)
'0011'	TW16	5:6:5	(R:G:B)
'0100'	TW12	4:4:4:4	(A:R:G:B)
'0110'	TW32	8:8:8:8	(A:R:G:B)
'1010'	TW422	4:2:2	(VYUY)

<7:4>	Palette Select. This field selects which of the 16 palettes to use for 1 w4.
tpitchlin <8>	Texture Pitch Linear. Indicates whether or not the value in the tpitch / tpitchext field is programmed with its linear value.
	• 0: bit <18:16> of register TEXCTL are used to set the pitch pitch = 8 << TEXCTL (18:16)
	• 1: bit <19:9> of register TEXCTL are used to set the pitch pitch = TEXCTL (19:9)
tpitchext <19:9>	Texture Pitch. If the tpitchlin bit is set to '1', the tpitchext field is programmed with the pitch of the texture which can vary from 1 to 2048 where a value of '0' represents a pitch of 2048.
	◆ <i>Note:</i> If tformat is set to TW422, tpitchext <i>must</i> be a multiple of 8.
	Note: In repeat mode (clampu or clampv = '0' tpitchext must be programmed with a power of 2 value.
	◆ Note: When using a linear pitch with mip-mapping, tpitchext must be programmed with a multiple of 16 - 1 value.

• *Note:* texture pitch must be greater or equal than the texture width (twmask + 1)

tpitch When the **tpitchlin** bit is set to '0', the **tpitch** is set according to the table below:

<18:16>

Pitch	tpitch
8	'000'
16	·001'
32	·010'
64	'011'
128	'100'
256	'101'
512	'110'
1024	'111'

• *Note:* texture pitch must be greater or equal than the texture width (twmask + 1)

owalpha Over-Write Alpha. When this bit is set to '1', color keying can overwrite the alpha <22> from the texture.

azeroextend Alpha Zero Extend. Widen the alpha mask and key (tamask and takey) up to the actual <23> texel alpha component size.

- 0: Replicate the tamask and takey
- 1: Zero extend

decalckey Decal with color key. This bit indicates whether texel color keying or texel alpha <24> keying will control the decal feature.

- 0: Alpha keying controls the decal feature. The surface transparency feature is available (see strans, below), based on alpha keying. Color keying is used to prevent frame buffer updates for transparent texels (independent of strans).
- 1: Alpha keying must be disabled. Color keying controls the decal feature (it does not automatically prevent frame buffer updates for transparent texels). The surface transparency feature is available (see strans), based on color keying.

takey Texture alpha key. This field indicates which polarity is defined as transparent.

<25>

Texture Map Control

tamask <26>	Texture alpha mask. This field enables alpha transparency. To disable transparency (that is, to make the texture opaque), set takey to '1' and tamask to '0'.
	◆ <i>Note:</i> Texture alpha-keying is possible only if twidth<1:0> = TW15
clampv <27>	Clamp mode enable for V. This bit specifies if the texture is clamped or repeated over the surface.
	0: repeat1: clamp
clampu <28>	Clamp mode enable for U. This bit specifies if the texture is clamped or repeated over the surface.
	0: repeat1: clamp
tmodulate <29>	Texture modulate enable. This bit enables the multiplication of the texture with the I ALU on a color-by-color basis. When modulation is disabled, decal mode is used. The decal function selects between the texel and the surface color (I ALU), based on the decalckey field and the transparency information from the texture (the 'ctransp' and 'atransp' values - see itrans).
strans <30>	Surface transparency enable. When '1', this bit enables control of the frame buffer update on a per-pixel basis. Only opaque pixels are updated (when itrans = 0). Transparency is determined by either alpha keying or color keying, according to the setting of the decalckey field.
itrans <31>	Invert transparency enable. When '1', the transparency decision is inverted to allow two-pass algorithms when strans is active.

-	υ					
tmodulate	strans	itrans	decalckey	ctransp	atransp	Pixel Result
' 0 '	' 0'	' 0'	' 0'	'0'	' 0'	texel
' 0'	' 0'	' 0'	·0'	'0'	'1'	Ι
' 0'	' 0'	' 0'	·0'	'1'	Х	Not written
' 0'	' 0'	' 0'	'1'	' 0'	' 0'	texel
' 0'	' 0'	' 0'	'1'	'1'	' 0'	Ι
' 0'	'1'	' 0'	' 0'	'0'	' 0'	texel
' 0'	'1'	' 0'	·0'	' 0'	'1'	Not written
' 0'	'1'	' 0'	·0'	'1'	Х	Not written
' 0'	'1'	' 0'	'1'	' 0'	' 0'	texel
' 0'	'1'	' 0'	'1'	'1'	' 0'	Not written
' 0'	'1'	'1'	' 0'	' 0'	' 0'	Not written
' 0'	'1'	'1'	·0'	'0'	'1'	Ι

Only the following field value combinations are allowed (all others are reserved):

tmodulate	strans	itrans	decalckey	ctransp	atransp	Pixel Result
' 0'	'1'	'1'	' 0'	'1'	X	Not written
·0'	'1'	'1'	'1'	' 0'	·0'	Not written
·0'	'1'	'1'	'1'	'1'	·0'	Ι
'1'	' 0'	' 0 '	' 0'	' 0'	' 0'	texel * I
'1'	'0'	' 0 '	' 0'	'1'	' 0'	Not written
'1'	'1'	' 0 '	' 0'	' 0'	' 0'	texel * I
'1'	'1'	'0'	·0'	' 0 '	'1'	Not written
'1'	'1'	' 0 '	' 0'	'1'	Х	Not written
'1'	'1'	'0'	'1'	' 0 '	·0'	texel * I
'1'	'1'	' 0 '	'1'	'1'	·0'	Not written

In the preceding table, 'ctransp' indicates the color keying result as defined by:

```
if ( texel & tkmask == tckey )
      ctransp = 1
else
      ctransp = 0
```

In the preceding table, 'atransp' indicates the alpha keying result as defined by:

The **tkmask** and **tckey** fields are located in the **TEXTRANS** register.

Reserved Reserved. When writing to this register, the bits in this field *must* be set to '0'. **<21:20>**

Address	MGABASE1 + 2C3Ch (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	0000 0000 0000 0000 0000 0000 0000 0000b

	specen borderen ckstransdis decalblend decalblend									
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
decalblend <0>	True Decal Enable. When enabled, with the decal function selected (tmodulate = '0'), true decal will perform a blend between the texture (texel) and the surface RGB ALU.									
idecal <1>	Invert Decal information.									
decaldis	Decal Disable.									
<2>	0: decal is made between the texture and the surface color (RGB ALU).1: the texel is always chosen.									
ckstransdis <4>	Color Key Surface Transparency Disabled. Disables surface transparency from color keying.									
borderen <5>	Border Enable. The constant border color (texbordercol) is used instead of duplicating the texel.									
specen <6>	Specular Lighting Enable. Specular lighting can be performed on any 3D operation.									
Reserved <31:7>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.									

TEXFILTER

ŀ	Addre	SS			Ν	IG/	٩B	ASI	E1 -	+ 20	C58	3h (ME	M)																
ļ	Attrib	ute	S		WO, FIFO, STATIC, DWORD																									
F	Reset	Va	lue		0	00	0	000	00	00	00	0	000) (000	0	00	00	00	000	0 (00	0b							
										B	-																			
	apnb fthres a jit o Reserved magfilter minfilter																													
										filteral	gst																			
m	apnb				fth	res	5			filt	av				F	Res	ser	vec	1				m	ag	filt	er	n	ninf	ilte	er
31	30 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

31	30	29	28	27	26	25	24	23	22 2	1 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		:			1	мπ:	:c	D :14		- 14		TC 4	1	4 4		•		:c:.	17	1	1		.1			•	1.	- 4		_
	mir	ITTI	cer			vin	IIY.	Filt	erin	g Me	bae.	III	ne	text	ure	1S I	min	ппе	ea (bas	ea (on 1	tne	con	npa	risc	on c	etw	/eei	1

<3:0>

Minify Filtering Mode. If the texture is minified (based on the comparison between the stride and the '**fthres**' value) the filter mode is selected by the **minfilter** value.

minfilter	mnemonic	filter mode
,0000,	NRST	Nearest
·0001'		RSVD
<i>`</i> 0010'	BILIN	Bi-linear
<i>`</i> 0011 <i>`</i>	CNST	Constant Bi-linear (0.25)
'0100'		RSVD
'0101'		RSVD
'0110'		RSVD
'0111'		RSVD
'1000'	MM1S	1 sample mip-mapping
'1001'	MM2S	2 sample mip-mapping
'1010'	MM4S	4 sample mip-mapping
'1011'		RSVD (5 sample)
'1100'	MM8S	8 sample mip-mapping

magfilterMagnify Filtering Mode. If the texture is magnified (based on the comparison between
the stride and the 'fthres' value) the filter mode is selected by the magfilter value.

magfilter	mnemonic	filter mode
,0000,	NRST	Nearest
'0001'		RSVD
'0010'	BILIN	Bi-linear
<i>'0011'</i>	CNST	Constant Bi-linear (0.25)
'0100'		RSVD
'0101'		RSVD
'0110'		RSVD
'0111'		RSVD

avgstrideAverage Stride. Takes the average between the x and y strides instead of the
maximum.

filteralpha Apply filtering on the alpha (texture alpha). <20>

Texture Filtering

fthres <28:21>	Filter Threshold. The fthres field <i>must</i> be programmed with the square value of the step wanted as the threshold between minify and magnify. If the actual step in the texture is bigger than fthres, the engine will be minifying the texture and will apply the minfilter on the texture. Otherwise, the magfilter will be used.
	• <i>Note:</i> This field holds an unsigned 4.4 value.
mapnb <31:29>	Map Number. Specifies how many maps are used for mip-mapping. The valid range is 0 to 4.
Reserved <18:8>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 2C2Ch (N WO, FIFO, STATIC, DW unknown	<i>,</i>			
Reserved	thmask	Reserved	rfh	Reserved	th
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18	17 16 15 14	13 12 11 10 9	8 7 6 :	5 4 3 2 1 0
th <5:0>	Represents log2 of the textu holds a 6-bit signed value ir	U		U	
	$\mathbf{th} = \log 2(\text{texture height}) + ($	4 - t_fractio	onal_bits + q_fra	ctional_bits)
	Typically, $\mathbf{th} = \log 2(\text{texture})$	height) + (4 - 20 + 16).		
rfh <14:9>	Height round-up factor. Thi assuring coherence in texel complement notation, usual	choice. Thi	s field holds a 6-	bit signed v	alue in two's
thmask <28:18>	Height Mask. Determines the repeat or clamping will usually set to (texture heigh	be perform	0		
	► <i>Note:</i> The repeat mode (a value that is a po	-	· • •	perly if thm	ask is set to
	► Note: The minimum tex mapping) is 8. thr			ding maps in	n mip-
Reserved	<8:6> <17:15> <31:29>				
	Reserved. When writing to	this register	r, the bits in these	e fields <i>mus</i>	<i>t</i> be set to '0'.

Address	MGABASE1 + 2C24h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

	texorg texorg	texorgmap						
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0						
texorgmap <0>	Memory Space indicator. This field indicates the map location.0: texture is in FB1: texture is in system memory							
texorgacc <1>								
	Note: If the texture resides in the frame buffer space, this field is not considered.							
texorg <31:5>	Origin of map 0. The texorg field provides an offset value (the base address), to the position the first texel in the texture.	;						
	The texorg field corresponds to a 256-bit aligned address in memory. This register must be set so that there is no overlap with either the frame buffer or the Z-depth buffer.							
Reserved <4:2>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.							

Address	MGABASE1 + 2CA4h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

	texorg1	Reserved
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5	4 3 2 1 0
texorg1 <31:5>	Origin of map 1. The texorg1 field provides an offset value (the base position the first texel in the texture.	e address), to the
	The texorg1 field corresponds to a 256-bit aligned address in memory must be set so that there is no overlap with either the frame buffer or buffer.	•
Reserved <4:0>	Reserved. When writing to this register, the bits in this field <i>must</i> be	set to '0'.
	◆ Note: Fields texorgmap and texorgacc, in the TEXORG register TEXORG1 (see page 3-169 for more information).	er, apply to

3-170 Power Graphic Mode Register Descriptions

Reserved

Address	MGABASE1 + 2CA8h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

texorg2

																						r - 1								
31	30	29	28	27	26	25	24	23	22	21	20 1	9 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	tex <3′		-				0				The texel		-			•	vide	es a	n o	offse	et v	alue	e (tł	ne t	oase	ad	dre	ss),	to	the
	The texorg2 field corresponds to a 256-bit aligned address in memory. This register must be set so that there is no overlap with either the frame buffer or the Z-depth buffer.																													
R	ese <4	erv :0:				Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.																								
					(₽≎	Not				exor RG2	-	-				-							reg	ister	; , aj	ppl	y to		

MGA-G200 Specification

Address	MGABASE1 + 2CACh (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

	texorg3	Reserved
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5	4 3 2 1 0
texorg3 <31:5>	Origin of map 3. The texorg3 field provides an offset value (the base position the first texel in the texture.	e address), to the
	The texorg3 field corresponds to a 256-bit aligned address in memo must be set so that there is no overlap with either the frame buffer or buffer.	•
Reserved <4:0>	Reserved. When writing to this register, the bits in this field <i>must</i> be	set to '0'.
	► Note: Fields texorgmap and texorgacc, in the TEXORG register TEXORG3 (see page 3-169 for more information).	er, apply to

3-172 Power Graphic Mode Register Descriptions

Reserved

Address	MGABASE1 + 2CB0h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

texorg4

					1	1	1	1	r			-	1	1	r	r						r 1			_					
31	30	29	28	27	26	25	24	23	22	21	20 1	9 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
,		org 1:5					-		-		The texel		-			•	vide	es a	ın o	ffse	et v	alue	e (tl	ne t	oase	ad	dre	ss),	to	the
	The texorg4 field corresponds to a 256-bit aligned address in memory. This register must be set so that there is no overlap with either the frame buffer or the Z-depth buffer.																													
R		erv 4:0:				Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.																								
					(••	Not				exor RG4	-	-				-							reg	iste	r, aj	ppl	y to		

tckey

Address	MGABASE1 + 2C34h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

tkmask

31 30 29 28 27 26 25 24 23 22	21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tckeyTexture transparency color key. This field holds the 16-bit unsigned value of the color<15:0>that is defined as the 'transparent' color. Planes that are *not* used must be set to '0'.

tkmask
 Texture color keying mask. This field enables texture transparency comparison on a
 (0' indicates mask). The mask setting must be based on the twidth value, so that unused bits are masked as shown in the table below:

twidth	15						tkı	ma	sk							0
TW4	0	0	0	0	0	0	0	0	0	0	0	0	m	а	S	k
TW8	0	0	0	0	0	0	0	0	-	-	m	а	s	k	-	-
TW12	_	-	-	-	-	-	m	а	S	k	-	-	-	-	-	-
TW15	-	-	-	-	-	-	m	а	S	k	-	-	-	-	-	-
TW16	-	-	-	-	-	-	m	а	S	k	-	-	-	-	-	_
TW32	-	-	-	-	-	-	m	а	S	k	-	-	-	-	-	-
TW422	-	-	-	-	-	_	m	а	S	k	_	-	-	-	-	-

To disable transparency (that is, to make the texture opaque), set **tckey** to FFFFh and **tkmask** to 0000h.

Address	MGABASE1 + 2C38h (MEM)											
Attributes	WO, FIFO, STATIC, DWORD											
Reset Value	0000 00	00 00	00 (0000	0000	0000	0000	0000b				

tkmaskh

tckeyh

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

tckeyh Texture Color Key High. High portion (16 MSB) of the color key.

<15:0>

tkmaskh Texture Key Masking High. High portion (16 MSB) of the keying mask.

<31:16>

Texture Key Masking High. High portion (10 MSD) of the keying mask

tformat	31					t	km	as	kh							16
TW4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TW8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TW12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TW15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TW16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TW32	-	-	-	-	-	-	m	а	S	k	-	-	-	-	-	-
TW422	-	-	-	-	-	-	m	а	S	k	-	-	-	-	-	_

Address Attributes Reset Value	MGABASE1 + 2C28h WO, FIFO, STATIC, D unknown	· /			
Reserved	twmask	Reserved	rfw	Reserved	tw
31 30 29 28 27 2 tw <5:0>	Represents log2 of the tex holds a 6-bit signed value		combined with an	adjustment	
	<pre>tw = log2(texture width) Typically, tw = log2(texture)</pre>		_	actional_bits	s)
rfw <14:9>	Width round-up factor. The assuring coherence in tex complement notation, usu	el choice. Th	his field holds a 6-	bit signed v	alue in two's
twmask <28:18>	Width Mask. Determining repeat or clamping will b usually set to: (texture wi	e performed			
	•• <i>Note:</i> The repeat mode is set to a value	· •	= 0) will work prop ver of two minus of	• •	the twmask
	◆ Note: The minimum to mapping) is 8. t		* * ·	ling maps in	ı mip-
Reserved	<8:6> <17:15> <31:29>				
	Reserved. When writing	to this regist	er, the bits in these	e fields <i>mus</i>	<i>t</i> be set to '0'.

Address	MGABASE1 + 2C00h (MEM)
Attributes	WO, FIFO, STATIC, DWORD

Reset Value unknown

tmr0

31 30 29 28	27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
tmr0 <31:0>	Texture mapping ALU register 0. This field holds a signed 12.20 value in two's complement notation.
	For texture mapping, the TMR0 register holds the s/wc-increment value along the x-axis.

AddressMGABASE1 + 2C04h (MEM)AttributesWO, FIFO, STATIC, DWORDReset Valueunknown

tmr1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

tmr1 Texture mapping ALU register 1. This field holds a signed 12.20 value in two's complement notation.

For texture mapping, the $\ensuremath{\mathsf{TMR1}}$ register holds the s/wc-increment value along the y-axis.

TMF	۲2
-----	----

Address	MGABASE1 + 2C08h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

tmr2

31 30 29 28 2	7 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
tmr2 <31:0>	Texture mapping ALU register 2. This field holds a signed 12.20 value in two's complement notation.
	For texture mapping, the TMR2 register holds the t/wc-increment value along the x-axis.

AddressMGABASE1 + 2C0Ch (MEM)AttributesWO, FIFO, STATIC, DWORDReset Valueunknown

tmr3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5				
	4 3	3 2	2 1	0
		5 2	- 1	0

tmr3 Texture mapping ALU register 3. This field holds a signed 12.20 value in two's complement notation.

For texture mapping, the $\ensuremath{\mathsf{TMR3}}$ register holds the t/wc-increment value along the y-axis.

Address	MGABASE1 + 2C10h (MEM)
Attributes	WO, FIFO, STATIC, DWORD

Reset Value unknown

tmr4

31 30 2	9 28	8 27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
tm <31					turo nple			0			reg	iste	er 4.	Th	nis f	field	d ho	olds	s a s	ign	ed	16.	16 v	valı	ıe i	n tv	vo's	8	
				For axis		tur	e m	app	oing	, th	ne T	MF	84 r	egi	stei	: ho	lds	the	e q/v	wc-	inc	rem	nent	va	lue	alo	ng 1	the	X-

AddressMGABASE1 + 2C14h (MEM)AttributesWO, FIFO, STATIC, DWORDReset Valueunknown

tmr5

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5				
	4 3	3 2	2 1	0
		5 2	- 1	0

tmr5 Texture mapping ALU register 5. This field holds a signed 16.16 value in two's complement notation.

For texture mapping, the $\ensuremath{\mathsf{TMR5}}$ register holds the q/wc-increment value along the y-axis.

Address	MGABASE1 + 2C18h (MEM)
Attributes	WO, FIFO, DYNAMIC, DWORD

Reset Value unknown

tmr6

l	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			nr6 1:0								oing 10ta			reg	iste	er 6.	. Th	nis f	ïelc	l ho	olds	a s	ign	ed	12.	י 20	valı	ie i	n tv	vo's		

For texture mapping, the **TMR6** register is used to scan the left edge of the trapezoid for the s/wc parameter. This register must be initialized with the starting s/wc-value.

AddressMGABASE1 + 2C1Ch (MEM)AttributesWO, FIFO, DYNAMIC, DWORDReset Valueunknown

tmr7

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

tmr7 Texture mapping ALU register 7. This field holds a signed 12.20 value in two's complement notation.

For texture mapping, the **TMR7** register is used to scan the left edge of the trapezoid for the t/wc parameter. This register must be initialized with the starting t/wc-value.

Address	MGABASE1 + 2C20h (MEM)
Attributes	WO, FIFO, DYNAMIC, DWORD
Reset Value	unknown

tmr8

31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
tmr8 <31:0>	Texture mapping ALU register 8. This field holds a signed 16.16 value in two's complement notation.
	For texture mapping, the TMR8 register is used to scan the left edge of the trapezoid for the q/wc parameter. This register must be initialized with the starting q/wc-value.
	for the q/wc parameter. This register must be initialized with the starting q/wc-value.
	•• <i>Note</i> : Cases where q/wc is less than or equal to 0 will be processed as
	exceptions. Software should ensure that q remains positive to avoid an overflow.

VBIADDR0

_

Address	MGABASE1 + 3E08h (MEM)
Attributes	WO, BYTE/WORD/DWORD, STATIC
Reset Value	unknown
Reserved	vbiaddr0
31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
vbiaddr0 <23:0>	VBI Data Start Address Window 0. Start address in bytes in the frame buffer of VBI data for Window 0. This field must be loaded with a multiple of 512 (the 9 LSBs = '0').
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to 0.

_

Address	MGABASE1 + 3E0Ch (MEM)											
Attributes	WO, BYTE/WORD/DWORD, STATIC											
Reset Value	unknown											
Reserved	vbiaddr1											
31 30 29 28 27 20	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
vbiaddr1 <23:0>	VBI Data Start Address Window 1. Start address in bytes in the frame buffer of VBI data for Window 1. This field <i>must</i> be loaded with a multiple of 512 (the 9 LSBs = '0').											
Reserved <31:24>	Reserved. Writing to this field has no effect.											

Address	MGABASE1 + 1E20h (MEM)
Attributes	RO, WORD/DWORD, DYNAMIC
Reset Value	unknown

	Reserved	vcount									
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12	11 10 9 8 7 6 5 4 3 2 1 0									
vcount <11:0>	Reading will give the current vertical										
	Note: This register must be read using a we value might change between two byt circuit will ensure a stable value for access.	e accesses. A sample and hold									
Reserved <31:12>	Reserved. When writing to this register, the bi Reading will return '0's.	ts in this field <i>must</i> be set to '0'.									

Address	MGABASE1 + 3E34h (MEM)
Attributes	WO, BYTE/WORD/DWORD, STATIC
Reset Value	unknown

	Reserved	dcmpeoiiclr	blvliclr	cmdcmplicir vinvsyncicir
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	3	2	1 0
vinvsynciclr <0>	Video Input Vsync Interrupt Clear. When writing a '1' to this bit, the inpinterrupt pending flag is cleared.	out v	sync	C
cmdcmpliclr <1>	Command Complete Interrupt Clear. When writing a '1' to this bit, the complete interrupt pending flag is cleared.	omn	nanc	1
blvliclr <2>	Buffer Level Interrupt Clear. When writing a '1' to this bit, the buffer le pending flag is cleared.	vel ii	nteri	rupt
dcmpeoiiclr <3>	Codec decompression end of image interrupt clear. When writing a '1' t end of image interrupt pending flag is cleared.	o this	s bit	, the
Reserved <31:4>	Reserved. Writing to this field has no effect.			

_

_

Address	MGABASE1 + 3E38h (MEM)
Attributes	R/W, BYTE/WORD/DWORD, STATIC
Reset Value	xxxx xxxx xxxx xxxx xxxx xxxx <u>0000</u> b

	dcmpeoiien blvlien cmdcmplien vinvsyncien						
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
vinvsyncien <0>	Video Input Vsync Interrupt Enable. When set to '1', an interrupt will be generated when the input video interrupt occurs.						
cmdcmplien <1>	Codec Command Complete Interrupt Enable. When set to '1', an interrupt will be generated when the command execution is complete.						
blvlien <2>	Buffer Level Interrupt Enable. When set to '1' an interrupt will be generated when the Codec Interface Read pointer for decompression (write pointer for compression) has reached the value set in the CODECHOSTPTR register.						
dcmpeoiien <3>	Codec Decompression End Of Image Interrupt Enable. When set to a '1', an interrupt will be generated when the Codec Interface is performing decompression and the end of image marker is detected in the stream.						
Reserved <31:4>	Reserved. Writing to this field has no effect.						

Address	MGABASE1 + 3E10h (MEM)
Attributes	WO, BYTE/WORD/DWORD, STATIC
Reset Value	unknown
Reserved	vinaddr0
31 30 29 28 27 26	i 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
vinaddr0 <23:0>	Video write start Address for window 0. Start address in frame buffer of window 0.(byte boundary). This field <i>must</i> be loaded with a multiple of 8 (the $3 \text{ LSBs} = \text{`0'}$).
Reserved <31:24>	Reserved. Writing to this field has no effect.

VINADDR1

Address	MGABASE1 + 3E14h (MEM)
Attributes	WO, BYTE/WORD/DWORD, STATIC
Reset Value	unknown
Reserved	vinaddr1
31 30 29 28 27 26	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
vinaddr1 <23:0>	Video write start Address for window 1. Start address in frame buffer of window 0.(byte boundary). This field <i>must</i> be loaded with a multiple of 8 (the $3 \text{ LSBs} = 0^{\circ}$).
Reserved <31:24>	Reserved. Writing to this field has no effect.

Address Attributes Reset Value	MGABASE1 + 3E1Ch (MEM) WO, BYTE/WORD/DWORD, STATIC 0000 000 <u>1</u> 0000 000 <u>1</u> <u>1010</u> <u>1011</u> 0000 000 <u>0</u> b							
Reserved	und Reserved vbif1cnt vbif0cnt Reserved und 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
vinen <0>	Video In Enable. When this bit is '0' the video-in macro is disabled, the video input registers, status fields, and interrupt enables are <i>reset</i> .							
	0: reset/disable1: enable video-in macro							
vbif0cnt <11:8>	VBI Field 0 Count. This field is used to initialize a counter with the number of VBI lines available in field 0 (ODD field) of a video frame.							
Note: This field is set to 11 (NTSC: Optional VBI for odd field) during hard reset.								
	 '0000': minimum = 0 lines '1111': maximum = 15 lines 							
vbif1cnt <15:12>	VBI Field 1 Count. This field is used to initialize a counter with the number of VBI lines available in field 1 (EVEN field) of a video frame.							
	Note: This field is set to 10 (NTSC: Optional VBI for even field) during a hard reset.							
	 '0000': minimum = 0 lines '1111': maximum = 15 lines 							
vbitasken <16>	VBI range Task bit Enable. Enables the task bit of SAV/EAV codes to be used to determine which lines of the Vertical Blanking Interval contain valid VBI data.							
	 0: IGNORE task bit and capture ALL data in VBI range in the manner programmed by the VINCTL0: vbicap0 and VINCTL1: vbicap1 fields 1: enable VBI data detection using task bit (Task B) 							
rpvaliden	RP byte Validation Enable. Enables validation of the RP byte of the SAV/EAV codes.							
<24>	 0: Do not check RP byte for valid hamming code. Process all tasks, fields, vertical and horizontal blanking bits in the RP byte of an SAV/EAV when encountered. 1: Check RP byte for valid hamming code. 							
Reserved	<31:25><23:17><7:1>							
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'.							

Address	MGABASE1 + 3E00h (MEM)									
Attributes	WO, BYTE/WORD/DWORD, STATIC									
Reset Value	0000	0000	0000	0000	0000	0000	0000	<u>0000</u> b		

										vhican0	200	vincap0
	Reserved		١	vin	pito	ch0)			d y		<u><i< u=""></i<></u>
31 30 29 28 27 2	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12	11 1	0 9	8	7	6	5	4	3	2	1	0
vincap0	Video Input Capture for window 0.											
<0>	0: disable1: enable											
vbicap0VBI Capture for window 0. Enables and defines the type of VBI data to be for window 0.					be (capt	ure	ed.				
	 '00': <i>no</i> VBI captured '01': raw VBI captured '10': Reserved '11': sliced VBI captured 											
vinpitch0 <11:3>	Video Input Pitch for window 0. vinpitch0 fie YCbCr 4:2:2 which results in 4 pixels stored in actual line pitch is vinpitch0 * 4. This allows '000000000'.	n eve	ery qv	vor	d m	em	ory	loc	ati	on.	Th	e
Reserved	<31:12>											
	Reserved. When writing to this register, the bit	ts in 1	this fi	ield	m	ust	be s	set 1	to'	0'.		

Address	MGABASE1 + 3E04h (MEM)								
Attributes	WO, BYTE/WORD/DWORD, STATIC								
Reset Value	0000 0000 0000 0000 0000 <u>0000</u> <u>0000</u> b								

										/bicap1		vincap1
	Reserved			vi	npi	tch	1			d>		<u><i< u=""></i<></u>
31 30 29 28 27 2	5 25 24 23 22 21 20 19 18 17 16 15 14 13 12	2 11	10	9	8 7	6	5	4	3	2	1	0
vincap1	Video Input Capture for window 1.											
<0>	0: disable1: enable											
vbicap1 <2:1>						ıre	d					
	 '00': <i>no</i> VBI capture '01': raw VBI captured '10': Reserved '11': sliced VBI captured 											
vinpitch1 <11:3>	Video Input Pitch for window 1. The vinpitch1 field is mod 4. The incoming video is in YCbCr 4:2:2 which results in 4 pixels stored in every qword memory location. The actual line pitch is vinpitch1 *4. This allows up to 2048 pixels when vinpitch1= '000000000'											
Reserved	<31:12>											
	Reserved. When writing to this register, the b	its ir	n thi	is fie	ld n	nust	be	set	to '	0'.		

31 30 29 28 27 2	Visite Visite
vinnextwin	Video Input Next active Window trigger.
<0>	0: grab window 0 next1: grab window 1 next
autovin nextwin <1>	Automatic Next active Window trigger. Enables the video-in macro to continuously switch between window 0 and window 1. Since writing to the vinnextwin generates the initial trigger, the vinnextwin field <i>must</i> be written at the same time or after writing to this field.
	 0: manual window trigger when vinnextwin is written to. 1: windows are continuously grabbed, automatically alternating between window 0 and window 1, starting with the window programmed in vinnextwin.
Reserved <31:2>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 3E30h (MEM) RO, BYTE/WORD/DWORD, DYNAMIC 0000 0000 0000 0000 <u>0000</u> 0000 <u>0000</u> b
	Reserved codec_stalled slcvbicapd vinfielddetd vinfielddetd blvlpen cmdcmplpen vnivsyncpen
31 30 29 28 27 2	6 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
vinvsyncpen <0>	Video Input Vsync interrupt Pending. When set to '1', indicates that a video input vsync interrupt has occurred. When this interrupt occurs the type of field and the data that was captured is set in fields vinfielddetd , vincapd , rawvbicapd and slcvbicapd .
	This bit is cleared through the vinvsynciclr bit (see VICLEAR on page 3-189) or upon a video in soft or a hard reset.
cmdcmplpen <1>	Command Complete interrupt Pending. When set to '1', this bit indicates that the codec interface has completed command execution
blvlpen <2>	Buffer Level Interrupt Pending. When set to '1', this bit indicates that Codec Interface read pointer for decompression (write pointer for compression) has reached the value set in the CODECHOSTPTR register.
dcmpeoipen <3>	Codec Decompression End Of Image Interrupt Pending. When set to a '1', the Codec Interface has detected an end of image marker in the decompression stream.
vinfielddetd	Video Input Field Detected. Indicates the previous field type.
<8>	0: odd field1: even field
vincapd <9>	Video Input Captured. When set to '1', indicates that active video was captured. This field is updated at the beginning of each vsync.
	This bit is cleared through the vinvsynciclr bit (see VICLEAR on page 3-189) or upon a video in soft or a hard reset.
rawvbicapd <10>	Raw VBI Captured. When set to '1', indicates that raw VBI was captured. This field is updated at the beginning of each vsync.
	This bit is cleared through the vinvsynciclr bit (see VICLEAR on page 3-189) or upon a video in soft or a hard reset.
slcvbicapd <11>	Slice VBI Captured. When set to '1', indicates that sliced VBI was captured. This field is updated at the beginning of each vsync.
	This bit is cleared through the vinvsynciclr bit (see VICLEAR on page 3-189) or upon a video in soft or a hard reset.

VSTATUS

codec _stalled <12>	Codec Stalled. Data transfer is suspended when we set the codectransen bit (within the CODECCTL register) to '0'. The Codec Interface will then assert the codec_stalled after it has finished transferring data into its 32 byte fifo. The codec_stalled bit is <i>only</i> valid and operational when performing data transfers (compression or decompression) and codectransen is set to '0'.
Reserved	<7:4> <31:13>
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'.

_

Address	MGABASE1 + 1E6Ch (MEM)
Attributes	RO, DYNAMIC, DWORD
Reset Value	unknown

	wcodeaddr			Re	eser	ve	d		
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9	8	7 6	5	4	3	2	1 0)
wcodeaddr <31:8>	Warp microcode Address. Specifies the address where the The field wcodeaddr is 256 byte-aligned address. See '16.								5-
Reserved <7:0>	Reserved. Reading will return '0'.								

Address	MGABASE1 + 1DC4h (MEM)				
Attributes	WO, FIFO, DYNAMIC, DWORD				
Reset Value	<u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u>	<u>0000 0000 0000</u> b			
	wprgflag	walucfgflag	walustsflag		
31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 1	4 13 12 11 10 9 8 7	6 5 4 3 2 1 0		

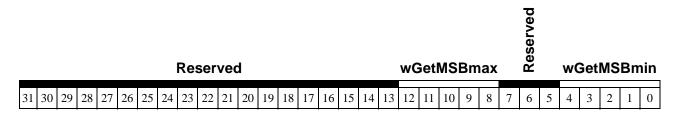
walustsflag WARP ALUs Status Flags.

<7:0>

bit	flag	description
<0>	С	Carry
<1>	V	Overflow
<2>	Ζ	Zero
<3>	Ν	Negative
<4>	Х	Extended Flag
<5>	F	Current Flag
<6>		Reserved
<7>		Reserved

walucfgflag <15:8>

WARP ALUs Configuration Flags.


bit	flag	description
<8>	L	Left edge sign
<9>	R	Right edge sign
<10>	S	Saturate Integer
<11>	U	Enable culling
<12>	Т	Swap edge
<13>	М	GetMSB without 'nnnnn' subtract
<14>	Н	Double dword result
<15>		Reserved

wprgflagWARP Program Available Flags. These flags are available to the program. They are specified as flag (F16), ..., flag (F31).

Bits 31 to 24 are *accumulated*. (See 'Pipeline Operation' on page 6-6.)

Address	MGABASE1 + 1E64h (MEM)
Attributes	R/W, DYNAMIC, DWORD
Reset Value	<u>0000 0000 0000 0000 0000 0000 0000 00</u>
	The WFLAGNB register is an alternate way to load the WFLAG register, bypassing the BFIFO. (See WFLAG for field descriptions.)
	◆ <i>Note:</i> The WARP flags are <i>not stable</i> when the WARP engine is running.

Address	MGABASE1 + 1DC8h (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

wGetMSBmin <4:0>	GetMSB minimum value
wGetMSB max <12:8>	GetMSB maximum value
	◆ Note: These values are used by the GETMSB instruction to restrict the range of the results. Refer to the GETMSB instruction for more information.
Reserved	<31:13> <7:5>
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'.

Address	MGABASE1 + 1DC0h (MEM)			
Attributes	WO, FIFO, DYNAMIC, DWORD			
Reset Value	<u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u>			

wiaddr	vagp	vmode	
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	3 2	> 1 (0

wmode	WARP Mode of operation.
<1:0>	

wmode	Operation
' 00'	Suspend
' 01 '	Resume
'10'	Jump
' 11 '	Start

• Suspend:

In this mode, all execution in the WARP is stopped. Writing to the wiaddr and wagp field is ignored.

• Resume:

In this mode the microcode is allowed to resume from where it was STOPped (suspended or STOP (instruction)). Writing to the wiaddr and wagp field is ignored. This mode *must* be set *only* when the engine is idle.

• Jump:

In this mode, the microcode starts executing from where the **wiaddr** field specifies it. A reset is *not* performed in the engine; the software *must* be aware of the current state of the engine (pending store back) and must check the **wbusy** bit. This mode *must* be set *only* when the engine is idle.

• Start:

This mode operates like Jump mode, *but* it resets the engine.

Specifies what host cycle should be used to load the microcode from the system wagp <2> memory when mastering is enabled (see **WMISC**).

wagp	cycle
·0'	PCI
'1'	AGP

wiaddr	WARP Instruction Address.
<31:3>	• Bits 31 to 3 represent the current address of the microcode to be fetched.
	• The WARP engine can only modify bits 17 to 3.
	• When eaching is disabled, bit 31 to 11 must be set to (0) (the microcode must reside

- When caching is disabled, bit 31 to 11 must be set to '0' (the microcode must reside within the 2 kbyte instruction memory).
- ► *Note*: The microcode has to be aligned on a 256 byte boundary.

_

Address	MGABASE1 + 1E60h (MEM)
Attributes	R/W, DYNAMIC, DWORD
Reset Value	<u>0000 0000 0000 0000 0000 0000 0000 00</u>
	The WIADDRNB register is simply an alternate means of loading the WIADDR register, bypassing the BFIFO. (See WIADDR for the field descriptions).
	◆ <i>Note:</i> Bits 2 to 0 are write only, reading will give '0'.
	Note: The WARP Instruction Address register is not stable when the WARP engine is running.

Address	MGABASE1 + 1E68h (MEM)
Attributes	WO, STATIC, DWORD
Reset Value	unknown

Reserved

wim		
wim	ema	nar
** * * * * *	CITIC	i wwi

														17								-		-		_		-	-		~
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
01	00					-0		-0								10		10			10	-	Ŭ	`	Ŭ	0		0	-	-	Ŭ

wimemaddr
 WARP Instruction Memory Address. This register is used to address the Instruction Memory to load the microcode. This register is incremented every 2 writes to the WIMEMDATA space. When this address increments beyond the last Instruction Memory location, it will wrap around to location 0. Writing to this register will reset the modulo 2 counter to 0. Reading to the WIMEMDATA space will *not* increment WIMEMADDR
 Descented
 Descented
 When writing to this register the bits in this field exact be acted to 10²

Reserved Reserved. When writing to this register, the bits in this field *must* be set to '0'. **<31:8>**

•• *Note:* The WARP engine *must* be idle before writing to this register.

Address MGABASE1 + 2000h to MGABASE1 + 207Fh

Attributes R/W, STATIC, DWORD

Reset Value unknown

wimemdata

~	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

wimemdata
 WARP Instruction Memory Data. This range is used to load data in the WARP
 Instruction Memory. Since the Instruction Memory is 64 bits wide, two accesses are required to this range in order to write one complete location. The address in the WARP Instruction Memory to be written is determined by the value in the WIMEMADDR register. When wucodecache = '0' there is *no* caching.

To read one complete Instruction memory location (64 bits), **WIMEMADDR** must be written with the location to be read. This data can then be read at MGABASE1+2000h for DW0, and at MGABASE1+2004h for DW1.

Note: The wmaster field in the WMISC register must be set '0' when writing to this range (MGABASE1 + 2000h to MGABASE1 + 207Fh).

Address	MGABASE1 + 1E70 (MEM)
Attributes	R/W, DWORD, STATIC
Reset Value	???? ???? ???? ???? ???? ???? <u>0?00</u> b

												R	ese	erve	ed													wcacheflush	Reserved	wmaster	wucodecache
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

wucode cache <0>	WARP microcode Caching Enable. When set to '1', microcode caching is enabled. It is <i>not</i> necessary to load the microcode via the WIMEMDATA space before starting the WARP engine; the caching system will fetch the microcode when needed. When at '0', caching of the microcode will <i>not</i> be performed; the entire microcode must be loaded into the Instruction Memory via the WIMEMDATA space before starting the engine.
wmaster <1>	When at '1', this bit indicates that microcode loading will be done through bus mastering; when at '0', microcode loading will be handled by interrupt. (See 'Cache Operation' on page 6-16). This bit is only used when wucodecache = '1'.
wcacheflush <3>	WARP microcode Cache Flush. When this bit is set to '1' the WARP cache tags are reset: the contents of the Instruction memory are invalidated. Reading will give '0's.
Reserved	<31:4> <2>
	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address	MGABASE1 + 2D00h (MEM) (WR0)
	MGABASE1 + 2DFCh (MEM) (WR63)
Attributes	WO, DB, DYNAMIC, DWORD, FIFO
Reset Value	unknown
	wr

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

These are the 64 multi-purpose WARP registers (WR0, WR1, ...WR63). They can represent an IEEE single precision floating point number, a fixed point 32-bit integer, two 16-bit words or four bytes. It is up to the software to define what to put in these registers and how the microcode will interpret them.

Address	MGABASE1 + 1DCCh (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	???? ???? ???? ???? ???? ??? <u>11</u> <u>1111</u> b

Reserved

wvrtxsz

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	0	8	7	6	5	4	3	2	1	0
51	50	2)	20	21	20	25	24	23	22	21	20	1)	10	17	10	15	14	15	12	11	10		0	'	0	5	+	5	2	1	0

wvrtxsz <5:0>	WARP Vertex Size. This is the number of registers (minus one) to be written sequentially in the WR register before switching to the next bank. This information is used to align the vertices in the register bank boundaries and is only used by the ACCEPT command. When WVRTXSZ + 1 registers have been transferred to the WR register, the pointer will jump to the beginning of the next bank.
	This field is also used by the Setup DMA Channel to determine the dword length of each DMA vertex fixed length setup list entry (setupmod = '00').
Reserved	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

<31:6>

Address Attributes Reset Value	MGABASE1 + 1CB0h (ME WO, FIFO, DYNAMIC, DW unknown	,
	Reserved	xdst
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18 17	6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
xdst <15:0>		address. The xdst field contains the running x- dress. It is a 16-bit signed value in two's complement
	 starting point of the vector. A last pixel of the vector. This c This register does <i>not</i> require For BLITs, this register is aut 114) and fxright (see FXRIG For trapezoids with depth, thi trapezoids without depth, xds 	xdst must be loaded with the x-coordinate of the t the end of a vector, xdst contains the address of the an also be done by accessing the XYSTRT register. initialization for polyline operations. omatically loaded from fxleft (see FXLEFT on page 3- 1T on page 3-115), and no initial value must be loaded. s register is automatically loaded from fxleft. For t will be loaded with the larger of fxleft or cxleft, and aded. (See CXLEFT on page 3-75.)
Reserved <31:16>	Reserved. When writing to this	register, the bits in this field <i>must</i> be set to '0'.

x_end

Address	MGABASE1 + 1C44h (MEM)
Attributes	WO, FIFO, DYNAMIC, DWORD
Reset Value	unknown

y_end

•					
31 30 29 28 27 26 25 24 23	3 22 21 20 19 18 17 16	15 14 13 12 11 10	9 8 7 6	5 4 3 2	1 0

The **XYEND** register is *not* a physical register. It is simply an alternate way to load registers **AR0** and **AR2**.

The **XYEND** register is only used for AUTOLINE drawing.

When **XYEND** is written, the following registers are affected:

- **x_end**<15:0> \rightarrow **ar0**<17:0> (sign extended) • $y_end < 15:0 > \rightarrow ar2 < 17:0 > (sign extended)$
- x end The **x_end** field contains the x-coordinate of the end point of the vector. It is a 16-bit <15:0> signed value in two's complement notation.
- The **y_end** field contains the y-coordinate of the end point of the vector. It is a 16-bit y_end <31:16> signed value in two's complement notation.

Address	MGABASE1 + 1C40h (MEM)
Attributes	WO, FIFO, DYNAMIC, DWORD
Reset Value	unknown

v start

y_start								x_start																							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

The **XYSTRT** register is *not* a physical register. It is simply an alternate way to load registers AR5, AR6, XDST, and YDST.

The **XYSTRT** register is only used for LINE and AUTOLINE. **XYSTRT** does *not* need to be initialized for polylines because all the registers affected by **XYSTRT** are updated to the endpoint of the vector at the end of the AUTOLINE.

When **XYSTRT** is written, the following registers are affected:

	 x_start<15:0> → xdst<15:0> x_start<15:0> → ar5<17:0> (sign extended) y_start<15:0> → ydst<22:0> (sign extended), 0 → sellin y_start<15:0> → ar6<17:0> (sign extended)
x_start <15:0>	The x_start field contains the x-coordinate of the starting point of the vector. It is a 16-bit signed value in two's complement notation.
y_start <31:16>	The y_start field contains the y-coordinate of the starting point of the vector. This coordinate is always xy (this means that, in order to use the XYSTRT register, the linearizer must be used). It is a 16-bit signed value in two's complement notation.

_

Address	MGABASE1 + 1C9Ch (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

cybot

31 30 29	28 27	26	25	24	23 22	21	20 1	9 18	17	16 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cybo <23:0																									
	This register must be programmed with a linearized line number:																								
	cybot = (bottom line number) × PITCH + YDSTORG																								
]	Гhe	YB	B OT r	egis	ter m	ust t	be lo	aded	witl	n a n	nult	tiple	e of	32	(th	e fi	ive	LSF	3 s =	= 0)).		
	Note: Clipping can be disabled by the clipdis bit in DWGCTL without changing cybot.																								
Reserv <31:24		F	Rese	erve	ed. W	hen	writi	ng to	o thi	is regi	ster	, the	bit	s in	thi	is fi	ield	тı	ust	be s	et t	to '(0'.		

Address Attributes Reset Val	
sellin	Reserved ydst
31 30 29 28	27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ydst <22:0>	The y destination. The ydst field contains the current y-coordinate (in pixels) of the destination address as a signed value in two's complement notation. Two formats are supported: linear format and xy format. The current format is selected by ylin (see PITCH on page 3-129).
	When xy format is used (ylin =0), ydst represents the y-coordinate of the address. The valid range is -32768 to $+32767$ (16-bit signed). The xy value is always converted to a linear value before being used.
	When linear format is used (ylin =1), ydst must be programmed as follows:
	ydst = (y-coordinate) * PITCH >> 5
	The y-coordinate range is from -32768 to $+32767$ (16-bit signed) and the pitch range is from 32 to 4096. Pitch is also a multiple of 32.
	 Before starting a vector draw, ydst must be loaded with the y-coordinate of the starting point of the vector. This can be done by accessing the XYSTRT register. This register does <i>not</i> require initialization for polyline operations. Before starting a BLIT, ydst must be loaded with the y-coordinate of the starting corner of the destination rectangle. For trapezoids, this register must be loaded with the y-coordinate of the first scanned line of the trapezoid. To load the texture color palette, ydst must be loaded with the position in the color palette (0 to 255) at which the texture color palette will begin loading.
	Note: When ylin = 0 (even when the y-coordinate range is 16-bit signed), the sign must be extended until bit 22.
sellin <31:29>	Selected line. The sellin field is used to perform the dithering, patterning, and transparency functions. During linearization, this field is loaded with the three LSBs of ydst (y-coordinate). If no linearization occurs, then those bits must be initialized correctly if one of the above-mentioned functions is to be used.
Reserved <28:23>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	MGABASE1 + 10 WO, FIFO, STATI unknown		,										
	length												
31 30 29 28 27 20	5 25 24 23 22 21 20	19 18	17 16	15 14	13 12	11 10	98	7	6	5	4 3	2	1 0
length	The YDSTLEN regist the YDST and LEN Length. See the LEN	register	s.	•	U	ter. It	is simp	ly a	n al	ltern	ate w	ay to	load
<15:0> yval <31:16>	The y destination value. See the YDST register on page 3-215. The yval field can be used to load the YDST register in xy format. In this case the valid range -32768 to $+32767$ (16-bit signed) for YDST is respected.												
	yds	t <22:02	> <= :	sign ex	tensio	n (yva	al <31:1	6>)					
	For the linear format, yval does not contain enough bits, so YDST must be used												

directly.

Address	MGABASE1 + 1C94h (MEM)
Attributes	WO, FIFO, STATIC, DWORD

Reset Value unknown

Reserved

ydstorg

ydstorg Destination y origin. The ydstorg field is a 24-bit unsigned value. It gives an offset value in pixel units, used to position the first pixel of the first line of the intensity buffer. This register is used to initialize the YDST address.

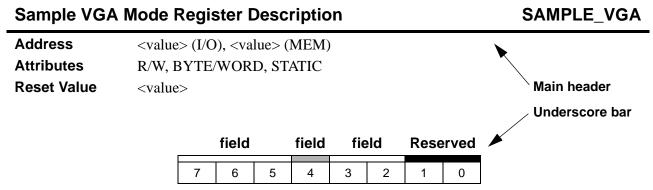
This register must be loaded with a value that is a multiple of 32 or 64 according to the table below, due to a restriction involving block mode. See 'Constant Shaded Trapezoids / Rectangle Fills' on page 4-40. See page 3-100 for additional restrictions that apply to block mode (**atype** = BLK).

pwidth	value:
PW8	64
PW16	32
PW24	64
PW32	32

• Note: It is recommended to use DSTORG or SRCORG in place of YDSTORG.

Reserved Reserved. When writing to this register, the bits in this field *must* be set to '0'. **<31:24>**

Address	MGABASE1 + 1C98h (MEM)								
Attributes	WO, FIFO, STATIC, DWORD								
Reset Value	unknown								
Reserved	d cytop								
31 30 29 28 27 2	16 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								
cytop <23:0>	Clipper y top boundary. The cytop field contains an unsigned 24-bit value which is interpreted as a positive pixel address and compared with the current ydst (see YDST on page 3-215). The value of the ydst field must be greater than or equal to cytop to be inside the drawing window.								
	This register must be programmed with a linearized line number:								
	cytop = (top line number) × PITCH + YDSTORG								
	This register must be loaded with a multiple of 32 (the five $LSBs = 0$).								
	•• <i>Note:</i> Clipping can be disabled by the clipdis bit in DWGCTL without changing cytop .								
Reserved <31:24>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.								


Address	MGABASE1 + 1C0Ch (MEM)
Attributes	WO, FIFO, STATIC, DWORD
Reset Value	unknown

	zorg		zorgacc zorgmap					
31 30 29 28 27	26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4	3 2 1 0					
zorgmap <0>	Z-depth Origin Map. This field indicates the map location.							
	0: depth buffer is in the frame buffer1: depth buffer is in the system memory							
zorgacc	Z-depth Origin Access type. This field specifies the mode used to access the map.							
<1>	<1> • 0: PCI access • 1: AGP access							
	Note: This field is not considered if, the depth buffer resides in the frame buffer space.							
zorg <31:2>	Z-depth origin. The zorg field is a 30-bit unsigned value used as an offset from the Intensity buffer to position the first Z value of the depth buffer.							
	The zorg field is a dword address in memory. This register must be set so that there is no overlap with the Intensity buffer.							
	This field must be loaded with a multiple of 128 (the seven LSBs = 0).							
	Equation	zwidth						
	zorg = (Z depth origin - ydstorg * 2) >> 2	0						
	zorg = (Z depth origin - ydstorg * 4) >> 2	1	ļ					

3.2 VGA Mode Register Descriptions

3.2.1 VGA Mode Register Descriptions

The MGA-G200 VGA Mode register descriptions contain a (single-underlined) main header which indicates the register's name and mnemonic. Below the main header, the memory address or index, attributes, and reset value are indicated. Next, an illustration of the register identifies the bit fields, which are then described in detail below the illustration. Reserved bit fields are identified by black underscore bars; all other fields display alternating white and gray bars.

Address

This address is an offset from the Power Graphic mode base memory address. The memory addresses can be read, write, color, or monochrome, as indicated.

Index

The index is an offset from the starting address of the register group.

Attributes

The VGA mode attributes are:

- RO: There are no writable bits.
- WO: The state of the written bits cannot be read.
- R/W: The state of the written bits can be read.
- BYTE: 8-bit access to the register is possible.
- WORD: 16-bit access to the register is possible.
- STATIC: The contents of the register will not change during an operation.
- DYNAMIC: The contents of the register might change during an operation.

Reset Value

• 000? 0000b (b = binary,? = unknown, N/A = not applicable)

Attr	AddressR/W at port 03C0h (I/O), MGABASE1 + 1FC0h (MEM) VGA R at port 03C1h (I/O), MGABASE1 + 1FC1h (MEM) VGAAttributesBYTE, STATICReset Valuennnn nnnn 0000 0000b														
			at	trd				Rese	erved	pas			attrx		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ttrx 4:0>		Attribute controller index register. VGA. A binary value that points to the VGA Attribute Controller register where data is to be written or read.						s to be						

Register name	Mnemonic	attrx address
Palette entry 0	ATTR0	00h
Palette entry 1	ATTR1	01h
Palette entry 2	ATTR2	02h
Palette entry 3	ATTR3	03h
Palette entry 4	ATTR4	04h
Palette entry 5	ATTR5	05h
Palette entry 6	ATTR6	06h
Palette entry 7	ATTR7	07h
Palette entry 8	ATTR8	08h
Palette entry 9	ATTR9	09h
Palette entry A	ATTRA	0Ah
Palette entry B	ATTRB	0Bh
Palette entry C	ATTRC	0Ch
Palette entry D	ATTRD	0Dh
Palette entry E	ATTRE	0Eh
Palette entry F	ATTRF	0Fh
Attribute Mode Control	ATTR10	10h
Overscan Color	ATTR11	11h
Color Plane Enable	ATTR12	12h
Horizontal Pel Panning	ATTR13	13h
Color Select	ATTR14	14h
Reserved - read as '0' ⁽¹⁾		15h-1Fh

(1) Writing to a reserved index has no effect.

- •A read from port 3BAh/3DAh resets this port to the attributes address register. The first write at 3C0h after a 3BAh/3DAh reset accesses the attribute index. The next write at 3C0h accesses the palette. Subsequent writes at 3C0h toggle between the index and the palette.
- •A read at port 3C1h does not toggle the index/data pointer.

	Example of a palette write:				
	Reset pointer Write index: Write color:	read at port 3BAh write at port 3C0h write at port 3C0h			
	Example of a palette read:				
	Reset pointer Write index: Read color:	read at port 3BAh write at port 3C0h read at port 3C1h			
pas	Palette address source. VG	А.			
<5>	This bit controls use of the internal palette. If $pas = 0$, the host CPU can read and write the palette, and the display is forced to the overscan color. If $pas = 1$, the palette is used normally by the video stream to translate color indices (CPU writes are inhibited and reads return all '1's). Normally, the internal palette is loaded during the blank time, since loading inhibits video translation.				
attrd	ATTR data register.				
<15:8>	Retrieve or write the contents of the register pointed to by the attrx field.				
Reserved <7:6>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'. Reading will give '0's.				

Index	attrx = 00h to $attrx = 0Fh$
Reset Value	0000 0000Ъ
	Reserved palet0-F
	7 6 5 4 3 2 1 0
palet0-F	Internal palette data. VGA.
<5:0>	These six-bit registers allow dynamic mapping between the text attribute or graphic color input value and the display color on the CRT screen. These internal palette register values are sent from the chip to the video DAC, where they in turn serve as addresses to the DAC internal registers. A palette register can be loaded only when pas (ATTR<5>) = 0.
Reserved <7:6>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Φ

Index	attrx =	= 10h
Reset Value	0000	0000b

F	p5p4	pelwidth	pancomp	Reserved	blinken	lgren	ouou	atcgrmode	
	7	6	5	4	3	2	1	0	l
Graphics/	/alpha	numer	ric mo	de. VO	GA.				
from • 1: Graph frame	the ex hics m e buffe	pansio ode is er pixe	on of t s enabl el. This	he for led and s bit al	egrour d the in so sele	nd/bacl nput of ects be	kgroui f the ii tween	nd attri nternal	ibute. palette comes from the
Mono em	nulatio	n. VG	ίA.						
			ulatio	n.					
Enable lir	ne gra	phics	charac	cter co	de. VC	δA.			
 0: The ninth dot of a line graphic character (a character between C0h and DFh) with be the same as the background. 1: Forces the ninth dot to be identical to the eighth dot of the character. For other ASCII codes, the ninth dot will be the same as the background. 						f the character. For other			
For character fonts that do not utilize the line graphics character, lgren should l Otherwise, unwanted video information will be displayed. This bit is 'don't car graphics modes (atcgrmode = 0).						-			
Select bac	ckgrou	und in	tensity	or bli	ink ena	able. V	'GA.		
 Select background intensity or blink enable. VGA. O: Blinking is disabled. In alpha modes (atcgrmode (ATTR10<0>) = 0), this bit defines the attribute bit 7 as a background high-intensity bit. In graphic modes, planes 3 to 0 select 16 colors out of 64. 1: Blinking is enabled. In alpha modes (atcgrmode = 0), this bit defines the attribute bit 7 as a blink attribute (when the attribute bit 7 is '1', the character will blink). The blink rate of the character is vsync/32, and the blink duty cycle is 50%. In monochrome graphics mode (mono and atcgrmode (ATTR10<1:0>) = 11), all pixels toggle on and off. In color graphics modes (mono and atcgrmode (ATTR10<1:0>) = 01), only pixels that have blinken (bit 3) high will toggle on and off: other pixels will have their bit 3 forced to '1'. The graphic blink rate is VSYNC/32. Graphic blink logic is applied after plane masking (that is, if plane 3 is disabled, monochrome mode will blink and color mode will not blink). 									
	 0: Alphafrom 1: Graphafrom 1: Graphafrom 1: Graphafrom 0: Color 1: Mono 0: Color 1: Mono Enable lift 0: The rest of the second se	 7 Graphics/alpha 0: Alphanume from the ex from the ex 1: Graphics m frame buffe blinking if Mono emulation 0: Color emul 1: Monochron Enable line gra 0: The ninth of be the same 1: Forces the ASCII code For character for Otherwise, unw graphics modes Select backgrow 0: Blinking is defines the planes 3 to 1: Blinking is attribute bit blink). The In monochr all pixels to (ATTR10 and off: oth VSYNC/32 	7 6 Graphics/alphanumeric 6 Graphics/alphanumeric 6 • 0: Alphanumeric matrix from the expansion 1: Graphics mode is frame buffer pixed blinking if blinking • 1: Graphics mode is frame buffer pixed blinking if blinking Mono emulation. • 0: Color emulation. • 0: Color emulation. • 1: Monochrome emulation. • 0: Color emulation. • 1: Monochrome emulation. • 1: Monochrome emulation • 0: Color emulation. • 1: Monochrome emulation • 1: Monochrome emulation • 1: Forces the ninth dot of a be the same as th • 1: Forces the ninth dot of a be the same as th • 1: Forces the ninth dot of a be the same as th • 1: Forces the ninth dot of a be the same as th • 1: Forces the ninth dot of a be the same as th • 1: Forces the ninth dot of a be the same as th • 1: Forces the ninth dot of a be the same as th • 1: Forces the ninth dot of a be the same as th • 1: Forces the ninth dot of a be the same as th • 1: Forces the ninth dot of a be the same as th • 1: Forces the ninth dot of a be the same as th • 1: Blinking is disabulation • 0: Blinking is disabulation • 0: Blinking is disabulation • 0: Blinking is enabla attribute bit 7 as a blink). The blink In monochrome a all pixels toggle o (ATTR10<1:0>) and off: other pix V	7 6 5 Graphics/alphanumeric modeis of from the expansion of t 1: Graphics mode is enable frame buffer pixel. This blinking if blinking is e Mono emulation. 1: Grouphics mode is enable frame buffer pixel. This blinking if blinking is e Mono emulation. 0: Color emulation. • 0: Color emulation. 1: Monochrome emulation Enable line graphics character 0: The ninth dot of a line for the same as the back. • 1: Forces the ninth dot to ASCII codes, the ninth For character fonts that do Otherwise, unwanted video graphics modes (atcgrmood Select background intensity. • 0: Blinking is disabled. In defines the attribute bit planes 3 to 0 select 16 do the same 3 to 0 select 16	7 6 5 4 Graphics/alphanumeric mode. VO • 0: Alphanumeric modeis enable from the expansion of the for • 1: Graphics mode is enabled and frame buffer pixel. This bit al blinking if blinking is enabled Mono emulation. VGA. • 0: Color emulation. • 1: Monochrome emulation. Enable line graphics character co • 0: The ninth dot of a line graphi be the same as the backgroun • 1: Forces the ninth dot to be ide ASCII codes, the ninth dot w For character fonts that do not uti Otherwise, unwanted video infort graphics modes (atcgrmode = 0 Select background intensity or bli • 0: Blinking is disabled. In alpha defines the attribute bit 7 as a planes 3 to 0 select 16 colors • 1: Blinking is enabled. In alpha attribute bit 7 as a blink attrib blink). The blink rate of the cl In monochrome graphics mod all pixels toggle on and off. In (ATTR10<1:0>) = 01), only p and off: other pixels will have VSYNC/32. Graphic blink lo	7 6 5 4 3 Graphics/alphanumeric mode. VGA. • 0: Alphanumeric modeis enabled and the from the expansion of the foregrour. • 1: Graphics mode is enabled and the in frame buffer pixel. This bit also sele blinking if blinking is enabled (blin) Mono emulation. VGA. • 0: Color emulation. • 1: Monochrome emulation. Enable line graphics character code. VC • 0: The ninth dot of a line graphic charabe the same as the background. • 1: Forces the ninth dot to be identical the ASCII codes, the ninth dot will be the the same as the background. • 1: Forces the ninth dot to be identical the ASCII codes, the ninth dot will be the the same as the background. • 0: Blinking is disabled. In alpha mode defines the attribute bit 7 as a background intensity or blink enates. • 0: Blinking is enabled. In alpha modes attribute bit 7 as a blink attribute (we blink). The blink rate of the character In monochrome graphics mode (mode all pixels toggle on and off. In color (ATTR10<1:0>) = 01), only pixels toggle on and off. In color (ATTR10<1:0>) = 01), only pixels toggle on and off. In color (ATTR10<1:0>) = 01), only pixels toggle on and off. In color (ATTR10<1:0>) = 01), only pixels toggle on and off. In color (ATTR10<1:0>) = 01), only pixels toggle on and off. In color (ATTR10<1:0>) = 01), only pixels toggle on and off. In color (ATTR10<1:0>) = 01), only pixels toggle on and off. In color (ATTR10<1:0>) = 01), only pixels toggle on and off. In color (ATTR10<1:0>) = 01), only pixels toggle on and off. In color (ATTR10<1:0>) = 01), only pixels toggle on	7 6 5 4 3 2 Graphics/alphanumeric mode. VGA. • 0: Alphanumeric mode is enabled and the input of from the expansion of the foreground/back • 1: Graphics mode is enabled and the input of frame buffer pixel. This bit also selects be blinking if blinking is enabled (blinken = Mono emulation. VGA. • 0: Color emulation. • 1: Monochrome emulation. Enable line graphics character code. VGA. • 0: The ninth dot of a line graphic character (be the same as the background. • 1: Forces the ninth dot to be identical to the ASCII codes, the ninth dot will be the sam For character fonts that do not utilize the line Otherwise, unwanted video information will be graphics modes (atcgrmode = 0). Select background intensity or blink enable. V • 0: Blinking is disabled. In alpha modes (atcg defines the attribute bit 7 as a background planes 3 to 0 select 16 colors out of 64. • 1: Blinking is enabled. In alpha modes (atcg attribute bit 7 as a blink attribute (when th blink). The blink rate of the character is vs In monochrome graphics mode (mono an all pixels toggle on and off. In color graph (ATTR10<1:0>) = 01), only pixels that ha and off: other pixels will have their bit 3 fe VSYNC/32. Graphic blink logic is applice	7 6 5 4 3 2 1 Graphics/alphanumeric mode. VGA. • 0: Alphanumeric mode is enabled and the input of the from the expansion of the foreground/background. • 1: Graphics mode is enabled and the input of the inframe buffer pixel. This bit also selects between blinking if blinking is enabled (blinken = 1). Mono emulation. VGA. • 0: Color emulation. • 1: Monochrome emulation. • 1: Monochrome emulation. Enable line graphics character code. VGA. • 0: The ninth dot of a line graphic character (a charbe the same as the background. • 1: Forces the ninth dot to be identical to the eighth ASCII codes, the ninth dot will be the same as the SCII codes, the ninth dot will be the same as the graphics modes (atcgrmode = 0). Select background intensity or blink enable. VGA. • 0: Blinking is disabled. In alpha modes (atcgrmodefines the attribute bit 7 as a background highplanes 3 to 0 select 16 colors out of 64. • 1: Blinking is enabled. In alpha modes (atcgrmodefines the attribute bit 7 as a blink attribute (when the attriblink). The blink rate of the character is vsync/32. In monochrome graphics mode (mono and atcgal) pixels toggle on and off. In color graphics mode (ATTR10<1:0>) = 01), only pixels that have bli and off: other pixels will have their bit 3 forced VSYNC/32. Graphic blink logic is applied after	7 6 5 4 3 2 1 0 Graphics/alphanumeric mode. VGA. • 0: Alphanumeric mode is enabled and the input of the internal from the expansion of the foreground/background attri • 1: Graphics mode is enabled and the input of the internal frame buffer pixel. This bit also selects between graph blinking if blinking is enabled (blinken = 1). Mono emulation. VGA. • 0: Color emulation. • 1: Monochrome emulation. Enable line graphics character code. VGA. • 0: The ninth dot of a line graphic character (a character be the same as the background. • 1: Forces the ninth dot to be identical to the eighth dot of ASCII codes, the ninth dot will be the same as the bac dot for character fonts that do not utilize the line graphics character of therwise, unwanted video information will be displayed. graphics modes (atcgrmode = 0). Select background intensity or blink enable. VGA. • 0: Blinking is disabled. In alpha modes (atcgrmode (AI defines the attribute bit 7 as a background high-intensi planes 3 to 0 select 16 colors out of 64. • 1: Blinking is enabled. In alpha modes (atcgrmode = 0) attribute bit 7 as a blink attribute (when the attribute bit blink). The blink rate of the character is vsync/32, and In monochrome graphics mode (mono and atcgrmocall pixels toggle on and off. In color graphics modes (r (ATTR10<1:0>) = 01), only pixels that have blinken and off: other pixels will have their bit 3 forced to '1'. VSYNC/32. Graphic blink logic is applied after plane

ATTR10

pancomp	Pel panning compatibility. VGA.					
<5>	 0: Line compare has no effect on the output of the PEL panning register. 1: A successful line compare in the CRT controller maintains the panning value to '0' until the end of frame (until next vsync), at which time the panning value returns to the value of hpelcnt (ATTR13<3:0>). This bit allows panning of only the top portion of the display. 					
pelwidth	Pel width. VGA.					
<6>	 • 0: The six bits of the internal palette are used instead. • 1: Two 4-bit sets of video data are assembled to generate 8-bit video data. 					
p5p4	P5/P4 select. VGA.					
<7>	 0: Bits 5 and 4 of the internal palette registers are transmitted to the DAC. 1: When it is set to '1', colsel54 (ATTR14<1:0>) will be transmitted to the DAC. See the ATTR14 register on page 3-234. 					
Reserved <4>	Reserved. When writing to this register, this field <i>must</i> be set to '0'.					

Index	attrx = 11h				
Reset Value	0000	0000b			

			ovs	scol			
7	6	5	4	3	2	1	0

ovscol
 Overscan color. VGA.
 Determines the overscan (border) color displayed on the CRT screen. The value programmed is the index of the border color in the DAC. The border color is displayed when the internal DISPEN signal is inactive and blank is not active.

Index Reset Value	attrx = 12h 0000 0000b
	vidstmx colplen
	7 6 5 4 3 2 1 0
colplen <3:0>	Enable color plane. VGA.
vidstmx	Video status multiplexer (MUX). VGA.
<5:4>	These bits select two of eight color outputs for the status port. Refer to the table in the description of the INSTS1 register's diag field that appears on page 3-293.
Reserved <7:6>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to 0.13.

attrx = 13h

Reset Value	0000	0000b
	0000	00000

	Rese	erved			hpe	lcnt	
7	6	5	4	3	2	1	0

hpelcnt

Horizontal pel count. VGA.

<3:0>

Index

This 4-bit value specifies the number of picture elements to shift the video data horizontally to the left, according to the following table (values 9 to 15 are reserved):

hpelcnt	8 dot mode pixel shifted dotmode (SEQ1<0>) = '1'	9 dot mode pixel shifted dotmode = '0'	mode256 (GCTL5<6>) = '1'
,0000,	0	1	0
'0001'	1	2	-
' 0010 '	2	3	1
' 0011 '	3	4	-
'0100'	4	5	2
'0101'	5	6	-
' 0110 '	6	7	3
'0111'	7	8	-
'1000'	-	0	-

Reserved. When writing to this register, the bits in this field *must* be set to '0'. Reserved <7:4>

Index Reset Value	attrx = 14h 0000 0000b
	Reserved colsel76 colsel54
	7 6 5 4 3 2 1 0
colsel54	Select color 5 to 4. VGA.
<1:0>	When p5p4 (ATTR10 <7>) is '1', colsel54 is used instead of internal palette bits 5 and 4. This mode is intended for rapid switching between sets of colors (four sets of 16 colors can be defined). These bits are 'don't care' when mode256 = 1.
colsel76	Select color 7 to 6. VGA.
<3:2>	These bits are the two MSB bits of the external color palette index. They can rapidly switch between four sets of 64 colors. These bits are 'don't care' when mode256 (GCTL5 <6>) = 1.
Reserved <7:4>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address	MGABASE1 + 1FFFh (MEM)
Attributes	R/W, BYTE, STATIC
Reset Value	unknown

					cache	eflush					
		7	6	5	4	3	2	1	0		
 cacheflush Flush the cache. Writes to this register will flush the cache. For additional details, to 'Direct Access Read Cache' on page 4-5. Even though this register can be read, its data has no significance, and may not b consistent. When writing to this register, <i>all bits must be set to '0'</i>. 				ails, refer							
				ot be							

Address	03B4h (I/O), (MISC <0> == 0: MDA emulation)
	03D4h (I/O), (MISC <0> == 1: CGA emulation)
	MGABASE1 + 1FD4h (MEM)
Attributes	R/W, BYTE/WORD, STATIC
Reset Value	nnnn nnnn 0000 0000b

crtcd					Rese	erved			cri	cx					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

crtcx CRTC index register.

<5:0>

A binary value that points to the VGA **CRTC** register where data is to be written or read when the **crtcd** field is accessed.

Register name	Mnemonic	crtcx address
CRTC register index	CRTCx	
Horizontal Total	CRTC0	00h
Horizontal Display Enable End	CRTC1	01h
Start Horizontal Blanking	CRTC2	02h
End Horizontal Blanking	CRTC3	03h
Start Horizontal Retrace Pulse	CRTC4	04h
End Horizontal Retrace	CRTC5	05h
Vertical Total	CRTC6	06h
Overflow	CRTC7	07h
Preset Row Scan	CRTC8	08h
Maximum Scan Line	CRTC9	09h
Cursor Start	CRTCA	0Ah
Cursor End	CRTCB	0Bh
Start Address High	CRTCC	0Ch
Start Address Low	CRTCD	0Dh
Cursor Location High	CRTCE	0Eh
Cursor Location Low	CRTCF	0Fh
Vertical Retrace Start	CRTC10	10h
Vertical Retrace End	CRTC11	11h
Vertical Display Enable End	CRTC12	12h
Offset	CRTC13	13h
Underline Location	CRTC14	14h
Start Vertical Blank	CRTC15	15h
End Vertical Blank	CRTC16	16h
CRTC Mode Control	CRTC17	17h
Line Compare	CRTC18	18h
Reserved - read as 0 ⁽¹⁾	—	19h - 21h
CPU Read Latch	CRTC22	22h
Reserved - read as 0		23h

 $\overline{(1)}$ Writing to a reserved index has no effect.

Register name	Mnemonic	crtcx address
Attribute address/data select	CRTC24	24h
Reserved - read as 0		25h
Attribute address	CRTC26	26h
Reserved read as 0		27h - 3Fh

crtcdCRTC data register. Retrieve or write the contents of the register pointed to by the<15:8>crtcx field.

ReservedReserved. When writing to this register, the bits in this field *must* be set to '0'.**<7:6>**Reading will give '0's.

Index Reset Value	crtcx = 00h								
	htotal								
	7 6 5 4 3 2 1 0								
htotal <7:0>	Horizontal total. VGA/MGA.								
	This is the low-order eight bits of a 9-bit register (bit 8 is contained in htotal (CRTCEXT1 <0>)). This field defines the total horizontal scan period in character clocks, minus 5.								
	This register can be write-inhibited when crtcprotect (CRTC11 $<7>$) = 1.								

Index Reset Value	crtcx 0000	-										
hdispend												
		7	6	5	4	3	2	1	0]		
hdispend	Horizon	Horizontal display enable end. VGA/MGA.										
<7:0>		Determines the number of displayed characters per line. The display enable signal becomes inactive when the horizontal character counter reaches this value.										
	This reg	ister ca	an be v	write-i	nhibite	ed whe	en crto	prote	ect (<mark>C</mark>	RTC11 <7>) = 1.		

<7:0>

Index	crtcx = 02h								
Reset Value	0000	0000	Ob						
					hbl	kstr			
		7	6	5	4	3			

hblkstr Start horizontal blanking. VGA/MGA.

This is the low-order eight bits of a 9-bit register. Bit 8 is contained in **hblkstr** (**CRTCEXT1**<1>). The horizontal blanking signal becomes active when the horizontal character counter reaches this value.

2

1

0

This register can be write-inhibited when **crtcprotect** (**CRTC11**<7>) = 1.

Index	crtcx = 03	3h										
Reset Value	1000 00	00b										
	Reserved	hdispskew	hblkend									
	7	6 5	4 3 2 1 0									
hblkend	End horizon	End horizontal blanking bits. VGA/MGA.										
<4:0>	The horizontal blanking signal becomes inactive when, after being activated, the lower six bits of the horizontal character counter reach the horizontal blanking end value. The five lower bits of this value are located here; bit 5 is located in the CRTC5 register, and bit 6 is located in CRTCEXT1 .											
hdionokow	C C		inhibited when crtcprotect (CRTC11 $<7>$) = 1.									
hdispskew <6:5>	Defines the r	Display enable skew control. VGA/MGA. Defines the number of character clocks to delay the display enable signal to compensate for internal pipeline delays.										
	Normally, the hardware can accommodate the delay, but the VGA design allows greater flexibility by providing extra control.											
	hdispskew Skew											
		'00'	0 additional character delays									
		'01' '10'	1 additional character delays 2 additional character delays									
		·10	3 additional character delays									

Reserved
 This field is defined as a bit for chip testing on the IBM VGA, but is not used on the MGA. Writing to it has no effect (it will read as 1). For compatibility considerations, a '1' should be written to it.

Index	crtcx = 04h
Reset Value	0000 0000b
	hsyncstr
	7 6 5 4 3 2 1 0
hsyncstr	Start horizontal retrace pulse. VGA/MGA.
<7:0>	These are the low-order eight bits of a 9-bit register. Bit 8 is contained in hsyncstr (CRTCEXT1 <2>). The horizontal sync signal becomes active when the horizontal character counter reaches this value.

This register can be write-inhibited when **crtcprotect** (**CRTC11**<7>) = 1.

Index Reset Value	crtcx = 05h 0000 0000b											
	hblkend hsyncdel	hsyncend										
	7 6 5	4 3 2 1 0										
hsyncend	End horizontal retrace. V	End horizontal retrace. VGA/MGA.										
<4:0>	The horizontal sync signal becomes inactive when, after being activated, the five lower bits of the horizontal character counter reach the end horizontal retrace value.											
	This register can be write-	inhibited when crtcprotect (CRTC11 $<$ 7 $>$) = 1.										
hsyncdel	Horizontal retrace delay.	VGA/MGA.										
<6:5>	Defines the number of cha for internal pipeline delay	aracter clocks that the hsync signal is delayed to compensate s.										
	hsyncdel	Skew										
	'00'	0 additional character delays										
	·01'	'01' 1 additional character delays										
	'10'	2 additional character delays										
	'11'	3 additional character delays										
hblkend	End horizontal blanking b	it 5. VGA/MGA.										
<7>	Bit 5 of the End Horizonta	al Blanking value. See the CRTC3 register on page 3-241.										

Index Reset Value	crtcx = 06h 0000 0000b										
	vtotal										
	7 6 5 4 3 2 1 0										
vtotal	Vertical total. VGA/MGA.										
<7:0>	These are the low-order eight bits of a 12-bit register. Bit 8 is contained in CRTC7 <0>, bit 9 is in CRTC7 <5>, and bits 10 and 11 are in CRTCEXT2 <1:0>. The value defines the vsync period in scan lines if hsyncsel (CRTC17 <2>) = 0, or in double scan lines if hsyncsel = 1).										
	This register can be write-inhibited when crtcprotect (CRTC11 $<7>$ = 1).										

Index Reset Value	crtcx 0000)b							
		vsyncstr	vdispend	vtotal	linecomp	vblkstr	vsyncstr	vdispend	vtotal	
		7	6	5	4	3	2	1	0	
vtotal <0>	Vertical Contains					al. See	the C	RTC6	regist	er on page 3-244.
	-	This register can be write-inhibited when crtcprotect (CRTC11 <7>) = 1, except for linecomp .								
vdispend <1>		Vertical display enable end bit 8. VGA/MGA. Contains bit 8 of the Vertical Display Enable End. See the CRTC12 register on page 3-256.								
vsyncstr <2>		Vertical retrace start bit 8. VGA/MGA. Contains bit 8 of the Vertical Retrace Start. See the CRTC10 register on page 3-254.								
vblkstr <3>	Start ver Contains						k. <mark>See</mark>	the C	RTC1	5 register on page 3-259.
linecomp <4>	Line con Line con protected	npare l	oit 8. <mark>5</mark>	See the	CRT		<u> </u>	on pa	ge 3-2	65. This bit is not write-
vtotal <5>	Vertical Contains					al. <mark>See</mark>	the C	RTC6	regist	er on page 3-244.
vdispend <6>	Vertical Contains 3-256.								bee the	CRTC12 register on page
vsyncstr <7>	Vertical Contains						tart. <mark>Se</mark>	ee the	CRTC	10 register on page 3-254.

Index Reset Value	crtcx 0000		Эb								
		Reserved	byte	epan		pr	owsc	an			
		7	6	5	4	3	2	1	0		
prowscan	Preset ro	w sca	n. VG	A/MG	A.						
<4:0>	After a vertical retrace, the row scan counter is preset with the value of prowscan . At maximum row scan compare time, the row scan is cleared (not preset). The units can be one or two scan lines:										
	 conv2t4 (CRTC9<7>) = 0: 1 scan line conv2t4 = 1: 2 scan lines 										
bytepan	Byte pan	ining c	contro	l. VGA	A/MG/	4.					
<6:5>	This fiel	d cont	rols th	e num	ber of	bytes	to pan	during	g a pa	nning operation.	
Reserved <7>	Reserved '0's.	d. Whe	en wri	ting to	this re	gister	, this f	ield <i>mu</i>	<i>ist</i> be	set to '0'. Reading will giv	e

Index Reset Value	crtcx 0000		Ob								
		conv2t4	linecomp	vblkstr	maxscan						
		7	6	5	4 3 2	1 0					
maxscan	Maximu	Maximum scan line. VGA/MGA.									
<4:0>	This fiel	This field specifies the number of scan lines minus one per character row.									
vblkstr <5>	Start ver	tical b	lank b	it 9. V	/GA/MGA.						
<0>	Bit 9 of	the Sta	art Ver	tical E	Blank register. See	the CRTC15	register on page 3-259	Э.			
linecomp	Line con	npare	bit 9. `	VGA/	MGA.						
<6>	Bit 9 of the Line Compare register. See the CRTC18 register on page 3-265.										
conv2t4	200 to 4	00 line	e conv	ersion	. VGA/MGA.						
<7>	Controls the row scan counter clock and the time when the start address latch loads a new memory address:										
	• conv2 • conv2	`			0: HS						
	lines on	This feature allows a low resolution mode (200 lines, for example) to display as 400 lines on a display monitor. This lowers the requirements for sync capability of the monitor.									

Index	crtcx	= 0Ah								
Reset Value	0000	0000)b							
		portosod		curoff		CL	irrows	str		
		7	6	5	4	3	2	1	0	
currowstr <4:0>	These bit When the	Row scan cursor begins. VGA. These bits specify the row scan of a character line where the cursor is to begin. When the cursor start register is programmed with a value greater than the cursor end								
curoff <5>	Cursor o	register, no cursor is generated. Cursor off. VGA. • Logical '1': turn off the cursor								
	• Logical									
Reserved <7:6>	Reserved	1. Whe	en wri	ting to	this re	egister	, the b	its in tl	his fie	ld <i>must</i> be set to '0'.

Index Reset Value	crtcx = 0000	-										
		Reserved	curs	skew		cu	rrowe	end				
		7	6	5	4	3	2	1	0			
currowend	Row scar	Row scan cursor ends. VGA.										
<4:0>	This field specifies the row scan of a character line where the cursor is to en								to end.			
curskew	Cursor sl	kew c	ontrol.	VGA	•							
<6:5>	These bit	ts con	trol th	e skew	of the	e curso	or sign	al acc	ording	to the follow	ing table:	
		(cursk	ew				Ske	v			
			' 00'		0 additional character delays							
			' 01'		Move the cursor right by 1 character clock							
			' 10'		Move the cursor right by 2 character clocks							
			' 11'		Move	the cu	irsor r	ight b	y 3 cha	aracter clocks		
Reserved <7>	'11' Move the cursor right by 3 character clocks Reserved. When writing to this register, this field <i>must</i> be set to '0'.											

MGA-G200 Specification

Index Reset Value	crtcx = 0Ch 0000 0000b									
	startadd									
	7 6 5 4 3 2 1 0									
startadd	Start address, bits<15:8>. VGA/MGA.									
<7:0>	These are the middle eight bits of the start address. The 21-bit value from the startadd (CRTCEXT0 <3:0>) high-order and (CRTCD <7:0>) low-order start address registers is the first address after the vertical retrace on each screen refresh.									
	See 'Programming in Power Graphic Mode' on page 4-65 for more information on startadd programming.									

Index	crtcx = 0Dh											
Reset Value	0000 0000b											
		startadd										
		7	6	5	4	3	2	1	0			
startadd <7:0>	Start address, bits<7:0>. VGA/MGA. These are the low-order eight bits of the start address. See the CRTCC register on page 3-250.											gister on

Index Reset Value	сгtсх = 0Eh 0000 0000b										
curloc											
		7	6	5	4	3	2	1	0		
curloc <7:0>	High order cursor location. VGA.										
	These are the high-order eight bits of the cursor address. The 16-bit value from the high-order and low-order cursor location registers is the character address where the										

cursor will appear. The cursor is available only in alphanumeric mode.

Index Reset Value		crtcx = 0Fh 0000 0000b												
					cur	loc				1				
		7	6	5	4	3	2	1	0					
curloc	Low ord	er cur	sor loc	ation.	VGA.									
<7:0>	These ar page 3-2		ow-or	der eig	ght bits	s of th	e curso	or loca	tion. <mark>S</mark>	ee the	e CRT	CE reg	gister on	L

Index Reset Value	crtcx = 10h 0000 0000b							
	vsyncstr							
	7 6 5 4 3 2 1 0							
vsyncstr	Vertical retrace start bits 7 to 0. VGA/MGA.							
<7:0>	The vertical sync signal becomes active when the vertical line counter reaches the vertical retrace start value (a 12-bit value). The lower eight bits are located here. Bit 8 is in CRTC7 <2>, bit 9 is in CRTC7 <7>, and bits 10 and 11 are in CRTCEXT2 <6:5>.							
	The units can be one or two scan lines: •hsyncsel (CRTC17<2>) = 0: 1 scan line •hsyncsel = 1: 2 scan lines							

Index Reset Value	crtcx 0000		Эb									
		crtcprotect	sel5rfs	vinten	vintclr		vsyn	cend		1		
		7	6	5	4	3	2	1	0			
vsyncend	Vertical	Vertical retrace end. VGA/MGA.										
<3:0>		The vertical retrace signal becomes inactive when, after being activated, the lower four bits of the vertical line counter reach the vertical retrace end value.										
vintclr	Clear ve	Clear vertical interrupt. VGA/MGA.										
<4>	A '0' in vintclr will clear the internal request flip-flop.											
		After clearing the request, an interrupt handler <i>must</i> write a '1' to vintclr in order to allow the next interrupt to occur.										
vinten	Enable v	ertical	interr	upt. V	GA/M	IGA.						
<5>	 O: Enables a vertical retrace interrupt. If the interrupt request flip-flop has been set at enable time, an interrupt will be generated. We recommend setting vintclr to '0' when vinten is brought low. 1: Removes the vertical retrace as an interrupt source. 											
sel5rfs	Select 5	refresl	n cycle	es. VG	ίA.							
<6>	control t	This bit is read/writable to maintain compatibility with the IBM VGA. It does not control the MGA RAM refresh cycle (as in the IBM implementation). Refresh cycles are optimized to minimize disruptions.										
crtcprotect	Protect (CRTC	regist	ers 0-7	. VGA	A/MG/	A .					
<7>		 Protect CRTC registers 0-7. VGA/MGA. 1: Disables writing to CRTC registers 0 to 7. 0: Enables writing. The linecomp (line compare) field of CRTC7 is not protected. 										

0

Index Reset Value	crtcx = 12h 0000 0000b										
					vdis	pend					
		7	6	5	4	3	2	1			
vdispend	Vertical display enable end. VGA/MGA.										
<7:0>	The vertical display enable end value determines the n frame. The display enable signal becomes inactive wh										

The vertical display enable end value determines the number of displayed lines per frame. The display enable signal becomes inactive when the vertical line counter reaches this value. Bits 7 to 0 are located here. Bit 8 is in **CRTC7**<1>, bit 9 is in **CRTC7**<6>, and bit 10 is in **CRTCEXT2**<2>.

 Index
 crtcx = 13h

 Reset Value
 0000 0000b

			off	set			
7	6	5	4	3	2	1	0

These bits are the eight LSBs of a 10-bit value that is used to offset the current line start address to the beginning of the next character row. Bits 8 and 9 are in register **CRTCEXT0**<5:4>. The value is the number of double words (**dword** (**CRTC14**<6>) = 1) or single words (**dword** = 0) in one line.

See 'Programming in Power Graphic Mode' on page 4-65 for more information about **offset** programming.

Index Reset Value	crtcx = 14h 0000 0000b								
	dword dwo								
	7 6 5 4 3 2 1 0								
undrow <4:0>	lorizontal row scan where the underline will occur. VGA. These bits specify the horizontal row scan of a character row on which an underline ccurs.								
count4 <5>	 Count by 4. VGA. O: Causes the memory address counter to be clocked as defined by the count2 field (CRTC17<3>), 'count by two bits'. 1: Causes the memory address counter to be clocked with the character clock divided by four. The count2 field, if set, will supersede count4, and the memory address counter will be clocked every two character clocks. 								
dword <6>	 Double word mode. VGA. O: Causes the memory addresses to be single word or byte addresses, as defined by the wbmode field (CRTC17<6>). 1: Causes the memory addresses to be double word addresses. See the CRTC17 register for the address table. 								
Reserved <7>	Reserved. When writing to this register, this field <i>must</i> be set to '0'.								

► *Note:* In MGA mode, dword *must* be set to '0'

Index	crtcx = 15h	
Reset Value	0000 0000b	
		vblkstr

7	6	5	4	3	2	1	0
	Ũ	•	-	•	_	•	•

vblkstr Start vertical blanking bits 7 to 0. VGA/MGA.

The vertical blank signal becomes active when the vertical line counter reaches the vertical blank start value (a 12-bit value). The lower eight bits are located here. Bit 8 is in **CRTC7**<3>, bit 9 is in **CRTC9**<5>, and bits 10 and 11 are in **CRTCEXT2**<4:3>.

Index Reset Value	crtcx 0000											
					vblk	end						
		7	6	5	4	3	2	1	0			
vblkend	End vert	ical bl	anking	g. VG	A/MG.	A.						
<7:0>	The vert lower bi									•		•

Index Reset Value	crtcx 0000									
		crtcrstN	wbmode	addwrap	Reserved	count2	hsyncsel	selrowscan	cms	
		7	6	5	4	3	2	1	0	
cms <0>		ct the See the	row sc e table	an cou s below	unter b v.	oit 0 to		•		of memory counter address below.

Memory Address Tables

Legend:

- A: Memory address from the CRTC counter
- RC: Row counter
- MA: Memory address is sent to the memory controller

Double word access {dword (CRTC14<6>), wbmode} = 1X

	{addwrap, selrowscan: cms}									
Output	<i>`X00'</i>	<i>'X01'</i>	<i>'X10'</i>	<i>'X11'</i>						
MA0	'0'	' 0'	' 0'	'0'						
MA1	' 0'	' 0'	' 0'	'0'						
MA2	A0	A0	A0	A0						
MA3	A1	A1	A1	A1						
MA4	A2	A2	A2	A2						
MA5	A3	A3	A3	A3						
MA6	A4	A4	A4	A4						
MA7	A5	A5	A5	A5						
MA8	A6	A6	A6	A6						
MA9	A7	A7	A7	A7						
MA10	A8	A8	A8	A8						
MA11	A9	A9	A9	A9						
MA12	A10	A10	A10	A10						
MA13	RC0	A11	RC0	A11						
MA14	RC1	RC1	A12	A12						
MA15	A13	A13	A13	A13						

Word access {dword, wbmode} = 00

		{addwrap, selrowscan: cms}									
Output	<i>'000'</i>	<i>'001'</i>	<i>6010</i>	<i>'011'</i>	<i>'100'</i>	<i>'101'</i>	<i>'110'</i>	<i>'111'</i>			
MA0	A13	A13	A13	A13	A15	A15	A15	A15			
MA1	A0	A0	A0	A0	A0	A0	A0	A0			
MA2	A1	A1	A1	A1	A1	A1	A1	A1			
MA3	A2	A2	A2	A2	A2	A2	A2	A2			
MA4	A3	A3	A3	A3	A3	A3	A3	A3			
MA5	A4	A4	A4	A4	A4	A4	A4	A4			
MA6	A5	A5	A5	A5	A5	A5	A5	A5			
MA7	A6	A6	A6	A6	A6	A6	A6	A6			
MA8	A7	A7	A7	A7	A7	A7	A7	A7			
MA9	A8	A8	A8	A8	A8	A8	A8	A8			
MA10	A9	A9	A9	A9	A9	A9	A9	A9			
MA11	A10	A10	A10	A10	A10	A10	A10	A10			
MA12	A11	A11	A11	A11	A11	A11	A11	A11			
MA13	RC0	A12	RC0	A12	RC0	A12	RC0	A12			
MA14	RC1	RC1	A13	A13	RC1	RC1	A13	A13			
MA15	A14	A14	A14	A14	A14	A14	A14	A14			

Byte access {dword, wbmode} = 01

	{add	{addwrap, selrowscan: cms}									
Output	'X00'	<i>'X01'</i>	<i>'X10'</i>	<i>'X11'</i>							
MA0	A0	A0	A0	A0							
MA1	A1	A1	A1	A1							
MA2	A2	A2	A2	A2							
MA3	A3	A3	A3	A3							
MA4	A4	A4	A4	A4							
MA5	A5	A5	A5	A5							
MA6	A6	A6	A6	A6							
MA7	A7	A7	A7	A7							
MA8	A8	A8	A8	A8							
MA9	A9	A9	A9	A9							
MA10	A10	A10	A10	A10							
MA11	A11	A11	A11	A11							
MA12	A12	A12	A12	A12							
MA13	RC0	A13	RC0	A13							
MA14	RC1	RC1	A14	A14							
MA15	A15	A15	A15	A15							

CRTC17

selrowscan	Select row scan counter. VGA.							
<1>	 • 0: Select the row scan counter bit 1 to be output instead of memory counter address 14. • 1: Select memory address 14 to be output. See the tables in the cms field's 							
	description.							
hsyncsel <2>	Horizontal retrace select. VGA/MGA.							
~2>	0: The vertical counter is clocked on every horizontal retrace.1: The vertical counter is clocked on every horizontal retrace divided by 2.							
	This bit can be used to double the vertical resolution capability of the CRTC. All vertical timing parameters have a resolution of two lines in divided-by-two mode, including the scroll and line compare capability.							
count2	Count by 2. VGA.							
<3>	 0: The count4 field (CRTC14<5>) dictates if the character clock is divided by 4 (count4 = 1) or by 1 (count4 = 0). 1: The memory address counter is clocked with the character clock divided by 2 (count4 is 'don't care' in this case). 							
addwrap	Address wrap. VGA.							
<5>	• 0: In word mode, select memory address counter bit 13 to be used as memory address bit 0. In byte mode, memory address counter bit 0 is used for memory address bit 0.							
	 1: In word mode, select memory address counter bit 15 to be used as memory address bit 0. In byte mode, memory address counter bit 0 is used for memory address bit 0. See the tables in the cms field's description. 							
wbmode	Word/byte mode. VGA.							
<6>	 0: When not in double word mode (dword (CRTC14<6>) = 0), this bit will rotate all memory addresses left by one position. Otherwise, addresses are not affected. In double word mode, this bit is 'don't care'. See the tables in the cms field's description. 1: Select byte mode. The memory address counter bits are applied directly to the 							
	video memory.							
crtcrstN <7>	CRTC reset. VGA/MGA.							
	0: Force the horizontal and vertical sync to be inactive.1: Allow the horizontal and vertical sync to run.							
Reserved <4>	Reserved. When writing to this register, this field <i>must</i> be set to '0'. Reading will give '0's.							
	•• <i>Note:</i> In MGA mode, wbmode <i>must</i> be set to 1, selrowscan set to 1, and							

cms to 1.

Index	crtcx = 18h	
Reset Value	0000 0000b	

			linecomp									
		7	6	5	4	3	2	1	0			
linecomp <7:0>	Line con	npare.	VGA	'MGA	•							
	When the vertical counter reaches the line compare value, the memory address counter is reset to '0'. This means that memory information located at 0 and up are displayed, rather than the memory information at the line compare.											
	This register is used to create a split screen: •Screen A is located at memory start address (CRTCC, CRTCD) and up. •Screen B is located at memory address 0 up to the CRTCC, CRTCD value.									e.		
	CRTC7<	<4>, bi unit is	it 9 is	in <mark>CR</mark>	TC9<6	5>, and	l bit 10	0 is in	CRT	EXT2<	bit 8 is in (7>. The l (2t4 field	line

The line compare is also used to generate the vertical line interrupt.

Index Reset Value	crtcx 0000								
		[сри	data			
		7	6	5	4	3	2	1	0
cpudata	CPU dat	a. VG	A.						
<7:0>	This regi These lat					•		Ũ	· •

These latches are loaded when the CPU reads from display memory. The **rdmapsl** field (**GCTL4**<1:0>) determines which of the four planes is read in Read Mode '0' (The **chain4** (**SEQ4** <3>)and **gcoddevmd** (**GCTL5** <4>) fields must be '0'). This register contains color compare data in Read Mode 1.

Index	crtcx = 24h							
Reset Value	0000 0000b							
	attradse Reserved							
	7 6 5 4 3 2 1 0							
attradsel	Attributes address/data select. VGA.							
<7>	0: The attributes controller is ready to accept an address value.1: The attributes controller is ready to accept a data value.							
Reserved <6:0>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.							

Index Reset Value	crtcx = 26h 0000 0000b									
		pas	attrx							
		7	6	5	4	3	2	1	0	
attrx <4:0>	VGA att	tribute	s addro	ess						
pas <5>	VGA pa	lette e	nable.							
Reserved <7:6>	Reserve	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.								
	•See the		R regis	ter on	page 3	8-226.				

Addro Attrib Rese	outes		03DEh (I/O), MGABASE1 + 1FDEh (MEM) R/W, BYTE/WORD, STATIC nnnn nnnn 0000 0000b crtcextd Reserved crtcextx											tx	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
crtce <2:0			CRTC extension index register. A binary value that points to the CRTC Extension register where data is to be written or read when the crtcextd field is accessed.										written		
			Register Name Mnemonic Crtcextx address												
			Addre	ess Gei	nerator	Exter	sions	(CRTCEXT0			00h			
			Horiz	ontal C	Counte	r Exte	nsions	C	CRTCEXT1			01h			
			Vertic	al Cou	inter E	xtensi	ons	C	CRTCEXT2			02h			
			Misce	ellaneo	us			C	CRTCEXT3			03h	03h		
			Memo	ory Pag	ge regi	ster		C	CRTCEXT4			04h			
			Horiz	ontal V	/ideo l	Half C	ount	C	CRTCEXT5			05h			
			Priori	ty Req	uest C	ontrol		C	CRTCEXT6			06h			
			Reque	est for	Contro	ol		0	RTC	EXT7		07h			
crtce			CRTC	extens	ion da	ta regi	ster.								
<15:	:8>		Retriev	es or v	writes	the con	ntents c	of the r	egister	[•] pointe	d to b	y the c	rtcext	x field	
Reser <7:			Reserv	ed. Wl	hen wi	riting to	o this re	egister	the bi	ts in th	is field	d <i>must</i>	be set	to '0'.	

Index	crtcex	(tx = ()0h								
Reset Value	0000 0000b										
		interlace	startadd	offset	startadd						
		7	6	5 4	3 2 1 0						
startadd	Start add	Start address bits 20, 19, 18, 17, and 16.									
<3:0>	These are the five most significant bits of the start address. See the CRTCC register on page 3-250.										
offset	Logical line width of the screen bits 9 and 8.										
<5:4>	These are the two most significant bits of the offset. See the CRTC13 register on page 3-257.										
startadd	Start add	ress b	its 20.								
<6>	This is the most significant bit of the start address. See the CRTCC register on page 3-250.										
interlace	Interlace enable.										
<7>	Indicates if interlace mode is enabled.										
	• 0: Not i • 1: Inter			node.							

Index Reset Value		xtx = 0 0000								
		vrsten	hblkend	vsyncoff	hsyncoff	hrsten	hsyncstr	hblkstr	htotal	1
		7	6	5	4	3	2	1	0	
htotal	Horizon	tal tota	l bit 8							
<0>	This is the register of		-		bit of	the ht	otal (h	orizor	ntal to	al) register. See the CRTC0
hblkstr	Horizon	tal blaı	nking	start b	it 8.					
<1>	This is the CRT		0				olkstr	(horiz	ontal	blanking start) register. See
hsyncstr	Horizon	tal retr	ace sta	art bit	8.					
<2>	This is the CRT		-				syncs	tr (hor	rizonta	al retrace start) register. See
hrsten	Horizon	tal rese	et enab	ole.						
<3>	When at	'1', th	e hori	zontal	count	er can	be res	et by t	he VI	DRST pin.
hsyncoff <4>	Horizon	tal syn	c off.							
<4>	• 0: HSY • 1: HSY			•	tive.					
vsyncoff	Vertical	sync o	ff.							
<5>	• 0: VSY • 1: VSY			•	tive.					
hblkend <6>	End hori see CRT			ing bi	t 6. Th	is bit i	s used	only i	in MG	A mode (mgamode = 1;
	Bit 6 of	the En	d Hor	izonta	l Blanl	king va	alue. <mark>S</mark>	ee the	CRT	C3 register on page 3-241.
vrsten	Vertical	reset e	nable.							
<7>	When at	'1', th	ie vert	ical co	ounter	can be	reset	by the	VID	RST pin.

Index Reset Value	crtce											
Reset value	0000	0000	סנ									
		linecomp	vsyr	ncstr	vbl	kstr	vdispend		VIOIAI			
		7	6	5	4	3	2	1	0			
vtotal	Vertical	total b	its 11	and 10).							
<1:0>				0							cal total) register (the on page 3-244.	
vdispend	Vertical	display	y enab	le end	bit 10							
<2>			0				-				isplay end) register (the RTC12 register on page 3	_
vblkstr	Vertical	blanki	ng sta	rt bits	11 and	l 10.						
<4:3>				0							ical blanking start) registe RTC15 register on page 3-	
vsyncstr	Vertical	retrace	start	bits 11	and 1	0.						
<6:5>		These are the two most significant bits of the vsyncstr (vertical retrace start) register (the vertical retrace start is then 12 bits wide). See the CRTC10 register on page 3-254.										
linecomp	Line cor	npare l	oit 10.									
<7>			0							-	pare) register (the line 1 page 3-265.	

CRTCEXT3

Index Reset Value	crtcextx = 0 0000 000							
Reset value	mgamode	csyncen		served		scale		7
scale <2:0>	7 Video clock sc	6 caling fac	5 4 ctor. Spe	3 cifies th	2 e vide	1 eo cloci	0 c divis	sion factor in MGA mode.
\ 2.02		Scale	Divis	ion Fact	or			
		' 000'		/1				
		' 001 '		/2				
		' 010 '		/3				
		'011'		/4				
		'100'	R	eserved				
		'101'		/6				
		'110'	R	eserved				
		'111'		/8				
slow256	256 color mod	le acceler	ration di	able.				
<5>	• 1: VGA Mod	ame buffer accesses are accelerated in VGA mode 13. ode 13 direct frame buffer access acceleration is disabled. Unless e specified, this bit should always be '0'.						
csyncen	Composite Sys							
<6>	Generates a co			nal on ti	he VV	VSYNC	'/ nin	
			sync sig				~ h	
	• 0: Horizontal	-	1 1	-)				
	• 1: Composite	e sync (b	lock syn	<i>:)</i> .				

mgamode <7>	MGA mode enable.
<1>	 0: Select VGA compatibility mode. In this mode, VGA data is sent to the DAC via the VGA attribute controller. The memory address counter clock will be selected by the count2 (CRTC17<3> and count4 (CRTC14<5>) bits. This mode should be used for all VGA modes up to mode 13, and for all Super VGA alpha modes. When mgamode = '0', the full frame buffer aperture mapped to MGABASE2 is unusable.
	 1: Select MGA mode. In this mode, the graphics engine data is sent directly to the DAC. The memory address counter is clocked, depending on the state of the hzoom field of the XZOOMCTRL register. This mode should be used for all Super VGA graphics modes and all accelerated graphics modes.
Reserved <4:3>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Index	crtcextx = 04h

Reset Value 0000 0000b

			ра	ge			
7	6	5	4	3	2	1	0

page Page. **<7:0>**

This register provides the extra bits required to address the full frame buffer through the VGA memory aperture in Power Graphic Mode. This field *must* be programmed to zero in VGA Mode. Up to 16 megabytes of memory can be addressed. The **page** register can be used instead of or in conjunction with the MGA frame buffer aperture.

GCTL6<3:2>	Bits used to address RAM	Comment
·00'	CRTCEXT4<7:1>, CPUA<16:0>	128K window
'01'	CRTCEXT4<7:0>, CPUA<15:0>	64K window
'1X'	Undefined	Window is too small

Index Reset Value	crtce> 0000										
					hvic	lmid				1	
		7	6	5	4	3	2	1	0		
hvidmid <7:0>	-	ster sj when	pecifie in inte	s the l	norizon displa					ertical counter should be is only used in interlaced	l
	St	art Ho	orizon	al Ret	race +	End H	Horizo 2	ntal Re	etrace	- Horizontal Total - 1	

Index	crtcex	$\mathbf{t}\mathbf{x} = 0$)6h						
Reset Value	0000	0000	Эb						
		Reserved	m	axhip	ori	Reserved	ł	niprilv	1
		7	6	5	4	3	2	1	0

hiprilvl High Priority request Level. This field indicates the number of 8-qword requests in the CRTC fifo when the request to the memory controller changes from low to high priority

hiprilvl	high priority request level
,000,	1
' 001 '	2
'010'	3
'011'	4
'100'	5
'101'	6
' 110'	7
'111'	8

maxhipri <6:4> Maximum High Priority requests. This register indicates the minimum number of high priority requests to be made.

maxhipri	maximum high priority request level
,000,	1
' 001 '	2
'010'	3
'011'	4
'100'	5
'101'	6
'110'	7
'111'	8

Reserved <3><7>

Reserved. When writing to this register, the bits in this field *must* be set to '0'.

Index	crtcextx = 07h
Reset Value	0000 0000Ъ
	Reserved 0
	7 6 5 4 3 2 1 0
crtcblk0 <0>	This field is used to enable a bandwidth-saving mode that blocks the CRTC requester when video window 0 is displayed.
	0: normal mode1: block request mode
	◆ <i>Note:</i> This field has effect <i>only</i> when HZOOM equals '00'.
Reserved <7:1>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Address Attributes Reset Value	03C7h (I/O), MGABASE1 + 1FC7h (MEM) RO, BYTE, STATIC 0000 0000b											
	Reserved dsts											
	7 6 5 4 3 2 1 0											
dsts <1:0>	This port returns the last access cycle to the palette.'00': Write palette cycle'11': Read palette cycle											
Reserved	This field returns zeroes when read.											
<7:2>	Data read 03C7h will not be transmitted to the RAMDAC, and the contents of the DACSTAT register will be presented on the PCI bus. Writes to 03C7h will be transmitted to the RAMDAC.											

Address Attributes Reset Value	03BAh (I/O), Write (MISC <0> == 0: MDA emulation) 03DAh (I/O), Write (MISC <0> == 1: CGA emulation) 03CAh (I/O) Read MGABASE1 + 1FDAh (MEM) R/W, BYTE, STATIC 0000 0000b										
	Reserved 50 best 7 6 5 4 3 2 1 0										
featcb0 <0>	Feature control bit 0. VGA. General read/write bit.										
featcb1 <1>	Feature control bit 1. VGA. General read/write bit.										
Reserved <7:2>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.										

Address	03CEh (I/O), MGABASE1 + 1FCEh (MEM)
Attributes	R/W, BYTE/WORD, STATIC

Reset Value nnnn nnnn 0000 0000b

gctld								Reserved gctlx							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

gctlx <3:0> Graphics controller index register.

A binary value that points to the VGA graphic controller register where data is to be written or read when the **gctld** field is accessed.

Register name	Mnemonic	gctlx address
Set/Reset	GCTL0	00h
Enable Set/Reset	GCTL1	01h
Color Compare	GCTL2	02h
Data Rotate	GCTL3	03h
Read Map Select	GCTL4	04h
Graphic Mode	GCTL5	05h
Miscellaneous	GCTL6	06h
Color Don't Care	GCTL7	07h
Bit Mask	GCTL8	08h
Reserved ⁽¹⁾		09h - 0Fh

⁽¹⁾ Writing to a reserved index has no effect; reading from a reserved index will give '0's.

gctld <15:8> Graphics controller data register.

Retrieve or write the contents of the register pointed to by the **gctlx** field.

Reserved <7:4>

Reserved. When writing to this register, the bits in these fields *must* be set to '0'.

Index Reset Value	gctlx 0000	= 00h 0000)b										
	Reserved setrst												
		7	6	5	4	3	2	1		0			
setrst	Set/reset. VGA.												
<3:0>	These bits allow setting or resetting byte values in the four video maps:												
	 1: Set the byte, assuming the corresponding set/reset enable bit is '1'. 0: Reset the byte, assuming the corresponding set/reset enable bit is '0'. 												
	► Note:		•	er is <i>ac</i> set/res			U 1	hics	CO	ntrol	ller is in w	rite mode	0
Reserved <7:4>	Reserved	d. Whe	en writ	ting to	this re	egister	, the b	its in	th	is fie	eld <i>must</i> be	e set to '0	· .

Index	gctlx = 01h										
Reset Value	0000 0000Ъ										
	Reserved setrsten										
	7 6 5 4 3 2 1 0										
setrsten	Enable set/reset planes 3 to 0. VGA.										
<3:0>	When a set/reset plane is enabled (the corresponding bit is '1') and the write mode is 0 (wrmode (GCTL5<1:0>) = 00), the value written to all eight bits of that plane represents the contents of the set/reset register. Otherwise, the rotated CPU data is used.										
	• Note: This register has no effect when <i>not</i> in Write Mode 0.										
Reserved <7:4>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.										

Index Reset Value	gctlx = 02h 0000 0000b
	Reserved refcol
	7 6 5 4 3 2 1 0
refcol <3:0>	Reference color. VGA. These bits represent a 4-bit color value to be compared. If the host processor sets Read Mode 1 (rdmode (GCTL5 <3>) = 1), the data returned from the memory read will be a '1' in each bit position where the four planes equal the reference color value. Only the planes enabled by the GCTL7 ('Color Don't Care'; page 3-290) register will be tested.
Reserved <7:4>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Index Reset Value	gctlx 0000										
		R	eserv	ed	fur	sel		rot		1	
		7	6	5	4	3	2	1	0		
rot	Data rotate count bits 2 to 0. VGA.										
<2:0>		-			•					f of positions to $ristication = 00$.	
	The rota 291) reg						•	er wit	h the 🤇	GCTL8 ('Bit Mas	
funsel	Function select. VGA.										
<4:3>	Specifies any data			•	-				e video	memory data lat	
			fun	sel	Fur	nction				1	
			' 0	0'	Sou	arce ui	nmodi	fied			
			' 0	1'	Sou	arce A	ND la	tched	data		
			' 1	0'	Sou	urce O	R latel	ned da	ita		
			'1	1'	Sou	urce X	OR lat	ched of	data		
Reserved <7:5>	Reserved	d. Wh	en wri	ting to	this re	egister	, the b	its in t	his fie	ld <i>must</i> be set to	

Index	gctlx	= 04h									
Reset Value	0000	0000	Db								
				Rese	erved			rdm	apsl		
		7	6	5	4	3	2	1	0		
rdmapsl	Read ma	Read map select. VGA.									
<1:0>	the host	These bits represent a binary encoded value of the memory map number from which the host reads data when in Read Mode 0. This register has no effect on the color compare read mode (rdmode (GCTL5 $<$ 3 $>$) = 1).									
Reserved <7:2>	Reserved	d. Whe	en wri	ting to	this re	egister	, the b	its in t	his field <i>must</i> be set to '0'.		

Index Reset Value	gctlx 0000		Db										
		Reserved	mode256	srintmd	gcoddevmd	rdmode	Reserved	-	wrmode				
		7	6	5	4	3	2	1		0			
wrmode	Write mo	ode sel	lect. V	GA.									
<1:0>		These bits select the write mode: '00': In this mode, the host data is rotated and transferred through the set/reset mechanism to the input of the Boolean unit.											
	 '01': In this mode, the CPU latches are written directly into the frame buffer. T IBLU is not used. '10': In this mode, host data bit n is replicated for every pixel of memory plana and this data is fed to the input of the BLU. '11': Each bit of the value contained in the setrst field (GCTL0<3:0>) is replined to 8 bits of the corresponding map expanded. Rotated system data is ANI with the GCTL8 ('Bit Mask', page 3-291) register to give an 8-bit value v performs the same function as GCTL8 in Modes 0 and 2. 									pixel of memory plane n, GCTL0<3:0>) is replicated ted system data is ANDed to give an 8-bit value which			
rdmode	Read mode select. VGA.												
<3>	 0: The host reads data from the memory plane selected by GCTL4, unless chain4 (SEQ4<3>) equals 1 (in this case, the read map has no effect). 1: The host reads the result of the color comparison. 												
gcoddevmd	Odd/Eve	en moc	le sele	ct. VC	βA								
<4>	data • 1: Seleo	from. ets the the rea	odd/e	ven ad	dressi	ng mo	de. It c	causes	s CI	PU a	h plane the system reads address bit A0 to replace bit letermine odd or even plane		
srintmd	Shift reg	ister iı	nterlea	ive mo	de. V	GA.							
<5>	•	shift re Serial	egistei data v data v	rs in th vith oc vith th	ld-nun	nbered	bits fi	rom b	oth	ma	ps in the odd-numberedmap n maps in the even-num-		

mode256 <6>	256-color mode. VGA.
	 0: The loading of the shift registers is controlled by the srintmd field. 1: The shift registers are loaded in a manner which supports 256-color mode.
Reserved	<2> <7>
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'.

These fields return '0's when read.

Index Reset Value	gctlx = 06 0000 00									
		Reserved	memmapsl	even acarmode						
	7	6 5	4 3 2	1 0						
gcgrmode	Graphics mo	de select. VGA								
<0>	0: Enables alpha mode, and the character generator addressing system is activated.1: Enables graphics mode, and the character addressing system is not used.									
chainodd	Odd/Even cl	nain enable. VG	А.							
even <1>	addressin • 1: Allows A memma	ng. A0 to be replace	d by either the A by the hpgodde	16 signal c	uring system memory of the system address (if >, odd/even page select) field,					
memmapsl	Memory mag	p select bits 1 ar	nd 0. VGA.							
<3:2>	These bits se	elect where the v	video memory is	mapped, as	s shown below:					
		memmapsl	Address							
		·00'	A0000h - BF							
		'01' '10'	A0000h - AF B0000h - B7							
		·10 ·11'	B8000h - BF							

Reserved Reserved. When writing to this register, the bits in this field *must* be set to '0'. **<7:4>**

Index	gctlx	= 07h									
Reset Value	0000	000	0b								
			Res	erved			colco	mper	า	_	
		7	6	5	4	3	2	1	0]	
colcompen	Color er	able c	compa	rison fo	or plan	nes 3 t	o 0. V (GA.			
<3:0>	When an compare	•		its are	set to	'1', th	e asso	ciated	plane	is included in the col	or
Reserved <7:4>	Reserve	d. Wh	en wri	ting to	this re	egister	, the b	its in 1	this fie	eld <i>must</i> be set to '0'.	

Index	gctlx	= 08h								
Reset Value	0000	000	0b							
					wrm	nask				1
		7	6	5	4	3	2	1	0	
wrmask <7:0>	2	t in thi elected	is regis l write	ster is mode	set to ' and sy	1', the ystem	corre	•	0	in all planes may be altered et to '0', the corresponding

Address Attributes Reset Value	03C2h (I/O), MGABASE1 + 1FC2h (MEM) Read RO, BYTE, STATIC ?111 0000b											
		crtcintcrt		reaunio	switchsns		Rese	erved				
		7	6	5	4	3	2	1	0			
switchsns <4>	Switch s Always				g has n	io effe	ct.					
featin10 <6:5>	Feature i Always	•				no eff	ect.					
crtcintcrt	Interrupt											
<7>		 0: Vertical retrace interrupt is cleared. 1: Vertical retrace interrupt is pending. 										
Reserved <3:0>	Reserved	d. Whe	en wri	ting to	this re	egister	, the b	its in tl	his fie	ld <i>must</i> be	e set to '	0'.

Address Attributes Reset Value	03BAh (I/O), Read (MISC <0> == 0: MDA emulation) 03DAh (I/O), Read (MISC <0> == 1: CGA emulation) MGABASE1 + 1FDAh (MEM) RO, BYTE, DYNAMIC unknown									
	Re	served	di	ag	vretrace	Rese	erved	hretrace		
	7	6	5	4	3	2	1	0		
hretrace	Display enal	ole								
<0>		 • 0: Indicates an active display interval • 1: Indicates an inactive display interval. 								
vretrace	Vertical retrace.									
<3>	0: Indicate1: Indicate					erval i	s occu	rring.		
diag	Diagnostic.									
<5:4>	The diag bit attribute con outputs are u	troller. T		•				•	.	
		vid	stmx			diag				
		5	4		5		4			
		'0'	·0		PD2		PD0			
		'0' '1'	·1 ·0		PD5 PD3		PD4 PD1			
		·1'	·1		PD7		PD6			
Reserved	<2:1> <7:6>			I	-		-			
	Reserved. W These fields	hen writ	-		-	, the bi	its in tl	nese fields <i>n</i>	<i>nust</i> be se	et to '0'.

for

Address	03C2h (I/O), MGABASE1 + 1FC2h (MEM) Write 03CCh (I/O)										
					MEM) Read					
Attributes		R/W, BYTE, STATIC 0000 0000b									
Reset Value	0000	000	0Ъ								
		vsyncpol	hsyncpol	hpgoddev	videodis	clksel		rammapen	ioaddsel	_	
		7	6	5	4	3	2	1	0		
ioaddsel	I/O addro	ess sel	ect. V	GA.						-	
<0>	mapj • 1: CRT	 O: The CRTC I/O addresses are mapped to 3BXh and the STATUS register is mapped to 03BAh for MDA emulation. I: CRTC addresses are set to 03DXh and the STATUS register is set to 03DAh a CGA emulation. 									
rammapen	Enable R	AM.	VGA/	MGA.							
<1>	• Logical • Logical				-						
clksel	Clock se	lects.	VGA/	MGA.							
<3:2>	These bi	ts sele	ct the	clock	source	that di	rives	the ha	dware	.	
	• '00': Se • '01': Se • '1X': R	elect the	he 28.3	322 M	hz clo	ck.	the N	/IGA p	ixel c	lock.	
videodis <4>	Video di	sable.	VGA	This b	oit is re	served	and r	ead as	ʻ0'.		
hpgoddev	Page bit	for od	d/ever	n. VGA	A .						
<5>	This bit s	selects	betwe	een tw	o 64K	pages	of me	emory	when	in odd/even mode.	
	• 0: Selec • 1: Selec		-	0							

hsyncpol <6>

Horizontal sync polarity. VGA/MGA.

- Logical '0': active high horizontal sync pulse.
- Logical '1': active low horizontal sync pulse.

The vertical and horizontal sync polarity informs the monitor of the number of lines per frame.

VSYNC	HSYNC	Description
		768 lines per frame
+	+	(marked as Reserved for IBM VGA)
-	+	400 lines per frame
+	-	350 lines per frame
-	-	480 lines per frame

vsyncpol <7> Vertical sync polarity. VGA/MGA.

- Logical '0': active high vertical sync pulse
- Logical '1': active low vertical sync pulse

SEQ

Address	03C4h (I/O), MGABASE1 + 1FC4h (MEM)
Attributes	R/W, BYTE/WORD, STATIC
Reset Value	nnnn nnnn 0000 0000b

seqd									Reserved seqx						
15	15 14 13 12 11 10 9 8						7	6	5	4	3	2 1 0			

seqx Sequencer index register.

A binary value that points to the VGA sequencer register where data is to be written or read when the **seqd** field is accessed.

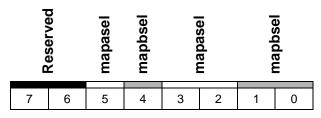
Register name	Mnemonic	seqx address
Reset	SEQ0	00h
Clocking Mode	SEQ1	01h
Map Mask	SEQ2	02h
Character Map Select	SEQ3	03h
Memory Mode	SEQ4	04h
Reserved (⁽¹⁾)		05h - 07h

⁽¹⁾ When writing to a reserved register, all fields *must* be set to '0'. Reading from a reserved index will give '0's.

seqd Sequencer data register.

<15:8> Retrieve or write the contents of the register that is pointed to by the **seqx** field.

Reserved Reserved. When writing to this register, the bits in this field *must* be set to '0'.


<7:3>

Index Reset Value	seqx 0000									
				Rese	erved			syncrst	asyncrst	
		7	6	5	4	3	2	1	0	
asyncrst	Asynchr	onous	reset.	VGA.						
<0>	asyn does	 O: For the IBM VGA, this bit was used to clear and stop the sequencer asynchronously. For MGA, this bit can be read or written (for compatibility) but does not stop the memory controller. 1: For the IBM VGA, this bit is used to remove the asynchronous reset. 								
syncrst	Synchro	nous r	eset. V	/GA.						
<1>	mem does	nory cy not st et to '(ycle. F op the)' whe	or MC memo n chan	GA, thi ory cor iging a	s bit c ntrollen ny VC	an be 1 r. The l GA reg	read or MGA- gister b	r writte G200 vits.	the sequencer at the end of a en (for compatibility), but it does not require that this bit eset.
Reserved <7:2>	Reserved	d. Whe	en wri	ting to	this re	egister	, the bi	its in t	his fie	ld <i>must</i> be set to '0'.

Index Reset Value	seqx =									
Resel value	0000				L			þé	Ð	
			Keserved	scroff	shiftfour	dotclkrt	shftldrt	Reserved	dotmode	
		7	6	5	4	3	2	1	0	
dotmode	9/8 dot n	node.	VGA.							
<0>	• 0: The • 1: The	-	-							
shftldrt	Shift/loa	d rate	. VGA	•						
<2>	• 1: The	graph		trolle	shift	registe				ery character clock. ery other character clock.
dotclkrt	Dot cloc	k rate	. VGA							
<3>		dot cl	ock rat	e is sl	owed t	to one-	half th	e cloc	k at th	K pin. he VCLK pin. The character hir normal speed.
shiftfour	Shift fou	r. VG	A.							
<4>	• 1: The	graph	ics cor	trolle	er shift registers are reloaded every character clock. er shift registers are reloaded every fourth character clock. t fetches.					
scroff	Screen o	ff. VC	GA/MO	GA.						
<5>		s off t	he vid	eo, an	d maxi			•		h is assigned to the system. enerated normally.
Reserved	<1> <7:0	6>								
	Reserved These fie			•		0	, the bi	its in t	hese fi	ields <i>must</i> be set to '0'.

Index	seqx = 02h
Reset Value	0000 0000Ъ
	Reserved plwren
	7 6 5 4 3 2 1 0
plwren <3:0>	Map 3, 2, 1 and 0 write enable. VGA.
	A '1' in any bit location will enable CPU writes to the corresponding video memory map. Simultaneous writes occur when more than one bit is '1'.
Reserved <7:4>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Index	seqx = 03h
Reset Value	0000 0000b

This register is reset by the reset pin (PRST/), or by the **asyncrst** field of the **SEQ0** register.

mapbsel Map B select bits 2, 1, and 0. VGA.

<4, 1:0>

These bits are used for alpha character generation when the character's attribute bit 3 is '0', according to the following table:

mapbsel	Map#	Map location
,000,	0	1st 8 kilobytes of Map 2
' 001 '	1	3rd 8 kilobytes of Map 2
'010'	2	5th 8 kilobytes of Map 2
'011'	3	7th 8 kilobytes of Map 2
'100'	4	2nd 8 kilobytes of Map 2
'101'	5	4th 8 kilobytes of Map 2
'110'	6	6th 8 kilobytes of Map 2
'111'	7	8th 8 kilobytes of Map 2

mapasel <5, 3:2>

Map A select bits 2, 1, and 0. VGA.

These bits are used for alpha character generation when the character's attribute bit 3 is '1', according to the following table:

mapasel	Map#	Map location
' 000'	0	1st 8 kilobytes of Map 2
' 001 '	1	3rd 8 kilobytes of Map 2
'010'	2	5th 8 kilobytes of Map 2
'011'	3	7th 8 kilobytes of Map 2
'100'	4	2nd 8 kilobytes of Map 2
'101'	5	4th 8 kilobytes of Map 2
'110'	6	6th 8 kilobytes of Map 2
'111'	7	8th 8 kilobytes of Map 2

Reserved <7:6>

Reserved. When writing to this register, the bits in this field *must* be set to '0'.

Index	seqx	= 04h								
Reset Value	0000	000	Ob							
			Res	erved		chain4	seqoddevmd	memsz256	Reserved	_
		7	6	5	4	3	2	1	0	
memsz256	256K m	emory	v size.							
<1>	to '0'.					-				ss bits 14 and 15 are forced nould always be '1'.
seqoddevmd										
<2>		esses.			-	nd 2 at	even	addres	ses, ai	nd to Maps 1 and 3 at odd
	➡ Note		l cases k regis		ıp is w	ritten u	nless	it has	been o	disabled by the map
chain4	Chain fo	our. V	GA.							
<3>		two lo		ler bits	s A0 a	-			-	map. plane to be accessed by the
					A<	1:0>	Map	select	ed	
						0,		0		
)1'		1		
						0' 1'		2 3		
Reserved	<0> <7:	4			1	1		5		
Reserved			en wri	ting to	this r	egister	the h	its in t	hese f	ields <i>must</i> be set to '0'.

Reserved. When writing to this register, the bits in these fields *must* be set to '0'. These fields return '0's when read

3.3 DAC Registers

3.3.1 DAC Register Descriptions

The MGA-G200 DAC register descriptions contain a (gray single-underlined) main header which indicates the register's name and mnemonic. Below the main header, the memory address or index, attributes, and reset value are indicated. Next, an illustration of the register identifies the bit fields, which are then described in detail below the illustration. The reserved bit fields are underscored by black bars, and all other fields are delimited by alternating white and gray bars.

Sample DAC Register Description

```
SAMPLE_DAC
```

Address Attributes	<value R/W</value 	e> (I/C	D), val	ue (M	EM)					×
Reset Value	<value< th=""><th>e></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Main header</th></value<>	e>								Main header
										Underscore bar
		fie	ld1	fie	ld2	Rese	erved	fie	ld3	
		7	6	5	4	3	2	1	0	
field1	Field 1.	Detail	ed des	criptic	on of t	he fi e l	d1 fiel	d of th	ie SAI	MPLE_DAC register, which

	field.	0	0
field2 <5:3>	Field 2. Detailed description of the fie bits 5 to 3.	ld2 field of SAMPLE_DAC, wh	nich comprises

field3Field 3. Detailed description of the field3 field of SAMPLE_DAC, which comprises<1:0>bits 1 to 0.

Reserved<2> Reserved. When writing to this register, this field must be set to '0'. (Reserved registers always appear at the end of a register description.)

Address

This address is an offset from the Power Graphic mode base memory address.

Index

The index is an offset from the starting address of the indirect access register (X_DATAREG).

Attributes

The DAC register attributes are:

- RO: There are no writable bits.
- WO: There are no readable bits.
- R/W: The state of the written bits can be read.
- BYTE: 8-bit access to the register is possible.
- WORD: 16-bit access to the register is possible.
- DWORD: 32-bit access to the register is possible.

Reset Value

Here are some of the symbols that appear as part of a register's reset value.

- 000? 0?00b
 - (b = binary, ? = unknown, N/A = not applicable)

Address	CURPOSXL MGABA	$SE1 \pm 3C0Ch$ (MFM)	
Address	CURPOSXE MGABA	· · · ·	
	CURPOSYL MGABA		
	CURPOSYH MGABA	× ,	
Attributes	R/W, BYTE, WORD, I		
Reset Value	unknown		
Reserved	curposy	Reserved	curposx
31 30 29 28 27 2	26 25 24 23 22 21 20 19 18	8 17 16 15 14 13 12 11 10	
curposx <11:0>			st column of the hardware cursor
	that a cursor update never	-	a frame, the software must ensure riod (when the vsyncsts status is the place at any other time.
	Cursor repositioning will	only take effect on the nex	t activation of the vertical retrace.
	Cursor position (1,1) corr displayed pixel following		ner of the screen (it is the first
	the blank signal at which	the bottom right hand corn into curposx causes the right	e number of pixels from the end of her of the cursor is located. ghtmost pixel of the cursor to be
	of vertical blanking at wh Therefore, loading 001h i displayed on the top scan	nich the bottom right hand on the curposy causes the bo	number of scanlines from the end corner of the cursor is located. ttommost pixel of the cursor to be is written to either of the cursor en.
		perational in both non-inter the CRTCEXT0 VGA regis	lace and interlaced display modes ster).
curposy <27:16>	Y Cursor position. Detern the display screen.	nines the position of the la	st row of the hardware cursor on
Reserved	<15:12> <31:28>		
	Reserved. When writing	to this register, the bits in the	hese fields must be set to '0'.

Address	03C9h (I/O), MGABASE1 + 3C01h (MEM)
---------	--

Attributes R/W, BYTE

unknown

Reset Value

 paldata

 7
 6
 5
 4
 3
 2
 1
 0

Palette RAM data. This register is used to load data into and read data from the palette
 7:0> RAM. Since the palette RAM is 24 bits wide, three writes are required to this register in order to write one complete location in the RAM. The address in the palette RAM to be written is determined by the value of the PALWTADD register.

Likewise, three reads are required to obtain all three bytes of data in one entry. The address in the palette RAM to be read is determined by the value of the **PALRDADD** register.

The **vga8dac** bit (see the **XMISCCTRL** register) controls how the data is written into the palette.

- In 6-bit mode, the host data is shifted left by two to compensate for the lack of a sufficient bit width (zeros are shifted in). When reading data from the palette RAM in 6-bit mode, the data will be shifted right and the two most significant bits filled with 0's to be compatible with VGA.
- In 8-bit mode, no shifting or zero padding occurs; the full 8 bit host data is transferred.

The palette RAM is dual-ported, so reading or writing will not cause any noticeable disturbance of the display.

Address	03C7h (I/O, W), MGABASE1 + 3C03h (MEM, R/W)
Attributes	BYTE
Reset Value	unknown
	palrdadd

	7	6	5	4	3	2	1	0
--	---	---	---	---	---	---	---	---

Palette address register for LUT read. This register is used to address the palette RAM during a read operation. It is increased for every three bytes read from the PALDATA port (the palette RAM is 24 bits wide). When the address increments beyond the last palette location, it will wrap around to location 0. Writing this register resets the modulo 3 counter to 0.

• *Note:* This location stores the same physical register as location **PALWTADD**.

Address Attributes Reset Value	03C8h R/W, I unknov	BYTE		BASI	E1 + 3	C00h	(MEM	[)	
					palw	tadd			
		7	6	5	4	3	2	1	0

palwtaddPalette address register for LUT write. This register has two<7:0>functions:

- It is used to address the palette RAM during a write operation. This register is incremented for every 3 bytes written to the **PALDATA** port (the palette RAM is 24 bits wide). When the address increments beyond the last palette location, it will wrap around to location 0. Writing this register resets the modulo 3 counter to 0.
- When used as the index register, this register is loaded with the index of the indirect register which is to be accessed through the X_DATAREG port.
- *Note:* This location stores the same physical register as the **PALRDADD** location.

Address Attributes Reset Value	03C6h (I/O), MGABASE1 + 3C02h (MEM) R/W, BYTE 1111 1111h								
	pixrdmsk								
	7 6 5 4 3 2 1 0								
pixrdmsk <7:0>	Pixel read mask. The pixel read mask register is used to enable or disable a bit plane from addressing the palette RAM. This mask is used in all modes which access the palette RAM (not just the 8 bit/pixel modes).								

Each palette address bit is logically ANDed with the corresponding bit from the read mask register before going to the palette RAM.

Note: Direct pixels (pixels that do not go through the palette RAM) are not masked in any mode.

AddressMGABASE1 + 3C0Ah (MEM)

unknown

Attributes R/W, BYTE

Reset Value

_			in	dd			
7	6	5	4	3	2	1	0

indd Indexed data register. This is the register that is used to read from or write to any of the valid indexed (indirect) registers. See the following register descriptions. The address which is accessed is determined by the Index Register (PALWTADD).

Locations marked as 'Reserved' return unknown information; writing to any such reserved location may affect other indexed registers.

indd Address	Register Addressed	Mnemonic
00h-03h	Reserved	—
04h	Cursor Base Address Low	XCURADDL
05h	Cursor Base Address High	XCURADDH
06h	Cursor Control	XCURCTRL
07h	Reserved	—
08h	Cursor Color 0 RED	XCURCOL0RED
09h	Cursor Color 0 GREEN	XCURCOL0GREEN
0Ah	Cursor Color 0 BLUE	XCURCOL0BLUE
0Bh	Reserved	—
0Ch	Cursor Color 1 RED	XCURCOL1RED
0Dh	Cursor Color 1 GREEN	XCURCOL1GREEN
0Eh	Cursor Color 1 BLUE	XCURCOL1BLUE
0Fh	Reserved	—
10h	Cursor Color 2 RED	XCURCOL2RED
11h	Cursor Color 2 GREEN	XCURCOL2GREEN
12h	Cursor Color 2 BLUE	XCURCOL2BLUE
13h-17h	Reserved	_
18h	Voltage Reference Control	XVREFCTRL
19h	Multiplex Control	XMULCTRL
1Ah	Pixel Clock Control	XPIXCLKCTRL
1Bh-1Ch	Reserved	—
1Dh	General Control	XGENCTRL
1Eh	Miscellaneous Control	XMISCCTRL
1Fh-29h	Reserved	
2Ah	General Purpose I/O Control	XGENIOCTRL
2Bh	General Purpose I/O Data	XGENIODATA
2Ch	SYSPLL M Value	XSYSPLLM
2Dh	SYSPLL N Value	XSYSPLLN
2Eh	SYSPLL P Value	XSYSPLLP
2Fh	SYSPLL Status	SYSPLL Status

indd Address	Register Addressed	Mnemonic
30h-37h	Reserved	—
38h	Zoom Control	XZOOMCTRL
39h	Reserved	
3Ah	Sense Test	XSENSETEST
3Bh	Reserved	
3Ch	CRC Remainder Low	XCRCREML
3Dh	CRC Remainder High	XCRCREMH
3Eh	CRC Bit Select	XCRCBITSEL
3Fh	Reserved	
40h	Color Key Mask	XCOLMSK
41h	Reserved	
42h	Color Key	XCOLKEY
43h	Reserved	
44h	PIXPLL M Value Set A	XPIXPLLAM
45h	PIXPLL N Value Set A	XPIXPLLAN
46h	PIXPLL P Value Set A	XPIXPLLAP
47h	Reserved	
48h	PIXPLL M Value Set B	XPIXPLLBM
49h	PIXPLL N Value Set B	XPIXPLLBN
4Ah	PIXPLL P Value Set B	XPIXPLLBP
4Bh	Reserved	
4Ch	PIXPLL M Value Set C	XPIXPLLCM
4Dh	PIXPLL N Value Set C	XPIXPLLCN
4Eh	PIXPLL P Value Set C	XPIXPLLCP
4Fh	PIXPLL Status	XPIXPLLSTAT
50h	Reserved	
51h	KEYING Operating Mode	XKEYOPMODE
52h	Color Mask 0 Red	XCOLMSK0RED
53h	Color Mask 0 Green	XCOLMSK0GREEN
54h	Color Mask 0 Blue	XCOLMSK0BLUE
55h	Color Key 0 Red	XCOLKEY0RED
56h	Color Key 0 Green	XCOLKEY0GREEN
57h	Color Key 0 Blue	XCOLKEY0BLUE
58h-5Fh	Reserved	—
60h	Cursor Color 3 Red	XCURCOL3RED
61h	Cursor Color 3 Green	XCURCOL3GREEN
62h	Cursor Color 3 Blue	XCURCOL3BLUE
63h	Cursor Color 4 Red	XCURCOL4RED
64h	Cursor Color 4 Green	XCURCOL4GREEN
65h	Cursor Color 4 Blue	XCURCOL4BLUE
66h	Cursor Color 5 Red	XCURCOL5RED
67h	Cursor Color 5 Green	XCURCOL5GREEN

indd Address	Register Addressed	Mnemonic
68h	Cursor Color 5 Blue	XCURCOL5BLUE
69h	Cursor Color 6 Red	XCURCOL6RED
6Ah	Cursor Color 6 Green	XCURCOL6GREEN
6Bh	Cursor Color 6 Blue	XCURCOL6BLUE
6Ch	Cursor Color 7 Red	XCURCOL7RED
6Dh	Cursor Color 7 Green	XCURCOL7GREEN
6Eh	Cursor Color 7 Blue	XCURCOL7BLUE
6Fh	Cursor Color 8 Red	XCURCOL8RED
70h	Cursor Color 8 Green	XCURCOL8GREEN
71h	Cursor Color 8 Blue	XCURCOL8BLUE
72h	Cursor Color 9 Red	XCURCOL9RED
73h	Cursor Color 9 Green	XCURCOL9GREEN
74h	Cursor Color 9 Blue	XCURCOL9BLUE
75h	Cursor Color 10 Red	XCURCOL10RED
76h	Cursor Color 10 Green	XCURCOL10GREEN
77h	Cursor Color 10 Blue	XCURCOL10BLUE
78h	Cursor Color 11 Red	XCURCOL11RED
79h	Cursor Color 11 Green	XCURCOL11GREEN
7Ah	Cursor Color 11 Blue	XCURCOL11BLUE
7Bh	Cursor Color 12 Red	XCURCOL12RED
7Ch	Cursor Color 12 Green	XCURCOL12GREEN
7Dh	Cursor Color 12 Blue	XCURCOL12BLUE
7Eh	Cursor Color 13 Red	XCURCOL13RED
7Fh	Cursor Color 13 Green	XCURCOL13GREEN
80h	Cursor Color 13 Blue	XCURCOL13BLUE
81h	Cursor Color 14 Red	XCURCOL14RED
82h	Cursor Color 14 Green	XCURCOL14GREEN
83h	Cursor Color 14 Blue	XCURCOL14BLUE
84h	Cursor Color 15 Red	XCURCOL15RED
85h	Cursor Color 15 Green	XCURCOL15GREEN
86h	Cursor Color 15 Blue	XCURCOL15BLUE

XCOLKEY

Index	42h									
Attributes	R/W, I	BYTE								
Reset Value	unknov	wn								
					col	key				_
		7	6	5	4	3	2	1	0	•
colkey <7:0>		graph	ics an	d the a	lpha c	overlay	v buffe	•	•	ed to perform color keying bixel single frame buffer
	if (COI else	LMSK 2	AND A	LPHA	== C	OLKEY)		5	aphic stream e overlay color LUT(ALPHA))
	► Note:	The c	depth	field i	is loca	ted in	the XI	NULC [.]	TRL r	egister.
	where:									
	ALPHA	is the	addre	ss of tl	he ove	rlay re	egister	(in tha	at mod	le, the palette is used as 256

overlay registers) and LUT(ALPHA) is the overlay color. The overlay can be disabled by programming COLMSK = 0 and COLKEY = 0.

Index	55h		XCOL	.KEY(RED								
	56h		XCOL	.KEY(GRE	EN							
	57h		XCOL	KEY(BLUE	Ξ							
Attributes	R/W, 1	BYTE											
Reset Value	unknov	wn											
					coll	key0				-			
		7	6	5	4	3	2	1	0				
colkey0 <7:0>	Color Ke between	•					e colo	r key i	s used	l to perf	orm co	lor keyi	ing

Index	40h
Attributes	R/W, BYTE
Reset Value	unknown

			colr	nsk			
7	6	5	4	3	2	1	0

colmskColor key mask bits 7 to 0. To prevent a particular bit plane from participating in a keying comparison, the corresponding color key mask bit should be set to 0b.

The mask is *only* used in 32 bits/pixel single frame buffer modes (**depth** = '100') for overlay enable/disable.

See "XCOLKEY" on page 312 for more information.

Index	52hXCOLMSKORED53hXCOLMSKOGREEN54hXCOLMSKOBLUE
Attributes	R/W, BYTE
Reset Value	unknown
	colmsk0
	7 6 5 4 3 2 1 0
colmsk0 <7:0>	Color Key mask bits 7 to 0 for window 0. To prevent a particular bit plane from participating in a keying comparison, the corresponding color key mask bit should be set to '0'.

XCRCBITSEL

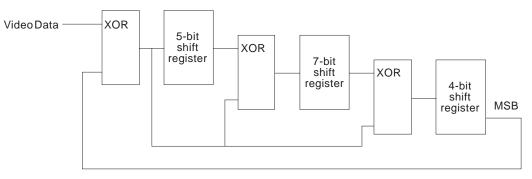
Index3EhAttributesR/W, BYTEReset Valueunknown

	Reserv	ed		(crcse	I	
7	6	5	4	3	2	1	0

crcselCRC bit selection. This register determines which of the 24 DAC data lines the 16-bit<4:0>CRC should be calculated on. Valid values are 0h-17h:

Value	DAC Data Lines to Use
00h-07h	blue0 - blue7
08h-0Fh	green0 - green7
10h-17h	red0 - red7

Reserved Reserved. When writing to this register, the bits in this field *must* be set to '0'. **<7:5>**


Index	3Dh
Attributes	RO, BYTE
Reset Value	unknown

crcdata							
7	6	5	4	3	2	1	0

crcdata High-order CRC remainder. This register is used to read the results of the 16-bit CRC calculation. XCRCREMH corresponds to bits 15:8 of the 16-bit CRC.

A 16-bit cyclic redundancy check (CRC) is provided so that the video data's integrity can be verified at the input of the DACs. The **XCRCBITSEL** register indicates which video line is checked. The **XCRCREMH** and **XCRCREML** registers accept video data when the screen is not in the blank period. The CRC Remainder register is reset to 0 at the end of vertical sync period and must be read at the beginning of the next vertical sync period (when VSYNC status goes to 1).

The CRC is calculated as follows:

CRC Remainder Low

XCRCREML

Index	3Ch
Attributes	RO, BYTE
Reset Value	unknown

crcdata	
	1

7	6	5	4	3	2	1	0

crcdata
 Low-order CRC remainder. This register is used to read the results of the 16-bit CRC calculation. XCRCREML corresponds to bits 7:0 of the 16-bit CRC. See XCRCREMH.

Index Attributes Reset Value	05h R/W, BYTE unknown				
	Reserved curadrh				
	7 6 5 4 3 2 1 0				
curadrh <5:0>	Cursor address high. These are the high-order bits of the cursor map address.				
	The 14-bit value from the high and low order cursor address locations is the base address (bits 23:10) of the frame buffer where the cursor maps are located. The cursor maps must be aligned on a 1 KByte boundary.				
	When XCURADDL or XCURADDH are written, the values take effect immediately. This may result in temporarily invalid cursor pixel values, if the cursor map is being fetched simultaneously.				
	Two cursor maps are possible depending on the cursor mode selected (see the curmode field in XCURCTRL). These are based on either a two-slice mode or a six-slice mode. In two-slice mode, each pixel of the cursor is defined by two bits (bit plane 1 and bit plane 0). The cursor data is stored in 64-bit slices in memory (each slice contains all the data for one plane of one cursor scanline). One scanline-plane is stored in memory as follows::				
	BIT: ¹ / ₁ ¹ / ₂ ¹ /2 ¹ / ₂ ¹ /2 ¹ /2				

In six-slice mode, each pixel color is defined by 4 bits, with two additional bits: one for transparency and another for complement. The 4-bit color is linearly written into the 4 slices and is binary encoded to select one of 16 cursor colors (see XCURCOL). The memory map of this mode for one scanline is stored in memory as follows:


Address	Data
Base + 0	Slice 0 cursor pixels 0 to 15
Base + 1	Slice 1 cursor pixels 16 to 31
Base + 2	Slice 2 cursor pixels 34 to 48
Base + 3	Slice 3 cursor pixels 49 to 63
Base + 4	Complement pixels 0 to 63
Base $+ 5$	Slice 4 transparent pixels 0 to 63

Reserved <7:6>

Reserved. When writing to this register, the bits in this field *must* be set to '0'.

XCURADDL

Index	04h
Attributes	R/W, BYTE
Reset Value	unknown

curadrlCursor address low. These are the low-order bits of the cursor map address. See the
XCURADDH register description for more details.

Index				
	08h	XCURCOL0RED	6Fh	XCURCOL8RED
	09h	XCURCOL0GREEN	70h	XCURCOL8GREEN
	0Ah	XCURCOL0BLUE	71h	XCURCOL8BLUE
	0Ch	XCURCOL1RED	72h	XCURCOL9RED
	0Dh	XCURCOL1GREEN	73h	XCURCOL9GREEN
	0Eh	XCURCOL1BLUE	74h	XCURCOL9BLUE
	10h	XCURCOL2RED	75h	XCURCOL10RED
	11h	XCURCOL2GREEN	76h	XCURCOL10GREEN
	12h	XCURCOL2BLUE	77h	XCURCOL10BLUE
	60h	XCURCOL3RED	78h	XCURCOL11RED
	61h	XCURCOL3GREEN	79h	XCURCOL11GREEN
	62h	XCURCOL3BLUE	7Ah	XCURCOL11BLUE
	63h	XCURCOL4RED	7Bh	XCURCOL12RED
	64h	XCURCOL4GREEN	7Ch	XCURCOL12GREEN
	65h	XCURCOL4BLUE	7Dh	XCURCOL12BLUE
	66h	XCURCOL5RED	7Eh	XCURCOL13RED
	67h	XCURCOL5GREEN	7Fh	XCURCOL13GREEN
	68h	XCURCOL5BLUE	80h	XCURCOL13BLUE
	69h	XCURCOL6RED	81h	XCURCOL14RED
	6Ah	XCURCOL6GREEN	82h	XCURCOL14GREEN
	6Bh	XCURCOL6BLUE	83h	XCURCOL14BLUE
	6Ch	XCURCOL7RED	84h	XCURCOL15RED
	6Dh	XCURCOL7GREEN	85h	XCURCOL15GREEN
	6Eh	XCURCOL7BLUE	86h	XCURCOL15BLUE
Attributes	R/W, BYT	Е		

Reset Value

unknown

curcol							
7	6	5	4	3	2	1	0

curcol <7:0> Cursor color register. The desired color register (0-15) is chosen according to both the cursor mode and cursor map information. (See the **XCURCTRL** register for more information.) Each color register is 24 bits wide and contains an 8-bit red, 8-bit green, and 8-bit blue field.

XCURCTRL

Index	06h			
Attributes	R/W, BYTE			
Reset Value	0000	0000b		

	Re	eserv	curmode					
7	6	5	4	3	2	1	0	

curmodeCursor mode select. This field is used to disable or select the cursor mode, as indicated
below:

- '000': cursor disabled (default)
- '001': three-color cursor
- '010': XGA cursor
- '011': X-Windows cursor
- '100': 16-color palettized cursor
- '101': Reserved
- '110': Reserved
- '111': Reserved

In cursor modes other than 16 color palettized (**curmode** = '100'), there are four possible ways to display each pixel of the cursor. The following table shows how the encoded pixel data is decoded, based on the cursor mode (set by **curmode**):

RA	M	Cursor Mode				
Plane 1	Plane 0	Three-Color	XGA	X-Windows		
' 0'	' 0 '	Transparent ⁽¹⁾	Cursor Color 0	Transparent		
·0'	'1'	Cursor Color 0	Cursor Color 1	Transparent		
'1'	' 0'	Cursor Color 1	Transparent	Cursor Color 0		
'1'	'1'	Cursor Color 2	Complement ⁽²⁾	Cursor Color 1		

⁽¹⁾ The underlying pixel is displayed (that is, the cursor has no effect on the display).

⁽²⁾ Each bit of the underlying pixel is inverted, then displayed.

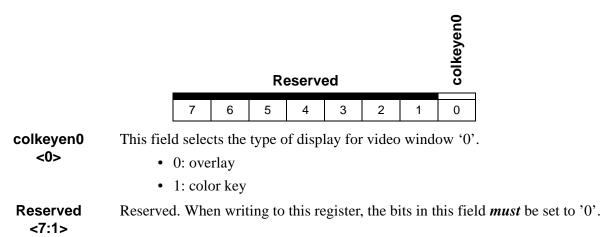
In 16 color palettized cursor mode, the cursor bit map is placed in memory as described in **XCURADDH**. The following table demonstrates how the bit map data is encoded:

Dianlau	Slice							
Display	5	4	3	2	1	0		
Pixel color	0	0	C ₃	C ₂	C ₁	C ₀		
Complement	0	1	X	X	Х	Х		
Transparent	1	0	Х	Х	Х	Х		
Transparent	1	1	X	Х	Х	Х		

Reserved Reserved. When writing to this register, the bits in this field *must* be set to '0'. **<7:2>**

XGENCTRL

Index	1Dh				
Attributes	R/W, BYTE				
Reset Value	0000 0000b				


Rese	erved	iogsyncdis	pedon	Rese	erved	alphaen	Reserved	
7	6	5	4	3	2	1	0	

alphaen <1>	Video alpha bit enable. This bit is used by the keying function to enable or disable the alpha bits in the equation for split frame buffer modes (mode G16V16 or 2G8V16). It is also used in 15-bit single frame buffer mode to enable or disable the 1-bit overlay.					
	 0: disabled (forces the effective value of all alpha bits to 0b) or overlay disable 1: enabled (alpha bits are used for color keying) or overlay enable 					
pedon <4>	Pedestal control. This field specifies whether a 0 or 7.5 IRE blanking pedestal is to be generated on the video outputs.					
	• 0: 0 IRE (default) • 1: 7.5 IRE					
iogsyncdis <5>	Green channel sync disable. This field specifies if sync (from the internal signal HSYNC) information is to be sent to the output of the green DAC.					
	0: enable (default)1: disable (sync information is sent to the output of the green DAC)					
	Note: The HSYNC can be programmed to be either horizontal sync only, or composite (block) sync. See the csyncen bit of the CRTCEXT3 VGA register.					
Reserved	<0> <3:2> <7:6>					
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'.					

Index	2Ah			
Attributes	R/W, BYTE			
Reset Value	0000 0000Ъ			
	Berved Be			
	7 6 5 4 3 2 1 0			
ddcoe <3:0>	DDC pin output control. Controls the output enable of the driver on pins DDC<3:0>, respectively.			
	0: disable the output driver1: enable the output driver			
miscoe <6:4>	MISC pin output control. Controls the output enable of the driver on pins MISC<2:0>, respectively.			
	0: disable the output driver1: enable the output driver			
Reserved <7:6>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.			

Index	2Bh
Attributes	R/W, BYTE
Reset Value	0000 0000Ъ
	Description miscdata ddcdata 7 6 5 4 3 2 1 0
ddcdata <3:0>	DDC pin output state. Controls the output state of the driver on pins DDC<3:0>, respectively. On read, this field returns the state of the DDC<3:0> pins.
miscdata <6:4>	MISC pin output state. Controls the output state of the driver on pins MISC<2:0> during a write operation. On read, this field returns the state of the MISC<2:0> pins.
Reserved <7:6>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

51h
R/W, BYTE
0000 0001b

Index Attributes Reset Value	1Eh R/W, BYTE 0000 0110b					
	VolutselSSV76543217654321					
dacpdN <0>	DAC power down. This field is used to remove power from the DACs, to conserve power.					
	0: DAC disabled (default)1: DAC enabled					
mfcsel	Matrox advanced feature connector (MAFC) Function Select.					
<2:1>	 '00': Reserved '01': Matrox Advanced Feature Connector. In MAFC mode, the data just before the DAC is output to the 12-bit feature connector using both edges of the clock. '10': Panel Link Mode. In Panel Link Mode, the data just before the DAC, is output to the 12-bit feature connector using both edges of the clock. '11': Disable Feature Connector. When the feature connector is disabled, the VOBLANK/, VDOCLK, and VDOUT<11:0> pins are driven low. 					
vga8dac <3>	VGA 8-bit DAC. This field is used for compatibility with standard VGA, which uses a 6-bit DAC.					
	0: 6 bit palette (default)1: 8 bit palette					
ramcs	LUT RAM chip select. Used to power up the LUT.					
<4>	0: LUT disabled1: LUT enabled					
vdoutsel	Video Out Select.					
<6:5>	 '00': In MAFC12 mode, the outputs are taken just before DAC and are output 12 bits at a time on both edges of the clock. This effectively transfers one 24 bit pixel (8 bits per channel) per clock. This works in all MGA display modes. '01': Reserved '10': In BYPASS656 mode, the output is taken directly from the Video-In bus and passed directly through to the Video-Out bus at 1 byte per clock cycle. '11': Reserved 					
Reserved <7>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.					

Index	19h				
Attributes	R/W, BYTE				
Reset Value	0000	0000b			

	Reserved		de	epth		
7	6 5 4	3	2	1	0	
Color depth. ' properties:	The following tab	le shows	the avai	ilable	e colo	r depths and their
Value	Color Depth Used	d				
<i>`000'</i>	8 bits/pixel	(palettiz	ed) (def	fault)	
' 001 '	15 bits/pixel	(palettiz	ed) + 1-	-bit c	overla	у
'010'	16 bits/pixel	(palettiz	ed)			
'011'	24 bits/pixel	(packed	, paletti	zed)		
'100'	32 bits/pixel	(24 bpp	direct,	8 bpj	p over	lay palettized)
'101'	Reserved					
'110'	Reserved					
	32 bits/pixel	(24 bpp	1) 1	(heeree

When at '0', the **mgamode** field of the **CRTCEXT3** VGA register sets the DAC to VGA mode. The **depth** field should be programmed to '000' when in VGA mode.

Reserved Reserved. When writing to this register, the bits in this field *must* be set to '0'.

<7:3>

• *Note:* The **depth** and **mgamode** fields also control the VCLK division factor.

XPIXCLKCTRL

Index	1Ah			
Attributes	R/W, BYTE			
Reset Value	0000	0000b		

					pixpllpdN	pixclkdis			
		Rese	rved		ciq	cid	pixo	lksl	1
	7	6	5	4	3	2	1	0	
pixclksl <1:0>	Pixel clock se clock:	lection.	These	e bits s	elect 1	the sou	irce of	the pi	xel
	 '00': selects the output of the PCI clock '01': selects the output of the pixel clock PLL '10': selects external source (from the VDOCLK pin) '11': Reserved 								
pixclkdis <2>	Pixel clock di output:	sable. T	his bi	t conti	ols the	e pixel	clock		
	0: enable pixel clock oscillations.1: stop pixel clock oscillations.								
pixpllpdN<3>	Pixel PLL po	wer dow	/n.						
	0: power down1: power up								
Reserved <7:4>	Reserved. Wh	en writi	ing to	this re	gister	, the bi	its in t	his fie	ld <i>must</i> be set to '0'.
	● <i>Note:</i> See mod	" <mark>Progra</mark> lifying t					ge 79	for inf	formation on

Index	44h	XPIXPLLAM
	48h	XPIXPLLBM
	4Ch	XPIXPLLCM
Attributes	R/W, BYT	Έ
Reset Value	15h	XPIXPLLAM
	1Eh	XPIXPLLBM
	unknown	XPIXPLLCM

Reserved				p	oixplln	n	
7	6	5	4	3	2	1	0

pixpllm <4:0>

Pixel PLL M value register. The 'm' value is used by the reference clock prescaler circuit.

There are three sets of PIXPLL registers:

Set A	Set B	Set C
XPIXPLLAM	XPIXPLLBM	XPIXPLLCM
XPIXPLLAN	XPIXPLLBN	XPIXPLLCN
XPIXPLLAP	XPIXPLLBP	XPIXPLLCP

The **pixpllm** field can be programmed from any of the 'm' registers in Set A, B, or C: **XPIXPLLAM**, **XPIXPLLBM**, or **XPIXPLLCM**. The register set which defines the pixel PLL operation is selected by the **clksel** field of the **MISC** VGA register as shown in the following table:

clksel	Pixel Clock PLL Frequency	Reset Value
<i>`</i> 00'	Register Set A (25.172 MHz)	M = 21
' 01 '	Register Set B (28.361 MHz)	M = 30
'1X'	Register Set C	Unknown

◆ *Note:* The **pixpllm** value *must* be in the range of 1 to 31.

Reserved Reserved. When writing to this register, the bits in this field *must* be set to '0'. <7:5>

Index	45h		XPIXF		1				
	49h		XPIXF	PLLBN	1				
	4Dh		XPIXF	PLLCN	1				
Attributes	R/W, I	BYTE							
Reset Value	28h		XPIXF	PLLAN	1				
	40h		XPIXF	PLLBN	١				
	unkno	wn	XPIXF	PLLCN	1				
		Reserved			F	bixpllr	n		
		7	6	5	4	3	2	1	0

pixplinPixel PLL N value register. The 'n' value is used by the VCO feedback divider<6:0>circuit.

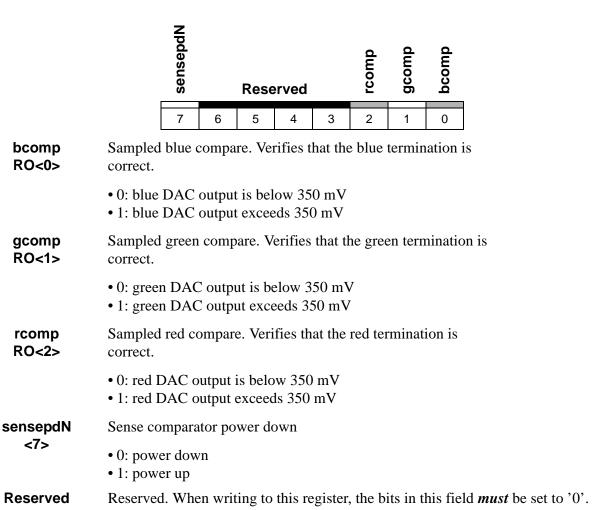
The **pixplln** field can be programmed from any of the 'n' registers in Set A, B, or C: **XPIXPLLAN**, **XPIXPLLBN**, or **XPIXPLLCN**. The register set which defines the pixel PLL operation is selected by the **clksel** field of the **MISC** VGA register as shown in the following table:

clksel	Pixel Clock PLL Frequency	Reset Value
·00'	Register Set A (25.172 MHz)	N = 40
'01'	Register Set B (28.361 MHz)	N = 64
'1X'	Register Set C	Unknown

• *Note:* The **pixplln** value must be in the range of 1 (1h) to 127 (7Fh) inclusive.

Reserved Reserved. When writing to this register, this field must be set to '0'.

<7>


x 46h XPIXPLLAP
4Ah XPIXPLLBP
4Eh XPIXPLLCP
butes R/W, BYTE
et Value 01h XPIXPLLAP
01h XPIXPLLBP
unknown XPIXPLLCP
Reserved pixplls pixpllp
7 6 5 4 3 2 1 0
 pllp Pixel PLL P value register. The 'p' value is used by the VCO clock divider circuit. :0> The permitted values are:
$P = 0 \rightarrow Fo = Fvco/1$ $P = 1 \rightarrow Fo = Fvco/2$ $P = 3 \rightarrow Fo = Fvco/4$ $P = 7 \rightarrow Fo = Fvco/8$
plls Pixel PLL S value register. The 's' value controls the loop filter bandwidth.
:3> 50 MHz <= Fvco < 100 MHz S=0 100 MHz <= Fvco < 140 MHz S=1 140 MHz <= Fvco < 180 MHz S=2 180 MHz <= Fvco < 250 MHz S=3
The pixpllp and pixplls fields can be programmed from any of the 'p' registers in Set A, B, or C: XPIXPLLAP , XPIXPLLBP , or XPIXPLLCP . The register set which defines the pixel PLL operation is selected by the clksel field of the MISC VGA register as shown in the following table:
Clksel Pixel Clock PLL FrequencyReset Value
'00'Register Set A (25.172 MHz) $P = 1, S = 0$
'01'Register Set B (28.361 MHz) $P = 1, S = 0$
'1X' Register Set C Unknown

Reserved Reserved. When writing to this register, the bits in this field *must* be set to '0'. **<7:5>**

XPIXPLLSTAT

Index	4Fh										
Attributes	RO, BYT	E									
Reset Value	unknown										
		pixlock									
	7	6	5	4	3	2	1	0			
pixlock <6>	 Pixel PLL lo 1: indicat Set A, B, 0: indicat 	tes that th or C	e pixe					selecte	d frequenc	y defined	by
Reserved	< 5:0> <7> Reserved. W	/hen writ	ing to	this re	egister	, the bi	its in t	hese fi	elds <i>must</i>	be set to '	0'.

Index	3Ah
Attributes	R/W, BYTE
Reset Value	0xxx xxxxb

<6:3> Note: This register reports the sense comparison function, which determines the presence of the CRT monitor and if the termination is correct. The output of the comparator is sampled at the end of every active line. When doing a sense test, the software should program a uniform color for the entire screen.

Index	2Ch
Attributes	R/W, BYTE
Reset Value	0000 0101b
	Reserved sysplim
	7 6 5 4 3 2 1 0
syspllm <4:0>	System PLL M value register. The 'm' value is used by the reference clock prescaler circuit.
	◆ <i>Note:</i> The sysplim value <i>must</i> be in the range of 1 to 31.
Reserved <7:5>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Index Attributes Reset Value	2Dh R/W, BYTE 0001 1111b
	Sysplin
	7 6 5 4 3 2 1 0
sysplln <6:0>	System PLL N value register. The 'n' value is used by the VCO feedback divider circuit.
	◆ Note: The sysplin value must be in the range of 1 (1h) to 127 (7Fh) inclusive.
Reserved <7>	Reserved. When writing to this register, this field must be set to '0'.

Index Attributes Reset Value	2Eh R/W, BYTE 0001 0000b									
	Reserved sysplis sysplip									
	7 6 5 4 3 2 1 0									
syspllp	System PLL P value register. The 'p' value is used by the VCO post-divider circuit.									
<2:0>	The permitted values are:									
	$P=0 \rightarrow Fo = Fvco/1$ $P=1 \rightarrow Fo = Fvco/2$ $P=3 \rightarrow Fo = Fvco/4$ $P=7 \rightarrow Fo = Fvco/8$									
	Other values are reserved.									
sysplis	System PLL S value register. The 's' value controls the loop filter bandwidth.									
<4:3>	50 MHz \leq Fvco $<$ 100 MHz \rightarrow S=0 100 MHz \leq Fvco $<$ 140 MHz \rightarrow S=1 140 MHz \leq Fvco $<$ 180 MHz \rightarrow S=2 180 MHz \leq Fvco $<$ 250 MHz \rightarrow S=3									
Reserved <7:5>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.									

Index	2Fh								
Attributes	RO, BYTE								
Reset Value	unknown								
	syslock								
	7 6 5 4 3 2 1 0								
syslock	System PLL lock status.								
<6>	 1: indicates that the system PLL has locked to the selected frequency 0: indicates that lock has <i>not</i> yet been achieved 								
Reserved	<5:0> <7>								
	Reserved. When writing to this register, the bits in these fields <i>must</i> be set to '0'.								

Index	18h	
Attributes	R/W, E	BYTE
Reset Value	0000	0000b

		Rese	erved	dacbgen	dacbgpdN	pixpllbgen	pixpllbgpdN	syspilbgen	syspillbgpdN	1
		7	6	5	4	3	2	1	0	
syspllbgpdN	System PLL voltage reference block power down.									
<0>	• 0: pow • 1: pow		'n							
syspllbgen	System PLL voltage reference enable.									
<1>	• 0: use e • 1: use]			-						
pixpllbgpdN	Pixel PLL voltage reference block power down.									
<2>	0: power down1: power up									
pixpllbgen	Pixel PLL voltage reference enable.									
<3>	0: use external voltage reference1: use PLL voltage reference block									
dacbgpdN	DAC voltage reference block power down.									
<4>	0: power down1: power up									
dacbgen	DAC voltage reference enable.									
<5>	0: use external voltage reference1: use DAC voltage reference block									
Reserved	Reserved	d. Whe	en writ	ting to	this re	egister	, the bi	ts in t	his fie	eld <i>must</i> be set to
<7:6>	►◆ Note.	To se	elect the	e inter	rnal vo	oltage 1	eferen	ices, a	ll enab	les must be set to bles must be set to ed up (write '001

Index	38h
Attributes	R/W, BYTE
Reset Value	0000 0000Ъ
	Reserved hzoom
	7 6 5 4 3 2 1 0
hzoom <1:0>	Horizontal zoom factor. Specifies the (zoom) factor used to replicate pixels in the horizontal display line. The following factors are supported:
	 '00': 1x (default) '01': 2x '10': reserved '11': 4x
	◆ Note: The cursor is not affected by the hzoom bits (the cursor is never zoomed).
Reserved <7:2>	Reserved. When writing to this register, the bits in this field <i>must</i> be set to '0'.

Chapter 4: Programmer's Specification

HOST Interface	4-2
Memory Interface	4-18
Chip Configuration and Initialization	4-23
Direct Frame Buffer Access	4-28
Drawing in Power Graphic Mode	4-29
CRTC Programming	4-61
Video Interface	4-70
Video Input Interface	4-81
CODEC Interface	4-83
Backend Scaler	4-96
Interrupt Programming	4-113
Power Saving Features	4-116
Accessing the Serial EEPROM	4-118

4.1 HOST Interface

4.1.1 Introduction

The MGA-G200-PCI chip interacts directly with the PCI interface, while the MGA-G200-AGP chip deals directly with the AGP interface. Each interface has been optimized to improve the performance of the graphics subsystem. As a result, the following buffering has been provided:

BFIFO This is a 64-entry FIFO which is used to interface with the drawing engine registers. All the registers that are accessed through the BFIFO are identified in the register descriptions in Chapter 3 with the 'FIFO' attribute. The BFIFO is also used for the data by ILOAD operations.
 MIFIFO This is an 8-entry FIFO which is used for direct frame buffer VGA/MGA accesses.
 CACHE This is a 8-location cache, which is used for direct frame buffer MGA read accesses.
 ROMFIFO This is a 2-entry FIFO used for ROM accesses.

The following table shows when the BFIFO, MIFIFO, CACHE, or ROMFIFO are used for different classes of access.

Access	Туре	BFIFO	MIFIFO	CACHE	ROMFIFO
Configuration registers Host Registers VGA Registers DAC Registers Backend Scaler Registers Video-In and CODEC Registers WARP Instruction Memory	R W				
ROM	R W				W W
DMAWIN or MGABASE3	WO	W			—
Drawing registers	R W	W			
Host registers +DRWI ⁽¹⁾	R W	W			
VGA frame buffer	R W		W W		
MGABASE2	R W		W W	R 	

⁽¹⁾ DRWI: Drawing Register Window Indirect access

4.1.2 PCI Retry Handling

In certain situations the chip may not be able to respond to a PCI access immediately, therefore, a number of retry cycles will be generated. A retry will be asserted when:

- The BFIFO is written to when it is full.
- The MIFIFO is written to when it is full.
- The Frame Buffer is read when the MIFIFO is not empty or when the data is not available.
- The VGA registers are written to when the MIFIFO is not empty.
- The ROMFIFO is written to when it is full.
- The Serial EEPROM is read and the data is not available.

• *Note:* Some systems generate an error after only a few retries. In this case, you must check the BFIFO flag (thereby limiting the number of retries) to prevent a system error.

4.1.3 PCI Burst Support

The chip uses PCI burst mode in all situations where performance is critical. The following table summarizes when bursting is used:

Access	Access Type		
MGABASE1 + DMAWIN range	W		
MGABASE1 + drawing register range	W		
MGABASE1 + host reg. range +DRWI range	W		
MGABASE1 + WARP instruction memory range	W		
MGABASE3 range	W		
VGA frame buffer range	W		
VGA frame buffer range (mgamode = 1)	R (cache hit)		
MGABASE2 range	W		
MGABASE2 range	R (cache hit)		

◆ Note: Accesses that are not supported in burst mode always generate a target disconnect when they are accessed in burst mode. Refer to Section 2.1.3 on page 2-4 for the exact addresses.

The *PCI Specification* (Rev. 2.1) states that a target is required to complete the initial data phase within 16 PCLKs. In order to meet this specification, a read of a location within the VGA frame buffer range, the MGABASE2 range (when there is a cache miss), or the ROMBASE range will activate the delayed transaction mechanism (when the **noretry** field of **OPTION** = '0').

4.1.4 PCI Target-Abort Generation

The MGA-G200 generates a target-abort in two cases, as stated in the PCI Specification. The target-abort is generated only for I/O accesses, since they are the only types of access that apply to each case.

Case A: PCBE<3:0>/ and PAD<1:0> are Inconsistent

The only exception, mentioned in the PCI Specification, is when PCBE<3:0>/='1111'. The following table shows the combinations of PAD<1:0> and PCBE<3:0>/ which result in the generation of a target-abort by the MGA-G200.

PAD<1:0>	<i>PCBE<3:0>/</i>
' 00 '	'0XX1'
	'X0X1'
	'XX01'
'01'	'XXX0'
	'X011'
	'0111'
'10'	'XXX0'
	'XX01'
	'0111'
'11'	'XXX0'
	'XX01'
	'X011'

CASE B: PCBE<3:0>/ Addresses More Than One Device

For example, if a write access is performed at 3C5h with PCBE<3:0>/ = '0101', both the VGA **SEQ** (Data) register and the DAC **PALRDADD** register are addressed. All of these accesses are terminated with a target-abort, after which the **sigtargab** bit of the **DEVCTRL** register is set to '1'.

4.1.5 Transaction Ordering

The order of the transactions is extremely important for the VGA and the DAC for either I/O or memory mapped accesses. This means that a read to a VGA register must be completed before a write to the same VGA register can be initiated (especially when there is an address/data pointer that toggles when the register is accessed). In fact, this limits to one the number of PCI devices that are allowed to access the MGA-G200's VGA or DAC.

4.1.6 Direct Access Read Cache

Direct read accesses to the frame buffer (either by the MGA full frame buffer aperture or the VGA window) are cached by one eight-dword cache entry. After a hard or soft reset, no cache hit is possible and the first direct read from the frame buffer fills the cache. When the data is available in the cache, the data phase of the first access will be completed in 2 pclks, and the data phase of the next accesses (in the case of a burst) will be completed in 1 pclk.

The following situations will cause a *cache flush*, in order to maintain data coherency:

- 1. A write access to the frame buffer (MGABASE2 or VGA frame buffer).
- 2. A write to the VGA registers (either I/O or memory).
- 3. A hard or soft reset.
- Note: The cache is not flushed when the frame buffer configuration is modified (or when the drawing engine writes to a cached location). As a result, it is the software's responsibility to invalidate the cache, using one of the methods listed above, whenever any bit is written that affects the frame buffer configuration or contents. The CACHEFLUSH register can be used, since it occupies a reserved address in the memory mapped VGA register space (MGABASE1 + 1FFFh).

4.1.7 Big-Endian Support

PCI may be used as an expansion bus for either Little-Endian or Big-Endian processors. The host-to-PCI bridge should be implemented to enforce address-invariance, as required by the *PCI Specification*. Address invariance means, for example, that when memory locations are accessed as bytes they return data in the same format. When this is done, however, non 8-bit data will appear to be *byte-swapped*. Certain actions are then taken within the MGA-G200 to correct this situation.

The exact action that will be taken depends on the data size (the MGA-G200 must be aware of the data size when processing Big-Endian data). The data size depends on the location of the data (the specific memory space), and the pixel size (when the data is a pixel).

There are *six* distinct memory spaces:

- 1. Configuration space.
- 2. Boot space (EPROM).
- 3. I/O space.
- 4. Register space.
- 5. Frame buffer space.
- 6. ILOAD space.

Configuration space

Each register in the configuration space is 32 bits, and should be addressed using dword accesses. For these registers, no byte swapping is done, and bytes will appear in different positions, depending on the endian mode of the host processor. Keep in mind that the MGA-G200 chip specification is written from the point of view of a Little-Endian processor, and that the chip powers up in Little-Endian mode.

Boot space (EPROM)

As with the configuration space, no special byte translation takes place. Proper byte organization can be achieved through correct EPROM programming. That is, data should be stored in Big-Endian format for Big-Endian processors, and in Little-Endian format for Little-Endian processors.

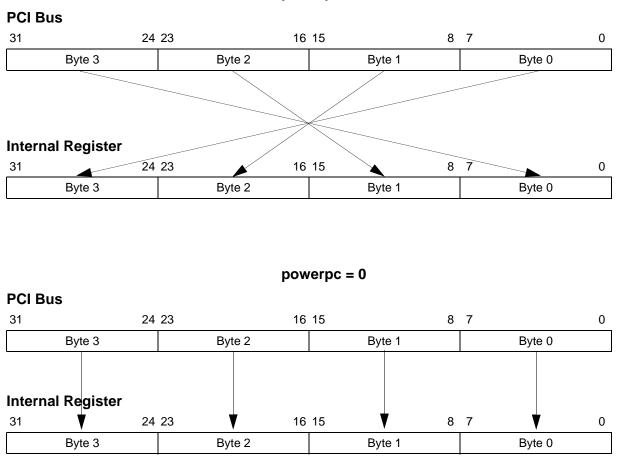
I/O space

Since I/O is only used on the MGA-G200 for VGA emulation, it should, theoretically, only be enabled on (Little-Endian) x86 processors. However, it is still possible to use the I/O registers with other processors because I/O accesses are considered to be 8-bit. In such a case, bytes should not be swapped anyway.

Byte swapping considerations aside, MGA-G200 I/O operations are mapped at fixed locations, which renders them incompatible with PCI's Plug and Play philosophy. This presents a second reason to avoid using the MGA-G200 I/O mapping on non x86 platforms.

Register Space

The majority of the data in the register space is 32 bits wide, with a few exceptions:

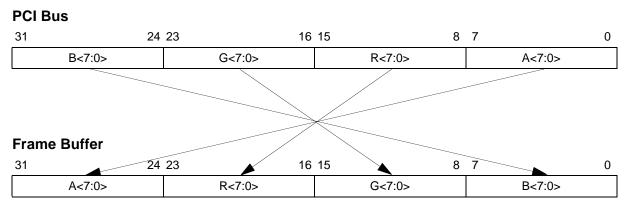

- The VGA compatibility section. Data in this section is 8 bits wide.
- The DAC. Data in this section is 8 bits wide.
- External devices. In this case, the width of the data cannot be known in advance.

Byte swapping for Big-Endian processors can be enabled in the register space by setting the **OPTION** configuration space register's **powerpc** bit to 1.

Setting the **powerpc** bit ensures that a 32-bit access by a Big-Endian processor will load the correct data into a 32-bit register. In other words, when data is treated as 32-bit quantities, it will appear in the identical way to both little and Big-Endian processors.

• *Note:* Byte and word accesses will not return the same data on both Little and Big-Endian processors.

In the register mapping tables in Chapter 3, all addresses are given for a Little-Endian processor.


powerpc = 1

MGA-G200 Specification

Frame Buffer Space

The frame buffer is organized in Little-Endian format, and byte swapping depends on the size of the pixel. As usual, addresses are not modified.

Swapping mode is directed by the **dirDataSiz** field of the **OPMODE** host register. This field is used for direct access either through the VGA frame buffer window or the full memory aperture. The only exception is 24 bits/pixel mode, which is correctly supported only by Little-Endian processors.

32 bits/pixel, dirDataSiz = 10

16 bits/pixel, dirDataSiz = 01

PCI Bus							
31 Pixel N+1		16 15	Pix	kel N	0		
G<2:0> B<4:0> R<4:0> G<4:3>		(G<2:0> B<4:0> R<4:0>				
Y1<7:0> V0<7:0>			Y0<7:0> U(
Frame Buffer							
31 F	vixel N+1	16 15	Pix	kel N	0		
R<4:0>	G<4:0> B<4:0>		R<4:0> G<	<4:0> B<4:0>			
V0<7:0>	Y1<7:0>		U0<7:0>	Y0<7:0>			

8 bits/pixel, dirDataSiz = 00

PCI	Bus													
31	Pixel N+3	24	23	Pixel	N+2	16	15	Pix	el N+1	8	7	Pi	kel N	0
	pixels<7:0>			pixels	<7:0>			pixe	ls<7:0>			pixel	s<7:0>	
Frame Buffer														
31	Pixel N+3	24 2	23	Pix	N+2	16	15	Pix	I N+1	8	7	Pi	lel N	0
	pixels<7:0>			pixels	<7:0>			pixe	ls<7:0>			pixel	s<7:0>	

ILOAD Space (DMAWIN or 8 MByte Pseudo-DMA Window)

Access to this space requires the same considerations as for the direct access frame buffer space (described previously), except that the **dmaDataSiz** field of the **OPMODE** register is used instead of **dirDataSiz** (for ILOAD operations in DMA BLIT WRITE mode). Other DMA modes - DMA General Purpose, DMA Vector Write, or DMA Vertex Write - should set **dmaDataSiz** to '10' for Big-Endian or '00' for Little-Endian processor.

4.1.8 Host Pixel Format

There are several ways to access the frame buffer. The pixel format used by the host depends on the following:

- The current frame buffer's data format
- The access method
- The processor type (Big-Endian or Little-Endian)
- The control bits which select the type of byte swapping

The supported data formats are listed below, and are shown from the processor's perspective. The supported formats for direct frame buffer access and ILOAD are explained in their respective sections of this chapter.

Pixel Format (From the Processor's Perspective)

8-bit A Little-Endian 8-bit (see the **powerpc** field of **OPTION**) is used in ILOAD operations. Refer to Table 4-3 on page 4-58.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0	Pixel 3	Pixel 2	Pixel 1	Pixel 0
1	:	:	:	:
2	:	:	:	:
3	:	:	:	:

8-bit B Big-Endian 8-bit (see the **powerpc** field of **OPTION**) is used in ILOAD operations. Refer to Table 4-3 on page 4-58.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0	Pixel 0	Pixel 1	Pixel 2	Pixel 3
1	:	:	:	:
2	:			:
3	:			:

[◆] Note: For Big-Endian processors, these tables assume that the CPU-to-PCI bridge respects the PCI Specification, which states that byte address coherency must be preserved. This is the case for PREP systems and for Macintosh computers.

16-bit A Little-Endian 16-bit (see the **powerpc** field of **OPTION**) is used in ILOAD operations. Refer to Table 4-3 on page 4-58.

31 30 29 28 27 26	5 25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9	87	654	4 3 2 1 0
				-		

0	Pixel 1	Pixel 0
1		:
2	:	:
3		:

16-bit B Big-Endian 16-bit (see the **powerpc** field of **OPTION**) is used in ILOAD operations. Refer to Table 4-3 on page 4-58.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0	Pixel 0	Pixel 1
1	:	:
2	:	:
3	:	:

32-bit A 32-bit RGB, used in ILOAD operations. Refer to Table 4-3 on page 4-58.

	51 50 23 20 21 20 25 24	25 22 21 20 15 10 17 10	13 14 13 12 11 10 3 0	1 0 5 4 5 2 1 0
0	Alpha Pixel 0	Red Pixel 0	Green Pixel 0	Blue Pixel 0
1	Alpha Pixel 1	Red Pixel 1	Green Pixel 1	Blue Pixel 1
2	Alpha Pixel 2	Red Pixel 2	Green Pixel 2	Blue Pixel 2
3	:	:	:	:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit B 32-bit BGR used in ILOAD operations. Refer to Table 4-3 on page 4-58. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	51 50 29 20 21 20 25 24	23 22 21 20 19 10 17 10	13 14 13 12 11 10 9 0	10545210					
0	Alpha Pixel 0	Blue Pixel 0	Green Pixel 0	Red Pixel 0					
1	Alpha Pixel 1	Blue Pixel 1	Green Pixel 1	Red Pixel 1					
2	Alpha Pixel 2	Blue Pixel 2	Green Pixel 2	Red Pixel 2					
3	:	:	:	:					

31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0

0	Blue Pixel 1	Red Pixel 0	Green Pixel 0	Blue Pixel 0
1	Green Pixel 2	Blue Pixel 2	Red Pixel 1	Green Pixel 1
2	Red Pixel 3	Green Pixel 3	Blue Pixel 3	Red Pixel 2
3	Blue Pixel 5	Red Pixel 4	Green Pixel 4	Blue Pixel 4
4	:	:	:	:

	31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0					
0	0 Red Pixel 1 Blue Pixel 0 Green Pixel 0 Re								
1	Green Pixel 2	Green Pixel 2 Red Pixel 2 Blue Pixel 1 Green Pixel							
2	Blue Pixel 3	Green Pixel 3	Red Pixel 3	Blue Pixel 2					
3	Red Pixel 5	Blue Pixel 4	Green Pixel 4	Red Pixel 4					
4	:	:	:	:					

24-bit B 24-bit BGR packed pixel, used in ILOAD operations. Refer to Table 4-4 on page 4-66.

MONO A Little-Endian 1-bit used in ILOAD and BITBLT operations. Refer to Table 4-4 on page 4-59.

	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	P31																														P0
1	P63																													F	> 32
2	P95																													F	P64
3																															
	-																														

P = 'pixel'

MONO B Little-Endian 1-bit Windows format, used in ILOAD and BITBLT operations. Refer to Table 4-4 on page 4-59.

	31 30	29 28 27	26 25 24	23 22	21 20 19	18 17 16	15 14	13 12 11	10 9 8	76	543	2 1 0
0	P24		P31	P16		P23	P8		P15	P0		P7
1	P56		P63	P48		P55	P40		P47	P32		P39
2	P88		P95	P80		P87	P72		P79	P64		P71
3		:			:			:			:	

MONO C Big-Endian 1-bit Windows format, used in ILOAD and BITBLT operations. Refer to Table 4-4 on page 4-59.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0	P0 I	P31
1	P32	P63
2	P64	P95
3	÷	

4.1.9 Programming Bus Mastering for DMA Transfers

When the busmaster field bit of the DEVCTRL register is '0' (disabled), the MGA-G200 will not perform PCI bus mastering, even if the other bus mastering registers are accessed. Disabling busmaster does not preclude writing to the host registers related to bus mastering. To enable AGP bus mastering, the following register must be correctly set: **data_rate**, **agp_enable** and **sba_enable**.

• *Note:* In order to enable AGP2X transfers, **agp2xpllen** *must* be set

The bus mastering feature allows the MGA-G200 to access system memory through a DMA channel (used in conjunction with Pseudo-DMA mode). In order to send 3D commands to the chip, General Purpose Pseudo-DMA should be used. For texture mapping transfers between system memory and the off-screen area, ILOAD Pseudo-DMA mode should be used. For Vertex transfer to the WARP engine, the Vertex write Pseudo-DMA mode should be used.

Note: This is the recommended usage - any Pseudo-DMA mode can actually be used for either case.

The DMA channel is built with three sets of registers, as well as interrupt control and status bits. The three sets of registers identify the system memory area to be used for the primary, secondary and setup DMA channels.

- The primary DMA registers are accessible through the host register's base address. They are readable and writable.
- The secondary DMA registers are accessible only by a primary DMA transfer for writes, and through the drawing register base addresses for reads. The secondary DMA registers cannot be written directly through the drawing register base addresses or through the DMAWIN base address, nor can they be written to by a secondary DMA transfer.
- The setup DMA registers are accessible only by a primary DMA transfer for writes, and through the drawing register base addresses for reads. The setup DMA registers cannot be written directly through the drawing register base addresses or through the DMAWIN base address, nor can they be written to by a secondary DMA transfer.

4.1.9.1 DMA Registers

Primary Current Address (PRIMADDRESS)

This register must be initialized with the starting address of the primary DMA channel in the system memory area. The two LSBs of this register specify the Pseudo-DMA mode to be used for transfers.

Primary End Address (PRIMEND)

This register must be initialized with the end address of the primary DMA channel in the system memory area. Bit 1 is used to specify the system memory type where the channel reside in (PCI/AGP). And bit 0 can be used to prevent that the primary list execution restart when there is a Soft Trap Interrupt pending.

Secondary Current Address (SECADDRESS)

This register must be initialized with the starting address of the secondary DMA channel in the system memory area. The two LSBs of this register specify the Pseudo-DMA mode to be used for transfers. This register is accessed using General Purpose Pseudo-DMA mode (primary DMA transfer) in order to be able to start secondary DMA transfers while the primary DMA channel is active.

Secondary End Address (SECEND)

This register must be initialized with the end address of the secondary DMA channel in the system memory area. It is accessed using General Purpose Pseudo-DMA mode (primary DMA transfer) in order

to be able to start secondary DMA transfers while the primary DMA channel is active. Bit 1 is used to specify the system memory type where the channel reside in (PCI/AGP).

Setup Current Address (SETUPADDRESS)

This register must be initialized with the starting address of the setup DMA channel in the system memory area. The two LSBs of this register specify the Setup-DMA mode to be used for transfers. This register is accessed using General Purpose Pseudo-DMA mode (primary DMA transfer) in order to start setup DMA transfers while the primary DMA channel is active.

Setup End Address (SETUPEND)

This register must be initialized with the end address of the setup DMA channel in the system memory area. It is accessed using General Purpose Pseudo-DMA mode (primary DMA transfer) in order to start setup DMA transfers while the primary DMA channel is active. Bit 1 is used to specify the system memory type where the channel reside in (PCI/AGP).

Soft Trap Interrupt (SOFTRAP)

This register is used when the secondary DMA channel is unavailable (due to a system or memory constraint, or other reason). When **SOFTRAP** is written, the MGA-G200 will generate an interrupt (if the **IEN** register is set). In the context of texture mapping, this register must be written with the handle of the texture so that the interrupt handler can know where the texture is located in system memory. Writing this register stops primary DMA transfers. To restart the primary DMA channel, the **PRIMEND** register must be re-written with bit 0 set to '0'.

Interrupt Clear (ICLEAR)

Interrupt clearing. This register clears the pending soft trap interrupt.

Interrupt Enable (IEN)

Interrupt enable. This register allows the pending soft trap interrupt to be seen on the PINTA/ line.

Status (STATUS)

End of primary DMA channel status bit and soft trap interrupt pending bit. Use of the primary DMA channel is complete when the primary, secondary and setup DMA transfers are finished.

4.1.9.2 Using the DMA Channel

To use the DMA channel, follow this sequence:

- 1. Write a list of commands to a buffer in main memory.
- 2. Write the starting address of the primary buffer in memory to the **PRIMADDRESS** register. Since this is a 32-bit pointer, the two LSBs are not used as an address but rather as an indication of the type of Pseudo-DMA transfer to be used.
- 3. Write the address of the first dword after the end of the primary buffer to the **PRIMEND** register, and the memory type the list resides in (PAGPXFER).
- 4. As soon as the **PRIMEND** register is accessed, the primary DMA channel will be activated (if there is no **SOFTRAP** pending or if bit 0 (**PRIMNOSTART**) of **PRIMEND** is set to '0').
- A read access will be performed on the PCI bus at the location pointed to by PRIMADDRESS. The data that is read will be fed to the 7K Pseudo-DMA window (which is internal to the chip).
 PRIMADDRESS will be advanced to point to the next dword.
- 6. If, within this process the host requires the second level of Pseudo-DMA, then the **SECADDRESS** register must be written with the starting address of the secondary buffer in memory and the Pseudo-DMA mode to be used, then the **SECEND** register must be written. In this case, steps 7 to 9 will be taken; if not, operations resume at step 10.

- *Note*: It is not permitted to set **SECEND** to the same value as **SECADDRESS**.
- Note: If the primary list status fetch pointer enable (primptren) is set, the DMA engine will send the status info to the system memory at the address programmed in PRIMPTR.
- 7. Read accesses will be performed on the PCI/AGP bus at the location pointed to by **SECADDRESS** with the method indicated by SAGPXFER. The data that is read will be fed to the DMAWIN window (which is internal to the chip). The secondary current address will be advanced to point to the next dword.
- 8. The **SECADDRESS** and **SECEND** registers cannot be accessed while they are being used by the secondary DMA channel. This will produce unpredictable results.
- 9. **SECADDRESS** and **SECEND** are compared. If they are different, the secondary DMA continues (refer to step 7). If they are equal, the secondary DMA is finished and the primary DMA continues. It should be noted that when the primary DMA continues, the selected Pseudo-DMA mode restarts. The General Purpose Pseudo-DMA mode is selected, the first dword fetch will be interpreted as a set of four register indexes.
- 10. If, within this process the host requires a level of Setup-DMA, then the **SETUPADDRESS** register must be written with the starting address of the setup buffer in memory and the Setup-DMA mode to be used, then the **SETUPEND** register must be written. In this case, steps 11 to 13 will be taken; if not, operations resume at step 14.
 - *Note:* It is not permitted to set **SETUPEND** to the same value as **SETUPADDRESS**.
 - Note: If the primary list status fetch pointer enable (primptren) is set, the DMA engine will send the status info to the system memory at the address programmed in PRIMPTR.
- 11. Read accesses will be performed on the PCI/AGP bus at the location pointed by **SETUPADDRESS** with the method indicated by **SETUPEND**. The data that is read will be fed to the Setup-DMA engine which will generate virtual secondary DMA based on the Setup-DMA mode (SETUPMOD) (refer to section 4.1.9.3 for Setup-DMA mode description). The setup current address will be advanced to point to the next dword.
 - *Note:* The **SETUPADDRESS** and **SETUPEND** registers can only be accessed by the primary DMA channel.
- 12. **SETUPADDRESS** and **SETUPEND** are compared. If they are different, the setup DMA continues (refer to step 10). If they are equal, the setup DMA is finished and the primary DMA continues. It should be noted that when the primary DMA continues, the selected Pseudo-DMA mode restarts. The General Purpose Pseudo-DMA mode is selected, the first dword fetch will be interpreted as a set of four register indexes.
- 13. **PRIMADDRESS** is compared with **PRIMEND**. If they are different, the DMA transfer continues (refer to step 5). If they are equal, the DMA transfer is complete.
- 14. If the **SOFTRAP** register is accessed in the primary DMA channel, the primary DMA transfer will stop and an interrupt will be generated (see the softrapen field). In the context of texture mapping, the **SOFTRAP** register must be written with the handle of the texture so that the interrupt routine will know what action to take. To restart the primary DMA channel, the **PRIMEND** register must be written with the **primnostart** field set to '0'. Until **PRIMEND** is written, any operation can be undertaken with the MGA-G200. If the DMAWIN window is accessed before **PRIMEND** is written, it

will be controlled by the **dmamod** field of the **OPTION** register (when the **SOFTRAP** register is written, a DMA reset will occur).

4.1.9.3 Setup-DMA Channel Operation

The Setup-DMA channel (access via **SETUPADDRESS** and **SETUPEND**) is an intermediate level of DMA used to build a virtual secondary list based on the **setupmod** programmed.

The only **setupmod** available is the DMA Vertex Fixed Length Setup List mode (see page 3-137) which uses the information in the list to build a virtual secondary list of DMA Vertex Write for each entry of the list.

Each entry of the list is used as a pointer to the start of a Vertex list in system memory, the length of each list correspond to the **wvrtxsz** field of the **WVRTXSZ** register.

So,

virtual SECADDRESS (n)	= data read from the 'n' entry of the Setup-DMA list
virtual SECMOD (n)	= DMA Vertex Write
virtual SECEND (n)	= data read from the 'n' entry of the Setup-DMA list + WVRTXSZ + 1
virtual SAGPXFER(n)	= SETUPAGPXFER

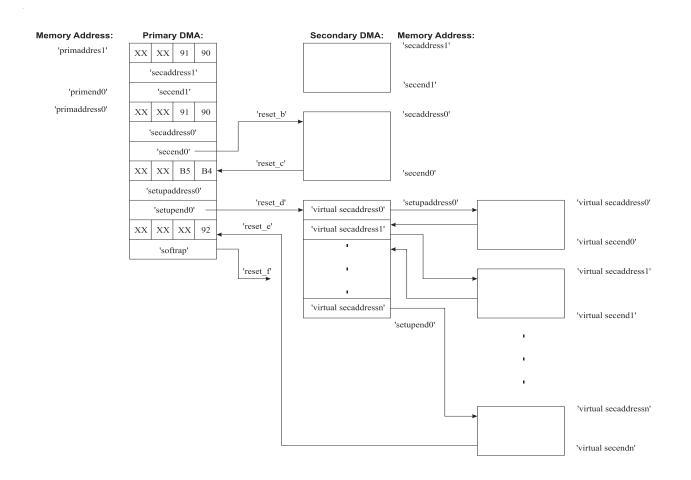
4.1.9.4 Special Cases

The PCI Specification indicates that when the MGA-G200 acts as a master on the PCI bus, two particular circumstances can arise (aside from the regular transfer of data):

- 1. The first case is a *master-abort*, which occurs when an access is attempted and no device responds (often due to a glitch in programming). When this happens, the **recmastab** bit of the **DEVCTRL** register will be set (and will remain set until a '1' is written to it).
- 2. The second case is a *target-abort*. This is a target termination that is used when the target detects a problem with an access generated by the MGA-G200. The MGA-G200 always generates accesses in the correct form, so this situation depends on the target. Target-aborts should *not* occur, since the PCI Specification indicates that they occur with I/O accesses; the MGA-G200 generates *memory* accesses. There is no way to change the MGA-G200 or its programming to prevent a target-abort from occurring. If a target-abort occurs, the **rectargab** bit of the **DEVCTRL** register will be set (and will remain set until a '1' is written to it).

The software must write to the **softreset** bit of the **RST** register when either a *master-abort* or a *target-abort* occurs (the **RST** register will indicate this) to reset the DMA channel and the BFIFO. This must also be done when a warm boot occurs (on a PC, when Ctrl+Alt+Del is pressed).

Reset of the Pseudo-DMA sequence:


A reset of the Pseudo-DMA sequence will be generated under the following conditions:

- When the **PRIMADDRESS** register is written.
- When the **SECEND** register is written, assuming **SECEND** is *not* equal to **SECADDRESS**).
- When the SETUPEND register is written, assuming SETUPEND is *not* equal to SETUPADDRESS).
- When the **SOFTRAP** register is written.
- When secondary DMA transfers end (that is, when SECADDRESS becomes equal to SECEND at the end of the secondary DMA, and not when SECADDRESS is written with the SECEND value).
- When setup DMA transfers end (that is, when SETUPADDRESS becomes equal to SETUPEND at the end of the setup DMA, and *not* when SETUPADDRESS is written with the SETUPEND value).
- When a master-abort or target-abort is detected.
- ◆ Note: There is no reset of the Pseudo-DMA sequence when PRIMEND is written (since PRIMEND starts the primary DMA transfers); writing can happen more than once to extend the list (even while the list is still being transferred).
- ◆ Note: There is no reset of the Pseudo-DMA sequence when primary DMA transfers end. If commands are added to the primary display list, PRIMEND has to be written with its new value to restart the primary DMA transfers.

If you intend to write PRIMEND more than once (without re-writing **PRIMADDRESS**), fill the last set of Pseudo-DMA transfers with no-ops (reserved registers). Otherwise, the Pseudo-DMA transfers will restart at the last Pseudo-DMA location (either index or data when in General Purpose Pseudo-DMA mode).

Example:

- When **PRIMADDRESS** is written with 'primaddress0', a reset of the Pseudo-DMA sequence is executed.
- When **SOFTRAP** is written (through a primary DMA transfer), another reset is executed ('reset_f').
- When **SECEND** is written, and when the secondary DMA ends, two other resets are executed ('reset_b' and 'reset_c').
- When **SETUPEND** is written, and when the setup DMA ends, two other resets are executed ('reset_d' and 'reset_e').

Additional Information

- When the DMA channel is used (mastering), it is possible to know which parts of the buffer have been executed by the drawing engine.
 - The DMA current pointer is readable by the CPU through the **PRIMADDRESS**, **SECADDRESS** or **SETUPADDRESS** registers.
 - The primary list status fetch pointer (**PRIMPTR**) functionality can be used to allow the DMA engine to send the status info to system memory every time **SECEND**, **SETUPEND** or **SOFTRAP** is written.
- The endprdmasts field of the STATUS register always indicates whether or not all the DMA channels have been read completely (PRIMADDRESS = PRIMEND and SECADDRESS = SECEND and SETUPADDRESS = SETUPEND). It is set to '1' when a soft trap interrupt occurs. This bit toggles to '0' as soon as the primary DMA channel restarts.

If primnostart is '1' when reprogramming primend:

■ To get an interrupt when the primary DMA channel terminates, include a write to the **SOFTRAP** register as the last DMA transfer.

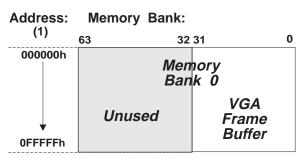
4.2 Memory Interface

4.2.1 Frame Buffer Organization

The MGA-G200 supports up to 16 megabytes (MB) of 16Mb SGRAM memory divided into four 4 MByte banks, up to 16 MB of SDRAM memory divided into two 8 MByte banks, or up to 8 MB of SGRAM memory divided into four 2 MByte banks.

There are two different frame buffer organizations, described below:

- VGA Mode
- Power Graphic Mode

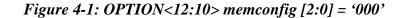

4.2.1.1 Supported Resolutions

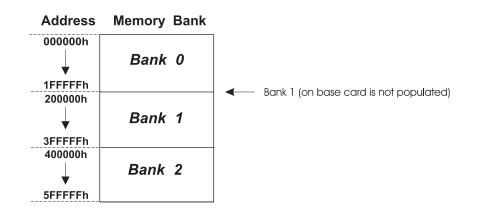
In Power Graphic Mode, the resolution depends on the amount of available memory. The following table shows the memory requirements for each standard VESA resolution and pixel depth.

	Sing	le Frame	Buffer I	Mode	Single Z Buffer									
		Na	νZ			Z 16	<i>bits</i>		Z 32 bits					
Resolution	8-bit 16-bit 24-bit 32-bit		8-bit	16-bit	24-bit	32-bit	8-bit	16-bit	24-bit	32-bit				
640 x 480	0 x 480 2M 2M 2M 2M		2M	2M	2M		2M	2M	2M	—	4M			
720 x 480	2M	2M 2M 2M	2M	2M	2M	—	2M	2M	2M	—	4M			
800 x 600	2M	2M	M 2M 2M	2M	2M	2M		4M	4M	4M	—	4M		
1024 x 768	2M	2M	4M	4M	4M	4M		8M	4M	8M		8M		
1152 x 864	2M	2M	4M	4M	4M	4M		8M	8M	8M	—	8M		
1280 x 1024	2M	4M	4M	8M	4M	8M		8M	8M	8M		10M		
1600 x 1200	500 x 1200 2M 4M 8M 8M		8M	8M		12M	10M	12M		16M				

4.2.1.2 VGA Mode

In VGA Mode, the frame buffer can be up to 1M. In a 64-bit slice, byte line 0 is used as plane 0; byte line 1 is used as plane 1; byte line 2 is used as plane 2; byte line 3 is used as plane 3. Byte lines 4-7 are not used, and the contents of this memory are preserved. The contents of memory banks 1, 2, and 3 are also preserved.




⁽¹⁾ All addresses are hexadecimal byte addresses which correspond to pixel addresses in 8 bits/pixel mode.

4.2.1.3 Power Graphic Mode

The possible memory configurations are described in the subsections which follow.

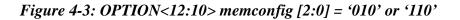

◆ *Note:* All addresses are hexadecimal and are byte addresses.

Figure 4-2: OPTION<2:0> memconfig [2:0] = '001'

Address	Memory Bank
000000h	
•	Bank 0
1FFFFFh 200000h	
20000m	Bank 1
3FFFFFh	
400000h ↓	Bank 2
5FFFFFh	
600000h	
↓	Bank 3
7FFFFFh	

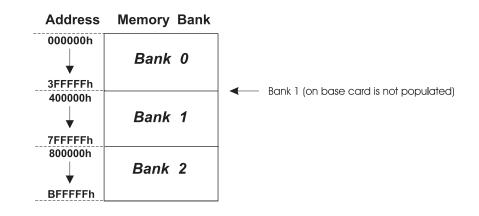


Figure 4-4: OPTION<2:0> memconfig [2:0] = '011' or '111'

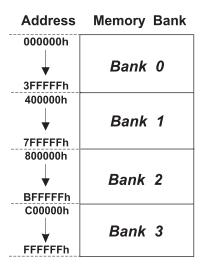
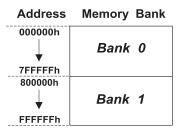



Figure 4-5: OPTION<2:0> memconfig [2:0] = '100' or '101'

4.2.2 Pixel Format

The slice is 64 bits long and is organized as follows. In all cases, the least significant bit is 0. The Alpha part of the color is the section of a pixel that is not used to drive the DAC. Note that the data is always true color, but in 8 bit/pixel formats pseudo color can be used when shading is not used.

The 24 bit/pixel frame buffer organization is a special case wherein there are three different slice types. In this case, one pixel can be in two different slices.

32 bits/pixel

bits/pixe																					
63								32	31												C
			Ρ	1										Ρ	0						
bits/pixe																					
	56 55		48	47	4	0 39		32	31		24 2	23		16	15		ł	8	7		(
	P2						P1									P0					
P5				F	4								P3							P2	
	•	P7								P6								P	5		
bits/pixe																					
63			48	47				32	31					16	15						
	P3					P2					P1							P	0		
its/pixel																					
-	56 55		48	47	4	0 39		32	31		24 2	23		16	15		ł	8	7		
P7		DC		E	5		D4			P3			P2			P1				P0	
nochron 63 P63		P6					P4		11												
nochron 63	hese m		the			arra		us fo	ollov												
nochron 63 P63 each of t bits/pixe 31	hese m	iodes,	24	e pixel 23	s are		nged a	as fo 16	15	ws:					7						F
nochron 63 P63 each of t bits/pixe 31	hese m	iodes,		e pixel	s are	arra	nged a			ws:	Gree	en		8	7 7			Blu	le		
nochron 63 P63 each of t bits/pixe 31	hese m I Alpha	iodes,	24	e pixel 23	s are		nged a	16	15	ws:	Gree	en						Blu	Je		F
nochron 63 P63 each of t bits/pixe 31 7	hese m I Alpha	iodes,	24	e pixel 23	s are		nged a	16 0	15	ws:	Gree	en						Blu	le		
nochron 63 P63 each of t bits/pixe 31 7	hese m I Alpha	iodes,	24	e pixel 23 7	s are		nged a	16 0	15 7	ws:	Gree			0	7			Blu			
nochron 63 P63 each of t bits/pixe 31 7 bits/pixe	hese m I Alpha I	iodes,	24	e pixel 23 7 23	s are	Red	nged a	16 0 16	15 7 15	ws:				0 8	7 7						
nochron 63 P63 each of t bits/pixe 31 7	hese m I Alpha I	iodes,	24	e pixel 23 7 23	s are	Red	nged a	16 0 16	15 7 15	ws:		en	10 9	0 8	7 7						F
nochron 63 P63 each of t bits/pixe 31 7 bits/pixe	hese m I Alpha I	iodes,	24	e pixel 23 7 23	s are	Red	nged a	16 0 16	15 7 15 7 15	ws:		en 1		0 8 0	7 7		5	Blu	ue	Blue	F
nochron 63 P63 each of t bits/pixe 31 7 bits/pixe	hese m I Alpha I	iodes,	24	e pixel 23 7 23	s are	Red	nged a	16 0 16	15 7 15 7	ws:	Gree	en 1	0 9	0 8 0	7 7 7		5	Blu 4	ue	Blue	F
nochron 63 P63 each of t bits/pixe 31 7 bits/pixe	hese m I Alpha I	odes,	24	e pixel 23 7 23	s are	Red	nged a	16 0 16 0	15 7 15 7	ws:	Gree	en 1	0 9	0 8 0	7 7 7		5	Blu 4	ue	Blue	F
nochron 63 P63 each of t bits/pixe 31 7 bits/pixe	hese m I Alpha I	odes,	24	e pixel 23 7 23	s are	Red	nged a	16 0 16 0	15 7 15 7	ws:	Gree	en 1	0 9 0 4	0 8 0	7 7 7		5 0	Blu 4	ue	Blue	F

8 bits/pixel

	7	5	4 2		1	0
	2	0	2 0)	1	0
	Red		Green		Blu	Je
8 bits/pixel						
-	7					0
		Pse	eudo Colo	or		

4.3 Chip Configuration and Initialization

4.3.1 Reset

The MGA-G200 can be both Hard and Soft reset. Hard reset is achieved by activating the PRST/ pin. There is no need for the PRST/ pin to be synchronous with any clock.

- A Hard reset will reset all chip registers to their reset values if such values exist. Refer to the individual register descriptions in Chapter 3 to determine which bits are hard reset.
- All state machines are reset (possibly with termination of the current operation).
- FIFOs will be emptied, and the cache will be invalidated.
- A hard reset will activate the local bus reset (EXTRST/) in order to reset expansion devices when required. The EXTRST/ signal is synchronous on PCLK.

The state of the straps are read and registered internally upon hard reset. A Soft reset will not re-read the external straps, nor will it change the state of the bits of the **OPTION** register.

Strap Name	Pins	Description
biosboot	HDATA<1>	Indicates whether a ROM is installed ('1') or not ('0'). The biosboot strap also controls the biosen field of the OPTION register.
modclkp	MDQ<31:29>	Used to determine the frequency at which an LVTTL memory expansion module is designed to operate.
vgaboot	HDATA<0>	Indicates whether the VGA I/O locations are decoded ('1') or not ('0') only if the vgaioen bit has not been written. The vgaboot strap also controls bit 23 of the CLASS register, setting the class field to 'Super VGA compatible controller' ('1') or to 'Other display controller' ('0').

A soft reset is performed by programming a '1' into bit 0 of the **RST** host register. Soft reset will be maintained until a '0' is programmed (see the **RST** register description on page 3-134 for the details).

The soft reset should be interpreted as a drawing engine reset more than as a general soft reset. The video circuitry, VGA registers, and frame buffer memory accesses, for example, are not affected by a soft reset. Only circuitry in the host section which affects the path to the drawing engine will be reset. Soft reset has no effect on the EXTRST/ line; the softextrst (RST host register) does.

4.3.2 Operations After Hard Reset

- After a hard reset, the chip will be in a VGA-compatible state.
- Register bits that do not have a reset value will wake up with unknown values.
- Frame buffer memory refreshing is not running.

4.3.3 **Power Up Sequence**

Aside from the PCI initialization, certain bits in the **OPTION** register must be set, according to the devices in the system that the chip is used in. These bits, shown in the following table, are essential to the correct behavior of the chip:

Name	Reset Value	Description
eepromwt	' 0 '	To be set to '1' if a FLASH ROM is used, and writes are to be done to the ROM.
powerpc	' 0 '	To be set to '1' to support Big-Endian processor accesses.
rfhcnt	'000000'	The refresh counter defines the rate of MGA memory refresh. For a typical 144 MHz MCLK, a value of 22h would be programmed.
vgaioen	vgaboot strap	Takes the strap value on hard reset, but is also writable: '0': VGA I/O locations are not decoded '1': VGA I/O locations are decoded.

4.3.3.1 SGRAM Reset Sequence

After a reset, the clocks must be initialized first. Observe the following sequences to ensure proper behavior of the chip and to properly initialize the RAM.

Analog Macro Power Up Sequence

- **Step 1.** If an 'off-chip' voltage reference is not used, then:
 - (i) Program **XVREFCTRL** (refer to the register description and its associated note).
 - (ii) Wait 100 mS for the reference to become stable.
- **Step 2.** Power up the system PLL by setting the **sysplipdN** field of **OPTION** to '1'.
- **Step 3.** Wait for the system PLL to lock (indicated when the **syslock** field of the **XSYSPLLSTAT** register is '1').
- Step 4. Power up the pixel PLL by setting the **pixpllpdN** field of **XPIXCLKCTRL** to '1'.
- **Step 5.** Wait for the pixel PLL to lock (indicated when the **pixlock** field of **XPIXPLLSTAT** is '1').
- Step 6. Power up the LUT by setting the ramcs field of XMISCCTRL to '1'.
- **Step 7.** Power up the DAC by setting the **dacpdN** field of **XMISCCTRL** to '1'.

The PLLs are now set up and oscillating at their reset frequencies, but they are not selected. The following steps will set MCLK to143 MHz, GCLK to 71.5 MHz, and PIXCLK to 25.175 MHz. See 'Programming the PLLs' on page 4-79.

- 1. Disable the system clocks by setting **sysclkdis** (**OPTION** register) to '1'.
- 2. Select the system PLL by setting **sysclksl** to '01'.
- 3. Enable the system clocks by setting **sysclkdis** to '0'.
- 4. Disable the pixel clock and video clock by setting **pixclkdis** (**XPIXCLKCTRL** register) to '1'.
- 5. Select the pixel PLL by setting **pixelksl** to '01'.
- 6. Enable the pixel clock and video clock by setting **pixclkdis** to '0'.
 - *Note:* Each of the preceding six steps *must* be done as a single PCI access. They cannot be combined.

SGRAM/SDRAM Initialization

- **Step 1.** Set the **scroff** blanking field (**SEQ1**<5>) to prevent any transfer.
- Step 2. Program all the fields of the MCTLWTST register.
- **Step 3.** Program the memconfig field of the **OPTION** register.
- Step 4. Program the **mbuftype** field of the **MEMRDBK** register.
- Step 5. Program the mrscopcod field of the MEMRDBK register to '0000'.
- **Step 6.** Program the mclkbrd0 and mclkbrd1 fields in the MEMRDBK register with tap delay values appropriate for the SGRAM type and loading.
- **Step 7.** Wait a minimum of $200 \ \mu s$.
- Step 8. Set the **memreset** field of **MACCESS**.
- Step 9. Start the refresh by programming the **rfhcnt** field of the **OPTION** register.

The MGA-G200 provides three different display modes: text (VGA or SVGA), VGA graphics, and SVGA graphics. Table 4-1 lists all of the display modes which are available through BIOS calls.

- The text display uses a multi-plane configuration in which a character, its attributes, and its font are stored in these separate memory planes. All text modes are either VGA-compatible or extensions of the VGA modes.
- The VGA graphics modes can operate in either multi-plane or packed-pixel modes, as is the case with standard VGA.
- The SVGA modes operate in packed-pixel mode they enable use of the graphics engine. This results in very high performance, with high resolution and a greater number of pixel depths.

Mode	Туре	Organization	Resolution	No. of colors
0	VGA	40x25 Text	360x400	16
1	VGA	40x25 Text	360x400	16
2	VGA	80x25 Text	720x400	16
3	VGA	80x25 Text	720x400	16
4	VGA	Packed-pixel 2 bpp	320x200	4
5	VGA	Packed-pixel 2 bpp	320x200	4
6	VGA	Packed-pixel 1 bpp	640x200	2
7	VGA	80x25 Text	720x400	2
D	VGA	Multi-plane 4 bpp	320x200	16
Е	VGA	Multi-plane 4 bpp	640x200	16
F	VGA	Multi-plane 1 bpp	640x350	2
10	VGA	Multi-plane 4 bpp	640x350	16
11	VGA	Multi-plane 1 bpp	640x480	2
12	VGA	Multi-plane 4 bpp	640x480	16
13	VGA	Packed-pixel 8 bpp	320x200	256
108	VGA	80x60 Text	640x480	16
10A	VGA	132x43 Text	1056x350	16
109	VGA	132x25 Text	1056x400	16
10B	VGA	132x50 Text	1056x400	16

 Table 4-1: Display Modes (Part 1 of 2)

Mode	Type	Organization	Resolution	No. of colors
10C	VGA	132x60 Text	1056x480	16
100	SVGA	Packed-pixel 8 bpp	640x400	256
101	SVGA	Packed-pixel 8 bpp	640x480	256
110	SVGA	Packed-pixel 16 bpp	640x480	32K
111	SVGA	Packed-pixel 16 bpp	640x480	64K
112	SVGA	Packed-pixel 32 bpp	640x480	16M
102	SVGA	Multi-plane 4 bpp	800x600	16
103	SVGA	Packed-pixel 8 bpp	800x600	256
113	SVGA	Packed-pixel 16 bpp	800x600	32K
114	SVGA	Packed-pixel 16 bpp	800x600	64K
115	SVGA	Packed-pixel 32 bpp	800x600	16M
105	SVGA	Packed-pixel 8 bpp	1024x768	256
116	SVGA	Packed-pixel 16 bpp	1024x768	32K
117	SVGA	Packed-pixel 16 bpp	1024x768	64K
118 ⁽¹⁾	SVGA	Packed-pixel 32 bpp	1024x768	16M
107	SVGA	Packed-pixel 8 bpp	1280x1024	256
119 ⁽¹⁾	SVGA	Packed-pixel 16 bpp	1280x1024	32K
11A ⁽¹⁾	SVGA	Packed-pixel 16 bpp	1280x1024	64K
11B ⁽²⁾	SVGA	Packed-pixel 32 bpp	1280x1024	16M
11C	SVGA	Packed-pixel 8 bpp	1600x1200	256
11D ⁽¹⁾	SVGA	Packed-pixel 16 bpp	1600x1200	32K
11E ⁽¹⁾	SVGA	Packed-pixel 16 bpp	1600x1200	64K

Table 4-1: Display Modes (Part 2 of 2)

⁽¹⁾ Only possible with a frame buffer of 8 megabytes or more.

⁽²⁾ Only possible with a frame buffer of 4 megabytes or more

Mode Switching

The BIOS follows the procedure below when switching between video modes:

- 1. Wait for the vertical retrace.
- 2. Disable the video by using the **scroff** blanking bit (**SEQ1**<5>).
- 3. Select the VGA or SVGA mode by programming the **mgamode** field of the **CRTCEXT3** register.
- 4. If a text mode or VGA graphic mode is selected, program the VGA-compatible register to initialize the appropriate mode.
- 5. Initialize the CRTC (See 'CRTC Programming' on page 4-61).
- 6. Initialize the DAC and the video PLL for proper operation.
- 7. Initialize the frame buffer.
- 8. Wait for the vertical retrace.
- 9. Enable the video by using the **scroff** blanking bit.
- ◆ Note: The majority of the registers required for initialization can be accessed via the I/O space. For registers that are not mapped through the I/O space, or if the I/O space is

disabled, indirect addressing by means of the MGA_INDEX and MGA_DATA registers can be used. This would permit a real mode application to select the video mode, even if the MGABASE1 aperture is above 1M.

4.4 Direct Frame Buffer Access

There are two memory apertures: the VGA memory aperture, and the MGABASE2 memory aperture

VGA Mode

The **MGABASE2** memory aperture should not be used, due to constraints imposed by the frame buffer organization. The VGA memory aperture operates as a standard VGA memory aperture.

◆ Note: In VGA Mode, only 1 Mbyte of the frame buffer is accessible. The CRTCEXT4 register *must* be set to '0'.

Power Graphic Mode

Both memory apertures can be used to access the frame buffer. The full frame buffer memory aperture provides access to the frame buffer without using any paging mechanism. The VGA memory aperture provides access to the frame buffer for real mode applications.

The **CRTCEXT4** register provides an extension to the page register in order to allow addressing of the complete frame buffer. Accesses to the frame buffer are concurrent with the drawing engine, so there is no requirement to synchronize the process which is performing direct frame buffer access with the process which is using the drawing engine.

Note: The MGA-G200 has the capacity to perform data swapping for Big-Endian processors (the data swapping mode is selected by the OPMODE register's dirdatasiz<1:0> field).

◆ *Note:* Plane write masks are *not* available during direct frame buffer accesses.

4.5 Drawing in Power Graphic Mode

This section explains how to program the MGA-G200's registers to perform various graphics functions. The following two methods are available:

- Direct access to the register. In this case all registers are accessed directly by the host, using the address as specified in the register descriptions found in Chapter 3.
- Pseudo-DMA. In this case, the addresses of the individual registers to be accessed are embedded in the data stream. Pseudo-DMA can be used in four different ways:
 - The General Purpose Pseudo-DMA mode can be used with any command.
 - The DMA Vector Write mode is specifically dedicated to polyline operations.
 - ILOAD operations always use Pseudo-DMA transfers for exchanging data with the frame buffer.
- ◆ Note: Only dword accesses can be used when initializing the drawing engine. This is true for both direct register access and for Pseudo-DMA operation.

4.5.1 Drawing Register Initialization Using General Purpose Pseudo-DMA

The general purpose Pseudo-DMA operations are performed through the DMAWIN aperture in the MGA control register space, or in the 8 MByte Pseudo-DMA window. It is recommended that host CPU instructions be used in such a way that each transfer increments the address. This way, the PCI bridge can proceed using burst transfers (assuming they are supported and enabled).

General Purpose Pseudo-DMA mode is entered when either the DMAWIN space or the 8 MByte Pseudo-DMA window is written to. The DMA sequence can be interrupted by writing to byte 0 of the **OPMODE** register; this mechanism can be used when the last packet is incomplete.

The first dword written to the DMA window is loaded into the Address Generator. This dword contains indices to the next four drawing registers to be written, and the next four dword transfers contain the data that is to be written to the four registers specified.

When each dword of data is transferred, the Address Generator sends the appropriate 8-bit index to the Bus FIFO. This 8-bit address corresponds to bits 13 and 8:2. Bit 13 represents the DWGREG1 range (refer to Table 2-3 on page 2-4). Bits 1:0 are omitted, since each register is a dword. All registers marked with the FIFO attribute in the register descriptions in Chapter 3 can be initialized in General Purpose Pseudo-DMA mode. When the fourth (final) index has been used, the next dword transfer reloads the Address Generator.

	31	24 2	3 16	15	8	7	0
0	indx3		indx2	indx1		indx0	
1			da	ta 0			
2			da	ta 1			
3			da	ta 2			
4			da	ta 3			
5	indx3		indx2	indx1		indx0	
6			da	ta 0			
7			da	ta 1			
8			da	ta 2			

DMA General Purpose Transfer Buffer Structure

4.5.2 Overview

To understand how this programming guide works, please refer to the following explanations:

- 1. All registers are presented in a table that lists the register's name, its function, and any comment or alternate function.
- 2. The table for each *type* of object (for example, lines with *depth*, *solid* line, *constant-shaded* trapezoid) is presented as a module in a third-level subsection numbered, for example, as 4.5.4.2.
- 3. The description of each *type* of object contains a representation of the **DWGCTL** register. The drawing control register illustration is repeated for each object *type* because it can vary widely, depending on the current graphics operation (refer to the **DWGCTL** description, which starts on page 3-99).

Legend for DWGCTL Illustrations:

- When a field *must be set to one of several possible values for the current operation*, it appears as plus signs (+), one for each bit in the field. The valid settings are listed underneath.
- When a field *can be set to any of several possible valid values*, it appears as hash marks (#), one for each bit in the field. The values must still be valid for their associated operations.
- When a field *must be set to a specific value* then that value appears.
- 4. You must program the registers listed in the 'Global Initialization (All Operations)' section *for all graphics operations*. Once this initialization has been performed, you can select the various objects and object *types* and program the registers for them accordingly.

4.5.3 Global Initialization (All Operations)

Register	Function	Comment / Alternate Function
PITCH	Set pitch	Specify destination address linearization (iy field)
DSTORG	Determine screen origin	DSTORG should be used instead of YDSTORG
MACCESS	Set pixel format (8, 16, 24, 32 bpp) and Z precision (16 or 32 bits) and sets the dithering mode.	Some limitations apply. Dithering mode is used in the following primitives: (i) lines with depth, (ii) Gouraud shaded trapezoids, (iii) texture mapping, (iv) unformatted ILOAD.
CXBNDRY	Left/right clipping limits	Can use CXLEFT and CXRIGHT instead
YTOP	Top clipping limit	
YBOT	Bottom clipping limit	
PLNWT	Plane write mask	—
ZORG	Z origin position	Only required for depth operations

You must initialize the following registers for all graphics operations:

4.5.4 Line Programming

The following subsections list the registers that must be specifically programmed for solid lines, lines that use a linestyle, and lines that have a depth component. Remember to program the registers listed in section 4.5.3 and subsection 4.5.5.1 first.

◆ Note: In order to start the drawing engine, the last register programmed *must* be accessed in the 1D00h-1DFFh range.

4.5.4.1 Slope Initialization

Non Auto-init Lines

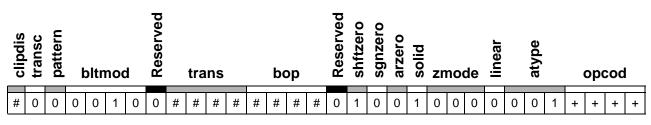
This type of line is initiated when the **DWGCTL** register's opcod field is set to either LINE_OPEN or LINE_CLOSE. A LINE_CLOSE operation draws the last pixel of a line, while a LINE_OPEN operation does not draw the last pixel. LINE_OPEN is mainly used with polylines, where the final pixel of a given line is actually the starting pixel of the next line. This mechanism avoids having the same pixel written twice

Register	Function	Comment / Alternate Function
AR0	2b ⁽¹⁾	
AR1	Error term: 2b - a - sdy	
AR2	Minor axis increment: 2b - 2a	
SGN	Vector quadrant ⁽²⁾	
XDST	The x start position	
YDSTLEN	The y start position and vector length	Can use YDST and LEN instead; <i>must</i> use YDST and LEN when destination address is linear (i.e. ylin = 1, see PITCH)

⁽¹⁾ Definitions: a = max (|dY|, |dX|), b = min (|dY|, |dX|).

⁽²⁾ Sets major or minor axis and positive or negative direction for x and y.

Auto-init Lines


This type of line is initiated when the **DWGCTL** register's **opcod** field is set to either AUTOLINE_ OPEN or AUTOLINE_CLOSE. Auto-init vectors *cannot be used* when the destination addresses are linear (**ylin** = 1).

• *Note:* Auto-init vectors are automatic lines whose major/minor axes and Bresenham parameters (these determine the exact pixels that a line will be composed of) do not have to be manually calculated by the user or provided by the host.

Register	Function	Comment / Alternate Function
XYSTRT	The x and y starting position	Can use AR5, AR6, XDST, and YDST instead
XYEND	The x and y ending position	Can use AR0 and AR2 instead

4.5.4.2 Solid Lines

DWGCTL:

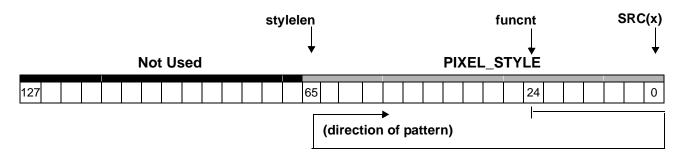
■ opcod: must be set to LINE_OPEN, LINE_CLOSE, AUTOLINE_OPEN, or AUTOLINE_CLOSE

Register	Function	Comment / Alternate Function
FCOL	Foreground color	

4.5.4.3 Lines That Use a Linestyle

DWGCTL:

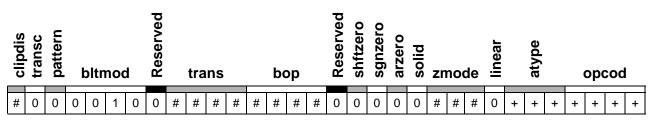
clindic	transc	pattern	ł	oltr	noc	ł	Reserved		tra	ns			bo	ор		Reserved	shftzero	sgnzero	arzero	solid	zn	noo	de	linear		atype			оро	coc	1
																										1	1				
#	#	0	0	0	1	0	0	#	#	#	#	#	#	#	#	0	0	0	0	0	0	0	0	0	0	0	1	+	+	+	+


opcod: must be LINE_OPEN, LINE_CLOSE, AUTOLINE_OPEN, or AUTOLINE_CLOSE

Register	Function	Comment / Alternate Function
SHIFT	Linestyle length (stylelen), linestyle start point within the pattern (funcnt)	—
SRC0	Linestyle pattern storage	
SRC1	Linestyle pattern storage	If stylelen is from 32-63
SRC2	Linestyle pattern storage	If stylelen is from 64-95
SRC3	Linestyle pattern storage	If stylelen is from 96-127
BCOL	Background color	If transc = 0
FCOL	Foreground color	—

Note: To set up a linestyle, define the pattern you wish to use, then load it into the 128-bit source register (SRC3-0). Next, program SHIFT to indicate the length of your pattern minus 1 (stylelen). Finally, the SHIFT register's funcnt field is a count-down register with a wrap-around from zero to stylelen, which is used to indicate the point within the pattern at which you wish to start the linestyle. At the end of a line operation, funcnt points to the next value. For a polyline operation (LINE_OPEN), the pixel style remains continuous with the next vector. With LINE_CLOSE, the style does not increment with the last pixel.

Linestyle Illustration


SHIFT	: stylelen	= 65, funcnt = 24
SRC0	: srcreg0	= PIXEL_STYLE(31:0)
SRC1	: srcreg1	= PIXEL_STYLE(63:32)
SRC2	: srcreg2	= PIXEL_STYLE(65:64)

- The foreground color is written when the linestyle bit is '1'
- The background color is written when the linestyle bit is '0'

4.5.4.4 Lines with Depth

■ **atype**: must be either ZI or I

■ **opcod**: must be set to LINE_OPEN, LINE_CLOSE, AUTOLINE_OPEN, or AUTOLINE_CLOSE

Register	Function	Comment / Alternate Function						
ALPHACTRL	scrblendf, dstblendf, alphamode, astipple, alpha test mode, alphasel	must set aten = '0'						
ALPHASTART	The Alpha Start value	(1)						
ALPHAXINC	The Alpha Increment on the major axis	(1)						
ALPHAYINC	The Alpha Increment on the diagonal axis	(1)						
DR0 (if zwidth = 0) DR2_Z32LSB, DR2_Z32MSB, (if zwidth = 1)	The z start position	Only if zmode <> NOZCMP or atype = ZI						
DR2 (if zwidth = 0) DR2_Z32LSB, DR2_Z32MSB (if zwidth = 1)	The z major increment	"						
DR3 (if zwidth = 0) DR3_Z32LSB, DR3_Z32MSB (if zwidth = 1)	The z diagonal increment	"						
DR4	Red start position							
DR6	Red increment on major axis							
DR7	Red increment on diagonal axis							
DR8	Green start position							
DR10	Green increment on major axis							
DR11	Green increment on diagonal axis							
DR12	Blue start position							
DR14	Blue increment on major axis							
DR15	Blue increment on diagonal axis							
FCOL	Alpha value	Only if pwidth = 32, or pwidth = 16 and dit555 = 1						
FOGSTART	The Fog factor Start value	only if fogen = 1						
FOGXINC	The Fog factor Increment on major axis	"						
FOGYINC	The Fog factor Increment on diagonal axis	"						
FOGCOL	The Fog Color	"						

- ⁽¹⁾ Whenever a function in the ALPHACTRL register requires them, Alphastart, alphaxinc, or alphayinc are programmed.
- *Note:* That the MACCESS register's pwidth field must not be set to 24 bits per pixel (PW24) when drawing lines with depth.

4.5.4.5 Polyline/Polysegment Using Vector Pseudo-DMA mode

The sequence for this operation is slightly different than the sequence for the other lines. First, the polyline primitive must be initialized:

- The global initialization registers (see Global Initialization (All Operations) on page 4-31) must be set.
- Solid lines can be selected by initializing the registers as explained in subsection 4.5.4.2. Lines with linestyle can be selected by initializing the registers as explained in subsection 4.5.4.3. In both cases, AUTOLINE_OPEN or AUTOLINE_CLOSE must be selected.
- Bits 15-0 of the **OPMODE** register must be initialized to 0008h (for Little-Endian processors) or 0208h (for Big-Endian processors). It is important to access the **OPMODE** register (at least byte 0) since this will reset the state of the address generator. A 16-bit access is required (to prevent modification of the **dirDataSiz** field).

The polyline/polysegment will begin when either the DMAWIN space or the 8 MByte Pseudo-DMA window is written to.

The *first* dword that is transferred is loaded into the Address Generator. This dword contains one bit of 'address select' for each of the next 32 vector vertices to be sent to the drawing registers. These 32 bits are called the vector tags. The next 32 dword transfers contain the xy address data to be written to the drawing registers.

When a tag bit is set to zero (0), the address generator will force the index to the one of the **XYSTRT** registers without setting the bit to start the drawing engine. When the tag bit is set to one (1), the address generator will force the index to the one of the **XYEND** registers with the flag set to start the drawing engine.

When each dword of data is transferred, the Address Generator checks the associated tag bit and sends the appropriate 8-bit index to the Bus FIFO. When the 32nd (final) tag has been used, the next dword transfer reloads the Address Generator with the next 32 vector tags.

The Pseudo-DMA sequence can be interrupted by writing to byte 0 of the **OPMODE** register; this mechanism can be used when the last packet is incomplete.

DMA Vector Transfer Buffer Structure

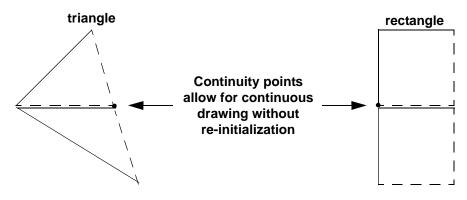
	31 16	15 0
0	V31	Vn V0
1	YO	X0
2	Y1	X1
3	Y2	X2

:		:
n	Yn + 1	Xn + 1
:		:
31	Y30	X30
32	Y31	X31
33 V31		Vn V0
34	YO	X0
35	Y1	X1
36	Y2	X2
:		:

4.5.5 Trapezoid / Rectangle Fill Programming

The following subsections list the registers that must be specifically programmed for constant and Gouraud shaded, patterned, and textured trapezoids, including rectangle and span line fills. Remember to program the registers listed in section 4.5.3 and in the tables in subsection 4.5.5.1 first.

• *Note:* In order to start the drawing engine, the last register programmed *must* be accessed in the 1D00h-1DFFh range.


4.5.5.1 Slope Initialization

Trapezoids, rectangles, and span lines consist of a flat edge at the top and bottom, with programmable side edge positions at the left and right. When such a primitive is displayed, the pixels at the top and left edge are actually drawn as part of the object, while the bottom and right edges exist just beyond the object's extents. This is done so that when a primitive is completed, the common 'continuity points' that result allow a duplicate adjacent primitive to be drawn without the necessity of re-initializing all of the edges.

- Note: That a primitive may have an edge of zero length, as in the case of a triangle (in this case, FXRIGHT = FXLEFT). You could draw a series of joined triangles by specifying the edges of the first triangle, then changing only one edge for each subsequent triangle.
- Note: For trapezoids with subpixel positioning, the **brkleft** bit in the **SGN** register and the **FXLEFT** must be programmed for the bottom-trap in case of a broken-left trapezoid.

Figure 4-6: Drawing Multiple Primitives

- solid lines represent left, top edges
- dotted lines represent right, bottom edges

Trapezoids

For trapezoid drawing, initialize the following registers:

Register	Function	Comment / Alternate Function
AR0	Left edge major axis increment: dYl yl_end - yl_start	—
AR1	Left edge error term: errl (sdxl == XL_NEG) ? dXl + dYl - 1 : - dXl	—
AR2	Left edge minor axis increment: - dXl - xl_end - xl_start	—
AR4	Right edge error term: errr (sdxr == XR_NEG) ? dXr + dYr - 1 : - dXr	_
AR5	Right edge minor axis increment: - dXr - xr_end - xr_start	_
AR6	Right edge major axis increment: dYr yr_end - yr_start	_
SGN	Vector quadrant	
FXBNDRY	Filled object x left and right coordinates	Can use FXRIGHT and FXLEFT
YDSTLEN	The y start position and number of lines	Can use YDST and LEN instead; <i>must</i> use YDST and LEN when destination address is linear (i.e. ylin = 1, see PITCH)

Rectangles and Span Lines

For rectangle and span line drawing, the following registers must be initialized:

Register	Function	Comment / Alternate Function
FXBNDRY	Filled object x left and right coordinates	Can use FXRIGHT and FXLEFT
YDSTLEN	The y start position and number of lines	Can use YDST and LEN instead; <i>must</i> use YDST and LEN when destination address is linear (i.e. ylin = 1, see PITCH)

4.5.5.2 Constant Shaded Trapezoids / Rectangle Fills

DWGCTL:

-	clipdis	transc	pattern	k	oltn	noc	k	Reserved		tra	ns			bo	ор		Reserved	shftzero	sgnzero	arzero	solid	zn	no	de	linear		atype			орс	cod	
TRAP	#	1	0	0	0	0	0	0	+	+	+	+	+	+	+	+	0	1	0	0	1	0	0	0	0	+	+	+	0	1	0	0
RECT	#	1	0	0	0	0	0	0	+	+	+	+	+	+	+	+	0	1	1	1	1	0	0	0	0	+	+	+	0	1	0	0
			tra	ans	:			ype ans						nod	le ⁽¹	⁾), t	he	tran	spa	ren	cy	pat	teri	n is	not	t su	ppo	orte	d - 1	the	valı	ue
			bc	p:				any '11			ean	ope	erati	ion	if a	aty	oe i	s R	ST	R; i	f at	typ	e i	s B	LK	, b ¢	op 1	mus	st b	e lo	ade	ed
			at	ype) :	Ca	an t	be R	ST	R,	or I	BLF	Κ																			

Register	Function	Comment / Alternate Function
FCOL	Foreground color	

- *Note:* That the **MACCESS** register's **pwidth** field can be set to 24 bits per pixel (PW24) with the following limitations:
 - atype is RSTR or
 - forcol<31:24>, forcol<23:16>, forcol<15:8>, and forcol<7:0> are set to the same value

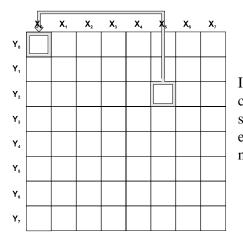
⁽¹⁾ 'Block mode' refers to the high bandwidth block mode function of SGRAM. It should be used whenever possible for the fastest performance, although certain restrictions apply (see the **atype** field of the **DWGCTL** register on page 3-125).

4.5.5.3 Patterned Trapezoids / Rectangle Fills

DWGCTL:

	clipdis	transc	pattern	k	oltn	noc	ł	Reserved		tra	ns			bo	ор		Reserved	shftzero	sgnzero	arzero	solid	zn	no	de	linear		atype		(орс	od	
TRAP	#	+	0	0	0	0	0	0	+	+	+	+	+	+	+	+	0	#	0	0	0	0	0	0	0	+	+	+	0	1	0	0
RECT	#	+	0	0	0	0	0	0	+	+	+	+	+	+	+	+	0	#	1	1	0	0	0	0	0	+	+	+	0	1	0	0
			tra	ans	:			/pe be				he	trar	ispa	arer	ncy	pat	terr	ı is	not	suj	ppo	orte	d -	the	val	lue	of t	rar	IS		
			bo	p:				any '11			ean	ope	erat	ion	if a	atyp)e i	s R	ST	R; i	f at	yp	e i	s Bl	LK	, bo	op 1	nus	st be	e lo	ade	ed
			aty	ype) :	С	an	be l	RST	ΓR,	or	BL	K																			

■ transc: if atype is BLK, an opaque background is *not* supported - the value of transc must be '1'


Register	Function	Comment / Alternate Function
PAT0	Pattern storage in Windows format	Use SRC0, SRC1, SRC2, SRC3 for
PAT1	I attern storage in windows format	pattern storage in Little-Endian format
SHIFT	Pattern origin offset	Only if shftzero = 0
BCOL	Background color	Only if transc = 0
FCOL	Foreground color	

◆ Note: The MACCESS register's pwidth field can be set to 24 bits per pixel (PW24) with the following limitations:

- atype is RSTR
- or
- forcol<31:24>, forcol<23:16>, forcol<15:8>, and forcol<7:0> are set to the same value, and backcol<31:24>, backcol<23:16>, backcol<15:8>, and backcol<7:0> are set to the same value.

Patterns and Pattern Offsets

Patterns can be comprised of one of two 8 x 8 pattern formats (Windows, or Little-Endian). If required, you can offset the pattern origin for the frame buffer within the register (if no offset is required, program the **shftzero** bit to '1').

In the illustration on the left, the offset position is 5, 2. The corresponding register position's value is moved to the starting point of the pattern array. (This starting point is equivalent to an offset of 0,0.) Refer to the examples on the next page for more details.

Screen Representation

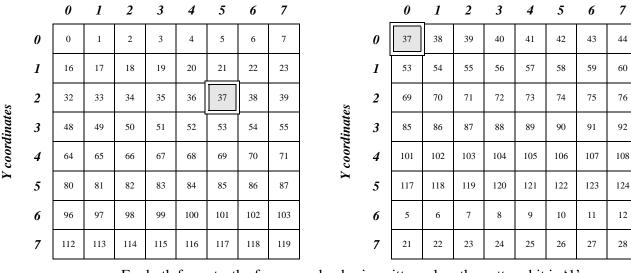
The examples below show how the data stored in the pattern registers is mapped into the frame buffer. The numbers inside the boxes represent the register bit positions that comprise the pattern.

• Windows format (used to drive Microsoft Windows) stores the pattern in the **PAT0** and **PAT1** (page 3-128) registers. The following illustration shows the **PAT** register pattern usage for offsets of 0,0 and 5,2.

Offset = 0,0 Windows

Offset = 5,2 Windows

				X	coor	dinate	?S							X	coor	dinate	?S		
		0	1	2	3	4	5	6	7			0	1	2	3	4	5	6	7
	0	7	6	5	4	3	2	1	0		0	18	17	16	23	22	21	20	19
	1	15	14	13	12	11	10	9	8		1	26	25	24	31	30	29	28	27
S	2	23	22	21	20	19	18	17	16	S	2	34	33	32	39	38	37	36	35
Y coordinates	3	31	30	29	28	27	26	25	24	Y coordinates	3	42	41	40	47	46	45	44	43
coor	4	39	38	37	36	35	34	33	32	coor	4	50	49	48	55	54	53	52	51
Y	5	47	46	45	44	43	42	41	40	Y	5	58	57	56	63	62	61	60	59
	6	55	54	53	52	51	50	49	48		6	2	1	0	7	6	5	4	3
	7	63	62	61	60	59	58	57	56		7	10	9	8	15	14	13	12	11


• Little-Endian format (for non-Windows systems) stores the pattern in the **SRC0**, **SRC1**, **SRC2**, and **SRC3** registers (page 3-153). In this case, the patterning for each line must be duplicated within the register (this simplifies software programming for hardware requirements). Depending on the offset, some pattern bits may come from the original pattern byte, while others may come from the associated duplicate byte. The following illustration shows the **SRC** register pattern usage for offsets of 0,0 and 5,2.

Offset = 0,0 Little-Endian

Offset = 5,2 Little-Endian

X coordinates

• For both formats, the foreground color is written when the pattern bit is '1'

• For both formats, the background color is written when the pattern bit is '0'

4.5.5.4 Gouraud Shaded Trapezoids / Rectangle Fills

DWGCTL:

	clipdis	Ë.	pattern	k	oltr	noc	Ł	Reserved		tra	ns			bo	ър		Reserved	shftzero	sgnzero	arzero	solid	zn	no	de	linear		atype			орс	cod	
TRAP	#	0	0	0	0	0	0	0	#	#	#	#	#	#	#	#	0	1	0	0	0	#	#	#	0	+	+	+	0	1	0	0
RECT	#	0	0	0	0	0	0	0	#	#	#	#	#	#	#	#	0	1	1	1	0	#	#	#	0	+	+	+	0	1	0	0

atype: must be either ZI or I

Register	Function	Comment / Alternate Function
ALPHACTRL	scrblendf, dstblendf, alphamode, astipple, alpha test mode, alphasel	must set aten = '0'
ALPHASTART	The Alpha Start value	(1)
ALPHAXINC	The Alpha Increment on the x-axis	(1)
ALPHAYINC	The Alpha Increment on the y-axis	(1)
DR0 (if zwidth = 0) DR0_Z32LSB, DR0_Z32MSB (if zwidth = 1)	The z start position	Only if zmode <> NOZCMP or atype = ZI
DR2 (if zwidth = 0) DR2_Z32LSB, DR2_Z32MSB (if zwidth = 1)	The z increment for x	"
DR3 (if zwidth = 0) DR3_Z32LSB, DR3_Z32MSB (if zwidth = 1)	The z increment for y	"
DR4	Red start position	
DR6	Red increment on x axis	
DR7	Red increment on y axis	
DR8	Green start position	
DR10	Green increment on x axis	
DR11	Green increment on y axis	
DR12	Blue start position	
DR14	Blue increment on x axis	
DR15	Blue increment on y axis	
FCOL	Alpha value	Only if $pwidth = 32$, or $pwidth = 16$ and $dit555 = 1$
FOGSTART	The Fog factor Start value	only if fogen = 1
FOGXINC	The Fog factor Increment on major axis	"
FOGYINC	The Fog factor Increment on diagonal axis	"
FOGCOL	The Fog Color	"

⁽¹⁾ Whenever a function in the ALPHACTRL register requires them, Alphastart, alphaxinc, or alphayinc are programmed.

◆ Note: When drawing Gouraud shaded trapezoids, the MACCESS register's pwidth field must not be set to 24 bits per pixel (PW24).

4.5.5.5 Texture Mapping

	clipdis	transc	pattern	ł	oltn	noc	ł	Reserved		tra	ns		Γ	bo	ор		Reserved	shftzero	sgnzero	arzero	solid	zn	100	de	linear		atype		(оро	od	
TRAP	#	0	0	0	0	0	0	0	#	#	#	#	#	#	#	#	0	1	0	0	0	#	#	#	0	+	+	+	0	1	1	0
RECT	#	0	0	0	0	0	0	0	#	#	#	#	#	#	#	#	0	1	1	1	0	#	#	#	0	+	+	+	0	1	1	0

atype: must be either ZI or I

Register	Function	Comment / Alternate Function
ALPHASTART	The Alpha Start value	see note
ALPHAXINC	The Alpha Increment on the x-axis	see note
ALPHAYINC	The Alpha Increment on the y-axis	see note
ALPHACTRL	srcblendf, dstblendf, alphamode, astipple, alpha test mode, alphasel	—
DR0 (if zwidth = 0) DR0_Z32LSB, DR0_Z32MSB (if zwidth = 1)	Z start position	Only if zmode <> NOZCMP or atype = ZI
DR2 (if zwidth = 0) DR2_Z32LSB, DR2_Z32MSB (if zwidth = 1)	Z increment for x	"
DR3 (if zwidth = 0) DR3_Z32LSB, DR3_Z32MSB (if zwidth = 1)	Z increment for y	"
DR4	Red start value	Only if modulate or decal is used
DR6	Red increment on x axis	"
DR7	Red increment on y axis	"
DR8	Green start value	"
DR10	Green increment on x axis	"
DR11	Green increment on y axis	"
DR12	Blue start value	"
DR14	Blue increment on x axis	"
DR15	Blue increment on y axis	"
FCOL	Alpha value	Only if $pwidth = 32$, or $pwidth = 16$ and dit555 = 1.
FOGCOL	The Fog color	only if fogen = 1
FOGSTART	The Fog factor Start value	only if fogen = 1
FOGXINC	The Fog factor increment for x	"
FOGYINC	The Fog factor increment for y	"
SPECRSTART	Specular Red Start value	only if specen = 1
SPECRXINC	Specular Red Increment on major axis	"
SPECRYINC	Specular Red Increment on diagonal axis	"

Register	Function	Comment / Alternate Function
SPECGSTART	Specular Green Start value	"
SPECGXINC	Specular Green Increment on major axis	"
SPECGYINC	Specular Green Increment on diagonal axis	"
SPECBSTART	Specular Blue Start value	"
SPECBXINC	Specular Blue Increment on major axis	"
SPECBYINC	Specular Blue Increment on diagonal axis	"
TEXBORDERCOL	Texture Border Color	Only if borderen = 1
TEXCTL	Texel width, texture pitch, texture alpha key, texture alpha mask, palette select, decal with color key, clampmode, tmodulate, strans, itrans, alpha overwrite and keying, alpha extend	
TEXCTL2	decalblend, idecal, decaldis, decalmod, ckstransdis, borderen, specen	
TEXFILTER	minfilter, maxfilter, filteralpha, fthres, mapnb	—
TEXHEIGHT	Texture height, height mask, and round-up factor	
TEXORG	Texture base address and origin of map 0	—
TEXORG1	Origin of map 1	Only when mip- mapping or planar mode is used.
TEXORG2	Origin of map 2	"
TEXORG3	Origin of map 3	Only when mip- mapping is used.
TEXORG4	Origin of map 4	"
TEXTRANS	Transparency color key, texture keying mask	—
TEXTRANSHIGH	Transparency color key high, texture keying mask high	_
TEXWIDTH	Texture width, width mask, and round-up factor	—
TMR0	s/wc increment for x	—
TMR1	s/wc increment for y	—
TMR2	t/wc increment for x	—
TMR3	t/wc increment for y	
TMR4	q/wc increment for x	
TMR5	q/wc increment for y	
TMR6	s/wc start value	
TMR7	t/wc start value	
TMR8	q/wc start value	

- ◆ Note: The MACCESS register's pwidth field must not be set to 24 bits per pixel (PW24) when drawing texture map trapezoids.
- ► *Note:* If twidth = TW4 or TW8, the color palette *must* be initialized.
- *Note:* Only clamp mode is supported when programming the **twmask** or **thmask** with a

value which is not a power of 2. The fields **tw** and **th** *must* be programmed with a "power-of-2" value but s/wc and t/wc can be scaled accordingly.

- *Note:* Each texture can be located in the frame buffer or in the system memory.
- Note: Whenever a function in the ALPHACTRL register requires them, alphastart, alphaxinc, alphayinc are programmed.
- ◆ Note: When using any mip_mapping filtering mode, the thmask, twmask fields must be programmed with a multiple of 16 1.
- ◆ Note: When using any mip_mapping filtering mode, the tpitchext field must be programmed with a multiple of 16.

4.5.5.6 Video Scaler

As a video scaler, the perspective effect must be disabled, this is done by programming the following register.

- TMR4 = 0x00000000
- TMR5 = 0x00000000
- TMR8 = 0x00010000

When used as a video scaler, texture engine quality depends on the filter selected. Bilinear filtering will give quality output at good speed. Mip-mapping will give high quality but with lower speed.

The texture engine supports both up and down scaling. The video source can be any format defined by texformat, but typically a video source will be one of these formats.

4.5.5.7 Video Scaler

When the selected filter includes *bilinear* filtering (a least 4 texels are needed to generate a pixel) and the texture width is *greater* than 512 texels, and the texel format is TW32 or TW422, the texture cache fills before the end of a texture line resulting in cache misses for the next line. Performances can be affected due to the extra memory bandwidth required.

One way to improve performance is to split the operation in two and keep the texels mapped at 512 or less for each TRAP. For the second TRAP, re-adjust the S/wc and T/wc parameters to continue scanning the texture where the first TRAP stopped. Use the same precision as that of the hardware for the second trap's S and T start values or artifacts could occur.

- ◆ Note: This technique may not always improve the drawing speed depending on memory bandwidth available at the time of the operation.
- *Example:* The texture is a 720x720 YUV422 image that is to be drawn with a 1:1 ratio.

Tw $= \log 2(1024)$ Th $= \log 2(1024)$ = 0Sstart = 1/1024Sxinc Syinc = 0 Tstart = 0Txinc = 0Tyinc = 1/1024YDST = 0LENGTH = 720**FXLEFT** = 0FXRIGHT = 512SECOND TEXTURE_TRAP:

Sstart= 512 * SxincTstart= 0YDST= 0LENGTH= 720FXLEFT= 512FXRIGHT= 720

FIRST TEXTURE_TRAP:

4.5.6 Bitblt Programming

The following subsections list the registers that must be specifically programmed for Bitblt operations. Remember to program the registers listed in section 4.5.3 and subsection 4.5.6.1 first. Also, *the last register you program must be accessed in the 1D00h-1DFFh range in order to start the drawing engine*.

4.5.6.1 Address Initialization

XY Source Addresses

Register	Function	Comment / Alternate Function
AR0	Source end address	The last pixel of the first line
AR3	Source start address	
AR5	Source y increment	—
FXBNDRY	Destination boundary (left and right)	Can use FXRIGHT and FXLEFT
DSTORG	Origin of the destination	—
SRCORG	Origin of the same source surface	—
YDSTLEN	The y start position and number of	Can use YDST and LEN instead
IDSILLN	lines	

Linear Source Addresses

Register	Function	Comment / Alternate Function
AR0	Source end address	The last pixel of the source
AR3	Source start address	_
FXBNDRY	Destination boundary (left and right)	Can use FXRIGHT and FXLEFT
SRCORG	Origin of the source surface	
YDSTLEN	The y start position and number of lines	Must use YDST and LEN when destination address is linear (i.e. ylin = 1, see PITCH)

• *Note:* **AR0** comprises 18 bits, therefore, a maximum of 256 Kpixels can be blitted.

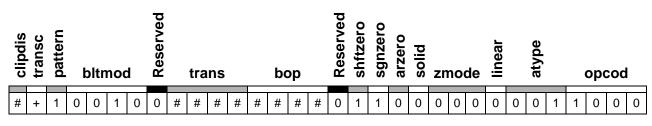
Patterning Operations

Register	Function	Comment / Alternate Function
FXBNDRY	FXLEFT = destination boundary left-4 FXRIGHT = destination boundary right	Can use FXRIGHT and FXLEFT
YDSTLEN		Can use YDST and LEN instead; <i>must</i> use YDST and LEN when destination address is linear (i.e. ylin = 1, see PITCH)
CXLEFT	Destination boundary left	

4.5.6.2 Two-operand Bitblts

D	WC	SC	TL:																													
	clipdis transc			ł	oltr	noc	ł	Reserved		tra	ns			bo	ор		Reserved	shftzero	sgnzero	arzero	solid	zn	noe	de	linear		atype		(орс	od	I
XY	#	+	0	0	0	1	0	0	#	#	#	#	#	#	#	#	0	1	+	0	0	0	0	0	0	0	0	1	1	0	0	0
LIN.	#	+	0	0	1	1	1	0	#	#	#	#	#	#	#	#	0	1	1	0	0	0	0	0	1	0	0	1	1	0	0	0

■ transc: *must* be '0' if the MACCESS register's pwidth field is set to 24 bits/pixel (PW24)


Register	Function	Comment / Alternate Function
SGN	Vector quadrant ⁽¹⁾	Only needs to be set when sgnzero = 0°
FCOL	Transparency color key	Only when transc = '1'
BCOL	Color key plane mask	Only when transc = '1'

⁽¹⁾ Sets major or minor axis and positive or negative direction for x and y.

• *Note:* For *rolling blit* primitives AR5 (source pitch) must be programmed to '0'.

4.5.6.3 Color Patterning 8 x 8

DWGCTL:

■ transc: *must* be '0' if the MACCESS register's pwidth field is set to 24 bits/pixel (PW24)

Register	Function	Comment / Alternate Function
AR0	When pwidth = PW8, PW16, or PW32: AR0 <17:3> = AR3 <17:3> When pwidth = PW8: AR0 <2:0> = AR3 <2:0> + 2 When pwidth = PW16: AR0 <2:0> = AR3 <2:0> + 4 When pwidth = PW32: AR0 <2:0> = AR3 <2:0> + 6 When pwidth = PW24: AR0 <17:0> = AR3 <17:0>+7	_
AR3	Pattern address + $(x \text{ offset } - 4)_{mod8}$ + $(y \text{ offset } * 32)$	_
AR5	32	—
FCOL	Transparency color key	Only when transc = '1'
BCOL	Color key plane mask	Only when transc = '1'

Note: The AR3 register performs a dual function: it sets the pattern's address, and it is also used to determine how the pattern will be pinned in the destination. Refer to 'Patterns and Pattern Offsets' on page 4-42; color patterning is performed in a similar manner to monochrome patterning (except that the SHIFT register is not used for pinning).

◆ *Note:* 8, 16, 32 bit/pixel pattern storage hardware restrictions:

- The first pixel of the pattern must be stored at a pixel address module 256 + 0, 8, 16, or 24.
- Each line of 8 pixels is stored continuously in memory for each pattern, but there must be a difference of 32 in the pixel address between each line of the pattern. To do this efficiently, four patterns should be stored in memory in an interleaved manner, in a block of 4 x 8 x 8 pixel locations. The following table illustrates such a pattern storage (the numbers in the table represent the pixel addresses, modulo 256):

			Pattern 0					Pattern 1						Pattern 2							Pattern 3												
	Pixels:	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
	0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	1	32							39	40							47	48							55	56							63
	2	64							71	72							79	80							87	88							95
es:	3	96							103	104							111	112							119	120							127
Lines:	4	128							135	136							143	144							151	152							159
	5	160							167	168							175	176							183	184							191
	6	192							199	200							207	208							215	216							223
	7	224							231	232							239	240							247	248							255

• Pattern 3 is not available when the **MACCESS** register's **pwidth** field is PW16 or PW32.

• *Note:* 24 bit/pixel pattern storage hardware restrictions:

- The first pixel of the pattern must be stored at a pixel address module 256 + 0, or 16.
- Each line of 8 pixels is stored continuously in memory for each pattern, but there must be a difference of 32 in the pixel address between each line of the pattern. To do this efficiently, two patterns should be stored in memory in an interleaved manner, in a block of 2 x 16 x 8 pixel locations. The following table illustrates such a pattern storage (the numbers in the table represent the pixel addresses, modulo 256):

								I	Patte	ern	0													ŀ	Patte	ern	1						
	Pixels:	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
	0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	1	32															47	48															63
	2	64															79	80															95
es:	3	96															111	112															127
Lines:	4	128															143	144															159
	5	160															175	176															191
	6	192															207	208															223
	7	224															239	240															255

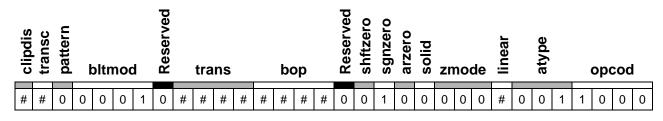
4.5.6.4 BitBlts With Expansion (Character Drawing) 1 bpp

DWGCTL:

clipdis transc pattern omng	o Reserved	trans	bop	Reserved	shftzero sgnzero	arzero solid	zmode	linear	atype	opcod
# + 0 + + +	+ 0 #	± # # #	# # #	# 0	1 1	0 0	0 0 0	# +	+ +	1 0 0 0
■ trans:	must be '	,0000,	e transpare	• •						
■ bop:	uses any '1100'	Boolean of	peration if a	atype i	is RS7	ΓR; if a	atype is]	BLK, I	<i>must</i> b	e loaded with
■ bltmod:	can be Bl	MONOLE	F or BMO	NOWF						
atype:	can be RS	STR <i>or</i> BL	K							
∎ transc:	if atype i be '1'	is BLK, an	opaque ba	ckgrou	nd is	<i>not</i> su	pported -	the va	lue of	transc must

Register	Function	Comment / Alternate Function
BCOL	Background color	Only when transc = 0
FCOL	Foreground color	

• *Note:* The MACCESS register's pwidth field can be set to 24 bits per pixel (PW24) with the following limitations:


• atype is RSTR

or

 forcol<31:24>, forcol<23:16>, forcol<15:8>, and forcol<7:0> are set to the same value, and backcol<31:24>, backcol<23:16>, backcol<15:8>, and backcol<7:0> are set to the same value.

4.5.6.5 BitBlts With Expansion (Character Drawing) 1 bpp Planar

DWGCTL:

Register	Function	Comment / Alternate Function
SHIFT	Plane selection	—
BCOL	Background color	Only when transc = 0°
FCOL	Foreground color	

◆ *Note:* For **MACCESS** the planar bitblts are *not* supported with 24 bits/pixel (PW24).

4.5.7 ILOAD Programming

The following subsections list the registers that must be specifically programmed for ILOAD (image load: Host \rightarrow RAM) operations. You must take the following steps:

- **Step 1.** Initialize the registers. Remember to program the registers listed in section 4.5.3 and subsection 4.5.7.1. Depending on the type of operation you wish to perform, you must also program the registers in subsection 4.5.7.2 or subsection 4.5.7.3.
- **Step 2.** The last register you program must be accessed in the 1D00h-1DFFh or 2000h-2DFFh range in order to start the drawing engine.
- **Step 3.** Write the data in the appropriate format to either the DMAWIN or 8 MByte Pseudo-DMA memory ranges.

After the drawing engine is started, the next successive BFIFO locations are used as the image data until the ILOAD is completed. Since the ILOAD operation generates the addresses for the destination, the addresses of the data are not used while accessing the DMAWIN or 8 MByte Pseudo-DMA window. It is recommended that host CPU instructions be used in such a way that each transfer increments the address. This way, the PCI bridge can proceed using burst transfers (assuming they are supported and enabled).

Note: It is important to transfer the exact number of pixels expected by the drawing engine, since the drawing engine will not end the ILOAD operation until all pixels have been received. A deadlock will result if the host transfers *fewer pixels* than expected to the drawing engine (the software assumes the transfer is completed, but meanwhile the drawing engine is waiting for additional data). However, if the host transfers *more pixels* than expected, the extra pixels will be interpreted by the drawing engine as register accesses.

• *Note:* The ILOAD command must not be used when no data is transferred.

The total number of dwords to be transferred will differ, depending on whether or not the source is linear:

• When the source is *linear*: the data is padded at the end of the source.

Total = INT ((psiz * width * Nlines + 31) / 32)

• When the source is *not linear*: the data is padded at the end of every line.

Total = INT ((psiz * width + 31) / 32) * Nlines

Legend:

Total:	The number of dwords to transfer
width:	The number of pixels per line to write
Nlines:	The number of lines to write
psiz:	The source size, according to Table 4-3

bltmod	pwidth	psiz
	PW8	8
DECOL	PW16	16
BFCOL	PW24	24
	PW32	32
BMONOLEF		1
BMONOWF		1
BU24RGB		24
BU24BGR		24
BU32RGB		32
BU32BGR		32

Table 4-2: ILOAD Source Size

4.5.7.1 Address Initialization

Linear Addresses

Register	Function	Comment / Alternate Function
OPMODE	Data format	A 16-bit access is required to prevent modification of the dirDataSiz field (bits 17:16), since direct frame buffer access may be concurrent
AR0	Total number of source pixels - 1	—
AR3	Must be 0	—
FXBNDRY	Destination boundary (left and right)	Can use FXLEFT and FXRIGHT
YDSTLEN	The y start position and length	Can use YDST and LEN instead; <i>must</i> use YDST and LEN when destination address is linear (i.e. ylin = 1, see PITCH)

XY Addresses

Register	Function	Comment / Alternate Function
OPMODE	Data format	A 16-bit access is required to prevent modification of the dirDataSiz field (bits 17:16).
AR0	Number of pixels per line - 1	—
AR3	Must be 0	—
AR5	Must be 0	
FXBNDRY	Destination boundary (left and right)	Can use FXLEFT and FXRIGHT
YDSTLEN	The y start position and length	Can use YDST and LEN instead; <i>must</i> use YDST and LEN when destination address is linear (as in: ylin = 1, see PITCH)

4.5.7.2 ILOAD of Two-operand Bitblts

Scanning direction

Transparency color key

Color key plane mask

DWGCTL:

SGN

FCOL BCOL

clipdis transc	battern bltmc	Reserved	tra	ns	b	ор	Reserved	shftzero	sgnzero	arzero	solid	zm	node	0 linear		atype		opcod
# +	0 + + +	+ 0	# #	# #	# #	# ;	# 0	1	+	0	0	0	0	0 +	0	0 1	1	0 0 1
•	 transc: must be '0' if the MACCESS register's pwidth field is set to 24 bits/pixel (PW24); must be '0' when the bltmod field is anything other than BFCOL bltmod: for a linear source, must be BFCOL. For an xy source, can be any of the following: BFCOL, BU32BGR, BU32RGB, BU24BGR, or BU24RGB. 																	
	sgnzero:		set to ' PW32						L, (or w	vhe	n th	e M	AC	CES	SS reg	iste	r's pwidth
	linear:	for an a	xy sour	ce, m	ust be	'0'; f	or a l	inea	ar so	ouro	ce, 1	mus	st be	e '1'				
		Functio	n		(Comm	ent / 1	Alter	nat	e Fi	inct	ion						
FCOL	FCOL Foreground color 1							For the BU32BGR and BU32RGB formats, depending on the MACCESS register's pwidth setting, the following bits from FCOL are used: PW32: Bits 31:24 originate from forcol <31:24> PW16: Bit 15 originates from forcol <15> when dit555 = 1										

Must be set only when **sgnzero** = 0

Only when **transc** = (1)

Only when **transc** = '1'

There are some restrictions in the data formats that are supported for this operation Table 4-3 shows all the valid format combinations. The structure of the buffers to be transferred is defined for each data format (as shown in the 'Pixel Formats' illustrations starting on page 4-8).

Processor Type	bltmod	dmaDataSiz	pwidth	Data Format				
			PW8	8-bit A				
	BFCOL	' 00'	PW16	16-bit A				
	BFCOL	00	PW24	24-bit A				
			PW32	32-bit A				
			PW8	24-bit A				
	BU24RGB	' 00'	PW16	24-bit A				
			PW32	24-bit A				
Little-Endian			PW8	24-bit B				
Little-Endian	BU24BGR	' 00'	PW16	24-bit B				
			PW32	24-bit B				
			PW8	32-bit A				
	BU32RGB	' 00'	PW16	32-bit A				
			PW32	32-bit A				
			PW8	32-bit B				
	BU32BGR	' 00'	PW16	32-bit B				
			PW32	32-bit B				
		·00'	PW8	8-bit B				
	BFCOL	'01'	PW16	16-bit B				
		'10'	PW32	32-bit A				
			PW8	32-bit A				
Big-Endian	BU32RGB	'10'	PW16	32-bit A				
			PW32	32-bit A				
			PW8	32-bit B				
	BU32BGR	'10'	PW16	32-bit B				
			PW32	32-bit B				

Table 4-3: ILOAD Supported Formats

4.5.7.3 ILOAD with Expansion (Character Drawing)

FCOL

clipdis transc pattern mılq	po Reserved	rans bop	Reserved shftzero	sgnzero arzero solid	linear	atype	opcod				
# + 0 + +	+ + 0 + ·	+ + + # # #	# # 0 1	1 0 0	0 0 0 1	+ + +	1 0 0 1				
bltmod:	must be set	to either BMON	OLEF or BI	MONOW	F						
■ trans:	• •	if atype is BLK, the transparency pattern is not supported - the value of trans must be '0000'									
■ bop:	uses any Bo with '1100'	oolean operation	if atype is I	RSTR; if a	atype is BLK	K, bop mi	ist be loaded				
atype:	RSTR, or B	SLK									
■ transc:	if atype is be '1'	if atype is BLK, an opaque background is <i>not</i> supported - the value of transc must be '1'									
Register	Functio	on		Comment	t / Alternate Fi	unction					
BCOL	Backgi	round color		Only wh	en transc =	' 0 '					

• *Note:* The MACCESS register's **pwidth** field can be set to 24 bits per pixel (PW24) with the following limitations:

• atype is either RPL or RSTR or

Foreground color

• forcol<31:24>, forcol<23:16>, forcol<15:8>, and forcol<7:0> are set to the same value, and backcol<31:24>, backcol<23:16>, backcol<15:8>, and backcol<7:0> are set to the same value.

There are some restrictions in the data formats that are supported for this operation. Table 4-4 shows all the valid format combinations. The structure of the buffers to be transferred is defined for each data format (as shown in the 'Pixel Formats' illustrations starting on page 4-8).

Table 4-4:	Bitblt with	Expansion	Supported	<i>Formats</i>
------------	-------------	-----------	-----------	----------------

Processor Type	bltmod	dmaDataSiz	Data Format
Little-Endian	BMONOLEF	' 00'	MONO A
Little-Endiali	BMONOWF	' 00'	MONO B
Big-Endian	BMONOWF	' 00'	MONO C

4.5.8 Loading the Texture Color Palette

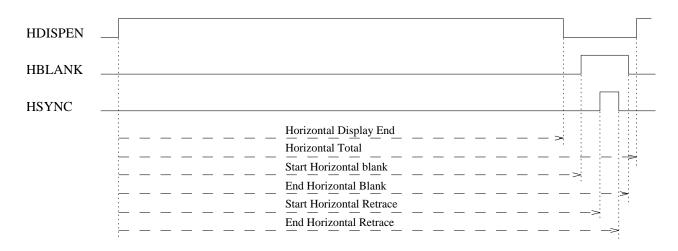
This operation is similar to a normal BITBLT or ILOAD operation. In this case, a source texture color palette is loaded into the destination $256 \times 1 \times 16$ bpp LUT (Look-Up Table) that is used in texture mapping. Any portion of the LUT can be programmed independently.

This color palette is used to perform color expansion during texture mapping when textures are in 4 or 8 bpp format. When 4 bpp textures are used, 16 palettes are available in the LUT. The choice of the palette used to do color expansion is determined by the **palsel** field of the **TEXCTL** register.

	Reserved	transc	pattern	k	bltmod 2 trans bop											Reserved	shftzero	sgnzero	arzero	solid	zn	າວຕ	de	linear		atype			орс	od		
BITBLT	0	0	0	0	1	1	1	0	0	0	0	0	1	1	0	0	0	1	1	0	0	0	0	0	1	0	0	1	1	0	0	0
ILOAD	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	1	1	0	0	0	0	0	1	0	0	1	1	0	0	1

Register	Function	Comment / Alternate Function
AR0	Source end address	—
AR3	Source start address	
PITCH	iy = 1024	
YDSTLEN	yval:Start position in the LUT (0 to 255)length:Number of locations to fill in the LUT (1 to 256)	
SRCORG	Origin of the source	For BLIT only
YDSTORG	0	
FXBNDRY	0	
MACCESS	pwidth = $PW16$, tlutload = 1	
OPMODE	dmamod = 01, dmadatsiz = 00 (Little-Endian) dmadatsiz = 01 (Big-Endian)	For ILOAD only

• Note: The PITCH and MACCESS registers are not normally modified during drawing operations, and may have to be re-programmed after this operation in order to return the drawing engine to its original state.


4.6 CRTC Programming

The CRTC can be programmed in one of two modes: VGA Mode or Power Graphic Mode. The **mgamode** field of the **CRTCEXT3** register is used to select the operating mode.

CRTC registers 0 to 7 can be write-protected by the **crtcprotect** field of the **CRTC11** register.

In VGA Mode, all of the **CRTC** extension bits must be set to '0'. The **page** field of **CRTCEXT4** can be used to select a different page of RAM in which to write pixels.

4.6.1 Horizontal Timing

Figure 4-7: CRTC Horizontal Timing

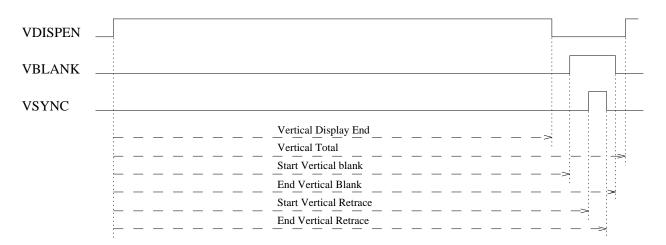
In VGA Mode, the horizontal timings are defined by the following VGA register fields:

htotal<7:0>	Horizontal total. Should be programmed with the total number of displayed characters plus the non-displayed characters minus 5.
hdispend<7:0>	Horizontal display end. Should be loaded with the number of displayed characters minus 1.
hblkstr<7:0>	Start horizontal blanking
hblkend<6:0>	End horizontal blanking. Should be loaded with (hblkstr + Horizontal Blank signal width) AND 3Fh. Bit 6 is not used in VGA Mode (mgamode = 0)
hsyncstr<7:0>	Start horizontal retrace
hsyncend<4:0>	End horizontal retrace. Should be loaded with (hsyncstr + Horizontal Sync signal width) AND 1Fh.
hsyncdel<1:0>	Horizontal retrace delay

In Power Graphic Mode, the following bits are extended to support a wider display area:

htotal<8:0>	Horizontal total
hblkstr<8:0>	Start horizontal blanking
hsyncstr<8:0>	Start horizontal retrace

The horizontal counter can be reset to **hsyncstr** (**CRTC4**) in Power Graphic Mode by a rising edge on the **VIDRST** pin, if the **hrsten** bit of the **CRTCEXT1** register is set to '1'.


The units of the horizontal counter are *character clocks* for VGA Mode, or 8 pixels in Power Graphic Mode. The **scale** field of the **CRTCEXT3** register is used to bring the VCLK clock down to an 8 *pixel* clock.

The scale factor settings are shown in the following table:

Bits/Pixel	scale
8	'000'
16	' 000'
24	'010'
32	'001'

4.6.2 Vertical Timing

Figure	<i>4-8</i> :	CRTC	Vertical	Timing
--------	--------------	------	----------	--------

In VGA Mode, the vertical timings are defined by the following VGA register fields:

vtotal<9:0>	Vertical total. Should be programmed with the total number of displayed lines plus the non-displayed lines minus 2.
vdispend<9:0>	Vertical display end. Should be loaded with the number of displayed lines minus 1.
vblkstr<9:0>	Start vertical blanking. The programmed value is one less than the horizontal scan line count at which the vertical blanking signal becomes active.
vblkend<7:0>	End vertical blanking. Should be loaded with (vblkstr -1 + Vertical Blank signal width) AND FFh.
vsyncstr<9:0>	Start vertical retrace
vsyncend<3:0>	End vertical retrace. Should be loaded with (vsyncstr + Vertical Sync signal width) AND 0Fh.
linecomp<9:0>	Line compare

In Power Graphic Mode, the following fields are extended to support a larger display area:

vtotal<11:0>	Vertical total
vdispend<10:0>	Vertical display end
vblkstr<11:0>	Vertical blanking start
vsyncstr<11:0>	Start vertical retrace
linecomp<10:0>	Line compare

The units of the vertical counter can be 1 or 2 scan lines, depending on the value of the **hsyncsel** bit of the **CRTC17** register.

The vertical counter can be reset to **vsyncstr** (**CRTC10**) in Power Graphic Mode by the VIDRST pin if the **vrsten** bit of the **CRTCEXT1** register is set to '1'. The **vinten** and **vintclr** fields of the **CRTC11** register can be used to control the vertical interrupt.

4.6.3 Memory Address Counter

In VGA Mode, the following registers are used to program the memory address counter and the cursor/underline circuitry:

startadd<15:0>	Start address	
offset<7:0>	Logical line width of the screen. This is programmed with the number of double or single words in one character line.	
curloc<15:0>	Cursor location	
prowscan<4:0>	Preset row scan	
maxscan<4:0>	Maximum scan line	
currowstr<4:0>	Row scan cursor begins	
currowend<4:0>	Row scan cursor ends	
curoff<4:0>	Cursor off	
undrow<4:0>	Horizontal row scan where underline will occur	
curskew<1:0>	Cursor skew control	

- The row scan counter can be clocked by the horizontal sync signal or by the horizontal sync signal divided by 2, depending on the value of the **conv2t4** (200 to 400 line conversion) field of the **CRTC9** register.
- The memory address counter clock is controlled by count4 (CRTC14) and count2 (CRTC17). These fields have no effect in Power Graphic Mode.
- The memory address can be modified by the dword (CRTC14), wbmode, addwrap, selrowscan, and cms (CRTC17) fields.

In Power Graphic Mode, the following fields are extended in order to support both a larger display, and up to 16 megabytes of memory.

startadd<20:0>	Start address.
offset<9:0>	Logical line width of the screen. This is programmed with the number of double slices in one display line.

- The display can be placed in interlace mode if the **interlace** bit of the **CRTCEXT0** register is set to '1'.
- The curloc, prowscan, currowstr, currowend, curoff, undrow and curskew registers are not used in Power Graphic Mode.
- The **maxscan** field of the **CRTC9** register is used to zoom vertically in Power Graphic Mode.
- Horizontal zooming can be achieved by dividing the pixel clock period and re-programming the horizontal registers.

4.6.4 Programming in VGA Mode

The VGA CRTC of the MGA-G200 chip conforms to VGA standards. The limitations listed below need only be taken into account when programming extended VGA modes.

Limitations:

■ **htotal** must be greater than 0.

■vtotal must be greater than 0.

■htotal - hdispend must be greater than 0

■htotal - bytepan + 2 must be greater than hdispend

■hsyncstr must be greater than hdispend + 2

CRTC Latency Formulas

This section presents several rules that must be followed in VGA Mode in order to adhere to the latency constraints of the MGA-G200's CRTC.

In the formulas which follow, 'cc' represents the number of video clocks per character. The display modes are controlled by the **SEQ1** register's **dotmode** and **dotclkrt** fields and the **ATTR10** register's **pelwidth** field as shown below:

Display Mode	dotmode	dotclkrt	pelwidth	сс
Character mode: 8	1	0	0	8
Character mode: 9	0	0	0	9
Zoomed character: 16	1	1	0	16
Zoomed character: 18	0	1	0	18
Graphics (non-8 bit/pixel)	1	0	0	8
Zoomed graphics (non-8 bit/pixel)	1	1	0	16
Graphics (8 bit/pixel)	1	0	1	4
Zoomed graphics (8 bit/pixel)	1	1	1	8

In VGA Mode, Tvclk is equivalent to Tpixclk.

Variable	VGA Text	VGA Graphics
А	64	28
В	1	1
С	6	6
D	73	37

The following factors (in GCLKs) must be applied to the formulas which follow, according to whether text or graphics are being displayed:

Using these values, we can determine the following rules:

(cc * ((H_total - Byte_pan) - (H_dispend + MAX(H_dispskew + 2, H_syncstr - H_dispend)) + 1) - 3)
 * Tvclk >= A * Tgclk
 (cc * 4 - 1) * Tvclk >= A * Tgclk
 cc * Tvclk >= B * Tgclk
 (cc * ((H_total - Byte_pan) - H_dispend + 2) - 1) * Tvclk >= (A + C) * Tgclk)
 (cc * ((H_total - Byte_pan) - (H_dispend + MAX(H_dispskew + 2, H_syncstr - H_dispend)) + 2) - 3)
 * Tvclk >= (A + C) * Tgclk
 (cc * ((H_total - Byte_pan) - (H_dispend + 3) - 1) * Tvclk >= (D + C) * Tgclk)

4.6.5 Programming in Power Graphic Mode

The horizontal and vertical registers are programmed as for VGA Mode, and they can use the **CRTC** extension fields.

The memory address mapper must be set to byte mode and the **offset** register value (**CRTC13**) must be programmed with the following formula:

offset =
$$\frac{\text{videopitch} \times \text{bpp} \times \text{fsplit}}{128}$$

Where:

bpp is the pixel width, expressed in bits per pixel

videopitch is the number of pixels per line in the frame buffer (including pixels that are not visible

fsplit = 2 in split mode; 1 in all other modes

For example, for a 16 bit/pixel frame buffer at a resolution of 1280 x 1024 and a memconfig value of 01:

offset =
$$(1280 \times 16)/128 = 160$$

Depending on the pixel width (bpp), the video pitch *must* be a multiple of one of the following:

bpp	multiple of
8	16
16	8
24	16
32	4

The **startadd** field represents the number of pixels to offset the start of the display by:

startadd = _____address of the first pixel to display

factor

Depending on the pixel depth, the following *factors* must be used:

bpp	factor
8	8
16	4
24	8
32	2

For example, to program **startadd** to use an offset of 64 with a 16 bit/pixel frame buffer, **startadd** = 64/4 = 16. With a 24 bit/pixel frame buffer, **startadd** = 64/8 = 8.

► Note: When accessing the three-part startadd field, the portion which is located in CRTCEXT0 must *always* be written; it must always be written *after* the other portions of startadd, which are located in CRTCC and CRTCD). The change of start address will take effect at the beginning of the next horizontal retrace following the write to CRTCEXT0. Display will continue at the next line, using the new startadd value. This arrangement permits page flipping at any line, with no tearing occurring within the line.

To avoid tearing between lines within a frame, software can poll either **vcount** or the **vretrace** field of **INSTS1**, or use the VSYNC interrupt to update **CRTCEXT0** between frames.

◆ *Note:* The Attributes Controller (ATC) is *not* available in Power Graphic Mode.

There is no overscan in Power Graphic mode, therefore:

```
htotal + 5 == hblkend +1
hdispend + 1 == hblkstr +1
```

The End Horizontal Blank value must always be greater that hsyncstr + 1, so that the start address latch can be loaded before the memory address counter.

A composite sync (block sync) can be generated on the HSYNC pin of the chip if the **csyncen** field of the **CRTCEXT3** register is set to '1'. The VSYNC pin will continue to carry the vertical retrace signal.

- ◆ Note: The composite sync is always active low. The following values must be programmed in Power Graphic Mode.
 - hsyncdel = 0
 - hdispskew = 0
 - hsyncsel = 0
 - **bytepan** = 0
 - conv2t4 = 0
 - dotclkrt = 0
 - dword = 0, wbmode = 1 (refer to the 'Byte Access' table in the CRTC17 register description)
 - **selrowscan** = 1, cms = 1

Interlace Mode

If interlace is selected, the offset value *must* be multiplied by 2.

- The **vtotal** value must be the total number of lines (of both fields) divided by 2.
 - For example, for a 525 line display, vtotal = 260.
- The **vsyncstr** value must be divided by 2
- The **vblkstr** values must be divided by 2
- The **hvidmid** field must be programmed to become active exactly in the middle of a horizontal line.

Zooming

Horizontal zooming is achieved using the hzoom field of the **XZOOMCTRL** register. To implement the zoom function, pixles are duplicated within the DAC, and the memory address generator advances at a reduced rate.

Vertical zooming is achieved by re-scanning a line 'n' times. Program the **CRTC9** register's **maxscan** field with the appropriate value, n-1, to obtain a vertical zoom.

For example, set **maxscan** = 3 to obtain a vertical zoom rate of x4.

Limitations:

- htotal *must* be greater than 0 (because of the delay registers on the htotal comparator)
- htotal hdispend must be greater than 0
- In interlace mode, **htotal** must be equal to or greater than **hsyncend** + 1
- htotal bytepan + 2 must be greater than hdispend
- hsyncstr must be greater than hdispend + 2
- vtotal *must* be greater than 0 (because of the delay registers on the vtotal comparator)
- In interlace mode, **vtotal** must be an even number
- In HZOOM = 00, (Horizontal Total) MOD 8 *must not* be '7'
- In HZOOM = 01, (Horizontal Total) MOD 16 *must not* be '15'
- In HZOOM = 1X, (Horizontal Total) MOD 32 *must not* be '31'

CRTC Latency Formulas

This section presents several rules that must be followed in Power Graphic Mode in order to adhere to the latency constraints of the CRTC.

In the formulas below, 'cc' represents the number of VCLKs per character (8 pixels). Using these values, we can determine the following rules:

- 1. (VC) (Tpixclk) >= Tmclk
- 2. ((8) (htotal hsyncstr +1) +3(VC)) (Tpixclk) >= (124) (Tmclk)
- 3. ((7 hiprilvl)(VC)(8) + ((1)VC 1))(Tpixclk) >= (MP)(Tmclk) + (11)(VC)(Tpixclk)

MAXHIPRI = MIN(HIPRILVL, (**SCALE** + 1)(Tmclk / Tpixclk)) (round to the nearest whole number) where:

SCALE = value programmed into the **SCALE** register.

VC = 8 / DF (which is the number of pixels per slice)

- 8 in BPP8
- 4 in BPP15 / BPP16
- 8/3 in BPP24 packed pixel
- 2 in BPP32PAL / BPP32DIR

Tmclk = The period of MCLK in ns

Tpixclk = The period of the pixel clock in ns

MP = Memory Controller Pipe Depth

strmfctl = The Streamer Pipe Blocking Field

if	MP with CODEC or VIN operating	MP without CODEC or VIN operating
strmfctl = 2	32	32
strmfctl = 1	41	41
strmfctl = 0	59	52

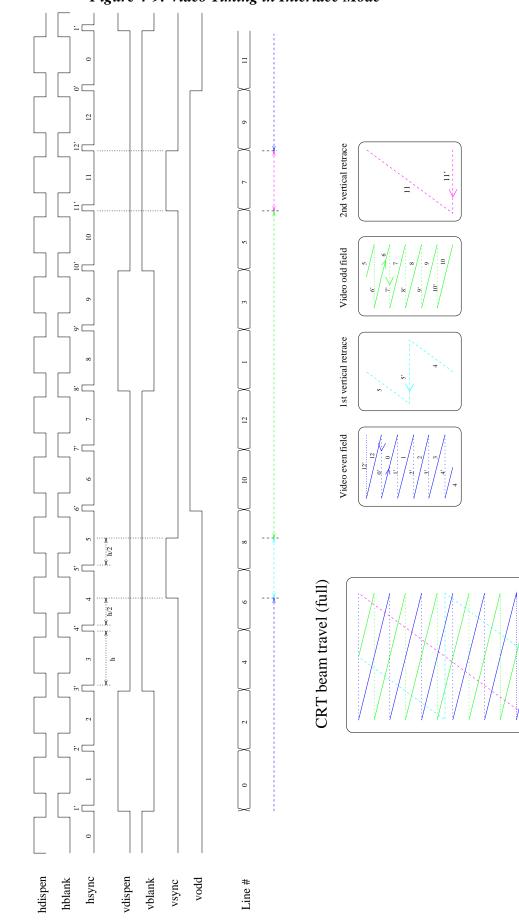


Figure 4-9: Video Timing in Interlace Mode

4.7 Video Interface

4.7.1 Operation Modes

The MGA-G200's RAMDAC can operate in one of five modes, depending on the values of the **mgamode** field of the **CRTCEXT3** register and the **depth** field of the **XMULCTRL** RAMDAC register, as shown below:

mgamode	depth	Mode Selected
0	000	VGA
1	000	Pseudo Color (BPP8)
1	001	True Color (BPP15)
1	010	True Color (BPP16)
1	011	True Color (BPP24)
1	100	Direct Color (BPP32DIR)
1	101	True Color (BPP32PAL)

4.7.1.1 VGA Mode

In VGA mode, the data to be displayed comes from the MGA-G200's VGA Attribute Controller (ATC). The data from the ATC is used as an address for the three-LUT RAM. The pixel read mask can be applied to the data before it passes through the palette. The hardware cursor and keying functions are not supported in VGA mode.

Red LUT	P7	P6	P5	P4	P3	P2	P1	P0
Green LUT	P7	P6	P5	P4	P3	P2	P1	P0
Blue LUT	P7	P6	P5	P4	P3	P2	P1	P0

- The frequency of the pixel PLL is determined by the **clksel** field of the VGA **MISC** register, which selects the proper set of registers for the PLL. The frequency can also be changed via the **XPIXPLLM**, **XPIXPLLN**, and **XPIXPLLP** registers.
- Horizontal zooming is not supported in VGA mode.

4.7.1.2 Pseudo Color Mode

In Pseudo Color mode (BPP8), the data from the memory is sent to the RAMDAC's internal FIFO via the memory controller. The data is then used as an address for the three-LUT RAM (as in VGA mode). A hardware cursor is available.

- The pixel PLL should use register set 'C' register set, so as to not change the frequency of the VGA PLL sets.
- Horizontal zooming is supported in pseudo color mode.

4.7.1.3 True Color Mode

The four true color modes supported by MGA-G200 are BPP15, BPP16, BPP24, and BPP32PAL. In these modes, the pixel data from the internal RAMDAC's FIFO is mapped to the LUT addresses as shown in the following illustrations:

15-Bit True Color (BPP15)

Red LUT	P15	0	0	P14	P13	P12	P11	P10
Green LUT	P15	0	0	P9	P8	P7	P6	P5
Blue LUT	P15	0	0	P4	P3	P2	P1	P0

■ Bit 15 can be used as an overlay color (it selects another LUT table in the RAM) and can be masked out by the **alphaen** field of the **XGENCTRL** register (when at '0').

16-bit True Color (BPP16)

Red LUT	0	0	0	P15	P14	P13	P12	P11
Green LUT	0	0	P10	P9	P8	P7	P6	P5
Blue LUT	0	0	0	P4	P3	P2	P1	P0

24-bit True Color (BPP24 and BPP32PAL)

Red LUT	P23	P22	P21	P20	P19	P18	P17	P16
Green LUT	P15	P14	P13	P12	P11	P10	P9	P8
Blue LUT	P7	P6	P5	P4	P3	P2	P1	P0

In BPP24, the pixel data in the FIFO is unpacked before it enters the pixel pipeline, since each slice contains 2 2/3 24-bit pixels. In BPP32PAL, each pixel is 32 bits wide, but the eight MSBs are not used since they do not contain any color information.

- The hardware cursor and horizontal zooming are supported.
- Register set 'C' should be used to program the pixel PLL.

4.7.1.4 Direct Color Mode (BPP32DIR)

In direct color mode, each pixel in the FIFO is composed of a 24-bit color portion and an 8-bit alpha portion. The 24-bit portion is sent directly to the RAMDAC (that is, each color is directly applied on each DAC input). The alpha portion of the pixel can be used for color keying (refer to the **XCOLKEY** register description) and may be displayed as a pseudo color pixel, depending on the outcome of the color comparison.

- As in all non-VGA modes, the hardware cursor and horizontal zooming are available.
- Register set 'C' should be used to program the pixel PLL.

4.7.2 Palette RAM (LUT)

The MGA-G200's RAMDAC uses three 256x8 dual-ported RAMs for its color LUT. The use of a dualported RAM allows for asynchronous operation of the RAM, regardless of the current display state. The RAM is addressed by an 8-bit register/counter (**PALWTADD**) and selection among the three LUTs is done using a modulo 3 counter.

To write the red, green, and blue components of a pixel to a location in the RAM, three writes to the **PALDATA** RAMDAC register must occur. Each byte will be transferred to the RAM when it is written. The modulo 3 counter will track the color being written. When the last byte (the blue component) of a RAM location is written, the address register is incremented, the modulo 3 counter is cleared, and the circuit is ready to write the red component of the next location. This allows the entire RAM to be updated with only one access to the **PALWTADD** register.

To read a complete location in the palette RAM, three reads of the **PALDATA** RAMDAC register must

occur. The palette address register will then be incremented to the next location. As with writes, the RAM can be completely read with only one write to the **PALRDADD**.

Note: When changing the **ramcs** bit of the **XMISCCTRL** RAMDAC register, the pixel clock *must* be disabled (that is, **pixelkdis** = '1').

4.7.3 Hardware Cursor

A hardware cursor has been defined for all non-VGA modes. This cursor will be displayed over any other display information on the screen, either video or graphics.

The cursor position is relative to the end of the blanking period. Refer to the **curposx** and **curposy** field descriptions (**CURPOS**). The cursor is not zoomed when horizontal and/or vertical zooming is selected. The cursor pattern is stored in the off-screen memory of the frame buffer at the location defined by the **XCURADDH** and **XCURADDL** RAMDAC registers. In Big Endian mode, the cursor pattern must be swapped according to section 4.1.7 before being written to the frame buffer.

The **CURPOSX** and **CURPOSY** registers are double-buffered (that is, they are updated at the end of the vertical retrace period). They *must not* be programmed when the **vsyncsts** field of the **STATUS** register is '1'. (They can be updated at any other time.) The **XCURADDH** and **XCURADDL** registers are *not double buffered*, so changes to this register may produce unwanted artifacts on the screen.

In interlaced mode, if the cursor Y position is greater than 64, the first line of the cursor to appear on the screen will depend on the state of the internal field signal.

- If the value of **curposy** is an odd number, the data for row 0 of the cursor will be displayed in the odd field. Rows 2, 4, ... 62 will then be displayed on the subsequent lines. The data for row 1 of the cursor will be displayed in the even field, followed by rows 3, 5, ... 63.
- If the value of **curposy** is an even number, the data for row 0 of the cursor will be displayed in the even field. Rows 2, 4, ... 62 will then be displayed on the subsequent lines. The data for row 1 of the cursor will be displayed in the odd field, followed by rows 3, 5, ... 63.
- If the value of **curposy** is less than 64, the cursor is partially located off the top of the screen. The first cursor row (row N) to be displayed will always be on scan line 0, which is the first line of the even field, and therefore the topmost scan line of the screen. Rows N+2, N+4, and so on will follow. The data in cursor row N+1 will be displayed on the first line of the odd field, followed by row N+3, N+5, and so on.

In order for the cursor to function properly, the following rules must be respected:

Hblank_width (ns) >= 7 * Tmclk + 48 * Tmclk where: Tmclk=MCLK cycle time (ns)

4.7.4 Keying Functions

Color keying can occur in any non-VGA color depth and resolution. The color key comparison occurs on the index of the palette. The corresponding color key and mask *must* match the pixel format used by the RAMDAC. These formats are shown in section 4.7.1.2 - 4.7.1.4. Refer to the **XCOLKEY** and **XCOLMSK** sets of registers for more details and to the Backend Scaler Programmer's Guide, section 4.10.4.

In True Color BPP15 (1:5:5:5), the alpha bit can be disabled or enabled by using the ALPHAEN field of the XGENCTRL register.

In Direct Color BPP32DIR (RGB-alpha), color keying comparisons can be done on the alpha byte and on the RGB bytes. The order of precedence is as follows:

```
if (alpha byte <> XCOLKEY) then
    display `alpha-byte';
elseif (RGB=XCOLKEY0) then
    display `Back End Scaler Video';
else
    display `RGB direct';
end if;
```

The keying on the alpha byte is not restricted to the Back End Scaler Video Window. Refer to the **XCOLKEY** and **XCOLMSK** registers for more details.

4.7.5 Zooming

Horizontal zooming is achieved by changing the **hzoom** field of the **XZOOMCTRL** register. The CRTC Memory Address Counter clock will automatically be changed accordingly. No other CRTC register need be changed. The supported zoom factors are x1 (no zoom), x2, and x4.

Vertical zooming is performed by the CRTC and nothing need be done in the RAMDAC section of the MGA-G200.

4.7.6 Feature Connector

The MGA-G200's MAFC (Matrox Advanced Feature Connector) Video Output Port is supported for all non-VGA display modes upto a dot clock of 65 MHz. The MAFC Port is 12 bits wide and also provides **VVSYNC/, VHSYNC/, VOBLANK/ and VDOCLK** signals depending on the mode of operation. All of the connector pins ca be disabled (reset to zero) except for the sync signals which must be active for the monitor.

The following table describes the output from the pins of the MAFC Video Output Port.

Operating Mode	VDOUT	VDOCLK	VOBLANK/				
MAFC12	Multiplexed 12 bit data 12 bits per clock edge dual edge	Input clock from master device	Gated input clock with BLANK signal				
PANELLINK	Multiplexed 12 bit data 12 bits per clock edge dual edge	MGA-G200 drives PIXEL clock	BLANK signal				
BYPASS656	8 bit data on the LSB portion of the data bus	Not used	Blank signal				

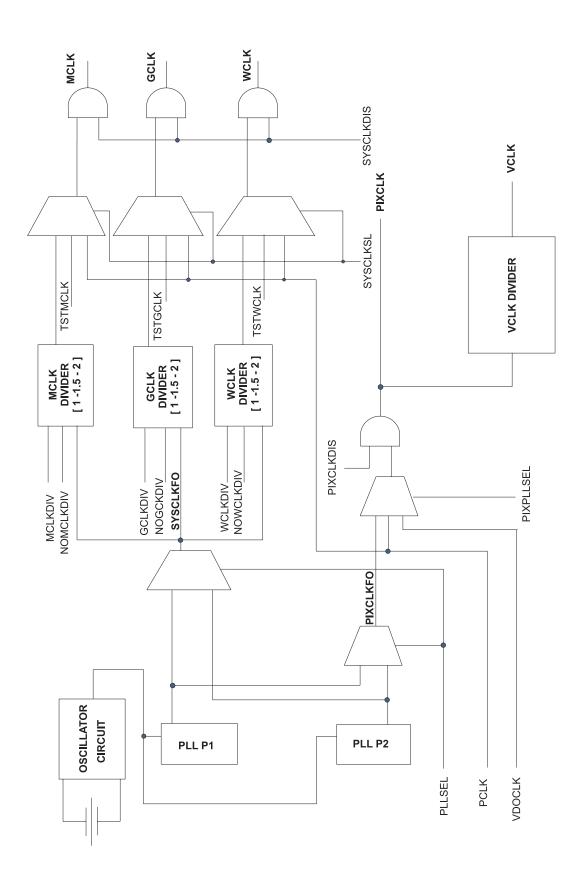
Table 4-5: MAFC Video Output Port Pins

When the MGA-G200 is in PANELLINK or MAFC12 output mode, the data sent through the VDOUT data bus, is taken before the DACs. When the MAFC Port is disabled, the VDOUT bus, VDOCLK signal and the VOBLANK/ signal output is '0'.

For more details, refer to the mfcsel and vdoutsel fields of the XMISCCTRL register.

4.7.7 Test Functions

A 16-bit CRC is provided to verify video integrity at the input of the DACs. The CRC can be read via the **XCRCREMH** and **XCRCREML** registers when the vertical sync is active. The CRC is cleared at the end of the vertical retrace period, and calculated only when the video is active. The **crcsel** field determines which of the 24 bits will be used in the calculation.


The output of the sense comparator can be read via the **XSENSETEST** RAMDAC register. This provides a means to check for the presence of the CRT monitor and determine if the termination is correct. The sense bits are latched at the start of the blanking interval. In order to ensure a stable value at the input of the comparator, the input of the DACs should remain constant during the visible display period. The sense amplifiers can be powered down by setting the **sensepdN** bit to '0'.

4.7.8 PLL Clock Generators

The MGA-G200's RAMDAC has two independent programmable Phase Locked Loops (PLLs), named P1 and P2. These PLLs are used as frequency sources for clock generation. One source (SYSTEM PLL) is used for **GCLK**, **MCLK** and **WCLK**. The second source (PIXEL PLL) is used to generate PIXCLK and VCLK. Either PLL can be used as source through the **pllsel** field fo the **OPTION** register. Therefore a reference to the SYSTEM PLL or the PIXEL PLL will mean the PLL chosen through the **pllsel** field, to be the source of that clock.

GCLK =	Graphics Engine Clock
MCLK =	Memory Clock
PIXCLK =	Ramdac Clock
VCLK =	CRTC Clock
WCLK =	Warp Engine Clock

Figure 4-10: Clock Division Scheme

4.7.8.1 System PLL

The system PLL is programmed through the **XSYSPLLM**, **XSYSPLLN** and **XSYSPLLP** registers. The frequency of the Voltage Controlled Oscillator (VCO) is defined by:

Fvco = Fref * (XPIXPLLN + 1) / (XSYSPLLM + 1) Where Fref = 14.31818 MHz. $7 \le N \le 127$ (feedback divider)

1 $\leq M \leq 6$ (input divider) P = {0,1,3,7} (post-divider)

0 <= S <= 3

The PLL output frequency is then:

Fo = Fvco / (SYSPLLP + 1)

On reset, the system PLL is bypassed and the system clock is derived from the PCI bus clock. This permits the MGA-G200 to boot-up properly. The system PLL resets to its oscillating frequency when the **syspllpdN** bit is set to '1'.

The memory clock (MCLK) can be selected to be the PCI bus clock, the MCLK pin, or the system PLL clock output. The GLCK and WCLK can be (independently of each other) the PCI bus clock or the system PLL. All clocks also have another possibility but this is for testing only.

Although all the system clocks share a single clock source, they all have independently controlled clock dividers on the SYSTEM PLL frequency. the divider works according to the following tables.

NOMCLKDIV	MCLKDIV	MCLK
'1'	'X'	SYSTEM PLL frequency
' 0'	' 0 '	1/2 * SYSTEM PLL frequency
' 0 '	'1'	2/3 * SYSTEM PLL frequency

It works the same for the GCLK and the WCLK.

• *Note:* Refer to the **SYSCLKSL**, and division fields of **OPTION** and **OPTION2** registers for more details.

The system clocks can be gated off when SYSCLKDIS is '1', when reprogramming the SYSTEM PLL (see section 5.7.8.3). Power consumption can be reduced by programming syspllpdN to '0'. This will shut down the SYSTEM PLL however, all memory contents will be lost.

4.7.8.2 Pixel PLL

The pixel PLL contains three independent sets of registers: sets A, B, and C. The **clksel** field of the VGA MISC register will determine which set will define the operating frequency of the pixel PLL (see the pixpllan register description). The frequency of the Voltage Controlled Oscillator (VCO) is defines by the following formula:

```
Fvco = Fref * (XPIXPLLN + 1) / (XPIXPLLM + 1)
Where Fref = 14.31818 MHz.
```

 $7 \le N \le 127$ (feedback divider) $1 \le M \le 6$ (input divider) $P = \{0,1,3,7\}$ (post-divider) $0 \le S \le 3$

The PLL output frequency is then:

Fo = Fvco / (XPIXPLLP + 1)

On reset, the pixel clock (PIXCLK) is generated from the PCI bus clock. The pixel PLL will run with the register set that is selected by the **clksel** field when the **pixpllpdN** field is set to '1'. After a reset, **clksel** is '00', so the pixel PLL will oscillate at 25.175 MHz and VCLK will be the same frequency (since the DAC wakes up in VGA mode).

The video clock (VCLK) is function of the display mode of the DAC:

mgamode	depth	Video Clock
0	XXX	PIXCLK
1	000	PIXCLK/8
1	001	PIXCLK/4
1	010	PIXCLK/4
1	011	PIXCLK*8/3
1	100	PIXCLK/2
1	101	PIXCLK/4
1	110	PIXCLK/2
1	111	PIXCLK/2

The maximum supported pixel clock frequency is 250 MHz (1600 x 1200 resolution @ 85 Hz. The minimum period of the VCLK signal is 14.8 ns (1280 x 1024, 24-bit packed pixel at a 75 Hz vertical refresh rate).

The pixel clock can obtain its source from three different places: the Pixel PLL (normal operation), the PCI bus clock (at boot-up), or the VDOCLK pin The selection is done via the **pixclksl** field of the **XPIXCLKCTRL** RAMDAC register. PIXCLK and VCLK can also be shut off by setting the **pixclkdis** bit to '1'. Again, as for the system PLL, the pixel PLL can be powered down by resetting the **pixpllpdN** bit to '0' to lower power consumption.

4.7.8.3 Programming the PLLs

To change the frequency of one of the PLLs or the source of a clock, the following procedure *must* be followed:

(A) Changing the Pixel Clock Frequency or Source

To program any of the **XPIXPLLM**, **XPIXPLLN**, **XPIXPLLP**, or **XPIXCLKCTRL** registers, the memory clock *must* be running and enabled (**sysclkdis** = '0').

- 1. Force the screen off.
- 2. Set **pixclkdis** to '1' (disable the pixel and video clocks).
- 3. Re-program the desired pixel PLL registers by changing the values of the registers, by changing the **clksel** field of the VGA **MISC** register, or by selecting another source for the pixel clock.
- 4. Wait until the clock source is locked onto its new frequency (the **pixlock** bit is '1') for the pixel PLL, or for the **VDCLK** pin to become stable.
- 5. Set **pixclkdis** to '0' (enable the pixel and video clocks).
- 6. Resume normal operations (re-enable the screen display).

No special procedures need to be followed when changing the frequency of the video clock since the MGA-G200's hardware will not generate glitches on the video clock when the **mgamode** or **depth** fields are changed.

(B) Changing the System PLL Frequency

Special care must be taken when changing the frequency of the system PLL. Since the **XSYSPLLM**, **XSYSPLLN**, and **XSYSPLLP** registers are clocked on the memory clock, the system PLL must always be running.

- 1. Set **sysclkdis** to '1' (disable the system clocks).
- 2. Select the PCI bus clock for the system clocks (**sysciksi** = '00').
- 3. Set **sysclkdis** to '0' (enable the system clocks).
- 4. Re-program the desired system PLL registers.
- 5. Wait until the **syslock** bit is '1'.
- 6. Set **sysclkdis** to '1' (disable the system clocks).
- 7. Select the system PLL clock for the system clocks (**sysciksi** = '01').
- 8. Set **sysclkdis** TO '0' (enable the system clocks).
- 9. Resume normal operations.

(C) Changing the System Clock Source, MCLK, GCLK or WCLK Division Factor

- 1. Set **sysclkdis** to '1' (disable the system clocks).
- 2. Select the new clock source or change the **mclkdiv** and/or **gclkdiv** and/or **wclkdiv** fields. Make sure that the new clock source is stable before continuing.
- 3. Set **sysclkdis** to '0' (enable the system clocks).
- 4. Resume normal operations.
 - ◆ Note: Steps (B) and (C) must be executed in an order which keeps MCLK and GCLK within their specified values.

DAC external components:

The magnitude of the full scale current can be controlled by a resistor using the following calculation:

R (ohm) = K * 1000 * REF(V) / Iout (mA)

Pedestal	K facto	r				
reaestat	With sync	No sync				
7.5 IRE	3.415	2.439				
0.0 IRE	3.231	2.255				

This resistor should be placed between the RSET pin and the analog GND. A 0.1 uF capacitor should be placed between the COMP pin and the analog VDD. The voltage applied to the Vref pins is 1.235 V.

4.8 Video Input Interface

4.8.1 Overview of the Video-Grabber

The MGA-G200's field based Video-Grabber captures the incoming video data and writes it into the frame buffer. There are two sets of registers that act as a double-buffered set: one may be active during a field while the other is programmed. VBI data, either raw or decoded, may also be captured and written to the framebuffer. Active video data in 4:2:2 format, may be written directly into the frame buffer. The Video-Grabber works in a 'one-shot' mode. Software needs to program for every field that needs to be captured.

If both even and odd fields are desired, the pitch of both windows (**vinpitch0** and **vinpitch1**) should be set to twice the anticipated line width, and the start address (**vinaddrX**) of the second window should be set to a value of 1 line width higher that the first windows's start address.

4.8.2 MAFC Mode Selection

See the **XMISCCTRL** register to allow video in data to be driven back out the **VDOUT**(7:0) pins. The video-in data is registered once with **VDCLK**, so there will be a one cycle delay between the input data and the output data. The Video In interface does not have to be enabled in order for this pass-through mode to work, but it can be enabled if the stream is desired to be captured.

4.8.3 Programming sequence

Since the Video-Grabber is a field based grabber, the sequence is the same for all types of captures: odd only, even only, both odd and even, and VBI captures. The grabber registers are programmed between **vsync** for capture of the field following the next **vsync**.

► Note: The registers for window0 cannot be reprogrammed while window0 is active, and registers for window1 cannot be reprogrammed while window1 is active. It is legal to reprogram window1 registers when window0 is active, and reprogram window0 registers when window1 is active. If a particular window's registers are reprogrammed while that window is active, then data corruption will occur.

Before Programming the Video-Grabber:

Reset the Video In interface using the **VINCTL** register.

Programming steps:

- **Step 1.** Clear the **vinvsyncpen** flag in the **VSTATUS** register to clear the previous vsync status.
- **Step 2.** Enable the video input vsync interrupt (**vinvsyncien**).
- **Step 3.** At the next **vsync** interrupt read the **VSTATUS** register. If the **vinvsyncpen** bit is active clear the flag like in step 1. If the completed **vinfielddetd** bit indicates the field desired to capture go to step 4. Otherwise repeat this step.
- **Step 4.** Program all the Video In window registers '0' or '1' related to video capture.

VINCTLX

								R	ese	erve	ed												vir	npit	ch				vhicany	ca h	vincapx
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	#	#	#	#	#	#	#	#	#	#	#	#

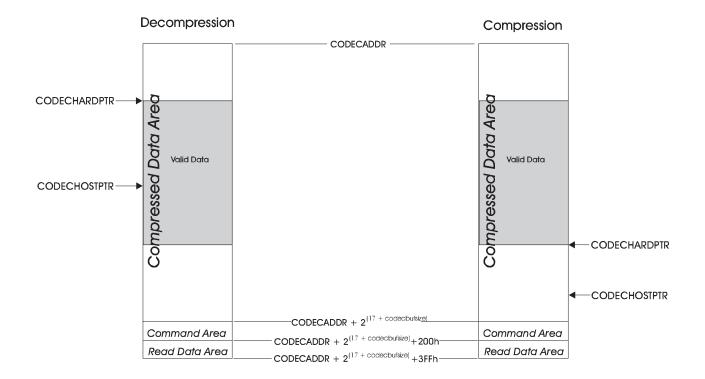
Register	Function	Comments/Alternate Function					
VBIADDRX	VBI Write Address	if vbicapx is not '00b'					
VINADDRX	Video Write Address	if vincapx is '1'					

- **Step 5.** Program the **vinnextwin** bit in the **VINNEXTWIN** register to select the same window that was chosen in Step 4.
- **Step 6.** If another field is desired following the field just programmed go to step 3, otherwise disable interrupts.

4.9 CODEC Interface

A CODEC can be used in conjunction with the MGA-G200 chip to compress and decompress a video stream in real time.

Note: When programming CODECHOSTPTR for compression/decompression, the Codec Interface will *not* stop transferring data when the PTR value is reached. Software should suspend the Codec Interface's memory accesses until more data is put into memory (or more space is available) by setting codectransen of CODECCTL to a '0'


4.9.1 Memory Organization

Three main sections of memory are reserved for Codec Interface usage. The **CODECADDR** register is used to set the location of the buffer in the off-screen memory area. Table 4-11 shows the organization of the CODEC interface

Compressed data area

The compressed data area is used both for compression and decompression operations. This buffer size is selectable between 128Kbytes or 256Kbytes. The functions of **CODECHARDPTR** differ for compression and decompression (refer to the register definitions in Chapter 3 for more details).

The compressed data area acts as a circular queue. Data from the beginning of one field is loaded into the dword which follows the last data from the previous field. It is the sole responsibility of the software to ensure that the compressed data area never overflows. The Codec Interface engine does not verify that there is valid compressed data in the buffer before reading, nor does it check to see that there is enough free space in the buffer before writing. The buffer level interrupt has been provided to help the software to ensure that overflows never occur.

Figure 4-11: CODEC Interface Organization

Command area

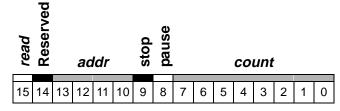
The *command area* is used to store the commands to be sent to the CODEC. The organization of these commands and their execution is explained in more detail in the 4.9.2 section. The command area is set to a fixed size of 512 bytes.

Read data area

The *read data area* is used to store the data which has been read from the CODEC. When more than one location is read with a single command, the data is packed to take full advantage of the 8-byte wide memory locations. However, if only a single CODEC location is read, the remaining 7 bytes of the qword will be unused. The read data is always stored beginning with the LSB. The read data area is set to a fixed size of 512 bytes.

4.9.2 Command Execution

Register read and write commands are stored in an off-screen command buffer. Each qword in the buffer may contain either a command or, in the case of a write command, write data. Each command, with its accompanying data, is stored one after the other in the command buffer.


◆ Note: The first *qword* in the queue *must always* contain a command. The format of a command, with its accompanying data, is shown in Figure 4-12.

63		16	15 0
			Command
write data 4	write data3	write data2	Write data1
:	:	:	:
:	:	:	:
write data n	write data n-1	write data n-2	write data n-3

Figure 4-12: CODEC Command Format

The command word itself is composed of several control bits which affect command execution:

Command Word Definition:

count The *count* specifies the number of registers to be written to or read from the CODEC.
 <7:0> When executing writes, the count will refer to how many words in Write Data qword(s) will be processed. When executing reads, the count will refer to how many times the address **addr** in the Command Word will be read.

pause As
 The **pause** bit is used for *compression* only. It is active high. The command word in which it is contained is executed. Once this command is completed, register read/writes are suspended until the next end-of-field marker is detected in the compressed data stream.

◆ *Note:* The pause bit does *not* reset the command buffer pointer.

stop
 Stop bit is used to halt *register accesses*. It is active high. The command word in which it is contained is executed. Once this is completed, register accesses are complete, and the cmdcmplpen field in the VSTATUS register is set. When software triggers command execution once again, the command buffer pointer is reset and execution begins from the first qword in the command buffer.

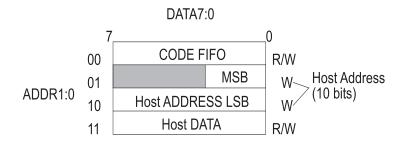
Here is an example of how the *pause* and *stop* bits are used in compression:

Pre-compression:

During the vertical blanking interval, software loads the off-screen command buffer with register transfer commands. The first set of instructions are used to setup the CODEC for the next field. The last instruction in the register setup sequence has its pause bit set high. The CODEC Interface Engine will execute all of the register read/ write commands until it reaches the pause bit. At this point, the CODEC begins data compression transfers.

Post-compression:

In the command buffer, the pre-compression sequence should be followed by a set of post-compression instructions (to read field status information from CODEC or setup the next compression). When the end-of-field indication is detected in the compressed data stream, register read/write execution automatically resumes at the command


immediately following the last pre-compression command (the one with the pause bit set high). Commands will be executed until the next active pause bit or stop bit is encountered.

In the case where an active stop bit is encountered, register transfers are considered complete and software is interrupted.

addr Address to access for register *reads*

When executing read commands, **addr**<13:10> will indicate which address the Codec Interface will read from in the Codec address space. This address will be read as many times as was programmed in **count<7:0>**. When executing register writes, these 4 bits are unused. When transferring compressed data, the address asserted is programmed by software in the **CODECCTL** register. When in VMI mode, <13:10> are output. When in I33 mode, <11:10> are output.

Figure 4-13: Address Space of I33 CODEC in Code Slave Mode

read This bit indicates the direction of transfer for reads or writes, with respect to the<15> CODEC. Read and write commands may be interleaved in any manner.

- 0: write data to the CODEC registers
- 1: read data from the CODEC registers

Write data:

<13:10>

	unused	addr	databyte	
	15 14 13 12 1	11 10 9 8	7 6 5 4 3 2 1 0	
databyte <7:0>	Data byte to be writte	n to the indi	irect register.	
addr <11:8>	Indicates which segm write too.	ent of the C	CODEC address space the C	CODEC Interface will

- 1. The Codec Interface engine begins executing commands when the **CODECCTL** register is written with an access that sets the **cmdexectrig** field (the command execution trigger field does not need to be cleared by software). When software triggers command execution, the Codec Interface engine resets its Command Area pointer and Read Data Area pointer.
 - The *first* pointer (command area pointer) selects the next qword to be read. This pointer is reset to point to the beginning of the command area when the **cmdexectrig** field is set.
 - The *second* pointer (read data area pointer) selects the next qword to be written in the read data area. This pointer is reset to the beginning of the read data area when the **cmdexectrig** field is set.
- 2. The Codec Interface engine then fetches the *first* command.
 - *If* the command is a *write*, the appropriate number of qwords are read from the command area and written to the CODEC. After one qword of data is read from the command area, the data is written to the CODEC one word at a time, starting with word 0, then word 1, and so on to word 3. If the write command completes before all 4 words are written, the remaining data is dropped and not used. On the next write command, data is again fetched and sent to the CODEC, starting with word 0.
 - *If* the command is a *read*, the appropriate number of bytes are read and stored in the read data area. The data is read from the CODEC one byte at a time, and is accumulated until a complete qword has been received. The first byte read is loaded into byte 0, the second into byte 1, and so on to byte 7 (the eighth byte). The resulting qword is then written to the next available location of the read data area. If the read command completes before all 8 bytes are filled, the data is written to the off-screen buffer as is (unfilled). On the next read command, data is again filled, starting with byte 0.
- 3. Upon completing the read or write command, the Codec Interface engine fetches the next command from the command buffer; the process repeats until a STOP command is executed.

Examples

Table 4-6 shows the contents of a command area, while Table 4-7 shows the contents of the read data area after the execution of all commands has taken place.

Location	Contents	Meaning
+ 8000h	xxxxxxxxxx8401h	Read address "0001", count=1
+ 8008h	xxxxxxxxxx0002h	Write 2 locations
+ 8010h	XXXXXXXX03FF02AAh	Write addresses and data
+ 8018h	xxxxxxxxxx0003h	Write 3 locations
+ 8020h	XXXX06BB057504EEh	Write addresses and data
+ 8028h	xxxxxxxxxx0104h	Write 4 locations, pause
+ 8030h	07DD06CC05BB04AAh	Write addresses and data
+ 8038h	XXXXXXXXXXX9E04h	Read address "0111", count=4, stop

Table 4-6: Contents of the Command Area

Table 4-7: Contents of the Read Data Area

Location	Contents	Meaning
+ 8200h	xxxxxxxxxxxx00h	Read data from address "0001"
+ 8208h	XXXXXXXXDDDDDDDDDh	Read data from address "0111"

The first command read 1 byte from address 01h. The data, 00h, was written to memory at address +8200h. The next command was a write of 2 locations. The data is fetched in memory and written as data AAh to address 02h, and data FFh to address 03h. The next command is a write to 3 locations. The data is fetched from memory and written as data EEh to address 04h, data 75h to address 05h, and data BBh to address 06h. The next command is a write to 4 locations with a pause. The data is fetched and written as data AAh to address 04h, data BBh to address 05h, data CCh to address 06h, and data DDh to address 07h.

Since the pause bit was asserted in this command, the Codec Interface engine will *not* fetch its next command until it receives the end-of-field indication from the CODEC. *At this point, compressed data transfers begin.* When the end-of-field is detected, the interface engine proceeds with the next command, which is a read from address 07h, count of 4, with stop. The data is read as DDh, DDh, DDh, DDh, and put into location +8208h. Since the stop bit was asserted in this command, the interface engine will not send any further commands to the CODEC and will assert the **cmdcmplpen** field of **VSTATUS**.

4.9.3 Output mode

The Codec Interface may operate in 3 possible output modes: VMI Mode A, VMI Mode B, and Zoran I33 compatible mode. The mode is programmed in the **CODECCTL** register. All examples set forth assume I33 mode. All programming procedures are identical in all modes (except for setting the proper mode in the **CODECCTL** register.

4.9.4 Codec Interface IDLE State

In order to have the Codec Interface enabled but in and IDLE state, the following fields need to be set as indicated *after* the Codec Interface is disabled:

field	setting after Codec disable
codecen	1
cmdexectrig	0
codectransen	0
all other fields	Х

4.9.5 Recovery Width Programming

The strobe recovery pulse width in the Codec Interface engine is programmable in the **CODECCTL** register. The **codecrwidth** should be programmed before the Codec Interface is enabled (with **codecen**) to begin transfers to the CODEC. If the **codecrwidth** is reprogrammed during data transfers, data corruption may occur. The formula to compute the optimal recovery time, Trec (in *ns*), is:

Trec = N * Tgclkbuf

and Trec > Tcodecrec

Where:

Trec = minimum recovery time Tgclkbuf = the period of gclkbuf Tcodecrec = the CODEC's minimum required recovery width

Given:

gclkbuf (internal graphic clock) = 72 Mhz, thus Tgclkbuf = 13.9 nsfor I33, Tcodecrec = 55.5 ns

Then:

Trec = 55.6 *ns*, which is less that Tcodecrec = 55.5 *ns*

Thus, Trec should be greater than 55.5 ns, corresponding to 4 gclkbuf cycles.

Thus, codecrwidth should be programmed with "00" 4 gclkbuf cycles.

4.9.6 Miscellaneous Control Programming

The **miscctl** byte located in the **CODECCTL** register is used to program an 8 bit flip-flop on the graphics card. The values of the **miscctl** field are used to set various inputs to the CODEC and MPEG2 chips like SLEEP, START, etc. By writing to the **miscctl** field, software triggers a sequence to program the on-board flip-flop with the corresponding data.

► Note: In order for this automated sequence to be executed, the Codec Interface engine must be enabled and in one of the following modes/states: IDLE, COMPRESSION, or DECOMPRESSION. For example, if the chip select for a CODEC is connected to bit 0 of the on-board flip-flop, and is active low, then software could enable the CODEC as follows:

- 1. write "00000000"b to the lower byte of the **CODECCTL** register (to reset it, optional)
- 2. write "00000001"b to the lower byte of the **CODECCTL** register (to enable it)
- 3. write "11111110"b to the **miscctl** field of the **CODECCTL** register (to set the chip select to the CODEC).

If the Codec Interface is in the process of compression or decompression when the **miscctl** field is written to, then the Interface will wait until the current byte transfer is complete. At that point the onboard flip-flop will be programmed, and then data transfers will resume with the next byte. No data will be lost or corrupted during this process.

4.9.7 Compressing data

Data being compressed comes from the video decoder. The compressed video frame is returned to the frame buffer through the Codec Interface channel.

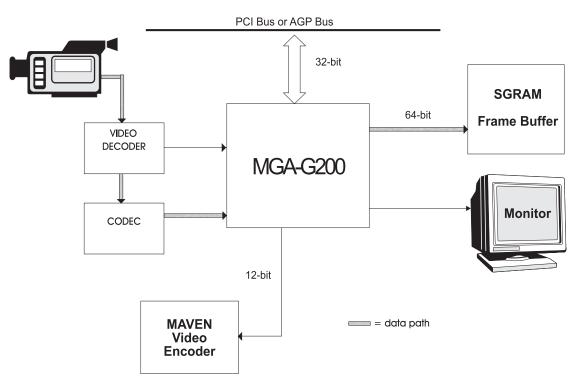


Figure 4-14: Compression of a Live Video Source

Two interrupts are used while the CODEC is compressing data. The *buffer level* interrupt is used to tell software the current fill state of the frame buffer. The *command execution completed* interrupt is used to request host services in order to adjust the compression factors.

The following must be performed to compress video:

- Step 1. Program the video decoder according to its specification.
- **Step 2.** Software must reset the Codec Interface engine by writing '0' followed by a '1' to **codecen** field bit <0>:

Register	Function	Comment / Alternate Function
CODECCTL	Reset the Codec Interface engine	Write 00h to the lower byte
CODECCTL	Reactivate the Codec Interface	Write 01h to the lower byte

Step 3. Software must then initialize the following registers in the Codec Interface engine:

Register	Function	Comment / Alternate Function
CODECADDR	Address of off-screen buffer	

- **Step 4.** The CODEC must be initialized with the mode and other parameters shown below. To do this, software must transfer CODEC register write commands into off-screen memory. Typically, the registers to be written are:
 - Mode Control
 - FIFO Control
 - HSTART
 - HEND
 - VSTART
 - VEND
 - **Compression Ratio** (See 'Command Word Definition:' on page 4-85 to set the **stop** bit)
 - Note: The CODEC specification will have detailed information regarding which registers need to be programmed.
- **Step 5.** Trigger the execution of commands to the CODEC:

Example:

- Codec mode = '1' I33 mode
- Codecdatain = '1' Compression (receiving data from the codec)

Register	Function	Comment / Alternate Function
CODECCTL	Enable the Codec Interface engine	00001111b

Step 6. At the completion of this command, the Codec Interface engine will set the cmpcmplpen field A of VSTATUS. The host will read the status in order to know when the command has been executed. The host must also clear the cmdcmplpen flag.

Register	Function	Comment / Alternate Function
VICLEAR	Clear interrupt	02h

- **Step 7.** The host must then transfer the following commands to off-screen memory:
 - program registers in CODEC (set the *pause* bit)
 - read field information from CODEC
 - read the FIFO status for the error conditions (if necessary, see CODEC specification) (set the *stop* bit)

Step 8. The host must then enable all interrupt bits.

Register	Function	Comment / Alternate Function
CODECHOSTPTR	Next level interrupt	value desired by the software

Step 9. Trigger the execution of commands to the CODEC and enable the transfer of compressed data:

Register	Function	Comment / Alternate Function
CODECCTL	Reset the Codec Interface engine	01001111b

Step 10. The Codec Interface engine will then begin to transfer data from the CODEC to the compressed data area.

• *Note:* Since the first field will probably be corrupted, software should discard it.

Step 11. The Codec Interface engine will interrupt the host every time CODECHARDPTR is equal to CODECHOSTPTR. The host can detect this situation by reading the blvlpen field of the VSTATUS register. As part of the interrupt routine, the host must perform transfers from the compressed data area to the system memory or hard disk. The host must also clear the blvlpen flag and update its pointer.

Register	Function	Comment / Alternate Function
CODECHOSTPTR	Next level interrupt	—
VICLEAR	Clear Codec Status Register	04h

- **Step 12.** When the CODEC asserts EOI (connected to misc[2] when codec engine is enabled), this informs the Codec Interface engine that its current read is the last byte of the field. The Codec Interface engine will write all remaining data in its memory interface buffer to the compressed data area and resume command execution.
- Step 13. The Codec Interface engine will then interrupt software when the command is completed. The host can detect this situation by reading the cmdcmplpen field of the VSTATUS register. Based on the statistics, software must calculate new specs for compression field, and update the write commands in the off-screen buffer (see Step 6). The host must also clear the cmdcmplpen flag and restart command execution.

Register	Function	Comment / Alternate Function
VSTATUS	Status of memory commands	00000010b
VICLEAR	Clear all CODEC interrupts	06h
CODECCTL	Reset the Codec Interface engine	0000000b

4.9.8 Decompressing data

When data is being decompressed, the compressed information is sent to the CODEC through the Codec Interface port. From there, the data is sent to the decoder and back to the MGA-G200 to be displayed on the monitor or TV (through MAVEN):



Figure 4-15: Decompressing Data from the Memory

Two interrupts are used when the Codec Interface is decompressing data. The *buffer level* interrupt is used to request more data from the host. The *decompression end of image* interrupt is used to notify software when the end of the field has been detected.

When **stopcodec** is set to a '1' in the **CODECCTL** register, and decompression is enabled, the Codec Interface will look for the FFD9h end of image marker in the compressed data. When the end of image is detected, the Codec Interface will stall and post the **dcmpeoipen** interrupt (if enabled).

At this point, software has 2 options:

- reset the Codec DMA engine
- use **cmdexectrig** of the **CODECCTL** to trigger command execution. If this method is used, the software *must* set **codectransen** to a '0', preventing decompression transfers from continuing after the commands have been completed.

If **stopcodec** is set to a '0' for decompression transfers, then the Codec Interface will *not* detect the FFD9h end of image marker in the stream. It is up to software to stop the Codec Interface engine when it has determined that the desired field is complete (by polling the buffer level interrupt).

The following steps *must* be performed in order to decompress video:

- **Step 1.** Program the video decoder according to its specification.
- **Step 2.** Software *must* reset the Codec Interface engine by writing '0' followed by a '1' to **codecen** field bit <0>:

Register	Function	Comment / Alternate Function
CODECCTL	Reset the Codec Interface engine	Write 00h to the lower byte
CODECCTL	Reactivate the Codec Interface engine	Write 00h to the lower byte

Step 3. Software must then initialize the following registers in the Codec Interface engine:

Register	Function	Comment / Alternate Function
CODECADDR	Start address of buffer in off-screen	
CODECADDIN	memory	

- **Step 4.** The CODEC must be initialized with the mode and other parameters shown below. To do this, software must transfer CODEC register write commands into off-screen memory. Typically, the registers to be written are:
 - Mode Control
 - FIFO Control
 - HSTART
 - HEND
 - VSTART
 - **VEND** (See 'Command Word Definition:' on page 4-85 to set the **stop** bit)
 - Note: The CODEC specification will have detailed information regarding which registers need to be programmed.

Step 5. Trigger the execution of commands to the CODEC:

Register	Function	Comment / Alternate Function
CODECCTL	Enable the Codec Interface engine	00000111b

Step 6. The host must then fill at least half of the compressed data area and write its pointer

Example:

• Codec mode =	'1' I33 mode
----------------	--------------

Register	Function	Comment / Alternate Function	
CODECHOSTPTR	Next level interrupt		

Step 7. At the completion of the command, the Codec Interface engine will set the **cmpcmplpen** field. The host will read the status in order to know when the command has been executed. The host must also clear the **cmdcmplpen** flag.

Register	Function	Comment / Alternate Function
VICLEAR	Clear interrupt	02h

Step 8. The host must then enable the buffer level interrupt and enable the transfer of compressed data.

Register	Function	Comment / Alternate Function	
CODECCTL	Enable the Codec Interface engine	01000011b	

- **Step 9.** The Codec Interface engine will then begin to transfer data from the compressed data area to the CODEC.
- **Step 10.** The Codec Interface engine will interrupt the host every time **CODECHARDPTR** is equal to **CODECHOSTPTR**. At that time, the host should add more data to the compressed data area. The host must also clear the **blvipen** flag and update its pointer.

Register	Function	Comment / Alternate Function	
CODECHOSTPTR	Next level interrupt		
VICLEAR	Status of memory commands	04h	

4.9.9 Error Recovery

The Codec Interface gives *highest priority* to command execution. When transferring data, if software determines there is an error condition with the CODEC, software can trigger command execution and preempt data transfers. If the Codec Interface is triggered to execute commands while it is the process of transferring data, the Codec Interface engine will disregard any data presently in its 4 qword fifo and load and execute the first command in the command data buffer.

When the interface engine has completed all the commands (signalled by a STOP in the last command), it will resume data transfers wherever it left off (the **CODECHARDPTR** does not reset under these conditions).

• *Note: Any* data already loaded in the 4 qword fifo (either from the CODEC or from the frame buffer) when command execution is triggered will be *lost*.

4.10 Backend Scaler

4.10.1 Introduction

4.10.1.1 Overview

The Backend Scaler supports one window. The supported formats of source data taken from the frame buffer are: YCbCr in 4:2:2;and 4:2:0 (2 planes).

The window performs independent horizontal and vertical scaling. Bilinear filtering is *only* available on Y component. *However*, horizontally interpolated upsampling of the chroma component is available. For magnification: replicate or bilinear filters are possible. For *minification*: drop, fixed 0.25 coefficient or normal bilinear filters are possible. The normal bilinear filter uses the next adjacent pixel or line to perform interpolation.

The Backend Scaler also supports: complete source cropping; video de-interlace conversion with subpixel compensation; and horizontal mirroring.

The Backend Scaler registers are double-buffered: they are internally updated once per frame when the **besvcnt** field compares with the CRTC vertical counter. If more than one register of a window must be modified, *ensure* that they are all reprogrammed during the same frame: the vertical counter should *not* reach the programmed **besvcnt** in the middle of reprogramming (this can result in unexpected intermediate video images or unwanted artifacts appearing on the screen).

Four offscreen buffers are available to the window. In *software manual mode*, the field selection is under the control of software. In *hardware automatic field select*, the video input port toggles the circular select after each field received so that it is not necessary for the software to be interrupted at each field.

The Backend Scaler takes data from the selected buffer, performs scaling, then sends it to the ramdac. The keying circuitry then decides to display it to the screen. *No* memory writes are made. Two modes of keying are available: color keying and (inside the Backend Scaler window) coordinates keying. Color keying is done on the graphic color.

The scaling factors are limited to 1/32 in downscaling and 16384/(source width) in upscaling.

The Backend Scaler includes a YCbCr-to-RGB converter which allows to send full 24 bit RGB colors to the screen.

The Backend Scaler is *not* supported when the CRTC is programmed in interlace mode. Virtual desktop and hardware zoom are supported *only* in software (which means that software must reprogram the Backend Scaler accordingly with the changing desktop situation).

4.10.1.2 Notation

[real number]	 A fixed-point representation; it is important to apply this specification immediately where specified. Do <i>not</i> use more precision than specified. Do <i>not</i> round-off <i>any</i> value.
>>	: A logical shift to the right.

4.10.1.3 Backend Scaler Control

Backend Scaler control results from the following registers:

Register	Function		
	This register sets the following <i>global</i> controls:		
	beshzoom	accelerated 2X horizontal zoom	
BESGLOBCTL	beshzoomf	accelerated 2X horizontal zoom filtering	
	bescorder	chroma sample order	
	besreghup	update on horizontal sync. for test	
	besvcnt	vertical counter register update	
	This register sets the following <i>window</i> controls:		
	besen	Backend Scaler enable	
	beshfen	horizontal filtering enable	
beshfixc horizontal fixe		vertical filtering enable	
		horizontal fixed coefficient enable	
		chroma upsampling enable	
BESCTL	bes420pl	4:2:0 planar data format	
	besdith	dither enable	
	beshmir	horizontal mirror enable	
	besbwen	black and white enable	
	besblank	blank enable	
	besfselm	field select mode	
	besfsel	field select	

4.10.1.4 Backend Scaler Status

The status indicates the buffer currently being displayed (A1, A2, B1, B2)

Register	Fields	Comment / Alternate Function
BESSTATUS	besstat	status of window

4.10.1.5 Window Coordinates

The horizontal and vertical coordinates of the window in the desktop are defined as follows:

The fields are combined in registers:

Register	Fields	Comment / Alternate Function
BESHCOORD	besleft besright	besright <i>must</i> be greater than besleft 0 to max. desktop
BESVCOORD	bestop besbot	besbot <i>must</i> greater than bestop 0 to max. desktop

4.10.1.6 Bases Address and Origin Address

The *base address* is the first byte of the source image in the frame buffer without source cropping or desktop offset. The *origin address* is the first byte of the first line (source image) used to produce the destination image (with source cropping and desktop offset).

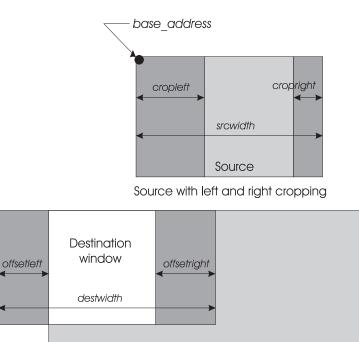
The source image (below) is displayed in xy, this occurs even if stored linearly in the frame buffer.

		A00AFD	A00AFE	A00AFF
base_address	A00B00	A00B01	A00B02	A00B03
	A00B04	A00B05	A00B06	A00B07
	A00B08	A00B09	A00B0A	A00B0B
origin_address	A00B0C	A00B0D	A00B0E	A00B0F
	A00B10	A00B12	A00B13	

Legend:

Data dropped by source cropping and /or desktop offset. Data used to produce destination image.

• *Note:* The base and origin addresses are useful for vertical source positioning.


4.10.1.7 Pitch

The *pitch* is the offset (in numbers of pixels) from the beginning of one line to the next in the field currently read from the source data.

The pitch must be programmed in the **BESPITCH** register, must be a multiple of 4 in 4:2:2 format and a multiple of 8 in 4:2:0 planar format. The *maximum* value for pitch is 4092 pixels in 4:2:2 format and 4088 pixels in 4:2:0 format.

4.10.2 Horizontal Scaling

The following illustrations demonstrate the source and desktop considerations for horizontal scaling:

The last horizontal coordinate of the source must be programmed in the **BESHSRCLST** register:

Desktop

Register	Field	Function
BESHSRCLST	beshsrclst	srcwidth - 1

4.10.2.1 Horizontal Inverse Scaling Factor

The *Horizontal Inverse Scaling Factor* is the ratio of the source width to the destination width. To calculate this inverse factor (taking into account the above parameters), do the following:

		Filtering mode OFF beshfen = 0	
	Desmen = 1	Downscaling ⁽¹⁾	Upscaling ⁽¹⁾
Interval representation value (<i>intrep</i>)	1 ⁽²⁾⁽³⁾	1 ⁽³⁾	0

⁽¹⁾ Upscaling is used when the destination width is greater than or equal to the source width (with source width reduced by cropping values)

⁽²⁾ If the destination width is equal to the source width, *intrep* = 0 (with source width reduced by cropping values).

⁽³⁾ If the destination width is less than 2, *intrep* = 0.

Step 2. Inverse Scaling Factor

Inverse Scaling Factor:

Inverse Scaling Factor with better precision:

$$ifactorbetter = \boxed{\begin{array}{c} srcwidth - cropleft - cropright - intrep \\ destwidth - intrep \end{array}}_{5.20} + (intrep >> 20)$$

Step 3. Set the Round-off Variable

Condition: (*ifactorbetter* * (*destwidth* - 1))_{FLOOR} > (*ifactor* * (*destwidth* - 1))_{FLOOR}:

	Filtering mode ON	Filtering mode OFF beshfen = 0	
	beshfen $= 1$	Condition:	
		True	False
Round-off value (<i>roundoff</i>)	0	1	0

Step 4. Set the Accelerated 2X Zoom Variable

	Accelerated 2x zoom ON	Accelerated 2x zoom OFF
	beshzoom = 1	beshzoom = 0
Accelerated 2x zoom (acczoom)	2	1

Step 5. Program the Inverse Scaling Factor

The Inverse Scaling Factor *must* be programmed with the following formula:

beshiscal = (acczoom * ifactor) + (roundoff >> 14)

The **beshiscal** value *must* be in the following interval:

srcwidth
16384<= beshiscal < 32</th>RegisterFieldBESHISCALbeshiscal

4.10.2.2 Horizontal Source Positioning

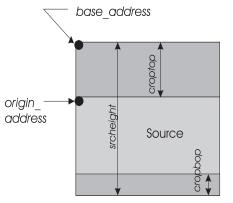
The horizontal starting source position (**BESHSRCST**) is the first source pixel that will contribute to the left first destination pixel.

Without horizontal mirroring (**beshmir** = 0):

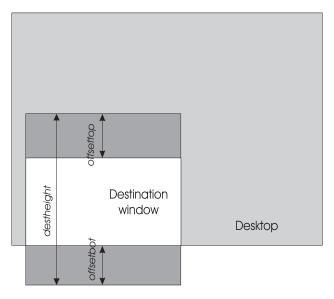
```
beshsrcst = cropleft + offsetleft * (ifactor + (roundoff >>14))
```

With horizontal mirroring (**beshmir** = 1):

```
beshsrcst = cropright + offsetleft * (ifactor + (roundoff >> 14))
```


The horizontal ending source position (**BESHSRCEND**) is the last source pixel that will contribute to the last right destination pixel.

beshsrcend = **beshsrcst** + ((*destwidth* - *offsetleft* - *offsetright* - 1) / *acczoom*)_{*FLOOR*} * (*acczoom* * *ifactor* + (*roundoff* >>14))


Register	Field
BESHSRCST	beshsrcst
BESHSRCEND	beshsrcend

4.10.3 Vertical Scaling

The following illustration demonstrates the source and desktop considerations for vertical scaling:

Source with top and bottom cropping

Destination window with top and bottom offset

4.10.3.1 Vertical Inverse Scaling Factor

The *Vertical Inverse Scaling Factor* is the ratio of the source height to the destination height. To calculate this inverse factor, (taking into account the above parameters) do the following:

◆ *Note:* For *de-interlace* conversion, the source is a field

	Filtering mode ON besvfen = 1	Filtering mode OFF besvfen = 0	
	Desvien = 1	Downscaling ⁽¹⁾	Upscaling ⁽¹⁾
Interval representation value (<i>intrep</i>)	1 ⁽²⁾⁽³⁾	1 ⁽³⁾	0

⁽¹⁾ Upscaling is used when the destination height is greater than or equal to the source height (with source height reduced by cropping values)

- ⁽²⁾ If the destination height is equal to the source height, *intrep* = 0 (with source height reduced by cropping values).
- ⁽³⁾ If the destination height is less than 2, *intrep* = 0.

Step 2. Inverse Scaling Factor

Inverse Scaling Factor:

Inverse Scaling Factor with better precision:

$$ifactorbetter = \left[\frac{srcheight - croptop - cropbot - intrep}{destheight - intrep} \right]_{5.20} + (intrep >> 20)$$

Step 3. Set the Round-off Variable

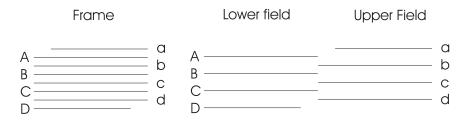
Condition: (*ifactorbetter* * (*destheight* - 1))_{FLOOR} > (*ifactor* * (*destheight* - 1))_{FLOOR}:

	Filtering mode ON	Filtering mode OFF beshfen = 0	
	beshfen = 1 Condition:		on:
		True	False
Round-off value (<i>roundoff</i>)	0	1	0

Step 4. Program the Inverse Scaling Factor

The Inverse Scaling Factor must be programmed with the following formula:

besviscal = *ifactor* + (*roundoff* >> 14)

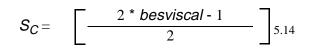

The **besviscal** value must be in the following interval:

$$\frac{\text{srcheight}}{16384} <= \text{besviscal} < 32$$

Register	Field
BESVISCAL	besviscal

4.10.3.2 Vertical Subpixel Compensation

For de-interlaced conversion, subpixel compensation is applied on the lower field.


Subpixel Compensation Value (S_C):

Downscaling:

Upper Field:

$$S_C = 0$$

Lower Field:

Upscaling:

Upper Field:

$$S_C = 0$$

Lower Field:

$$S_{C} = \left[\frac{\text{destheight - intrep}}{2*(\text{srcheight - croptop - cropbot - intrep})} \right]_{5.14}$$

4.10.3.3 Vertical Source Positioning

Vertical Source Positioning is created in relation to subpixel compensation, source cropping, desktop offset and data format. Upscaling and Downscaling are presented separately.

The following table shows how to set the round-off variable affecting the inverse scaling factor calculation:

	Data format 4:2:0	Data format 4:2:2
	bes420pl = 1	bes420pl = 0
Data Format (dataformat)	1	2

4.10.3.3.1 Downscaling

Origin Address

The Origin Address of buffer A and B for fields 1 and 2 is achieved by:

 $origin_address = [croptop + offsettop * besviscal + S_C]_{24.0} * BESPITCH * dataformat + base_address + beshmir * (srcwidth * dataformat - 1)$

Register	Function	Comment
BESA10RG		When <i>de-interlace conversion</i> is desired,
BESA2ORG	[origin_address] _{24.0}	the subpixel compensation value (S_C) is
BESB1ORG		applied to the registers that contain the
BESB2ORG		lower field.

Chroma Plane Origin Address

The Chroma Plane Origin address of buffer A and B for fields 1 and 2 is achieved by

 $chroma_plane_origin_address = [(croptop + offsettop * besviscal + S_C) / 2]_{24.0} * BESPITCH + chroma_plane_base_address + beshmir * (srcwidth * dataformat - 1)$

Register	Function	Comment
BESA1CORG		When <i>de-interlace conversion</i> is desired,
BESA2CORG	[chroma_plane_origin_address] _{24.0}	the subpixel compensation value (S_C) is
BESB1CORG		applied to the registers that contain the
BESB2CORG		lower field.

Vertical Weight Starting Value

The Vertical Weight Starting Value registers are programmed as follows (the weight is the same for buffer A and B):

If de-interlaced conversion is desired and is the lower field then:

If offsettop = 0Then $weight = -(0.5 + [besviscal]_{0.14})$ Else weight = -0.5 + offsettop * besviscalElse weight = offsettop * besviscal

Register	Fields	Function	Comment
BESV1WGHT	bes1wght	[weight] _{0.14}	
bes1wghts	bes1wghts	sign of <i>weight</i>	When <i>de-interlace conversion</i> is desired the subpixel compensation is applied to
BESV2WGHT	bes2wght	[weight] _{0.14}	the registers that contain the lower field.
BESVZWGIII	bes2wghts	sign of <i>weight</i>	the registers that contain the lower field.

Vertical Source Last Position

The vertical source last position for field 1 or 2 is achieved by:

vsrclst = srcheight - 1 - [croptop + offsettop * besviscal + S_C]_{10.0}

Register	Fields	Function	Comment					
BESV1SRCLST	besv1srclst		When <i>de-interlace conversion</i> is desired, the subpixel compensation value (S_C) is					
BESV2SRCLST	besv2srclst		applied to the registers that contain the lower field.					

Vertical Source Start Polarity

The vertical source start polarity for field 1 *or* 2 is achieved by:

Register	Fields	Function
BESCTL	besv1srcstp	Set if [<i>croptop</i> + <i>offsettop</i> * besviscal + S_C] _{FLOOR} is odd.
BLOCIL	besv2srcstp	

4.10.3.3.2 Upscaling

Origin Address

The Origin Address of buffer A and B for fields 1 and 2 is achieved by:

 $origin_address = [croptop + (offsettop - S_C)_{abs} * besviscal]_{24.0} * BESPITCH * dataformat + base_address + beshmir * (srcwidth * dataformat -1)$

Register	Function	Comment				
BESA10RG		When <i>de-interlace conversion</i> is desired, the subpixel compensation value (S_C) is				
BESA2ORG	[origin_address] _{24.0}					
BESB1ORG	$[\text{origin}_\text{address}]_{24.0}$	applied to the registers that contain the				
BESB2ORG		lower field.				

Chroma Plane Origin Address

The Chroma Plane Origin address of buffer A and B for fields 1 and 2 is achieved by:

chroma_plane_origin_address = [(croptop + (offsettop - S_C)_{abs} * besviscal) / 2] _{24.0} * BESPITCH + chroma_plane_base_address + beshmir * (srcwidth * dataformat -1)

Register	Function	Comment				
BESA1CORG		When <i>de-interlace conversion</i> is desired,				
BESA2CORG	[obromo plano origin oddroco]	the subpixel compensation value (S_C) is				
BESB1CORG	[chroma_plane_origin_address] _{24.0}	applied to the registers that contain the				
BESB2CORG		lower field.				

Vertical Weight Starting Value

The Vertical Weight Starting Value registers are programmed as follows (the weight is the same for buffer A and B):

If de-interlaced conversion is desired and is the lower field, then

Ifoffsettop * besviscal ≥ 0.5 Thenweight = -0.5 + offsettopElseweight = -(0.5 + offsettop * besviscal)

Else weight = offsettop * **besviscal**

Register	Fields	Function	Comment
BESV1WGHT	bes1wght	[weight] _{0.14}	When <i>de-interlace conversion</i> is desired,
BLSVIWGIII	bes1wghts	sign of <i>weight</i>	the subpixel compensation value (S_C) is
BESV2WGHT	bes2wght	[weight] _{0.14}	applied to the registers that contain the
BLSVZWGIII	bes2wghts	sign of <i>weight</i>	lower field.

Vertical Source Last Position

The vertical source last position for field 1 or 2 is achieved by:

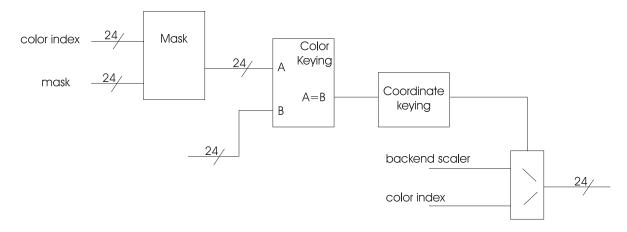
vsrclst = srcheight -1- [croptop + (offsettop - S_C)_{abs} * besviscal]_{10.0}

Register	Fields	Function	Comment					
BESV1SRCLST	besv1srclst	[<i>vsrclst</i>] _{10.0}	When <i>de-interlace conversion</i> is desired, the subpixel compensation value (S_C) is					
BESV2SRCLST	besv2srclst		applied to the registers that contain the lower field.					

Vertical Source Start Polarity

The vertical source start polarity for field 1 or 2 is achieved by:

Register	Fields	Function					
BESCTL	besv1srcstp	Set if [<i>croptop</i> + (<i>offsettop</i> - S_C) _{abs} * besviscal] _{FLOOR} is odd.					
	besv2srcstp	Set if $[CODIOD + (Onsettop - OC)_{abs} + Desviscal JFLOOR is odd.$					


4.10.4 Keying

• *Note:* Refer to the CRTC section for bandwidth usage when enabling the Backend Scaler.

4.10.4.1 Color Keying

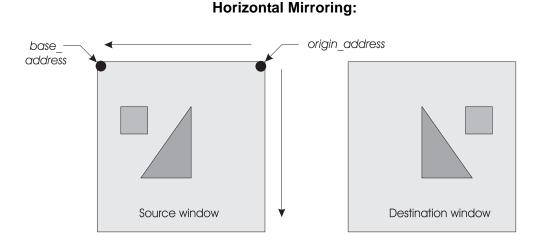
The field **colkeyen** of **XKEYOPMODE** register selects the type of display for the video window. In color keying mode **colkeyen** = 1.

Color keying works by first comparing to see if the pixel color should be used or masked. If the pixel color matches the key color; a single bit is generated signifying a match or no match. Coordinate keying is used at the end to verify that the current coordinate is inside the Backend Scaler window.

The color key mask registers (**XCOLMSKRED**, **XCOLMSKGREEN**, **XCOLMSKBLUE**) mask bit-to-bit with the color index of the palette. Some LSB of the mask value can be set to '0' when range keying is required.

The color key registers (**XCOLKEYRED**, **XCOLKEYGREEN**, **XCOLKEYBLUE**) must be programmed with the appropriate color.

4.10.4.2 Overlay Keying


The field **colkeyen** of **XKEYOPMODE** register selects the type of display for the video window. In overlay keying mode **colkeyen** = 0.

The overlay keying uses only the coordinates of the Backend Scaler window to perform keying between graphic and video data, regardless of keying color.

4.10.5 Miscellaneous Functions

4.10.5.1 Horizontal Mirroring

Horizontal mirroring is set by **beshmir** control bit and the origin address must be pointing to the top right corner of the source.

Horizontal mirroring affects the horizontal source positioning registers **BESHSRCST** and **BESHSRCEND**, and horizontal inverse scaling factor register **BESHISCAL**.

4.10.5.2 Automatic Field Select

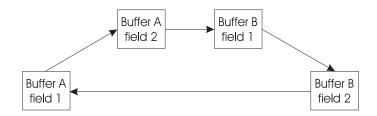
The Automatic Field Select must be initialized using the following procedure:

Step 1. Set the starting field for the window:

Field select mode in software mode:

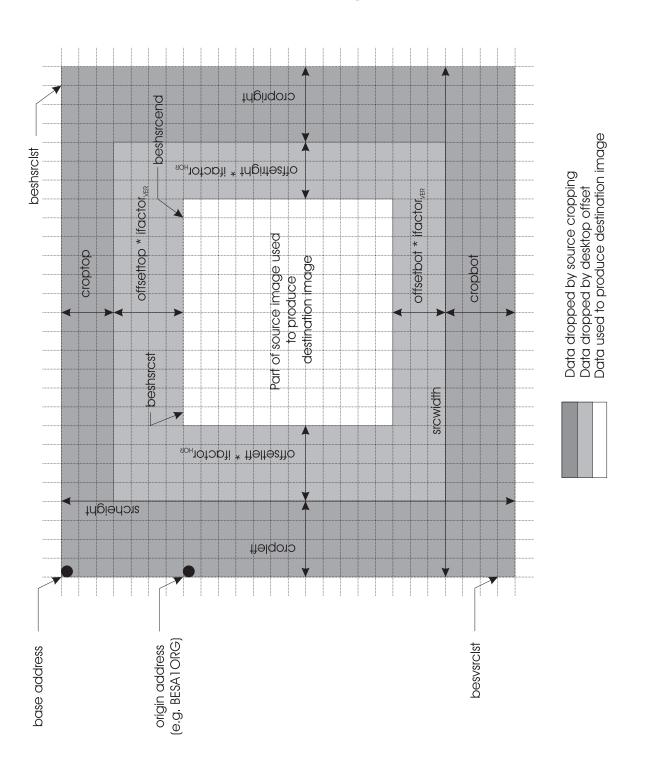
besfselm = 0

Starting field in field select register:


besfsel = 00: buffer A field 1 is the starting field 01: buffer A field 2 is the starting field 10: buffer B field 1 is the starting field

- 11: buffer B field 2 is the starting field
- Step 2. Start the automatic field selection

Field select mode in hardware mode:


besfselm = 1

Buffer cycle used in hardware mode:

4.10.6 BES Parameter Example:

The following figure is an example of a source window with full source cropping and full destination offset:

Source Image:

4.11 Interrupt Programming

The MGA-G200 has 11 interrupt sources: 7 Graphics Engine Interrupts and 4 Video Interrupts.

Graphics Engine Interrupts:

1. Soft Trap interrupt

This interrupt is generated when a write to the **SOFTRAP** register is executed (refer to 'Programming Bus Mastering for DMA Transfers' on page 4-11 and to the **SOFTRAP** register description).

2. Pick interrupt

This interrupt is used to help with item selection in a drawing. A rectangular pick region is programmed using the clipper registers (**YTOP**, **YBOT**, **CXLEFT**, **CXRIGHT**). All planes must be masked by writing FFFFFFFh to the **PLNWT** register. The drawing engine then redraws every primitive in the drawing. When pixels are output in the clipped region, the pick pending status is set. After a primitive has been initialized, the **STATUS** register's **pickint** bit can be polled to determine if some portion of the primitive lies within the clipping region.

3. Vertical Sync interrupt

This interrupt is generated every time the vsync signal goes active. It can be used to synchronize a process with the video raster such as frame by frame animation, etc. The **vsync** interrupt enable and clear are both located in the **CRTC11** VGA register.

4. Vertical Line interrupt

This interrupt is generated when the value of the **linecomp** field of **CRTC18** equals the current vertical count value. This interrupt is more flexible than the vertical sync interrupt because it allows interruption on any horizontal line (including blank and sync lines).

5. External interrupt

This interrupt is generated when the external interrupt line is driven active. It is the responsibility of the external device to provide the clear and enable functions.

6. WARP interrupt

This interrupt is generated when the WARP executes an IRQ instruction.

7. WARP cache interrupt

This interrupt is generated when there is a WARP cache miss.

Video Interrupts:

1. Video In Vertical Sync interrupt

This interrupt is generated when a video input vsync is detected. This interrupt is located in the **VSTATUS** register.

2. Codec Command Complete interrupt

This interrupt is generated when the codec interface has completed executing the commands in the command buffer. The interrupt is located in the **VSTATUS** register

3. Codec Buffer Level interrupt

This interrupt is generated when the Codec interface's hardware pointer (**CODECHARDPTR**) is equal to the value set in the **CODECHOSTPTR**. This interrupt is located in the **VSTATUS** register.

4. Decompression End of Image interrupt

This interrupt is posted when **stopcodec** is a '1'. The Codec Interface is decompressing data, and the FFD9h end of image marker was detected in the data stream. This interrupt is located in the **VSTATUS** register.

Turne	Internet	STATUS	EVENT	ENABLE	CLEAR
Туре	Interrupt	SIAIUS			
	Soft trap		softrapen	softrapien	softrapiclr
	Solt dap		STATUS<0>	IEN<0>	ICLEAR<0>
	Pick		pickpen	pickien	pickiclr
			STATUS<2>	IEN<2>	ICLEAR<2>
	Vartical sure	vsyncsts	vsyncpen	vinten	vintclr
	Vertical sync	STATUS<3>	STATUS<4>	CRTC11 <5>	CRTC11 <4>
Graphic	Vertical line		vlinepen	vlineien	vlineiclr
Engine	vertical fille		STATUS<5>	IEN<5>	ICLEAR<5>
	External	extpen		extien	
	External	STATUS<6>		IEN <6>	
	WARP		wpen	wien	wiclr
	WARP		STATUS<7>	IEN<7>	ICLEAR<7>
	WARP cache		wcpen	wcien	wciclr
	WARF Cache		STATUS<8>	IEN<8>	ICLEAR<8>
	Video In young		vinvsyncpen	vinvsyncien	vinvsynciclr
	Video In vsync		VSTATUS<0>	VIEN<0>	VICLEAR<0>
	Codec command done		cmdcmplpen	cmdcmplien	cmdcmplicIr
T 7. 1	Codec command done		VSTATUS<1>	VIEN<1>	VICLEAR<1>
Video	Codec buffer level		blvlpen	blvlien	blvliclr
	Couec bullet level		VSTATUS<2>	VIEN<2>	VICLEAR<2>
	Codec decompression		dcmpeoipen	dcmpeoiien	dcmpeoiiclr
	end of image marker		VSTATUS<3>	VIEN<3>	VICLEAR<3>

Table 4-8: Supported Functionality for each Interrupt Source

STATUS Indicates which bit reports the current state of the interrupt source.

EVENT Indicates which bit reports that the interrupt event has occurred.

ICLEAR A pending bit is kept set until it is cleared by the associated clear bit.

IEN Each interrupt source may or may not take part in activating the PINTA/ hardware interrupt line. The EVENT and STATUS flags are not affected by interrupt enabling or disabling.

VSTATUS Indicates which bit reports the current state of the video interrupt source.

VICLEAR A pending bit remains set until it is cleared by the associated clear bit.

VIEN Each interrupt source may or may not take part in activating the PINTA/hardware interrupt line. The VSTATUS flags are only set when the enable bit in VIEN for each respective source is on.

► Note:

- Clear interrupts before enabling them
- **vsyncpen** is set on the rising edge of vsync
- pickpen is set on the first pixel within the clipping box
- vlinepen is set at the beginning of the line
- **vinvsyncpen** is set after a vsync is detected and the video in unit has completed writing the data to memory.

4.12 Power Saving Features

4.12.1 Entering Power Saving Mode

The MGA-G200 supports three power conservation features:

- DPMS is supported directly, through the following control bits:
 - Video can be disabled using **scroff** blanking bit (**SEQ1**<5>)
 - Vertical sync can be forced inactive using vsyncoff (CRTCEXT1)
 - Horizontal sync can be forced inactive using hsyncoff (CRTCEXT1)
- The video section can be powered down using the following steps:
 - 1. Set bits scroff, hsyncoff and vsyncoff to '1'.
 - 2. Disable the cursor (set the **curmode** field to '00').
 - 3. Set the **pixclkdis** field of **XPIXCLKCTRL** to '1'.
 - 4. Power down the DAC.
 - 5. Power down the LUT.
 - 6. Power down the Pixel PLL.
- Chip power consumption can be further reduced by shutting-down the drawing engine and slowing-down the system clocks. The procedure below *must* be followed:
 - 1. Power down the video section following the procedure above.
 - 2. Wait for **dwgengsts** to become '0'.
 - 3. If the contents of the frame buffer must be preserved, MCLK must be running and the **rfhcnt** field of the **OPTION** register must be re-programmed according to the new MCLK frequency (normally, set rfhcnt to '0001').
 - Program the memory clock to the desired value following the procedure in section 4.7.8.3 (see (B) Changing the System PLL Frequency on page 4-79). The recommended PLL oscillation frequency is 6.66MHz (N=107, M=28, P=7, S=0).
 - 5. Set mclkdiv to '1' (gclkdiv should already be '0' and must be set to '0' if that is not already the case) following the procedure in section 4.7.8.3 (see (C) Changing the System Clock Source, MCLK, or GCLK Division Factor on page 4-79).
- *Note:* In Power Saving mode, *do not* use, or initialize, the drawing engine.
- Note: MGA-G200 supports PCI Bus Power Management Interface specification 1.0.(See the PM_CSR register on page 4-23.)

4.12.2 Coming Out of Power Saving Mode

When coming out of Power Saving Mode, do the following:

- **Step 1.** Set **mclkdiv** to '0' following the procedure in section (See '(C) Changing the System Clock Source, MCLK, GCLK or WCLK Division Factor' on page 4-79).
- **Step 2.** Program the System PLL to normal frequency following the procedure in section (See '(B) Changing the System PLL Frequency' on page 4-79).
- **Step 3.** Program **rfhcnt** to its normal value.
- Step 4. Power up the Pixel PLL.
- **Step 5.** Power up the **LUT**.
- **Step 6.** Power up the **DAC**.
- **Step 7.** Set the **pixclkdis** field of **XPIXCLKCTRL** to '0', or reprogram the **Pixel PLL** to a new operating frequency if desired by following the procedure in section (See '(A) Changing the Pixel Clock Frequency or Source' on page 4-79).
- **Step 8.** Reset bits **scroff**, **vsyncoff** and **hsyncoff** to '0'.

4.13 Accessing the Serial EEPROM

The page write sizes of serial eeproms may vary between manufactuers. The MGA-G200 is designed to support up to 16 bytes for a small serial eeprom (128 to 512 bytes) and up to 128 bytes for a large serial eeprom (32 or 64 Kbytes).

It is possible to access any combination of bytes in a dword of the serial eeprom (reading or writing). There is a read or a write cycle for each non-consecutive byte in a dword, and for every dword, except when a page write is possible (in this case there will be one write cycle for the entire page write).

To access the serial eeprom, **biosen** and **romen** must be set to '1', and **rombase** must be mapped.

To write the serial eeprom, **eepromwt** must also be set to '1'.

The process of writing the serial eeprom is as follows:

- **Step 1.** Find the size of the serial eeprom
- Step 2. Find the size of the page write
- **Step 3.** Decide how to reorder the data to be written
- **Step 4.** Execute the writes

Step details:

- 1. The size of the serial eeprom is indicated by the reset value of **biosen** (biosboot).
 - '0': small serial eeprom
 - '1': big serial eeprom
- 2. To determine the size of the page write:

If biosboot = '0':

- 1. Write a DW at address 0x04 of the serial eeprom.
- 2. Write a DW at address 0x08 of the serial eeprom.
- 3. Read a DW at address 0x08 of the serial eeprom.
- 4. If the data is the one written in b), then the page write size is 16 bytes. If not, the page write size is 8 bytes.

If biosboot = '1':

- 1. Write a DW at address 0x3C of the serial eeprom.
- 2. Write a DW at address 0x40 of the serial eeprom.
- 3. Read a DW at address 0x40 of the serial eeprom.
- 4. If the data is the one written in b), then the page write size is 128 bytes. If not, the page write size is 64 bytes.

At present, 8/16 bytes and 64/128 bytes are the only known page write sizes. If there was a smaller page size, the procedure would continue with 5), 6), 7), 8) at half the addresses to determine the proper page size.

In the event of a bigger page size, MGA-G200 could not support a page write only version of that serial eeprom.

If the page size is 16 bytes (for a small serial eeprom) or 128 bytes (for a big serial eeprom), proceed to step 4.

- 3. The size of the page write is smaller than the one hard-coded in the MGA-G200. That means that care must be taken when sending the writes to the MGA-G200's serial eeprom. The MGA-G200 has a 2 dword ROMFIFO serving as a dword accumulator. The MGA-G200 will perform a page write when the ROMFIFO is full, the addresses are consecutive, both dwords are writes, and all the bytes within the dwords are enabled. If the transferred dword is the last before the boundary of the page write size (0x7C for a big serial eeprom), then, after transferring the data, the MGA-G200 will stop the page write. If the real page write size of the serial eeprom is smaller, the second half of the page size will always be written over the first half.
 - *Note:* To avoid this write the serial eeprom starting from the end, by blocks of its page write size.

Example:

Access	beN	Address
write	0x0	0X78 one page write (8 bytes)
write	0x0	0x7c one page write (8 bytes)
write	0x0	0x70
write	0x0	0x74 a second page write
write	0x0	0x68
write	0x0	0x6C
write	0x0	0x08
write	0x0	0x0C
write	0x0	0x00
write	0x0	0x04

128 byte serial eeprom with an 8 byte page write size.

Other possible solutions are inserting a delay or reading from the serial eeprom between the write transfers at the end of the page write. The solution displayed above will always prove to be faster since accessing the serial eeprom is a long process (the clock runs at less than 5 MHz per bit). In reality, the blocks could be re-arranged in any way *except* consecutively. This can be done even when the page write size is the biggest one, as long as the blocks are at least the size of the page write. If the blocks are smaller, there will still be a page write, but not as much data will be transferred, and you will still have to wait for the write cycle time to complete before being able to transfer more data.

4. Transfer the data to the MGA-G200. When a page write occurs, no accesses are transferred to the serial eeprom until the write cycle time is over (up to 10 ms), therefore, the ROMFIFO will remain full for a long time and will force retrys on the PCI bus when accessed. There is *no* way to determine if the ROMFIFO is full. If retrys are an issue, insert delays between page write transfers, or program the **noretry** bit to '1' in the **OPTION** register.

MGI Confidential

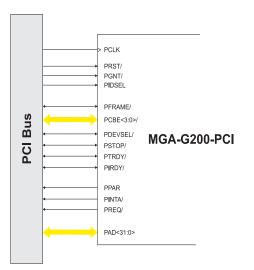
Chapter 5: Hardware Designer's Notes

Introduction	5-2
Host Interface	5-2
PCI Interface AGP Interface	5-2 5-3
Snooping	5-3
EPROM Devices	5-4
Memory Interface	5-5
SGRAM Configurations	5-5
Video interface	5-12
Slaving the MGA-G200 Genlock Mode Crystal Resonator Specification	5-12

5.1 Introduction

The MGA-G200 chip has been designed to minimize the amount of external logic required to build a board. Included among its features are:

- Direct interface to the PCI bus or AGP bus
- All necessary support for external devices such as ROM
- Direct connection to the RAM
- Direct interface with the video and feature connectors


5.2 Host Interface

5.2.1 PCI Interface

The MGA-G200-PCI interfaces directly with PCI as shown in Figure 5-1. The MGA-G200-PCI is a medium-speed (target) device which will respond with PDEVSEL/ during the second clock after PFRAME/ is asserted.

In order to optimize performance on the PCI bus, burst mode, disconnect, and retry are used as much as possible rather than the insertion of wait states. Only a linearly-incrementing burst mode is supported. Because a 5-bit counter is used, a disconnect will be generated every 32 aligned dwords. Refer to Sections 4.1.2 and 4.1.3 for more information. The MGA-G200-PCI can also act as a master on the PCI bus - refer to Section 4.1.9 for more information.

5.2.2 AGP Interface

The MGA-G200-AGP interfaces with the AGP bus as shown in Figure 5-2. The MGA-G200-AGP acts as an AGP master and a PCI target. The AGP master uses the AGP sideband signal in 1X and 2X modes addressing mechanism. The PCI target is a medium speed device (it responds with PDEVSEL/ during the second clock after PFRAME/ is asserted).

Figure 5-2: AGP Interface

5.3 Snooping

The MGA-G200 performs snooping when VGA I/O is enabled *and* snooping is turned *on*. In this case, two things may occur when the DAC is written to:

- 1. If the MGA-G200 is *unable* to process the access immediately, it takes control of the bus and performs a retry cycle.
- 2. If the MGA-G200 is *able* to process the access, the access is snooped, and the MGA-G200 processes it as soon as the transaction is completed on the PCI bus.

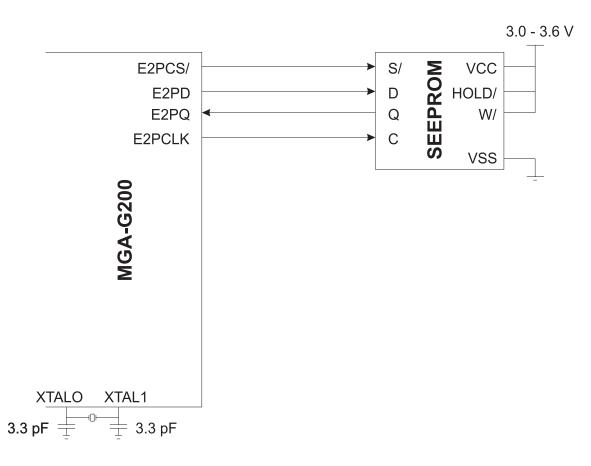
Under normal conditions, only a subtractive agent will respond to the access. There could also be no agent at all (all devices are set to snoop, so a master-abort occurs). In these cases, the snoop mechanism will function correctly. If there is another device on the PCI bus that responds to this mapping, or if another device performs the snoop mechanism with retry capabilities, there will be a conflict on the PCI bus.

5.4 **EEPROM Devices**

The MGA-G200 supports a few external devices (the SPI-EEPROM is a standard expansion device that is supported by the MGA-G200).

Figure 5-3 shows how to connect the serial eeprom devices to the MGA-G200.

BIOS EPROM


The MGA-G200 supports 32K x 8 EEPROMs, 64K x 8 EEPROMS, and 128 byte EEPROMS. The following table lists specific EEPROM devices that have been verified to work with the MGA-G200.

A write cycle to the EEPROM has been defined. Another bit which locks write accesses to the EEPROM has also been added in order to prevent unexpected writes.

Note, however, that sequencing of operations to write the memory must be performed by software. Additionally, some requirements must be guaranteed by software (refer to the device specification and 'Accessing the Serial EEPROM' on page 4-118).

	Serial EEPROM							
Manufacturer	32K x 8 64K x 8 128 x 8							
Atmel	AT 25256		AT 25010					
SGS -Thomson	M35560		ST95010					

Figure 5-3: External Device Configuration

Note: If a local oscillator is used instead of crystal, it is connected to XTAL0, and XTAL1 is left unconnected.

5.5 Memory Interface

5.5.1 SGRAM Configurations

The principal characteristics of the MGA-G200's SGRAM interface are provided in table 5-1, which identifies the cycles that are supported by the chip, and lists all of the commands generated by the MGA-G200.

Command ⁽¹⁾	Mnemonic	MCS/	MRAS/	MCAS/	MWE/	MDSF	МЪДМі	BS	AP	Address
Mode Register Set	MRS	L	L	L	L	L	Х	L	L	opcode1 ⁽²⁾
Special Mode Register Set	SMRS	L	L	L	L	Н	Х	L	L	opcode2 ⁽³⁾
Auto Refresh	REF	L	L	L	Н	L	Χ	Х	Х	Х
Bank Activate / Row Address (Mask Disabled)	ACTV	L	L	Н	Н	L	X	X	Row Address ⁽⁴⁾	
Bank Activate / Row Address (Mask Enabled)	АСТМ	L	L	Н	Н	Н	X	v	Row Address ⁽⁴⁾	
Read / Column Address (Auto-Precharge Disabled)	READ	L	Н	L	Н	L	X	v	L	Column Address ⁽⁵⁾
Write / Column Address (Auto-Precharge Disabled)	WRITE	L	Н	L	L	L	X	v	L	Column Address ⁽⁵⁾
Block Write / Column Address (Auto-Precharge Disabled)	BWRIT	L	Н	L	L	Н	X	v	L	Column Address ⁽⁵⁾⁽⁶⁾
Precharge (Single Bank)	PRE	L	L	Н	L	L	X	V	L	Х
Precharge (Both Banks)	PALL	L	L	Н	L	L	Х	Х	Н	Х
No Operation	NOP	L	Н	Н	Н	L	Х	Х	Х	Х
Device De-select	DESL	Н	Х	Х	Х	Х	Х	Х	Х	Х
Mask Write Data / Disable Read Output	Х	Х	Х	Х	Х	Х	Н	X	X	X ⁽⁷⁾
Write Data / Enable Read Output	Х	X	X	X	X	X	L	X	X	X ⁽⁷⁾
◆ Legend: H = Logical High, L = Logical Low, V = Valid, X = "Don't Care", '/' Indicates an active low signal.										

Table 5-1: S	Supported	SGRAM/SDRAM	Commands
--------------	-----------	-------------	-----------------

⁽¹⁾ MCS = MCS<3:0>

```
<sup>(2)</sup> The MGA-G200 supports CAS latency (CL=2, CL=3, CL=4, CL=5); burst type = sequential; burst length = 4. opcode1 = mrsopcod[3:0]: CLbits: '0': '010'. (Usually '00000110010')
```

ode1 = mrsopcod[3:0]: CLbits:	'0': '010'. (Usually '0000011001
CLbits	Caslatency

CLbits	Caslate
' 010 '	2
' 011 '	3
ʻ100'	4
'101'	5

The mrsopcod value is a programmable field in the MEMRDBK register.

 $^{(3)}$ A5 = 1 for a mask register access, and A6 = 1 for a color register access. Both registers cannot be accessed simultaneously.

opcode2 = '00000100000' <- load mask register

opcode2 = '00001000000' <- load color register

⁽⁴⁾ For 2-bank, 8 MBit SGRAM device: Row Address = MA<x> for MA<8:0>

For 2-bank, 16 MBit SGRAM device: Row Address = MA<x> for MA<9:0>

For 4-bank, 16 MBit SGRAM device: Row Address = MA<x> for MA<8:0>

For 2-bank, 16 MBit SDRAM device: Row Address = MA<x> for MDSF and MA<9:0>

⁽⁵⁾ The MGA-G200 does not support the auto-precharge function, so AP will always be forced low for READ/WRITE/ BWRIT commands.

Column Address = MA<7:0>

 $^{(6)}$ MA<2:0> are 'don't care' for block write commands.

⁽⁷⁾ Not a command - "MDQ mask enable"

◆ *Note:* The MGA-G200 does not drive CKE: it should be driven high externally.

• *Note:* The number of address bits depends on the memory type (selected by the memconfig field of OPTION). The addresses are mapped as follows:

Table 5-2: 10-Bit Address Configuration (memconfig <2:0>= 00x for 2-bank 8Mb(x32) device

MCS<3:0>/		МА										
10103<3.02/		10	9	8	7	6	5	4	3	2	1	0
1110 or 1101	Row	A11	A20	'0'	A19	A18	A17	A16	A15	A14	A13	A12
	Column	A11	'0'	' 0'	A10	A9	A8	A7	A6	A5	A4	A3
1011 or 0111	Row	'0'	A11	A20	A19	A18	A17	A16	A15	A14	A13	A12
	Column	' 0'	A11	' 0'	A10	A9	A8	A7	A6	A5	A4	A3

Note: The BA0 and AP bits are remapped for the expansion for the memory SO-DIMM. MA10 and MA9 = = BA0 and AP bits for base memory. MA9 and MA8 = = BA0 and AP bits for expansion memory.

Table 5-3: 11-Bit Address Configuration (memconfig <2:0>=01x) for 2-bank, 16Mb(x32) device

	МА										
	10	9	8	7	6	5	4	3	2	1	0
Row	A11	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12
Column	A11	' 0'	'0'	A10	A9	A8	A7	A6	A5	A4	A3

MDSE		MA										
MDSF	10	9	8	7	6	5	4	3	2	1	0	
Row	A22	A11	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12
Column	' 0'	A11	'0'	' 0 '	A10	A9	A8	A7	A6	A5	A4	A3

Table 5-4: 12-Bit Address Configuration (memconfig <2:0>=10x) for 2-bank, 16Mb(x16) device

◆ *Note:* No remapping is performed for SO-DIMM access

MA10 & MA9 = = BA0 & AP bits

For SDRAM(x16), connect as follows:

Eclipse:	MA10	MA9	MDSF	MA8		MA0
	\downarrow	\downarrow	\downarrow	\downarrow		\downarrow
SDRAM:	A11	A10	A9	A8	•••	A0

Table 5-5: 11-Bit Address Configuration (memconfig<2:0>=11x) for 4-bank, 16Mb(x32) device

MCS<3:0>/		MA										
11163<3.02/		10	9	8	7	6	5	4	3	2	1	0
1110 or	Row	A11	A20	A21	A19	A18	A17	A16	A15	A14	A13	A12
1101	Column	A11	' 0'	A21	A10	A9	A8	A7	A6	A5	A4	A3
1011 or	Row	A21	A11	A20	A19	A18	A17	A16	A15	A14	A13	A12
0111	Column	A21	A11	' 0'	A10	A9	A8	A7	A6	A5	A4	A3

Note: The BA* and AP bits are remapped for the expansion memory SO-DIMM MA10, MA9 and MA8 = = BA0, AP and BA1 bits for base memory MA10, MA9 and MA8 = = BA1, BA0 and AP bits for expansion memory

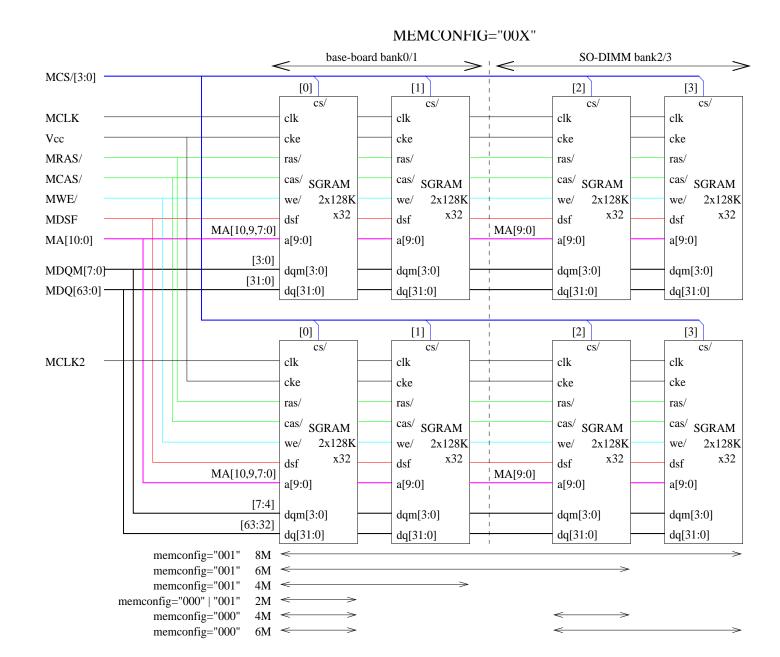
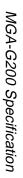
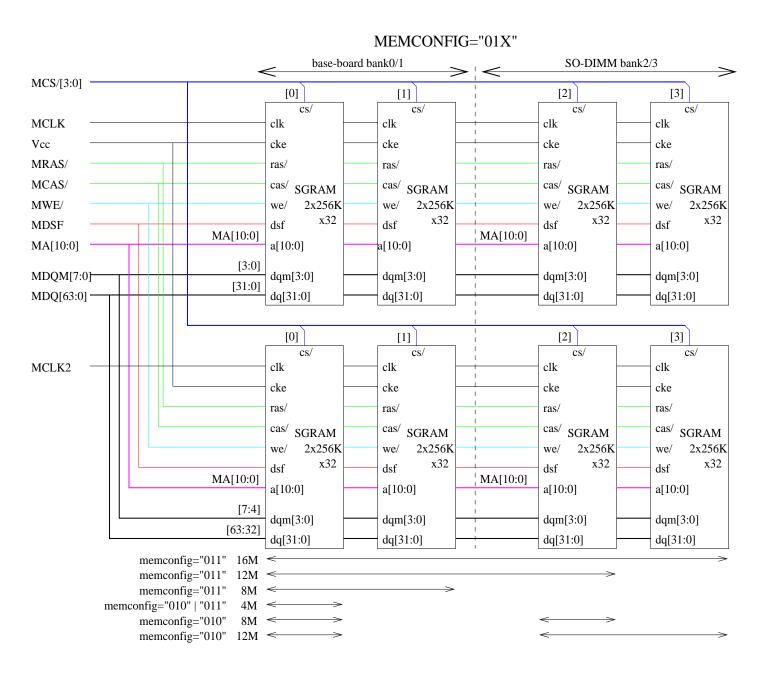
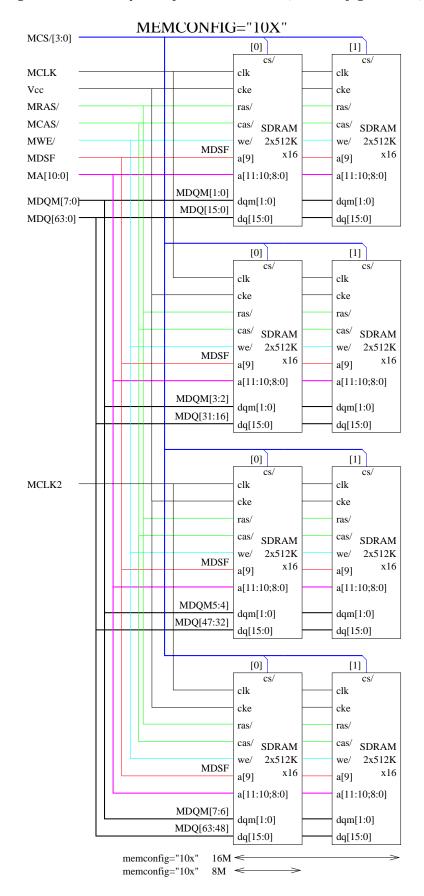
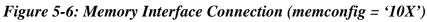
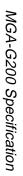
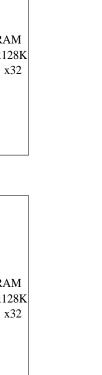




Figure 5-4: Memory Interface Connection (memconfig = (00X))


MGI Confidential







Memory Interface 5-9

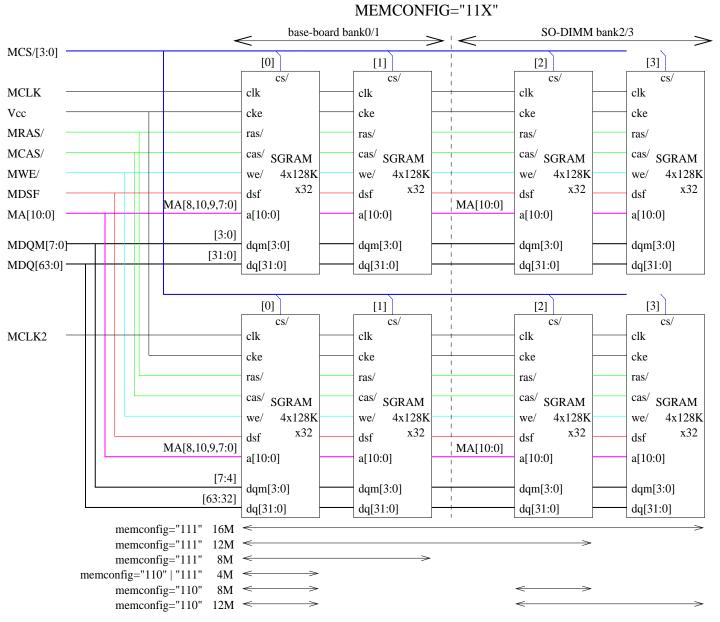


Figure 5-7: Memory Interface Connection (memconfig = '11X')

5.6 Video interface

5.6.1 Slaving the MGA-G200

This section describes the operations of the VIDRST (video reset input) signal. A VIDRST is detected on the first rising edge of VDOCLK where VIDRST is high. The video reset can affect both the horizontal and/or vertical circuitry.

The first time that the MGA-G200's CRTC is synchronized, the data may be corrupted for up to one complete frame. However, when the CRTC is already synchronous and a reset occurs, the CRTC will behave as if there was no VIDRST.

•• *Note:* In order for the MGA-G200 to be synchronous with any other source, the MGA-G200 CRTC must be programmed with the same video parameters as that other source. VDOCLK can also be modulated in order to align both CRTCs.

The **hrsten** field of the **CRTCEXT1** register is used to enable the horizontal reset, which sets the horizontal and character counters to the beginning of the horizontal SYNC.

The **vrsten** field of the **CRTCEXT1** register is used to enable the vertical reset, which sets the vertical counter to the beginning of the vertical SYNC in the even field.

Horizontal active and horizontal retrace are not affected by VIDRST when only the vertical reset is active. Figure 5-8 shows the relationship between VIDRST, the internal horizontal retrace, and the internal horizontal and vertical active signals, when both the horizontal and vertical counters are reset.

VDCLK _	
Horizontal retrace_	
Horizontal active _	
Vertical active _	
VOBLANKN _	

5.6.2 Genlock Mode

The **VIDRST** pin can be used to reset the **CRTC** horizontally and/or vertical counters. The **VIDRST** *must* be maintained for at least 1 **VDOCLK** cycle for the reset to take effect in the MGA-G200. When it is *not* used, the **VIDRST** pin *must* be maintained low (there is *no* enable/disable control bit for the **VIDRST** pin).

Pixel Width	Delay to Video Pin (VDOCLKs)
BPP8	31
BPP15	21
BPP16	21
BPP24	17
BPP32	16

If the timing on the VIDRST pin is respected, the reset operation on the chip will be completed (the VBLANK/ pin is set to '1'), according to the number of VDOCLKs shown in the following table:

► *Note:* Genlocking is *not* supported in VGA mode.

5.6.3 Crystal Resonator Specification

Frequency	27 MHZ
Equivalent series resistance (Rs)	35 - 200 Ω
Load capacitance (Cl)	18 or 20 pF (series <i>or</i> parallel)
Shunt capacitance (Co)	7 pF max.
Drive level	100 - 1,000 μW
Temperature stability	50 ppm

Figure 5-9: Video Interface

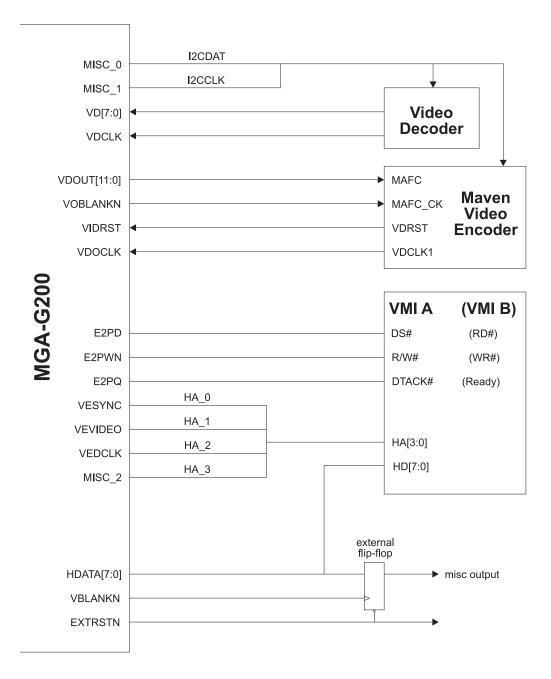
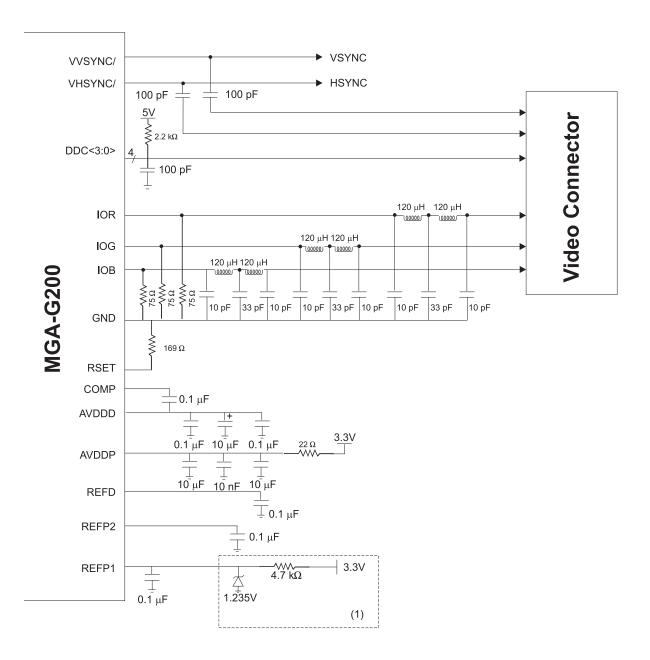



Figure 5-10: Video Connector

MGI Confidential

Appendix A: Technical Information

Pin List	A-2
PCI Pinout Illustration and Table	A-7
AGP Pinout Illustration and Table	A-9
Electrical Specification	A-11
Mechanical Specification	A-42
Test Feature	A-43
Ordering Information	A-48

A.1 Pin List

Group	Total	Ι	0	<i>I/O</i>
Host PCI	48	4	3	41
Host Local	2	1	1	
Memory	93		28	65
Video Display	6		2	4
Video In	9	9		
MAFC/Video Out	15	1	13	1
CODEC	13	2	3	8
SEEPROM	4	1	3	
Analog Signals	11	6	5	
Miscellaneous Functions	3			3
Test	3	3		—
VCC/GND	102			
Reserved	11			
PBGA Total	320			

 Table A-1: Pin Count Summary MGA-G200-PCI

Group	Total	Ι	0	<i>I/O</i>
Host PCI	61	6	12	43
Host Local	2	1	1	
Memory	93		8	65
Video Display	6		2	4
Video In	9	9		
MAFC/Video Out	15	1	13	1
CODEC	13	2	3	8
SEEPROM	4	1	3	
Analog Signals	12	7	5	
Miscellaneous Functions	3			3
Test	3	3		
VCC/GND	98			
Reserved	1	—		—
PBGA Total	320			

A.1.1 Host (PCI / AGP)

Name	# Pins	Туре	Description
PAD<31:0>	32	I/O	PCI address and data bus. During the address phase of a PCI transaction, PAD contains a physical address. During the data phase, it contains the data that is read or written.
SB_STB	1	0	AGP Sideband address strobe. While in AGP 2X mode, the strobe is used to qualify the information on the SBA bus on each of its edges. MGA-G200-AGP only.
PCBE<3:0>/	4	I/O	PCI bus command, and byte enable. During the address phase, PCBE<3:0>/ provides the bus command. During the data phase, PCBE<3:0>/ is used as the byte enable.
PCLK	1	Ι	PCI bus clock. All PCI bus activities are referenced to this clock.
PDEVSEL/	1	I/O	Device select. Is asserted when a transaction is within the MGA address range and space.
PFRAME/	1	I/O	Cycle frame. Indicates the beginning of an access and its duration.
AD_STB<1:0)> 2	I/O	AGP Data Strobe. While in AGP 2X mode, the strobe is used to qualify the information on the PAD bus on each of its edges. MGA-G200-AGP only.
PGNT/	1	Ι	Grant. Indicates to the MGA-G200 that access to the PCI bus has been granted.
PIDSEL	1	Ι	Initialization device select. Used as a chip select during configuration read and write transactions. MGA-G200-PCI only.
PINTA/	1	0	Interrupt request signal.
PIRDY/	1	I/O	Initiator ready. Indicates the initiating agent's ability to complete the current data phase of the transaction (used in conjunction with PTRDY/). Wait cycles are inserted until both PIRDY/ and PTRDY/ are asserted together.
PPAR	1	0	PCI even parity bit for the PAD<31:0> and PCBE<3:0>/ lines. Parity is generated during read data phases and during the address phase throughout the PCI mastering cycle.
PREQ/	1	0	Request. Indicates to the arbiter that the MGA-G200 wishes to use the bus.
PRST/	1	Ι	PCI reset. This signal is used as the chip's hard reset.
PSTOP/	1	I/O	Stop. Forces the current transaction to terminate.
PTRDY/	1	I/O	Target ready. When asserted, indicates that the current data phase of the transaction can be completed (used in conjunction with PIRDY/). Wait cycles are inserted until both PIRDY/ and PTRDY/ are asserted together. In target mode, PTRDY/ is used as an input for snooping operations.
SBA<7:0>	8	0	Sideband Address port. Provides an additional bus to pass addresses and commands.(<i>only</i> for the MGA-G200-AGP).
ST<2:0>	3	Ι	Status. Provides additional information from the arbitor indicating what the MGA-G200-AGP may do when it receives a PGNT/.

Name	# Pins	Туре	Description
EXTINT/	1	Ι	External interrupt pin. Can be used by a companion chip to generate
			interrupts on the PCI bus. Interrupt is an active low level interrupt.
EXTRST/	1	0	External reset signal. Used to reset the external devices.

A.1.2 Host (Local Mode)

A.1.3 Memory Interface

Name	# Pins	Туре	Description							
MCS<3:0>/	4	0	Memory Chip Select							
MA<10:0>	11	0	Memory addresses (row, column, bank: multiplexed). MA<10:0> are used as either bank select or memory addresses, depending on the type of memory.							
MRAS/	1	0	Memory Row Address Strobe							
MCAS/	1	0	emory Column Address Strobe							
MWE/	1	0	emory Write Enable							
MDSF	1	0	Memory special function eable.							
MDQ<63:0>	64	I/O	Memory data inputs/outputs							
MDQM<7:0>	8	0	Memory Data mask enable							
MCLK	1	I/O	Memory Clock for MDQ<31:0>							
MCLK2	1	0	Memory Clock for MDQ<63:32>							

A.1.4 Video Display Interface

Name	# Pins	Туре	Description
DDC<3:0>	4	I/O	Display Data Channel. Used to communicate with monitor.
VHSYNC/	1	0	Horizontal Sync.
VVSYNC/	1	0	Vertical Sync.

A.1.5 Video In Interface

Name	# Pins	Туре	Description
VD<7:0>	8	Ι	Video In Data
VDCLK	1	Ι	Video In Clock. Maximum: 27 MHz.

A.1.6 Video Out Interface

Name	# Pins	Туре	Description
VDOCLK	1	I/O	Video Out Clock. (Input for mafc, output in Panel link mode.)
VDOUT<11:0>	12	0	Video Out Data.
VOBLANK/	1	0	Video Out Blank. Gated clock feedback in mafc mode.
VIDRST 1		Ι	Video Reset Input. Used to synchronize the CRTC on an external
			source. The VIDRST pin must be forced inactive when not in use.

A.1.7 CODEC Interface

Name	# Pins	Туре	Description
VBLANK/	1	0	Data strobe for external register
VEDCLK	1	0	CODEC address <2>
VEVIDEO	1	0	CODEC address <1>
VESYNC	1	0	CODEC address <0>
HDATA <7:0>	8	I/O	CODEC data port. Also used for chip strapping
			HDATA <0> VGA boot strap
			HDATA <1> BIOS EEPROM installed strap
E2PW/	1	0	CODEC interface write signal when CODEC interface is enabled

A.1.8 SEEPROM

Name	# Pins	Туре	Description
E2PCLK	1	0	Clock for the Serial EEPROM.
E2PCS/	1	0	Serial EEPROM chip select.
E2PD	1	0	Serial EEPROM write data. Also, the Codec Interface read signal when Codec interface is enabled.
E2PQ	1	Ι	Serial EEPROM read data. Also, the Codec Interface read/write acknowledge signal when Codec interface is enabled.

A.1.9 Analog Signals

Name	# Pins	Туре	Description
СОМР	1	0	Compensation. COMP provides compensation for the interanl reference amplifier. A 0.1 uF ceramic capacitor is required between COMP and analog ground. The capacitor must be as close to the device as possible to avoid noise pick-up.
IOB	1	0	Analog current Output Blue. This output can drive a 37.5Ω load directly (doubly-terminated 75Ω load).
IOG	1	0	Analog current Output Green. This output can drive a 37.5Ω load directly (doubly-terminated 75Ω load).
IOR	1	0	Analog current Output Red. This output can drive a 37.5Ω load directly (doubly-terminated 75Ω load).
REFAGP	1	Ι	Voltage reference for AGP PLLs.
REFD REFP1 REFP2	3	Ι	Voltage reference for DACs and PLLS. An internal voltage reference of nominally 1.234 V may or may not be provided, which would require an external 0.1 uF ceramic capacitor between REF ans analog GND. However, the internal reference voltage can be overdirven by an externally supplied reference voltage.
REFSSTL	1	Ι	Reference voltage for the SSTL/LVTTL I/O buffers.
RSET	1	Ι	Full-scale adjustment pin. A resistor connected between this pin and ground controls the full-scale range of the DACs.
XTAL1	1	0	Connection for a series of resonant crystals as a reference for the
XTAL0	1	Ι	frequency synthesizer PLLs. XTAL0 may be used as a TTL reference clock (local oscillator) input, in which case XTAL1 is left unconnected.

A.1.10 Miscellaneous Functions

Name	# Pins	Туре	Description
MISC<2:0>	3	I/O	Miscellaneous Control. General purpose I/O pins. MISC <0> can be used for I2CDAT MISC <1> can be used for I2CCLK MISC <2> can be used for CODEC Address <3> or EOI/

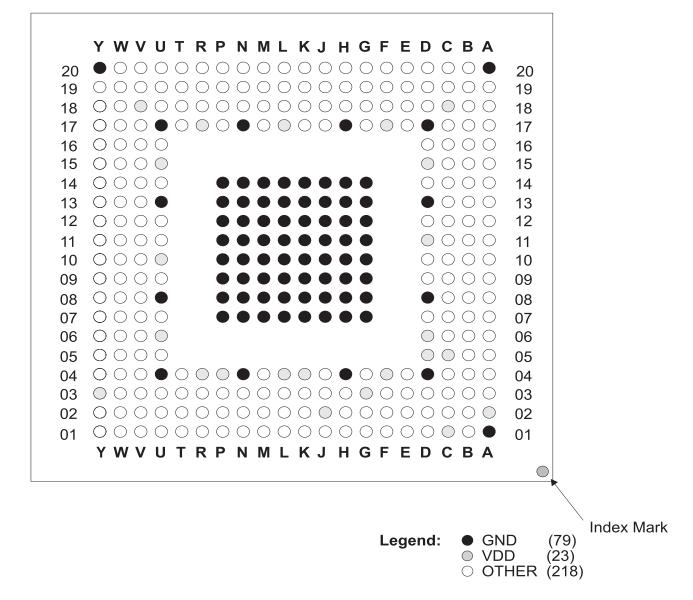
A.1.11 TEST

Name	# Pins	Туре	Description
TST<2:0>	3	Ι	These pins place the chip in test mode. They should be tied to a pull-up during normal operation.

A.1.12 AGP VDD/GND

Name	# Pins	Туре	Description
AVDDD	3	-	Analog; attaches to +3.3 volts
AVDDP	3	-	Analog; attaches to +3.3 volts
GND	77	-	Attaches to ground
AGNDP	3	-	Analog Ground
VDD	12	-	Attaches to +3.3 volts.

A.1.13 PCI VDD/GND


Name	# Pins	Туре	Description
AVDDD	3	-	Analog; attaches to +3.3 volts.
AVDDP	2	-	Analog; attaches to +3.3 volts
GND	77	-	Attaches to ground
AGNDP	2	-	Analog Ground
VDD	12	-	Attaches to +3.3 volts
VDD5	6	-	Attaches to +5 volts

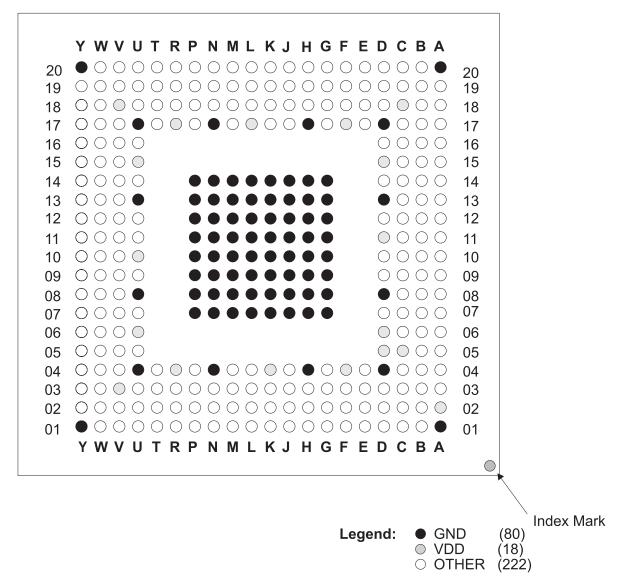
A.2 PCI Pinout Illustration and Table

The illustration below shows the locations of the MGA-G200's 320 pins on the chip. The table on the next page lists the signal names with their respective pin numbers, in numeric order.

Figure A-1: PCI Pinout Illustration

MGA-ECLIPSE PCI Bottom View

Ą	AGNDP1	42> QA	UD 45	UD <3>	VD <1>	VDOUT <3>	VDOUT <©	VDOUT <3>	VOBLANK	HDATA <6>	HDATA <5>	HDATA <1>	VEVIDEO	VBLANKN	DDC <3>	DDC 40-	EXTRSTN	RSET	AVDDD1	GND
a.	VHSYNCN	RE FP1	MISC <1>	<9> Q/	NDCTK	VDOUT <10>	VDOUT <7>	VDOUT <4>	VDOUT <0>	NDOCTK	HDATA <4>	HDATA <0>	E2PD	EZPWN	DDC <1>	VIDRST	IOR	REFD	COMP	XTALO
v	MDQ <62>	VVSYNCN	AVDDP1	43> CV	Q∧ ≪>	۵۷ م	VDOUT <8>	VDOUT <5>	VDOUT <1>	HDATA <7>	HDATA <2>	VESYNC	EZPQ	DDC <2>	EXTINTN	AVDDD3	901	BOI	XTAL 1	VDD5
D	MDQ <59>	<09>	MDQ <63>	GND	MISC <0>	DDV	VDOUT <11>	GND	VDOUT <2>	ααΛ	HDATA <3>	NEDCIK	GND	MISC 2>	aav	AVDDD2	GND	PGNTN	TST <2>	PRSTN
ц	MDQ <56>	MDQ <57>	MDQ <58>	MDQ <61>													PINTAN	PREQN	I	PCLK
r.	MDQ <52>	MDQ <53>	MDQ <54>	aav													aav	HIDSEL	I	PAD <31>
9	MDQ <49>	MDQ <50>	MDQ <51>	MDQ <55>			GND	GND	GND	GND	GND	GND	GND	GND			PDEVSEL	VDD5	PAD <30>	Ι
н	NDQM <5>	MDQM <6>	MDQM <7>	GND			GND	GND	GND	GND	GND	GND	GND	GND			GND	PAD <295	PAD <275	I
r	MDQ <46>	MDQ <47>	MDQ <45>	MDQ <48>			GND	GND	GND	GND	GND	GND	GND	GND			PAD <25>	PAD <28>	VDD5	PAD <21>
×	MDQ <43>	MDQ <42>	MDQ <44>	MDQM <4>			GND	GND	GND	GND	GND	GND	GND	GND			aan	PAD <24>	PAD <23>	I
٦	MDQ <39>	MDQ <38>	MDQ <41>	aav			GND	GND	GND	GND	GND	GND	GND	GND			VDD5	PAD <19>	PAD <17>	PAD <26>
W	MDQ <36>	MDQ <35>	MDQ <37>	MDQ <40>			GND	GND	GND	GND	GND	GND	GND	GND			PCBEN <2>	PCBEN <3>	PAD <22>	Ι
~	MDQ <33>	MDQ <32>	MDQ <34>	GND			GND	GND	GND	GND	GND	GND	GND	GND			GND	PIRDYN	PAD <14>	PAD <20>
٩	<i>TST</i> <1>	<i>TST</i> <0>	REFSSTL	MDSF			GND	GND	GND	GND	GND	GND	GND	GND			VDDS	PAD <9>	PAD <16>	PAD <12>
Я	MCSN <2>	MCSN <3>	MSCN <1>	QΩΛ													QQA	PAD <105	I	PCBEN <1>
T	MRASN	MCASN	MWEN	MCSN <0>													PFRAMEN	PTRDYN	PAD <8>	PAD <18>
n	WCLK	<8>	<9> VW	GND	<0>	ΔαΛ	MDQ <25>	GND	MDQ <18>	<2>	aan	MDQ <10>	GND	MDQ <3>	aan	APAR	GND	NdOTSq	DAD <7>	I
>	<01>	<6> ∀₩	Z400/VV	<6>	MDQ <31>	MDQ <28>	<24>	<12>	MDQ <17>	MDQ <15>	<41>	<11> DAM	<2> 0 GM	<4>	EZPCSN	<15> DAD	<0> 0Vd	-	PAD <5>	PAD <3>
M	REFP2	WCTK5	< <u>5</u> > <i>VW</i>	<2> VW	MDQ <30>	MDQ <27>	<62>	<02>	MDQ <16>	MDQM <1>	<21>	<8> 0 GW	<5> Dam	<1> 00W	HDdZ3	<11> 0Vd	-513> CIA	<\$> 0 Vd	I	PCBEN <0>
٨	A GNDP2	AAA <7>	MA <4>	MA <1>	MDQ <29>	MDQ <26>	MDQ <22>	MDQ <19>	MDQM <3>	MDQM <0>	MDQ <13>	MDQ <9>	 COM	MDQ <2>	ADQ <0>	<9> CIA	PAD <2>	VDDS	PAD <1>	I
t	20	61	18	24	16	15	14	13	12	11	10	6	8	2	9	2	4	3	2	1


Table A-3: PCI Pinout Legend (Bottom View)

A.3 AGP Pinout Illustration and Table

The illustration below shows the locations of the MGA-G200-AGP's 320 pins on the chip. The table on the next page lists the signal names with their respective pin numbers, in numeric order.

Figure A-2: AGP Pinout Illustration

MGA-ECLIPSE AGP Bottom View

A	AGNDP1	dv <7>	VD <4>	Q∧ €Ş	UV <1>	VDOUT <9>	VDOUT <6>	VDOUT <3>	VOBLANK	HDATA <6>	HDATA <5>	HDATA <1>	VEVIDEO	VBLANKN	DDC <3>	DDC <0>	EXTRSTN	RSET	AVDDD1	GND
В	VHSYNCN	REFP1	MISC <1>	VD <0>	NDCTK	VDOUT <10>	VDOUT <7>	VDOUT <4>	VDOUT <0>	NDOCLK	HDATA <4>	HDATA <0>	E2PD	E2PWN	DDC <1>	VIDRST	ЮR	REFD	COMP	XTALO
с	MDQ <62>	VVSYNCN	AVDDP1	VD <5>	UD <2>	av 4	VDOUT <8>	VDOUT <5>	VDOUT <1>	HDATA <7>	HDATA <2>	VESYNC	E2PQ	DDC <2>	EXTINTN	AVDDD3	901	BOI	1 XTAL 1	ST <0>
Q	MDQ <59>	<08><	MDQ <63>	GND	MISC <0>	DDV	VDOUT <11>	GND	VDOUT 2>	DDV	HDATA <3>	NEDCIK	GND	MISC <2>	DDV	AVDDD2	GND	PGNTN	TST <2>	ST <2>
E	MDQ <56>	MDQ <57>	MDQ <58>	MDQ <61>													PINTAN	PRSTN	ST <1>	SBA <0>
F	MDQ <52>	MDQ <53>	MDQ <54>	ααλ													aav	SBA <2>	SB_STB	ЬСГК
9	MDQ <49>	MDQ <50>	MDQ <51>	MDQ <55>			GND	GND	GND	GND	GND	GND	GND	GND			PREQN	SBA <1>	SBA <3>	SBA <4>
н	MDQM <5>	<9> MDQM	MDCM <2>	GND			GND	GND	GND	GND	GND	GND	GND	GND			GND	SBA <5>	SBA <6>	PAD <31>
r	MDQ <46>	MDQ <47>	MDQ <45>	MDQ <48>			GND	GND	GND	GND	GND	GND	GND	GND			SBA <7>	PAD <30>	PAD <29>	PAD <27>
×	MDQ <43>	MDQ <42>	MDQ <44>	MDQM <4>			GND	GND	GND	GND	GND	GND	GND	GND			aav	PAD <28 >	PAD < 25 >	AD_STB <1>
۲	MDQ <39>	MDQ <38>	MDQ <41>	ααλ			GND	GND	GND	GND	GND	GND	GND	GND			PAD <26>	PAD <24>	PAD <23>	PAD <21>
М	MDQ <36>	MDQ <35>	MDQ <37>	MDQ <40>			GND	GND	GND	GND	GND	GND	GND	GND			PCBEN <3>	PAD <22>	PAD <19>	PAD <17>
N	MDQ <33>	MDQ <32>	MDQ <34>	GND			GND	GND	GND	GND	GND	GND	GND	GND			GND	PAD <20>	PCBEN 2>	PDEVSELN
ط	TST <1>	TST <0>	REFSSTL	MDSF			GND	GND	GND	GND	GND	GND	GND	GND			PAD <18>	PAD <16>	PIRDYN	PAD <14>
В	MCSN <2>	MCSN <3>	MSCN <1>	Dav													aav	REFAGP	PCBEN <1>	PAD <12>
τ	MRASN	MCASN	MWEN	MCSN <0>													PFRAMEN	PTRDYN	PAD <10>	AD_STB <0>
n	MCLK	MA <8>	AM <6>	GND	MA <0>	QQA	MDQ <25>	GND	MDQ <18>	MDQM 2>	QQA	MDQ <10>	GND	MDQ <3>	QQA	PPAR	GND	PSTOPN	PAD <7>	PAD <8>
>	MA <10>	MA <9>	AVDDP2	MA <3>	MDQ <31>	MDQ <28>	MDQ <24>	MDQ <21>	MDQ <17>	MDQ <15>	MDQ <14>	MDQ <11>	MDQ <7>	MDQ <4>	E2PCSN	PAD <15>	PAD <9>	AVDDP3	-5> DAD	PAD <3>
M	REFP2	WCTK5	< <u>5</u> > VW	MA <2>	<0E> DAM	MDQ <27>	<62>	MDQ <20>	MDQ <16>	MDQM <1>	MDQ <12>	<8> 0 GW	MDQ <5>	<1> QQW	HD dZ =	<11> DF4	PAD <13>	<\$> QVd	-	PCBEN <0>
٨	AGNDP2	MA <7>	AA <4>	MA <1>	MDQ <29>	MDQ <26>	MDQ <22>	MDQ <19>	MDQM <3>	MDQM <0>	MDQ <13>	MDQ <9>	MDQ <6>	MDQ <2>	MDQ <0>	PAD <6>	PAD <2>	DAD <0>	PAD <1>	AGNDP3
I	20	19	18	17	16	15	14	13	12	11	10	6	8	2	9	c,	4	Э	2	1

Table A-4: AGP Pinout Legend (Bottom View)

A.4 Electrical Specification

A.4.1 DC Specifications

Symbol	Parameter	Conditions	Min.	Max.	Units	Notes
VDD3V	Power Supply Voltage		-0.5	4.6	V	
VDD5V	Power Supply Voltage		-0.5	6.6	V	
VI	Input Voltage					
	IO-3, IO-6, IO-9, IO-12, I-0, I-S	$V_{I} < VDD3 + 0.5V$	-0.5	4.6	V	
	IO-6-5V, IO-9-5V	$V_{I} < VDD3 + 3.0V$	-0.5	6.6	V	
	I-PCI 33, IO-PCI 33	$V_{I} < VDD5 + 0.5V$	-0.5	6.6	V	(1)
	IO_SSTL1, IO_SSTL2	$V_{I} < VDD3 + 0.3V$	-0.3	4.6	V	
V _O	Output Voltage					(2)
	IO-3, IO-6, IO-9, IO-12	$V_{O} < VDD3 + 0.5V$	-0.5	4.6	V	
	IO-6-5V, IO-9-5V	$V_0 < VDD3 + 3.0V$	-0.5	6.6	V	
	IO-PCI 33	$V_{O} < VDD5 + 0.5V$	-0.5	6.6	V	(1)
	IO_SSTL1, IO_SSTL2	$V_{O} < VDD3 + 0.3V$	-0.3	4.6	V	
I _O	Output Current					(2)
	IO-3			10	mA	
	IO-6			20	mA	
	IO-9			30	mA	
	IO-12			40	mA	
	IO-PCI33			?	mA	
	IO_SSTL1		-8	8	mA	
	IO_SSTL2		-16	16	mA	
T _A	Operating Temperature		0	55	°C	
T _{STG}	Storage Temperature		-65	150	°C	

Table A-5: Absolute Maximum Rating

 $^{(1)}\,\rm MGA\text{-}G200\text{-}PCI$ only

⁽²⁾ V_0 : the range of voltage which will not cause damage when applied to the output pin. I₀: the maximum current which will not cause damage when flowing to or from the output pin.

Caution: Exposure to the absolute maximum rating for extended periods may affect device reliability; exceeding the rating could cause permanent damage. The device should not be operated outside the recommended operating conditions.

Symbol	Parameter	Min.	Max.	Units
VDD5	Power Supply	4.75	5.25	V
VDD3 (PCI)		3.0	3.6	V
VDD3 (AGP)		3.15	3.45	V
REFAGP	AGP buffer voltage reference (V_{ref})	0.39 VDD3	0.41 VDD3	V
	Vref pin input current (I ref)	+10		μA
V _{IH}	High-Level Input Voltage			
	IO-AGP, I-AGP	V _{ref} +0.2	VDD3	V
	IO-12, I-0	2.0	VDD3	V
	IO-9-5V, I-0-5V	2.0	5.5V	V
	I-PCI33, IO-PCI33	2.0	5.5V	V
V _{IL}	Low-Level Input Voltage			
	IO-12, I-0	0	0.8	V
	IO-AGP, I-AGP	0	V _{ref} -0.2	
	IO-9-5V, I-0-5V	0	0.8	V
	I-PCI33, IO-PCI33	0	0.8	V
t _r	Input Rise Time	0	200	ns
t _f	Input Fall Time	0	200	ns

Table A-6: Recommended Operating Conditions

Symbol	Parameter	Conditions	Min.	Max.	Units	Notes
I _{OS}	Output Short-Circuit Current	$V_0 = 0V$		-250	mA	(1)
Ii	Input Leakage Current	$V_i = VDD3 \text{ or } 0V$		±10	μA	
I _{OL}	IO-AGP, O-AGP	$V_{OL} = 0.18VDD3$				(2)
	Low-Level Output Current	$V_{OL} = 0.4 V$				
	O-3		3		mA	
	0-6		6		mA	
	O-9		9		mA	
	O-12, IO-12		12		mA	
	O-24		24		mA	
	IO-PCI33, O-PCI33				mA	(2)
	IO-SSTL1		8		mA	
	IO-SSTL2		16		mA	
I _{OH}	IO-AGP, O-AGP	V _{OH} = 0.7 VDD3				(2)
	High-Level Output Current	$V_{OH} = 2.4V$				
	0-3		-3		mA	
	0-6		-6		mA	
	O-12, IO-12		-12		mA	
	O-24		-24		mA	
	IO-PCI33, O-PCI33				mA	(2)
	IO-SSTL1		-8		mA	
	IO-SSTL2		-16		mA	
V _{OL}	IO-AGP, O-AGP	Iout=1500µA		0.1 VDD3	V	
	Low-Level Output Voltage	$I_{OL} = 0 \text{ mA}$		0.1	V	
	IO-SSTL			VTT-0.6	V	
	IO-SSTL2			VTT-0.8	V	
V _{OH}	IO-AGP, O-AGP	I _{out} =1500µA	0.9 VDD3		V	
	High-Level Output Voltage	$I_{OH} = 0 \text{ mA}$	VDD3 - 0.1		V	
	IO-SSTL1		VTT+0.6		V	
	IO-SSTL2		VTT+0.8		V	
θ_{JA}	Junction-to-Air Thermal Coefficient	No Air Flow		?	°c/w	(3)
C _{PIN}	Pin Capacitance	F = 1 MHz		7	pF	
ICC3	VDD3 Supply Current		?		mA	
ICC5	VDD5 Supply Current		?		mA	

Table A-7: DC Characteristics (VDD3 = $3.3 \pm 0.3V$, VDD5 = $5.0 \pm 0.25V$, TA = 0 to 55°)(PCI) (VDD3 = $3.3 \pm 0.15V$, VDD5 = $5.0 \pm 0.25V$, TA = 0 to 55°)(AGP)

⁽¹⁾ The Output Short-Circuit time is less than one second for one pin only.

 $^{(2)}$ AGP and PCI buffers are characterized by their V/I curves (see the following figures).

⁽³⁾ All GND ball connected to PCB ground plane and all VDD3 balls connected to PCB VDD plane.

Figure A-3: SSTL Buffer I/V Curve Pull-Up (Class 1)

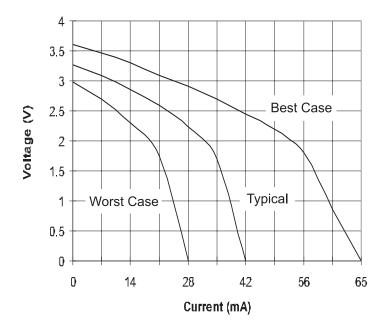
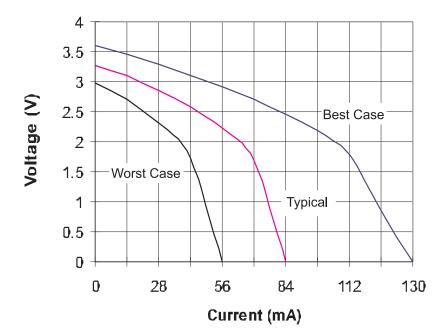



Figure A-4: SSTL Buffer I/V Curve Pull-Up (Class 2)

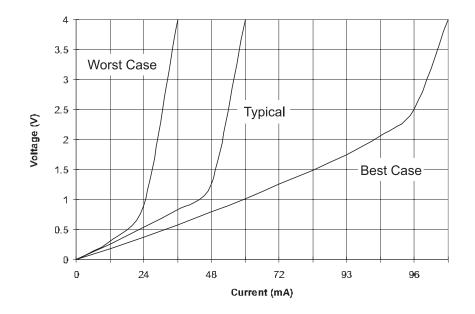
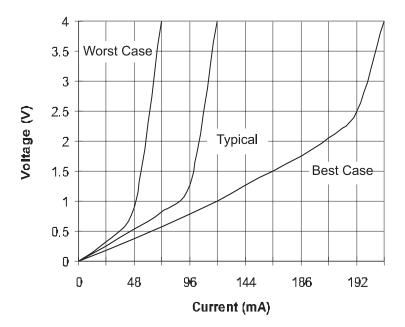



Figure A-5: SSTL Buffer I/V Curve Pull-Down (Class 1)

Figure A-6: SSTL Buffer I/V Curve Pull-Down (Class 2)

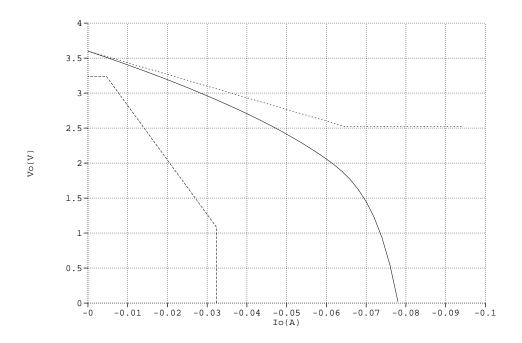
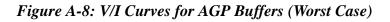
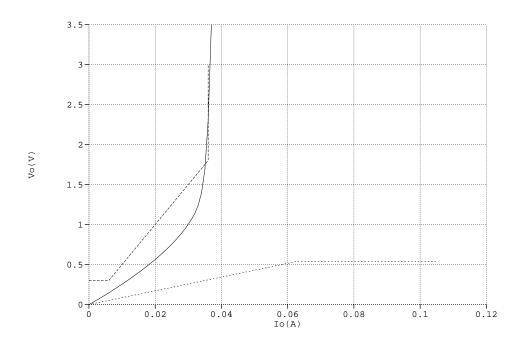




Figure A-7: V/I Curves for AGP Buffers (Best Case)

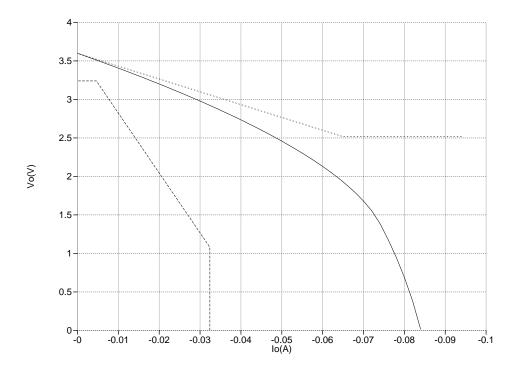


Figure A-9: VV/I Curves for AGP Buffers (Typical Case)

<i>a.</i>		Load	(pF)	Damping	
Signal Name	Buffer Type	Min.	Max.	(ohms)	Notes
PAD<31:0>	IO_PCI33	0	50	-	(1)
PCBE<3:0>/	IO_PCI33	0	50	-	(1)
PCLK	I_PCI33	-	-	-	(1)
PDEVSEL/	IO_PCI33	0	50	-	(1)
PFRAME/	IO_PCI33	0	50	-	(1)
PGNT/	I_PCI33	-	-	-	(1)
PIDSEL	I_PCI33	-	-	-	(1)
PINTA/	O_PCI33	0	50	-	(1)
PIRDY/	IO_PCI33	0	50	-	(1)
PPAR	IO_PCI33	0	50	-	$(1)^{(2)}$
PREQ/	IO_PCI33	0	50	-	(2)
PRST/	I_PCI33	-	-	-	(1)
PSTOP/	IO_PCI33	0	50	-	(1)
PTRDY/	IO_PCI33	0	50	-	(1)
EXTINT/	I_O	-	-	-	
EXTRST/	IO_6	50	50	-	(2)
E2PCLK	IO_3	12	16	-	(2)
E2PD	IO_9	16	96	-	(2)
E2PQ	I_O_5V	-	_	-	
E2PW/	IO_6	16	80	-	(2)
E2PCS/	 IO_3	14	18	-	(2)
MCS<3:0>/	IO_SSTL1	15	65		
MA<10:0>	IO_SSTL2	15	65	-	(2)
MCAS/	IO_SSTL2	15	65	-	(2)
MCLK	IO_SSTL2	12	25	-	
MCLK2	IO_SSTL2	12	25	-	
MCS<3:0>/	IO_SSTL1	10	40	-	(2)
MDQ<63:0>	IO_SSTL1	10	40	-	
MDQM<7:0>	IO SSTL1	15	65	-	(2)
MDSF	IO_SSTL2	15	65	_	(2)
MRAS/	IO_SSTL2	15	65	-	(2)
MWE/	IO_SSTL2	15	65	-	(2)
VBLANK/	 IO_6	15	35	33	(2)
VD<7:0>	I_O_5V	-	-	-	
VDCLK	I_O_5V	-	-	-	
VDOCLK	IO_9	10	35	-	
VDOUT<11:0>	IO_6	10	35	-	(2)
VEDCLK	IO_6	16	80		(2)
VESYNC	IO_6	16	80		(2)
VEVIDEO	IO_6	16	80	_	(2)
HDATA<7:0>	IO_6_5V	26	90	+	

 Table A-8: PCI Buffer Type and Pin Load (Part 1 of 2)

Signal Name	Duffor Ture	Load ((pF)	Damping	Notes
Signal Name	Buffer Type	Min.	Max.	(ohms)	Inotes
VHSYNC/	IO_6	10	20	33	(2)
VIDRST	I_O	-	-	-	
VOBLANK/	IO_9	10	35	-	(2)
VVSYNC/	IO_6	10	20	33	(2)
DDC<0>	IO_9_5V	50	50	-	
DDC<3:1>	IO_6_5V	50	50	-	
MISC<2:0>	IO_6_5V	16pF<2:0>	100	-	
TST<1:0>	I_0	-	-	-	
RBFN_LFT	I_0	-	-	-	

 Table A-8: PCI Buffer Type and Pin Load (Part 2 of 2)

⁽¹⁾ See Table A-9

⁽²⁾ input mode only when TST < 2:0 > = '000' (HiZ mode for NAND Tree test)

C' I Name	D. C. T.	Load	l (pF)	Damping	Neder
Signal Name	Buffer Type	Min.	Max.	(ohms)	Notes
PAD<31:0>	IO_AGP	0	10	-	
PCBE<3:0>/	IO_AGP	0	10	-	
PCLK	I_AGP	-	-	-	
PDEVSEL/	IO_AGP	0	10	-	
PFRAME/	IO_AGP	0	10	-	
PGNT/	I_AGP	-	-	-	
PINTA/	O_AGP	0	10	-	
PIRDY/	IO_AGP	0	10	-	
PPAR	IO_AGP	0	10	-	(1)
PREQ/	IO_AGP	0	10	-	(1)
PRST/	I_AGP	-	-	-	
PSTOP/	IO_AGP	0	10	-	
PTRDY/	IO_AGP	0	10	-	
SBA<7:0>	IO_AGP	0	10	-	(1)
ST<2:0>	I_AGP	-	-	-	
SB_STB	IO_AGP	0	10	-	(1)
AD_STB<1:0>	IO_AGP	0	10	-	

Table A-9: AGP Buffer Type and Pin Load

(1) Input mode only when TST<2:0. = '000' (HiZ mode for NAND Tree test)

A.4.2 AC Specifications

The following tables indicate the timing parameters a device (SGRAM, BIOS ROM, or other external device) must meet to work properly with the MGA-G200 chip.

A.4.2.1 DAC AC Parameters

Table A-10: DAC Parameter List

Parameter	Min.	Тур.	Max.	Units
Analog output delay (Td) ⁽¹⁾	1.5	-	4.4	ns
Analog output settling time (Ts) ⁽²⁾	4.2	-	5.5	ns
Analog output rise/fall time (Tr/f) ⁽³⁾	1.8	-	2.3	ns
Glitch impulse	-	100	-	pV/s
DAC to DAC crosstalk	-	-	-	-
Analog output skew	-	-	-	ns

⁽¹⁾ Measured from the 90% point of the rising clock edge to 50% of full-scale transition.

 $^{(2)}$ Measured from 50% of full-scale transition to settled output, within +/- 1 LSB.

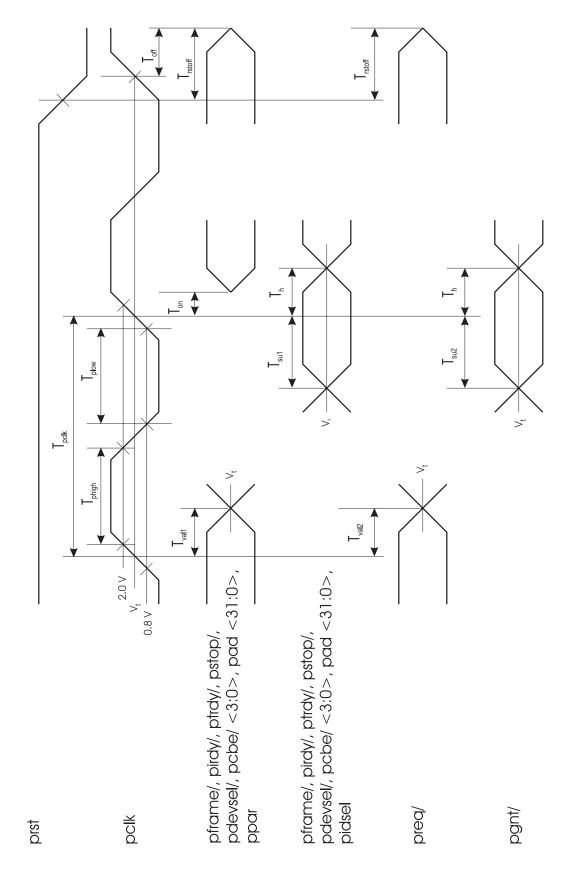

 $^{(3)}$ Measured between 10% and 90% of full-scale transition.

Table A-11: PLL Parameter List

Parameter	Min.	Тур.	Max.	Units
Pixel clock PLL frequency	6.25	-	-	MHz
PLL duty cycle variation	45	-	55	%
System PLL frequency	6.25	-	-	MHz
Frequency select to PLL output stable	-	1.00	-	ms
PLL phase jitter	-	-	-	-
PLL duty cycle jitter	_	_	_	-

A.4.2.2 Host Interface Timing

Symbol	Parameter	Min	Max	Unit	Notes
T _{pclk}	PCLK cycle time	30	_	ns	
T _{plow}	PCLK low time	11	—	ns	
T _{phigh}	PCLK high time	11		ns	
T _{on}	Float to active delay	2		ns	
T _{val1}	PCLK to signal valid delay	2	11	ns	(2),(3)
T _{val2}	PCLK to signal valid delay	2	12	ns	(3),(4)
T _{off}	Active to float delay		28	ns	(5)
T _{rstoff}	Reset active to output float delay		40	ns	(5)
T _{su1}	Input setup time to PCLK	7		ns	(6)
T _{su2}	Input setup time to PCLK	10		ns	(7)
T _h	Input hold time from PCLK	0		ns	

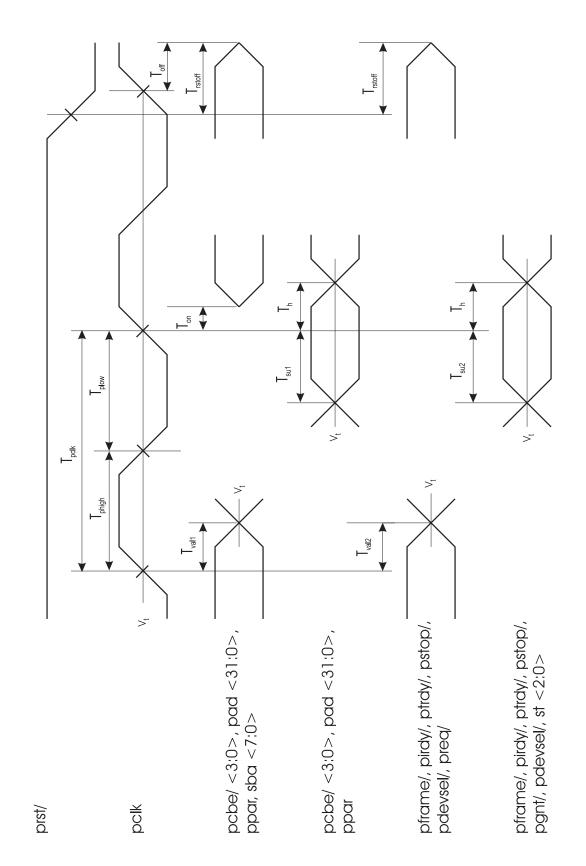
Table A-12: PCI 33 MHz 5V Signaling Environment Timing (MGA-G200-PCI only)⁽¹⁾

 $^{(1)}$ V_t = 1.5V

⁽²⁾ Applies only to pframe/, pridy/, ptrdy/, pstop/, pdevsel/, pcbe/ <3:4>, pad <31:0>, ppar

⁽³⁾ Minimum times are evaluated with 0 pF lumped load.

Maximum times are evaluated with 50 pF lumped load.


⁽⁴⁾ Applies only to preq/

⁽⁵⁾ Hi-Z or off-state is achieved when the total current delivered through the component pin is less than or equal to the leakage current specification.

⁽⁶⁾ Applies only to pfame/, pridy/, ptrsy/, pstop/, pdevsel/, pcbe/ <3:0>, pad <31:0>, pidsel

⁽⁷⁾ Applies only to pgnt/

Figure A-11: AGP 1X Timing (MGA-G200-AGP only)

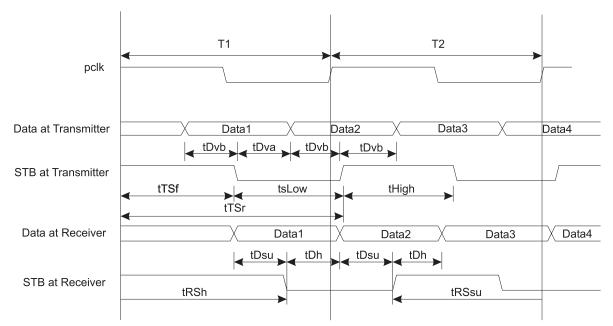
Symbol	Parameter	Min	Max	Unit	Notes
T _{pclk}	PCLK cycle time	15.0	30	ns	
T _{plow}	PCLK low time	6.0		ns	
T _{phigh}	PCLK high time	6.0	_	ns	
T _{on}	Float to active delay	1.0	6.0	ns	
T _{val1}	PCLK to signal valid delay (Data)	1.0	6.0	ns	(2)
T _{val2}	PCLK to signal valid delay (Control)	1.0	5.5	ns	(3)
T _{off}	Active to float delay	1.0	14.0	ns	(4)
T _{rstoff}	Reset active to output float delay		40.0	ns	
T _{su1}	Input setup time to PCLK (Data)	5.5		ns	(5)
T _{su2}	Input setup time to PCLK (Control)	6.0		ns	(6)
T _h	Input setup time from PCLK	0		ns	

 Table A-13: AGP 1X Timing (MGA-G200-AGP only)⁽¹⁾

⁽¹⁾ Timings are evaluated with a 10pF lumped load.

 $Vt = 0.4 V_{DD}$

⁽²⁾ Applies only to pframe/, pirdy/, ptrdy/, pstop/, pdevsel/, preq/, and ppar.

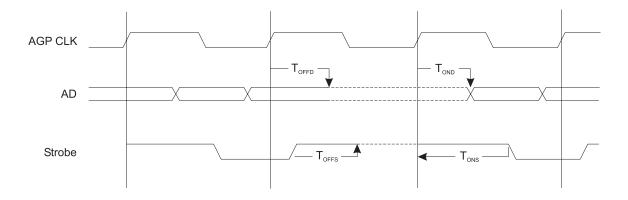

⁽³⁾ Applies only to pad<31:0> and pcbe/<3:0>, SBA<7:0> and ppar.

⁽⁴⁾ Hi-Z or off state is achieved when the total current delivered through the component pin is less than or equal to the leakage current specification.

⁽⁵⁾ Applies only to pad<31:0>, pcbe/<3:0> and ppar.

⁽⁶⁾ Applies only to pframe/, pirdy/, ptrdy/, pstop/, pdevsel/, pgnt/ and st<2:0>.

Figure A-12: AGP 2X Timing Diagram



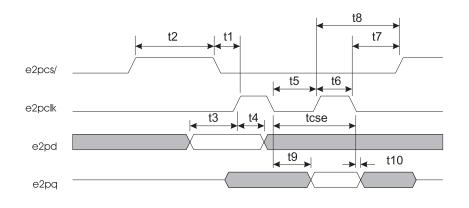


Table A-14: AGP 2X Timing (MGA-G200-AGP only)⁽¹⁾

Symbol	Parameter	Min	Max	Unit	Notes
Transmitter	Output Signals:				
T _{TSf}	CLK to transmit strobe falling	2	12	ns	
T _{TSr}	CLK to transmit strobe rising		20	ns	
T _{Dvb}	Data valid before strobe	1.7	_	ns	_
T _{Dva}	Data valid after strobe	1.9		ns	
T _{ONd}	Float to Active Delay	-1	9	ns	
T _{OFFd}	Active to Float Delay	1	12	ns	_
T _{ONS}	Strobe active to strobe falling edge setup	6	10	ns	
T _{OFFS}	Strobe rising edge to strobe float delay	6	10	ns	
Receiver Ou	utput Signals:				
T _{RSsu}	Receive strobe setup tome to CLK	6		ns	
T _{RSh}	Receive strobe hold time from CLK	1			
T _{Dsu}	Data strobe setup time	1		ns	
T _{Dh}	Strobe to data hold time	1	_	ns	
Ts _{low}	Stucks minimum low and high time	5.0	_	ns	
Ts _{high}	Strobe minimum low and high time	5.0	_	ns	
Tpll _{lock}	AGP 2X pll lock time		2.5	ns	

 $^{(1)}$ Timings are evaluated with a 10pF lumped load. Vt = 0.4 V_{DD}

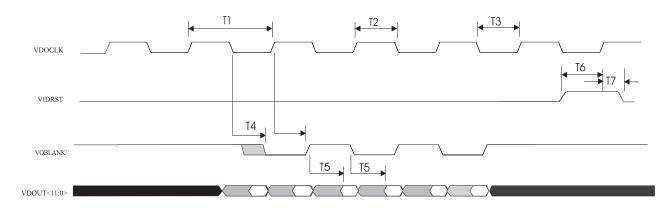
A.4.2.3 Serial EEPROM Device Timing

Figure A-14: Serial EEPROM Waveform

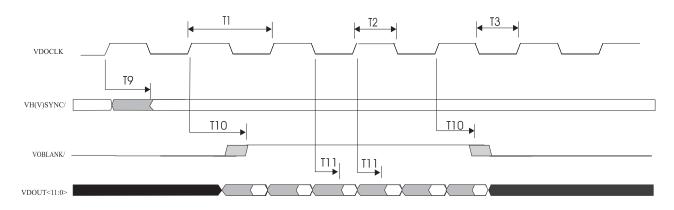
Table A-15: Serial EEPROM Clock Period Cycle

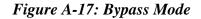
biosboot	serial eeprom size	MGA-G200	tcp min (ns)	tcse (ns)	tcse	
					min (ns)	max (MHz)
0	128 bytes	AGP	15	tcp * 64	960	1.04
		PCI	30	tcp * 32		
1	32KB or 64KB	AGP	15	tcp * 16	240	4.17
		PCI	30	tcp * 8		

• *Note:* tcp is the PCI clock cycle period.


•• *Note:* tcse is the serial EEPROM clock cycle period.

Name	Min. (ns)	Max. (ns)	Commnet
t1	tcse/2-tcp-3		Chip select falling to clock rising
t2	tcse-1		Chip select high time
t3	tcse/2-9		Input data setup time to clock rising
t4	tcse/2-2		Input data hold time from clock rising
t5	tcse/2		Clock low time
t6	tcse/2-1		Clock high time
t7	tcp-3		Clock falling time to chip select rising
t8	tcse/2+tcp-3		Clock rising to chip select rising
t9		tcse-19	Clock falling to valid output data
t10	3		Output data hold from clock falling


Table A-16: Serial EEPROM Parameter List


A.4.2.4 MAFC Feature Connector

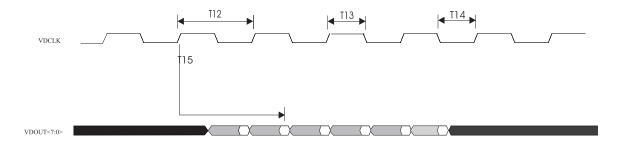
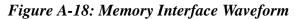
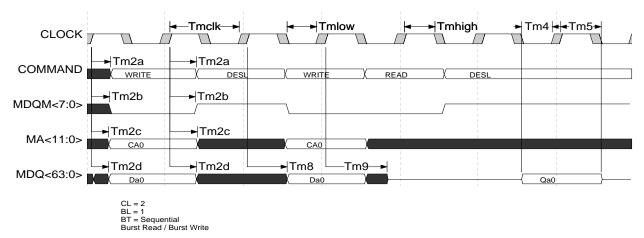

Figure A-15: MAFC Waveform

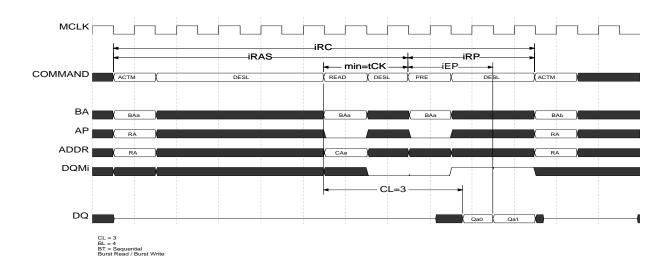
Figure A-16: Panel Link Mode





Name	Min. (ns)	Max. (ns)	Comment	
T1	15.4	-	VDOCLK period Mode A	
T2	6.7	-	VDOCLK high Mode A	
T3	6.7	-	VDOCLK low Mode A	
T5	- 0.4	4.5	Valid data time (VOBLANK/ => VDOUT)	MAFCLK
T6	6	-	Setup time (VIDRST => VDOCLK)	
T7	0	-	Hold time (VIDRST => VDOCLK)	
T9	0.3	5.7	VDOCLK => VH(V)SYNC	Panel Link
T10	0.3	5.7	VDOCLK => VOBLANK/	Panel Link
T11	0.3	5.7	Valid data time (VDOCLK => VDOUT)	Panel Link
T12	35	-	VDCLK period	Bypass mode
T13	13.5	-	VDCLK high	Bypass mode
T14	13.5	-	VDCLK low	Bypass mode
T15	6	20	VDCLK -> VDOUT<7:0>	Bypass mode

Table A-17: MAFC Waveforms data information


A.4.2.5 Memory Interface Timing

Timing	Description	Min. (ns)	Max. (ns)
Tmclk	MCLK period	10.0	-
Tmlow	MCLK low	3.0	-
Tmhigh	MCLK high	3.0	-
Tm2a	MCLK> Command (MRAS/, MCAS/, MWE/, MDSF, MCS/<3:0>) valid	1.86	3.64
Tm2b	MCLK> MDQM<7:0> valid	1.86	3.64
Tm2c	MCLK> MA<11:0> valid	1.86	3.64
Tm2d	MCLK> MDQ<63:0> valid	1.86	3.64
Tm4	MDQ<63:0> setup> MCLK	0.64	-
Tm5	MDQ<63:0> hold> MCLK	2.36	-
Tm8	MCLK> MDQ<63:0> low-z	1.86	-
Tm9	MCLK> MDQ<63:0> high-z	-	3.64

Figure A-19: Read Followed by Precharge (Tcl=3)

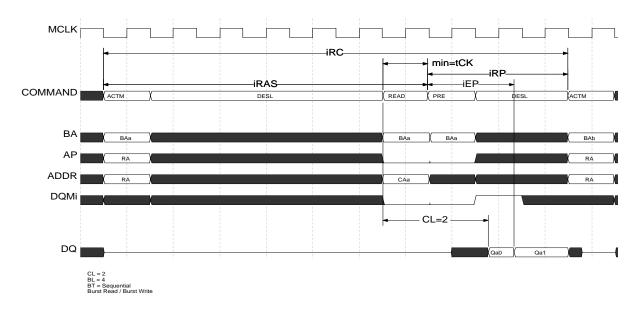
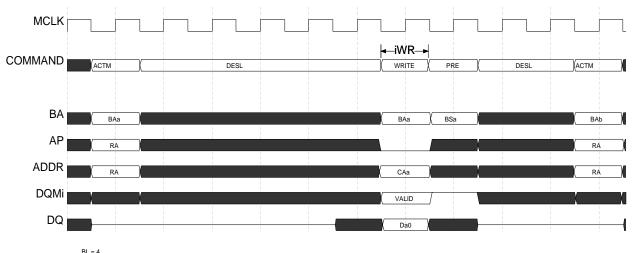



Figure A-20: Read Followed by a Precharge (Tcl = 2)

BL = 4 BT = Sequential Burst Read / Burst Write

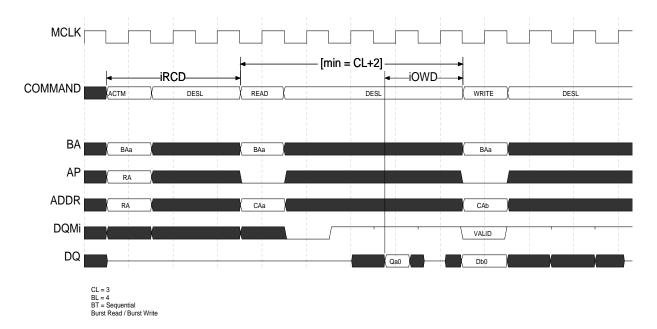
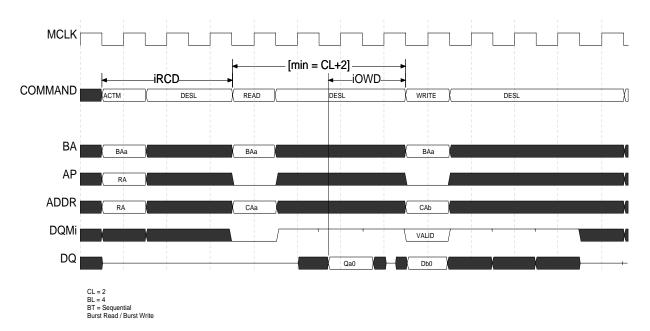



Figure A-22: Read Followed by Write (Tcl =3)

Figure A-23: Read Followed by Write (Tcl =2)

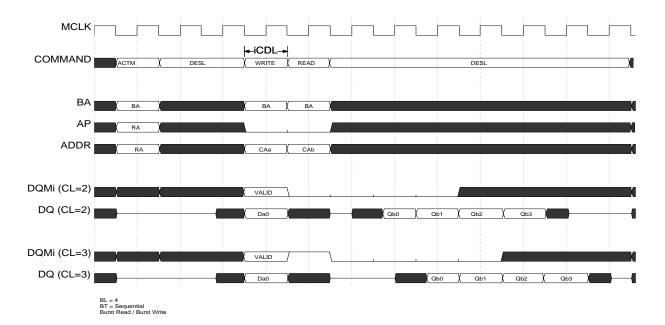
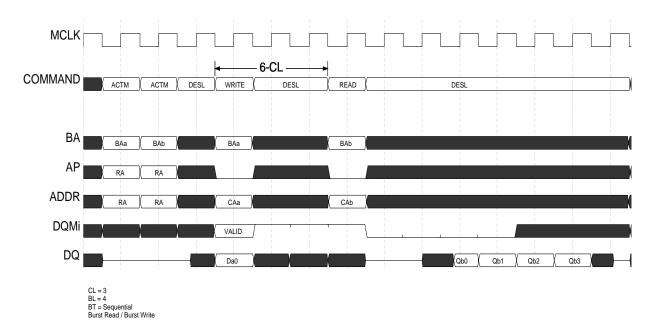



Figure A-24: Write Followed by Read (same chip select)

Figure A-25: Write Followed by Read (different chip select)

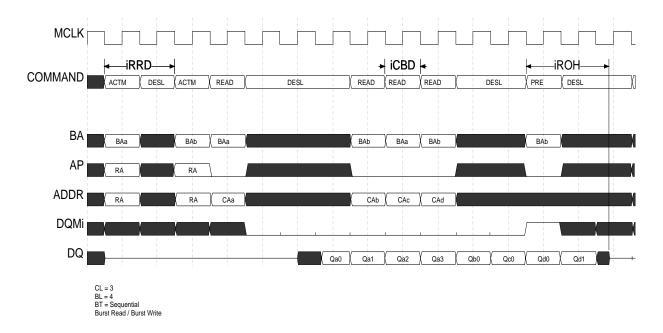
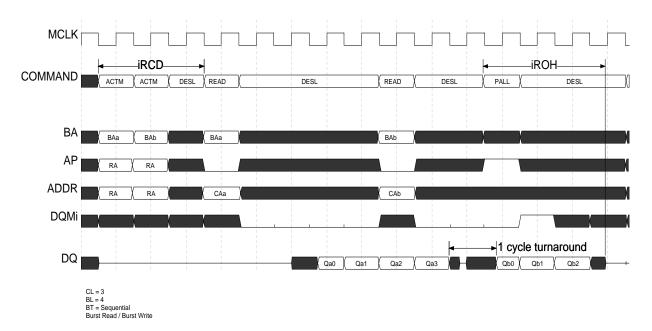



Figure A-26: Read to Both Banks(same chip select)

Figure A-27: Read to Different Banks (different chip select)

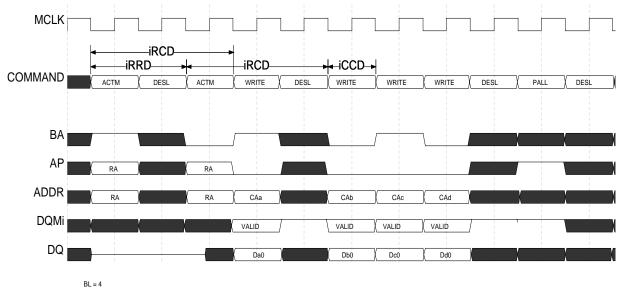
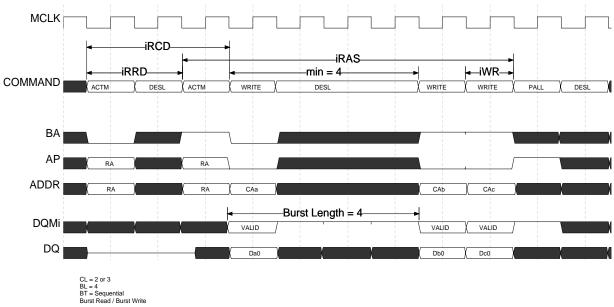



Figure A-28: Write to Both Banks(same chip select)

BL = 4 BT = Sequential Burst Read / Burst Write

Figure A-29: Write to Different Banks (different chip select)

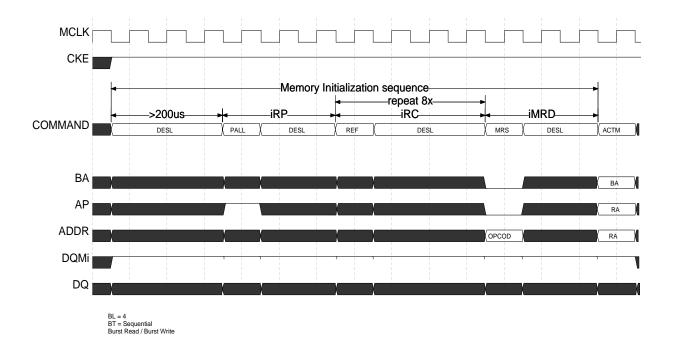


Figure A-30: Power-On Sequence

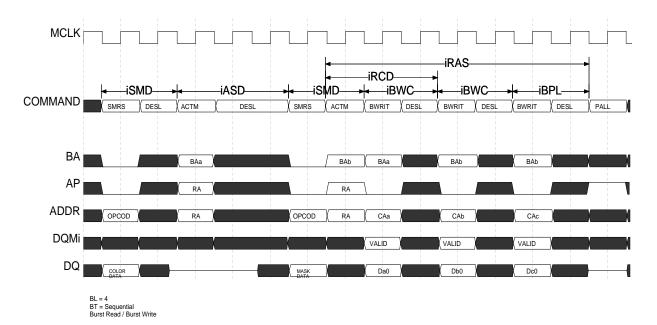


Figure A-31: Block Write and Special Mode Register command

Figure A-32: Memory Refresh Sequence

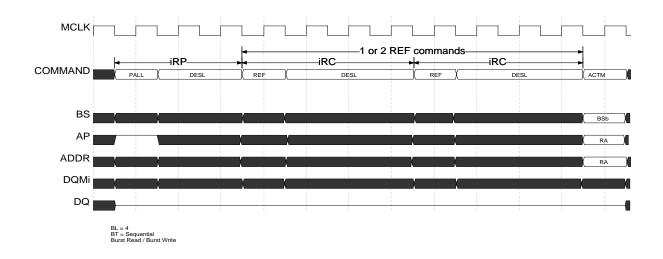


 Table A-19: MGA-G200 Sync. RAM Clock-Based Parameter Table

Symbol	Number of Clocks	Paramter	Notes ⁽¹⁾
CL	(2,3,4,5)	CAS Latency	(2)
iRRD	(1,2,3)	Active command to active command (other bank)	(3)
iRCD	(2,3,4)	Active command to column address command (min.)	(3)
iRAS	(310)	Row Active time (min.)	(3)
iRP	(25)	Row Precharge time (min.)	(3)
iRC	iRAS + iRP	Row Cycle time (min.)	(3)
iWR	(1, 2)	Last data in to precharge command (write recovery time)	(3)
iEP	(-1, 1 - CL)	Last data out to early prechearge command	
iCCDrd	(1)	Read command to read command.	
iCCDwr	(1)	Write command to write command	
iCDL	(1)	Last data in to read command	
iOWD	(2)	Last data out to write command	
iMRD	(3)	MRS to row active command	
iASD	iRCD	Active command to SMRS command	$(3)^{(4)}$
iSMD	(1,2)	SMRS tro block write command	(3)(4)
iBWC	(1,2)	Block write cycle time (min)	(3) (4)
iBPL	(15)	Block write command to precharge command	(3) (4)

⁽¹⁾ tCk operates in the range [7,10] ns. or [100, 143] MHz.

⁽²⁾ CAS Latency is dependent upon tCK and memory device rating.

⁽³⁾ Programmable paramters based on device rating and tck. For a given A.C. paramter tXXX; iXXX = tXXX/tCK rounded to the next largest integer.

As in: tck =13.3 ns, tRAS = 84 ns => iRAS = 84/13.33 = 6.32, therefore, iRAS = 7.

⁽⁴⁾ Paramters for SGRAM

A.4.2.6 CODEC

Figure A-33: I33 Mode, Writes

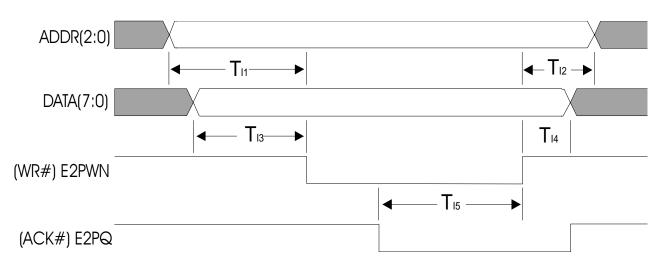


Figure A-34: I33 Mode, Reads

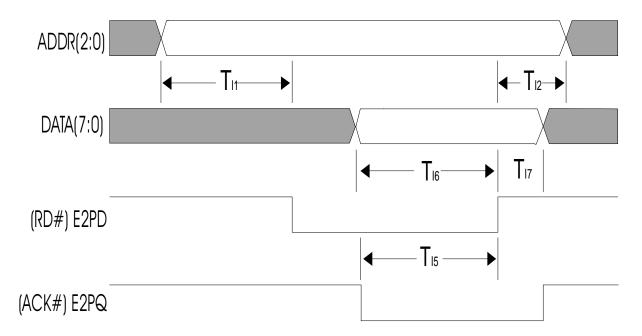


Figure A-35: VMI Mode A Writes

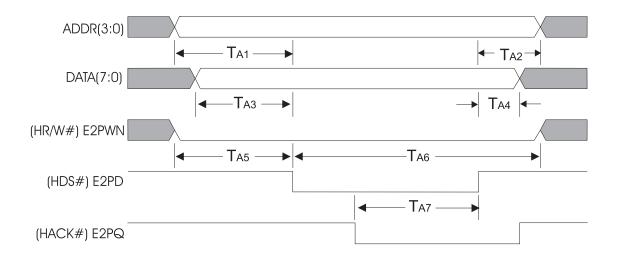


Figure A-36: VMI Mode A, Reads

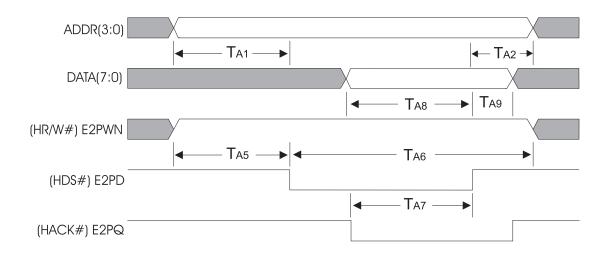
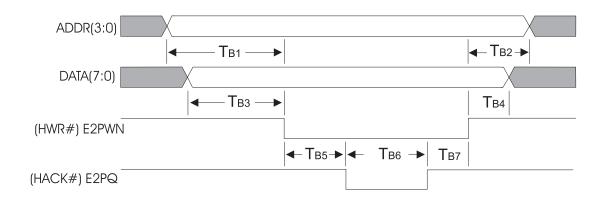
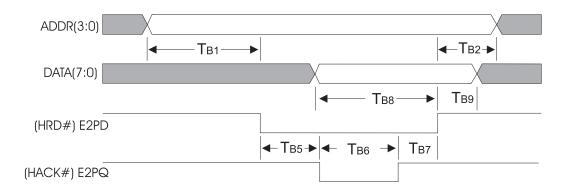




Figure A-37: VMI Mode B, Writes

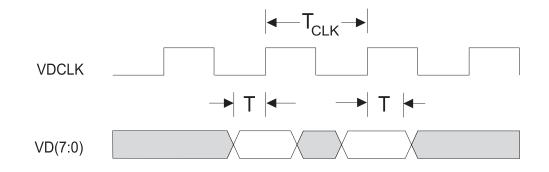

name	Min (ns)	Max (ns)	Comment
TI1	13.3	-	Address setup times to falling edge of HRD#/HWR# strobe
TI2	10.0	-	Address hold time from rising edge of HRD#/HWR# strobe
TI3	11.9	-	Data setup time to falling edge of HWR# strobe
TI4	13.3	-	Data hold time form rising edge of HWR# strobe
TI5	11.9 + 2 * GCLK	17.0 + 3 * GCLK	HRD#/HWR# strobe rising edge from ACK# falling edge
TI6	12.7	-	Required data setup time to rising HRD# strobe
TI7	0	-	Required data hold time from rising HRD# strobe
TA1	14.3	-	Address setup time to falling edge of HDS# strobe
TA2	9.2	-	Address hold time from rising edge of HDS# strobe
TA3	15.2	-	Data setup time to falling edge of HDS# strobe
TA4	10.6	-	Data hold time from rising edge of HDS# strobe
TA5	15.7	-	HR/W# setup time to falling edge of HDS# strobe
TA6	11.4	-	HR/W# hold time from falling edge of HDS# strobe
TA7	12.3 + 2 * GCLK	19.7 + 3 * GCLK	HDS# strobe rising edge from HACK# falling edge
TA8	12.7	-	Required data setup time to rising edge of HDS# strobe
TA9	0	-	Required data hold time from rising edge of HDS# strobe
TB1	11.0	-	Address setup time from falling edge of HRD#/HWR#
TB2	10.0	-	Address hold time from rising edge of HRD#/HWR# strobe
TB3	11.9	-	Data setup time to falling edge of HWR# strobe
TB4	13.3	-	Data hold time form rising edge of HWR# strobe
TB5	-	12.2	HACK# falling edge from HWR#/HRD# falling edge
TB6	0	-	HACK# rising edge from HACK# falling edge
TB7	10.4 + 2 * GCLK	18.9 + 3 * GCLK	HRD#/HWR# strobe rising edge from HACK# rising edge
TB8	12.7	-	Required data setup time to rising HRD# strobe
TB9	0	-	Required data hold time from rising HRD# strobe

 Table A-20: Codec Parameters⁽¹⁾

⁽¹⁾ *Note:* Parameters valid for GCLK = 14ns (71.4 MHz)

A.4.2.7 Video In

Figure A-39: Video In Timings

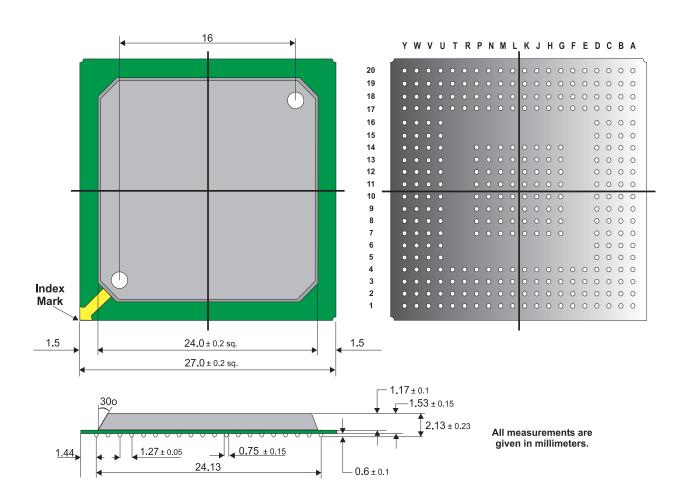


Table A-21: Video In Parametrs

Name	min (ns)	Max (ns)	Comment
Tclk	30	-	Input clock cycle time
Tds	4	-	Required data setup time to rising edge of VDCLK
Tdh	3	-	Required data hold time to rising edge of VDCLK

A.5 Mechanical Specification

Figure A-40: MGA-G200 Mechanical Drawing

MGA-G200 Plastic Ball Grid Array

A.6 Test Feature

The MGA-G200 is equipped with a *nand tree* to allow the lead connections to be verified by production test equipment. The test procedure is as follows:

- 1. Force the TST pins to '000' to enter test mode and maintain that value during the entire test (for normal operations, the TST pins are tied to pull-ups). This will disable all output drivers except the PINTA/ pin. All pins (except PINTA/, the analog pins, and TST<2:0>) are used as input for the nand tree operation. In test mode, PINTA/ acts as a normal driver and is used for the nand tree output (for normal operations, PINTA/ is an open drain).
- 2. Force all signal pins to logical '1'. PINTA/ should read '1'.
- 3. Next, apply a '0' to the first pin in the nand tree. The PINTA/ output should toggle to '0'.
- 4. Maintain the first pin at '0' and toggle the next pin to '0'. The output should toggle again.
- 5. Continue the shift-in of '0', following the nand tree order and monitoring the toggling of the PINTA/ pin for each new test vector.

A.6.1 Nand Tree Order (for MGA-G200-AGP only)

Tree Order	Pin Name	Tree Order	Pin Name	Tree Order	Pin Name
1 (1st pin)	ST<0>	50	PAD<4>	99	MA<2>
2	ST<0>	50	PAD<1>	100	MA<4>
3	PRST/	52	PAD<13>	100	MA < 0 >
4	ST<1>	53	PAD<9>	101	MA<0>
5	SBA<0>	53	PPAR	102	MA < 5 >
6	SBA<0> SBA<2>	55	PAD<0>	103	MA<3> MA<7>
7	PREQ/	56	PAD<0>	104	MA < 9 >
8	SB_STB	57	PAD<2> PAD<15>	105	MA<9> MA<8>
9		58		100	
	PCLK		PAD<11>		MCLK2
10	SBA<1>	59	PAD<6> E2PCS/	108 109	MA<6> MCS<0>/
11	SBA<3>	60			
12	SBA<4>	61	MDQ<3>	110	MA<10>
13	SBA<5>	62	E2PCLK	111	MCLK
14	SBA<6>	63	MDQ<0>	112	MWE/
15	PAD<31>	64	MDQ<4>	113	MCAS/
16	SBA<7>	65	MDQ<1>	114	MRAS/
17	PAD<30>	66	MDQ<2>	115	MCS<1>/
18	PAD<29>	67	MDQ<7>	116	MDSF
19	PAD<27>	68	MDQ<5>	117	MCS<3>/
20	PAD<25>	69	MDQ<6>	118	MCS<2>/
21	PAD<28>	70	MDQ<10>	119	MDQ<34>
22	AD_STB<1>	71	MDQ<11>	120	MDQ<32>
23	PAD<21>	72	MDQ<8>	121	MDQ<33>
24	PAD<23>	73	MDQ<9>	122	MDQ<40>
25	PAD<24>	74	MDQ<12>	123	MDQ<37>
26	PAD<26>	75	MDQ<14>	124	MDQ<35>
27	PAD<17>	76	MDQ<13>	125	MDQ<36>
28	PAD<19>	77	MDQM<0>	126	MDQ<38>
29	PAD<22>	78	MDQM<1>	127	MDQ<41>
30	PCBE<3>/	79	MDQ<15>	128	MDQ<39>
31	PDEVSEL/	80	MDQM<2>	129	MDQ<43>
32	PCBE<2>/	81	MDQM<3>	130	MDQ<42>
33	PAD<20>	82	MDQ<16>	131	MDQ<44>
34	PAD<14>	83	MDQ<17>	132	MDQM<4>
35	PIRDY/	84	MDQ<18>	133	MDQ<46>
36	PAD<12>	85	MDQ<19>	134	MDQ<47>
37	PAD<16>	86	MDQ<20>	135	MDQ<45>
38	PCBE<1>/	87	MDQ<21>	136	MDQ<48>
39	AD_STB<0>	88	MDQ<22>	137	MDQM<5>
40	PAD<18>	89	MDQ<23>	138	MDQM<6>
41	PAD<10>	90	MDQ<26>	139	MDQM<7>
42	PAD<8>	91	MDQ<24>	140	MDQ<49>
43	PTRDY/	92	MDQ<27>	141	MDQ<50>
44	PAD<7>	93	MDQ<29>	142	MDQ<52>
45	PAD<3>	94	MDQ<25>	143	MDQ<51>
46	PFRAME/	95	MDQ<28>	144	MDQ<53>
40	PSTOP/	<u> </u>	MDQ<20>	145	MDQ<56>
48	PAD<5>	97	MA<1>	145	MDQ<55>
40	PCBE<0>/	98	MDQ<31>	140	MDQ<54>
マモ		70		17/	

 Table A-22: AGP Nand Tree Order (Part 1 of 2)

Tree Order	Pin Name	Tree Order	Pin Name	Tree Order	Pin Name
148	MDQ<57>	171	VDOUT<8>	194	E2PQ
149	MDQ<59>	172	VDOUT<7>	195	VBLANK/
150	MDQ<58>	173	VDOUT<6>	196	E2PW/
151	MDQ<60>	174	VDOUT<5>	197	DDC<3>
152	MDQ<62>	175	VDOUT<4>	198	DDC<2>
153	MDQ<61>	176	VDOUT<3>	199	DDC<1>
154	MDQ<63>	177	VDOUT<2>	200	DDC<0>
155	VVSYNC/	178	VDOUT<1>	201	MISC<2>
156	VHSYNC/	179	VDOUT<0>	202	EXTINT/
157	VD<7>	180	VOBLANK/	203	VIDRST
158	MISC<1>	181	VDOCLK	204	EXTRST/
159	VD<6>	182	HDATA<7>	205	PGNT/
160	VD<5>	183	HDATA<6>		
161	MISC<0>	184	HDATA<5>		
162	VD<4>	185	HDATA<4>		
163	VD<3>	186	HDATA<2>		
164	VD<2>	187	HDATA<3>		
165	VDCLK	188	HDATA<1>		
166	VD<1>	189	HDATA<0>		
167	VD<0>	190	VESYNC		
168	VDOUT<11>	191	VEDCLK		
169	VDOUT<10>	192	VEVIDEO		
170	VDOUT<9>	193	E2PD		

 Table A-22: AGP Nand Tree Order (Part 2 of 2)
 Part 2 of 2)

A.6.2 Nand Tree Order (for MGA-G200-PCI only)

Tree Order	Pin Name	Tree Order	Pin Name	Tree Order	Pin Name
1 (1st pin)	PRST/	50	MDQ<0>	99	MWE/
2	PREQ/	51	MDQ<4>	100	MCAS/
3	PCLK	52	MDQ<1>	101	MRAS/
4	PIDSEL	53	MDQ<2>	101	MCS<1>/
5	PDEVSEL/	54	MDQ<2> MDQ<7>	102	MDSF
6	PAD<31>	55	MDQ<7>	103	MCS<3>/
7	PAD<30>	56	MDQ<5>	104	MCS<2>/
8	PAD<29>	57	MDQ<0>	105	MDQ<34>
9	PAD<27>	58	MDQ<10>	100	MDQ<32>
10	PAD<25>	59	MDQ<11>	107	MDQ<32>
10	PAD<23>	60	MDQ<8> MDQ<9>	108	MDQ<33>
11		61	-		-
	PAD<21>		MDQ<12>	110	MDQ<37>
13	PAD<23>	62	MDQ<14>	111	MDQ<35>
14	PAD<24>	63	MDQ<13>	112	MDQ<36>
15	PAD<26>	64	MDQM<0>	113	MDQ<38>
16	PAD<17>	65	MDQM<1>	114	MDQ<41>
17	PAD<19>	66	MDQ<15>	115	MDQ<39>
18	PAD<22>	67	MDQM<2>	116	MDQ<43>
19	PCBE<3>/	68	MDQM<3>	117	MDQ<42>
20	PCBE<2>/	69	MDQ<16>	118	MDQ<44>
21	PAD<20>	70	MDQ<17>	119	MDQM<4>
22	PAD<14>	71	MDQ<18>	120	MDQ<46>
23	PIRDY/	72	MDQ<19>	121	MDQ<47>
24	PAD<12>	73	MDQ<20>	122	MDQ<45>
25	PAD<16>	74	MDQ<21>	123	MDQ<48>
26	PCBE<1>/	75	MDQ<22>	124	MDQM<5>
27	PAD<9>	76	MDQ<23>	125	MDQM<6>
28	PAD<18>	77	MDQ<26>	126	MDQM<7>
29	PAD<10>	78	MDQ<24>	127	MDQ<49>
30	PAD<8>	79	MDQ<27>	128	MDQ<50>
31	PTRDY/	80	MDQ<29>	129	MDQ<52>
32	PAD<7>	81	MDQ<25>	130	MDQ<51>
33	PAD<3>	82	MDQ<28>	131	MDQ<53>
34	PFRAME/	83	MDQ<30>	132	MDQ<56>
35	PSTOP/	84	MA<1>	133	MDQ<55>
36	PAD<5>	85	MDQ<31>	134	MDQ<54>
37	PCBE<0>/	86	MA<2>	135	MDQ<57>
38	PAD<4>	87	MA<4>	136	MDQ<59>
39	PAD<1>	88	MA<0>	130	MDQ<58>
40	PAD<13>	89	MA<3>	138	MDQ<60>
40	PAD<0>	90	MA<5>	130	MDQ<62>
42	PPAR	91	MA<3> MA<7>	140	MDQ<61>
43	PAD<2>	92	MA<9>	140	MDQ<01>
43	PAD<15>	93	MA<9>	141	VVSYNC/
44 45	PAD<11>	93	MCLK2	142	VHSYNC/
43	PAD<11> PAD<6>	94	MA<6>	143	VD<7>
40	E2PCS/	93	MCS<0>/	144	MISC<1>
48	MDQ<3>	97	MA<10>	146	VD<6>
49	E2PCLK	98	MCLK	147	VD<5>

 Table A-23: PCI Nand Tree Order (Part 1 of 2)

Tree Order	Pin Name	Tree Order	Pin Name	Tree Order	Pin Name
148	MISC<0>	163	VDOUT<3>	178	VEDCLK
149	VD<4>	164	VDOUT<2>	179	VEVIDEO
150	VD<3>	165	VDOUT<1>	180	E2PD
151	VD<2>	166	VDOUT<0>	181	E2PQ
152	VDCLK	167	VOBLANK/	182	VBLANK/
153	VD<1>	168	VDOCLK	183	E2PW/
154	VD<0>	169	HDATA<7>	184	DDC<3>
155	VDOUT<11>	170	HDATA<6>	185	DDC<2>
156	VDOUT<10>	171	HDATA<5>	186	DDC<1>
157	VDOUT<9>	172	HDATA<4>	187	DDC<0>
158	VDOUT<8>	173	HDATA<2>	188	MISC<2>
159	VDOUT<7>	174	HDATA<3>	189	EXTINT/
160	VDOUT<6>	175	HDATA<1>	190	VIDRST
161	VDOUT<5>	176	HDATA<0>	191	EXTRST/
162	VDOUT<4>	177	VESYNC	192	PGNT/

 Table A-23: PCI Nand Tree Order (Part 2 of 2)

A.7 Ordering Information

- To receive an AGP version of the MGA-G200, order: MGA-G200A
- To receive an PCI version of the MGA-G200, order: MGA-G200P

Appendix A: Changes

Changes in the DocumentSince Revision 0300 E	3-2
Changes in the Document E	3-2

B.1 Changes in the Document Since Revision 0300

This appendix contains the revision history of the MGA-G200 Specification. This section is meant for customers who need to identify the functional changes that took place between various versions of the chip. These changes may or may not be reflected elsewhere in this manual.

B.1.1 Chip Revision Notes and Changes

The changes are in reference to rev. C of the chip (document number 10581-MS-0301) and may or may not be reflected elsewhere in this manual.

B.1.1.1 Register Modification

Bit 18 of the **OPMODE** (MGABASE1 + 1E54h) is set to '1' instead of '0' (rev A and B) upon a hard or soft reset (see page 3-126).

B.1.1.2 CRTC Latency Formula

The **MAXHIPRI** formula has been changed to read: MIN(HIPRILVL, (**SCALE** + 1)(Tmclk / Tpixclk)), (see 'CRTC Latency Formulas' on page 4-67).

B.1.1.3 Codec Data Decompression Explanation

The section of the Programmer's Guide explaining the codec data decompression with the **stopcodec** field of the **CODECCTRL** register enabled has been modified (see 'Decompressing data' on page 4-93).

The test has been modified to refelect the fact that if the **stopcodec** bit is set during decompression then the codec *cannot* be re-enabled solely by toggling the **stopcodec** field.

B.1.1.4 Index Modification

The index for **XCOLMSK** has been changed to 40h (see page 3-314).

B.2 Changes in the Document

This appendix contains the revision history of the MGA-G200 Specification. Although this is the first official release (10581-MS-0300, dated May 11, 1998), a preliminary release (10581-MS-0200, dated Dec 23, 1997) was made that contains information that has since been updated. This section is meant for customers who need to identify the functional changes that took place between various versions of the chip. These changes may or may not be reflected elsewhere in this manual.

B.2.1 Chip revision Notes and Changes

B.2.1.1 Revision Change

The revision change to the chip is reflected in the revision field of the **CLASS** register:

00h	rev A
01h	rev B

• *Note:* Revision A chips were prototypes; they are no longer supported.

B.2.1.2 Bus Mastering

In revision A chips, bus_mastered (both AGP and PCI) DMA cycles may not work reliably in all systems.

Power Graphic Mode Register Fields (includes configuration space and memory space register fields)

agp_cap_id <7:0>	
agp_enable <8>	3-3
agp_next_ptr <15:8>	3-4
agp_rev <23:16>	
agp2xpllen <0>	. 3-30
alphamode <9:8>	. 3-31
alphasel <25:24>	
alphastart <23:0>	. 3-33
alphaxinc <23:0>	. 3-34
alphayinc <23:0>	. 3-35
apllbyp <9>	3-158
ar0 <17:0>	
ar1 <23:0>	
ar2 <17:0>	. 3-38
ar3 <23:0>	
ar4 <17:0>	. 3-40
ar5 <17:0>	. 3-41
ar6 <17:0>	
arzero <12>	3-101
astipple <11>	. 3-32
aten <12>	
atmode <15:13>	. 3-32
atref <23:16>	. 3-32
atype <6:4>	
autovin nextwin <1>	3-196
avgstride <19>	3-166
azeroextend <23>	3-162
backcol <31:0>	. 3-43
bempty <9>	3-108
bes1wghts <16>	
bes2wghts <16>	. 3-65
bes420pl <17>	. 3-52
besa1corg <23:0>	
besa1org <23:0>	
besa2corg <23:0>	
besa2org <23:0>	
besb1corg <23:0>	. 3-48
besb1org <23:0>	. 3-49
besb2corg <23:0>	
besb2org <23:0>	

besblank <21>	. 3-53
besbot <10:0>	3-66
besbwen <20>	. 3-53
bescorder <3>	
bescups <16>	
besdith <18>	3-53
besen <0>	
besfsel <26:25>	
besfselm <24>	
beshfen <10>	
beshfixc <12>	
beshiscal <20:2>	
beshmir <19>	
beshsrcend <25:2>	
beshsrclst <25:16>	
beshsrcst <25:2>	
beshzoom <0>	
beshzoomf <1>	
besleft <26:16>	
bespitch <11:0>	
besramtst pass RO <6>	
besreghup <4>	
besright <10:0>	
besstat <1:0>	
bestop <26:16>	3-66
besv1 srclast <9:0>	
besv1srcstp <6>	
besv1wght <15:2>	
besv2srclst <9:0>	
besv2srcstp <7>	
besv2wght <15:2>	
besvcnt <27:16>	
besychit $\langle 2/.10 \rangle$	2 5 2
besvfen <11>	. 3-52
besviscal <20:2>	
bfull <8>	
biosboot RO <31>	
biosen <30>	
bltckey <31:0>	
bltcmsk <31:0>	
bltmod <28:25>	
blvliclr <2>	
blvlien <2>	
1	3-197
bop <19:16>	3-102
borderen <5>	
bpldelay <31:29>	3-123

brkleft <8> 3-140
busmaster R/W <2> 3-8
bwcdelay <27:26> 3-123
cacheline <6:0> 3-11
cap_ptr RO<7:0> 3-6
cap66mhz RO <21> 3-9
caplist RO <20> 3-9
casltncy <2:0> 3-121
ckstransdis <4> 3-165
clampu <28> 3-163
clampv <27> 3-163
class <31:8> 3-7
clipdis <31> 3-105
cmdcmpliclr <1> 3-189
cmdcmplien <1> 3-190
cmdcmplpen <1> 3-197
cmdexectrig <2> 3-69
codec _stalled <12> 3-198
codecbufsize <0> 3-68
codecdatain <3> 3-69
codecen <0> 3-69
codecfifo addr <11:8> 3-70
codechardptr <15:0> 3-71
codechostptr <15:0> 3-72
codeclcode <15:0>
codecmode <1> 3-69
codecrwidth <13:12> 3-70
codecstart <23:2> 3-68
codec transen <6> 3-69
cxleft <11:0> 3-74
cxleft <11:0> 3-75
cxright <11:0> 3-76
cxright <27:16> 3-74
cybot <23:0> 3-214
cytop <23:0> 3-218
d2_sup <26> 3-25
data_rate <2:0> 3-3
dcmpeoiiclr <3> 3-189
dcmpeoiien <3> 3-190
dcmpeoipen <3> 3-197
decalblend <0> 3-165
decalckey <24> 3-162
decaldis <2> 3-165
detparerr RO <31> 3-9

device <31:16>	. 3-10
devseltim RO <26:25>	3-9
dirdatasiz <17:16>	
dit555 <31>	
dmadatasiz <9:8>	
dmamod <3:2>	
dmapad <31:0>	
dr0 <31:0>	
dr0_z32 <47:0>	
dr10 <23:0>	
dr11 <23:0>	
dr12 <23:0>	. 3-94
dr14 <23:0>	
dr15 <23:0>	
dr2 <31:0>	
dr2 z32 <47:0>	
dr3 <31:0>	
dr3_z32 <47:0>	
dr4 <23:0>	
dr6 <23:0>	
dr7 <23:0>	
dr8 <23:0>	
dstblendf <7:4>	
dstmap <0>	
dwgengsts RO $<16>$	
dwgsyncaddr <31:2>	
eepromwt <8>	
endprdmasts RO <17>	
enhmemacc <22>	
errorinit <31>	
extien <6>	
extpen RO <6>	
fastbackcap RO <23>	3-9
fifocount <6:0>	3-108
filteralpha <20>	3-166
fogcol <23:0>	3-109
fogen <26>	3-119
fogstart <23:0>	3-110
fogxinc <23:0>	3-111
fogyine <23:0>	3-112
forcol <31:0>	3-107
fthres <28:21>	3-167
funct <6:0>	3-142
funoff <21:16>	3-142
fxleft <15:0>	3-142
fxleft <15:0>	3-113
	5-114

fxright <15:0>	3-115
fxright <31:16>	3-113
gclkdiv <3>	. 3-18
hardpwmsk <14>	. 3-19
header RO <23:16>	
hiten RO <10>	
idecal <1>	
intline R/W <7:0>	
intpin RO <15:8>	. 3-12
iospace R/W <0>	
itrans <31>	
iy <12:0>	
latentim R/W <15:11> RO <10:8>	. 3-11
length <15:0>	3-118
length <15:0>	3-216
linear <7>	
lutentry N <31:0>	
luttstpass RO <5>	
magfilter <7:4>	
map_regN <31:0>	
mapnb <31:29>	
maxlat RO <31:24>	
mbuftype <13:12>	
mclkbrd0 <3:0>	
mclkbrd1 <8:5>	
mclkdiv <4>	
memconfig <12:10>	
memreset <15>	
memspace $R/W < 1 > \dots$	3-8
memspace ind RO <0>	. 3-15
memspace ind RO <0>	. 3-16
memspace ind RO <0>	
memwrien RO <4>	3-8
mga_data <31:0>	. 3-13
mga_index <13:2>	. 3-14
mgabase1 <31:14>	. 3-15
mgabase2 <31:24>	
mgabase3 <31:23>	
minfilter <3:0>	
mingnt RO <23:16>	. 3-12
miscetl <31:24>	

modclkp <21:19>	3-21
mrsopcod <28:25>	3-125
nodither <30>	3-119
nogclkdiv <14>	3-21
nomclkdiv <15>	
noretry <29>	. 3-20
nowclkdiv <16>	3-21
opcod <3:0>	3-99
owalpha <22>	3-162
pagpxfer <1>	3-132
palsel <7:4>	3-161
patreg <63:0>	3-128
pattern <29>	3-104
pickiclr <2>	3-116
pickien <2>	3-117
pickpen RO <2>	3-155
pllsel <6>	. 3-18
plnwrmsk <31:0>	3-130
pm_cap_id <7:0>	. 3-25
pm_next_ptr <15:8>	
pm_version <18:16>	
powerpc <31>	. 3-20
powerstate <1:0>	. 3-23
prefetchable RO <3>	. 3-15
prefetchable RO <3>	. 3-16
prefetchable RO <3>	. 3-17
primaddress <31:2>	
primend <31:2>	3-132
primod <1:0>	3-131
primptr <31:3>	3-133
primptren1 <1>	3-133
pwidth <1:0>	3-119
ramtstdone RO <1>	3-157
ramtsten <0>	
rasmin <12:10>	3-122
rate_cap <1:0>	
rawvbicapd <10>	3-197
rcddelay <8:7>	3-121
rddelay <21>	
recmastab R/W <29>	3-9
rectargab R/W <28>	3-9
resparerr RO <6>	
revision <7:0>	
rfh <14:9>	
rfhcnt <20:15>	
rfw <14:9>	3-176

ringentelksl <30>	3-1	158
ringcnten <17>	3-	158
ringcnt RO dynamic <29:18>	3-1	158
ringen <8>		
rombase <31:16>		
romen <0>		
rpdelay <15:14>	3-	122
rpvaliden <24>	3-	193
rq <31:24>		3-5
rq_depth <28:24>		3-3
rrddelay <5:4>		
sba_cap <9>		3-5
sba_enable <9>		3-3
scanleft <0>	3-	139
sdxl <1>	3-	139
sdxr <5>	3-1	140
sdy <2>	3-1	139
sdydxl <0>	3-1	139
secaddress <31:2>	3-1	135
secend <31:2>	3-1	136
secmod <1:0>	3-	135
sellin <31:29>	3-2	215
serrenable RO <8>		3-9
setup address <31:2>	3-1	137
setupagpxfer <1>	3-	138
setupend <31:2>	3-	138
setupmod <1:0>	3-1	137
sgnzero <13>	3-1	101
shftzero <14>	3-	102
sigsyserr RO <30>		3-9
sigtargab R/W <27>		
slcvbicapd <11>	3-	197
smrdelay <24:23>	3-	123
softextrst <1>	3-	134
softrapen RO <0>	3-	155
softraphand <31:2>	3-1	143
softrapiclr <0>	3-	116
softrapien <0>	3-	117
softreset <0>	3-	134
solid <11>	3-1	101
spage <26:24>	3	-39
specbstart <23:0>	3-	144
specbxinc <23:0>	3-	145
specbyinc <23:0>	3-	146

specen <6>	3-165
specgstart <23:0>	
specgxinc <23:0>	
specgyinc <23:0>	3-149
specialcycle RO <3>	
specrstart <23:0>	3-150
specrxinc <23:0>	3-151
specryinc <23:0>	
srcblendf <3:0>	
srcmap <0>	3-154
srcreg <127:0>	
stopcodec <5>	
strans <30>	
strmfctl <23:22>	
stylelen <22:16>	
subsysid <31:16>	
subsysvid <15:0>	
swflag R/W <31:28>	
sysclkdis <2>	
sysclksl <1:0>	
syspllpdN <5>	
takey <25>	
tamask <26>	
tcachetst pass RO <3>	
tckey <15:0>	3-174
tckeyh <15:0>	3-175
tclksel <16:14>	3-158
texbordercol <31:0>	3-160
texorg <31:5>	
texorg1 <31:5>	
texorg $2 < 31:5 > \dots$	
texorg3 <31:5>	
texorg4 <31:5>	
texorgacc <1>	3-169
texorgmap <0>	3-169
tformat <3:0>	3-161
th <5:0>	3-168
thmask <28:18>	3-168
tkmask <31:16>	3-174
tkmaskh <31:16>	3-175
tlutload <29>	3-119
tluttstpass RO <4>	3-157
tmode <13:11>	3-158
tmodulate <29>	
tmr0 <31:0>	
tmr1 <31:0>	
	- 110

tmr2 <31:0>	3-179
tmr3 <31:0>	3-180
tmr4 <31:0>	3-181
tmr5 <31:0>	3-182
tmr6 <31:0>	3-183
tmr7 <31:0>	3-184
tmr8 <31:0>	3-185
tpitch <18:16>	3-162
tpitchext <19:9>	3-161
tpitchlin <8>	3-161
trans <23:20>	3-103
transc <30>	3-105
tw <5:0>	3-176
twmask <28:18>	3-176
type RO <2:1>	. 3-16
type RO <2:1>	
type RO <2:1>	. 3-15
udfsup RO <22>	
vbiaddr0 <23:0>	
vbiaddr1 <23:0>	
vbicap0 <2:1>	3-194
vbicap1 <2:1>	
vbif0cnt <11:8>	3-193
vbif1cnt <15:12>	3-193
vbitasken <16>	3-193
vcount <11:0>	3-188
vendor <15:0>	. 3-10
vgaioen <8>	
vgasnoop R/W <5>	
vinaddr0 <23:0>	3-191
vinaddr1 <23:0>	
vincap0 <0>	
vincap1 <0>	3-195
vincapd <9>	3-197
vinen <0>	3-193
vinfielddetd <8>	3-197
vinnextwin <0>	3-196
vinpitch0 <11:3>	3-194
vinpitch1 <11:3>	3-195
vinvsynciclr <0>	3-189
vinvsyncien <0>	3-190
vinvsyncpen <0>	3-197
vlineiclr <5>	3-116
vlineien <5>	3-117

vlinepen RO <5>	3-155
vmimode <4>	3-69
vsyncpen RO <4>	3-155
vsyncsts RO <3>	3-155
wagp <2>	3-203
waitcycle RO <7>	
walucfgflag <15:8>	3-200
walustsflag <7:0>	3-200
wbusy RO <18>	3-156
wciclr <8>	3-116
wcien <8>	3-117
wclkdiv <17>	. 3-21
wcodeaddr <31:8>	3-199
wcpen RO <8>	
wGetMSB max <12:8>	3-202
wGetMSBmin <4:0>	3-202
wiaddr <31:3>	3-204
wiclr <7>	3-116
wien <7>	3-117
wimemaddr <7:0>	3-206
wimemdata <31:0>	3-207
wmaster <1>	3-208
wmode <1:0>	3-203
wpen RO <7>	3-155
wprgflag <31:16>	3-200
wramtstpass RO <2>	3-157
wrdelay <19:18>	3-122
wucode cache <0>	3-208
wvrtxsz <5:0>	3-210
x_end <15:0>	
x_off <3:0>	3-142
x_start <15:0>	3-213
xdst <15:0>	
y_end <31:16>	3-212
y_off <6:4>	3-142
y_start <31:16>	
ydst <22:0>	3-215
ydstorg <23:0>	3-217
ylin <15>	3-129
yval <31:16>	3-216
zmode <10:8>	
zorg <31:2>	3-219
zorgacc <1>	3-219
zorgmap <0>	3-219
zwidth <3>	3-119

VGA Mode Register Fields

addwrap <5>	3-260
asyncrst <0>	3-293
atcgrmode <0>	3-225
attradsel <7>	3-263
attrd <15:8>	3-223
attrx <4:0>	3-222
attrx <4:0>	3-264
blinken <3>	3-225
bytepan <6:5>	3-242
cacheflush <7:0>	3-231
chain4 <3>	3-297
chainodd even <1>	3-285
clksel <3:2>	3-290
cms <0>	3-257
colcompen <3:0>	3-286
colplen <3:0>	3-228
colsel54 <1:0>	3-230
colsel76 <3:2>	3-230
conv2t4 <7>	3-243
count2 <3>	3-260
count4 <5>	3-254
cpudata <7:0>	3-262
crtcblk0 <0>	3-274
crtcd <15:8>	3-233
crtcextd <15:8>	3-265
crtcextx <2:0>	3-265
crtcintcrt <7>	3-288
crtcprotect <7>	3-251
crtcrstN <7>	3-260
crtcx <5:0>	3-232
csyncen <6>	3-269
curloc <7:0>	3-248
curloc <7:0>	3-249
curoff <5>	3-244
currowend <4:0>	3-245
currowstr <4:0>	3-244
curskew <6:5>	3-245
diag <5:4>	3-289
dotclkrt <3>	3-294
dotmode <0>	3-294
dsts <1:0>	3-275
dword <6>	3-254
featcb0 <0>	3-276
featcb1 <1>	3-276

featin10 <6:5>	3-288
funsel <4:3>	3-281
gcgrmode <0>	3-285
gcoddevmd <4>	3-283
gctld <15:8>	3-277
gctlx <3:0>	3-277
hblkend <4:0>	3-237
hblkend <6>	3-267
hblkend <7>	3-239
hblkstr <1>	3-267
hblkstr <7:0>	3-236
hdispend <7:0>	3-235
hdispskew <6:5>	3-237
hiprilvl <2:0>	3-273
hpelcnt <3:0>	3-229
hpgoddev <5>	3-290
hretrace <0>	3-289
hrsten <3>	3-267
hsyncdel <6:5>	3-239
hsyncend <4:0>	3-239
hsyncoff <4>	3-267
hsyncpol <6>	3-291
hsyncsel <2>	3-260
hsyncstr <2>	3-267
hsyncstr <7:0>	3-238
htotal <0>	3-267
htotal <7:0>	3-234
hvidmid <7:0>	3-272
interlace <7>	3-266
ioaddsel <0>	3-290
lgren <2>	3-225
linecomp <4>	3-241
linecomp <6>	3-243
linecomp <7:0>	3-261
linecomp <7>	3-268
mapasel <5, 3:2>	3-296
mapbsel <4, 1:0>	3-296
maxhipri <6:4>	3-273
maxscan <4:0>	3-243
memmapsl <3:2>	3-285
memsz256 <1>	3-297
mgamode <7>	3-270
mode256 <6>	3-284
mono <1>	3-225
offset <5:4>	3-266
offset <7:0>	

VGA (cont)

ovscol <7:0>	3-227
p5p4 <7>	3-226
page <7:0>	3-271
palet0-F <5:0>	3-224
pancomp <5>	3-226
pas <5>	3-223
pas <5>	3-264
pelwidth <6>	3-226
plwren <3:0>	3-295
prowscan <4:0>	3-242
rammapen <1>	3-290
rdmapsl <1:0>	3-282
rdmode <3>	3-283
refcol <3:0>	3-280
rot <2:0>	3-281
scale <2:0>	3-269
scroff <5>	3-294
sel5rfs <6>	3-251
selrowscan <1>	3-260
seqd <15:8>	3-292
seqoddevmd <2>	3-297
setrst <3:0>	3-278
setrsten <3:0>	3-279
shftldrt <2>	3-294
shiftfour <4>	3-294
slow256 <5>	3-269
srintmd <5>	3-283
startadd <3:0>	3-266
startadd <7:0>	3-246
startadd <7:0>	3-247
switchsns <4>	3-288
syncrst <1>	3-293
undrow <4:0>	3-254
vblkend <7:0>	3-256
vblkstr <3>	3-241
vblkstr <4:3>	3-268
vblkstr <5>	3-243
vblkstr <7:0>	3-255
vdispend <1>	3-241
vdispend <2>	3-268
vdispend <6>	3-241
vdispend <7:0>	3-252
videodis <4>	3-290
vidstmx <5:4>	

vintclr <4>	3-251
vinten <5>	3-251
vretrace <3>	3-289
vrsten <7>	3-267
vsyncend <3:0>	3-251
vsyncoff <5>	3-267
vsyncpol <7>	3-291
vsyncstr <2>	3-241
vsyncstr <6:5>	3-268
vsyncstr <7:0>	3-250
vsyncstr <7>	3-241
vtotal <0>	3-241
vtotal <1:0>	3-268
vtotal <5>	3-241
vtotal <7:0>	3-240
wbmode <6>	3-260
wrmask <7:0>	3-287
wrmode <1:0>	3-283

DAC Register Fields

alphaen <1>	3-320
bcomp RO<0>	3-331
colkey <7:0>	3-308
colkey0 <7:0>	3-309
colkeyen0 <0>	3-323
colmsk <7:0>	3-310
colmsk0 <7:0>	3-311
crcdata <7:0>	3-313
crcdata <7:0>	3-314
crcsel <4:0>	3-312
curadrh <5:0>	3-315
curadrl <7:0>	3-316
curcol <7:0>	3-317
curmode <2:0>	3-318
curposx <11:0>	3-300
curposy <27:16>	3-300
dacbgen <5>	3-336
dacbgpdN <4>	3-336
dacpdN <0>	3-324
ddcdata <3:0>	3-322
ddcoe <3:0>	3-321
depth <2:0>	3-325
gcomp RO<1>	3-331
hzoom <1:0>	3-337
indd <7:0>	3-305
iogsyncdis <5>	3-320
mfcsel <2:1>	3-324
miscdata <6:4>	3-322
miscoe <6:4>	3-321
paldata <7:0>	3-301
palrdadd <7:0>	3-302
palwtadd <7:0>	3-303
pedon <4>	3-320
pixclkdis <2>	3-326
pixclksl <1:0>	3-326
pixlock <6>	3-330
pixpllbgen <3>	3-336
pixpllbgpdN <2>	3-336
pixpllm <4:0>	3-327
pixplln <6:0>	3-328
pixpllp <2:0>	3-329
pixpllpdN<3>	3-326
pixplls <4:3>	3-329
pixrdmsk <7:0>	3-304

$ramcs < 4 > \dots $	3-324
rcomp RO<2>	3-331
sensepdN <7>	3-331
syslock <6>	3-335
syspllbgen <1>	3-336
syspllbgpdN <0>	3-336
syspllm <4:0>	3-332
sysplln <6:0>	3-333
syspllp <2:0>	3-334
sysplls <4:3>	3-334
vdoutsel <6:5>	3-324
vga8dac <3>	3-324

Notes

Notes