

Savage4 Registers RE046-B

This document provides detailed descriptions of the S3 Savage4 (all types) registers. The various methods of accessing these registers are described in Section 1.

© Copyright 1998, 1999 S3 Incorporated. All rights reserved. If you have received this document from S3 Incorporated in electronic form, you are permitted to make the following copies for business use related to products of S3 Incorporated: one copy onto your computer for the purpose of on-line viewing, and one printed copy. With respect to all documents, whether received in hard copy or electronic form, other use, copying or storage, in whole or in part, by any means electronic, mechanical, photocopying or otherwise, is not permitted without the prior written consent of S3 Incorporated, P.O. Box 58058., Santa Clara CA 95052-8058. S3, S3 ON BOARD, S3d (design and word), Trio and ViRGE are registered trademarks of S3 Incorporated. The S3 Corporate Logo, Sight. Sound. Speed., Savage3D, Savage4, Savage4 PRO, Savage4 PRO, Savage4 CT, Savage4 LT, Savage4 PRO-M, S3TC, DuoView, and Streams Processor are trademarks of S3 Incorporated. Other trademarks referenced in this document are owned by their respective companies. The material in this document is for information only and is subject to change without notice. S3 Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Change History

Changes to Version A

SR1A_1, 3: Inverts for 1x and 2x signature clock in bypass modes SR36, 37, 38, 39: Added duplicate DCLK PLL registers for VGA DCLK programming SR3D_4: Allows HW cursor to move to right edge with flat panel and SP on (Rev. C) CR37_3: Moved external 4x AGP clock input to CR37_4 CR37_7: 1 (default) = 1x AGP clock from PLL; 0 = 1x AGP clock from bypass CR85: Revised definition for display FIFO fill/drain control. CR88_4: Added restrictions on use of block write. Removed tiling off restriction. PCI0E_7: Now reserved (not multifunction device) MM850C_10: Reserved (MCLK only clock for 2D engine) MM48584_6-4: 010 = destination (not source) color and 011 = 1-destination (not source) color MM81EC_31-30: Must be programmed to 01b when destination flush enabled.

Changes to Version 0.3

Note: Rev. B silicon changes are in bold.

SR!A_0: Invert DCLK for clock doubled 15/16 bpp modes SR1A 4: Now reserved = 0 (-STWR function no longer supported) SR35 6: Former bit 7 is moved to bit 6. Former bit 6 is removed. SR35 7: New bit reverses TV data output format selected via SR35 5-4. SR37: PANELCLK output control (Rev. B) SR39: AGP pad compensation register (Rev. B) SR3D: New register for flat panel output control SR54 7-5: Now reserved SR58: Revised definition of horizontal border SR5B 7-4: Revised vertical expansion table SR5A: Revised definition of vertical border CR11 6: Reserved (CR3A controls refresh) CR33 7: Reserved (no flicker filter) CR36 7-5: Added support for 8 and 32 MB 2Mx32 SDRAM configurations (Rev. B) CR37 3: Added external clocks enabled by this bit (Rev. B) CR3A 1-0: Revised definition for memory refresh control CR3F 7-6: Reserved (no video engine or TV) CR4C: Corrected valid bit range. CR4D 1-0: Reserved (4K alignment) CR59: Changed definition because of new memory map (Rev. B) CR60 3-0: Added skew control for SDCLK1, SDCLK2 and SDCLKOUT. CR68 7-6: Added definitions for 2Mx32 4 bank and 4Mx16 4 bank SDRAM support (Rev. B) CR6F_0: Added note that this bit should be set only to allow programming of CR3F and then must be cleared CR70 5: Added bit to eliminate an AGP clock delay CR87 0: 1 or 2 clock block write CR87 5-4: Specify clock rate for refresh CR90 3 and CR90 6: These two bits must be set when displaying a 15/16 or 32 bpp primary stream on a flat panel.

CR92_4: Read only bit, 0 = Savage4 LT (Rev. B)

CR92_6: New bit for 2Mx32 4 bank SDRAM support

Change History

CRB6: Write only register new pad compensation code (Rev. B) CRB7: AGP 2x clock skew control (Rev. B) PCI10-PCI24: New base address definitions (Rev. B) MM8218 19-16: Value is in units of tiles (not QWords) MM8218 23-20: Value is in units of lines (not QWords) MM8508 4, 12: Removed (no BFIFO) MMFF00 18, 19, 31: Reserved (no video conferencing support) MMFF08 5, 6: Reserved (no video conferencing support) MMFF1C: Removed (LPB general I/O port not supported) MM81C0 31-28: Added bits to support triple buffering (Rev. B) MM8218 31-24: Added new tile boundary field with QWord units (Rev. B) MM48508, MM48528, MM48548: New Vertex Z coordinate registers (Rev. B) MMr8580: Removed Z Pixel Offset register (Rev. B) MM48584 30: Noted that the destination write low watermark must be all 0's if this bit is set. MM48584 31: Noted that the Z write low watermark must be all 0's if this bit is set. MM485A4 15-0: Modified definition for texture transparent color for RGB modes. MM485A8 27: Reserved (no disable for perspective correction (Rev. B) MM485D4 31: Changed to select W or Z buffer (Rev. B) MM485E8 21-16: Noted this value must be all 0's if MM48584 31 is set to 1 (flushing enabled). Further revised for Rev. B. MM485EC_17-12: Noted this value must be all 0's if MM48584_30 is set to 1 (flushing enabled). Further revised for Rev. B. MM48C00: New definition of Status Word 0 for Rev. B MM48C10: Definitions of stop and resume writing thresholds are reversed. For Rev. B, values are in 32 DWord units instead of DWords. MM48C60: New definition of Alternate Status Word 0 for Rev. B **Changes to Version 0.2**

SR39_7-6: Added bits for output drive adjustment for 1.5V VDDq

MM8300_210: Primary Stream buffer size in QWords -1

MM8304_21-0: Secondary Stream buffer size in QWords - 1

MM48A00_20-3: Corrected requirement for bits 5-3 (must be 111).

MM48A00_26-25: Noted restrictions on oversampling.

MM485EC_5-0: Reserved (no low watermark)

MM485EC_11-6: Revised definition of high watermark

Table of Contents

	Table of Contents	
Chanc	ge History	ii
-	hanges to Version 0.3	ii
MN	M48C60: New definition of Alternate Status Word 0 for Rev. B	iii
Table	of Contents	iv
Sectio	on 1. Register Addressing	1
1.1	PROGRAMMED I/O	
1.2	MMIO	1
1.3	BURST COMMAND INTERFACE (BCI)	4
Sectio	on 2: VGA Register Descriptions	5
2.1	GENERAL REGISTERS	5
2.2	SEQUENCER REGISTERS	
2.3	CRT CONTROLLER REGISTERS	
2.4	GRAPHICS CONTROLLER REGISTERS	-
2.5	ATTRIBUTE CONTROLLER REGISTERS	
2.6	RAMDAC REGISTERS	
	on 3: Extended Sequencer Register Descriptions	
	on 4: Flat Panel Registers	
Sectio	on 5: Extended CRTC Register Descriptions	69
Sectio	on 6: PCI Register Descriptions	113
	on 7: 2D Graphics Engine Register Descriptions	
	on 8: Streams Processor Register Descriptions	
	on 9: LPB/VIP Register Descriptions	
	on 10: 3D Engine Register Descriptions	
	on 11: Motion Compensation Register Descriptions	
	on 12: Mastered Data Transfer Register Descriptions	
	on 13: Configuration/Status Register Descriptions	
	gan and a second s	
much.		200

Section 1. Register Addressing

There are three methods of programming Savage4 registers:

- Programmed I/O
- MMIO
- Burst Command Interface (BCI)

In addition, the CPU can directly access video memory via several data transfer windows (linear and tiled addressing) and write image data to video memory via the 2D or 3D engine via another data transfer window. Each of these topics is discussed below.

Note: Software should write 0s to all reserved register bits.

1.1 PROGRAMMED I/O

Programmed I/O (i.e., use of the processor's IN and OUT instructions), can be used only for accessing registers in the standard VGA register space. These include all the registers described in Sections 2 through 5. Sections 3-5 describe registers defined by S3 that use extensions of the VGA sequencer and CRTC register indices. These registers are denoted by "SRxx" and "CRxx", with xx being the index.

All the standard VGA register and extensions are also accessible via memory mapped I/O (MMIO), except that 3C3H must always be accessed via I/O. Setting SR9_7 to 1 disables all I/O accesses except to the standard VGA address space. PCI02_0 = 0 disables all I/O accesses.

1.2 MMIO

MMIO enabled is the power-on default, allowing PCI software immediate access to all registers and the ability to relocate the address space. There are two MMIO address mappings, as determined by the state of CRB0_7. By default, CRB0_7 = 1, which selects Mapping 0. The definitions of Mapping 0 and Mapping 1 change from Rev. A silicon to Rev. B silicon, as explained below. For processors that support it, the address ranges with bases specified by PCI14, 18, 1C, 20 and 24 should be marked as write combining. The address range with the base specified by PCI10 should not.

Register Addressing

PCI Base Address 0 (PCI10) - Mapping 0 and Mapping 1

For Rev. A silicon, bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. For Rev. B silicon, bits 31-19 are programmable, resulting in a 512-KByte address space being claimed. The default base address is 7000 0000H. Write combining cannot be used for this address range.

Offset from Base	Size	Description	Access with BCI Active
0x0000 0000 - 0x0000 7FFF	32K	Image Data Transfer Area	
0x0000 8000 – 0x0000 807F	64	PCI Configuration Registers	No
0x0000 8080 - 0x0000 80FF	64	AGP Configuration Registers	No
0x0000 8100 – 0x0000 817F	128	Packed 2D Enhanced Registers	No
0x0000 8180 - 0x0000 82E4	164	Streams Processor Registers	Yes
0x0000 82E8	4	Current Y Position Register (2D engine)	No
0x0000 8300 – 0x0000 83AF	176	Streams Processor extensions	Yes
0x0000 83B0 - 0x0000 83BF	16	VGA 3B? Registers	No
0x0000 83C0 - 0x0000 83CF	16	VGA 3C? Registers	No
0x0000 83D0 - 0x0000 83DF	16	VGA 3D? Registers	No
0x0000 83E0 - 0x0000 8500	288	Unused	No
0x0000 8504 – 0x0000 8510	16	System Registers	Yes (except 8504)
0x0000 8514 - 0x0000 86E4	468	Unused	No
0x0000 86E8 - 0x0000 F6FF	28K	Non-packed 2D registers	No
0x0000 F700 - 0x0000 FEFF	2K	Unused	No
0x0000 FF00 - 0x0000 FFFF	256	LPB/VIP Registers	Yes
0x0001 0000 - 0x0002 FFFF	128K	Burst Command Data	
0x0003 0000 - 0x0004 84FF	97K	Unused	
0x0004 8500 - 0x0004 88FF	1024	3D Registers	No
0x0004 8900 - 0x0004 89FF	256	Motion Compensation Registers	No (Note 1)
0x0004 8A00 - 0x0004 8AFF	512	MEU Registers	No (Note 1)
0x0004 8C00 - 0x0004 8CFF	256	Configuration and Status Registers	Yes (except 8C20-8C24)
0x0004 8D00 - 0x00FF FFFF	15.7M	Unused (not available in Rev. B)	

When registers are being directly accessed via MMIO (not using the BCI), the BCI function should be idle for access to the registers indicated by "No" in the right column of the above table.

Note 1: MMIO writes to motion compensation registers must only be done with BCI disabled. Reads can be done with BCI enabled.

PCI Base Address 1 (PCI14) - Mapping 0) (Rev. A or Rev B)

Bits 31-27 of the base address are programmable, resulting in a 128-MByte address space being claimed. The default base address is 6000 0008H (prefetching allowed).

Offset from Base	Size	Description
0x0000 0000 – 0x01FF FFFF	32M	Linear Frame Buffer Access Area
0x0200 0000 – 0x02FF FFFF	16M	Tiled Addressing Aperture 0
0x0300 0000 – 0x03FF FFFF	16M	Tiled Addressing Aperture 1
0x0400 0000 – 0x04FF FFFF	16M	Tiled Addressing Aperture 2
0x0500 0000 - 0x05FF FFFF	16M	Tiled Addressing Aperture 3
0x0600 0000 - 0x06FF FFFF	16M	Tiled Addressing Aperture 4
0x0700 0000 - 0x0701 FFFF	128K	Burst Command Data

Register Addressing

Rev A Mapping 1

PCI Base Address 1 (PCI14) - Mapping 1) (Rev A)

Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6000 0008H (prefetching allowed).

Offset from Base	Size	Description			·
0x0000 0000 – 0x01FF FFFF	16M	First 16M Linear Frame Buffer Access Area			

PCI Base Address 2 (PCI18) - Mapping 1) (Rev. A)

Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6800 0008H (prefetching allowed).

Offset from Base	Size	Description
0x0000 0000 – 0x01FF FFFF	16M	Second 16M Linear Frame Buffer Access Area

PCI Base Address 3 (PCI1C) - Mapping 1) (Rev. A)

Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6200 0008H (prefetching allowed).

Offset from Base	Size	Description
0x0000 0000 – 0x01FF FFFF	16M	Tiled Addressing Aperture 0

PCI Base Address 4 (PCI20) - Mapping 1) (Rev A)

Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6300 0008H (prefetching allowed).

Offset from Base	Size	Description
0x0000 0000 – 0x01FF FFFF	16M	Tiled Addressing Aperture 1

PCI Base Address 5 (PCI24) - Mapping 1) (Rev. A)

Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6400 0008H (prefetching allowed).

Offset from the base	Size	Description
0x0000 0000 – 0x01FF FFFF	16M	Tiled Addressing Aperture 2

Rev. B Mapping 1

PCI Base Address 1 (PCI14) - Mapping 1) (Rev B)

Bits 31-25 of the base address are programmable, resulting in a 32-MByte address space being claimed. The default base address is 6000 0008H (prefetching allowed).

Offset from Base	Size	Description
0x0000 0000 - 0x02FF FFFF	32M	32M Linear Frame Buffer Access Area

PCI Base Address 2 (PCI18) - Mapping 1) (Rev. B)

Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6800 0008H (prefetching allowed).

Offset from Base	Size	Description
0x0000 0000 – 0x01FF FFFF	16M	Tiled Addressing Aperture 0

PCI Base Address 3 (PCI1C) - Mapping 1) (Rev. B)

Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6200 0008H (prefetching allowed).

Register Addressing

Offset from Base	Size	Description	
0x0000 0000 – 0x01FF FFFF	16M	Tiled Addressing Aperture 1	

PCI Base Address 4 (PCI20) - Mapping 1) (Rev B)

Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6300 0008H (prefetching allowed).

Offset from Base	Size	Description	
0x0000 0000 – 0x01FF FFFF	16M	Tiled Addressing Aperture 2	

PCI Base Address 5 (PCI24) - Mapping 1) (Rev. B)

Bits 31-24 of the base address are programmable, resulting in a 16-MByte address space being claimed. The default base address is 6400 0008H (prefetching allowed).

Offset from the base	Size	Description
0x0000 0000 – 0x01FF FFFF	16M	Tiled Addressing Aperture 3

1.3 BURST COMMAND INTERFACE (BCI)

This interface allows bursts of commands (register writes) and data to be transferred from the CPU, PCI bus and/or system memory to the Savage4 registers and the frame buffer. The BCI is the most efficient method of generating most of the display effects possible with Savage4. Its use minimizes CPU and memory bandwidth usage, minimizes system bus traffic and provides automatic coordination/synchronization among competing tasks.

The BCI interface is enabled by MM48C18_3 = 1. A series of 32-bit writes containing instructions and data is then burst to Savage4 using any address in the 128K range from 101 000H to 102 FFFFH. Each 32-bit write fills one slot of a 32-slot FIFO (if there is space), from which the data is automatically read out, interpreted and executed. If the on-chip queue fills up, additional BCI writes can be stored in an overflow circular buffer located in the frame buffer at an address specified by MM48C14_13-0. Its size is specified by MM48C14_31-29.

Software needs to monitor the queue status to determine if there is a shortage or excess of command data. A read of MM48C00_16-0 provides the number of filled entries in the command queue (both on- and off-chip). To minimize CPU and system bus usage, Savage4 optionally provides this information via a read of cacheable system memory. This is called shadow status, and is enabled by setting MM48C0C_0 and MM48C18_1 to 1. The address of the start of the status information in system memory is programmed in MM48C0C_31_5. This status information consists of the data from Status Word registers 0-2. It is automatically written to system memory when the command buffer (on- and off-chip) is almost full (as specified by a watermark programmed in MM48C10_31-16 and when the command buffer is almost empty (as specified by a watermark programmed in MM48C10_15-0). The update can also be forced by an UpdateShadowStatus BCI command issued by software. As a result of this update policy, the shadow status will normally be accurate for a only a short time. Exact status is always available by direct reading of the Status Word registers.

Section 2: VGA Register Descriptions

In the following register descriptions, `U' stands for undefined or unused and `R' stands for reserved (write = 0, read = U). A question mark in an address stands for a hexadecimal value of either `B' or `D'. If bit 0 of the Miscellaneous Output Register (3C2H, Write) is set to 1, the address is based at 3DxH for color emulation. If this bit is reset to 0, the address is based at 3BxH for monochrome emulation.

2.1 GENERAL REGISTERS

This section describes general input status and output control registers.

Miscellaneous Output Register

Write Only Address: 3C2H

Read Only Address: 3CCH Power-On Default: 00H

This register controls miscellaneous output signals. A hardware reset sets all bits to zero.

7	6	5	4	3	2 2	13. A Ha	0			
				CLK	SEL	ENB	IOA			
VSP	HSP	PGS	= 0	1	0	RAM	SEL			
		•								
Bit 0	IC	DA SEL -	I/O Add	lress Se	lect					
	0 = Monochrome emulation. Address based at 3Bx									
	1	= Color	emulatic	n. Addre	ess base	ed at 3D	<			
Bit 1	E	NB RAM	l - Enabl	e CPU E	Display N	Memory 2	Access	7		
		= Disabl								
	1	= Enable	e access	s of the c	lisplay n	nemory f	rom the	CPU		
Bits 3-2		lock Sele					,			
		0 = Seleo								
		1 = Seleo 0 = Rese		22 MHZ I	DCLK fo	or 720 hc	rizontal	pixels		
				ing of D		parame	eters in	SR12 and SR13.		
	•		100 1000	ing of D		- param				
	A	setting of	of either	00b or 0	1b caus	ses the a	ppropria	ate values to be programmed into the DCLK PLL registers if bit 1 of		
	S	R15 is se	et to 1.							
Bit 4	R	eserved	= 0							
Bit 5										
			0	•	0					
Bit 6			0			,				
							•			
			0				•	3		
Bit 7			0							
			•			,				
			aneya			ice syric	Puise			
	A setting of either 00b or 01b causes the appropriate values to be programmed into the DCLK PLL registers if bit 3 SR15 is set to 1. Reserved = 0 PGS -Select High 64K Page 0 = Select the low 64K page of memory 1 = Select the high 64K page of memory HSP - Select Negative Horizontal Sync Pulse 0 = Select a positive horizontal retrace sync pulse 1 = Select a negative horizontal retrace sync pulse VSP - Select Negative Vertical Sync Pulse 0 = Select a positive vertical retrace sync pulse 1 = Select a negative vertical retrace sync pulse 1 = Select a negative vertical retrace sync pulse									

Feature Control Register

Write Only Address: 3?AH

Read Only Power-On Default: 00H

7	6	5	4	3	2	1	0
= 0	= 0	= 0	= 0	VSSL	= 0	= 0	= 0

Address: 3CAH

Bits 2-0 Reserved = 0

 Bit 3
 VSSL - Vertical Sync Type Select

 0 = Enable normal vertical sync output to the monitor

 1 = The `vertical sync' output is the logical OR of `vertical sync' and `vertical active display enable' (an internal signal)

 Bits 7-4
 Reserved = 0

Input Status 0 Register

Read Only Address: 3C2H Power-On Default: Undefined

This register indicates the status of the VGA adapter.

. 7	6	5	4	3	2	1	0	
CRT			MON					
INTPE	= 0	= 0	SEN	= 0	= 0	= 0	= 0	

Bits 3-0	Reserved = 0
Bit 4	MON SEN - Monitor Sense Status 0 = The internal SENSE signal is a logical 0 1 = The internal SENSE signal is a logical 1
Bits 6-5	Reserved = 0
Bit 7	CRT INTPE - CRT Interrupt Status 0 = Vertical retrace interrupt cleared 1 = Vertical retrace interrupt pending

Innut	Status	1	Register
mput	otatus		Register

Read Only Address: 3?AH Power-On Default: Undefined

This register indicates video sync timing and video wraparound.

7	6	5	4	3	2	1	0
		TST	VDT				
= 0	= 0	1	0	VSY	= 1	R	DTM

Bit 0 DTM - Display Mode Inactive

Bit 0D fine Display indee inactive0 = The display is in the display mode.1 = The display is not in the display mode. Either the horizontal or vertical retrace period is activeBit 1Reserved = 0

Bit 2 Reserved = 1

VGA Registers

Bit 3	VSY - Vertical Sync Active 0 = Display is in the display mode 1 = Display is in the vertical retrace mode	
Bits 5-4	TST-VDT - Video Signal Test	\sim
	Video Data Feedback 1,0. These bits are feedback video signals to do re connected to two of the eight color outputs of the attribute controller. Bits (AR12) control the multiplexer for this video output observation.	
Bits 7-6	Reserved = 0	

Video Subsystem Enable Register

Write Only Address: 3C3H Power-On Default: 00H

This register is only accessible via its I/O address (not MMIO). For enabling via MMIO, use MM8510_0.

7	6	5	4	3	2	1	0
							CF
R	R	R	R	R	R	R	ENB

Bit 0 CF ENB - Chip Function Enable

- 0 = Chip function disabled 1 = Chip function enabled
- Bits 7-1 Reserved

2.2 SEQUENCER REGISTERS

The sequencer registers (including the S3 extensions) are located at two address spaces. These registers are accessed by first writing sequencer register index at address 3C4H and then writing to or reading from the data register at 3C5H. A word write of both address and data at 3C4H can also be performed.

Sequencer Index Register

Read/Write Address: 3C4H Power-On Default: Undefined

7	6	5	4	3	2	1	0
R	R	SEQUENCER REGISTER INDEX					

Bits 4-0 SEQUENCER REGISTER INDEX

Value = Index of the sequencer register where data is to be accessed

Bits 7-5 Reserved

Sequencer Data Register

Read/Write Address: 3C5H Power-On Default: Undefined

1	6	5	4	3	2	1	0	
SEQUENCER REGISTER DATA								

Bits 7-0 SEQUENCER REGISTER DATA

Value = Data read from or to be written to the sequencer register at the index programmed in 3C4H.

Reset Register (SR0)

Read/Write	Address: 3C5H, Index 00H
Power-On Default: 00H	

7	6	5	4	3	2	1	0
						SYN	ASY
= 0	= 0	= 0	= 0	= 0	= 0	RST	RST

Bit 0 ASY RST - Asynchronous Reset

This bit is for VGA software compatibility only. It has no function for Savage4

Bit 1 SYN RST - Synchronous Reset

Reserved = 0

This bit is for VGA software compatibility only. It has no function for Savage4.

Bits 7-2

VGA Registers

Clocking Mode Register (SR1)

Read/Write Addres Power-On Default: 00H

Address: 3C5H, Index 01H

This register controls the operation mode of dot clock and character clock.

7	6	5	4	3	2	1	0			
		SCR	SHF	CCK	SHF					
= 0	= 0	OFF	4	1/2	LD	= 0	8DC			
Bit 0	0		cter cloc	ks 9 dot	s wide a s wide a	-				
Bit 1	R	Reserved = 0								
Bit 2	SHF LD - Load Serializers Every Second Character Clock									
	0 = Load the video serializer every character clock 1 = Load the video serializers every other character clock									
Bit 3	0	= Interna	al chara	cter cloc	ter Clock k is unch f the inte	nanged	racter cl	ock		
	Tł	nis bit is	used for	r horizon	ital pixel	doubling	g.			
Bit 4	0	= Load t	he seria	lizers ev	Every Fo very char very fourt	acter clo	ock cycle	e		
Bit 5	0	CR OFF = Screei = Screei	n is turn	ed on.		$\boldsymbol{\mathcal{A}}$				
Bits 7-6	R	eserved	= 0					,		

Enable Write Plane Register (SR2)

Read/Write Address: 3C5H, Index 02H Power-On Default: 00H

This register selects write protection or write permission for CPU write access into video memory.

7	6	5	4	3	2	1	0
= 0	= 0	= 0	= 0		EN.W	T.PL.	

Bits 3-0 EN.WT.PL - Enable Write to a Plane

0 = Disables writing into the corresponding plane

1 = Enables the CPU to write to the corresponding color plane

Bits 7-4 Reserved = 0

Character Font Select Register (SR3)

Read/Write	Address: 3C5H, Index 03H
Power-On Default: 00H	

7	6	5	4	3	2	1	0
		SLA	SLB	SLA		SL	В
= 0	= 0	2	2	10		1	0

In text modes, bit 3 of the attribute byte normally turns the foreground intensity on or off. This bit can be redefined to be a switch between two character sets. The switch is enabled when there is a difference between the value of character font select A and character font select B bits. Memory Mode (SR4) register bit 1 = 1 (extended memory) enables all bits of this function; otherwise character fonts 0 and 4 are available. 256 KBytes of video memory support 8 character sets. This register is reset to 0 asynchronously during a system reset.

Bits 4, 1-0 SLB - Select Font B

Value = the portion of plane 2 used to generate text character fonts when bit 3 of the attribute byte is a logical 1, according to the following table:

Bits 4,1,0	Font Table Location	Bits 4, 1,0	Font Table Location
000	First 8K of plane 2	100	Second 8K of plane 2
001	Third 8K of plane 2	101	Fourth 8K of plane 2
010	Fifth 8K of plane 2	110	Sixth 8K of plane 2
011	Seventh 8K of plane 2	111	Eighth 8K of plane 2

Bits 5, 3-2 SLA - Select Font A

Value = the portion of plane 2 used to generate text character fonts when bit 3 of attribute byte is a logical 0, according to the same table as the character font select A.

Bits 7-6 Reserved = 0

Memory Mode Control Register (SR4)

Read/Write Address: 3C5H, Index 04H Power-On Default: 00H

This register controls CPU memory addressing mode.

7	6	5	4	3	2	1	0
				CHN	SEQ	EXT	
= 0	= 0	= 0	= 0	4M	MOD	MEM	= 0

 Bit 0
 Reserved = 0

 Bit 1
 EXT MEM - Extended Memory Access 0 = Memory access restricted to 16/32 KBytes 1 = Allows complete memory access to 256 KBytes. Required for VGA

 Bit 2
 SEQ MOD - Sequential Addressing Mode 0 = Enables the odd/even addressing mode. Even addresses access planes 0 and 2. Odd addresses access planes

> 1 and 3 1 = Directs the system to use a sequential addressing mode

This bit affects only CPU write data accesses into video memory. Bit 3 of this register must be 0 for this bit to be effective.

VGA Registers

Bit 3 CHN 4M - Select Chain 4 Mode

0 = Enables odd/even mode 1 = Chain 4 mode

This bit selects modulo 4 addressing for CPU access to display memory. A logical 1 directs the two lower order bits of the CPU address used to select the plane in video memory to be accessed as follows:

A1	A0	Plane Selected
0	0	0
0	1	1
1	0	2
1	1	3

Bits 7-4

Reserved = 0

2.3 CRT CONTROLLER REGISTERS

The CRT controller registers (including S3 extensions) are located at two addresses. These registers are accessed by first writing to the index register of the CRT controller and then accessing the data register. The index register is located at address 3?4H and the data register is at 3?5H. Which address is used (3BX or 3DX) depends on bit 0 of the Miscellaneous Output register at 3C2H. A word write of both address and data at 3?4H can also be performed.

CRT Controller Index Register

Read/Write Address: 3?4H Power-On Default: 00H

7	6	5	4	3	2	1	0
		CRTC	REGIS	TER IN	DEX		

Bits 7-0 CRTC REGISTER INDEX

Value = Index of the CRTC register to be accessed

CRT Controller Data Register

Read/Write Address: 3?5H Power-On Default: Undefined

This register is the data port for the CRT controller register indexed by the CRT Controller Address register.

7	6	5	4	3	2	1	0	
	CRTC REGISTER DATA							

Bits 7-0 CRTC REGISTER DATA

Value = Data read from or to be written to the CRTC controller register at the index specified in 3?4H.

Horizontal Total Register (CR0)

Read/Write Address: 3?5H, Index 00H Power-On Default: Undefined

This register defines the number of character clocks from HSYNC going active to the next HSYNC going active. In other words, it is the total time required for both the displayed and non-displayed portions of a single scan line. The value in this register may affect the value required in CR3B.

7	6	5	4	3	2	1	0
		HORI	ZONTAI	L TOTAL	_ 7-0		

Bits 7-0 HORIZONTAL TOTAL 7-0

11-bit Value = (number of character clocks in one scan line) - 5.

Bit 8 of this value is bit 0 of CR5D. Bits 10-9 are CR5F_1-0.

Horizontal Display End Register (CR1)

Read/Write Address: 3?5H, Index 01H Power-On Default: Undefined

This register defines the number of character clocks for one line of the active display.

7	6	5	4	3	2	1	0	
	HORIZONTAL DISPLAY END 7-0							

Bits 7-0 HORIZONTAL DISPLAY END 7-0

11-bit Value = (number of character clocks of active display) - 1.

Bit 8 of this value is bit 1 of CR5D. Bits 10-9 are CR5F_3-2.

Start Horizontal Blank Register (CR2)

Read/Write Address: 3?5H, Index 02H Power-On Default: Undefined

This register specifies the value of the character clock counter at which the BLANK signal is asserted.

7	6	5	4	3	2	1	0
	S	TART H	IORIZOI	NTAL BL	ANK 7-0	0	

Bits 7-0 START HORIZONTAL BLANK 7-0

11-bit Value = character clock value at which horizontal blanking begins.

Bit 8 of this value is bit 2 of CR5D. Bits 10-9 are CR5F_5-4.

End Horizontal Blank Register (CR3)

Read/Write Address: 3?5H, Index 03H Power-On Default: Undefined

This register determines the pulse width of the BLANK signal and the display enable skew.

7	6	5	_4	3	2	1	0			
	DSP-	SKW								
R	1	0	END HORIZONTAL BLANK 4-0							

Bits 4-0 END HORIZONTAL BLANK 4-0

6-bit Value = least significant 6 bits of the character clock counter value at which time horizontal blanking ends

To obtain this value, add the desired BLANK pulse width in character clocks to the Start Horizontal Blank value, which is also in character clocks. Bit 5 of this value is CR5_7. If the horizontal blank period is more than 64 character clocks, CR5D_3 must be set to 1.

If CR5D_7 is set to 1 for 1280x1024x24 mode, CR5B_5-4 become bits 7-6 of this value and CR5D_3 is set to 1 when the blank period is greater than 256 character clocks.

Bits 6-5 DSP-SKW - Display Skew

00 = Zero character clock skew 01 = One character clock skew

10 = Two character clock skew

11 = Three character clock skew

These two bits determine the amount of display enable skew. Display enable skew control provides sufficient time for the CRT Controller to access the display buffer to obtain a character and attribute code, access the character generator font, and then go through the Horizontal Pixel Panning register in the Attribute Controller. Each access requires the display enable signal to be skewed one character clock unit so the video output is synchronous with the HSYNC and VSYNC signals. The bit values and amount of skew are shown in the following table:

Bit 7 Reserved

Start Horizontal Sync Position Register (CR4)

Read/Write Address: 3?5H, Index 04H Power-On Default: Undefined

This register is used to adjust the screen center horizontally and to specify the character position at which HSYNC becomes active.

7	6	5	4	3	2	1	0
	START	r horiz	ONTAL	SYNC F	POSITIO	N 7-0	

Bits 7-0 START HORIZONTAL SYNC POSITION 7-0

11-bit Value = character clock counter value at which HSYNC becomes active.

Bit 8 of this value is bit 4 of CR5D. Bits 10-9 are SR5F_7-6.

End Horizontal Sync Position Register (CR5)

Read/Write Address: 3?5H, Index 05H Power-On Default: Undefined

This register specifies when the HSYNC signal becomes inactive and the horizontal skew.

7	6	5	4	3	2	1	0		
EHB	HOR	SKW							
B5	1	0	END HORIZONTAL SYNC POS 4-0						

Bits 4-0 END HORIZONTAL SYNC POS 4-0

5-bit Value = 5 least significant bits of the character clock counter value at which time HSYNC becomes inactive.

To obtain this value, add the desired HSYNC pulse width in character clocks to the Start Horizontal Sync Position value, also in character clocks. If the horizontal sync period is more than 32 character clocks, bit 5 of CR5D must be set to 1.

If CR5D_7 is set to 1 for 1280x1024x24 mode, CR5B_7-6 become bits 6-5 of this value and CR5D_5 is set to 1 when the sync period is greater than 128 character clocks.

Bits 6-5 HOR-SKW - Horizontal Skew

- 00 = Zero character clock skew 01 = One character clock skew
 - 10 =Two character clock skew

11 = Three character clock skew

These bits control the skew of the HSYNC signal. A binary 00 equals no HSYNC delay. For some modes, it is necessary to provide an HSYNC signal that takes up the entire blanking interval. Some internal timings are generated by the falling edge of the HSYNC signal. To guarantee the signals are latched properly, HSYNC is asserted before the end of the display enable signal, and then skewed several character clock times to provide the proper screen centering.

Bit 7 EHB B5 - End Horizontal Blanking Bit 5

Vertical Total Register (CR6)

Read/Write Address: 3?5H, Index 06H Power-On Default: Undefined

This register specifies the number of scan lines from one VSYNC active to the next VSYNC active. The scan line counter resets to 0 at this point.

7	6	5	4	3	2	1	0
		VEF	RTICAL .	TOTAL	7-0		

Bits 7-0 VERTICAL TOTAL 7-0

11-bit Value = (number of scan lines from VSYNC active to the next VSYNC active) - 2

Bit 8 is CR7_0. Bit 9 is CR7_5. Bit 10 is CR5E_0.

CRTC Overflow Register (CR7)

Read/Write Address: 3?5H, Index 07H Power-On Default: Undefined

7	6	5	4	3	2	1	0
VRS	VDE	VT	LCM	SVB	VRS	VDE	VT
9	9	9	8	8	8	8	8

- Bit 0 Bit 8 of the Vertical Total register (CR6)
- Bit 1 Bit 8 of the Vertical Display End register (CR12)
- Bit 2 Bit 8 of the Vertical Retrace Start register (CR10)
- Bit 3 Bit 8 of the Start Vertical Blank register (CR15)
- Bit 4 Bit 8 of the Line Compare register (CR18)
- Bit 5 Bit 9 of the Vertical Total register (CR6)
- Bit 6 Bit 9 of the Vertical Display End register (CR12)
- Bit 7 Bit 9 of the Vertical Retrace Start register (CR10)

Preset Row Scan Register (CR8)

Read/Write Address: 3?5H, Index 08H Power-On Default: Undefined

This register is used for the pixel scrolling and panning, and text formatting and vertical scrolling.

7	6	5	4	3	2	1	0
	BYTE	-PAN					
= 0	1	0	PF	RE-SET F	ROW SC/	AN COUN	ΝT

Bits 4-0 PRE-SET ROW SCAN COUNT

Value = starting row within a character cell for the first character row displayed after vertical retrace

This allows a partial character row to be displayed at the top of the display and is used for scrolling.

Bits 6-5 BYTE-PAN

Value = number of bytes to pan

The number of pixels to pan is specified in AR13.

Bit 7 Reserved = 0

Maximum Scan Line Register (CR9)

Read/Write Address: 3?5H, Index 09H Power-On Default: Undefined

This register specifies the number of scan lines per character row and provides one scanning control bit and two overflow bits.

7	6	5	4	3	2	1	0
DBL	LCM	SVB					
SCN	9	9		MAX	SCAN	LINE	

Bits 4-0 MAX SCAN LINE

Value = (number of scan lines per character row) - 1

- Bit 5 SVB 9 -Bit 9 of the Start Vertical Blank Register (CR15)
- Bit 6 LCM 9 Bit 9 of the Line Compare Register (CR18)

Bit 7

0 = Normal operation

DBL SCN

1 = Enables double scanning operation

When this bit is set, each line is displayed twice by repeating the row scan counter and video memory address. Vertical parameters in the CRT controller are not affected.

Cursor Start Scan Line Register (CRA)

Read/Write Address: 3?5H, Index 0AH Power-On Default: Undefined

The cursor start register defines the row scan of a character line where the cursor begins.

7	6	5	4	3	2	1	0
		CSR					
= 0	= 0	OFF	CSR	CURSO	R STAR	T SCAN	LINE

Bits 4-0 CSR CURSOR START SCAN LINE

Value = (starting cursor row within the character cell) - 1

When the cursor start register is programmed with a value greater than the cursor end register, no cursor is generated.

Bit 5 CSR OFF

0 = Turns on the text cursor

1 = Turns off the text cursor

Bits 7-6 Reserved = 0

Cursor End Scan Line Register (CRB)

Read/Write Address: 3?5H, Index 0BH Power-On Default: Undefined

This register defines the row scan of a character line where the cursor ends.

7	6	5	4	3	2	1		0
	CSR	SKW				·		
= 0	1	0	С	URSOR	END S	CAN L	INE	

Bits 4-0 CURSOR END SCAN LINE

Reserved = 0

Value = ending scan line number within the character cell for the text cursor

If the value of the cursor start scan line is greater than the value of cursor end line, then no cursor is generated.

Bits 6-5 CSR-SKW - Cursor Skew

- 00 = Zero character clock skew
- 01 = One character clock skew
- 10 = Two character clock skew
- 11 = Three character clock skew

These bits control the delay skew of the cursor signal. Cursor skew delays the text cursor by the selected number of clocks. For example, a skew of 1 moves the cursor right one character position on the screen.

Bit 7

Start Address High Register (CRC)

Read/Write Address: 3?5H, Index 0CH Power-On Default: Undefined

7	6	5	4	3	2	1	0
	DI	SPLAY	START	ADDRES	SS (HIG	H)	

Bits 7-0 DISPLAY START ADDRESS (HIGH)

23-bit Value = the first address after a vertical retrace at which the display on the screen begins on each screen refresh

These along with bits 6-0 of CR69 are the high order start address bits.

Start Address Low Register (CRD)

Read/Write Address: 3?5H, Index 0DH Power-On Default: Undefined

 7
 6
 5
 4
 3
 2
 1
 0

 DISPLAY START ADDRESS (LOW)

Bits 7-0 DISPLAY START ADDRESS (LOW)

Value = the 8 low order bits of the start address

Cursor Location Address High Register (CRE)

Read/Write Address: 3?5H, Index 0EH Power-On Default: Undefined

15	14	13	12	11	10	9	8
	CUR	SOR LO	CATION	ADDR	ESS (HI	GH)	

Bits 7-0 CURSOR LOCATION ADDRESS (HIGH)

23-bit Value = the cursor location address of the video memory where the text cursor is active

This register along with bits 6-0 of CR69 are the high order bits of the address.

Cursor Location Address Low Register (CRF)

Read/Write Address: 3?5H, Index 0FH Power-On Default: Undefined

7	6	5	4	3	2	1	0
	CUR	SOR LO	OCATIO	N ADDR	ESS (LO	OW)	

Bits 7-0 CURSOR LOCATION ADDRESS (LOW)

Value = the 8 low order bits of the cursor location address.

Vertical Retrace Start Register (CR10)

Read/Write Address: 3?5H, Index 10H Power-On Default: Undefined

7	6	5	4	3	2	1	0
	V	ERTICA	L RETR	RACE ST	ART 7-0	C	

Bits 7-0 VERTICAL RETRACE START 7-0

11-bit Value = scan line counter value at which VSYNC becomes active

Bit 8 is CR7_2. Bit 9 is CR7_7. Bit 10 is CR5E_4.

Vertical Retrace End Register (CR11)

Read/Write Address: 3?5H, Index 11H Power-On Default: 00H

This register controls the vertical interrupt and CR0-7

7	6	5	4	3	2	1	0
LOCK	REF	DIS	CLR				
R0-7	3/5	VINT	VINT	VERT	ICAL RE	ETRACE	END

Bits 3-0 VERTICAL RETRACE END

Value = least significant 4 bits of the scan line counter value at which VSYNC goes inactive

To obtain this value, add the desired VSYNC pulse width in scan line units to the CR10 value, also in scan line units. The 4 least significant bits of this sum are programmed into this field. This allows a maximum VSYNC pulse width of 15 scan line units.

- Bit 4 CLR VINT Clear Vertical Retrace Interrupt 0 = Vertical retrace interrupt cleared
 - 1 = The flip-flop is able to catch the next interrupt request

At the end of active vertical display time, a flip-flop is set for a vertical interrupt. The output of this flip-flop goes to the system interrupt controller. The CPU has to reset this flip-flop by writing a logical 0 to this bit while in the interrupt process, then set the bit to 1 to allow the flip-flop to catch the next interrupt request. Do not change the other bits in this register. This bit is cleared to 0 by the BIOS during a mode set, a reset, or power-on.

Bit 5 DIS VINT - Disable Vertical Interrupt

 $0 = Vertical retrace interrupt enabled if CR32_4 = 1$

1 = Vertical interrupt disabled. This bit is cleared to 0 by the BIOS during a mode set, a reset, or power-on

VGA Registers

Bit 6 Reserved

Bit 7 LOCK R0-7 - Lock Writes to CRT Controller Registers 0 = Writing to all CRT Controller registers enabled 1 = Writing to all bits of CR0-CR7 except CR7_4 disabled

This bit is set to 1 by the BIOS during a mode set, a reset or power-on

Vertical Display End Register (CR12)

Read/Write Address: 3?5H, Index 12H Power-On Default: Undefined

The vertical display enable end register defines 8 bits of the 10-bit address of the scan line where the display on the screen ends.

7	6	5	4	3	2	1	0
		VERTIC	CAL DIS	PLAY E	ND 7-0		

Bit 7-0 VERTICAL DISPLAY END 7-0

11-bit Value = (number of scan lines of active display) - 1

Bit 8 and Bit 9 are bits 1 and 6 of CR7. Bit 10 is CR5E_1.

Offset Register (CR13)

Read/Write Address: 3?5H, Index 13H Power-On Default: Undefined

This register specifies the logical line width of the screen and is sometimes called the screen pitch. The starting memory address for the next display row is larger than the current row by two, four or eight times this amount. If these bits are 00b, bit 2 of CR43 is extension bit 8 of this register.

7	6	5	4	3	2	1	0
		LOGICA	L SCRE	EN WID	OTH 7-0		

Bits 7-0 LOGICAL SCREEN WIDTH 7-0

10-bit Value = quantity that is multiplied by 2 (word mode), 4 (doubleword mode) or 8 (quadword mode) to specify the difference between the starting byte addresses of two consecutive scan lines.

The addressing mode is specified by bit 6 of CR14 and bit 3 of CR17. Setting bit 3 of CR31 to 1 forces doubleword mode. CR51_5-4 are extension bits 9-8 of this register.

VGA Registers

Underline Location Register (CR14)

Read/Write Address: 3?5H, Index 14H Power-On Default: Undefined

This register specifies the horizontal row scan position of underline and display buffer addressing modes.

7		6	5	4	3	2	1	0
		DBW	CNT					
= (0	MOD	BY4		UNDERI	LINE LO	CATION	l

Bits 4-0 UNDERLINE LOCATION

Bit 5	5-bit Value = (scan line count of a character row on which an underline occurs) -1 CNT BY4 - Select Count by 4 Mode 0 = The memory address counter depends on bit 3 of CR17 (count by 2) 1 = The memory address counter is incremented every four character clocks
Bit 6	The CNT BY4 bit is used when double word addresses are used. DBW MOD - Select Doubleword Mode 0 = The memory addresses are byte or word addresses 1 = The memory addresses are doubleword addresses
Bit 7	Reserved = 0

Start Vertical Blank Register (CR15)

Read/Write Address: 3?5H, Index 15H Power-On Default: Undefined

This register specifies the scan line at which the vertical blanking period begins.

7	6	5	4	3	2	1	0
		START	VERTIC	AL BLA	NK 7-0		

Bits 7-0 START VERTICAL BLANK 7-0

11-bit value = (scan line count at which BLANK becomes active) - 1.

Bit 8 is CR7_3. Bit 9 is CR9_5. Bit 10 is CR5E_2.

End Vertical Blank Register (CR16)

Read/Write Address: 3?5H, Index 16H Power-On Default: Undefined

This register specifies the scan line count value when the vertical blank period ends.

7	6	5	4	3	2	1	0
		END	VERTIC	CAL BLA	ANK .		

Bits 7-0 END VERTICAL BLANK

Value = least significant 8 bits of the scan line counter value at which vertical blanking ends

To obtain this value, add the desired width of the vertical blanking pulse in scan lines to [(value in the Start Vertical Blank register)-1], also in scan lines. The 8 least significant bits of this sum are programmed into this field. This allows a maximum vertical blanking pulse of 255 scan line units.

CRTC Mode Control Register (CR17)

Read/Write Address: 3?5H, Index 17H Power-On Default: 00H

This register is a multifunction control register, with each bit defining a different specification.

7	6	5	4	3	2	1	0
DOT	BYT	ADW		WD	VT	4BK	2BK
RST	E MOD	16K	= 0	MOD	X2	HGC	CGA

Bit 0	2BK CGA - Select Bank 2 Mode for CGA Emulation
	0 = Row scan counter bit 0 is substituted for memory address bit 13 during active display time
	1 = Memory address bit 13 appears on the memory address output bit 13 signal of the CRT controller
	This bit allows memory mapping compatibility with the IBM CGA graphics mode.
Bit 1	4BK HGC - Select Bank 4 Mode for HGA Emulation
	0 = Row scan counter bit 1 is substituted for memory address bit 14 during active display time
	1 = Memory address bit 14 appears on the memory address output bit 14 signal of the CRT controller
	The combination of this bit and bit 0 of this register allows compatibility with Hercules HGC graphics memory mapping.
Bit 2	VT X2 - Select Vertical Total Double Mode
	0 = Horizontal retrace clock selected
	1 = Horizontal retrace clock divided by two selected
	This bit selects horizontal retrace clock or horizontal retrace clock divided by two as the clock that controls the
	vertical timing counter. If the vertical retrace counter is clocked with the horizontal retrace clock divided by 2, then the vertical resolution is double.
Bit 3	WD MOD - Select Word Mode
Dit U	0 = Memory address counter is clocked with the character clock input, and byte mode addressing for the video
	memory is selected
	1 = Memory address counter is clocked by the character clock input divided by 2, and word mode addressing for the
	video memory is selected
Bit 4	Reserved = 0

Bit 5	ADW 16K - Address Wrap
	0 = When word mode is selected by bit 6 of this register, memory address counter bit 13 appears on the memory address output bit 0 signal of the CRT controller and the video memory address wraps around at 16 KBytes
	1 = When word mode is selected by bit 6 of this register, memory address counter bit 15 appears on the memory address output bit 0 signal of the CRT controller
	This bit is useful in implementing IBM CGA mode.
Bit 6	BYTE MODE - Select Byte Addressing Mode
	0 = Word mode shifts all memory address counter bits down one bit, and the most significant bit of the counter
	appears on the least significant bit of the memory address output 1 = Byte address mode
Bit 7	RST - Hardware Reset
	0 = Vertical and horizontal retrace pulses always inactive
	1 = Vertical and horizontal retrace pulses enabled
	This bit does not reset any other registers or outputs.

Line Compare Register (CR18)

Read/Write Address: 3?5H, Index 18H Power-On Default: Undefined

This register is used to implement a split screen function. When the scan line counter value is equal to the content of this register, the memory address counter is cleared to 0. The linear address counter then sequentially addresses the display buffer starting at address 0. Each subsequent row address is determined by the addition of the Offset (CR13) register content.

7	6	5	4	3	2	1	0
	l	INE CC	MPARE	POSIT	ION 7-0		

Bit 7-0 LINE COMPARE POSITION 7-0

11-bit Value = number of scan lines at which the screen is split into screen A and screen B

Bit 8 is CR7_4. Bit 9 is CR9_6. Bit 10 is CR5E_6.

CPU Latch Data Register (CR22)

Read Only Address: 3?5H, Index 22H Power-On Default: Undefined

This register is used to read the CPU latch in the Graphics Controller.

7	6	5	4		3	2	1	0
	GRAPI	HICS CO	ONTRO	DLLE	R CF	PU LATC	CH - N	

Bits 7-0 GRAPHICS CONTROLLER CPU LATCH - N

Bits 1-0 of GR4 select the latch number N (3-0) of the CPU Latch.

Attribute Index Register (CR24)

Read Only Address: 3?5H, Index 24H, 26H Power-On Default: Undefined

This register is used to read the value of the Attribute Controller Index register and its associated internal address flip-flop (AFF). It can be read at either index 24H or 26H.

7	6	5	4	3	2	1	0
AFF	= 0	ENV	ATTR	IBUTE O	CONTRO	OLLER I	NDEX

Bits 4-0 ATTRIBUTE CONTROLLER INDEX

This value is the Attribute Controller Index Data at I/O port 3C0H.

Bit 5 ENV- Enable Video Display

This is the setting of bit 5 of 3C0H, indicating video display enabled status (1 = enabled).

- Bit 6 Reserved = 0
- Bit 7 AFF

Inverted Internal Address flip-flop

2.4 GRAPHICS CONTROLLER REGISTERS

The graphics controller registers are located at a two byte I/O address space. These registers are accessed by first writing an index to the Graphics Address register (at 3CEH) and then accessing the Data register (at 3CFH).

Graphics Controller Index Register

Read/Write Address: 3CEH Power-On Default: Undefined

This register is loaded with a binary index value that determines which graphics controller register will be accessed. This value is referred to as the "Index Number" of the GR register (GR0-6).

7	6	5	4	3	2	1	0
= 0	= 0	= 0	= 0	GF	CONT	ADDRE	SS

Bits 3-0 GR CONT ADDRESS - Graphics Controller Register Index

Value = Index of the register where data is to be accessed.

Bits 7-4 Reserved = 0

Graphics Controller Data Register

Read/Write Address: 3CFH Power-On Default: Undefined

This register is the data port for the graphics controller register indexed by the Graphics Controller Index register.

7	6	5	4	3	2	1	0
	G	RAPHIC	CS CON	TROLLE	ER DATA	A	

Bit 7-0 GRAPHICS CONTROLLER DATA

Value = Data to the Graphics Controller register indexed by the graphics controller address

Set/Reset Data Register (GR0)

Read/Write Address: 3CFH, Index 00H Power-On Default: Undefined

This register represents the value written to all 8 bits of the respective memory plane when the CPU executes a memory write in write modes 0 and 3.

7	6	5	4	3	2	1	0
= 0	= 0	= 0	= 0	S	ET/RES	ET DAT	A

Bits 3-0 SET/RESET DATA

Value = the color value for CPU memory write operations

In write mode 0, the set/reset data can be enabled on the corresponding bit of the Enable Set/Reset Data register. In write mode 3, there is no effect on the Enable Set/Reset Data register.

Bits 7-4 Reserved = 0

Enable Set/Reset Data Register (GR1)

Read/Write Address: 3CFH, Index 01H Power-On Default: Undefined

These bits enable the set/reset data, and affect write mode 0.

7	6	5	4	3	2	1	0
= 0	= 0	= 0	= 0	EN	IB SET/	RST DA	ТА

Bits 3-0 ENB SET/RST DATA

When each bit is a logical 1, the respective memory plane is written with the value of the Set/Reset Data register. A logical 0 disables the set/reset data in a plane, and that plane is written with the value of CPU write data.

Bits 7-4 Reserved = 0

Color Compare Register (GR2)

Read/Write Address: 3CFH, Index 02H Power-On Default: Undefined

These bits represent a 4-bit color value to be compared. In read mode 1, the CPU executes a memory read, the read data is compared with this value and returns the results. This register works in conjunction with the Color Don't Care register.

7	6	5	4	3	2	1	0
= 0	= 0	= 0	= 0	COLO	OR COM	1PARE [DATA

Bits 3-0 COLOR COMPARE DATA

Value = reference color used to compare each pixel

Each of the 8-bit positions of the read data are compared across four planes and a logical 1 is returned in each bit position for which the colors match.

Bits 7-4 Reserved = 0

Raster Operation/Rotate Count Register (GR3)

Read/Write Address: 3CFH, Index 03H Power-On Default: Undefined

This register selects a raster operation function and indicates the number of bits the CPU data will be rotated (right) on the video memory write operation.

7	6	5	4	3	2	1	0
			RST	-OP			
= 0	= 0	= 0	10		ROT	ATE-CO	UNT

Bits 2-0 ROTATE-COUNT

Bits 4-3

Value = the number of positions to right-rotate data during a CPU memory write

To write non-rotated data, the CPU must preset a count of 0.

RST-OP - Select Raster Operation

00 = No operation

01 = Logical AND with latched data

10 = Logical OR with latched data

11 = Logical XOR with latched data

The data written to memory can operate logically with the data already in the processor latches. This function is not available in write mode 1. The logical function specified by this register is applied to data being written to memory while in modes 0, 2 and 3.

Bits 7-5 Reserved = 0

Read Plane Select Register (GR4)

Read/Write Address: 3CFH, Index 04H Power-On Default: Undefined

7	6	5	4	3	2	1 0
						RD-PL-SL
= 0	= 0	= 0	= 0	= 0	= 0	10

Bits 1-0 RD-PL-SL - Read Plane Select

00 = Plane 0

01 = Plane 1

10 = Plane 2

11 = Plane 3

This is the memory plane from which the CPU reads data in read mode 0. These bits have no effect on the color compare read mode (read mode 1). In odd/even mode, bit 0 is ignored.

Graphics Controller Mode Register (GR5)

Read/Write Address: 3CFH, Index 05H Power-On Default: Undefined

7	6	5	4	3	2	1	0
	SHF-MODE		O/E	RD		WRT	Г-MD
= 0	256 O/E		MAP	CMP	= 0	1	0

Bit 1-0 WRT-MD - Select Write Mode

These bits select the CPU write mode into video memory. The function of each mode is defined as follows:

00 = Write Mode 0

Each of four video memory planes is written with the CPU data rotated by the number of counts in the rotate register. If the Set/Reset register is enabled for any of four planes, the corresponding plane is written with the data stored in the set/reset register. Raster operations and bit mask registers are effective.

01 = Write Mode 1

Each of four video memory planes is written with the data in the processor latches. These latches are loaded during previous CPU read operations. Raster operation, rotate count, set/reset data, enable set/reset data and bit mask registers are not effective.

10 = Write Mode 2

Memory planes 0-3 are filled with 8 bits of the value of CPU write data bits 0-3, respectively. For example, if write data bit 0 is a 1, eight 1's are written to memory plane 0. The data on the CPU data bus is treated as the color value. The Bit Mask register is effective as the Mask register. A logical 1 in the Bit Mask register sets the corresponding pixel in the addressed byte to the color specified on the data bus. A logical 0 in the Bit Mask register sets the corresponding pixel in the addressed byte to the color specified on the data bus. A logical 0 in the Bit Mask register sets the corresponding pixel in the addressed byte to the corresponding pixel in the processor latches. The Set/Reset, Enable Set/Reset and Rotate Count registers are ignored.

11 = Write Mode 3

Each of four video memory planes is written with 8 bits of the color value contained in the set/reset register for that plane. The Enable Set/Reset register is not effective. Rotated CPU write data is ANDed with the bit mask register to form an 8-bit value that performs the same function as the Bit Mask register in write modes 0 and 2. This write mode can be used to fill an area with a single color and pattern

Bit 2 Reserved = 0

- Bit 3 RD CMP Enable Read Compare
 - 0 = The CPU reads data from the video memory planes. The plane is selected by the Read Plane Select register.

This is called read mode 0

- 1 = The CPU reads the results of the logical comparison between the data in four video memory planes selected by the contents of the Color Don't Care register and the contents of the Color Compare register. The result is a 1 for a match and 0 for a mismatch on each pixel. This is called read mode 1
- O/E MAP Select Odd/Even Addressing
 - 0 = Standard addressing.
 - 1 = Odd/even addressing mode selected.

When this bit is set to 1, even CPU addresses access plane 0 and 2, while odd CPU addresses access plane 1 and 3. This option is useful for emulating the CGA compatible mode. The value of this bit should be the inverted value programmed in bit 2 of the Sequencer Memory Mode register (SR4). This bit affects reading of display memory by the CPU.

Bit 4

VGA Registers

Bit 5	 SHF-MODE - Select Odd/Even Shift Mode 0 = Normal shift mode 1 = The video shift registers in the graphics section are directed to format the serial data stream with even-numbered bits from both planes on the even-numbered planes and odd-numbered bits from both planes on the odd planes
Bit 6	 SHF-MODE - Select 256 Color Shift Mode 0 = Bit 5 in this register controls operation of the video shift registers 1 = The shift registers are loaded in a manner that supports the 256 color mode
Bit 7	Reserved = 0

Memory Map Mode Control Register (GR6)

Read/Write Address: 3CFH, Index 06H Power-On Default: Undefined

7	6	5	4	3	2	1	0
				MEM	-MAP	CHN	TXT
= 0	= 0	= 0	= 0	1	0	O/E	/GR

Bit 0	 TXT/GR - Select Text/Graphics Mode 0 = Text mode display addressing selected 1 = Graphics mode display addressing selected. When set to graphics mode, the character generator address latches are disabled
Bit 1	 CHN O/E - Chain Odd/Even Planes 0 = A0 address bit unchanged 1 = CPU address bit A0 is replaced by a higher order address bit. The content of A0 determines which memory plan is to be addressed. A0 = 0 selects planes 0 and 2, and A0 = 1 selects planes 1 and 3. This mode can be used to double the address space into video memory
Bits 3-2	MEM-MAP - Memory Map Mode 00 = A0000H to BFFFFH (128 KBytes) 01 = A0000H to AFFFFH (64 KBytes) 10 = B0000H to B7FFFH (32 KBytes) 11 = B8000H to BFFFFH (32 KBytes) These bits control the address mapping of video memory into the CPU address space.
	These bits control the address mapping of video memory into the or o address space.
Bits 7-4	Reserved = 0

Color Don't Care Register (GR7)

Read/Write Address: 3CFH, Index 07H Power-On Default: Undefined

This register is effective in read mode 1, and controls whether the corresponding bit of the Color Compare Register is to be ignored or used for color comparison.

7	6	5	4	3	2	1	0
= 0	= 0	= 0	= 0	COI	MPARE	PLANE	SEL

Bits 3-0

COMPARE PLANE SEL - Compare Plane Select

0 = The corresponding color plane becomes a don't care plane when the CPU read from the video memory performed in read mode 1

1 = The corresponding color plane is used for color comparison with the data in the Color Compare register

Bits 7-4 Reserved = 0

VGA Registers

Bit Mask Register (GR8)

Read/Write Address: 3CFH, Index 08H Power-On Default: Undefined

Any bit programmed to 0 in this register will cause the corresponding bit in each of four memory planes to be immune to change. The data written into memory in this case is the data which was read in the previous cycle, and was stored in the processor latches. Any bit programmed to 1 allows unimpeded writes to the corresponding bits in the plane.

7	6	5	4	4 3		1	0	
BIT MASK								

Bits 7-0 BIT MASK

A logical 0 means the corresponding bit of each plane in memory is set to the corresponding bit in the processor latches. A logical 1 means the corresponding bit of each plane in memory is set as specified by other conditions.

2.5 ATTRIBUTE CONTROLLER REGISTERS

The attribute controller registers are located at the same byte I/O address for writing address and data. An internal address flip-flop (AFF) controls the selection of either the attribute index or data registers. To initialize the address flip-flop (AFF), an I/O read is issued at address 3BAH or 3DAH. This presets the address flip-flop to select the index register. After the index register has been loaded by an I/O write to address 3C0H, AFF toggles and the next I/O write loads the data register. Every I/O write to address 3C0H toggles this address flip-flop. However, it does not toggle for I/O reads at address 3C0H or 3C1H. The Attribute Controller Index register is read at 3C0H, and the Attribute Controller Data register is read at address 3C1H.

Attribute Controller Index Register

Read/Write Address: 3C0H Power-On Default: Undefined

This register is loaded with a binary index value that determines which attribute controller register will be accessed. This value is referred to as the "Index Number" of the AR register (AR0-14).

7	6	5	4	3	2	1	0
		ENB					
R	R	PLT		ATTRIB	UTE AD	DRESS	

Bits 4-0 ATTRIBUTE ADDRESS

Value = Index to the attribute controller register where data is to be written.

Bit 5 ENB PLT - Enable Video Display

0 = Video display access to the palette registers disabled. The Attribute Controller register can be accessed by the CPU

1 = Display video using the palette registers enabled (normal display operation). The palette registers (AR0-ARF) cannot be accessed by the CPU

This bit is effective only in 8-bit modes.

Bits 7-6 Reserved

Attribute Controller Data Register (

Read/Write Address: R: 3C1H/W: 3COH

Power-On Default: Undefined

This register is the data port for the attribute controller register indexed by the Attribute Controller Index register.

7	6	5	4	3	2	1	0	
ATTRIBUTE DATA								

Bits 7-0 ATTRIBUTE DATA

Value = Data to the attribute controller register indexed by the attribute controller address

Palette Registers (AR00-0F)

Read/Write Address: 3C1H/3C0H, Index 00H-0FH Power-On Default: Undefined

These are 16, 6-bit registers pointed to by the index and color code. They allow a dynamic mapping between the text attribute or graphics color input and the display color on the CRT screen.

7	6	5	5 4 3		2	1	0
		SE	CONDA	RY	F	RIMAR	Y
= 0	= 0	S	R SG S	В		R G B	

Bits 5-0 PALETTE COLOR

The 6-bit display color, bits 5-0 are output as SR, SG/I, SB/V, R, G and B respectively

Bits 7-6 Reserved = 0

Attribute Mode Control Register (AR10)

Read/Write Power-On Default: 00H Address: 3C1H/3C0H, Index 10H

The contents of this register controls the attribute mode of the display function.

7	6	5	4	3	2	1	0					
SEL	256	TOP		ENB	ENB	MON	ТХ					
V54	CLR	PAN	= 0	BLNK	LGC	ATB	/GR					
Bit 0	TX/GR - Select Graphics Mode											
	0 = Selects text attribute control mode											
	1	1 = Selects graphics control mode										
	This bit must be programmed during screen off (SR1_5 = 1) or during the vertical retrace period. Setting SR1_5 to 1 may take up to 3 HSYNCs to take effect.											
Bit 1	Μ	ON ATB	- Selec	t Monoch	rome At	tributes						
	0	= Select	s color o	display tex	kt attribu	utes						
	1	= Select	s mono	chrome di	splay te	xt attrib	utes					
Bit 2	E	NB LGC	- Enable	e Line Gra	aphics							
	0	= The ni	nth dot	of a text c	haracte	r (bit 0 d	of SR1 =	0) is the same as the background				
				aphics ch								
	When this bit is set to 1, it forces the ninth dot of a line graphics character to be identical to the eighth dot of the character. The line graphics character codes are C0H through DFH. For other characters, the ninth dot is the same as the background.											
Bit 3	F		K - Enat	ole Blinkin	a							
					0	y for the	e text at	tribute input				
				ittribute in								
								modes. The blinking counter is operated by the vertical retrace				
								32. The blinking rates are ON for 16 VRTC clocks and OFF for 16				
				• •				activated, the most significant color bit (bit 3) for each dot is				
	In	verted a	Iternatel	y, thus all	owing ty	NO diffe	rent colo	ors to be displayed for 16 VRTC clocks each.				
								blinked at a rate of ON for 8 VRTC clocks and OFF for 8 VRTC				
	cl	ocks (pe	riod by	16 frames). The d	lisplaye	d charao	cters are independently blinked at the rate of 32 frames as above.				
Bit 4	R	eserved	= 0									

VGA Registers

Bit 5	 TOP PAN - Top Panning Enable 0 = Line compare has no effect on the output of the pixel panning register 1 = Forces the output of the pixel panning register to 0 after matching line compare until VSYNC occurs in the CRT controller. At the top of screen the output of the Pixel Panning register returns to its programmed value. This bit allows a top portion of a split screen to be panned.
Bit 6	 256 CLR - Select 256 Color Mode 0 = 4 bits of video (translated to 6 bits by the palette) are output every internal dot-clock cycle 1 = Two 4-bit sets of video data are assembled to generate 8-bit video data at half the frequency of the internal dot-clock
Bit 7	 SEL V54 - Select V[5:4] 0 = In VGA, mode, bits 5-4 of video output are generated by the attribute palette registers. Bits 7-6 of video output are always generated by bits 3-2 of AR14

1 = Bits 5-4 of video output are generated by bits 1-0 of AR14

Border Color Register (AR11)

Read/Write Address: 3C1H/3C0H, Index 11H Power-On Default: 00H

7 6 5 4 3 2 1 0 BORDER COLOR

Bits 7-0 BORDER COLOR

Value = Border color displayed on the CRT screen

The border is an area around the screen display area. This register is only effective in 8-bit modes. See also CR33_5.

Color Plane Enable Register (AR12)

Read/Write Address: 3C1H/3C0H, Index 12H Power-On Default: 00H

This register enables the respective video memory color plane 3-0 and selects video color outputs to be read back in the display status.

7	6	5	4	3	2	1	0
		VDT	-SEL				
= 0	= 0	1	0	DISPLAY PLANE ENBL			

Bits 3-0 DISPLAY PLANE ENBL

A 0 in any of these bits forces the corresponding color plane bit to 0 before accessing the internal palette. A 1 in any of these bits enables the data on the corresponding color plane.

Bits 5-4 VDT-SEL - Video Test Select

These bits select two of the eight bit color outputs to be available in the Input Status 1 register. The output color combinations available on the status bits are as follows:

D STS	MUX	STS 1			
Bit 5	Bit 4	Bit 5	Bit 4		
0	0	Video 2	Video 0		
0	1	Video 5	Video 4		
1	0	Video 3	Video 1		
1	1	Video 7	Video 6		

Bits 7-6 Reserved = 0

Horizontal Pixel Panning Register (AR13)

Read/Write Address: 3C1H/3C0H, Index 13H Power-On Default: 00H

This register specifies the number of pixels to shift the display data horizontally to the left. Pixel panning is available in both text and graphics modes. It is not available with Enhanced mode memory mappings ($CR31_3 = 1$).

7	6	5	4	3	2	1	0	
= 0	= 0	= 0	= 0	NUM	NUMBER OF PAN SHIFT			

Bits 3-0 NUMBER OF PAN SHIFT

Value = the number of pixels to shift the display data horizontally to the left

In the 9 pixels/character text mode, the output can be shifted a maximum shift of 8 pixels. In the 8 pixels/character text mode and all graphics modes, except 256 color mode, a maximum shift of 7 pixels is possible. In the 256 color mode, bit 0 of this register must be 0 resulting in only 4 panning positions per display byte.

Bits 3-0	Number of pixels shifted in						
	9 pixel/char.	8 pixel/char.	256 color mode				
0000	1	0	0				
0001	2	1	-				
0010	3	2	1				
0011	4	3	-				
0100	5	4	2				
0101	6	5	-				
0110	7	6	3				
0111	8	7	-				
1000	0	-	-				

Bits 7-4

Reserved = 0

VGA Registers

Pixel Padding Register (AR14)

Read/Write Address: 3C1H/3C0H, Index 14H Power-On Default: 00H

This register specifies the high-order bits of video output when pixel padding is enabled and disabled in the 256 color mode.

7	6	5	4	3	2	1	0
				PIXEL PADDING			
= 0	= 0	= 0	= 0		V7 V6	V5 V4	

Bits 1-0 PIXEL PADDING V5, V4

These bits are enabled with a logical 1 of bit 7 of AR10, and can be used in place of the V5 and V4 bits from the Palette registers to form the 8-bit digital color value output.

Bits 3-2 PIXEL PADDING V7, V6

In all modes except 256 color mode, these bits are the two high-order bits of the 8-bit digital color value output.

Bits 7-4 Reserved = 0

2.6 RAMDAC REGISTERS

DAC Mask Register

Read/Write Address: 3C6H Power-On Default: Undefined

The CPU can access this register at any time.

7	6	5	4	3	2	1	0
		DAC	CADDR	ESS MA	SK		

Bits 7-0 DAC ADDRESS MASK

The contents of this register are bit-wise logically ANDed with the CLUT address input. This register is initialized to FFH by the BIOS during a video mode set.

DAC Read Index Register

Write Only Address: 3C7H Power-On Default: Undefined

This register contains the pointer to one of 256 palette data registers and is used when reading the color palette.

7	6	5	4	3	2	1	0	

Bits 7-0 DAC READ ADDRESS

Each time the color code is written to this register, it identifies that a read sequence will occur. A read sequence consists of three successive byte reads from the RAMDAC data register at I/O address 3C9H. In 6-bit CLUT mode, the least significant 6 bits of each byte taken from the RAMDAC data register contain the corresponding color value, and the most significant 2 bits contain zeros. The order is red byte first, then green, and finally blue. The sequence of events for a read cycle is:

- 1. Write the color code to this register (RAMDAC Read Index) at address 3C7H.
- 2. The contents of the location in the color look-up table pointed to by the color code are transferred to the RAMDAC data register at address 3C9H.
- 3. Three bytes are read back from the RAMDAC data register.
- 4. The contents of this register auto-increment by one.
- 5. Go to step 2.

The effects of writing to the RAMDAC data register during a three-byte read cycle or reading from the RAMDAC data register during a 3-byte write cycle (i.e., interrupting the sequence) are undefined and may change the look-up table contents.

DAC Status Register

Read Only Address: 3C7H Power-On Default: Undefined

7	6	5	4	3	2	1	0
= 0	= 0	= 0	= 0	= 0	= 0	DAC-STS	

Bits 1-0 DAC-STS - RAMDAC Cycle Status The last executing cycle was: 00 = Write Palette cycle 11 = Read Palette cycle

Reads from the RAMDAC Write Index at address 3C8H or the DAC status register at address 3C7H do not interfere with read or write cycles and may take place at any time.

Bits 7-2 Reserved = 0

DAC Write Index Register

Read/Write Address: 3C8H Power-On Default: Undefined

 7
 6
 5
 4
 3
 2
 1

 DAC WRITE ADDRESS

Bits 7-0 DAC WRITE ADDRESS

This register contains the pointer to one of 256 palette data registers and is used during a palette load. Each time the color code is written to this register, it identifies that a write sequence will occur. A write sequence consists of three successive byte writes to the DAC data register at I/O address 3C9H. In 6-bit CLUT mode, the least significant 6 bits of each byte are shifted up by 2, with two LSB 0's added. The order is red byte first, then green, and finally blue. Once the third byte has been written, the value in the data register is written to the location pointed to by the color code. The sequence of events for a write cycle is:

1. Write the color code to this register (DAC Write Index) at address 3C8H.

0

- 2. Three bytes are written to the DAC Data register at address 3C9H.
- 3. The contents of the DAC data register are transferred to the location in the color look-up table pointed to by the color code.
- 4. The DAC Write Index register auto-increments by 1.
- 5. Go to step 2.

RAMDAC Data Register

Read/Write Address: 3C9H Power-On Default: Undefined

This register is a data port to read or write the contents of the location in the color look-up table pointed to by the DAC Read Index or the DAC Write Index registers.

7	6	5	4	3	2	1	0
7 6 5 4 3 2 1 DAC READ/WRITE DATA							

Bits 7-0 DAC READ/WRITE DATA

To prevent "snow flicker" on the screen, an application reading data from or writing data to the DAC Data register should ensure that the BLANK input to the RAMDAC is asserted. This can be accomplished either by restricting data transfers to retrace intervals, checking 3?AH_3) to determine when retrace is occurring, or by using the screen-off bit SR1_5.

Section 3: Extended Sequencer Register Descriptions

In the following register descriptions, R' stands for reserved (write = 0, read = undefined.

Unlock Extended Sequencer Register (SR8)

Read/Write Address: 3C5H, Index 08H Power-On Default: 00H

Loading xxxx0110b (e.g., 06H) unlocks accessing of all the S3 extensions (SR9 - SRFF) to the standard VGA Sequencer register set. (x = don't care).

7	6	5	4	3	2	1	0
R	R	R	R	=0	=1	=1	=0

Extended Sequencer 9 Register (SR9)

Read/Write Power-On Default: 0	ddress: 3	C5H, Ir	ıdex 09⊢	

7	6	5	4	3	2	1	0
MMIO-							
VGA	R	R	R	R	R	R	LAC

Bit 0 LAC - Linear Addressing Control

0 = Use VGA logic for linear addressing (memory writes)

1 = Bypass VGA logic for linear addressing

Bits 6-1 Reserved

Bit 7

MMIO-VGA - Memory-mapped I/O register + VGA access only

0 = When MMIO is enabled, both programmed I/O and memory-mapped I/O register accesses are allowed

1 = When MMIO is enabled, only memory-mapped I/O register accesses plus standard VGA I/O port accesses are allowed

PCI04_0 can be used to disable all I/O accesses, including standard VGA.

Flat Panel Registers

Extended Sequencer D Register (SRD)

Read/Write Address: 3C5H, Index 0DH Power-On Default: 00H

This register provides feature connector control and also provides independent control of the HSYNC and VSYNC signals, therefore supporting the VESA DPMS (Display Power Management Control) standard.

ſ	7	6	5	4	3	2	1	0
	VSY-	CTL	HSY	-CTL				
	1	0	1	0	R=0	R=0	R=0	GPS

Bit 0	GPS - GPOUT Pin State 0 = GPOUT pin is driven with logic 0 1 = GPOUT pin is driven with logic 1
Bits 3-1	Reserved = 0
Bits 5-4	HSY-CTL - HSYNC Control 00 = Normal operation 01 = HSYNC = 0 10 = HSYNC = 1 11 = Reserved

 11 = Reserved

 Bits 7-6
 VSY-CTL - VSYNC Control

 00 = Normal operation

 01 = VSYNC = 0

 10 = VSYNC = 1

 11 = Reserved

MCLK Value Low Register (SR10)

Read/Write Address: 3C5H, Index 10H Power-On Default: See description below.

The power-on default value for this register in conjunction with the power-on default value for SR11 generate an MCLK value of 45 MHz. All other MCLK values must be specified by programming of SR10 and SR11. Loading of a new value is enabled by either bit 0 or bit 5 of SR15. After loading any PLL value, software must delay at least 1 ms before taking further action.

7	6	5	4	3	2	1	0
R	PLL R	VALUE		PLL N-	DIVIDER	VALUE	

Bits 4-0 PLL N-DIVIDER VALUE

Reserved

These bits contain the binary equivalent of the integer (1-31) divider used to scale the input to the MCLK PLL. PLL R VALUE

Bits 6-5 PLL R VA

These bits contain the binary e1quivalent of the integer (1, 2, 4, 8) range value used to scale the output of the MCLK PLL.

Bit 7

Extended Sequencer Registers

MCLK Value High Register (SR11)

Read/Write Address: 3C5H, Index 11H Power-On Default: See description below.

The power-on default value for this register in conjunction with the power-on default value for SR10 generate an MCLK value of 45 MHz. All other MCLK values must be specified by programming of SR10 and SR11. Loading of a new value is enabled by either bit 0 or bit 5 of SR15. After loading any PLL value, software must delay at least 1 ms before taking further action.

7	6	5	4	3	2	1	0
R			PLL M-D	DIVIDER	VALUE		

Bits 6-0 PLL M-DIVIDER VALUE

These bits contain the binary equivalent of the integer (1-127) divider used in the feedback loop of the MCLK PLL.

Bit 7 Reserved

DCLK Value Low Register (SR12)

Read/Write Address: 3C5H, Index 12H Power-On Default: See description below.

The power-on default value for this register in conjunction with the power-on default value for SR13 generate a DCLK value of 25.175 MHz. The default value is automatically placed in this register when bits 3-2 of 3C2H are programmed to 00b. If bits 3-2 of CR2H are programmed to 01b, the appropriate PLL R and PLL N values for a 28.322 MHz DCLK will automatically be placed in this register. All other DCLK values must be specified by programming of SR12, SR13 and SR29 unless SR39_0 = 1. Loading of a new value is enabled by either bit 1 or bit 5 of SR15 and by setting bits 3-2 of 3C2H to 11b. After loading any PLL value, software must delay at least 1 ms before taking further action.

7	6	5	4	3	2	1	0
PLL R \	/ALUE		PLL	N-DIVIE	DER VAI	LUE	

Bits 5-0 PLL N-DIVIDER VALUE

7-bit Value = the binary equivalent of the integer (1-127) divider used to scale the input to the DCLK PLL. Bit 6 of this value is SR29_4.

Bits 7-6 PLL R VALUE

- 000 = frequency divider of 1 001 = frequency divider of 2 010 = frequency divider of 4
- 011 = frequency divider of 8
- 100 = frequency divider of 16

The high order bit of this value is SR29_2.

Flat Panel Registers

DCLK Value High Register (SR13)

Read/Write Address: 3C5H, Index 13H Power-On Default: See description below.

The power-on default value for this register in conjunction with the power-on default value for SR12 generate a DCLK value of 25.175 MHz. The default value is automatically placed in this register when bits 3-2 of 3C2H are programmed to 00b. If bits 3-2 of CR2H are programmed to 01b, the appropriate PLL M value for a 28.322 MHz DCLK will automatically be placed in this register. All other DCLK values must be specified by programming of SR12, SR13 and SR29 unless SR39_0 = 1. Loading of a new value is enabled by either bit 1 or bit 5 of SR15 and by setting bits 3-2 of 3C2H to 11b. After loading any PLL value, software must delay at least 1 ms before taking further action.

7	6	5	4	3	2	1	0
		PLL	M-DIVIE	DER VAL	UE		

Bits 7-0 PLL M- DIVIDER VALUE

9-bit Value = the binary coding of the integer (1-511) divider used in the feedback loop of the TV clock PLL. Bit 8 of this value is SR29_3.

CLKSYN Control 1 Register (SR14)

Read/W Power-C	rite On Default	: 00H	Addro	ess: 3C5ł	H, Index	14H	G	Y
7	6 5 4 3 2 1 0							
EXT	EXT	EXT CLR C EN MPLL DPLL						
DCLK	MCLK	PSEL	CNT	TEST	CNT	PD	PD	
Bit 0	0 =	.L PD - P DCLK PL DCLK PL	L power		PLL			
	This	s bit is use	ed for S3	3 test purp	poses or	nly.		
Bit 1	MPLL PD - Power down MCLK PLL 0 = MCLK PLL powered 1 = MCLK PLL powered down							
Bit 2	This bit is used for S3 test purposes only. EN CNT - Enable clock synthesizer counters 0 = Clock synthesizer counters disabled 1 = Clock synthesizer counters enabled							
				3 test purp	ooses or	nly.		
Bit 3	00= 01 = 10 =	EST - Clo Test DCl = Test MC = Test AG = Test EC	LK CLK iP clock					

The high order bit of this field is SR34_0. These bits are used for S3 test purposes only.

Extended Sequencer Registers

Bit 4	CLR CNT - Clear clock synthesizer counters 0 = No effect
	1 = Clear the clock synthesizer counters
	This bit is used for S3 test purposes only.
Bit 5	PSEL - Pin function select
	0 = GPOUT pin functions normally
	1 = GPOUT pin is tri-stated
	Setting this bit to 1 allows the GPOUT pin to act as an MCLK input. This is enabled by setting bit 6 of this register to
	1.
Bit 6	EXT MCLK - External MCLK Select
	0 = MCLK provided by internal PLL
	1 = MCLK is input on GPOUT pin
	This bit can also be set to 1 at reset via power-on strapping of ROMD1. An external MCLK is only used for S3 test
	purposes.
Bit 7	EXT DCLK - External DCLK Select
	0 = DCLK provided by internal PLL
	1 - DCLK is input on XIN nin

1 = DCLK is input on XIN pin

This bit can also be set to 1 at reset via power-on strapping of ROMA0. An external DCLK is only used for S3 test purposes.

CLKSYN Control 2 Register (SR15)

Read/Write	Address: 3C5H, Index 15H
Power-On Default: 00H	

7	6	5	4	3	2	1	0
	DCLK\	CLK	DCLK/	DCLK	ACLK	DRFQ	MFRQ
R	INV	LOAD	2	OUT	OUT	EN	EN

Bit 0 MFRQ EN - Enable new MCLK frequency load

0 = Register bit clear

1 = Load new MCLK frequency

When new MCLK PLL values are programmed, this bit can be set to 1 to load these values in the PLL. The loading may be delayed a small but variable amount of time. This bit should be cleared to 0 after loading to prevent repeated loading. Alternately, use bit 5 of this register to produce an immediate load.

Bit 1 DFRQ EN - Enable new DCLK frequency load

0 = Register bit clear

1 = Load new DCLK frequency

When new DCLK PLL values are programmed, this bit can be set to 1 to load these values in the PLL. Bits 3-2 of 3C2H must also be set to 11b if they are not already at this value. The loading may be delayed a small but variable amount of time. This bit should be programmed to 1 at power-up to allow loading of the VGA DCLK value and then left at this setting. Use bit 5 of this register to produce an immediate load.

Bit 2

ACLK OUT - Output internally generated AGPCLK

0 = Normal operation

1 = ROMD4 pin outputs the internally generated AGPCLK, ROMD5 pin outputs the AGP 2X clock. and ROMD6 outputs the AGP 4X clock.

This is used only for S3 testing.

Flat Panel Registers

Bit 3	DCLK OUT - Output internally generated DCLK or ECLK 0 = LCLK pin functions normally 1 = LCLK pin outputs the internally generated DCLK (SR34_1 = 0) or ECLK (SR34_1 = 1)
	This is used only for S3 testing.
Bit 4	DCLK/2 - Divide DCLK by 2 0 = DCLK unchanged 1 = Divide DCLK by 2
	This bit must be set to 1 for clock doubled RAMDAC operation.
Bit 5	CLK LOAD - MCLK, DCLK, ECLK load 0 = Clock loading is controlled by bits 0 and 1 of this register 1 = Load MCLK, DCLK and ECLK PLL values immediately
	To produce an immediate MCLK, DCLK and ECLK load, program this bit to 1 and then to 0. Bits 3-2 of 3C2H must also then be programmed to 11b to load the DCLK values if they are not already programmed to this value. This register must never be left set to 1.
Bit 6	DCLK INV - Invert DCLK 0 = DCLK unchanged 1 = Invert DCLK
Bit 7	Reserved

CLKSYN Test High Register (SR16)

Read Only Address: 3C5H, Index 16H Power-On Default: 00H

This register is reserved for S3 testing of the internal clock synthesizers.

7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	R

CLKSYN Test Low Register (SR17)

Read Only Address: 3C5H, Index 17H Power-On Default: 00H

This register is reserved for S3 testing of the internal clock synthesizers.

7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	R
		•				•	

RAMDAC/CLKSYN Control Register (SR18)

Savage4

Extended Sequencer Registers

Read/W Power-0		ult: 00H	Ad	dress: 3	C5H, Ind	lex 18H	н	
7	6	5	4	3	2	1	0	
CLKx 2	LUT WR	DAC PD	TST BLUE	TST GRN	TST RED	TST RST		
Bit 0	0	= RAMI	Enable te DAC test DAC test	counter o	lisabled			
Bit 1	Т 0 1	ST RST = No ef = Reset	t the RAN	est coun	ter t counte	r		
Bit 2	Т 0	ST RED = No ef	used for - Test re fect red data	d data		-		
Bit 3	This bit is used for S3 test purposes only. 3 TST GRN - Test green data 0 = No effect 1 = Place green data on internal data bus							
Bit 4	Т 0	ST BLU = No ef	s used for E - Test b fect blue data	lue data				
Bit 5	С 0	AC PD = RAMI	used for - RAMDA DAC powe DAC powe	C power- ered	down	s only.		
Bit 6	L 0	UT WR = 2 DCl	RAMDA - LUT writ LK LUT w LK LUT w	te cycle o rite cycle	control e (default		RAMDAC memory retains its data.	
Bit 7								
		'his bit m	nust be se	et to 1 wh	en any c	of the 2	2 pixels/clock modes is specified in CR67_7-4. SR15_4 must also be set to	

Miscellaneous DAC Control Register (SR19)

	Read/Write Power-On Default: 00H				ddress: 3	3C5H, Ir	ndex 19F	1
7 6 5 4 3 2 1	7	6	5	4	3	2	1	0

R	RT	R	R	R	VPD	DMS	DLUT
Л	П	Л	Л	Л	VFD	DIVIS	DLUT
Bit 0	0	LUT - Di = CLUT = CLUT	enabled		ed dowr	n)	
Bit 1	D	MS - Dis	able Mo	nitor Se	nse		

	0 = Monitor sense circuit enabled 1 = Monitor sense circuit disabled (powered down)
Bit 2	VPD - VREF Power Down 0 = RAMDAC VREF circuitry powered 1 = RAMDAC VREF circuitry powered down
Bits 5-3	Reserved
Bit 6	RT - RAM Test
	0 = Disable RAM test
	1 = Enable RAM test
	This hit is used for C2 DAMDAC testing

- This bit is used for S3 RAMDAC testing.
- Bit 7 Reserved

Extended Sequencer 1A Register (SR1A)

Read/W Power-C		ult: 00H	A	ddress: (3C5H, Ir	ndex 1AH		•
7	6	5	4	3	2	1	0	
R	EIL	R	R	2xS	R	1xS	DI	
Bit 0	0	- DCLK = No eff = Invert	ect	or clock	doubled	15/16 bits	s/pixel mod	les
Bit 1	1xS – DAC Signature 1x Clock in Bypass Mode Invert 0 = No inversion 1 = Invert							
Bit 2	Reserved							
Bit 3	2xS – DAC Signature 2x Clock in Bypass Mode Invert 0 = No inversion 1 = Invert							

Bits 5-4 Reserved

- Bit 6 EIL - Enable Internal Latch
 - 0 = Disable internal latch on XIN input. This setting must be used if the XIN input is driven when both MCLK and DCLK PLLs are powered down

1 = Enable internal latch for the same conditions as the = 0 value except that the XIN input is not being driven when it is not being used

Bit 7 Reserved

Extended Sequencer Registers

Extended Sequencer 1B Register (SR1B)

Read/Write (see bits) Address: 3C5H, Index 1BH Power-On Default: 00H

7	6	5	4	3	2	1	0
R	R	R	CC	EGC	R	R	R

Bit 2-0	Reserved
Bit 3	EGC - Enable Gamma Correction 0 = Gamma correction disabled 1 = Gamma correction enabled
Bit 4	CC - CLUT Configuration 0 = CLUT configured for 18-bit color data output 1 = CLUT configured for 24-bit color data output
Bits 6-5	Reserved
Bit 7	DCC - DCLK Control 0 = DCLK frequency controlled by 3C2_3-2 1 = DCLK frequency always comes from SR12, SR13 and SR29.

Extended Sequencer 1C Register (SR1C)

Read/Write Power-On Default: 00H Address: 3C5H, Index 1CH

7	6	5	4	3	2	1	0
APD	VRP	FBC		AGI	9 1X CL	OCK SK	EW

Bits 3-0 AGP 1X CLOCK SKEW 0000 = Decrease by 4x minimum skew 0001 = Decrease by 4x minimum skew 0010 = Decrease by 4x minimum skew 0011 = Decrease by 4x minimum skew 0100 = Decrease by 3x minimum skew 0101 = Decrease by 2x minimum skew 0110 = Decrease by 1x minimum skew 0111 = Decrease by 1x minimum skew 1000 = No change 1001 = Increase by 1x minimum skew 1010 = Increase by 1x minimum skew 1011 = Increase by 2x minimum skew 1100 = Increase by 3x minimum skew 1101 = Increase by 4x minimum skew 1110 = Increase by 4x minimum skew 1111 = Increase by 5x minimum skew See CRB7_3-0 for AGP 2x clock skew control. Bits 5-4 FBC - Feedback Clock Input Select 00 = Standard feedback clock 01 = Feedback clock with dummy load 10 = Internal feedback clock

11 = Internal feedback clock

Flat Panel Registers

Bit 6	VRP - AGP Voltage Regulator Powerdown
	0 = AGP voltage regulator powered up
	1 = AGP voltage regulator powered down
Bit 7	APD - AGP PLL Powerdown
	0 = AGP PLL normal operation
	1 = AGP PLL powered down

SDCLKR Delay Register (SR1D)

Read/Write	Address: 3C5H, Index 1DH
Power-On Default: 00H	

7	6	5	4	3	2	1	0
Р	D[63:32]] DELAY	•		PD[31:0]] DELAY	·

Bits 3-0 PD[31:0] DELAY

Value = Delay of SDCLKR input for PD[31:0]

Each increment from 0 to 15 increases the return clock signal delay by between 0.15 and 0.4 ns. 0H generates no delay; FH generates 15 units delay.

Bits 7-4 PD[63:32] DELAY

Value = Delay of SDCLKR input for PD[63:32]

Each increment from 0 to 15 increases the return clock signal delay by between 0.15 and 0.4 ns. 0H generates no delay; FH generates 15 units delay.

DAC Current Control Register (SR27)

Read/Write

Address: 3C5H, Index 27H

Power-On Default: 00H

7	6	5	4	3	2	1	0
R	R	R	R	BPE	RAM	DAC AD	JUST

Bits 2-0 RAMDAC ADJUST

These bits are used to adjust the gain of the RAMDAC.

- BPE BLANK Pedestal Enable
- 0 = Disable BLANK pedestal
- 1 = Enable BLANK pedestal

Bits 7-4 Reserved

Bit 3

Extended Sequencer Registers

PLL IREF Control Register (SR28)

Read/W Power-0		ult: 00H	Ad	ddress: (3C5H, Ir	idex 28F	1
7	6	5	4	3	2	1	0
AGP	VCO	AGP	IREF	DCLK	IREF	MCLK	IREF

Bits 1-0	MCLK IREF
Bits 3-2	These bits adjust the IREF current of the MCLK PLL. DCLK IREF
Bits 5-4	These bits adjust the IREF current of the DCLK PLL. AGP CLOCK IREF
Bits 7-6	These bits adjust the IREF current of the AGP clock PLL. AGP CLOCK VCO

These bits adjust the VCO gain of the AGP clock PLI

DCLK PLL Value Overflow Register (SR29)

Read/Write Power-On Default: 00H Address: 3C5H, Index 29H

7	6	5	4	3	2	1	0
R	R	R	DN6	DM8	DR2	R	R
Bits 1-0 Bit 2		eserved R2 - DCl	LK PLL I	R Value	Bit 2		
Bit 3			•	n for SR M Value		Y	
Bit 4			•	n for SR N Value			

See the description for SR13.

Bits 7-5 Reserved

Bit 0

Extended Sequencer 30 Register (SR30)

Read/Write unless noted Address: 3C5H, Index 30H Power-On Default: 00H

7	6	5	4	3	2	1	0
R	R	R	PL	R	PD	PDC	FT

FT - Flat Panel Logic for TV

0 = Normal operation

1 = TV output uses flat panel centering and expansion logic

Bit 1	PDC - Panel Detect Control 0 = Pin N5 is an input
	1 = Pin N5 is an output
	This bit must be cleared to 0 for panel detection. See bit 2 of this register.
Bit 2	PD - Panel Detect (Read only) 0 = Flat panel not connected 1 = Flat panel connected
	Bit 1 of this register must be cleared to 0 and the appropriate hardware connections made for this bit to be effective.
Bit 3	Reserved
Bit 4	PL - PanelLink Interface 0 = 24-bit single clocked data 1 = 12-bit double clocked data
Bits 7-5	Reserved
Extende	d Sequencer 31 Register (SR31)
Read/Wr Power-O	ite Address: 3C5H, Index 31H n Default: 00H
7	6 5 4 3 2 1 0
TCP	DCLK VCO EFP EFE ECLK IFEF STO
Bit 0	STO - Serial ROM, Flat Panel/Digital TV Output 0 = Serial ROM pin definition for the multiplexed ROM/flat panel/digital TV pins 1 = Flat panel/digital TV pin definition for the multiplexed ROM/flat panel/TV pins
	In addition, bit 4 of this register must be set to 1 and CRB0_3 must be 0 for flat panel operation. CRB0_4 must be 0 for TV operation. CRB0_2 must be 0 for serial ROM operation.
Bits 2-1	ECLK IREF
	These bits adjust the IREF current of the ECLK PLL.
Bit 3	EFE - Enable new ECLK frequency load
	0 = Register bit clear 1 = Load new ECLK frequency
	When new ECLK PLL values are programmed, this bit can be set to 1 to load these values in the PLL. The loading may be delayed a small but variable amount of time. This bit should be cleared to 0 after loading to prevent repeated loading. Alternately, use SR15_5 to produce an immediate load.
Bit 4	EFP - Enable Flat Panel Operation 0 = Flat panel operation disabled 1 = Flat panel operation enabled
Bits 5-6	DCLK VCO
	These bits adjust the VCO gain of the DCLK PLL.
Bit 7	TCP - TV Clock Phase 0 = TVCLKR is in phase with TVCLK
	1 = TVCLKR is 180° out of phase with TVCLK

Extended Sequencer Registers

ECLK Value Low Register (SR32)

Read/Write Address: 3C5H, Index 32H Power-On Default: See description below.

The power-on default value for this register in conjunction with the power-on default value for SR33 generate an ECLK value of 45 MHz. All other ECLK values must be specified by programming of SR32 and SR33. Loading of a new value is enabled by bit 5 of SR15. After programming any PLL value, software must delay at least 1 ms before taking further action.

7	6	5	4	3	2	1	0
R	PLL R	VALUE		PLL N-C	IVIDER	VALUE	

Bits 4-0 PLL N-DIVIDER VALUE

These bits contain the binary equivalent of the integer (1-31) divider used to scale the input to the ECLK PLL.

Bits 6-5 PLL R VALUE

These bits contain the binary equivalent of the integer (1, 2, 4, 8) range value used to scale the output of the ECLK PLL.

Bit 7 Reserved

ECLK Value High Register (SR33)

Read/Write Address: 3C5H, Index 33H Power-On Default: See description below.

The power-on default value for this register in conjunction with the power-on default value for SR32 generate an ECLK value of 45 MHz. All other ECLK values must be specified by programming of SR32 and SR33. Loading of a new value is enabled by bit 5 of SR15. After loading any PLL value, software must delay at least 1 ms before taking further action.

7	6	5	4	3	2	1	0
R			PLL M-D	DIVIDER	VALUE		

Bits 6-0 PLL M-DIVIDER VALUE

These bits contain the binary equivalent of the integer (1-127) divider used in the feedback loop of the ECLK PLL.

Bit 7 Reserved

Extended Sequencer 34 Register (SR34)

Read/W Power-C		ılt: 00H	A	ddress: 3	3C5H, Ir	ndex 34H	ł	
7	6	5	4	3	2	1	0	
R	RT	R	R	R	R	COS	СТО	
Bit 0	C ⁻	FO - Clo	ck Test	Overflov	v			
Bit 1	C(0 :	OS - Clo = Output	ck Outp t DCLK	der bit o out Selec on LCLK on LCLK	t Cpin if S	R15_3 =	- 1	ee SR14_3.
	-	· · .						

Bits 7-2 Reserved

Digital TV Control Register (SR35)

Read/Write	Address:
Power-On Default: 00H	

7	6	5	4	3	2	1	0
ODS	TOM	T∖	/M		TVCLK	DELAY	

Bits 3-0 TVCLK DELAY

Value = Delay in ns of the TVCLK input from an external encoder

3C5H, Index 35H

Bits 5-4	TVM - TV Encoder Mode
	00 = Bt868/869 mode
	01 = B[7:0]G[7:4] on rising edge; G[4:0]R[7:0] on falling edge
	10 = R[7:0]G[7:4] on rising edge; G[4:0]B[7:0] on falling edge
	11 = Reserved
Bit 6	TOM - TV Output Mode (Streams Processor Off) 0 = TV output mode is other than 8 bpp
	1 = TV output mode is 8 bpp
	This bit is only effective when the Streams Processor is turned off.
Bit 7	ODS - TV Output Data Switch

0 = TV output data is ordered as specified in bits 5-4 of this register

1 = Data ordering specified in bits 5-4 of this register is reversed

For example, if bits 5-4 = 01b and this bit is set to 1, then the output is G[4:0]R[7:0]] on rising edge; B[7:0]G[7:4 on falling edge.

VGA DCLK Value Low Register (SR36) (Rev. B)

Read/Write Address: 3C5H, Index 36H Power-On Default: 00H

This register is used instead of SR12 when SR39_0 = 1. After loading any PLL value, software must delay at least 1 ms before taking further action.

PLL R VALUE PLL N-DIVID	ER VAI	LUE	

PLL N-DIVIDER VALUE Bits 5-0

> 7-bit Value = the binary equivalent of the integer (1-127) divider used to scale the input to the DCLK PLL. Bit 6 of this value is SR39_4.

PLL R VALUE Bits 7-6

- 000 = frequency divider of 1
- 001 = frequency divider of 2
- 010 = frequency divider of 4
- 011 = frequency divider of 8
- 100 = frequency divider of 16

The high order bit of this value is SR39_2.

Extended Sequencer Registers

VGA DCLK Value High 1 Register (SR37) (Rev. B)

Read/Write Address: 3C5H, Index 37H Power-On Default: 00H

This register is used instead of SR13 when SR39_0 = 1 and $3C2_3-2 = 00b$. After loading any PLL value, software must delay at least 1 ms before taking further action.

7	6	5	4	3	2	1	0			
PLL M-DIVIDER VALUE										

Bits 7-0 PLL M- DIVIDER VALUE

9-bit Value = the binary coding of the integer (1-511) divider used in the feedback loop of the DCLK PLL. Bit 8 of this value is SR39_3.

VGA DCLK Value High 2 Register (SR38) (Rev. B)

Read/Write Address: 3C5H, Index 38H Power-On Default: 00H

This register is used instead of SR13 when SR39_0 = 1 and $3C2_3-2 = 01b$. After loading any PLL value, software must delay at least 1 ms before taking further action.

7	6	5	4	3	2	1	0				
	PLL M-DIVIDER VALUE										

Bits 7-0 PLL M- DIVIDER VALUE

9-bit Value = the binary coding of the integer (1-511) divider used in the feedback loop of the DCLK PLL. Bit 8 of this value is SR39_3.

Extended Sequencer 39 Register (SR39) (Rev. B)

Savage4

Flat Panel Registers

Read/W Power-0	/rite On Defai	ult: 00H	Ac	ddress: 3	C5H, In	dex 39F	4					
7	6	5	4	3	2	1	0					
CSP	CCG	PCE	DN6	DM8	DR2	R	VDS					
Bit 0	0	= Use d = Use S		lues for SR37 fo	or the VC			A DCLK PLL programming alues if 3C2_3-2 = 00b or SR36 and SR38 for the VGA DCLK PLL				
Bit 1	Reserved											
Bit 2	D	R2 - DC	LK PLL I	R Value	Bit 2							
	See the description for SR36.											
Bit 3	B DM8 - DCLK PLL M Value Bit 8											
	S	ee the d	escriptio	n for SR	37 and S	SR38.						
Bit 4	D	N6 - DC	LK PLL I	N Value	Bit 6							
			escriptio									
Bit 5	0	= Use a	d Compe utomatic RB6 val	feedbac	k code f	or the p	ad com	pensation				
Bit 6	0	= Keep	•	ous/defa	ult pad	comper	sation c	ode (1.5V) nsation (1.5V)				
Bit 7	 1 = Generate a new feedback code for pad compensation (1.5V) CSP - Compensation Sensor Powerdown 0 = Disable the 1.5V process compensation sensor 1 = Enable the 1.5V process compensation sensor 											

Read/Write

Power-On Default: 00H

Flat Panel Output Control Register (SR3D)

Address: 3C5H, Index 3DH

Section 4: Flat Panel Registers

7	6	5	4	3	2	1	0					
PCD	PDD	R	R	CLK [DELAY	R	R					
Bits 1-0	R	eserved										
Bits 3-2			AY - PAN	NELCLK	Output	Delay (F	Rev. B)					
		0 = No d 1 = Dolo	lelay. yed appr	ovimato	ly 100 n	c						
			yed appr yed appr									
			yed appr									
Bit 4	Bit 4 HWC – Hardware Cursor Fix (Rev. C)											
			al Rev. B									
	1	= Hardv	vare curs	or will a	ppear in	last five	e columr	ns of flat panel display				
	т	his bit sł	nould be	set to 1	for flat c	anel dis	olav wit	th the Streams Processor enabled and the primary stream in 15/				
		r 32 bpp										
Bit 5	R	eserved										
Bit 6	Р	DD - PA	NELD[23	3:0] Driv	e Streng	ıth						
	0	= 4 mA	(8 mA fo	r Rev. B)							
	1	= 8mA (16 mA fo	or Rev. I	3)							
Bit 7	P	CD - PA	NELCLK	C Drive S	trength		$\mathbf{\nabla}$	ŗ				
	-	= 8 mA										
	1	= 16 m/	4									

Flat Panel Horizontal Compensation 1 Register (SR54)

Read/W Power-0		ult: 00H	A	ddress: 3	3C5H, Ir	ldex 54⊦	ł
7	6	5	4	3	2	1	0
R	R	R	HCE GRAPH EXP TEXT EX				EXP
					/		

Bits 1-0

TEXT EXP - Text Mode Horizontal Expansion

00 = Horizontal expansion disabled

01 = Horizontal expansion enabled up to a maximum expansion factor of 1.25

10 = Reserved

11 = Horizontal expansion enabled up to the horizontal panel size. For VGA panels, 9-dot text modes will be forced to 8-dot text modes.

The 11b setting will normally be used unless the expansion causes the text to look bad. In this case, the 01 setting can be used for panels larger than 800 columns to limit the expansion and eliminate the undesirable visual effects.

Flat Panel Registers

Bits 3-2	 GRAPH EXP - Graphics Mode Horizontal Expansion 00 = Horizontal expansion disabled 01 = Horizontal expansion enabled up to a maximum expansion factor of 1.25 10 = Reserved 11 = Horizontal expansion enabled up to the horizontal panel size. For VGA panels, 9-dot text modes will be forced to 8-dot text modes.
	The 11b setting will normally be used unless the expansion causes the text to look bad. In this case, the 01 setting can be used for panels larger than 800 columns to limit the expansion and eliminate the undesirable visual effects.
Bit 4	HCE - Horizontal Centering Enable 0 = Horizontal centering disabled 1 = Horizontal centering enabled
Bits 7-5	Reserved

Flat Panel Horizontal Compensation 2 Register (SR55)

Read/Write	Address: 3C5H, Index 55H
Power-On Default: 00H	

The bits in this register control enabling of horizontal expansion in specific text/graphics modes. They are effective only if text mode horizontal expansion is enabled via SR54_1-0. Horizontal expansion for all other modes not controlled by these bits is controlled by SR54_3-0.

7	6	5	4	3	2	1	0						
ATHE	R	R	1024C	800C	640C	80C	40C						
Bit 0													
		0 = Horizontal expansion disabled in 40-character text mode											
	1	1 = Horizontal expansion enabled in 40-character text mode											
	This bit is effective only if text mode horizontal expansion is enabled via SR54_1-0.												
Bit 1		80C - 80-character Text Mode Horizontal Expansion Enable 0 = Horizontal expansion disabled in 80-character text mode											
			•				aracter text mode						
	Т	his bit is	effective	only if te	ext mode	e horizo	ntal expansion is enabled via SR54_1-0.						
Bit 2					•		prizontal Expansion Enable						
							40-column graphics mode						
	1	= Horizo	ontal expa	nsion er	habled i	n 320/6	40-column graphics mode						
	т	his bit is	effective	only if a	raphics	mode h	orizontal expansion is enabled via SR54_3-2.						
Bit 3					•		ntal Expansion Enable						
Bito							olumn graphics mode						
	1	= Horizo	ontal expa	nsion er	nabled ii	n 800-c	olumn graphics mode						
	т	his bit is	effective	only if g	raphics	mode h	orizontal expansion is enabled via SR54_3-2.						
Bit 4	1	024C - 1	024-colum	n Grap	hics Mo	de Hori	zontal Expansion Enable						
							column graphics mode						
							column graphics mode						
	-												
				only if g	raphics	mode h	orizontal expansion is enabled via SR54_3-2.						
Bits 6-5		eserved											
Bit 7			Iternate Te				•						
			ard text m			•							
	1	= Allem	ate text m	oue nor	izonial (expansi							
	Т	his bit af	fects text	mode ex	xpansio	n for 80	0-column or 1024-column panels.						

Flat Panel Registers

Flat Panel Vertical Compensation 1 Register (SR56)													
Read/Wr Power-O		ult: 00H	A	ddress: 3	BC5H, In	dex 56H							
7	6	6 5 4 3 2 1 0											
R	R												
Bits 1-0	00 = Vertical expansion disabled 01 = Vertical expansion enabled up to a maximum of 480 lines 10 = Reserved 11 = Vertical expansion enabled up to the vertical panel size The 11b setting will normally be used unless the expansion causes the text to look bad. In this case, the 01 setting												
Bits 3-2	G 00 10 11 1	 can be used for panels larger than 480 lines to limit the expansion and eliminate the undesirable visual effects. GRAPH EXP - Graphics Mode Vertical Expansion 00 = Vertical expansion disabled 01 = Vertical expansion enabled up to a maximum of 480 lines 10 = Reserved 11 = Vertical expansion enabled up to the vertical panel size. The 11b setting will normally be used unless the expansion causes the text to look bad. In this case, the 01 setting											
Bit 4	V 0 1	CE - Ver = Vertica = Vertica	rtical Cer al center al center	ntering E ring disat ring enab	nable bled bled			it the expansion and eliminate the undesirable visual effects. abled via bits 3-2 of this register.					
Bits 7-5	R	eserved		-									

Read/Write	Address: 3C5H, Index 57H
Power-On Default: 00H	

This register is used only when flat panel operation is enabled (SR31_4 = 1). The bits in this register control enabling of vertical expansion in specific text/graphics modes. Vertical expansion for all other modes not controlled by these bits is controlled by SR56_3-0.

7	6	5	4	3	2	1	0				
ATVE	768G	600G	480G	200G	350G	200T	350T				
Bit 0	35	50T - 350	0-line Te	ext Mode	Vertica	l Expans	sion Ena				
0	 350T - 350-line Text Mode Vertical Expansion Enable 0 = Vertical expansion disabled in 350-line text mode 1 = Vertical expansion enabled in 350-line text mode 										
	Ir	nis dit is	effective	e only if t	ext mod	ae vertica	ai expan				
Bit 1				ne Text N			•				
				ision disa							
	1	= Vertica	al expan	ision ena	bled in	200/400	-line text				

S3 Sight, Sound, Speed.

Flat Panel Registers

Bit 2	350G - 350-line Graphics Mode Vertical Expansion Enable 0 = Vertical expansion disabled in 350-line graphics mode
	1 = Vertical expansion enabled in 350-line graphics mode
	This bit is effective only if graphics mode vertical expansion is enabled via SR56_2 = 1 or SR56_3 = 1.
Bit 3	200G - 200/400-line Graphics Mode Vertical Expansion Enable
	0 = Vertical expansion disabled in 200/400-line graphics mode
	1 = Vertical expansion enabled in 200/400-line graphics mode
	This bit is effective only if graphics mode vertical expansion is enabled via SR56_2 = 1 or SR56_3 = 1.
Bit 4	480G - 480-line Graphics Mode Vertical Expansion Enable
	0 = Vertical expansion disabled in 480-line graphics mode
	1 = Vertical expansion enabled in 480-line graphics mode
	This bit is effective only if graphics mode vertical expansion is enabled via SR56_2 = 1 or SR56_3 = 1.
Bit 5	600G - 600-line Graphics Mode Vertical Expansion Enable
	0 = Vertical expansion disabled in 600-line graphics mode
	1 = Vertical expansion enabled in 600-line graphics mode
	This bit is effective only if graphics mode vertical expansion is enabled via SR56_2 = 1 or SR56_3 = 1.
Bit 6	768G - 768-line Graphics Mode Vertical Expansion Enable
	0 = Vertical expansion disabled in 768-line graphics mode
	1 = Vertical expansion enabled in 768-line graphics mode
	This bit is effective only if graphics mode vertical expansion is enabled via SR56_2 = 1 or SR56_3 = 1.
Bit 7	ATVE - Alternate Text Mode Vertical Expansion
	0 = Standard text mode vertical expansion
	1 = Alternate text mode vertical expansion
	This bit affects text mode expansion for 200/400-line text modes for 600-line or 768-line papels

This bit affects text mode expansion for 200/400-line text modes for 600-line or 768-line panels.

Flat Panel Horizontal Border Register (SR58)

Read Only Address: 3C5H, Index 58H Power-On Default: 00H

7	6	5	4	3	2	1	0		
FP HORIZONTAL BORDER 7-0									

Bits 7-0 FP HORIZONTAL BORDER 7-0

9-bit Value = (number of character clocks per line from the first pixel column on the flat panel to last pixel column before the start of the video image) + (number of character clocks per line from the first pixel column after the end of the video image to the last pixel column on the flat panel)

Bit 8 of this value is in SR59_0. This value is valid only when horizontal centering is enabled (SR54_4 = 1).

Flat Par	nel Hori	zontal E	xpansio	n Facto	or Regis	ter (SR	59)	
Read O Power-0		ult: 00H	Ad	dress: 3	3C5H, Ir	ndex 59H	ł	
7	6	5	4	3	2	1	0	
R	HORIZ	EXP F	ACTOR	R	R	R	HB8	
Bit 0		20 1.00	Panel H	0	al Borde	r Bit 8		ŻV
Bits 3-1	R	eserved						
Bits 6-4	00 00 01 01 10 10	00 = pan 01 = 1 1/ 10 = illeg 11 = 1 1/ 00 = 1 1/ 01 = illeg 10 = 2x i	4x image 2x image	image s e size > e size > e size > e size >	panel si panel si panel si el size ≧	ze ≥ 1 1 ze ≥ 1 1	/8x imag /4x imag	le size
Bit 7	R	eserved						

Flat Panel Vertical Border Register (SR5A)

Read Only	Address: 3C5H, Index 5AH
Power-On Default: 00H	

7	6	5	4	3	2	1	0
		FP VE	RTICAL	BORDE	R 7-0	7	

Bits 7-0 FP VERTICAL BORDER 7-0

9-bit Value = number of scan lines per frame from the first (top) scan line on the flat panel to the last scan line before the start of the video image

Bit 8 of this value is SR5B_0. This value is valid only when vertical centering is enabled (SR56_4 = 1)

Flat Panel Vertical Expansion Factor Register (SR5B)

7	6	5	4	3	2	1	0
VE	RT EXP	FACTO	R	LRI	VCD	VED	VB8

Bit 0 VB8 - Flat Panel Vertical Border Bit 8

Bit 1

Bits 7-0 are in SR5A.

VED - Vertical Expansion Detect (Read Only)

0 = No vertical expansion

1 = Automatic vertical expansion is being done or would be being done if enabled.

This bit is used only for test purposes.

Bit 2	VCD - Vertical Centering Detect (Read Only) 0 = No vertical centering
	1 = Automatic vertical centering is being done (it must be enabled)
	This bit is used only for test purposes.
Bit 3	LRI - Line Repeat Indicator (Read Only)
	0 = Current scan line will be repeated on the next scan line
	1 = Current scan line will not be repeated on the next scan line
	This bit is used only for test purposes.
Bits 7-4	VERT EXP FACTOR (Read Only)
	0000 = No expansion (image equal to or larger than panel size)
	0001 = No expansion (centered if enabled)
	0010 = Expand 16-line text to 19-line text
	0011 = Double every fifth line
	0100 = Double every fourth line
	0101 = Double every third line
	0110 = Expand 14-line text to 19-line text
	0111 = Double every second line
	1000 = Double every line
	1001 = Double one line and triple the second, repeat
	1010 = Double, double, triple, double, triple, repeat
	1011 = Double, triple, triple, repeat
	1100 = Double, double, triple, repeat
	1101 = Expand 8-line text to 19-line text (when CR9_7 = 1)
	1110 = Triple every line
	1111 = Quadruple every line

Flat Panel Display Enable Position Control Register (SR5C)

Read/Write Address: 3C5H, Index 5CH Power-On Default: Undefined

This register is effective only for Enhanced modes (8 bits/pixel or higher). The BIOS should program this register to 07H on reset.

7	6	5	4	3	2	1	0	
R	R	R	R	FPDEC				

Bits 3-0 FPDEC - Flat Panel Display Enable

Value = starting position of the horizontal and vertical display enables

This field should normally be left at 0111b. A smaller value causes the display enables to be moved earlier by the difference between the programmed value and the nominal value. A larger value causes the display enables to be moved later by the difference between the programmed value and the nominal value. Each difference unit causes a shift of 1 DCLK.

Bits 7-4 Reserved

Flat Panel/CRT Sync Position Control Register (SR5D)

Read/Write Address: 3C5H, Index 5DH Power-On Default: Undefined

This register is effective only for Enhanced modes (8 bits/pixel or higher). The BIOS should program this register to 07H on reset.

7	6	5	4	3	2	1	0	
R	R	R	R	FP/CRTSC				

Bits 3-0 FP/CRTSC - Flat Panel/CRT Sync

Value = starting position of the horizontal and vertical syncs

This field should normally be left at 0111b. A smaller value causes the syncs to be moved earlier by the difference between the programmed value and the nominal value. A larger value causes the syncs to be moved later by the difference between the programmed value and the nominal value. Each difference unit causes a shift of 1 DCLK.

Bits 7-4 Reserved

Flat Panel BIOS Scratch 1 Register (SR5E)

Read/Write Address: 3C5H, Index 5EH Power-On Default: Undefined

7	6	5	4	3	2	1	0
		RES	FRVFD	FOR BI	OS		

Bits 7-0 RESERVED FOR BIOS

Flat Panel BIOS Scratch 2 Register (SR5F)

Read/Write Address: 3C5H, Index 5FH Power-On Default: Undefined

7	6	5	4	3	2	1	0
		RES	ERVED	FOR BI	OS		

Bits 7-0 RESERVED FOR BIOS

Flat Panel Horizontal Total Register (SR60)

Read/Write Address: 3C5H, Index 60H

Power-On Default: Undefined

7	6	5	4	3	2	1	0		
	FP HORIZONTAL TOTAL 7-0								

Bits 7-0 FP HORIZONTAL TOTAL 7-0

11-bit Value = [number of character clocks in one scan line] - 5

A character clock is always 8 FPSCLKs (FP dot clocks). The programmed value is independent of horizontal compensation and applies to all modes. Bit 8 of this value is SR66_0. Bits 10-9 are SR67_1-0.

Flat Panel Horizontal Panel Size Register (SR61)

Read/Write Address: 3C5H, Index 61H Power-On Default: Undefined

7	6	5	4	3	2	1	0
	FF	P HORIZ	ONTAL	PANEL	SIZE 7-	0	

Bits 7-0 FP HORIZONTAL PANEL SIZE 7-0

11-bit Value = [horizontal panel resolution in character clocks] - 1

A character clock is always 8 FPSCLKs (FP dot clocks). For example, for a VGA panel with a horizontal resolution of 640, the programmed value would be the binary equivalent of [640/8] - 1. The programmed value is independent of horizontal compensation and applies to all modes. Bit 8 of this value is SR66_1. Bits 10-9 are SR67_3-2.

Flat Panel Horizontal Blank Start Register (SR62)

Read/Write Address: 3C5H, Index 62H Power-On Default: Undefined

7	6	5	4	3	2	1	0
	FP	HORIZO	ONTAL E	BLANK S	START 7	7-0	

Bits 7-0 FP HORIZONTAL BLANK START 7-0

11-bit Value = character clock counter value at which blanking begins

A character clock is always 8 FPSCLKs (FP dot clocks). The programmed value is independent of horizontal compensation and applies to all modes. Bit 8 of this value is SR66_2. Bits 10-9 are SR67_5-4.

Flat Panel Horizontal Blank End Register (SR63)

Read/Write Address: 3C5H, Index 63H

Power-On Default: Undefined

7	6	5	4	3	2	1	0
R	R	R	FP H	ORIZON	ITAL BL	ANK EN	D 4-0

Bits 4-0 FP HORIZONTAL BLANK END 4-0

6-bit Value = least significant 6 bits of the character clock counter value at which blanking ends

A character clock is always 8 FPSCLKs (FP dot clocks). To obtain this value, add the desired width of the vertical blanking pulse in character clocks to the value in the FP Horizontal Blank Start register, also in character clocks. The 5 least significant bits of this value are programmed into this field. The programmed value is independent of horizontal compensation and applies to all modes. Bit 5 of this value is SR65_7. If the horizontal blank period is more than 64 character clocks, then SR66_3 must be set to 1.

Bits 7-5 F

Flat Panel Horizontal Sync Start Register (SR64)

Read/Write Address: 3C5H, Index 64H Power-On Default: Undefined

7	6	5	4	3	2	1	0
	FP	HORIZ	ONTAL	SYNC S	TART 7	-0	

Bits 7-0 FP HORIZONTAL SYNC START 7-0

11-bit Value = character clock counter value at which the horizontal sync pulse (LP) becomes active

A character clock is always 8 FPSCLKs (FP dot clocks). The programmed value is independent of horizontal compensation and applies to all modes. Bit 8 of this value is SR66_4. Bits 10-9 are SR67_7-6.

Flat Panel Horizontal Sync End Register (SR65)

Read/Write Address: 3C5H, Index 65H Power-On Default: Undefined

7	6	5	4	3	2	1	0
BE5	R	R	FP H	IORIZOI	NTAL SY	NC ENI	D 4-0

Bits 4-0 FP HORIZONTAL SYNC END 4-0

5-bit Value = least significant 5 bits of the character clock counter value at which the horizontal sync pulse (LP) becomes inactive

A character clock is always 8 FPSCLKs (FP dot clocks). To obtain this value, add the desired width of the horizontal sync pulse in character clocks to the value in the FP Horizontal Sync Start register. The 5 least significant bits of this value are programmed into this field. The programmed value is independent of horizontal compensation and applies to all modes. If the horizontal sync period is more than 32 character clocks, SR66_5 must be set to 1.

- Bits 6-5 Reserved
- Bit 7 BE5 FP Horizontal Sync End Bit 5

Bits 4-0 are in this register.

Flat Panel Horizontal Overflow Register (SR66)

Read/Write Address: 3C5H, Index 66H

Power-On Default: Onderined											
7	6	5	4	3	2	1	0				
R	R	HSE5	HSS8	HBP	HBS8	HPS8	HT8				
Bit 0	FP Horizontal Total Bit 8 Bits 7-0 are in SR60.										
Bit 1	FF	P Horizon	ital Pane	l Size Bi	it 8						

- Bits 7-0 are in SR61.
- Bit 2 FP Horizontal Blank Start Bit 8

Bits 7-0 are in SR62.

Bit 3	FP Horizontal Blank Period 0 = Flat panel horizontal blank period is 64 character clocks or le 1 = Flat panel horizontal blank period is greater than 64 character		
	See SR 63_4-0.		
Bit 4	FP Horizontal Sync Start Bit 8		
	Bits 7-0 are in SR64.		
Bit 5	FP Horizontal Sync Period 0 = Flat panel horizontal sync period is 32 character clocks or les 1 = Flat panel horizontal sync period is greater than 32 character		
	See SR65_4-0.		
Bits 7-6	Reserved	\mathcal{L}	

Flat Panel Horizontal Overflow 2 Register (SR67)

Read/Write Address: 3C5H, Index 67H Power-On Default: Undefined

7	6	5	4	3	2	1	0
FPHT	10=9	FPHP	S10-9	FPHBS10-9		FPHS	S10-9
Bits 1-0							
Bits 7-0 are in SR60. Bit 8 is SR66_0.Bits 3-2FP Horizontal Panel Size Bits 10-9						0.))
	Bi	ts 7-0 are	e in SR61	I. Bit 8 is	s SR66_	1.	
Bits 5-4							Y
Bits 7-6		Bits 7-0 are in SR62. Bit 8 is SR66_2. FP Horizontal Sync Start Bits 10-9					
	Bi	ts 7-0 are	in SR64	4. Bit 8 i	s SR66_	4.	

Flat Panel Vertical Total Register (SR68)

Read/Write Address: 3C5H, Index 68H Power-On Default: Undefined

7	6	5	4	3	2	1	0
		FP VE	ERTICA	L TOTAI	_ 7-0		

Bits 7-0 FP VERTICAL TOTAL 7-0

11-bit Value = [number of scan lines from one vertical sync pulse (FLM) active to the next vertical sync pulse active] - 2

The programmed value is independent of vertical compensation and applies to all modes. Bits 10-8 of this value are SR6E_2-0.

Flat Panel Vertical Panel Size Register (SR69)

Read/Write Address: 3C5H, Index 69H Power-On Default: Undefined

7	6	5	4	3	2	1	0
FP VERTICAL PANEL SIZE 7-0							

Bits 7-0 FP VERTICAL PANEL SIZE 7-0

11-bit Value = [vertical panel resolution in scan lines] - 1

For example, for a VGA panel with a vertical resolution of 480, the programmed value would be the binary equivalent of 480 - 1. The programmed value is independent of vertical compensation and applies to all modes. Bits 10-8 of this value are SR6E_6-4.

Flat Panel Vertical Blank Start Register (SR6A)

Read/Write Address: 3C5H, Index 6AH Power-On Default: Undefined

7	6	5	4	3	2	1	0
FP VERTICAL BLANK START 7-0							

Bits 7-0 FP VERTICAL BLANK START 7-0

11-bit Value = scan line counter value at which blanking begins

The programmed value is independent of vertical compensation and applies to all modes. Bits 10-8 of this value are SR6F_2-0.

Flat Panel Vertical Blank End Register (SR6B)

Read/Write	Address: 3C5H, Index 6BH

Power-On Default: Undefined

7	6	5	4	3	2	1	0
FP VERTICAL BLANK END 7-0							

Bits 7-0 FP VERTICAL BLANK END 7-0

Value = least significant 8 bits of the scan line counter value at which blanking ends

To obtain this value, add the desired width of the vertical blanking pulse in scan lines to the value in the FP Vertical Blank Start register, also in scan lines. The 8 least significant bits of this value are programmed into this field. The programmed value is independent of vertical compensation and applies to all modes.

Flat Panel Vertical Sync Start Register (SR6C)

Read/Write Address: 3C5H, Index 6CH Power-On Default: Undefined

7	6	5	4	3	2	1	0
FP VERTICAL SYNC START 7-0							

Bits 7-0 FP VERTICAL SYNC START 7-0

11-bit Value = [scan line counter value at which the vertical sync pulse (FLM) becomes active] -1

The programmed value is independent of vertical compensation and applies to all modes. Bits 10-8 of this value are SR6F_6-4.

Flat Panel Vertical Sync End Register (SR6D)

Read/Write Address: 3C5H, Index 6DH Power-On Default: Undefined

7	6	5	4	3	2	1	0
R	R	R	R	FP VE	RTICAL	SYNC E	END 3-0

Bits 3-0 FP VERTICAL SYNC END 3-0

4-bit Value = least significant 4 bits of the character clock counter value at which the vertical sync pulse (FLM) becomes inactive

To obtain this value, add the desired width of the vertical sync pulse in scan lines to the value in the FP Vertical Sync Start register, also in scan lines. The 4 least significant bits of this value are programmed into this field. The programmed value is independent of vertical compensation and applies to all modes.

Bits 7-4 Reserved

Flat Panel Vertical Overflow 1 Register (SR6E)

Read/Write	Address: 3C5H, Index 6EH
Power-On Default: Undefined	

7	6	5	4	3	2	1	0
R	VPS10-8			R		VT10-8	

- Bits 2-0 VT10-8 FP Vertical Total Bits 10-8
- Bits 7-0 are in SR68. Bit 3 Reserved Bits 6-4 VPS10-8 - FP Vertical Panel Size Bits 10-8 Bits 7-0 are in SR69. Bit 7 Reserved

Flat Panel Registers

Flat Panel Vertical Overflow 2 Register (SR6F)

Read/Write Address: 3C5H, Index 6FH Power-On Default: Undefined

7	6	5	4	3	2	1	0
R	VSS10-8		R	,	VBS10-8	3	

Bits 2-0	VBS10-8 - FP Vertical Blank Start Bits 10-8
	Bits 7-0 are in SR6A.
Bit 3	Reserved
Bits 6-4	VSS10-8 - FP Vertical Sync Start Bits 10-8

	Bits 7-0 are in SR6C.
Bit 7	Reserved

Section 5: Extended CRTC Register Descriptions

These registers are located in CRT Controller address space at locations not used by the VGA standard. All registers are read/write protected at power-up by hardware reset. In order to read/write these registers, CR38 and/or CR39 must be loaded with a changed key pattern (see the register description). The registers will remain unlocked until the key pattern is reset by altering a significant bit.

In the following register descriptions, `R' stands for reserved (write =0, read = undefined).

Synchronization 0 Register (CR21)

Read/Write Address: 3?5H, Index 23H Power-On Default: 00H

A5H must be programmed into CR39 to access this register.

7	6	5	4	3	2	1	0
R	R	R	R	R	R	DPL	R

 Bit 0
 Reserved

 Bit 1
 DPL - Delay Primary Stream Display Start Address Load

 0 = Normal operation
 1 = Delay PS display start address load by 2 character clocks

Bits 7-2 Reserved

Synchronization 1 Register (CR23)

Read/Write Address: 3?5H, Index 23H Power-On Default: 00H

This register must be 00H before CR26 is written. For this to be effective, A5H must first be programmed into CR39.

7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	R

Bits 7-0 Reserved

Synchronization 2 Register (CR26)

Read/Write Address: 3?5H, Index 26H Power-On Default: 00H

The BIOS must write 00H to this register upon each mode set (assuming CR23 is at its default value of 00H). Drivers should write 00H to this register after writing 00H to CR23 before enabling Streams Processor operation. For this to be effective, A5H must first be programmed into CR39.

7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	R

Bits 7-0 Reserved

Device ID High Register (CR2D)

Read Only Address: 3?5H, Index 2DH Power-On Default: 8AH

This register should contain the same value as the upper byte of the PCI Device ID (Index 02H) register.

7	6	5	4	3	2	1	0
CHIP ID HIGH							

Bits 7-0 CHIP ID HIGH

Value = 8AH (hardwired)

Device ID Low Register (CR2E)

Read Only Address: 3?5H, Index 2EH Power-On Default: See Below

7	6	5	4	3	2	1	0
CHIP ID LOW							

Bits 7-0 CHIP ID LOW

Value = 22H (hardwired)

Revision Register (CR2F)

Read Only	Address: 3?5H, Index 2FH
Power-On Default: xxH	

7	6	5	4	3	2	1	0	
REVISION LEVEL								

Bits 7-0 REVISION LEVEL

Value = xx (hardwired)

The "xx" will change with each revision of the chip.

Old Chi	o ID	Register	(CR30)

Read Only Address: 3?5H, Index 30H Power-On Default: E1H

Use CR2D, CR2E and CR2F for chip ID information.

7	6	5	4	3	2	1	0
			OLD	DID			

Bits 7-0 OLD ID

value = E1H (hardwired)

Memory Configuration Register (CR31)

Read/Write Power-On Default: 00H Address: 3?5H, Index 31H

7	6	5	4	3	2	1	0	
	HST			ENH	VGA	SCRN	CPUA	
R	DFF	R	R	MAP	16B	2.PG	BASE	

 Bit 0
 CPUA BASE - Enable Base Address Offset

 0 = Address offset bits (CR6A_6-0) are disabled

 1 = Address offset bits (CR6A_6-0) are enabled

 Setting this bit allows access to up to 8 MBytes of display memory through a 64K window at A0000H.

 Bit 1
 SCRN 2.PG - Enable Two-Page Screen Image

0 = Normal Mode 1 = Enable 2K x 1K x 4 map image screen for 1024 x 768 or 800 x 600 screen resolution, or 2K x 512 x 8 map image

screen for 640 x 480 screen resolution

- Bit 2 VGA 16B Enable VGA 16-bit Memory Bus Width
 - 0 = 8-bit memory bus operation
 - 1 = Enable 16-bit bus VGA memory read/writes

This is useful in VGA text modes when VGA graphics controller functions are typically not used.

- Bit 3 ENH MAP Use Enhanced Mode Memory Mapping
 - 0 = Force IBM VGA mapping for memory accesses
 - 1 = Force 2D Enhanced Mode mappings

Setting this bit to 1 overrides the settings of bit 6 of CR14 and bit 3 of CR17 and causes the use of doubleword memory addressing mode. Also, the function of bits 3-2 of GR6 is overridden with a fixed 64K map at A0000H.

 Bits 5-4
 Reserved

 Bit 6
 HST DFF - Enable High Speed Text Display Font Fetch Mode

 0 = Normal font access mode

Reserved

1 = Enable high speed text display

Setting this bit to 1 is only required for DCLK rates greater than 40 MHz. See bit 5 of CR3A.

Bit 7

Extended CRTC Registers

Backward	Compatibility	1	Register	(CR32)
----------	----------------------	---	----------	--------

Read/Write Address: 3?5H, Index 32H Power-On Default: 00H

7	6	5	4	3	2	1	0
	VGA		INT				
R	FXPG	R	FN	R=0	R	R	R

- Bits 2-0 Reserved
- Bit 3 Reserved = 0

This bit should never be set to 1.

Bit 4 INT EN - Interrupt Enable 0 = All interrupt generation disabled 1 = Interrupt generation enabled

Bit 5 Reserved

Bit 6

VGA FXPG - Use Standard VGA Memory Wrapping

0 = Memory accesses extending past a 256K boundary do not wrap

1 = Memory accesses extending past a 256K boundary wrap at the boundary

The standard 256K VGA memory page always ends on a natural 256K boundary and accesses beyond this boundary will wrap. If the starting address is moved via bits 4-0 of CR69 (or bits 5-4 of CR31 and bits 1-0 of CR51), the 256K page may not end on a 256K boundary and accesses past the boundary will not wrap. This is the case when this bit is cleared to 0. For standard VGA compatibility when the page base address is moved, this bit is set to 1 to cause wrapping at a 256K boundary.

Bit 7 Reserved

Backward Compatibility 2 Register (CR33)

Read/Write

Address: 3?5H, Index 33H

Power-On Default: 00H

7	6	5	4	3	2	1	0
	LOCK	BDR	LOCK			DIS	
R	PLTW	SEL	DACW	-DCK	R	VDE	R

Bit 0	Reserved
Bit 1	DIS VDE - Disable Vertical Display End Extension Bits Write Protection 0 = VDE protection enabled 1 = Disables the write protect setting of the bit 7 of CR11 on bits 1 and 6 of CR7
Bit 2	Reserved
Bit 3	-DCK - DCLK Inverted 0 = DCLK is divided by 2 for 4 bits/pixel modes (see bit 6 of AR10 or bit 4 of CR3A) or is the internal DCLK 1 = DCLK inverted
Bit 4	LOCK DACW - Lock RAMDAC Writes 0 = Enable writes to RAMDAC registers 1 = Disable writes to RAMDAC registers
Bit 5	BDR SEL - Blank/Border Select 0 = BLANK active time is defined by CR2 and CR3 1 = BLANK is active during entire display inactive period (no border)
Bit 6	LOCK PLTW - Lock Palette/Border Color Registers 0 = Unlock Palette/Border Color registers 1 = Lock Palette/Border Color registers
Bit 7	Reserved

Backward Compatibility 3 Register (CR34)

Extended CRTC Registers

Read/W Power-0		ult: 00H	A	ddress: (3?5H, In	dex 34H				
7	6	5	4	3	2	1	0			
R	R	R	ENB SFF	R	PCI RET	PCI ABT	PCI SNP			
Bit 0	0		ing of PC	CI maste	r aborts	and retr		ng DAC cycles controlled by bits 1 and 2 of this register during DAC cycles		
Bit 1	This bit applies only to PCI designs (not AGP). PCI ABT - PCI master aborts during DAC cycles 0 = PCI master aborts handled during DAC cycles 1 = PCI master aborts not handled during DAC cycles									
Bit 2	P 0 1	CI RET = PCI re = PCI re	- PCI ret etries har etries not	ries duri ndled du : handleo	ng DAC ring DA0 d during	cycles C cycles DAC cy	cles	t to be effective. This bit applies only to PCI designs (not AGP). t to be effective. This bit applies only to PCI designs (not AGP).		
Bit 3	R	eserved								
Bit 4	0	NB SFF = Start [= Start [Display F	FIFO Fet	ch regis	ter (CR3	B) disal	bled		
Bits 7-5	R	eserved								

CRT Register Lock Register (CR35)

Read/Write

Address: 3?5H, Index 35H

Power-On Default: 00H

7	6	5	4	3	2	1	0
		LOCK	LOCK		~		
R	R	HTMG	VTMG	R	R	R	R
					Y		

Bits 3-0 Reserved

Bit 4

LOCK VTMG - Lock Vertical Timing Registers 0 = Vertical timing registers are unlocked 1 = The following vertical timing registers are locked: CR6

CR7 (bits 7,5,3,2,0)

CR9 (bit 5) CR10

CR11 (bits 3-0)

CR15 CR16

CR6, CR7 registers are also locked by bit 7 of the Vertical Retrace End register (CR11).

Bit 5	LOCK HTMG - Lock Horizontal Timing Registers 0 = Horizontal timing registers are unlocked 1 = The following horizontal timing registers are locked:
	CR00
	CR1
	CR2
	CR3
	CR4
	CR5
	CR17 (bit 2)
	All these registers (except bit 2 of CR17) are also locked by bit 7 of the Vertical Retrace End register (CR11).
Bit 7-6	Reserved

Configuration 1 Register (CR36)

Read/Write Address: 3?5H, Index 36H Power-On Default: Depends on Strapping

If a pin is identified for a bit in this register, the state of that pin is latched at reset. These pins have internal pull-downs and their states are inverted before being latched, so these bits will default to 1 if the corresponding pin is not pulled up externally. If a pin is not associated with a bit, that bit always defaults to 1 at reset. Other configuration bits are found in CR37. These bits can be accessed only after A5H is written to CR39.

7	6	5	4	3	2	1	0			
М	EM SIZE	-	IOD	BP	APB	MCS	PI			
Bit 0	PI	- PCI Ir	nterrupt (ROMDO) pin)	X				
		0 = PCI register at offset 3DH reads 00H (no interrupt claimed) 1 = PCI register at offset 3DH reads 01H (INTA used as interrupt pin)								
Bit 1	0 1	= Use e = Use in	xternal N ternal M	ICLK or CLK	n GPOU					
Bit 2	AI 0	The invert of this bit and SR14_6 are ORed. This is used only for S3 testi APB - AGP PLL Test Mode (ROMD2 pin) 0 = AGP PLL test mode (S3 testing only) 1 = Normal operation								
Bit 3	0	P - BIOS = BIOS = BIOS	ROM is	program	mable	• /				
Bit 4	0	0D - I/O I = Disabl = I/O ac	e I/O ac	cesses	(PCI04_	0 ignore 4_0	d)			
Bits 7-5	00 00 01 01 10 10	10 = 8 M 11 = 12 M 00 = 16 M 01 = 32 M 10 = Res	Bytes Bytes (e Bytes MBytes MBytes MBytes eerved		-	for 4 bar 2 SDRAI			M – Rev. B)	

These bits are programmed by the BIOS after boot up.

Configuration 2 Register (CR37)

Read/Write Address: 3?5H, Index 37H Power-On Default: Depends on Strapping

If a pin is identified for a bit in this register, the state of that pin is latched at reset. These pins have internal pull-downs and their states are inverted before being latched, so these bits will default to 1 if the corresponding pin is not pulled up externally. If a pin is not associated with a bit, that bit always defaults to 1 at reset. Other configuration bits are found in CR36. These bits can be accessed only after A5H is written to CR39.

7	6	5	4	3	2	1	0
ACLK	AGP	AI	ECS	CS	SIDS	NT	ST
Bit 0	0	= Static	c Idd Tes Idd test al operat	enabled		S3 testi	ng only)
Bit 1	0	= NAND	D Tree T tree tes al operat	st	MD6 pin)	
Bit 2	0	= Read	lbsystem subsyste subsyste	em ID in	formatio	n from C	R81-CF
Bit 3	0	= Use e	k Select xternal [nternal cl	CLK or	• •	, AGP 2	x clock o
Bit 4	0	= Use e	LK Sele xternal E nternal cl	ECLK on		oin and a	AGP 4x
Bit 5	0	= IDSEL	IDSEL (I _ connec _ connec	ted inte	nally to		
Bit 6	0	= PCI pi	P Selec rotocol u protocol	sed	\3 pin)		
Bit 7	0	= 1x AG	GP Cloc iP clock iP clock	comes f	rom byp	ass outp	out

Register Lock 1 Register (CR38)

Address: 3?5H, Index 38H

Power-On Default: 00H

Read/Write

Loading 01xx10xx (e.g., 48H) into this register unlocks the extended CRTC register set from 20H to 3FH for read/writes. (x = don't care)

7	6	5	4	3	2	1	0
= 0	= 1			= 1	= 0		

Register Lock 2 Register (CR39)

Read/Write Address: 3?5H, Index 39H Power-On Default: 00H

Loading 101xxxxx (e.g., A0H) unlocks the CRTC extension registers from 40H to FFH for reading/writing (x = don't care). Loading A5H allows CR36, CR37, CR68 and CR6F to be written.

7	6	5	4	3	2	1	0
= 1	= 0	= 1					

Miscellaneous 1 Register (CR3A)

Read/Write Power-On Default: 00H Address: 3?5H, Index 3AH

7	6	5	4	3	2	1	0
PCIRB		HST	ENH	TOP		REFRESH	
DISA	R	DFW	256	MEM	R	CONTROL	

Bits 1-0	REFRESH CONTROL
	00 = Use DRAM auto refresh
	01 = 1 refresh cycle per horizontal line
	10 = 2 refresh cycles per horizontal line 11 = 3 refresh cycles per horizontal line
	CR87_5-4 must also be set properly to control memory refresh.
Bit 2	Reserved
Bit 3	TOP MEM - Enable Top of Memory Access
	0 = Top of memory access disabled
	1 = Simultaneous VGA text and Enhanced modes are enabled. CPU and CRTC accesses are then directed to the top 32- or 64-KByte area of display memory depending on whether address bit 13 is 0 or 1 respectively.
Bit 4	ENH 256 - Enable 8 Bits/Pixel or Greater Color Enhanced Mode (2D only)
	0 = Attribute controller shift registers configured for 4-bit modes
	1 = Attribute controller shift register configured for 8-, 16- and 24/32-bit color 2D Enhanced modes
Bit 5	HST DFW - Enable High Speed Text Font Writing
	0 = Disable high speed text font writing
	1 = Enable high speed text font writing
	Setting this bit to 1 is only required for DCLK rates greater than 40 MHz. See bit 6 of CR31.
Bit 6	Reserved
Bit 7	PCIRB DISA - PCI Read Bursts Disabled
	0 = PCI read burst cycles enabled
	1 = PCI read burst cycles disabled
	Note: Bit 7 of CR66 must be set to 1 before this bit is set to 1. This bit does not apply to AGP operation.
	the bit of the first be bet to a bit to be to the bit to be to the this bit does not apply to her operation.

Start Display FIFO Fetch Register (CR3B)

Read/Write Address: 3?5H, Index 3BH Power-On Default: 00H

This value must lie in the horizontal blanking period and is typically 5 less than the value programmed in CR0. This parameter helps to ensure that adequate time is available during horizontal blanking for activities such as RAM refresh that require control of the display memory. This register must be enabled by setting bit 4 of CR34 to 1. When the Streams Processor is enabled, FIFO fetching starts at a fixed point based on a internal signal and this register is not effective.

7	6	5	4	3	2	1	0
	ST	FART DI	SPLAY	FIFO FE	TCH 7-	0	

Bits 7-0 START DISPLAY FIFO FETCH 7-0

11-bit value = the time in character clocks from the active display start until the restart of fetching of FIFO data after the start of horizontal blanking.

Bit 8 of this value is CR5D_6. Bits 10-9 of this value are CR5B_3-2.

Interlace Retrace Start Register (CR3C)

Read/Write Address: 3?5H, Index 3CH Power-On Default: 00H

This value allows determination of the even/odd row active display starting positions when operating in an interlaced mode. This register is enabled by bit 5 of CR42.

7	6	5	4	3	2	1	0
	INTEF	RLACE F	RETRAC	E STAR	T POSI	TION	

Bits 7-0 INTERLACE RETRACE START POSITION 10-bit Value = offset in terms of character clocks for Interlaced mode start/end in even/odd frames.

Bits 9-8 are CR5B_1-0.

Software Reset Register (CR3F)

Read/W Power-C		ult: 00H	Ad	ddress: 3	3?5H, In	dex 3FH	I
7	6	5	4	3	2	1	0
R	R	ML	ME	3D	AGP	PCI	MIU
Bit 0	0 :	= Memo	ry interfa	erface So ace softw ace softw	ware res	et inactiv	
Bit 1	0	= PCI m	aster so	Software ftware re ftware re	eset inac		
Bit 2	0	= AGP r	naster s	er Softwa oftware i oftware i	reset ina	ctive	
Bit 3	0 :	= 3D En	gine sof	oftware F tware re tware re	set inact		

Bit 4	ME - Master Engine Unit Software Reset 0 = Master Engine software reset inactive 1 = Master Engine software reset active
Bit 5	ML - Motion Compensation/LPB Software Reset 0 = Motion compensation/LPB software reset inactive 1 = Motion compensation/LPB software reset active
Bits 7-6	Reserved
System Co	onfiguration Register (CR40)
Read/Write Power-On I	e (See bits) Address: 3?5H, Index 40H Default: 00H
7	6 5 4 3 2 1 0
R	R R R R R E2A
Bit 0	E2A - Enable 2D Engine Register I/O Access 0 = 2D Engine register I/O access disabled 1 = 2D Engine register I/O access enabled
Bits 7– 1	This bit is used only for S3 testing. Reserved
BIOS Flag	Register (CR41)
Read/Write Power-On I	e Address: 3?5H, Index 41H Default: 00H
7	6 5 4 3 2 1 0 BIOS FLAG Image: Comparison of the second
Bits 7-0	BIOS FLAG Used by the video BIOS.
Mode Con	ntrol Register (CR42)
Read/Write Power-On I	e Address: 3?5H, Index 42H Default: 00H
7	6 5 4 3 2 1 0
R	R MOD R R R R D2
Bit 0	D2 0 = PCI power management D2 state disabled 1 = PCI power management D2 state enabled
	When this bit is cleared to 0, PCI configuration state writes to enable the D2 power management state (PCIE0_1-0 = 10b) are ignored.
	Reserved

	0	ITL MOE = Nonint = Interla		laced M	ode			
Bits 7-6		nis bit en eserved	ables the	e functio	n of CR	3C.		
Extende	ed Mode	e Regist	er (CR43	3)				
Read/W Power-C	/rite	-	·		?5H, Inc	lex 43H		
7	6	5	4	3	2	1	0	
HCTR X2	R	R	R	R	R	R	R	
Bits 6-0		eserved					1.	
Bit 7		-	 Horizor horizor 					
	-							ntal CRT parameters are doubled)
Hardwa	re Grap	hics Cu	rsor Mod	de Regi	ster (CR	45)		
Read/W Power-C		ult: 00H	Ad	dress: 3	?5H, Inc	lex 45H		
7	6	5	4	3	2	1	0	
R	R	R	HWGC 1280	R	CU	R	HWG0 ENB	2
							Y	
Bit 0	0	= Hardw	NB - Harc vare grap	hics cur	sor disat	oled in a	ny mod	
			are grap	hics cur	sor enab	led in E	nhance	d mode
Bit 1		eserved	or Update					
Dit 0		0 - Cuis	u upuau		mada di			
Bit 2			st cursor					effective ne is effective
	1		st cursor					
Bit 3	1 Ri H'	= Only th eserved WGC 12	st cursor he first cu 80 - Harc	ursor up dware C	date ma	de durir	ig a fram	
Bit 3	1 Ri H' 0	= Only th eserved WGC 12 = Function	st cursor he first cu 80 - Harc on disabl	ursor up dware C led	date mae ursor Rig	de durin ght Stor	ng a fram age	ne is effective
Bit 3	1 R ⁱ 1 1 ha cu	= Only th eserved WGC 12 = Function = For 4 h ardware ursor stat	st cursor he first cu 80 - Hard on disabl bits/pixel, graphics	ursor up dware C ed , the last cursor s	date ma ursor Rig t 256 byt storage a	de durin ght Stor res in ea area. Fo	ng a fram age ach 1-KE r 8 bits/p	
Bit 2 Bit 3 Bit 4 Bits 7-5	1 R' 0 1 ha cu 11	= Only th eserved WGC 12 = Functi = For 4 h ardware ursor stat 1b.	st cursor he first cu 80 - Hard on disabl bits/pixel, graphics	ursor up dware C ed , the last cursor s	date ma ursor Rig t 256 byt storage a	de durin ght Stor res in ea area. Fo	ng a fram age ach 1-KE r 8 bits/p	he is effective Byte line of the hardware cursor start address become the bixel, the last 512 bytes in each 2-KByte line of the hardware
Bit 3	1 R' 0 1 ha cu 11	= Only th eserved WGC 12 = Function = For 4 h ardware ursor stat	st cursor he first cu 80 - Hard on disabl bits/pixel, graphics	ursor up dware C ed , the last cursor s	date ma ursor Rig t 256 byt storage a	de durin ght Stor res in ea area. Fo	ng a fram age ach 1-KE r 8 bits/p	he is effective Byte line of the hardware cursor start address become the bixel, the last 512 bytes in each 2-KByte line of the hardware
3it 3 3it 4	1 R' 0 1 ha cu 11	= Only th eserved WGC 12 = Functi = For 4 h ardware ursor stat 1b.	st cursor he first cu 80 - Hard on disabl bits/pixel, graphics	ursor up dware C ed , the last cursor s	date ma ursor Rig t 256 byt storage a	de durin ght Stor res in ea area. Fo	ng a fram age ach 1-KE r 8 bits/p	he is effective Byte line of the hardware cursor start address become the bixel, the last 512 bytes in each 2-KByte line of the hardware

Hardw	are Gi	aphic	s Curs	or Ori	gin-X R	egiste	ers (CR4	46, CR	47)				
Read/\ Power-		efault: (D000H	Ac	ldress: 3	3?5H,	Index 4	6H, 47	Н				
The hig	gh orde	er three	e bits a	re writ	ten into	CR46	and the	low o	rder by	∕te is v	vritten i	nto CF	R47.
15	14	13	12	11	10	9	8	7	6	5	4	3	2 1 0
R	R	R	R	R	HWG	CORC	G X (H)			H\	NGC C	RG X	(L)
Bits 10 Bits 15		HWG Rese		6 X(H)	(L) - X-	Coordi	inate of	Cursor	Left S	lide			
Hardw	are Gi	raphic	s Curs	or Ori	gin-Y R	egiste	ers (CR4	48, CR	49)				
Read/\ Power-		efault: I	Jndefir		ldress: 3	3?5H,	Index 4	8H, 49	н		$\boldsymbol{\lambda}$		
The hig	gh orde	er three	e bits a	re writ	ten into	CR48	and the	low o	rder by	/te is w	vritten i	nto CF	R49.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	HWG	C ORC	Э Ү (H)			HV	VGC C	RG Y	(L)		

Bits 10-0 HWGC ORG Y (H)(L) - Y-Coordinate of Cursor Upper Line The cursor X, Y position is registered upon writing HWGC ORG Y (H).

Bits 15-11 Reserved

Hardware Graphics Cursor Foreground Color Stack Register (CR4A)

Read/Write Address: 3?5H, Index 4AH Power-On Default: Undefined

7	6	5	4	3	2	1	0
	TRUE	COLOR	FOREG	ROUNE	STACK	(0-3)	

Bits 7-0 TRUE COLOR FOREGROUND STACK (0-3)

Four foreground color registers are stacked at this address. The stack pointer (common with CR4B) is reset to 0 by reading the Hardware Graphics Cursor Mode register (CR45). Each write to this register (CR4A) increments the stack pointer by 1. 8-bit color with single clocking requires 1 write. For 2x clocking, the color for the first pixel clocked out is programmed in register 0 and the color for the second pixel clocked out is programmed in register 1. 15/16-bit color with single clocking requires 2 writes. For 2x clocking, the color for the first pixel clocked out is programmed in registers 0 and 1 and the color for the second pixel clocked out is programmed in registers 3 and 4. 24-bit color requires 3 writes.

Hardware Graphics Cursor Background Color Stack Register (CR4B)

Read/Write Address: 3?5H, Index 4BH Power-On Default: Undefined

7	6	5	4	3	2	1	0
	TRUE	COLOR	BACKG	ROUND	STACK	(0-3)	

Bits 7-0 TRUE COLOR BACKGROUND STACK (0-3)

Four foreground color registers are stacked at this address. The stack pointer (common with CR4B) is reset to 0 by reading the Hardware Graphics Cursor Mode register (CR45). Each write to this register (CR4B) increments the stack pointer by 1. 8-bit color with single clocking requires 1 write. For 2x clocking, the color for the first pixel clocked out is programmed in register 0 and the color for the second pixel clocked out is programmed in register 1. 15/16-bit color with single clocking requires 2 writes. For 2x clocking, the color for the first pixel clocked out is programmed in registers 0 and 1 and the color for the second pixel clocked out is programmed in registers 3 and 4. 24-bit color requires 3 writes.

Hardware Graphics Cursor Storage Start Address Registers (CR4C, CR4D)

Read/Write Address: 3?5H, Index 4CH, 4DH Power-On Default: Undefined

The high order four bits are written into CR4C and the low order byte is written into CR4D. 10 LSB 0's are added to the address by the hardware.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R			HW	GC ST.	A(H)					HWGC	STA(L	.)		R	R

Bits 1-0 Reserved = 0 (4K alignment)

Reserved

Bits 14-2 HWGC STA(H)(L) - Hardware Graphics Cursor Storage Start Address

Bit 15 Reserved

Hardware Graphics Cursor Pattern Display Start X-PXL-Position Register (CR4E)

Read/Write	Address: 3?5H, Index 4EH
Power-On Default: Undefined	

7	6	5	4	3	2	1	0
R	R	ŀ	HWGC F	PAT DIS	P ŠTAR	T X-POS	6

Bits 5-0 HWGC PAT DISP START X-POS - HWGC Pattern Display Start-X Pixel Position

This value is the offset (in pixels) from the left side of the 64x64 cursor pixel pattern from which the cursor is displayed. This allows a partial cursor to be displayed at the left border of the display.

Bits 7-6

Hardwar	e Grap	ohics Cu	ursor Pa	ttern Di	sp Star	t Y-PXL-	Positio
Read/Wr		alte I ha d		ddress:	3?5H, Ir	ndex 4FF	ł
Power-O	n Defa	ult: Unde	efined				
7	6	5	4	3	2	1	0
R	R		HWGC F	PAT DIS	P STAR	T Y-POS	S
Bits 5-0	П	WGC P	AT DISP	STARI	1-P05	- HWGC	Pallen
						from the	
				al curso	r to be c	displayed	l at the t
Bits 7-6	R	eserved					
Extende	d Syst	em Con	trol 1 R	egister	(CR50)		
Read/Wr	ite		А	ddress:	3?5H. Ir	ndex 50H	ł
Power-O		ult: 00H	,,	uur000.	0.011, 11		•
7	6	5	4	3	2	1	0
GE-SC			LNGH	Ŭ	-	<u> </u>	GESV
1 (0	1	0	R	R	R	2
	_						
Bit 0				the scre	en width	n definitio	on. See
Bits 3-1		eserved					
Bits 5-4				0		(2D/3D) onds to	
			tes. 16 b				
		0 = Rese					
	1	1 = 4 by	tes. 32 b	its/pixel			Y
	Т	hese bit	s select	the pixe	l length f	for Enha	nced mo
Bits 7-6						Comma	
						gnificant 31 =1) (D	
		00 = 102 01 = 640		40 11 011	TUICK	31 =1) (L	Jelault)
				0x1200	4 if bit 2	2 of MM8	50C_2
		11 = 128 00 = 115			\mathbf{V}		
		00 – 110 01 – Res					
		10 = 160					
	1	11 = Use	e Global	Bitmap	Descript	or	
				Y			
Extende	d Syst	em Con	trol 2 R	egister	(CR51)		
Read/Wr	ite		Δ	ddress.	325H Ir	ndex 51H	4
Power-O		ult: 00H			e. or i, ii		•
7	6	5	4	3	2	1	0
ERL	R		V9-8	R	R	R	R
I	_			•			•

Bits 5-0	Reserved
Bits 5-4	LSW9-8 - Logical Screen Width Bits 9-8 These are two extension bits of the Offset register (CR13).
Bits 6	Reserved

Bit 7 ERL - Enable Register Load

0 = No effect

1 = Enable function of CR66_4 and CR66_5 (load certain Streams Processor registers on VSYNC)

This bit is automatically cleared to 0 after being set.

Extended BIOS Flag 1 Register (CR52)

Read/Write Address: 3?5H, Index 52H Power-On Default: 00H

7	6	5	4	3	2	1	0
		EX	KT BIOS	S FLAG	1		

Bits 7-0 EXT BIOS FLAG 1

See the S3 video BIOS documentation for the coding of this register.

Extended Memory Control 1 Register (CR53)

Read/Write
Power-On Default: 00H

Address: 3?5H, Index 53H

7	6	5	4	3	2	1	0	
VGA	SWP	MMIO						
MEM	NBL	WIN	OME	R	R	R	R	

Bit 3-0	Reserved
Bit 4	OME Old MMIO Enable
	0 = Disable old MMIO
	1 = Old MMIO enabled
	Old MMIO is used only for S3 testing. PCI04_1, SR9_7 and bits 5 and 7 of this register also control MMIO accesses.
	Only new MMIO (enabled by default) should be used for software written for Savage4.
Bit 5	MMIO WIN - Old MMIO Window
	0 = Old MMIO window enabled at A8000H - AFFFFH. A0000H - A7FFF available for image transfers
	1 = Old MMIO window enabled at B8000H - BFFFFH. A0000H - B7FFFH are not used (no image transfer area)
	Bit 4 of this register must be programmed to 1 for this bit to be effective.
Bit 6	SWP NBL - Swap Nibbles
	0 = No nibble swap
	1 = Swap nibbles in each byte of a linear memory address read or write operation
Bit 7	VGA MEM - VGA Memory Access Disable
	0 = Enable memory access to A0000-BFFFF address range
	1 = Disable memory access to A0000-BFFFF address range

Extended	RAM	DAC Co	ontrol Re	gister (CR55)			
Read/Wri Power-Or		ult: 00H	Ac	ldress: 3	3?5H, Ir	ndex 55H		$\langle \rangle$
7	6	5	4	3	2	1	0	
R	R	R	HCS	R	R	R	R	
Bits 3-0 Bit 4	Н 0	= MS W		node (D		Mode Sel	ect	
	т	hia hit a	alaat tha	huna of a	looodin	a used fo	r the G	x64x2 storage array of the hardware graphics auroar
Bits 7-5		eserved		type of t	lecoain	g used to	or the 64	x64x2 storage array of the hardware graphics cursor.
DIIS 7-5	К	eserveu						
				(0.5.1				
External	Sync	Control	1 Regist	ter (CR5	6)			
Read/Write	te		Ac	dress: 3	3?5H, Ir	ndex 56H		
Power-Or	n Defa	ult: 00H						
7	6	5	4	3	2	1	0	$\wedge \rightarrow$
R	R	R	R	R	TOV	ТОН	R	
Bit 0	R	eserved						
Bit 1			-state off					
			IC output IC output			tata		
Bit 2			-state off			lale		
DIL Z		-	IC output				V	
			IC output			tate		
Bits 7-3	R	eserved						
Linear Ac	dress	s Windo	w Contro	ol Regis	ster (CF	258)		
						-		
Read/Write Power-Or		ult· 이이니		Idress: 3	3?5H, Ir	ndex 58H		
7	6	5	4	3	2	1	0	
R	R	R	ELA	CBO	R	WIN S	SIZE	
Bits 1-0	0 0 1	/IN SIZE 0 = Rese 1 = Rese 0 = Rese 1 = 32 M	erved erved erved	Addres	sing Wi	ndow Siz	e	
Bit 2		eserved						
Bit 3			PU Base /	۵ddroce	Overfle	WC		
DIEG	V	50 - OF	5 0036 /	1001035	- venit			
	Т	his is bit	22 of the	e CPU b	ase ado	dress. Se	e CR6A	. This function is moved to CR92_5 for Rev. B and this b

- reserved Bit 4 ELA - Enable Linear Addressing 0 = Disable linear addressing 1 = Enable linear addressing
- Bits 7-5 Reserved

Linear Address Window Position Register (CR59) (Mapping 1, CRB0_7 = 0) (Rev. A) Read/Write Address: 3?5H, Index 59H Power-On Default: 70H 7 6 5 4 3 2 0 LA WINDOW POSITION Bits 7-0 LA WINDOW POSITION Value = Bits 31-24 of linear addressing window position These bits are common with bits 31-24 of the PCI base address 1 for address mapping 1. A write to either register updates both. However, the base address is normally programmed by the system BIOS and should never be

updates both. However, the base address is normally programmed by the system BIOS and should never be changed via this register except for test purposes. Note that only 16 MBytes can be accessed at this base address when using address mapping 1.

Linear Address Window Position Register (CR59) (Mapping 1, CRB0_7 = 0) (Rev. B)

Read/Write	
Power-On Default: 70H	

Address: 3?5H, Index 59H

7	6	5	4	3	2	1	0
	L	A WIND	DOW PO	SITION			R

Bits 7-0 LA WINDOW POSITION

Value = Bits 31-25 of linear addressing window position

These bits are common with bits 31-25 of the PCI base address 1 for address mapping 1. A write to either register updates both. However, the base address is normally programmed by the system BIOS and should never be changed via this register except for test purposes. Note that only 16 MBytes can be accessed at this base address when using address mapping 1.

Linear Address Window Position Register (CR59) (Mapping 0, CRB0_7 = 1)

Read/Write Address: 3?5H, Index 59H Power-On Default: 70H

7	6	5	4	3	2	1	0
L	A WIND	OW PO	SITION		R	R	R

Bits 2-0 Reserved

Bits 7-3 LA WINDOW POSITION

Value = Bits 31-27 of linear addressing window position

These bits are common with bits 31-27 of the PCI base address 1 for address mapping 0. A write to either register updates both. However, the base address is normally programmed by the system BIOS and should never be changed via this register except for test purposes.

Read/W	rito		Δ.	ddress: 3	225U In	doy 5 BI	_								
		ult: 00H	A	uuress	5:5H, III		1								
7	6	5	4	3	2	1	0								\checkmark
EHS	6-5	EHE	37-6	SFF	10-9	IRI	- 9-8								
its 1-0	IF	RP9-8- In	torlaco I	Rostart I	Position	(CR3C)	Rite 0-8								
Bits 3-2		FF10-9 -				. ,							X.		
Bits 5-4							CR5_7)	Bits 7-6	;				Y		
							_ /								
		his is onl													
Bits 7-6		HS6-5 - I his is onl) Bits 6-5			X					
	•		, rana i												
Gonoral		t Port Re	agistor	(CP5C)							Y				
Jeneral	l Outpu		egister	(CRJC)				4							
Read/W		ult: 00H	A	ddress: 3	3?5H, In	dex 5Cl	Н	R							
-ower-C	Jn Dela														
7	6	5	4	3	2	1	0								
R	R	R	R	R	R	R	GOP0								
Bit 0	G	SOP0													
								Y							
			of this b	it is refle	cted on	the GO	P0 pin.	Y							
3its 7-1		he state Reserved	of this b	it is refle	cted on	the GO	P0 pin.	Y							
Bits 7-1			of this b	it is refle	ected on	the GO	P0 pin.								
	R						P0 pin.		/						
	R ed Horia	leserved	verflow	0 Regis	ster (CR	5D)	Ý		/						
Extende Read/W	R ed Hori: ′rite	leserved	verflow		ster (CR	5D)	Ý								
Extende Read/W Power-C	R ed Hori: /rite Dn Defa	zontal O	verflow Ad	0 Regis ddress: (s ter (CR 3?5H, In	5D) dex 5DI			-						
Extende Read/W	R ed Hori: ′rite	eserved	verflow	0 Regis	ster (CR	5D)	Ý								
Extende Read/W Power-C	R ed Horia /rite On Defa 6	zontal O	verflow Ad	0 Regis ddress: (s ter (CR 3?5H, In 2	5D) dex 5DI	H		·						
Extende Read/W Power-C 7 NMS	R ed Hori: Irite Dn Defa SFF 8	zontal O ult: 00H	verflow Ad SHS 8	0 Regis ddress: (3 HBP	ster (CR 3?5H, In 3?5H SHB 8	5D) dex 5DI 1 HDE 8	H H HT								
Extende Read/W Power-C 7 NMS Bit 0	R ed Hori: 'rite Dn Defa 6 SFF 8 H	zontal O ult: 00H 5 HSP	verflow Ac SHS 8 rizontal	0 Regis ddress: 4 3 HBP Total (Cl	ster (CR 3?5H, In 3?5H, In 3?5H, In 8 8 8 8 8 8 8	5D) dex 5Dl 1 HDE 8	н НТ 8		-						
Extende Read/W Power-C 7 NMS Bit 0 Bit 1	R ed Hori: ^I rite Dn Defa SFF 8 H H	zontal O ult: 00H 5 HSP IT 8 - Hor IDE 8 - H	verflow Ad SHS 8 rizontal ⁻ orizontal	0 Regis ddress: (3 HBP Total (Cl al Display	ster (CR 3?5H, In 3?5H, In 3?5H, In 3?5H, In 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5D) dex 5Dl HDE 8 R1) Bit	H H HT 8		×						
Extende Read/W Power-C 7 NMS Bit 0 Bit 0 Bit 1 Bit 2	R ed Hori: /rite Dn Defa SFF 8 H H S	zeserved zontal O ult: 00H 5 HSP IT 8 - Hor IDE 8 - H SHB 8 - Si	verflow Ad SHS 8 rizontal orizonta tart Hori	0 Regis ddress: (3 HBP Total (Cl al Display izontal B	ter (CR 3?5H, In 3?5H, In 3?5H, In SHB 8 8 R0) Bit 8 7 End (C Iank (CF	5D) dex 5Dl HDE 8 R1) Bit	H H HT 8								
Extende Read/W Power-C 7 NMS Bit 0 Bit 1	R ed Hori: ^{(rite} Dn Defa SFF 8 H H S H	zontal O ult: 00H 5 HSP IT 8 - Hor IDE 8 - H IDE 8 - S IBP - Hor = Horizo	verflow Ad SHS 8 rizontal orizontal tart Hori izontal E intal blar	0 Regis ddress: (3 HBP Total (Cl al Display zontal B Blank Pe nk period	ster (CR 3?5H, In 3?5H, In SHB 8 R0) Bit 8 7 End (C lank (Cf striod	5D) dex 5Dl HDE 8 R1) Bit R2) Bit 8	H H HT 8	64 char	acter o	llocks	(256 ch	aracter			
Extende Read/W Power-C 7 NMS Bit 0 Bit 0 Bit 1 Bit 2	R ed Hori: ^I rite Dn Defa SFF 8 H H S S H 0	zontal O ult: 00H 5 HSP IT 8 - Hor IDE 8 - H IDE 8 - H IBP - Hor = Horizo clocks	verflow Ad SHS SHS s vrizontal tart Hori izontal f intal blar if CR5E	0 Regis ddress: (3 HBP Total (Cf al Display izontal B Blank Pe nk perioc D_7 = 1)	ster (CR 325H, In 325H, In 325H, In 325H, In 325H, In 8 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8	5D) dex 5DI HDE 8 R1) Bit R2) Bit 8 al to or 1	H H HT 8 3 ess than 6					aracte			
Extende Read/W Power-C 7 NMS Bit 0 Bit 0 Bit 1 Bit 2	R ed Hori: ^I rite Dn Defa SFF 8 H H S S H 0	zontal O ult: 00H 5 HSP IT 8 - Hor IDE 8 - H IDE 8 - Hor IBP - Hor = Horizo clocks = Horizo	verflow Ad SHS SHS orizontal tart Hori izontal f intal blar if CR5E ntal blar	0 Regis ddress: (3 HBP Total (Cf al Display izontal B Blank Pe nk perioc D_7 = 1)	ster (CR 325H, In 325H, In 325H, In 325H, In 325H, In 8 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8	5D) dex 5DI HDE 8 R1) Bit R2) Bit 8 al to or 1	H 0 HT 8 8 3					aracte			
Extende Read/W Power-C 7 NMS Bit 0 Bit 1 Bit 1 Bit 2	R ed Hori: ^I rite Dn Defa SFF 8 H H S H 0 1	asserved zontal O ult: 00H 5 HSP IT 8 - Hor IDE 8 - H IDE 8 - Hor IDE 8 - S IBP - Hor = Horizo clocks = Horizo clocks	verflow Ad SHS 8 rizontal orizontal tart Hori izontal I intal blar if CR5E intal blar if CR5E	0 Regis ddress: (3 HBP Total (CI al Display zontal B Blank Pe nk perioc D_7 = 1) nk perioc	ster (CR 325H, In 325H, In 325H, In 325H, In 325H, In 8 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8	5D) dex 5DI HDE 8 R1) Bit R2) Bit 8 al to or 1	H H HT 8 3 ess than 6					aracter			
Extende Read/W Power-C 7 NMS Bit 0 Bit 1 Bit 2 Bit 3	R ed Hori: /rite Dn Defa SFF 8 H H S H 0 0 1 S	asserved zontal O ult: 00H 5 HSP IT 8 - Hor IDE 8 - Hor IDE 8 - Hor IDE 8 - So IBP - Hor = Horizo clocks = Horizo clocks See CR3_	verflow Ad SHS 8 rizontal tart Hori intal blar if CR5E intal blar if CR5E at CR5E at 200	0 Regis ddress: (3 HBP Total (CI al Display izontal B Blank Pe nk perior D_7 = 1) nk perior D_7 = 1)	ster (CR 3?5H, In 3?5H, In 3?5H, In SHB 8 7 End (Cl Iank (Cf Iank (Cf))))))))))))))))))))))))))))))))))))	5D) dex 5Dl HDE 8 R1) Bit R2) Bit 8 al to or l ter than	H H H 8 3 ess than 6 64 chara					aracte			
Extende Read/W Power-C 7 NMS Bit 0 Bit 1 Bit 2 Bit 3 Bit 3	R ed Hori: Trite Dn Defa SFF 8 H H S H 0 1 S	ieserved zontal O ult: 00H 5 HSP IT 8 - Hor IDE 8 - H IDE 8 - H IBP - Hor IBP - Horizo clocks = Horizo clocks see CR3_ IHS 8 - Si	verflow Ad SHS 8 rizontal tart Hori izontal E intal blar if CR5E if CR5E 4-0. tart Hori	0 Regis ddress: (3 HBP Total (Cl al Display izontal B Blank Pe nk perioc D_7 = 1) nk perioc D_7 = 1)	ster (CR 325H, In 325H, In 325H, In 325H, In 325H, In 8 326 327 327 327 327 327 327 327 327 327 327	5D) dex 5Dl HDE 8 R1) Bit R2) Bit 8 al to or l ter than	H H H 8 3 ess than 6 64 chara					aracte	-		
Extende Read/W Power-C 7 NMS Bit 0 Bit 1 Bit 2 Bit 3	R ed Hori: Trite Dn Defa SFF 8 H H S H 0 1 S H	IT 8 - Hor IDE 8 - H IDE 8 - S IBP - Hor clocks = Horizo clocks see CR3_ SHS 8 - S ISP - Hor	verflow Ad SHS 8 rizontal tart Hori if CR5E if CR5E 4-0. tart Hori izontal \$	0 Regis ddress: (3 HBP Total (Cl al Display izontal B Blank Pe nk perioo D_T = 1) nk perioo D_T = 1) szontal S Sync Per	ster (CR 325H, In 325H, In 325	5D) dex 5Dl 1 HDE 8 R1) Bit R2) Bit 8 R2) Bit 8 al to or 1 ter than iter than	H H H 8 3 ess than 6 64 chara R4) Bit 8	acter clo	ocks (2	56 cha	racter			s if CR	5D_7 =
Extende Read/W Power-C NMS Bit 0 Bit 1 Bit 2 Bit 3 Bit 3	R ed Hori: Trite Dn Defa SFF 8 H H S H 0 1 S S H 0	it a served it a	verflow Ad SHS 8 rizontal tart Hori iizontal B if CR5E if CR5E 4-0. tart Hori izontal Syn	0 Regis ddress: (3 HBP Total (Cl al Display izontal B Blank Pen nk period D_T = 1) nk period D_T = 1) nk period D_T = 1) szontal S Sync Pen c period	ster (CR 325H, In 325H, In 325H, In 325H, In 325H, In 325 345 345 345 345 345 345 345 345 345 34	5D) dex 5Dl 1 HDE 8 R1) Bit R2) Bit 8 R2) Bit 8 R1) Bit R2) Bit 8 R1) Bit 8 R1 8 R1 8 R1 8 R1 8 R1 8 R1 8 R1 8 R1	H H H 8 3 ess than 6 64 chara	acter clo 32 chara	ocks (2	56 cha ocks (aracter 128 cha	aracter	clocks		

Bit 6 SFF 8 - Start FIFO Fetch (CR3B) Bit 8

Bit 7 NMS - New Mode Support

0 = All modes except 1280x1024x24 1 = 1280x1024x24 mode

When this bit is set, the end horizontal blank (CR3_4-0, CR5_7) and end horizontal sync (CR5_4-0) parameters have new definitions and CR5B_7-4 must be programmed.

Extended Vertical Overflow Register (CR5E)

Read/Write Power-On Default: 00H

Address: 3?5H, Index 5EH

7	6	5	4	3	2	1	0
	LCM		VRS		SVB	VDE	VT
R	10	R	10	R	10	10	10

Bit 0	VT 10 - Vertical Total (CR6) Bit 10
Bit 1	VDE 10 - Vertical Display End (CR12) Bit 10
Bit 2	SVB 10 - Start Vertical Blank (CR15) Bit 10
Bit 3	Reserved
Bit 4	VRS 10 - Vertical Retrace Start (CR10) Bit 10
Bit 5	Reserved
Bit 6	LCM 10 - Line Compare Position (CR18) Bit 10
Bit 7	Reserved

Extended Horizontal Overflow 1 Register (CR5F)

Read/Write

Address: 3?5H, Index 5FH

Power-On Default: 00H

7	6	5	4	3	2	1	0
SHS10-9		SHB	10-9	HDE	10-9	HT1	0-9

- Bits 1-0 HT10-9 - Horizontal Total (CR0) Bits 10-9
- Bits 3-2 HDE10-9 - Horizontal Display End (CR1) Bits 10-9

Bits 5-4 SHB10-9 - Start Horizontal Blank (CR2) Bits 10-9

Bits 7-6 SHS10-9 - Start Horizontal Sync Position (CR4) Bits 10-9]

Extended CRTC Registers

SDCLK Skew Register (CR60)

Read/Write Power-On Default: 00H

Bits 3-0

Address: 3?5H, Index 60H

7	6	5	4	3	2	1	0
R	R	R	R		SDCLK)	K SKEW	'

SDCLKX SKEW
0000 = SDCIKX not skewed
0001 = SDCLKX generated 9 units earlier than 0000 setting
0010 = SDCLKX generated 8 units earlier than 0000 setting
0011 = SDCLKX generated 7 units earlier than 0000 setting
0100 = SDCLKX generated 6 units earlier than 0000 setting
0101 = SDCLKX generated 5 units earlier than 0000 setting
0110 = SDCLKX generated 4 units earlier than 0000 setting
0111 = SDCLKX generated 3 units earlier than 0000 setting
1000 = SDCLKX generated 2 units earlier than 0000 setting
1001 = SDCLKX generated 1 unit earlier than 0000 setting
1010 = SDCLKX generated 1 unit later than 0000 setting
1011 = SDCLKX generated 2 units later than 0000 setting
1100 = SDCLKX generated 3 units later than 0000 setting
1101 = SDCLKX generated 4 units later than 0000 setting
1110 = SDCLKX generated 5 units later than 0000 setting
1111 = SDCLKX generated 6 units later than 0000 setting

SDCLKX = SDCLK1, SDCLK2 and SDCLKOUT

Bits 7-4 Reserved

Extended Miscellaneous Control Register (CR65)

Read/Write

Address: 3?5H, Index 65H

Power-On Default: 00H

7	6	5	4	4 3 2 1 0							
DLY H	HDE	R	DLY E	BLANK	R	R	DH				
					$\mathbf{\lambda}$						
Bit 0	D	H - See l	bits 7-6	below.							
Bits 2-1	R	eserved			$\mathbf{\nabla}$						
Bits 4-3	00 01 10 11	DLY BLANK - Delay BLANK by DCLK 00 = No delay of BLANK 01 = Delay BLANK for 1 DCLK 10 = Delay BLANK for 2 DCLKs 11 = Delay BLANK for 3 DCLKs BLANK is an internal signal. This function will not normally be use									
Bit 5	R	eserved									
Bit 5 Reserved Bits 0, 7-6 DLY HDE - Delay Horizontal Display Enable 000 = No delay 001 = 1 DCLK delay 010 = 2 DCLK delay 100 = 4 DCLK delay 101 = 5 DCLK delay 101 = 5 DCLK delay 110 = 6 DCLK delay											

Extended CRTC Registers

Extende	ed Misc	ellaneou	us Cont	rol 1 Re	gister (CR66)		
Read/Wi Power-C		ult: 00H	A	ddress: (3?5H, Ir	ıdex 66⊦	ł	
7	6	5	4	3	2	1	0	
PCI				PCI		SW	EN	
RET	R	RLC	R	DIS	R	RST	2D/3D	
Bit 0	Bit 0 EN 2D/3D - Enable 2D/3D Engine Operation 0 = Disable 2D/3D Engine operation 1 = Enable 2D/3D Engine operation							
	to		ake up t	o 3 HSY	NCs to			$(SR1_5 = 1)$ or during the vertical retrace period. Setting $SR1_5$ it is ORed with MM850C_0. This bit must be set to 1 for
Bit 1		W RST -		re Reset				
		= No fur = Softwa		t of the 2	2D Grap	hics Eng	jine	
Bit 2		etting thi eserved	s bit has	s the sar	ne effec	t as MM	8504_15-	14 (write) = 10b.
Bit 3		CI DIS -	PCI Dis	connect	Fnable			
Dire	0	= PCI di = PCI di	sconnec	ts disab	led		4	~ ~ ~
	T	his bit m	ust be s	et to 1 b	y the vio	leo BIOS	S.	
Bit 4	0		certain w certain w	orking p	orimary s	stream re	egisters w	when VSYNC active when CR51_7 = 1 (or PageFlip command issued) and VSYNC
		his bit ap IM81C4.		those pr	imary s	tream re	gisters th	at are programmed to shadow registers. These are MM81C0 and
Bit 5	0	= Load \	working	seconda	ry strea	m regist		VSYNC active CR51_7 = 1 and VSYNC active
	de	o not tak	e effect	until the	next VS	SYNC. T	-	that are programmed to a shadow register and the new values MM8190, MM8198, MM81A0, MM81D0, MM81D4, MM81D8,)8.
Bit 6	R	eserved						
Bit 7	Р	CI RET -	- PCI Re	try Enat	ole			
	PCI RET - PCI Retry Enable 0 = PCI bus retry disabled 1 = PCI bus retry enabled							
	This bit does not apply to AGP operation.							

Extended CRTC Registers

Read/Write Power-On		ult: 00H	A	ddress: 3	3?5H, In	dex 67F	ł	
7	6	5	4	3	2	1	0	
CC	OLOR	MODE		STRE MC	-	R	VCLK PHS	
Bit 0	0 1	= VCLK = VCLK	is 180° is in pha	ase with	nase with DCLK	n DCLK	(inverted)	
Bit 1		xels are eserved		I out of ti	ne RAM	DAC at	the VCLK	'ate.
Bits 3-2	S ⁻ 00 01 10 11	TREAM) = Strea I = Prim) = Rese I = Full \$	S MODE ams Pro- ary Strea erved Streams	cessor d am data Process	from gra	ation (pr	imary and	th secondary stream overlay secondary streams from all supported sources)
	a							sabled during the VSYNC period. The 01 setting is required for lisplay with the Streams Processor enabled. See CR90_3 and
Bits 7-4	00 00 00 00 01 01	000 = 8 - 1000 = 8 - 1000 = 8 - 1000 = 1500 = 15000 = 15000 = 16000 = 16000 = 16000 = 16000 = 160000 = 160000000000	bit color bit color, 5-bit colo 5-bit colo 5-bit colo 5-bit colo	RAMDA(r (X.5.5. r, (X.5.5 r (5.6.5) r (5.6.5) r (X.8.8.	oubled 5) .5) clock clock do	double	d	
								valid when Streams Processor operation is disabled (CR67_3

All other mode values are reserved. This field is only valid when Streams Processor operation is disabled (CR67_3-2 = 00b). With the Streams Processor enabled, the color mode is defined by MM8180_26-24. Clock doubled modes require that SR18_7 =1 and SR15_4 = 1.

Memory Control 1 Register (CR68)

Read/Write Address: 3?5H, Index 68H Power-On Default: 00H

These bits can be accessed only after A5H is written to CR39.

7	6	5	4	3	2	1	0
MTS TRP TRAS TDPL TRC							
Bits 1-0	00 01 10	RC - SG) = 7 MC I = 8 MC) = 9 MC I = 10 M	LKs LKs LKs	uto Refres	h to New	Comm	nand
Bit 2	ТІ 0		GRAM L .K	om a CAS ₋ast Data			

Bit 3	TRAS - Minimum -SDRAS Low Timing Select 0 = 6 MCLKs
	1 = 7 MCLKs
	This value assumes a single command (e.g., read) is executed. The time will extend one clock for each additional command.
Bits 5-4	TRPSDRAS Precharge Time 00 = Reserved 01 = Reserved
	10 = 2 MCLKs
	10 = 2 MCLKs 11 = 3 MCLKs
	This is the time from a precharge command to a refresh cycle (if required) or the next activate command.
Bits 7-6	MTS - Memory Type Select 00 = 2Mx32 (SDRAM) (including 32MB, 4 bank , CR36_7-5 = 111, CR92_6 = 1 – Rev B) 01 = 1Mx16 (SDRAM) (up to 16MB, CR92_6 = 0) or [2Mx32 4 bank SDRAM (8 MB, CR36_7-5 = 001, CR92_6 = 1,
	Rev B)] 01 = 2MX32 (4 Bank SDRAM) (16MB, CR92_6 = 1) 01 = 4MX16 (4 Bank SDRAM) (32MB)
	10 = 512Kx32 (SGRAM)
	11 = 256Kx32 (SGRAM)

Extended System Control 3 Register (CR69)

Read/Write

Address: 3?5H, Index 69H

Power-On Default: 00H

7	6	5	4	3	2	1	0
PS		DI	SPLAY	START	ADDRES	SS	

Bits 6-0 DISPLAY START ADDRESS

Value = the upper 7 bits (22-16) of the display start address

This allows addressing of up to 32 MBytes of display memory.

- Bit 7 PS Primary Stream Definition
 - 0 = Standard VGA registers are used to control the primary stream
 - 1 = Memory mapped registers MM81C0 and MM81C4 are used to control the primary stream.

Extended System Control 4 Register (CR6A)

Read/W Power-0		ult: 00H	A	ddress: 3	3?5H, In	dex 6A⊢	I
7	6	5	4	3	2	1	0
		CPI	J BASE	ADDRE	SS		
Bits 7-0		PU BAS					

Value = Bits 21-14 of the CPU base address

Bit 22 is CR58_3. This allows accessing of up to 32 MBytes of display memory via 64K pages. Bit 0 of CR31 must be set to 1 to enable this field. If linear addressing is enabled and a 64 KByte window is specified, these bits specify the 64K page to be accessed at A0000H.

Extended BIOS Flow 2 Devices (CDCP)							
Extended BIOS Flag 3 Register (CR6B) Read/Write Address: 3?5H, Index 6BH Power-On Default: 00H							
7 6 5 4 3 2 1 0							
EXT-BIOS-FLAG-REGISTER-3							
Bits 7-0 EXT-BIOS-FLAG-REGISTER-3 This register is reserved for use by the S3 BIOS.							
Extended BIOS Flag 4 Register (CR6C)							
Read/Write Address: 3?5H, Index 6CH Power-On Default: 00H							
7 6 5 4 3 2 1 0							
EXT-BIOS-FLAG-REGISTER-4							
Bits 7-0 EXT-BIOS-FLAG-REGISTER-4 This register is reserved for use by the S3 BIOS.							
Extended BIOS Flag 5 Register (CR6D)							
Read/Write Address: 3?5H, Index 6DH Power-On Default: 00H							
This register is reserved for use by the BIOS.							
7 6 5 4 3 2 1 0 RESERVED							
Bits 7-0 Reserved							
DAC Signature Test Data Register (CR6E)							
Read/Write Address: 3?5H, Index 6EH Power-On Default: 00H							
7 6 5 4 3 2 1 0 DAC SIGNATURE TEST DATA							
Bits 7-0 DAC SIGNATURE TEST DATA							

Memory	v Control 2 Register (CR6F)						
Read/W Power-C	rite Address: 3?5H, Index 6FH On Default: FEH						
These b	its can be accessed only after A5H is written to CR39.						
7	6 5 4 3 2 1 0						
R	CAS LATENCY R TRRD R R SR						
Bit 0	SR - Software Reset Enable 0 = Software resets disabled (default) 1 = Software resets enabled						
	This bit controls the resets in CR3F. It should be set only if CR3F is to be programmed, and should be immediately cleared to 0 after programming CR3F.						
Bits 2-1	Reserved						
Bit 3	TRRD - SGRAM Time Interval Select for Consecutive Bank Activation 0 = 2 MCLKs 1 = 3 MCLKs						
Bit 4	Reserved						
Bits 6-5							
Bit 7	Reserved						
Read/W	On Default: 00H						
7 SP	6 5 4 3 2 1 0 R NW ACS SSS ASM AP ACS						
SB	R NW ACS SSS ASM AP ACS						
Bit 0	ACS - AGP Command Suspend						
	0 = Normal operation or resume from suspend						
	1 = Suspend sending commands to system logic						
	The suspend mode is selected via bit 2 of this register.						
Bit 1	AP - AGP Priority						
	0 = Always send low priority commands 1 = Always send high priority commands						
Bit 2	ASM - AGP Suspend Mode						
	0 = Pause sending of commands to system logic. Resume from previous operating						
	 state when bit 0 of this register is cleared to 0. 1 = Reset. All current commands discarded. Resume from initial idle state when bit 0 of this register is cleared to 0. 						
Bit 3	SSS - Stop Sideband Strobe 0 = SB_STB signal is kept running when bit 0 of this register is set to 1 1 = SB_STB signal is stopped when bit 0 of this register is set to 1						
Bit 4	ACS - AGP Command Split 0 = Normal operation 1 = Split AGP reads into 32-byte bursts						

Extended CRTC Registers

Bit 5	NW - AGP No Wait 0 = 1 SCLK delay between -GNT assertion and -PIPE assertion 1 = No delay between -GNT assertion and -PIPE assertion
Bit 6	Reserved
Bit 7	SB - AGP Sideband Addressing Capability 0 = Set PCI84_9 to 0 (sideband addressing not supported) 1 = Set PCI84_0 to 1 (sideband addressing supported)

Address: 3?5H, Index 71H

Primary Stream Timeout Register (CR71)

Read/Write Power-On Default: 00H

7	6	5	4	3	2	1	0
	PRI	MARY S	TREAM	TIMEO	UT COU	NT	

Bits 7-0 PRIMARY STREAM TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

If CR88_2 = 1, the count is in MCLKs.

TV Timeout Register (CR72)

Read/Write Address: 3?5H, Index 72H Power-On Default: 00H

7	6	5	4	3	2	1	0
		TV	TIMEOU	IT COUI	NT		

Bits 7-0 TV TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

If CR88_2 = 1, the count is in MCLKs.

Secondary Stream Timeout Register (CR73)

Read/Write Address: 3?5H, Index 73H Power-On Default: 00H

 7
 6
 5
 4
 3
 2
 1
 0

 SECONDARY STREAM TIMEOUT COUNT

Bits 7-0 SECONDARY STREAM TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

Master Control Unit Timeout Register (CR74)

Read/Write Power-On Default: 00H Address: 3?5H, Index 74H

7	6	5	4	3	2	1	0
	MASTE	R CONT	FROL UI	ΝΙΤ ΤΙΜΙ	EOUT C	OUNT	

Bits 7-0 MASTER CONTROL UNIT TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

If CR88_2 = 1, the count is in MCLKs.

Command Buffer Timeout Register (CR75)

Read/Write Address: 3?5H, Index 75H Power-On Default: 00H

 7
 6
 5
 4
 3
 2
 1

 COMMAND BUFFER TIMEOUT COUNT

Bits 7-0 COMMAND BUFFER TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

0

If CR88_2 = 1, the count is in MCLKs.

LPB Timeout Register (CR76)

Read/Write Address: 3?5H, Index 76H Power-On Default: 00H

 7
 6
 5
 4
 3
 2
 1
 0

 LPB TIMEOUT COUNT

Bits 7-0 LPB TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

If CR88_2 = 1, the count is in MCLKs.

Motion Compensation Timeout Register (CR77)

Read/W Power-0	/rite On Defau	ult: 00H	A	ddress: 3	3?5H, In	dex 77H	
7	6	5	4	3	2	1	0
	MOTION COMPENSATION TIMEOUT COUNT						

Bits 7-0 MOTION COMPENSATION TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

CPU Timeout Register (CR78)

Read/Write	
Power-On Default: 00H	

Address: 3?5H, Index 78H

er-On Default: 00H

7	6	5	4	3	2	1	0
		CPU	TIMEO	UT COL	JNT		

Bits 7-0 CPU TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

If CR88_2 = 1, the count is in MCLKs.

2D Graphics Engine Timeout Register (CR79)

Read/Write Address: 3?5H, Index 79H Power-On Default: 00H

7	6	5	4	3	2	1	0
	2D GR	RAPHICS	6 ENGIN	IE TIME	OUT CC	DUNT	

Bits 7-0 2D GRAPHICS ENGINE TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

If CR88_2 = 1, the count is in MCLKs.

3D Z Read Buffer Timeout Register (CR7A)

Read/Write Address: 3?5H, Index 7AH Power-On Default: 00H

7	6	5	4	3	2	1	0
	3D Z	READ B	BUFFEF		UT CO	JNT	

Bits 7-0 3D ENGINE Z READ BUFFER TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

3D Z Write Buffer Timeout Register (CR7B)

Read/Write Power-On Default: 00H Address: 3?5H, Index 7BH

7	6	5	4	3	2	1	0
31	D ENGIN	IE Z WR	RITE BU	FFER TI	MEOUT	COUNT	Г

Bits 7-0 3D ENGINE Z WRITE BUFFER TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed If $CR88_2 = 1$, the count is in MCLKs.

3D Destination Write Timeout Register (CR7C)

Read/Write Address: 3?5H, Index 7CH Power-On Default: 00H

 7
 6
 5
 4
 3
 2
 1
 0

 3D DESTINATION WRITE TIMEOUT COUNT

Bits 7-0 3D DESTINATION WRITE TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

If CR88_2 = 1, the count is in MCLKs.

3D Destination Read Timeout Register (CR7D)

Read/Write Address: 3?5H, Index 7DH Power-On Default: 00H

7	6	5	4	3	2	1	0
	3D DE	STINAT	ON REA	AD TIME	EOUT CO	JUNT	

Bits 7-0 3D DESTINATION READ TIMEOUT COUNT

Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed

3D Texture Buffer Timeout Register (CR7E)

SD Texture Burler Timeout Register (CRTE)
Read/Write Address: 3?5H, Index 7EH Power-On Default: 00H Image: Comparison of the second se
7 6 5 4 3 2 1 0
3D TEXTURE BUFFER TIMEOUT COUNT
Bits 7-0 3D TEXTURE BUFFER TIMEOUT COUNT
Value = # of QWords transferred to/from the frame buffer before the memory bus grant is removed
If CR88_2 = 1, the count is in MCLKs.
Drive Current Control Register (CR80)
Read/Write Address: 3?5H, Index 80H Power-On Default: 00H
7 6 5 4 3 2 1 0
SDD MCD MAD PDD R SBD PCD
Bits 1-0 PCD - PCI/AGP Drive Current (3.3V VDDq) 00= 24 mA (default for PCI bus operation (CR37_6 = 0) 01 = 16 mA (default for AGP bus operation (CR37_6 = 1) 10 = 8 mA 11 = 4 mA
This bit applies to AD[31:0],-C/BE[3:0], PAR, -FRAME, -IRDY, -TRDY, -STOP, -DEVSEL, -REQ, -PIPE, AD_STB[1:0], -AD_STB[1:0] and -RBF. Bit 0 is the same bit as CR37_6 and its value at reset depends on strapping of the ROMA3 pin.
Bit 2 SB - SBA[7:0], SB_STB, -SB_STR Drive Current 0 = 8 mA 1 = 16 mA
Bit 3 Reserved
Bit 4 PDD - PD[63:0] Drive Current 0 = 16 mA 1 = 8 mA
Bit 5 MAD - MA[10:0] Drive Current 0 = 16 mA 1 = 8 mA
Bit 6 MCD - Memory Control Drive Current 0 = 16 mA 1 = 8 mA
This bit applies to -RAS, -CAS, -WE, -DSF, CKE, -CS[1:0] AND DQM[7:0]. Bit 7 SDD - SDCLK[1:2] Drive Current 0 = 24 mA 1 = 16 mA

PCI Sub	syste	em Vend	or ID S	hadow I	_ow Re	egiste	er (CR	R81)								
Read/W Power-C		fault: 00F		Address	: 3?5H	l, Inde	x 81H	4						X		
7	6	5	4	3	2		1	0	٦							
		SUBSYS	STEM V	ENDOR	ID LO	WBY	TE									
Bits 7-0		PCI SUE This regi							on spac	ce inc	dex 2Cł	Н.			Y	
Read/W	rite	em Vend		hadow I Address	-	-	-	-				$\overline{\left(\right. \right.}$	X			
7	6 PCI	5 SUBSYS	4 STEM V	3 ENDOR	D HIC		1 TE	0	-		C					
Bits 7-0		PCI SUE	SYSTE	M VEN	DOR IE) HIGI	H BY	TE)								
		This regi	ster sha	adows tr	ie byte	at PC	l con	figuratio	on spac	ice inc	dex 2DF	H.				
PCI Sub	syste	em ID Sh	adow L	.ow Reg	jister (CR83))				,					
Read/W Power-C		fault: 00F		Address	: 3?5H	l, Inde	x 83⊦	4								
7	6	5 PCI SU	4 BSYST	3 Em ID L	2 OW B1		1	0								
Bits 7-0		PCI SUE	SYSTE	EM ID LO	OW BY	TE)										
		This regi	ster sha	adows th	ie byte	at PC	Cl con	figuratio	on spac	ce inc	dex 2EH	H.				
PCI Sub	svet	em ID Sh	adow 4	ligh Red	nister /	CR84	0									
. 0. 00.	syste			ngn ivel	913101	01104	7									
Read/W Power-C		fault: 00H		Address	:: 3?5H	l, Inde	x 84⊦	4								
7	6	5 PCI SUI	4 BSYST	3 EM ID H	2 IGH B		1	0								
Bits 7-0		PCI SU	BSYST	EM ID F	IIGH B	YTE										
		This regi	ster sha	adows th	ne byte	at PC	l con	figuratio	on spac	ce inc	dex 2FH	┥.				

FIFO Fetch Delay Register (CR85)

Read/Write

Power-On Default: 00H

Address: 3?5H, Index 85H

7	6	5	4	3	2	1	0	
R	R	R	FDE	R	FIFO DRAIN DELAY			

Bits 2-0 FIFO DRAIN DELAY

Value = number of character clocks to delay draining of the display FIFO with respect to the request for FIFO filling.

A high value may be required in some cases to prevent draining of data from the display (primary/secondary stream) FIFO before valid data has been fetched from memory into the FIFO. The optimum value must be determined empirically. A starting value of 010b is recommended. In general, the smallest value that works should be used. Bit 4 of this register must be set to 1 for these bits to be effective.

Bit 3 Reserved

Bit 4 FFT - FIFO Fetch Timing

0 = Fetch primary and secondary stream data from memory at the end of the horizontal blanking region

1 = Fetch primary and secondary stream data from memory in the middle of the horizontal blanking region

This bit should be set to 1 for all accelerated modes.

Bits 7-5 Reserved

DAC Power Up Register (CR86)

Read/Write	Address: 3?5H, Index 86H
Power-On Default: 00H	

7	6	5	4	3	2	1	0			
DPSD		DAC POWER UP TIME								

Bits 6-0 DAC POWER UP TIME

value = number of character clocks from the start of blanking at which the internal DACs are powered up

This value must be at least 1 less than the End Horizontal Blank value programmed in CR5D_3, CR5_7 and CR3_4-0. A value of 1 less starts DAC power up 1 character clock before the end of blanking. A value of 2 less starts DAC power up 2 character clocks before the end of blanking, etc. When the DACs power up, there is a voltage spike that affects the RGB outputs if they are active. Powering up the DACs earlier reduces the power savings but also reduces the chance that the power up voltage spike will affect the active display.

Bit 7 DPSD - DAC Power Saving Disable

0 = RAMDAC power saving enabled (DAC turned off at BLANK start and on at position programmed in bits 6-0 of this register

1 = RAMDAC power saving disabled (RAMDAC never powered down)

SGRAM Control 0 Register (CR87)

Read/W Power-C	rite On Default: 00H	A	ddress: (3?5H, In	dex 87H	l
7	6 5	4	3	2	1	0

R

R

R

BWC

Bit 0 BWC - Block Write Cycles 0 = 2-cycle block write

1 = 1 cycle block write

REFRESH

Page 100

LWP

R

Bits 3-1	Reserved for S3 Testing
Bits 5-4	REFRESH
Bito 0 4	00 = Select 100 MHz MCLK to count refresh counter
	01 = Select 125 MHz MCLK to count refresh counter
	10 = Select 143 MHz MCLK to count refresh counter 11 = Reserved for S3 testing
Bit 6	Reserved
Bit 7	LWP - LPB Write Priority
	0 = Normal LPB memory write access priority
	1 = High LPB memory write access priority
	Setting this bit may prevent tearing of the live video display.
SGRAM Co	ontrol 1 Register (CR88)
Read/Write	Address: 3?5H, Index 88H
	Default: 00H
7	6 5 4 3 2 1 0
	DR MS DBW R TOC BPL RCD
· · ·	
Bit 0	RCD - SGRAM TRCD Parameter
	0 = 3 MCLKs
	1 = 2 MCLKs
Bit 1	BPL - SGRAM TBPL Parameter 0 = 3 MCLKs
	1 = 2 MCLKs
Bit 2	TOC - Timeout Counter
	0 = Timeout count is in QWords
	1 = Timeout count is in MCLKs This bit applies to the timeout counters in CR71-CR7E.
Bit 3	Reserved
Bit 4	DBW - Disable Block Write (2D Engine Only)
	0 = Block write enabled
	1 = Block write disabled
	Block write is used for solid rectangle fills. The drawing direction must be x and y positive (right to left, top to bottom)
	and the stride must be a multiple of 64.
Bit 5	MS - SGRAM Mode Set
	This bit is programmed to 1 to generate a mode programming cycle. This bit is automatically cleared to 0 after the
Bit 6	programming cycle. DR - Disable SGRAM Refresh
DILO	0 = Refresh enabled
	1 = Refresh disabled
Bit 7	Reserved

Extended CRTC Registers

Primary	Stream	n FIFO F	etch Co	ontrol 1	Registe	er (CR90))	A
Read/W Power-C		ult: 00H	A	ddress: 3	3?5H, In	ndex 90H		
7	6	5	4	3	2	1	0	
EL1	FP1	SF	RD	FP2		L1 10-8		
Bits 2-0	Tł		bits 10-	8 of the		meter (B stream I) meter. See the description of the primary stream L1 parameter in
Bit 3	0		ns Proce	essor off	or full c	on (CR67		00 or 11) or 8bpp with Streams Processor (CR67_3-2 = 01) tomatic centering and expansion (CR67_3-2 = 01)
	Bi	t 6 of thi	s registe	er must a	also be s	set to 1 f	or this b	vit to be effective.
Bits 5-4	00 01 10	FRD - St) = No de I = 1 cha) = 2 cha I = 3 cha	elay aracter c aracter c	lock del locks de	ay Ilay	у		
Bit 6	0		ns Proce	essor off	or full c	on (CR67		00 or 11) centering and expansion (all color depths) (CR67_3-2 = 01)
Bit 7	0		y strear	n display	/ fetch le	<u> </u>		l parameter) disabled l parameter) enabled

Primary Stream FIFO Fetch	Control 2 Register (CR91)
Read/Write	Address: 3?5H, Index 91H

Power-On Default: 00H

i Deladit. Ool i

These are the lower 8 bits of an 11-bit value used to optimize performance. The upper three bits are bits 2-0 of CR90.

7	6	5	4	3	2	1	0		
L1 7-0									

Bits 7-0 L1 7-0 - Primary Stream L1 Parameter (Bits 7-0)

11-bit Value = [(number of bytes of displayed pixels per scan line) \div 8] - 1. This register contains the least significant 8 bits of this value.

Read/Wr Power-O		ult: 00H	A	ddress:	3?5H, Ir	ndex 92H	ł	
When wr	iting th	e L para	imeter bi	ts in this	registe	r, ensure	that bi	t 6 is not changed.
7	6	5	4	3	2	1	0	
EL2	4B			R		L2 10-8		
Bits 2-0	Т	hese are	Seconda e bits 10- scription f	8 of the	second		•	0-8) arameter. See the description of the primary stream L2 parameter
Bit 3	R	eserved	I					
Bit 4	0	= Sava	age4 LT ge4 LT c Savage	hip	,	only)(Rev	и. В)	
Bit 5	С	A – CPl	J Base A	ddress	Overflow	v Bit (Re	v. B)	
	V	alue = C	PU base	e addres	s bit 22			
	Т	his bit is	moved	from CR	58_3 fo	r Rev. A		
Bits 6	0	= Settin	nk Supp ig for CR ig for CR	68_7-6				M 2MX32 4-Bank SDRAM
Bit 7	0	= Secor	-	eam dis	play feto			(L2 parameter) disabled (L2 parameter) enabled

Secondary Stream FIFO Fetch Control 2 Register (CR93)

Read/Write Address: 3?5H, Index 93H Power-On Default: 00H

These are the lower 8 bits of an 11-bit value used to optimize performance. The upper three bits are bits 2-0 of CR92.

7	6	5	4	3	2	1	0
			L2 :	7-0			

Bits 7-0 L2 7-0 - Secondary Stream L2 Parameter (Bits 7-0)

11-bit Value = [(number of bytes of displayed pixels per scan line) \div 8] - 1. This register contains the least significant 8 bits of this value.

Serial Port 1 Register (CRA0)

Power-On Default: 00H

Read/Write

Address: 3?5H, Index A0H

Bits 4-0 of this register can also be accessed via MMFF20_4-0. This register is normally used for I²C communications

7	6	5	4	3	2	1	0
R	R	R	SPE	SDR	SCR	SDW	SCW

Bit 0	SCW - Serial Clock Write 0 = SPCLK1 is driven low 1 = SPCLK1 is tri-stated SPCLK1 carries the I2C clock. When the SPCLK pin is tri-stated, other devices may drive this line. The actual state of the pin is read via bit 2 of this register.
Bit 1	SDW - Serial Data Write 0 = SPD1 pin is driven low 1 = SPD1 pin is tri-stated SPD1 carries the I2C data. When the SPD1 pin is tri-stated, other devices may drive this line. The actual state of the pin is read via bit 3 of this register.
Bit 2	SCR - Serial Clock Read (Read Only) 0 = SPCLK1 is low 1 = SPCLK1 is tri-stated (no device is driving this line)
Bit 3	SDR - Serial Data Read (Read Only) 0 = SPD1 pin is low 1 = SPD1 pin is tri-stated (no device is driving this line)
Bit 4	SPE - Serial Port 1 Enable 0 = Use of bits 1-0 of this register disabled 1 = Use of bits 1-0 of this register enabled
Bits 7-5	Reserved

Flash ROM Address 0 Register (CRA1)

Read/Write Address: 3?5H, Index A1H Power-On Default: 00H

The ROM address is incremented by one for each access to the flash ROM data register (CRA4).

7	6	5	4	3	2	1	0		
FLASH ROM ADDRESS 7-0									

Bits 7-0 FLASH ROM ADDRESS 7-0

20-bit Value = Address of byte to be accessed in flash ROM Other bits are in CRA2 and CRA3.

Flash ROM Address 1 Register (CRA2)									
Read/Write Address: 3?5H, Index A2H Power-On Default: 00H									
7 6 5 4 3 2 1 0									
FLASH ROM ADDRESS 15-8									
Bits 7-0 FLASH ROM ADDRESS 15-8 20-bit Value = Address of byte to be accessed in flash ROM Other bits are in CRA1 and CRA3.									
Flash ROM Address 2 Register (CRA3)									
Read/Write Address: 3?5H, Index A3H Power-On Default: 00H									
7 6 5 4 3 2 1 0									
R R R FLASH ROM ADDRESS 19-16									
Bits 3-0 FLASH ROM ADDRESS 19-16 20-bit Value = Address of byte to be accessed in flash ROM Other bits are in CRA1 and CRA2.									
Bits 7-4 Reserved									
Flash ROM Data Register (CRA4)									
Read/Write Address: 3?5H, Index A4H Power-On Default: 00H									
The ROM address is programmed via CRA1, CRA2, CRA3.									
7 6 5 4 3 2 1 0 FLASH ROM DATA 7-0									
Bits 7-0 FLASH ROM DATA 7-0									
Value = Data to be written to flash ROM									
Extended BIOS Flag 6 Register (CRA5)									
Read/Write Address: 3?5H, Index A5H Power-On Default: 00H									

This register is reserved for use by the BIOS.

Bits 7-0 Reserved

Extended BIOS Flag 7 Register (CRA6)
Read/Write Address: 3?5H, Index A6H Power-On Default: 00H Index A6H
This register is reserved for use by the BIOS.
7 6 5 4 3 2 1 0 RESERVED
Bits 7-0 Reserved
Extended BIOS Flag 8 Register (CRA7)
Read/Write Address: 3?5H, Index A7H Power-On Default: 00H
This register is reserved for use by the BIOS.
7 6 5 4 3 2 1 0 RESERVED
Bits 7-0 Reserved
Extended BIOS Flag 9 Register (CRA8)
Read/WriteAddress: 3?5H, Index A8HPower-On Default: 00H
This register is reserved for use by the BIOS.
7 6 5 4 3 2 1 0 RESERVED
Bits 7-0 Reserved
Extended BIOS Flag 10 Register (CRA9)
Read/Write Address: 3?5H, Index A9H Power-On Default: 00H
This register is reserved for use by the BIOS.
7 6 5 4 3 2 1 0 RESERVED
Bits 7-0 Reserved

Extended BIOS Flag 11 Register (CRAA)
Read/Write Address: 3?5H, Index AAH Power-On Default: 00H
This register is reserved for use by the BIOS.
7 6 5 4 3 2 1 0 RESERVED
Bits 7-0 Reserved
Extended BIOS Flag 12 Register (CRAB)
Read/Write Address: 3?5H, Index ABH Power-On Default: 00H
This register is reserved for use by the BIOS.
7 6 5 4 3 2 1 0 RESERVED
Bits 7-0 Reserved
Extended BIOS Flag 13 Register (CRAC)
Read/Write Address: 3?5H, Index ACH Power-On Default: 00H
This register is reserved for use by the BIOS.
RESERVED
Bits 7-0 Reserved
Extended BIOS Flag 14 Register (CRAD)
Read/Write Address: 3?5H, Index ADH Power-On Default: 00H
This register is reserved for use by the BIOS.
RESERVED
Bits 7-0 Reserved

Extended BIOS Flag 15 Register (CRAE)	
Read/Write Address: 3?5H, Index AEH Power-On Default: 00H Image: Comparison of the second se	
This register is reserved for use by the BIOS.	
7 6 5 4 3 2 1 0	
RESERVED	
Bits 7-0 Reserved	
Extended BIOS Flag 16 Register (CRAF)	
Read/Write Address: 3?5H, Index AFH Power-On Default: 00H	
This register is reserved for use by the BIOS.	
7 6 5 4 3 2 1 0	
RESERVED	
Bits 7-0 Reserved	
Configuration 3 Register (CRB0)	
Read/Write Address: 3?5H, Index B0H	
Power-On Default: Depends on Strapping	
If a pin is identified for a bit in this register, the state of that pin is latched at reset. These pins have internal pull-downs and their	
states are inverted before being latched, so these bits will default to 1 if the corresponding pin is not pulled up externally. If a pin not associated with a bit, that bit always defaults to 1 at reset. Other configuration bits are found in CR36 and CR37. These bits	
be accessed only after A5H is written to CR39.	oun
7 6 5 4 3 2 1 0	
AMS SCS ST ETV FP ET R R	
Dit 0 December 1	
Bit 0 Reserved Bit 1 Reserved	
Bit 2 ET - EPROM Type (ROMA7 pin)	
0 = Serial SPI EEPROM 1 = Parallel EEPROM	
Bit 3 FP - Flat Panel Capable (ROMA8 pin)	
0 = Flat panel connection provided on board	
1 = Flat panel connection not provided on board	
Either a flat panel connection or TV encoder connection can be provided, but not both.	
Bit 4 ETV - External TV Encoder Capable (ROMA9 pin) 0 = External TV encoder connection provided on board	
1 = External TV encoder connection not provided on board	
Either a flat panel connection or TV encoder connection can be provided, but not both.	
Bit 5 ST – Savage4 Type (ROMA10 pin)	
0 = Savage4 LT or Savage4 GT installed 1 = Savage4 Pro or Savage4 Pro-M installed	

Bit 6	SCS - SCLK Source 0 = Use internal clock for PCI signals 1 = Use external clock input (PCI SCLK) for PCI signals
Bit 7	AMS - PCI Base Address Map Select (ROMA12 pin) 0 = Address map 1 (PCI10, 14, 18, 1C, 20, 24) 1 = Address map 0 (PCI10, 14)

Serial Port 2 Register (CRB1)

Read/Write Address: 3?5H, Index B1H Power-On Default: 00H

This register is normally used for DDC monitor communications.

7	6	5	4	3	2	1	0	
R	R	R	SPE	SDR	SCR	SDW	SCW	
Bit 0	S	CW - Se	rial Cloc	k Write				
	0	= SPCL	K2 is dri	ven low				
	1	= SPCL	K2 is tri-	stated				
				0		ام الم ما الم		and drive this line. The estimates of the sin is ready in his
		nen tne is regist		2 pin is t	ri-stated	, otner c	levices r	may drive this line. The actual state of the pin is read via bit
D 11		0						
Bit 1	-		erial Data					
			pin is di pin is tri					
		= 3F DZ	pinis u	-stateu				
	W	hen the	SPD2 p	in is tri-s	stated, o	ther dev	ices ma	y drive this line. The actual state of the pin is read via bit 3
	re	gister.						
Bit 2	S	CR - Se	rial Clocl	k Read (Read O	nly)		
	0	= SPCL	K2 is lov	v				
	1	= SPCL	K2 is tri-	stated (r	no devic	e is drivi	ng this I	ine)
Bit 3	SI	DR - Se	rial Data	Read (F	Read On	ly)		
			pin is lo					
	1	= SPD2	pin is tri	-stated (no devid	ce is driv	ing this	line)
Bit 4	-		rial Port					
			f bits 1-0		•			
	1	= Use o	f bits 1-0) of this i	register	enabled		
Bits 7-5	R	eserved						

Serial EEPROM Programming 1 Register (CRB2)

Read/Write

Address: 3?5H, Index B2H

Power-On Default: 00H

This register apples to the first 32K of serial EEPROM.

7	6	5	4	3	2	1	0				
SERIAL EEPROM PROGRAMMING/STATUS											

Bits 7-0 SERIAL EEPROM PROGRAMMING/STATUS

> Programming these bits initiates a read or write cycle to the serial EEPROM. The content and protocol are a function of the specific EEPROM used.

Serial E	EPRON	l Progra	mming	2 Regis	ter (CR	B3)	
Read/W			A	ddress: 3	3?5H, In	dex B2H	ł
	On Defa						
This reg	gister ap	ples to th	ne first 3	32K of se	rial EEP	ROM.	
7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	WLC
Bit 0	١٨	/LC					
Bit 0	0	= Disabl		g to seria			
			e writing	to seria	I EEPRO	DM	
Bits 7-1	R	eserved					
Serial E	EPRON	l Progra	mming	3 Regis	ter (CR	B4)	
Read/W	/rite		A	ddress: 3	3?5H, In	dex B4H	1
Power-0	On Defa	ult: 00H					
This reg	gister ap	ples to th	ne secol	nd 32K o	f serial I	EEPRON	И.
7	6	5	4	3	2	1	0
-	-		-) GRAM		-	
Bits 7-0	S	ERIAL E	EPRON	I PROGI	RAMMIN	NG/STA	TUS
				se bits in		read or	write cy
	of	the spe	cific EE	PROM u	sed.		
							\mathbf{N}
Serial E	EPRON	l Progra	mming	4 Regis	ter (CR	B5)	
Read/W	/rite		А	ddress: (3?5H, In	dex B5H	ł
Power-0	On Defa	ult: 00H					
This reg	gister ap	ples to th	ne secol	nd 32K o	f serial I	EEPRON	И.
		T				1	
7 R	6 R	5 R	4 R	3 R	2 R	1 R	0 WLC
Bit 0		/LC					
	0	= Disabl	e writing	g to seria I to seria		OM MC	
Rite 7.1			s whining	10 301a			

Reserved Bits 7-1

Compen	sation Code Register (CRB6) (Rev. B)
Write On Power-O	nly Address: 3?5H, Index B6H In Default: 00H
7	6 5 4 3 2 1 0 NMOS COMP PMOS COM
Bits 3-0	PMOS COMP – Compensation Code for PMOS
Bits 7-4	Value = Compensation code to be used when SR39_5 = 1 NMOS COMP – Compensation Code for NMOS
	Value = Compensation code to be used when SR39_5 = 1
AGP 2x	Clock Control Register (CRB7) (Rev. B)
Read/Wr	rite Address: 3?5H, Index B7H
7 CE	6 5 4 3 2 1 0 R R R AGP 2X CLOCK SKEW Image: Clock Skew
Bits 3-0	AGP 2X CLOCK SKEW 0000 = No skew
	1111 = Maximum Skew
	With bit 7 of this register cleared to 0, this should be initially set to the same value as the 1x clock control in SR1C_3- 0. Then bit 7 of this register is set to 1 to enable 1x to 2x clock phase adjustment. This phase adjustment is then made by adjusting SR1C_3-0.
Bits 6-4	Reserved
Bit 7	CE – AGP 2X Clock Skew Control Enable 0 = Function of bits 3-0 of this register disabled 1 = Function of bits 3-0 of this register enabled

Section 6: PCI Register Descriptions

The PCI specification defines a configuration register space. These registers allow device relocation, device independent system address map construction and automatic configurations. The chip provides a subset of these registers, which are described below.

The configuration register space occupies 256 bytes. When a configuration read or write command is issued, the AD[7:0] lines contain the address of the register in this space to be accessed. The chip supports or returns 0 for the first 64 bytes of this space.

In the following register descriptions, 'R' stands for reserved (write = 0, read = undefined).

Vendor ID (PCI00)											
Read Only Address: 00H Power-On Default: 5333H											
This read-only register identifies the device manufacturer.											
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
Vendor ID											
Bits 15-0 Vendor ID											
This is hardwired to 5333H to identify S3 Incorporated.											
Device ID (PCI02)											
Read Only Address: 02H											
Power-On Default: See Below											
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
Device ID											
Bits 15-0 Device ID											
Hardwired to 8A22H											
Hardwired to 8A22H											

Command (PCI04)

See Bit Descriptions Address: 04H Power-On Default: 0000H

This register controls which types of PCI cycles Savage4 can generate and respond to.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
										DAC										
R	R	R	R R R R 0 0 0 SNP 0 0 BME MEM I/O											1/0						
Bit 0	Bit 0 I/O - Enable Response to I/O Accesses (Read/Write) 0 = Response to I/O space accesses is disabled 1 = Response to I/O space accesses enabled																			
Bit 1																				
Bit 2		BME - Bus Master Operation Enable (Read/Write) 0 = Bus master operation disabled 1 = Bus master operation enabled																		
Bit 3		Ha	ardwire	ed to 0	to ind	icate S	avag	e4 ig	nores	s Specia	l Cycle	es								
Bit 4		Ha	rdwire	ed to 0	to ind	licate S	avag	e4 ca	annot	initiate	the Me	mory	Write a	nd Invali	date command					
Bit 5		 DAC SNP - RAMDAC Register Access Snooping (Read/Write) 0 = Savage4 claims and responds to all RAMDAC register access cycles 1 = Savage4 performs RAMDAC register writes but does not claim the PCI cycle. RAMDAC register read accesses are performed by the Savage4. 																		
Bit 6		Ha	rdwire	ed to 0	to ind	licate S	avag	e4 do	bes n	ot detec	t parity	erro	rs							
Bit 7		Ha	rdwire	ed to 0	to ind	licate S	avag	e4 do	oes n	ot use a	ddress	/data	a steppin	ig						
Bit 8		На	rdwire	ed to 0	to ind	licate S	avag	e4 do	oes n	ot gener	ate SE	RR								
Bit 9		На	rdwire	ed to 0	to ind	licate S	avag	e4 do	bes n	ot gener	ate fas	st bad	ck-to-bad	ck maste	er cycles to different targets					
Bits 1	15-10	Hardwired to 0 to indicate Savage4 does not generate fast back-to-back master cycles to different targets Reserved																		

Status (PCI06)

Read/Write Power-On Default: 0230H				Addre	ss: 06H										
15	14	13	12	11	10 9	8	7	6	5	4	3	2	1	0	1
0	0	RMA	RTA	STA	DEVSEL	0	0	0	66	CL	R	R	R	R	I
Bits 3-	0	Reserved													
Bit 4		CL - Ca	apabilitie	es List (Read Only)										
Bit 5	(This bit is hardwired to 1 to indicate a capabilities list is implemented. PCI34_7-0 point to the first item in the capabilities list. 66 - 66 MHz Support (Read Only) This bit is hardwired to 1 to indicate support for 66 MHz operation													
Bit 6		Hardwi	red to 0	to indic	ate Savage4	does	not su	oport l	Jser D	efinabl	e Feat	ures			
Bit 7		Hardwi	red to 0	to indic	ate Savage4	does	not ac	cept fa	ist bac	k-to-ba	ack tra	nsactio	ons		
Bit 8		Hardwi	red to 0	to indic	ate Savage4	does	not de	tect pa	rity eri	rors.					
Bits 10)-9	DEVSEL - Device Select Timing (Read Only) 01 = Medium DEVSEL timing. (hardwired)													

Bit 11	STA - Signaled Target Abort 0 = No effect 1 = PCI slave transaction terminated with target-abort
Bit 12	This bit is reset by software by writing a 1 to this location. RTA - Received Target Abort 0 = No effect 1 = Bus master transaction terminated with target-abort
	This bit is reset by software by writing a 1 to this location.
Bit 13	RMA - Received Master Abort 0 = No effect 1 = Bus master transaction terminated with master-abort
	This bit is reset by software by writing a 1 to this location.
Bit 14	Hardwired to 0 to indicate Savage4 does not assert SERR
Bit 15	Hardwired to 0 to indicate Savage4 does not check parity

Class Code (PCI08)

Read Only Address: 08H Power-On Default: 0300000xxH

This register is hardwired to 030000xxH to specify Savage4 is a VGA-compatible display controller. The xx will change with each revision.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PF					REVIS	ION ID)							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BASE CLASS CODE										SUB-C	CLASS			

Cache Line Size (PCI0C)

Read/W Power-		ault: 00H		Address:	осн								
7	7 6 5 4 3 2 1 0												
		(CACHE	INE SIZ	Έ								

Bits 7-0 Hardwired to 00H because Savage4 does not initiate Master Write and Invalidate commands

Latend	cy Timer	(PCI0D)	7				
Read/\ Power	Write -On Defai	ult: 00H	Ad	ddress:	0DH			
7	6	5	4	3	2	1	0	
	BM LATENCY TIMER 0 0 0							

Bits 2-0 Reserved = 0

These are the 3 LSB's of the latency timer value, providing 8 clocks granularity.

Bits 7-3 BM LATENCY TIMER - Bus Master Latency Timer

Value = number of PCI clocks the Savage4 can keep its bus master grant without having it removed

These are the 5 MSBs of this value. The three LSBs are 000b. This value is normally programmed by the system BIOS based in part on the requested value in bits 15-8 of 3EH.

Heade	er Type	e (PCIO	E)													
Read/ Power		efault: (DOH	Ad	dress:	0EH							K			
7	6	5		4	3	2	1		0							
R	R	R		R	R	R	R		R							
Bits 7-	0	Resei	rved													
BIST (PCI0F)														
Read/ Power		efault: ()0H	Ad	dress:	0FH										
7	6	5		4	3	2	1		0							
				BIS	Т											
Bits 7-									t suppo	ort BIST	_					
Base	Addres	ss 0 (P	CI10) (Mappi	ing 0 c	or 1) (R	ev. A)									
Read/ Power		efault: 7	7000 00		dress:	000 80	010H		Y					P	CI Index:	12H (high) 10H (low)
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
												PREF			MSI	
0	0	0	0	0	0	0	0	0	0	0	0	= 0		E =00	= 0	
31	30	29	28 SE ADI	27	26	25	24	23	22	21	20	19 0	18 0	17 0	16 0	
		DA		DRES	50			0	0	0	0	0	0	0	0	l
Bit 0			Memo ase rec			icator nto mer	nory sr	bace (h	nardwii	red)						
Bits 2-	1	TYPE	- Туре	e of Ad	dress	Reloca	tion			dwired)						
Bit 3	(PREF	- Pref	etchab	le					nardwire	d)					

PCI Registers

Bits 31-4 BASE ADDRESS 0

Value = Base address for accessing Savage4 registers via memory-mapped I/O

This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for MMIO register accesses.

Setting all bits to 0s disables this base address register.

Base Address 0 (PCI10) (Mapping 0 or 1) (Rev. B)

Read/Write Address: 000 8010H Power-On Default: 7000 0000H PCI Index: 12H (high) 10H (low)

PCI Index: 16H (high) 14H (low)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												PREF			MSI
0	0	0	0	0	0	0	0	0	0	0	0	= 0	TYPE =00		= 0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BASE ADDRESS 0													0	0

Bit 0 MSI - Memory Space Indicator

0 = Base registers map into memory space (hardwired)

- Bits 2-1 TYPE Type of Address Relocation 00 = Locate anywhere in 32-bit address space (hardwired)
- Bit 3 PREF Prefetchable 0 = Does not meet the prefetchable requirements (hardwired)
- Bits 31-4 BASE ADDRESS 0

Value = Base address for accessing Savage4 registers via memory-mapped I/O

This field provides for address relocation. The programmable bits map to system address bits 31-19. All other address bits (18-4) return 0 on read to specify that Savage4 requires a 512K address space for MMIO register accesses.

Setting all bits to 0s disables this base address register.

Base Address 1 (PCI14) (Mapping 0, CRB0_7 = 1) (Rev. A and B)

Read/Write Address: 000 8014H Power-On Default: 6000 0008H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												PREF			MSI
0	0	0	0	0	0	0	0	0	0	0	0	= 1	TYP	E =00	= 0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BASE	ADDRI	ESS 1		0	0	0	0	0	0	0	0	0	0	0

Bit 0	MSI - Memory Space Indicator 0 = Base registers map into memory space (hardwired)
Bits 2-1	TYPE - Type of Address Relocation 00 = Locate anywhere in 32-bit address space (hardwired)
Bit 3	PREF - Prefetchable 1 = Meets the prefetchable requirements (hardwired)

PCI Registers

Bits 31-4 BASE ADDRESS 1

Value = Base address for linear access of the Savage4 frame buffer, tiled addressing apertures and BCI command data transfers

This field provides for address relocation. The programmable bits map to system address bits 31-27. All other address bits (26-4) return 0 on read to specify that Savage4 requires a 128-MByte address space for linear addressing, tiled addressing apertures and BCI command data. Note that writes to CR59_7-3 will also update this field, so if the linear addressing base address is being changed (testing only), the programmer must do a read-modify-write to ensure that this field is not changed.

Setting all bits to 0s disables this base address register.

Base Address 1 (PCI14) (Mapping 1, CRB0_7 = 0) (Rev. A)

Read/Write Address: 000 8014H Power-On Default: 6000 0008H

PCI Index: 16H (high) 14H (low)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												PREF			MSI
0	0	0	0	0	0		0	0	0	0	0	= 1	TYP	E =00	= 0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BASE ADDRESS 1								0	0	0	0	0	0	0

- Bit 0 MSI Memory Space Indicator 0 = Base registers map into memory space (hardwired)
- Bits 2-1 TYPE Type of Address Relocation 00 = Locate anywhere in 32-bit address space (hardwired)
 - PREF Prefetchable
 - 1 = Meets the prefetchable requirements (hardwired)
- Bits 31-4 BASE ADDRESS 1

Bit 3

Value = Base address for linear access of the first 16 MBytes of the Savage4 frame buffer

This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for the lower 16 MBytes of linear addressing. Note that writes to CR59_7-0 will also update this field, so if the linear addressing base address is being changed (old linear addressing only, it should never be changed with new linear addressing), the programmer must do a read-modify-write to ensure that this field is not changed.

Setting all bits to 0s disables this base address register.

Base Address 1 (PCI14) (Mapping 1, CRB0_7 = 0) (Rev. B)

Read/Write Address: 000 8014H Power-On Default: 6000 0008H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												PREF			MSI
0	0	0	0	0	0	0	0	0	0	0	0	= 1	TYPE =00		= 0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BASE ADDRESS 1							0	0	0	0	0	0	0	0

Bit 0 MSI - Memory Space Indicator

0 = Base registers map into memory space (hardwired)

PCI Index: 16H (high) 14H (low)

PCI Registers

Bits 2-1 TYPE - Type of Address Relocation 00 = Locate anywhere in 32-bit address space (hardwired)

Bit 3 PREF - Prefetchable 1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 1

Value = Base address for linear access of the of the Savage4 frame buffer

This field provides for address relocation. The programmable bits map to system address bits 31-25. All other address bits (24-4) return 0 on read to specify that Savage4 requires a 32-MByte address space for linear addressing. Note that writes to CR59_7-1 will also update this field, so if the linear addressing base address is being changed (old linear addressing only, it should never be changed with new linear addressing), the programmer must do a read-modify-write to ensure that this field is not changed.

Setting all bits to 0s disables this base address register.

Base Address 2 (PCI18) (Mapping 1, CRB0_7 = 0) (Rev. A)

Read/Write Address: 000 8018H Power-On Default: 6800 0008H PCI Index: 1AH (high) 18H (low)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												PREF			MSI
0	0	0	0	0	0		0	0	0	0	0	= 1	TYPE =00		= 0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BASE ADDRESS 2								0	0	0	0	0	0	0

Bit 0 MSI - Memory Space Indicator

0 = Base registers map into memory space (hardwired)

- Bits 2-1 TYPE Type of Address Relocation
- 00 = Locate anywhere in 32-bit address space (hardwired)
- Bit 3 PREF Prefetchable
 - 1 = Meets the prefetchable requirements (hardwired)
- Bits 31-4 BASE ADDRESS 2

Value = Base address for linear access of the second 16 MBytes of the Savage4 frame buffer

This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for the upper 16 MBytes of linear addressing.

Setting all bits to 0s disables this base address register.

Base Address 2 (PCI18) (Mapping 1, CRB0_7 = 0) (Rev. B)

Read/Write Address: 000 8018H Power-On Default: 6800 0008H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												PREF			MSI
0	0	0	0	0	0		0	0	0	0	0	= 1	TYPE =00		= 0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		BAS	DRESS	52			0	0	0	0	0	0	0	0	

Bit 0 MSI - Memory Space Indicator

0 = Base registers map into memory space (hardwired)

PCI Index: 1AH (high) 18H (low)

Bit 3

Savage4

PCI Registers

Bits 2-1 TYPE - Type of Address Relocation

00 = Locate anywhere in 32-bit address space (hardwired)

PREF - Prefetchable

1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 **BASE ADDRESS 2**

Value = Base address for tiled address aperture 0

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for tile address aperture 0.

Setting all bits to 0s disables this base address register.

Base Address 3 (PCI1C) (Mapping 1, CRB0_7 = 0) (Rev A)

Read/Write Address: 000 801CH Power-On Default: 6200 0008H

PCI Index: 1EH (high) 1CH (low)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												PREF			MSI
0	0	0	0	0	0		0	0	0	0	0	= 1	TYP	E =00	= 0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BASE ADDRESS 3							0	0	0	0	0	0	0	0

- Bit 0 MSI - Memory Space Indicator 0 = Base registers map into memory space (hardwired)
- Bits 2-1 TYPE - Type of Address Relocation
- 00 = Locate anywhere in 32-bit address space (hardwired)
- Bit 3 **PREF - Prefetchable**

1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 **BASE ADDRESS 3**

Value = Base address for tiled address aperture 0

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for tile address aperture 0.

Setting all bits to 0s disables this base address register.

Base Address 3 (PCI1C) (Mapping 1, CRB0_7 = 0) (Rev B)

Address: 000 801CH Read/Write Power-On Default: 6200 0008H

PCI Index: 1EH (high) 1CH (low)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												PREF			MSI
0	0	0	0	0	0		0	0	0	0	0	= 1	TYP	E =00	= 0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BASE ADDRESS 3							0	0	0	0	0	0	0	0

Bit 0 MSI - Memory Space Indicator

0 = Base registers map into memory space (hardwired)

Bits 2-1 TYPE - Type of Address Relocation

00 = Locate anywhere in 32-bit address space (hardwired)

PCI Registers

Bit 3 PREF - Prefetchable

1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 3

Value = Base address for tiled address aperture 1

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for tile address aperture 1.

Setting all bits to 0s disables this base address register.

Base Address 4 (PCI20) (Mapping 1, CRB0_7 = 0) (Rev. A)

Read/WriteAddress: 000 8020HPower-On Default: 6300 0008H

PCI Index: 22H (high) 20H (low)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												PREF	Y		MSI
0	0	0	0	0	0		0	0	0	0	0	= 1	TYP	Ξ =00	= 0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BASE ADDRESS 4							0	0	0	0	0	0	0	0

Bit 0 MSI - Memory Space Indicator 0 = Base registers map into memory space (hardwired)

- Bits 2-1 TYPE Type of Address Relocation 00 = Locate anywhere in 32-bit address space (hardwired)
- Bit 3 PREF Prefetchable 1 = Meets the prefetchable requirements (hardwired)
- Bits 31-4 BASE ADDRESS 4

Value = Base address for tiled address aperture 1

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for tile address aperture 1.

Setting all bits to 0s disables this base address register.

Base Address 4 (PCI20) (Mapping 1, CRB0_7 = 0) (Rev. B)

Read/Write	Address: 000 8020H
Power-On Default:	6300 0008H

PCI Index: 22H (high) 20H (low)

					•										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												PREF			MSI
0	0	0	0	0	0		0	0	0	0	0	= 1	TYP	E =00	= 0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		BA	SE AD	DRES	S 4			0	0	0	0	0	0	0	0

Bit 0 MSI - Memory Space Indicator

0 = Base registers map into memory space (hardwired)

 Bits 2-1
 TYPE - Type of Address Relocation

 00 = Locate anywhere in 32-bit address space (hardwired)

 Bit 3
 PREF - Prefetchable

 1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 4

Value = Base address for tiled address aperture 2

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for tile address aperture 2.

Setting all bits to 0s disables this base address register.

Base Address 5 (PCI24) (Mapping 1, CRB0_7 = 0) (Rev. A)

Read/Write Address: 000 8024H Power-On Default: 6400 0008H PCI Index: 26H (high) 24H (low)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												PREF			MSI
0	0	0	0	0	0		0	0	0	0	0	= 1	TYP	E =00	= 0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BASE ADDRESS 5							0	0	0	0	0	0	0	0

Bit 0 MSI - Memory Space Indicator

0 = Base registers map into memory space (hardwired)

- Bits 2-1 TYPE Type of Address Relocation 00 = Locate anywhere in 32-bit address space (hardwired)
- Bit 3 PREF Prefetchable

1 = Meets the prefetchable requirements (hardwired)

Bits 31-4 BASE ADDRESS 5

Value = Base address for tiled address aperture 2

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for tile address aperture 2.

Setting all bits to 0s disables this base address register.

Base Address 5 (PCI24) (Mapping 1, CRB0_7 = 0) (Rev. B)

Read/Write	Address: 000 8024H
Power-On Default: 6400	0008H

PCI Index: 26H (high) 24H (low)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				,								PREF			MSI
0	0	0	0	0	0		0	0	0	0	0	= 1	TYPE =00		= 0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BASE ADDRESS 5							0	0	0	0	0	0	0	0

Bit 0	MSI - Memory Space Indicator 0 = Base registers map into memory space (hardwired)
Bits 2-1	TYPE - Type of Address Relocation 00 = Locate anywhere in 32-bit address space (hardwired)
Bit 3	PREF - Prefetchable 1 = Meets the prefetchable requirements (hardwired)

PCI Registers

Bits 31-4 BASE ADDRESS 5

Value = Base address for tiled address aperture 3

for This field provides for address relocation. The programmable bits map to system address bits 31-24. All other address bits (23-4) return 0 on read to specify that Savage4 requires a 16-MByte address space for tile address aperture 3.

Setting all bits to 0s disables this base address register.

PCI Configuration Space Subsystem ID(PCI2C)

Read Only Address: 2CH Power-On Default: 00000000H

This register is a shadow of CR81-CR84.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SUBSYSTEM VENDOR ID														
31	21 20 20 28 27 26 25 24 23 22 24 20 10 18 17 16														
	SUBSYSTEM ID														

Bits 15-0 SUBSYSTEM VENDOR ID

Bits 31-16 SUBSYSTEM ID

BIOS ROM Base Address (PCI30)

Read/Write Address: 32H (high) 30H (low) Power-On Default: 000C 0000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	ADE
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BIOS ROM BASE ADDRESS														

Bit 0 ADE - Address Decode Enable

0 = Accesses to the BIOS ROM address space defined in this register are disabled 1 = Accesses to the BIOS ROM address space defined in this register are enabled

Bits 15-1 Reserved

Bits 31-16 BIOS ROM BASE ADDRESS

These are the upper 16 bits of the BIOS ROM address.

Capabilities List Pointer (PCI34)

Read/Write Address: 34H Power-On Default: DCH

This register value points to the offset of the first item in the capabilities list.

7	6	5	4	3	2	1 0					
		CAPABI	LITIES I	LIST PO	INTER						

Bits 7-0 CAPABILITIES LIST POINTER

This field is hardwired to DCH to point to the PCI power management capabilities list.

Interrupt Line (PCI3C)

Read/Write Address: 3CH Power-On Default: 00H

This register contains interrupt line routing information written by the POST program during power-on initialization.

7	6	5	4	3	2	1	0
		IN	ITERRU	IPT LINE			

Bits 7-0 INTERRUPT LINE

Interrupt Pin (PCI3D)

Read Only Address: 3DH Power-On Default: See below.

This register normally reads 01H to specify that INTA is the interrupt pin used. If $CR36_0 = 0$, this register will read 00H to indicate that no interrupt should be assigned to this device.

7	6	5	4	3	2	1	0
		II	NTERRI	JPT PIN			

Bits 7-0 INTERRUPT PIN

Latency/Grant (PCI3E)

Read Only Address: 3EH Power-On Default: FF40H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		MAX	IMUM	LATEN	ICY				~	MI	NIMUN	I GRA	NT		

Bits 7-0 MINIMUM GRANT

Value = Length of burst period required in units of 250 ns (33 MHz clock)

Bits 15-8 MAXIMUM LATENCY

Value = Maximum latency of PCI access in units of 250 ns (33 MHz clock)

Master Timeout Control (PCI40)

Read W Power-C		ult: 03H	A	ddress: 4	40H		
7	6	5	4	3	2	1	0
R	R	R	R	M	ASTER	TIMEOU	JT

Bits 3-0 MASTER TIMEOUT

Value = # of PCI cycles the Savage4 master will wait for DEVSEL to be asserted before timing out

Bits 7-4 Reserved

AGP Capability Identifier (PCI80)

Read/Write Address: 80H (AGP offset + 00H) Power-On Default: 0020002H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	NEXT POINTER								CAPABILITIES ID						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R		MA	IOR			MIN	IOR	

Bits 7-0 CAPABILITIES ID

Hardwired to 02H to identify the capabilities list as pertaining to AGP.

Bits 15-8 NEXT POINTER

Hardwired to 00H.

Bits 19-16 MINOR

Hardwired to 0H to specify the minor revision level of the AGP interface specification to which this device conforms. Bits 23-20 MAJOR

Hardwired to 2H to specify the major revision level of the AGP interface specification to which this device conforms.

Bits 31=24 Reserved

AGP Status (PCI84)

Read Only Address: 84H (AGP offset + 04H) Power-On Default: 1F000x0xH

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	R	SBA	R	R	R	R	R	R		RATE	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		REQU	ESTS	SUPPO	ORTED)		R	R	R	R	R	R	R	R

Bits 2-0 RATE

This field indicates 1x, 2x and 4x clocking are supported. This applies to the AD and SBA busses. Bits 1-0 are hardwired to 11b. Bit 2 reflects the state of CRB0_5. It will read 1 if 4x clocking is supported.

Bits 8-3 Reserved

Bit 9

- SBA Side Band Addressing
 - 0 = Side band addressing not supported
 - 1 = Side band addressing supported

The status of this bit is determined by the setting of CR70_7.

- Bits 23-10 Reserved
- Bits 31-24 REQUESTS SUPPORTED]

Hardwired to 1FH to indicate the maximum # of AGP command requests this device can manage.

AGP Command (PCI88)

Read/Write Address: 88H (AGP offset + 08H) Power-On Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	R	SE	AE	R	R	R	R	R	D	ATA R	ATE
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		RE	QUES ⁻	L DED.	ΤΗ			R	R	R	R	R	R	R	R

Bits 2-0 DATA RATE

001 = 1x clocking desired 010 = 2x clocking desired 100 = 4x clocking desired

This field must be programmed to one of these three values. The master and target must be programmed for the same rate. 4x clocking can be selected only if PCI84_2 = 1.

Bits 7-3 Reserved

Bit 8 AE - AGP Enable

- 0 = Master cannot initiate AGP operations
- 1 = Master can initiate AGP operations

The target must be enabled before the master. This bit is cleared by an AGP reset.

Bit 9 SE - SBA Enable

- 0 = Side band addressing disabled
- 1 = Side band addressing enabled

This bit can be set to 1 only if PCI84_9= 1.

- Bits 23-10 Reserved
- Bits 31-24 REQUESTS DEPTH

Value = Maximum # of pipelined operations the master is allowed to enqueue to the target

This value must be equal to or less than the value reported in the REQUESTS SUPPORTED field (AGP offset 4H_31-24) of the target.

AGP FIFO Status (PCI8C)

Read Only Address: 8CH (AGP offset + 0CH) Power-On Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	AB	OFF	OFE	DBF	DBE	RF	RE	R	R		CUF	RENT	COM	MAND	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bits 5-0 CURRENT COMMAND

Value = Current number of outstanding command in system side

Bits 7-6 Reserved

- Bit 8 RE Requester Empty Status
 - 0 = AGP requester is empty
 - 1 = AGP requester is not empty
- Bit 9 RF Requester Full Status
 - 0 = AGP requester is not full
 - 1 = AGP requester is full

PCI Registers

Bit 10	DBE - Data Buffer Empty Status 0 = AGP data buffer is empty 1 = AGP data buffer is not empty	
Bit 11	DBF - Data Buffer Full Status 0 = AGP data buffer is not full 1 = AGP data buffer is full	
Bit 12	OFE - Outstanding FIFO Empty Status 0 = Outstanding FIFO is empty 1 = Outstanding FIFO is not empty	
Bit 13	OFF - Outstanding FIFO Full Status 0 = Outstanding FIFO is not full 1 = Outstanding FIFO is full	
Bit 14	AB- AGP Master Busy 0 = AGP master idle 1 = AGP master busy	\sim \times
Bits 31-15	Reserved	

PCI Power Management Capability Identifier (PCIDC)

Read Only	
Power-On Default: 0001H	

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		NE	EXT PO	DINTE						CA		ITIES	ID		

Address: DCH (PM offset + 00H)

Bits 7-0 CAPABILITIES ID

Hardwired to 01H to identify the capabilities list as pertaining to PCI power management.

Bits 15-8 NEXT POINTER

Hardwired to 80H to point to the AGP capabilities.

PCI Power Management Capabilities (PCIDE)

Read Only	Address: DEH (PM offset + 02H
Power-On Default: 0621H	

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	D2	D1	R	R	R	DSI	R	R	V	ERSIO	N

Bits 2-0 VERSION

	Hardwired to 1H to indicate compliance with Revision 1.0 of the PCI Power Management Specification.
Bits 4-3	Reserved
Bit 5	DSI - Device Specific Initialization
	Hardwired to 1 to indicate a device specific initialization sequence is required following transition to the D0 uninitialized state.
Bits 8-6	Reserved
Bit 9	D1
Bit 10	Hardwired to 1 to indicated support for the D1 power management state. D2
	Hardwired to 1 to indicated support for the D2 power management state.

PCI Registers

Bits 15-11 Reserved

		lanage	ement	Contro	ol/Statu	us (PC	IE0)													
Read/\		foult. C		Ad	dress:	EOH (F	PM offs	set + 04	4H											
		efault: C																		
15	14	13	12	11	10	9	8	7	6	5	4		<u>३</u> २	2 R	1		0			
R	R	R	R	R	R	R	R	R	R	R	R	ſ	٢			PS				
lits 1-	0	PS - F	Power	State													X			
		00 = 0	00											Ť)			
		01 = E 10 = E																		
		10 = L 11 = L																		
			12 state		nly be	onable	d if CE	242 0	_ 1											
lits 15	-2	Reser		e can o	niiy De	enable	u ii Cr	\42_0	- 1.		\wedge									
	-	110001	vou																	
									\frown	\mathbf{N}										
										Y										
									J											
							Č		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$											
							Č													
					Z															
				~																

Section 7: 2D Graphics Engine Register Descriptions

These registers support the Enhanced mode 2D drawing commands.

In the following register descriptions, `R' stands for reserved (write = 0, read = undefined).

These registers can be accessed five different ways:

Access Method	Description
Old MMIO	Non-packed format. Accessed at Axxxx, where xxxx is the old I/O address (e.g.
	9AE8) each register.
Old MMIO	Packed format starting at offset A8100.
New MMIO	Non-packed format compatible with old MMIO. Offset is 200 xxxx. The new
	MMIO offset is given in parentheses for each register.
New MMIO	Packed format starting at offset 200 8100. This is the preferred method for
	direct access.
BCI	Index defined for each register. This should normally be used by the drivers for
	all writes. Several registers do not have BCI indices and must be accessed
	directly.

The first two methods provide backwards compatibility for some drivers. The last two methods are more efficient and should be used by all new software. The registers are listed below in their original configurations and order, i.e., non-packed and by increasing old MMIO (AxxE8H) address. The MMxxxx designation will be out of order. Table 7-1 provides the correspondence between the various methods.

Only 16-bit reads of these registers are supported. 32-bit reads will return invalid data in the upper word. All the 16-bit registers will read correctly at their MMxxxx address. The 32-bit registers will require reads at the MMxxxx address and 2 bytes higher.

Table 7-1. 2D Graphics Engine Registers Memory Mapping

Register Name	Old MMIO Address Axxxx (Hex)	Packed Old MMIO Address (Axxxx) or Packed New MMIO Address (000 xxxx) (Hex)	BCI Address (Hex)
Subsystem Status/Control	42E8	8504	N/A
FIFO Status	42EA	8508	N/A
Advanced Function Control	4AE8	850C	N/A
Wakeup		8510	N/A
Current Y, Current X	82E8, 86E8	8100, 8102	D0 (2x16-bit)
Destination Y, Destination X	8AE8, 8EE8	8108, 810A	D1 (2x16-bit)
Line Error Term	92E8	8110	D2 (16-bit)
Command	9AE8	8118	D3 (16-bit)
Short Stroke Vector	9EE8	811C	D4 (16-bit)
Background Color	A2E8	8120	D5 (32-bit)
Foreground Color	A6E8	8124	D6 (32-bit)
Write Mask	AAE8	8128	D7 (32-bit)
Read Mask	AEE8	812C	D8 (32-bit)
Color Compare	B2E8	8130	D9 (32-bit)
Background Mix, Foreground Mix	B6E8, BAE8	8134, 8136	DA (2x16-bit)
Top Scissors, Left Scissors	BEE8_1, BEE8_2	8138, 813A	DB (2x16-bit)
Bottom Scissors, Right Scissors	BEE8_3, BEE8_4	813C, 813E	DD (2x16-bit)
Pixel Control, Multi. Misc. 2	BEE8_A, BEE8_D	8140, 8142	DD (2x16-bit)
Multi. Misc., Read Select	BEE8_E, BEE8_F	8144, 8146	DE (2x16-bit)
Minor Axis Count, Major Axis Count	BEE8_0, 96E8	8148, 814A	DF (2x16-bit)
Pixel Transfer	E2E8, E2EA	Range	N/A
Global Bitmap Descriptor 1	EAE8, EAEA	8168, 816A	E0 (32-bit)
Global Bitmap Descriptor 2	EEE8, EEEA	816C, 816E	E1 (32-bit)
Primary Bitmap Descriptor 1	F2E8, F2EA	8170, 8172	E2 (32-bit)
Primary Bitmap Descriptor 2	F6E8, F6EA	8174, 8176	E3 (32-bit)
Secondary Bitmap Descriptor 1	FAE8, F8EA	8178, 817A	E4 (32-bit)
Secondary Bitmap Descriptor 2	FEE8, FEEA	817C, 817E	E5 (32-bit)

Subsystem Status Register (MM8504)

	d Only er-On		lt: 000	оH	Addı	ess:	42E8	H (8504	~ < >						
15	14	13	12	11	10	10 9 8 7 6 5 4 3 2							1	0	
R	R	R	R	R	R	R	R	LPB	BCI	CFE	CFF	BFE	BFF	GE BSY	VSY INT
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R R R R R R R R R								CB LT	CB UT

Bit 0	VSY INT - Vertical Sync Interrupt Status 0 = No interrupt
	1 = Interrupt generated if enabled
Bit 1	GE BSY - 2D Graphics Engine Busy Interrupt Status 0 = No interrupt 1 = Interrupt generated if enabled
Bit 2	BFF - BFIFO Full Interrupt Status
Dit 2	0 = No interrupt
	1 = Interrupt generated if enabled
Bit 3	BFE - BFIFO Empty Interrupt Status 0 = No interrupt
	1 = Interrupt generated if enabled
Bit 4	CFF - CFIFO Full Interrupt Status
	0 = No interrupt
	1 = Interrupt generated if enabled
Bit 5	CFE - CFIFO Empty Interrupt Status 0 = No interrupt
	1 = Interrupt generated if enabled
Bit 6	BCI - BCI Interrupt Status
	0 = No Interrupt
	1 = Interrupt generated if enabled
Bit 7	LPB - LPB Interrupt Status
	0 = No Interrupt
	1 = Interrupt generated if enabled
Bits 15-8	Reserved
Bit 16	CB UT - Command Overflow Buffer Upper Threshold Interrupt Status
	0 = No Interrupt 1 = Interrupt generated if enabled
D'1 47	
Bit 17	CB LT - Command Overflow Buffer Lower Threshold Interrupt Status 0 = No Interrupt
	1 = Interrupt generated if enabled
Bits 31-18	Reserved
2.00110	

Subsystem Control Register (MM8504)

Cubby	otoni e		Regist		504)										
Write C Power		fault: 00	000H	Addre	ss: 42E	8H (850	4H)							K	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GE	CRE	CFE	BFF	CFE	CFF	GE	VSY		BCI	CFE	CFF	BFE	BFF	GEB	VSY
SR	ENB	ENB	ENB	ENB	ENB	BSY	ENB	R	CLR	CLR	CLR	CLR	CLR	CLR	CLR
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	_	_			LT	UT	_	_	_	_	_		_	LT	UT
R	R	R R R ENB ENB R R R R R R R R CLR CLR													
Bit 0		VSY CI 0 = No 1 = Cle	change		cal Syn	c Interru	ıpt Statı	ıs			\sim		Y		
Bit 1		GEB CLR - Clear 2D/3D Graphics Engine Busy Interrupt Status 0 = No change 1 = Clear													
Bit 2		BFF CLR - Clear BFIFO Full Interrupt Status 0 = No change 1 = Clear													
Bit 3		BFE CLR - Clear BFIFO Empty Interrupt Status 0 = No change 1 = Clear													
Bit 4		CFO C 0 = No 1 = Cle	change		O Full I	nterrup	t Status		Ş						
Bit 5		CFE CI 0 = No 1 = Cle	change		O Emp	ty Interr	upt Stat	us							
Bit 6		BCI CL 0 = No 1 = Cle	change		nterrupt	Status		Y							
Bit 7		LPB CL 0 = No 1 = Cle	change		Interrup	t Status									
Bit 8		VSY EN 0 = Dis 1 = Ena	able	X.		rupt En	able								
Bit 9		0 = Dis	able	D Graph R32_4		jine Bus	sy Interr	upt Er	able						
Bit 10		BFF EN 0 = Dis 1 = Ena	able			rrupt Er	able								
Bit 11		BFE ENB - BIU FIFO Empty Interrupt Enable 0 = Disable 1 = Enable if CR32_4 = 1													
Bit 12		0 = Dis	able	mmand R32_4		ull Inter	rupt Ena	able							
Bit 13	 CFE ENB - Command FIFO Empty Interrupt Enable 0 = Disable 1 = Enable if CR32_4 = 1 														

Bit 14	BCI ENB - BCI Interrupt Enable 0 = Disable 1 = Enable if CR32_4 = 1
Bit 15	GE SR - 2D Graphics Engine Software Reset 0 = No effect 1 = Software reset (ORed with CR66_1)
Bit 16	UT CLR - Clear Command Overflow Buffer Upper Threshold Interrupt 0 = No change 1 = Clear
Bit 17	LT CLR - Clear Command Overflow Buffer Lower Threshold Interrupt 0 = No change 1 = Clear
Bits 23-18	Reserved
Bit 24	UT ENB - Command Overflow Buffer Upper Threshold Interrupt Enable 0 = Disable 1 = Enable if CR32-4 = 1
	The upper threshold is defined in MM48C10_15-0.
Bit 25	LT ENB - Command Overflow Buffer Lower Threshold Interrupt Enable 0 = Disable 1 = Enable if CR32-4 = 1
	The lower threshold is defined in MM48C10_31-16.

Bits 31-26 Reserved

FIFO Status Register (MM8508)

Read Only Address: 42EAH (8508H) Power-On Default: 0000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	CFE	OBF	RBF	WBF	R	R	R	R	CFE	OBE	RBE	WBE
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit 0	WBE - Command Write Buffer (on chip) Empty Status 0 = Not empty 1 = Empty
Bit 1	RBE - Command Read Buffer (on chip) Empty Status 0 = Not empty 1 = Empty
Bit 2	OBE - Command Overflow Buffer (frame buffer) Empty Status 0 = Not empty 1 = Empty
Bit 3	CFE - Command FIFO (CFIFO) Empty Status 0 = Not empty 1 = Empty
Bits 7-4	Reserved
Bit 8	WBF - Command Write Buffer (on chip) Full Status 0 = Not full 1 = Full

2D Graphics Engine Registers

Bit 9	RBF - Command Read Buffer (on chip) Full Status 0 = Not full 1 = Full
Bit 10	OBF - Command Overflow Buffer (frame buffer) Full Status 0 = Not Full 1 = Full
Bit 11	CFF - Command FIFO (CFIFO) Full Status 0 = Not full 1 = Full
Bits 31-12	Reserved

Advanced Function Control Register (MM850C)

Read/Write	Address: 4AE8H (850CH)
Power-On Default: 0000H	

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	GC	GE	CD	R	R	R	LA	R	PL	R	E23
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit 0 E23 - Enable 2D/3D Engine Operation

- 0 = Disable 2D/3D Engine operation (VGA operation)
- 1 = Enable 2D/3D Engine operation

This bit must only be programmed during screen off $(SR1_5 = 1)$ or during the vertical retrace period. Setting $SR1_5$ to 1 may take up to 3 HSYNCs to take effect. This bit has the same function as $CR66_0$. Programming one of these bits also changes affects the other bit.

Bit 1 Reserved

- Bit 2 PL Enhanced Mode Pixel Length 0 = 4 bits/pixel enhanced mode 1 = 8 or more bits/pixel enhanced mode CR50_5-4 are used to differentiate between 8-, 16- and 32-bit pixel lengths.
- Bit 3 Reserved
- Bit 4 LA Enable Linear Addressing
 - 0 = Disable linear addressing
 - 1 = Enable linear addressing

This bit is ORed with bit 4 of CR58 and is equivalent to it.

Bits 7-5 Reserved Bits 9-8 GECD - 2D Graphics Engine Clock Divide 00 = MCLK/201 = MCLK/4 10 = MCLK 11 = MCLK Bits 15-10 Reserved Bit 16 IC - Internal Clock Select 0 = Internal clock is 66 MHz except for the system bus interface and LPB functions 1 = Internal clock is 33 MHz Reserved Bits 31-17

Wakeup Register (MM8510)

Read/Write	Address: 8510H
Power-On Default: 000C	0000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	WU	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	

Bit 0

WU - Wake Up 0 = Chip function disabled 1 = Chip function enabled

This bit is ORed with 3C3H_0.

Current Y-Position Register (MM8100)

Read/Write Address: 82E8H (8100H) Power-On Default: Undefined BCI: D0H (lower word)

For line draws (solid, textured, short stroke or polyline), rectangle draws and image transfers, writing to this register defines the vertical screen coordinate at which the first pixel will be drawn. For BitBLTs, this is the vertical coordinate for the upper left hand corner of the source. For PatBLTs, this is the vertical coordinate of the upper left hand corner of the off-screen pattern. Reading this register produces the current vertical drawing coordinate.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R					CURF	RENT '	Y-POS	ITION				

Bits 11-0 CURRENT Y-POSITION

Bits 15-12 Reserved

Current X-Position Register (MM8102)

Read/Write Address: 86E8H (8102H) Power-On Default: Undefined BCI: D0H (upper word)

For line draws (solid, textured, short stroke or polyline), rectangle draws and image transfers, writing to this register defines the horizontal screen coordinate at which the first pixel will be drawn. For BitBLTs, this is the horizontal coordinate for the upper left hand corner of the source. For PatBLTs, this is the horizontal coordinate of the upper left hand corner of the off-screen pattern. Reading this register produces the current horizontal drawing coordinate.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R					CURF	RENT	K-POS	ITION				

Bits 11-0 CURRENT X-POSITION

Bits 15-12 Reserved

Destination Y-Position/Axial Step Constant Register (MM8108)

Read/Write Address: 8AE8H (8108H) BCI: D1H (lower word) Power-On Default: Undefined

For BitBLTs and PatBLTs, this register defines the vertical position for the top of the destination rectangle. For solid and textured line draws, this is axial step constant used in the definition of the line.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R					DESTIN	IOITA	VY-PC	SITIO	N			

Bits 11-0 DESTINATION Y-POSITION

Bits 15-12 Reserved

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R				LIN	IE PAR	AMET	ER AX	AL ST	EP CO	ONSTA	NT			

Axial Step Constant = 2 * (min(|dx|,|dy|)) In other words, when drawing a line from point A to point B, determine the change in the X coordinate from A to B and the change in the Y coordinate from A to B. Take the smaller of the two changes and multiply its absolute value by 2.

Bits 13-0 LINE PARAMETER AXIAL STEP CONSTANT

Bits 15-14 Reserved

Destination X-Position/Diagonal Step Constant Register (MM810A)

Read/Write Address: 8EE8H (810AH) Power-On Default: Undefined BCI: D1H (upper word)

For BitBLTs and PatBLTs, this register defines the horizontal position for the left side of the destination rectangle. For solid and textured line draws, this is diagonal step constant used in the definition of the line.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	DESTINATION X-POSITION									V		

Bits 11-0 DESTINATION X-POSITION

Bits 15-12 Reserved

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R				LINE	PARA	METER	r Diag	ONAL	STEP	CONS	TANT			

Diagonal Step Constant = $2 \times [min(|dx|,|dy|) - max(|dx|,|dy|)]$. See the Destination Y-Position/Axial Step Constant (MM8108) register for an explanation of the terms used in this equation.

Bits 13-0 LINE PARAMETER DIAGONAL STEP CONSTANT

Bits 15-14 Reserved

Line Error Term Register (MM8110)

Read/Write Address: 92E8H (8110H)

BCI: D2H (lower word only)

Power-On Default: Undefined

This register specifies the initial error term for solid and textured line draws.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R					LINE	PAR/	AMETER	R/ERF	ROR TE	ERM				

Error Term = 2 * min(|dx|,|dy|) - max(|dx|,|dy| - 1 if the starting X < the ending X

Error Term = 2 * min(|dx|, |dy|) - max(|dx|, |dy| if the starting X \ge the ending X

See the Destination Y-Position/Axial Step Constant (MM8108) register for an explanation of the terms used in these equations.

Bits 13-0 LINE PARAMETER/ERROR TERM

Bits 15-14 Reserved

Drawing Command Register (MM8118)

Write Only Address: 9AE8H (8118H) Power-On Default: Undefined BCI: D3H

This register specifies the drawing command and a number of associated control parameters. MM8144_9 must be set to 1 to access the upper 16 bits of this register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CN	CMD-TTPE BS I			R	BUS	SIZE	WY	DF	RWG-D	DIR	DS	DT	LP	PM	= 1
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	DES	TBD	SP	BD

Bit 0	This bit must always be programmed to 1.

specifies the longest axis.

Bit 1	PM - Select Across the Plane Pixel Mode 0 = Single pixel transferred at a time 1 = Multiple pixels transferred at a time (across the plane mode)
Bit 2	LP - Last Pixel Off 0 = Last pixel of line or vector draw will be drawn 1 = Last pixel of line or vector draw will not be drawn
Bit 3	DT - Select Radial Direction Type 0 = x-y (axial) 1 = Radial
Bit 4	DY - Draw Pixel 0 = Move the current position only - don't draw 1 = Draw pixel(s)
Bits 7-5	DRWG-DIR - Select Drawing Direction

In the following table, radial drawing angle is measured counterclockwise from the X axis. For axial line draws, the line is drawn from left to right or a +X and from right to left for a -X, down for a +Y and up for a -Y. X or Y maj

7-5	Radial (bit 3 = 1)	x-y (Axial - bit 3 = 0)
000	0°	-Y,X maj,-X
001	45°	-Y,X maj,+X
010	90°	-Y,Y maj,-X
011	135°	-Y,Y maj,+X
100	180°	+Y,X maj,-X
101	225°	+Y,X maj,+X
110	270°	+Y,Y maj,-X
111	315°	+Y,Y maj,+X

Bit 8 WY - Wait for CPU Data

0 =Use 2D Graphics Engine-based data

1 = Wait for data to be transferred to or from the CPU

BUS SIZE - Select image write bus transfer width

- 00 = 8 bits
- 01 = 16 bits
- 10 = 32 bits. All doubleword bits beyond the image rectangle width are discarded. Each line starts with a fresh doubleword. The current drawing position ends up one pixel below the lower left hand corner of the image rectangle.
- 11 = 32 bits. This setting applies only to image transfers across the plane (each bit transferred is converted to a pixel). Only bits from the end of the line width to the next byte boundary are discarded. Data for the next line begins with the next byte. The current drawing position ends up one pixel to the right of the top right corner of the image rectangle.

This parameter applies only to image write data.

Bits 10-9

2D Graphics Engine Registers

Bit	11	Reserved
Bit	12	BS - Enable Byte Swap 0 = High byte first, low byte second 1 = Low byte first, high byte second
Bits	s 15-13	CMD-TYPE - Select Command Type
		 000 = NOP. This is used to set up short stroke vector drawing without writing a pixel. 001 = Draw Line. If bit 3 of this register is cleared to 0, the axial step constant, diagonal step constant and error term are used to draw the line. If bit 3 is set to 1, the line will be drawn at the angle specified by bits 7-5 and with a length in pixels as specified by the Major Axis Pixel Count (96E8H) register. 010 = Rectangle Fill. The position, width and height of a rectangle are defined. The rectangle is filled with a solid color if it not used for an image transfer. 110 = BitBLT. A rectangle of defined location, width and height is moved to another defined location in display memory. 111 = PatBLT. An 8x8 pixel patterned rectangle of defined location is transferred repeatedly to a destination rectangle of defined location, width and height. The pattern copy is always aligned to an 8 pixel boundary and transfers continue until the pattern is tiled into the entire destination rectangle. The starting X coordinate of the source pattern rectangle should always be on an 8 pixel boundary.
Bite	s 17-16	SPBD - Source and Pattern Bitmap Descriptor 00 = Global bitmap descriptor 01 = Primary bitmap descriptor 10 = Secondary bitmap descriptor 11 = Reserved
Bits	s 19-18	DESTBD - Destination Bitmap Descriptor 00 = Global bitmap descriptor 01 = Primary bitmap descriptor 10 = Secondary bitmap descriptor 11 = Reserved
Bits	s 31-20	Reserved

Short Stroke Vector Transfer Register (MM811C)

Write Only Address: 9EE8H (811CH) Power-On Default: Undefined

BCI: D4H (lower word only)

This register defines two short stroke vectors. These are drawn one at a time based on the setting of the BYTE SWAP bit (bit 12) in the Command (MM8118) register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DR	WG-DI	R	DRW PIXEL-LENGTH				DRWG-DIR. DRW PIXEL-LENGT						Ή		
			-MV								-MV				

PIXEL-LENGTH Bits 3-0

Value = # pixels - 1

Bit 4

- DRW -MV Draw Pixel 0 = Move current position only - don't draw
- 1 = Draw pixel

2D Graphics Engine Registers

Bits 7-5 DRWG-DIR.- Select Drawing Direction (measured counterclockwise from the X axis)

 $000 = 0^{\circ}$ 001 = 45° 010 = 90° 011 = 135° 100 = 180°

101 = 225° 110 = 270°

110 = 315°

Bits 15-8 These bits duplicate bits 7-0 to define the second short stroke vector.

Background Color Register (MM8120)

Read/Write Address: A2E8H (8120H) Power-On Default: Undefined

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BACKGROUND COLOR														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BACKGROUND COLOR														

Bits 31-0 BACKGROUND COLOR

Foreground Color Register (MM8124)

Read/Write Address: A6E8H (8124H) Power-On Default: Undefined

							~								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FOREGROUND COLOR														
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
	FOREGROUND COLOR														

Bits 31-0 FOREGROUND COLOR

Bitplane Write Mask Register (MM8128)

Read/Write Address: AAE8H (8128H) Power-On Default: Undefined

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BIT-PLANE WRITE MASK														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BIT-PLANE WRITE MASK														

BIT-PLANE WRITE MASK Bits 31-0

If bit i = 0, bitplane i is not updated If bit i = 1, bitplane i is updated

BCI: D6H

BCI: D5H

Page 140

BCI: D7H

Bitpla	ane Re	ad Mas	sk Reg	ister (I	MM812	2C)											
Read/	Write			Ad	ldress:	AEA8	H (812	CH)									BCI: D8H
Powe	r-On D	efault: l	Undefir	ned												$\langle \rangle$	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
						BIT-PL	ANE F	READ I	MASK								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
						BIT-PL	ANE F	READ	MASK								
Bits 3		lf bit i If bit i	= 1, bi	itplane itplane	i is no i is us	-		ata sou source	irce							>	
Read/	Write	efault: l	•	Ad		B2E8H	H (8130	DH					Y	, ,			BCI: D9H

This register contains the color value that is compared against the current bitmap color if the color compare option is turned on by setting bit 8 of the Pixel Control (MM8140) to 1. Bit 7 of the Pixel Control register determines whether a match or a non-match results in a pixel update.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	COMPARISON COLOR WITH SOURCE														
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
COMPARISON COLOR WITH SOURCE															

Bits 31-0 COMPARISON COLOR WITH SOURCE

BCI: DAH (lower word) BCI: DAH (upper word)

2D Graphics Engine Registers

Background and Foreground Mix Registers (MM8134, MM8136)

Read/Write	Address: B6E8H (8134H) (Background)
	Address: BAE8H (8136H) (Foreground)

Power-On Default: Undefined

This register has two different definitions, depending on the setting of bit 15.

Bit 15 = 0 (16 ROPs definition)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RT	R	R	R	R	R	R	R	R	CLR	SRC	R		MIX.	TYPE	

Bits 3-0 MIX TYPE - Select Mix Type

In the general case, a new color is defined. A logical operation such as AND or OR is then performed between it and the current bitmap color. If the bitplane to be written is enabled, the result of this logical "mix" is written to the bitmap as the new pixel color. The following table shows the mix types available (! = logical NOT).

0000	!current	1000	Icurrent OR Inew
0001	logical zero	1001	current OR !new
0010	logical one	1010	lcurrent OR new
0011	leave current as is	1011	current OR new
0100	!new	1100	current AND new
0101	current XOR new	1101	!current AND new
0110	!(current XOR new)	1110	current AND !new
0111	new	1111	!current AND !new

Bit 4 Reserved

Bits 6-5 CLR SRC - Select Color Source

- 00 = Background Color register is the color source
- 01 = Foreground Color register is the color source
- 10 = CPU data (the CPU is the color source)
- 11 = Display memory (the display memory is the color source)

Bits 14-7 Reserved

- Bit 15 RT ROP Type
 - 0 = 16 ROPs register definition
 - 1 = 256 ROPs register definition

Bit 15 = 1 (256 ROPs definition)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RT	R	R	R	CLR	PAT	CLR	SRC				MIX ⁻	ГҮРЕ			

Bits 7-0 MIX TYPE - Select Mix Type

256 raster operations according the Microsoft definition

- Bits 9-8 CLR-SRC Select Color Source
 - 00 = Background Color register is the color source
 - 01 = Foreground Color register is the color source
 - 10 = CPU data (the CPU is the color source)
 - 11 = Display memory (the display memory is the color source)

2D Graphics Engine Registers

 Bits 11-10
 CLR-PAT - Select Color Pattern

 00 = Background Color register is the color source

 01 = Foreground Color register is the color source

 10 = Reserved

 11 = 8x8 pattern from display memory

 The source and pattern colors cannot both be from display memory.

 Bits 14-12

 Reserved

 Bit 15
 RT - ROP Type

 0 = 16 ROPs register definition

 1 = 256 ROPs register definition

Read Register Data Register

Read Only Address: BEE8H Power-On Default: Undefined

Note: This register (and the Read Select Register, BEE8, Index F) are only used with non-packed MMIO addressing. The various indexes can be read directly at their packed new MMIO addresses. The pipeline issue described below does not apply to this case.

A read of this register produces a read of the register specified by bits 3-0 of the Read Register Select (BEE8H, Index 0FH) register. Each read of BEE8H causes the read index (bits 3-0 of BEE8H, Index 0FH) to increment by one. Registers BEE8H, Indices 0H to 0EH, 9AE8H and 42E8H can thus be rapidly read by successive reads from BEE8H.

Note: Writes to the BEE8H registers (except the read index register, Index 0FH) are pipelined. Therefore, to correctly read back a write to one of these registers, issue an engine command and wait for engine idle. Next, write the desired register index to BEE8H, Index 0FH and read the data from BEE8H.

The BEE8H registers are written directly by writing to BEE8H with the appropriate register index in bits 15-12.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Minor Axis Pixel Count Register (MM8148)

Write Only Address: BEE8H, Index 0 (8148H) Power-On Default: Undefined BCI: DFH (lower word)

This register specifies the height for rectangles, image transfers, BitBLTs and PatBLTs.

15	14	13	12	11 10	9	8	7	6	5	4	3	2	1	0
0	0	0	0				REC	TANG		IGHT				

Bits 11-0 RECTANGLE HEIGHT

Value = (number of pixels in the height of the rectangle) - 1 INDEX = 0H

Bits 15-12 IND

Write Only

0

0

15

0

0

Top Scissors Register (MM8138)

Power-On Default: Undefined

Address: BEE8H, Index 1 (8138H)

BCI: DBH (lower word)

2D Graphics Engine Registers

This register specifies the top of the clipping rectangle. It is the lowest Y value that will be drawn. 11 10 9 8 7 6 15 14 13 12 5 4 3 2 CLIPPING TOP LIMIT 0 0 1 Bits 11-0 CLIPPING TOP LIMIT Bits 15-12 INDEX = 1H Left Scissors Register (MM813A) Write Only Address: BEE8H, Index 2 (813AH) BCI: DBH (upper word) Power-On Default: Undefined This register specifies the left side of the clipping rectangle. It is the lowest X value that will be drawn. 10 8 6 15 14 13 12 11 9 7 5 4 3 2 1 0 CLIPPING LEFT LIMIT 0 1 0 Bits 11-0 CLIPPING LEFT LIMIT Bits 15-12 INDEX = 2H Bottom Scissors Register (MM813C) Address: BEE8H, Index 3 (813CH) Write Only BCI: DCH (lower word) Power-On Default: Undefined This register specifies the bottom of the clipping rectangle. It is the highest Y value that will be drawn. 10 9 8 7 14 13 12 11 6 5 4 0 CLIPPING BOTTOM LIMIT 0 1 1 Bits 11-0 **CLIPPING BOTTOM LIMIT** Bits 15-12 INDEX = 3H Bits 15-11 Reserved Right Scissors Register (MM813E) Address: BEE8H, Index 4 (813EH) Write Only BCI: DCH (upper word) Power-On Default: Undefined This register specifies the right side of the clipping rectangle. It is the highest X value that will be drawn. 13 12 15 11 10 9 8 7 6 5 4 3 2 14 1 0 0 0 CLIPPING RIGHT LIMIT 1 Bits 11-0 CLIPPING RIGHT LIMIT Bits 15-12 INDEX = 4H

Pixel Control Register (MM8140)

Write Power		efault: l	Jndefir		dress:	BEE8H	H, Inde	x AH (8	8140H)							BCI: DDH (lower word)
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	\sim
								DT-E	X-SRC							
1	0	1	0	R	R	R	R	1	0	R	R	R	R	R	R	
Bits 5- Bits 7-	-	Resei		- Sele	ct Mix	Registe	ər								V	7

Dits 7-0	
	00 = Foreground Mix register is always selected
	01 = Reserved
	10 = CPU data determines Mix register selected
	11 Disalas as a sum a traditional data maine a M

- 11 = Display memory current value determines Mix register selected
- Bits 11-8 Reserved
- Bits 15-12 INDEX = 0AH

Multifunction Control Miscellaneous 2 Register (MM8142)

Write Only	Address: BEE8H, Index DH (8142)	H)
Power-On Default: Undefined		

BCI: DDH (upper word)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
=1	=1	=0	=1	=0	=0	=0	=0	=0	SF	RC-BAS	SE	=0	DS	ST=BA	SE

Bits 2-0	DST-BASE - Destination Base Address 000 = First destination memory address is in the 1st MByte of display memory 001 = First destination memory address is in the 2nd MByte of display memory 010 = First destination memory address is in the 3rd MByte of display memory 011 = First destination memory address is in the 4th MByte of display memory
	This field supersedes bits 1-0 of BEE8H, Index E if any of these 3 bits are set to 1.
Bit 3	Reserved
Bits 6-4	SRC-BASE - Source Base Address
	000 = First source memory address is in the 1st MByte of display memory
	001 = First source memory address is in the 2nd MByte of display memory
	010 = First source memory address is in the 3rd MByte of display memory 011 = First source memory address is in the 4th MByte of display memory
	or i = i list source memory address is in the 4th Mbyte of display memory
	This field supersedes bits 3-2 of BEE8H, Index E if any of these three bits are set to 1.
Bit 7	Reserved
Bits 9-8	WFE - Wait for FIFO Empty
	10 = Wait for wrtie FIFO empty between each drawing
	All other values have no effect. Bits 7-0 of this register must be programmed to FFH for this to be effective.
Bits 11-10	Reserved
Bits 15-12	INDEX = 0DH

Multifunction Control Miscellaneous (MM8144)

Write Only Address: BEE8H, Index EH (8144H) Power-On Default: Undefined BCI: DEH (lower word)

Software must initialize this register appropriately before the 2D Graphics Engine is used. See the description for BEE8H, read only, for the required two step register update sequence.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ENB	SRC		EXT	RS	SRC	-BA	DEST-BA	
1	1	1	0	DC	R	32B	CMP	NE	R	CLIP	F	21	20	21 20	

Bits 1-0	DEST-BA 21 20 - Destination Base Address Bits 21-20 00 = First destination memory address is in the 1st MByte of display memory 01 = First destination memory address is in the 2nd MByte of display memory 10 = First destination memory address is in the 3rd MByte of display memory 11 = First destination memory address is in the 4th MByte of display memory
This field is a	superseded by bits 2-0 of BEE8H, Index D if any of the BEE8H Index D bits is set to 1.
Bits 3-2	SRC-BA 21 20 - Source Base Address Bits 21-20 00 = First source memory address is in the 1st MByte of display memory 01 = First source memory address is in the 2nd MByte of display memory 10 = First source memory address is in the 3rd MByte of display memory 11 = First source memory address is in the 4th MByte of display memory
	This field is superseded by bits 6-4 of BEE8H Index D if any of the BEE8H Index D bits is set to 1.
Bit 4	RSF - Select Upper Word in 32 Bits/Pixel Mode 0 = Selects lower 16 bits for accesses to 32-bit registers in 32 bpp mode 1 = Selects upper 16 bits for accesses to 32-bit registers in 32 bpp mode
Bit 5	EXT CLIP - Enable External Clipping 0 = Only pixels inside the clipping rectangle are drawn 1 = Only pixels outside the clipping rectangle are drawn
Bit 6	Reserved
Bit 7	 SRC NE - Don't Update Bitmap if Source Not Equal to Color Compare Color 0 = Don't update current bitmap if the Color Compare (B2E8) register value is equal to the color value of the source bitmap 1 = Don't update current bitmap if the Color Compare (B2E8) register value is not equal to the color value of the source bitmap
	This bit is only active if bit 8 of this register is set to 1.
Bit 8	ENB CMP - Enable Color Compare 0 = Disable color comparison 1 = Enable color comparison
Bit 9	32B - Enable 32-bit Register Write 0 = 16-bit 2D Engine register access 1 = 32-bit 2D Engine register access
Bit 10	Reserved
Bit 11	DC - Disable Clipping 0 = Clipping defined by scissors registers 1 = Clipping disabled
Bits 15-12	INDEX = 0EH

Read Register Select Register (MM8146)

Write Only Address: BEE8H, Index FH, (8146H) Power-On Default: Undefined BCI: DEH (upper word)

Although this register has a BCI address, it will never be used with BCI because it deals only with register reads using non-packed MMIO.

ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ſ	1	1	1	1	R	R	R	R	R	R	R	R	R		EG-SE		

Bits 3-0 READ-REG-SEL - Read Register Select

When BEE8H is read, the value returned is determined by this read register index according to the following:

0000 = BEE8H, Index 0H
0001 = BEE8H, Index 1H
0010 = BEE8H, Index 2H
0011 = BEE8H, Index 3H
0100 = BEE8H, Index 4H
0101 = BEE8H, Index 0AH
0110 = BEE8H, Index 0EH
0111 = 9AE8H (Bits 15-13 of the read data are forced to 0)
1000 = 42E8H (Bits 15-12 of the read data are forced to 0)
1001 = Reserved
1010 = BEE8H, Index 0DH

The read register index increments by one with each reading of BEE8H.

Bits 11-4 Reserved

Bits 15-12 INDEX = 0FH

Major Axis Pixel Count Register (MM814A)

Read/Write Address: 96E8H (814AH) Power-On Default: Undefined

BCI: DFH (upper word)

This register specifies the length (in pixels) of the major (longest) axis for solid and textured lines and the width for rectangles, image transfers, BitBLTs and PatBLTs.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R			REC	CTANG	ELE WI	DTH/L	INE PA	RAME	TER N	MAX		

Bits 11-0 RECTANGLE WIDTH/LINE PARAMETER MAX

The value is the number of pixels along the major axis - 1.

Bits 15-12 Reserved

Globa	I Bitma	ap Des	scripto	r 1 Re	gister	(MM81	68)								
Read/ Power	Write -On De	efault: I	Jndefir		dress:	EAE8H	H (8168	3H)							BCI: E0H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							OFF	SET							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							OFF	SET							

Bits 31-0 OFFSET

Value = Starting address of the bitmap (in bytes)

(1110400)

Global Bitmap Descriptor 2 Register (MM816C)

Read/Write Address: EEE8 (816CH) Power-On Default: Undefined

15 14 13 12 11 10 9 8 7 6 5 3 2 1 0 R R R STRIDE BE BLE R BDS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R R R ΒD R R TF COLOR DEPTH

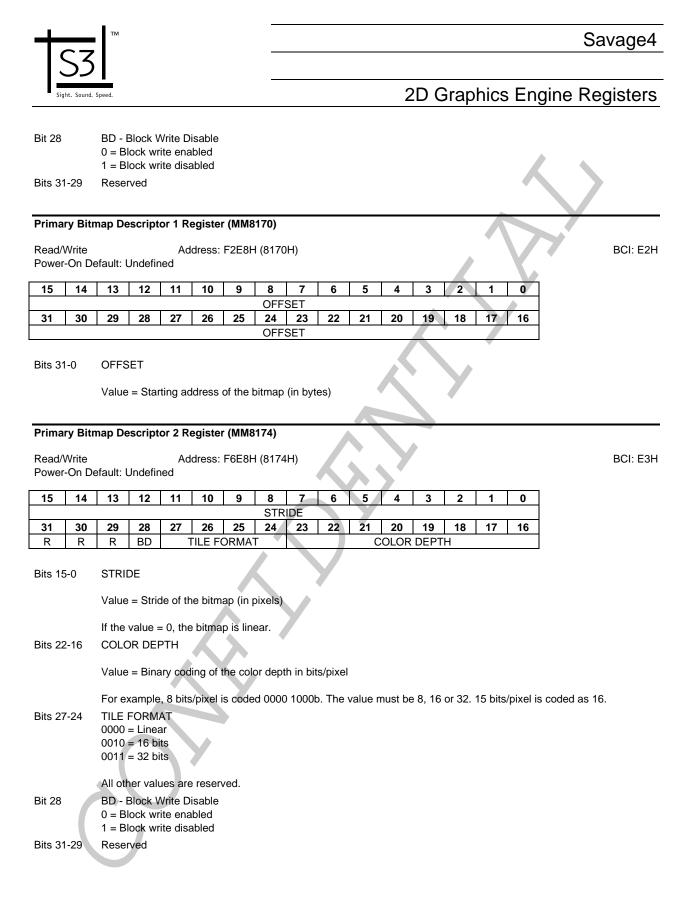
0 = 32 bits (this register only) 1 = 64 bits (includes global bitmap descriptor 1)

The 64-bit descriptor must be enabled when memory tiling is used.

- Bit 1 Reserved
- Bit 2 BLE Big/Little Endian Addressing for Image Writes
 - 0 = Little endian 1 = Big endian

This bit is use for S3 testing only.

- Bit 3 BE BCI Enable (2D Engine only) 0 = BCI disabled
 - 1 = BCI enabled
- Bits 12-4 STRIDE


Value = Stride of the bitmap (in pixels * 16)

- Bits 15-13 Reserved
- Bits 23-16 COLOR FORMAT

Value = Binary coding of the color depth in bits/pixel

- Bits 25-24 TF Tile Format
 - 00 = Linear
 - 01 = Reserved
 - 10 = 16 bits
 - 11 = 32 bits
- Bits 27-26 Reserved

BCI: E1H

Secor	dary	Bitmap	Descr	iptor	1 Regi	ster (M	IM8178	3)											
Read/ Power		efault: l	Jndefir		ldress:	FAE8	H (8178	3H)										>	BCI: E4H
15	14	13	12	11	10	9	8	7	6	5	4	3	2		1	0			
31	30	29	28	27	26	25	OFF: 24	SET 23	22	21	20	19	18	1	7	16			
							OFF	SET											
Bits 3	1-0	OFFS	ΒET													Y	>		
		Value	= Star	ting ad	ddress	of the	bitmap	(in by	rtes)						Y				
Secor	dary I	Bitmap	Descr	iptor 2	2 Regi	ster (N	IM817C	C)											
Read/ Power		efault: l	Jndefir		ldress:	FEE8	H (8170	CH)			X		Y						BCI: E5H
15	14	13	12	11	10	9	8	7	6	5	4	3	2		1	0]		
31	30	29	28	27	26	25	STR 24	IDE 23	22	21	20	19	18	1	7	16	-		
R	R	R	BD		TILE F							DEPT				-]		
Bits 15	5-0	STRI	DE							2									
		Value	= Stric	de of tl	he bitm	ap (in	pixels)			Y									
		If the	value =	= 0, the	e bitma	p is lin	ear.												
Bits 22	2-16	COLC	DR DEF	PTH															
		Value	= Bina	ary coo	ding of	the col	or dept	h in b	its/pixel										
	/				s/pixel	is code	ed 0000	0 1000	b. The	value	must b	e 8, 16	6 or 32	2. 15	bits/j	pixel i	s codeo	d as 16.	
Bits 27	7-24		FORM = Linea																
			= 16 bi = 32 bi			C													
		All oth	ner valu	ues are	e reser	ved.													
Bit 28		0 = B	Block V lock wr lock wr	ite ena	abled														
Bits 3	1-29	Rese	7		Geneu														
]																

Section 8: Streams Processor Register Descriptions

Many Streams Processor registers will normally be written via the BCI. Direct new MMIO access for these registers and those without BCI addresses is also available. The register identifier MMxxxx means that the register is memory mapped at offset **200** xxxx from the base address.

Primary Stream Control Register (MM8180)

Read/Write Address: 8180H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R		PSFC		R		PSIDF		R	R	R	R	R	R	R	R

Bits 23-0	Reserved
Bits 26-24	PSIDF - Primary Stream Input Data Format 000 = RGB-8 (CLUT) 001 = 4-bit Alpha RGB (AAAAxxxx.8.8.8 010 = Reserved 011 = KRGB-16 (1.5.5.5) 100 = Reserved 101 = RGB-16 (5.6.5) 110 = RGB-24 (8.8.8) - This mode is not accelerated. 111 = XRGB-32 (X.8.8.8)
Bit 27	Reserved
Bits 30-28	PSFC - Primary Stream Filter Characteristics 000 = Primary stream not filtered 001 = Primary stream stretched 2x both horizontally and vertically using replication 010 = Primary stream stretched 2x horizontally using interpolation and 2x vertically using replication Other values reserved
Bit 31	Reserved

Color/Chroma Key Control Register (MM8184)

Read/Write Address: 8184H

Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
G/U/Cb KEY (LOW)									B/V/Cr KEY (LOW)									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
R	R	CKI	KC	R	F	RGB CO	0			R	/Y KE	Y (LOV	/)					

Bits 7-0 B/V/Cr key value (lower bound for chroma)

Bits 15-8 G/U/Cb key value (lower bound for chroma)

Bits 23-16 R/Y key value (lower bound for chroma)

BCI: A0H

BCI: A1H

Streams Processor Registers

Bits 26-24	RGB CC - RGB Color Comparison Precision 000 = Compare bit 7 of RGB (compare red bit 7's, green bit 7's and blue bit 7's) 001 = Compare bits 7-6 of RGB 010 = Compare bits 7-5 of RGB 101 = Compare bits 7-4 of RGB 100 = Compare bits 7-3 of RGB 101 = Compare bits 7-2 of RGB 110 = Compare bits 7-1 of RGB 111 = Compare bits 7-0 of RGB
Bit 27	Reserved
Bit 28	 KC - Key Control 0 = Extract key data from input stream key bit (if present). (KRGB-16, 1.5.5.5 only) If the K bit is 0, the pixel from the other stream is used (transparent). If the K bit is 1, the key bit streams pixel is used (opaque) 1 = Enable color or chroma keying for all modes other than KRGB-16
Bit 29	 CKI - Color Keying on Index 0 = Color keying based on color value 1 = Color keying based on comparison of color index value with value specified in MM8184_7-0.
Bits 31-30	Reserved

Genlocking Control Register (MM8188)

Read/Write Address: 8188H Power-on Default: 00000000H BCI: A2H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CHARACTER CLOCKS BETWEEN VSYNCS														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GL	HD	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bits 15-0 CHARACTER CLOCKS BETWEEN VSYNCS (Read Only)

Value = [Character clocks from T1 to T2]/16

Where:

T1 = The falling edge of VSYNC (VSYNC active high) or the rising edge of VSYNC (VSYNC active low) T2 = The rising edge of the LPB VSYNC input.

Bits 29-16 Reserved

Bit 30 HD - HDTV Function Enable 0 = HDTV function disabled

1 = HDTV function enabled

When this bit is set to 1, DCLK (pixel clock) is driven out on the ROMA3 pin (to an HDTV encoder), and the OVERLAY signal is driven out on the ROMA2 pin to control an analog MUX such that primary stream data is displayed when OVERLAY is low and high resolution RGB data is displayed when OVERLAY is high.

- Bit 31 GL Genlock Support Enable
 - 0 = Genlock support disabled
 - 1 = Genlock support enabled

Setting this bit to 1 enables the counter described in bits 15-0 of this register.

BCI: A4H

Streams Processor Registers

Secondary Stream Control Register (MM8190)

Read/Write	Address: 8190H
Power-on Default: 00000	000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
R	R	R	R		SOURCE HORIZONTAL PIXEL SIZE												
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
LOI	R	R	R	R	SDIF			R	R	R	R	R		HDM			

Bits 11-0 SOURCE HORIZONTAL PIXEL SIZE

Value = # of pixels/line in the source image

Updating of this field is controlled by CR66_4 and CR51_7.

- Bits 15-12 Reserved
- Bits 18-16 HDM Horizontal Downscaling Mode
 - 010 = 4:1
 - 011 = 8:1 100 = 16:1
 - 101 = 32:1 110 = 64:1
 - 111 = Reserved

All other values result in no scaling. Use MM8198 for scaling ratios between 1:1 and 2:1. Downscaling is only valid for YCbCr formats.

Bits 23-19 Reserved

- Bits 26-24 SDIF Secondary Stream Input Data Format 000 = CbYCrY-16 (4.2.2) 001 = YCbCr-16 (4.2.2) 010 = YUV-16 (4.2.2) 011 = KRGB-16 (1.5.5.5)
 - 100 = YCbCr-16 (4.2.0) 101 = RGB-16 (5.6.5) 110 = RGB-24 (8.8.8) 111 = XRGB-32 (X.8.8.8)

Updating of this field is controlled by CR66_4 and CR51_7.

Bits 30-27 Reserved

Bit 31 LOI - Luma-only Interpolation 0 = All YUV values interpolated when vertical filtering enabled 1 = Only Y (luma) values interpolated when vertical filtering enabled

Chroma Key Upper Bound Register (MM8194)

Read/Write Address: 8194H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		U/C	b KEY	(UPPE	ER)					V/C	r KEY	(UPPE	ER)			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
R	R	R	R	R	R	R	R	Y KEY (UPPER)								

Bits 7-0 V/Cr key value (upper bound)

Bits 15-8 U/Cb key value (upper bound)

Bits 23-16 Y key value (upper bound)

BCI: A5H

Sight. Sound. Speed. ™

Streams Processor Registers

Bits 31-24 Reserved

Secon	dary S	Stream	Horiz	ontal S	Scaling	y Regis	ster (M	IM8198	3)								
Read/ Power		fault: 0	00000		dress:	8198H											BCI: A6H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
					HO	RIZON	ITAL S	CALIN	IG RAT	10				}			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
					HC	DRIZOI	NTAL I	NITIAL	_ VALL	JE							
																_	

Bits 15-0 HORIZONTAL SCALING RATIO

Value = (# of pixels/line in source image)/(# of pixels/line in scaled image)

This value has a format of D.FFFFFFFFFFFFF, and FFFFFFFFFFFFF is the fraction resulting from the value calculation. The decimal part D is always 0 when upscaling is enabled. The D bit is set to 1 for horizontal downscaling, with the fractional part defining the degree of downscaling. The maximum value is all 1's, resulting in approximately 2:1 downscaling. Downscaling is only valid for YCbCr formats. The horizontal downscaling mode for rations larger than 2:1 is defined via MM8190_18-16. Updating of this field is controlled by CR66_5 and CR51_7.

Bits 31-16 HORIZONTAL INITIAL VALUE

Value = S.FFFFFFFFFFFFFFF

Color Adjustment Register (MM819C)

Read/Write Address: 819CH Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BCE	R	R		CC	NTRA	ST				E	BRIGH	TNESS	6		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
HSE	R	R		HL	JE/SAT	٢2		R	R	R		HL	JE/SAT	1	

Bits 7-0 BRIGHTNESS - Brightness Control

Value = BBBBBBBB

where BBBBBBB is the brightness adjustment factor (0 - 255). The larger the number, the greater the brightness. CONTRAST- Contrast Control

Value = C.CCCC

This is the contrast adjustment, which can vary from 0 (0.0000) to 1.9375 (1.1111).

Bits 14-13 Reserved

Bits 12-8

- Bits 15 BCE Brightness and Contrast Enable
 - 0 = Brightness and contrast control disabled
 - 1 = Brightness and contrast control enabled

This control should be enabled only for YUV/YCbCr secondary stream formats and must be disabled for RGB secondary stream formats.

BCI: A7H

Bits 20-16 HUE/SAT 1 - Hue and Saturation Factor 1

Value = SF.FFF

where S is the sign bit (1 = negative) and F.FFF is the factor [SAT * cosine A]. SAT is the saturation, which can vary from -1.875 (10001) to 1.875 (01111) and A is the hue angle, the cosine of which can vary from -1 to +1. The value is in 2's complement format.

- Bits 23-21 Reserved
- Bits 28-24 HUE/SAT 2 Hue and Saturation Factor 2

Value = SF.FFF

where S is the sign bit (1 = negative) and F.FFF is the factor [SAT * sine A]. SAT is the saturation, which can vary from -1.875 (10001) to 1.875 (01111) and A is the hue angle, the sine of which can vary from -1 to +1.

Bits 30-29 Reserved

- Bit 31 HSE Hue and Saturation Control Enable 0 = Hue and saturation control disabled
 - 1 = Hue and saturation control enabled

This control should be enabled only for YUV/YCbCr secondary stream formats and must be disabled for RGB secondary stream formats.

Blend Control Register (MM81A0)

Read/Write Address: 81A0H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R		KP			R	R	R	R		KS		R	R
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	COMP MODE			R	R	R	R	R	R	R	R

Bits 1-0 Reserved

Bits 4-2 Ks

Value = secondary stream blend coefficient

Updating of this field is controlled by CR66_4 and CR51_7.

Bits 9-5 Reserved

Bits 12-10 Kp

Value = primary stream blend coefficient

Updating of this field is controlled by CR66_4 and CR51_7.

Bits 23-13 Reserved

BCI: A8H

Streams Processor Registers

Bits 26-24 Compose Mode

- 000 = Secondary stream opaque overlay on primary stream
- 001 = Primary stream opaque overlay on secondary stream
- 010 = Dissolve, [Pp x Kp + Ps x (8 Kp)]/8, ignore Ks
- 011 = Fade, [Pp x Kp + Ps x Ks]/8, where Kp + Ks must be ≤ 8
- 100 = Alpha blending, (higher alpha means greater primary stream dominance on pixel color)
- 101 = Color key on primary stream (secondary stream overlay on primary stream)
- 110 = Color or chroma key on secondary stream (primary stream overlay on
- secondary stream) 111 = Reserved

When this field is programmed, the value does not take effect until the next VSYNC.

Bits 31-27 Reserved

Primary Stream Frame Buffer Address 0 Register (MM81C0)

Read/Write Address: 81C0H Power-on Default: 00000000H BCI: B0H

If a primary stream is enabled, this register specifies the starting address in the frame buffer. Updating of this register is controlled via CR66_4 and CR51_7.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PRIMARY BUFFER ADDRESS 0														
31	30	29	28	27	26	25	24 23 22 21 20 19 18 17 16								
TB	3R	TE	3W	R	VS	PBS	PRIMARY BUFFER ADDRESS 0								

Bits 24-0 PRIMARY BUFFER ADDRESS 0

Value = Primary stream frame buffer starting address 0

This value must be quadword aligned.

Bit 25	 PBS - Primary Stream Buffer Select 0 = Primary frame buffer starting address 0 (MM81C0_24-0) used for the primary stream 1 = Primary frame buffer starting address 1 (MM81C4_24-0) used for the primary stream
Bit 26	VS - VSYNC Off Mode 0 = VSYNC off mode off 1 = VSYNC off mode on
	When this bit is set, the display buffer can be changed (bit 25 of this register) between VSYNCs.
Bit 27	Reserved
Bits 29-28	TBW – Triple Buffering Writes (Rev. B) 00 = Triple buffering not used 01 = Next write is to buffer 0 10 = Next write is to buffer 1 11 = Next write is to buffer 2
Bits 31-30	TBR – Triple Buffering Read (Rev. B) 00 = Triple buffering not used 01 = Next read is from buffer 0 10 = Next read is from buffer 1 11 = Next read is from buffer 2

BCI: B1H

Streams Processor Registers

Primary Stream Frame Buffer Address 1 Register (MM81C4)

Read/Write Address: 81C4H Power-on Default: Undefined

If the primary stream is double buffered, this register specifies the starting address in the frame buffer for the second buffer. Updating of this register is controlled via CR66_4 and CR51_7.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	PRIMARY BUFFER ADDRESS 1															
31	30	29	28	27	26	25	24 23 22 21 20 19 18 17 16									
R	R	R	R	R	R	R	PRIMARY BUFFER ADDRESS 1									

Bits 24-0 PRIMARY BUFFER ADDRESS 1

Value = Primary stream frame buffer starting address 1

This value must be quadword aligned.

Bits 31-25 Reserved

Primary Stream Stride Register (MM81C8)

Read/Write Address: 81C8H Power-on Default: Undefined

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
R	R	R		PRIMARY STREAM STRIDE												
31	30	29	28													
ET	BPP		PRIMARY STREAM TILE OFFSET													

Bits 12-0 PRIMARY STREAM STRIDE

Value = byte offset of vertically adjacent pixels in the primary stream buffer(s)

If double or triple buffering is used, the stride must be the same for all buffers.

- Bits 15-13 Reserved
- Bits 29-16 PRIMARY STREAM TILE OFFSET

Value = [Scan line width in bytes/128 bytes per tile] x 256 QWords/tile

This is the # of QWords from a given position in one tile to the same position in the tile immediately below. This applies only to 16-line tiles.

This bit applies when tiling is enabled via bit 31 of this register. The power-on default value is 0.

Bit 30 BPP - Tiling Bits/Pixel 0 = 16 bits/pixel tile format

1 = 32 bits/pixel tile format

Bit 31

ET - Enable Tiling 0 = Primary stream tiling off

1 = Primary stream tiling on

The power-on default value is 0.

BCI: B2H

Secondary Stream Multiple Buffer/LPB Support Register (MM81CC)

Read/Write Address: 81CCH Power-on Default: xxxxx00H BCI: B3H

Bits 7-0 of this register control double or triple buffering, depending on the setting of bit 7. The bit definitions are different for each case, so two sets of definitions are provided. The bit diagram following is for the triple buffering case. This register is only programmed when double or triple buffering of the secondary stream with LPB input is required.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	R	BS	LST	LSL	LI	IS		SBS	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

The following definitions for bits 6-0 apply when double buffering is selected (bit 7 of this register cleared to 0).

Bit 0 Reserved

Bits 2-1 SBS - Secondary Stream Buffer Select

- 00 = Secondary frame buffer starting address 0 (MM81D0_22-0) used for the secondary stream
- 01 = Secondary frame buffer starting address 1 (MM81D4_22-0) used for the secondary stream
- 10 = Secondary frame buffer starting address 0 (MM81D0_22-0) used for the secondary stream and LPB frame buffer starting address 0 (MMFF0C_22-0) used for the LPB input stream OR secondary frame buffer starting address 1 (MM81D4_22-0) used for the secondary stream and LPB frame buffer starting address 1 (MMFF10_22-0) used for the LPB input stream. Which alternative applies is determined by LPB starting address register selected by bit 4 of this register
- 11 = Secondary frame buffer starting address 0 (MM81D0_22-0) used for the secondary stream and LPB frame buffer starting address 1 (MMFF10_22-0) used for the LPB input stream OR secondary frame buffer starting address 1 (MM81D4_22-0) used for the secondary stream and LPB frame buffer starting address 0 (MMFF0C_22-0) used for the LPB input stream. Which alternative applies is determined by the LPB starting address register selected by bit 4 of this register

Bit 3 Reserved

- Bit 4 LIS LPB Input Buffer Select
 - 0 = LPB frame buffer starting address 0 (MMFF0C_21-0) used for the LPB input
 - 1 = LPB frame buffer starting address 1 (MMFF10_21-0) used for the LPB input

This bit selects the starting address for writing LPB data into the frame buffer. When the value programmed to this bit takes effect is determined by the setting of bit 5 of this register. This bit can be toggled at the completion of writing all the data for a frame to the frame buffer via bit 6 of this register

- Bit 5 LSL LPB Input Buffer Select Loading
 - 0 = The value programmed into bit 4 of this register takes effect immediately
 - 1 = The value programmed into bit 4 of this register takes effect at the next end of frame (completion of writing all the data for a frame into the frame buffer)
- Bit 6 LST LPB Input Buffer Select Toggle
 - 0 = End of frame (completion of writing all the data for a frame into the frame buffer) has no effect on the setting of bit 4 of this register
 - 1 = End of frame causes the setting of bit 4 of this register to toggle

Streams Processor Registers

The following definitions for bits 6-0 apply when triple buffering is selected (bit 7 of this register set to 1).

Bits 2-0	SPS Secondary Stream Puffer Select
DIIS 2-0	SBS - Secondary Stream Buffer Select 000 = Secondary frame buffer starting address 0 (MM81D0_22-0) used for the secondary stream
	$010 =$ Secondary frame buffer starting address 1 (MM81D4_22-0) used for the secondary stream
	0x1 = Secondary frame buffer starting address 2 (MM8308_22-0) used for the secondary stream
	10x = Secondary frame buffer starting address 0 (MM81D0_22-0) used for the secondary stream and LPB frame
	buffer starting address 0 (MMFF0C_22-0) used for the LPB input stream OR secondary frame buffer starting address
	1 (MM81D4_22-0) used for the secondary stream and LPB frame buffer starting address 1 (MMFF10_22-0) used for
	the LPB input stream OR secondary frame buffer starting address 2 (MM8308_22-0) used for the secondary stream
	and LPB frame buffer starting address 2 (MMFF38_22-0) used for the LPB input stream. Which alternative applies is determined by the LPB starting address register selected by bits 4-3 of this register
	11x = Secondary frame buffer starting address 0 (MM81D0_22-0) used for the secondary stream and LPB frame
	buffer starting address 1 (MMFF10_22-0) used for the LPB input stream OR secondary frame buffer starting address
	1 (MM81D4_22-0) used for the secondary stream and LPB frame buffer starting address 2 (MMFF38_22-0) used for
	the LPB input stream OR secondary frame buffer starting address 2 (MM8308_22-0) used for the secondary stream
	and LPB frame buffer starting address 0 (MMFF0C_22-0) used for the LPB input stream. Which alternative applies is
	determined by the LPB starting address register selected by bits 4-3 of this register
Bits 4-3	LIS - LPB Input Buffer Select
	00 = LPB frame buffer starting address 0 (MMFF0C_22-0) used for the LPB input
	01 = LPB frame buffer starting address 2 (MMFF38_22-0) used for the LPB input
	10 = LPB frame buffer starting address 1 (MMFF10_22-0) used for the LPB input 11 = Reserved
	This bit selects the starting address for writing LPB data into the frame buffer. When the value programmed to this bit
	takes effect is determined by the setting of bits 6-5 of this register. This selected address can be rotated among at
	the completion of writing all the data for a frame to the frame buffer via bit 6 of this register
Bit 5	LSL - LPB Input Buffer Select Loading
	0 = The value programmed into bits 4-3 of this register takes effect immediately
	 1 = The value programmed into bits 4-3 of this register takes effect as specified by bit 6 of this register
DHC	-
Bit 6	LST - LPB Input Buffer Select Toggle 0 = The value programmed into bits 4-3 of this register takes effect after all data has been written to the frame buffer
	for the current frame. The buffer selection remains unchanged until changed by programming.
	1 = The value programmed into bits 4-3 of this register takes effect after all data has been written to the frame buffer
	for the current frame. At the end of each successive frame, the buffer selection will shift to the next higher buffer
	(or wrap from buffer 2 to buffer 0).
	This bit is a short for the start bit F of this as sinter a
	This bit is only effective when bit 5 of this register = 1.
Bit 7	BS - Buffering Select
	0 = Double buffering 1 = Triple buffering
Dite 21.9	
Bits 31-8	Reserved

Secondary Stream Frame Buffer Address 0 Register (MM81D0)

Read/Write Address: 81D0H Power-on Default: Undefined

If a secondary stream is enabled, this register specifies the starting address in the frame buffer. Updating of this register is controlled via CR66_4 and CR51_7.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
					SECC	NDAR	Y BUF	FER A	DDRE	SS 0					V				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
R	R	R	R	R	R	R													

Bits 24-0 SECONDARY BUFFER ADDRESS 0

Value = Secondary stream frame buffer starting address 0

This value must be quadword aligned. In YCbCr420 mode, this is the Y base address.

Bits 31-25 Reserved

Secondary Stream Frame Buffer Address 1 Register (MM81D4)

Read/Write Address: 81D4H Power-on Default: Undefined

If the secondary stream is double buffered, this register specifies the starting address in the frame buffer for the second buffer. Updating of this register is controlled via CR66_4 and CR51_7.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					SECC	NDAR	Y BUF	FER A	DDRE	SS 1					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R		SI	ECON	DARY I	BUFFE	R ADD	RESS	1	

Bits 24-0 SECONDARY BUFFER ADDRESS 1

Value = Secondary stream frame buffer starting address 1

This value must be quadword aligned.

Bits 31-25 Reserved

BCI: B4H

BCI: B5H

Secondary Stream Stride Register (MM81D8)

Streams Processor Registers

Read/Write Power-on		: Undefir		dress:	81D8H	ł											BCI: B6H
Updating o	f this r	egister is	contro	lled via	a CR66	_4 and	CR51	_7.									
15 14	1:	3 12	11	10	9	8	7	6	5	4	3	2	1	0			
SBP R	R					SECO	NDAR'	Y STRI	EAM S	TRIDE							
31 30) 29) 28	27	26	25	24	23	22	21	20	19	18	17	16			
SST R					SECO	NDAR	Y STR	EAM T	ILE OI	FSET							
Bits 12-0	-	CONDAF ue = byte	_		-		nt pixels	s in the	secor	ndary si	tream	buffer(s)		_		
Bits 14-13	sec	ouble or condary s				ed, the	stride	must b	e the s	ame fo	r all bu	ıffers.	In YCb	Cr420	mode,	this fiel	d is the
Bit 15		P - Strea															
DIL ID	0 =	16 bpp 32 bpp		s/Pixei					~								
	Thi	s bit is oi	nly requ	uired w	hen tili	ng is e	nabled										
Bits 29-16	SE	CONDAF	RY STF	REAM ⁻	TILE O	FFSET	Г										
	14-	bit Value	= [Sca	n line	width ir	n bytes	/128 by	ytes pe	r tile] >	256 Q	Words	/tile					
Bit 30	ap	s is the # blies only served			-	jiven p	osition	in one	tile to	the san	ne pos	ition ir	the tile	e imme	ediately	/ below.	This
Bit 31	0 =	T - Secol Seconda Seconda	ary stre	am tilii	ng off		Y										

Secondary Stream Vertical Scaling Register (MM81E0)

Read/Write Address: 81E0H Power-on Default: 00000000H

Updating of this register is controlled via CR66_5 and CR51_7.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
					V	ERTIC	AL SC	ALING	RATIC)								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
R	R	R	R	R	R	R	R	R	R	R	R	VER	19 18 17 16 VERT SCALE RATIO					

Bits 19-0 VERTICAL SCALING RATIO

Value = (# of lines in source image)/(# of lines in scaled image)

Bits 31-20 Reserved

BCI: B8H

Secondary Stream Vertical Initial Value (MM81E4)

Read/Write Address: 81E4H Power-on Default: 00000000H

Updating of this register is controlled via CR66_4 and CR51_7.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					V	ERTIC	AL INI	TIAL V	ALUE '	1					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					V	ERTIC	AL INI	TIAL V	ALUE 2	2					

Bits 15-0 VERTICAL INITIAL VALUE 1

Value = S.FFFFFFFFFFFFFFF

Bits 31-16 VERTICAL INITIAL VALUE 2

Value = S.FFFFFFFFFFFFFFF

where S is the sign bit (1 = negative) and FFFFFFFFFFFFF is the fractional part. The value can range from $1.000\ 0000\ 00001b\ (-0.9999694824)$ to $0.111\ 1111\ 1111\ 0.9999694824)$.

Secondary Stream Source Line Count (MM81E8)

Read/Write Address: 81E8H Power-on Default: 00000000H

Updating of this register is controlled via CR66_4 and CR51_7.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EVI	R	R	R	R				S	OURCI	E LINE	COUN	١T			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bits 10-0 SOURCE LINE COUNT

Value = # of lines in the source image (before scaling)

Bits 14-11 Reserved

Bit 15 EVI - Enable Vertical Interpolation

0 = Line duplication

1 = Enable vertical interpolation

This bit is effective when a non-zero scaling ratio is programmed in MM81E0_15-0. Line duplication is used when the line buffer is too small or when there is insufficient bandwidth for interpolation.

Bits 31-16 Reserved

BCI: B9H

BCI: BAH

Streams FIFO Register (MM81EC)

Read/V Power-		fault: C	0000600		dress:	31ECF	ł									X			BCI: BBH
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		0			
_			SHOLD		10	-	-	RESH	-	Ŭ		FIFO				<u> </u>			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17		6			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	P	FT	7		
Bits 4-0	0	The fo 00010 11110 All oth	EAMS F ollowing D = Prin D = PS her valu	g apply nary St = 204 s ues are al interp	only w tream (slots (E reserv	hen ve PS) = nhanc ed. n Is en	64 slot æd mo	ts, Sec de onl (MM81	ondary y) E8_15	v Strear = 1), F	n (SS) IFO a) = 204 llocatio	slots		follo	ws:			
			ll value: slot ho				= 64 s	slots, L	ine Bu	ffer = 2	04 slo	ts							
Bits 10	-5		ONDAR																
			e = (Nur			-		,	\frown	$\mathbf{\lambda}$									
		FIFO				-				Y								•	e 204-slot
			n the se ndary F																
Bits 16	-11	PRIM	IARY F	IFO TH	IRESH	OLD			Y										
		Value	e = (Nur	nber o	f prima	ry FIF(O slots	;)/F											
		where	e F = 1	if the p	orimary	strean	n is us	ing the	64-slc	t FIFO	and F	=4 if th	e prim	ary st	ream	n is us	sing th	ne 204	-slot FIFO.
			n the pri . This v															ing of t	the primary
Bits 31	-17	Rese	rved			Y	7												
Primar	V Ctro	am W	indow	Start (`oordi	atos	Ponic	or /M	181 50										
Fillid	y Sire		nuow	Start	Jooruli	ales	regisi		10170)	1									
Read/V	Vrite			Ad	dress:	31F0H													BCI: BCH

Read/Write Power-on Default: Undefined

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	PRIMARY STREAM Y-START										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R				PRIN	IARY S	STREA	M X-S	TART			

Bits 10-0 PRIMARY STREAM Y-START

Value = Screen line number +1 of the first line of the primary stream window

Bits 15-11 Reserved

BCI: BDH

Streams Processor Registers

Bits 26-16 PRIMARY STREAM X-START

Value = Screen pixel number +1 of the first pixel of the primary stream window

Bits 31-27 Reserved

Primary Stream Window Size Register (MM81F4)

Read/Write Address: 81F4H Power-on Default: Undefined

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
10	17	10	12		10	v	U		•	v	-	•		<u> </u>	•
R	R	R	R	R				PRIN	/ARY \$	STREA	M HEI	GHT			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R				PRI	MARY	STRE/	AM WI	DTH			

Bits 10-0 PRIMARY STREAM HEIGHT

Value = Number of lines displayed in the primary stream window

- Bits 15-11 Reserved
- Bits 26-16 PRIMARY STREAM WIDTH

Value = Number of pixels -1 displayed in each line in the primary stream window

Bits 31-27 Reserved

Secondary Window Start Coordinates Register (MM81F8)

Read/Write Address: 81F8H Power-on Default: Undefined

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R			6.	SECON	IDARY	' STRE	AM Y-	STAR	Г		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R			5	SECON	IDARY	' STRE	AM X-	STAR	Г		

Bits 10-0 SECONDARY STREAM Y-START

Value = Screen line number +1 of the first line of the secondary stream window

- Bits 15-11 Reserved
- Bits 26-16 SECONDARY STREAM X-START

Reserved

Value = Screen pixel number +1 of the first pixel of the secondary stream window

Bits 31-27

BCI: BEH

BCI: BFH

Streams Processor Registers

Secondary Window Size (MM81FC)

Read/Write	Address: 81FCH
Power-on Default: 00000	000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R				SECO	NDAR	Y STRE	EAM H	EIGHT			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R				SECO	NDAR	Y STR	EAM V	VIDTH			

Bits 10-0 SECONDARY STREAM HEIGHT

Value = Number of lines displayed in the secondary stream window

- Bits 15-11 Reserved
- Bits 26-16 SECONDARY STREAM WIDTH

Value = Number of pixels -1 displayed in each line in the primary stream window

Bits 31-27 Reserved

Primary Stream FIFO Monitoring 0 Register (MM8200)

Read/Write Address: 8200H Power-on Default: 00000000H

-																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	R	R	R	R	R	R	R	PRI	MARY	STRE	AM FI	=0 LO	W WA	rerm/	RK
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Γ	R	R	R	R	R	R	R	⊾R	PRI	MARY	STRE	AM FIF		H WA	TERM	١RK

Bits 7-0 PRIMARY STREAM FIFO LOW WATERMARK

Value = # of entries in the primary stream FIFO

When the number of FIFO entries is less than this value, the Lower Counter value (MM8210_15-0) is incremented by one at each FIFO read strobe.

- Bits 15-0 Reserved
- Bits 23-16 PRIMARY STREAM FIFO HIGH WATERMARK

Value = # of entries in the primary stream FIFO

When the number of FIFO entries is greater than this value, the Higher Counter value (MM8210_31_16) is incremented by one at each FIFO write strobe.

Bits 31-24 Reserved

BCI: C0H

Streams Processor Registers

SECONDARY STREAM FIFO LOW WATERMARK

Secondary Stream FIFO Monitoring 0 Register (MM8204)

Read/Write Address: 8204H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	R	SEC	ONDA	RY STI	REAM	FIFO L	.ow w	ATER	MARK
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	SECO	ONDAF	RY STF	REAM	FIFO H	HGH W	/ATER	MARK

Bits 7-0

Value = # of entries in the secondary stream FIFO

When the number of FIFO entries is less than this value, the Lower Counter value (MM8214_15-0) is incremented by one at each FIFO read strobe.

Bits 15-0 Reserved Bits 23-16 SECONDARY STREAM FIFO HIGH WATERMARK Value = # of entries in the secondary stream FIFO When the number of FIFO entries is greater than this value, the Higher Counter value (MM8214_31_16) is incremented by one at each FIFO write strobe.

Bits 31-24 Reserved

Secondary Stream Frame Buffer Cb Block Address Register (MM8208)

Read/Write Address: 8208H Power-on Default: Undefined

In YCbCr420 mode, this is the buffer address for the Cb data. Updating of this register is controlled via CR66_4 and CR51_7.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				SEC	ONDA	RY BL	IFFER	Cb BL	OCK A	DDRE	SS				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	1	SECO	NDARY	' BUFF	ER Ct	BLOC	K AD	DRESS	;

Bits 24-0 SECONDARY BUFFER Cb/U BLOCK ADDRESS

Value = Secondary stream frame buffer Cb block starting address

This value must be quadword aligned.

Bits 31-25 Reserved

Page 166

BCI: C1H

BCI: C2H

BCI: C3H

Streams Processor Registers

Secondary Stream Frame Buffer Cr Block Address Register (MM820C)

Read/Write Address: 820CH Power-on Default: Undefined

In YCbCr420 mode, this is the buffer address for the Cr data. Updating of this register is controlled via CR66_4 and CR51_7.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				SEC	CONDA	RY BL	JFFER	Cr BL	OCK A	DDRE	SS				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R		SECO	NDAR	Y BUFF	ER Cr	BLOC	K ADE	RESS	

Bits 24-0 SECONDARY BUFFER Cr BLOCK ADDRESS

Value = Secondary stream frame buffer Cr block starting address

This value must be quadword aligned.

Bits 31-25 Reserved

Primary Stream FIFO Monitoring 1 Register (MM8210)

Read/Write Address: 8210H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				PRI	MARY	STRE	AM FIF	O LOV	VER C	OUNT	ER				
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16															
	PRIMARY STREAM FIFO LOWER COUNTER 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PRIMARY STREAM FIFO HIGHER COUNTER														

Bits 15-0 PRIMARY STREAM FIFO LOWER COUNTER

Value = The number of primary stream FIFO read strobes that occurred when the number of FIFO entries was less than the low watermark specified in MM8200_7-0

The counter stops incrementing when it reaches 8000H. It is reset by writing 0000H to it.

Bits 31-16 PRIMARY STREAM FIFO HIGHER COUNTER Value = The number of primary stream FIFO write strobes that occurred when the number of FIFO entries was greater than the high watermark specified in MM8200_23-16

The counter stops incrementing when it reaches 8000H. It is reset by writing 0000H to it.

Secondary Stream FIFO Monitoring 1 Register (MM8214)

Read/Write Address: 8214H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				SECC	NDAR	Y STR	EAM F	FIFO LO	OWER	COUN	ITER				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				SECO	NDAR	Y STR	EAM F	IFO H	IGHER	COUN	ITER				

Bits 15-0 SECONDARY STREAM FIFO LOWER COUNTER

Value = The number of secondary stream FIFO read strobes that occurred when the number of FIFO entries was less than the low watermark specified in MM8204_7-0

The counter stops incrementing when it reaches 8000H. It is reset by writing 0000H to it.

BCI: C5H

Bits 31-16 SECONDARY STREAM FIFO HIGHER COUNTER

Value = The number of secondary stream FIFO write strobes that occurred when the number of FIFO entries was greater than the high watermark specified in MM8204_23-16

The counter stops incrementing when it reaches 8000H. It is reset by writing 0000H to it.

Secondary Stream Cb/Cr Blocks Stride Register (MM8218)

Read/Write Address: 8218H Power-on Default: Undefined BCI: C6H

BCI: C7H

In YCbCr420 mode, this register defines the strides for the Cb and Cr blocks. Updating of this register is controlled via CR66_4 and CR51_7.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R					SECO	NDAR	Y STRI	EAM S	TRIDE				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SUE	BPICT	HORIZ	TILIN	G OFF	SET (C	WOR	DS)	SUE	BPIC V	T OFF	SET	SUE	BPIC H	T OFF	SET

Bits 12-0 SECONDARY STREAM STRIDE

Value = byte offset of vertically adjacent pixels in the secondary stream buffer(s)

If double or triple buffering is used, the stride must be the same for all buffers.

- Bits 15-13 Reserved
- Bits 19-16 SUBPICTURE HORIZONTAL TILING OFFSET

Value = Offset from horizontal tile boundary in tiles of the secondary stream subpicture

Bits 23-20 SUBPICTURE VERTICAL TILING OFFSET

Value = Offset from vertical tile boundary in lines of the secondary stream subpicture

Bits 31-24 SUBPICTURE HORIZONTAL TILING OFFSET (QWORDS) (Rev. B)

Address: 8300H

Value = Offset from horizontal tile boundary in QWORDs of the secondary stream subpicture

This field provides the same information (except for the units) as bits 19-16 of this register.

Primary Stream Frame Buffer Size Register (MM8300)

Power	-on De	fault: U	Indefin	ed	X										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Р	RIMAF	RY STF	REAM I	FRAME	BUFFEF	R SIZE					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	SWB	EB23		PS F	RAME	E BUF	F SIZE	

Bits 21-0 PRIMARY STREAM FRAME BUFFER SIZE

20-bit Value = # of QWords -1 allocated in the frame buffer for the primary stream

Read/Write

Bit 22 EB23 - Enable Bit 23 0 = Write blocking disabled 1 = Enable function of bit 23 of this register (software control of write blocking) The power-on default value is 0. Write blocking can also be enabled via a BCI QueuedPageFlip command is this bit is cleared to 0. SWB - Software Control of Write Blocking Bit 23 0 = Write blocking disabled 1 = Write blocking enabled Bit 22 of the register must be set to 1 for this to be effective. The power-on default value is 0. Bits 31-24 Reserved Secondary Stream Frame Buffer Size Register (MM8304) Read/Write Address: 8304H Power-on Default: Undefined 13 12 10 6 0 15 14 11 9 8 7 5 3 2 1 SECONDARY STREAM FRAME BUFFER SIZE 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R R R R R R R SST SS FRAME BUFF SIZE R R Bits 21 SECONDARY STREAM FRAME BUFFER SIZE Value = # of QWords -1 allocated in the frame buffer for the secondary stream This is the size of one frame, not the total size if double or triple buffering is being used. Bit 22 SST - Secondary Stream Type 0 = Secondary stream is video (YUV/YCbCr) 1 = Secondary stream is graphics (RGB) Bits 31-23 Reserved Secondary Stream Frame Buffer Address 2 Register (MM8308) Address: 8308H BCI: C9H Read/Write Power-on Default: Undefined 10 9 0 15 14 13 12 11 8 6 5 4 3 2 SECONDARY BUFFER ADDRESS 2 31 30 29 28 27 22 21 19 18 17 16 25 24 23 20 26 R R R R R R R SECONDARY BUFFER ADDRESS 2 Bits 24-0 SECONDARY BUFFER ADDRESS 2

Value = Secondary stream frame buffer starting address 2

This value must be quadword aligned.

Reserved Bits 31-25

BCI: C8H

Section 9: LPB/VIP Register Descriptions

LPB/VIP registers can only be accessed via memory-mapped I/O. The register identifier MMxxxx means that the register is memory mapped at offset 000 xxxxH from the base address.

LPB Mode Register (MMFF00)

Read/Write	Address: FF00H
Power-on Default:	0000000H

45	4.4	40	40	44	40	•	^	-	•	-		^			•
15	<u>14</u> R	13	12	11	10	9 LVS	8	7	6	5 SF	4 LR	3	2 B MOD	1	0 LE
HDT 31	<u> </u>	LBA 29	R 28	R 27	LHS 26	25	OSA 24	CHD 23	CBS 22	3F 21	20	19	18	⊏ 17	16
R	RIE	OEII	OEI	VI	ILC	SNO	R	23	VFT	<u> </u>	R	R	R	R	R
Bit 0		LE - LP 0 = LPE 1 = LPE	3 Disabl	led					へ			Y			
Bits 3-1	1	Once e LPB M(010 = V 110 = V	DDE /ideo 8 i	mode. 8	8-bit vide	eo deco	der inpu	ut.		ia bit	4 of thi	s registe	ər.		
Bit 4		All othe LR- LPI 0 = No 1 = Res	B Reset effect	t	served.										
Bit 5		This bit should be set and then reset before switching between LPB modes. SF - Skip Frames 0 = Write all received frames to memory 1 = Write every other received frame to memory (1, 3, etc.) CBS - Color Byte Swap													
Bit 6		1 = Write every other received frame to memory (1, 3, etc.)													
Bit 7		This bit CHD - (0 = Tric 1 = Tric	Compat 64+—ty	ible Hor ype dec	izontal imation	Decima	tion Typ)e							
Bit 8	Č	This bit OSA - 0 0 = Ado 1 = Dor	Omit Str I stride 1	ride Ado to the e	l nd of th	e line									
Bit 9		This bit LVS - L 0 = LPE 1 = LPE	.PB Ver 3 vertica	tical Sy al sync i	nc Input	Polarity	y ow	video c	apture	data i	n the fra	ame but	ffer.		
Bit 10		LHS - L 0 = LPE 1 = LPE	3 horizo	ntal syr	ic input	is active	e low								

Reserved

Bits 12-11

LPB/VIP Registers

Bit 13	LBA - Load Base Address (Write Only)
	Writing a 1 to this bit immediately loads the base address currently being pointed to.
Bit 14	Reserved
Bit 15	HDT - Horizontal Decimation Type Select 0 = Use MMFF00_7 to select horizontal decimation type 1 = Use MMFF78_31 to select horizontal decimation type
Bits 19-16	Reserved
Bit 20	Reserved
Bits 23-21	VFT - Video FIFO Threshold 00 0= 1 FIFO slot 001 = 2 FIFO slots 010 = 4 FIFO slots 011 = 6 FIFO slots 100 = 8 FIFO slots 101 = 16 FIFO slots 110 = 24 FIFO slots 111 = 30 FIFO slots
	When this many slots are filled in the video FIFO, a request is generated to the memory manager to begin emptying the FIFO. This is used to maximize the efficiency of the memory interface. Each slot holds 2 DWords.
Bit 24	Reserved
Bit 25	SNO - Sync Non-Overlap 0 = No effect 1 = Don't add stride after first HSYNC
	This bit must be set when the first HSYNC does not occur within the VSYNC active period.
Bit 26	ILC - Invert LCLK 0 = Use LCLK as received 1 = Invert the LCLK input
Bit 27	OES - Odd/Even Detect Select 0 = Bit 28 status based on interpretation of sync signals 1 = Bit 28 status based on ODDIN pin input
Bit 28	OEI - Odd/Even Field Indicator (Read Only) 0 = Odd field being processed 1 = Even field being processed
Bit 29	OEII - Odd/Even Field Indicator Invert 0 = Odd/even field indicator as specified by bit 28 of this register 1 = Odd/even field definition is inverted from that specified by bit 28 of this register
Bit 30	RIE - Reinterlacing Enable 0 = Reinterlacing disabled 1 = Reinterlacing enabled
Bit 31	Reserved

S3 Sight. Sound. Speed.

LPB/VIP Registers

LPB FIFO Status Register (MMFF04)

Read Only Power-on De	nly Address: FF04H on Default: 0000008H													
15 14	13	12	11	10	9	8	7	6	5	4	3	2 1	0	
VWPS		OFE	OFF		ORPS		-	OWPS		VFF		O STA		
31 30	29	28	27	26	25	24	23	22	21	20	19		7 16	
R R	R	R		١	VRPS			V0A	V0E	FDM	VDD	VW		
Bits 3-0	LPB Output FIFO Status 0000 = 0 FIFO slots free 0001 = 1 FIFO slot free 0010 = 2 FIFO slots free													
	0010 = 2 F	FIFO slo	ots free											
	0011 = 3 F										×			
	0100 = 4 F													
	0101 = 5 F													
	0110 = 6 F 0111 = 7 F									, The second sec				
	1000 = 8 F													
	Each slot o													
Bit 4	VFF - Vide	eo FIFO	Flush											
	0 = No vide 1 = Video F				s			$\mathbf{\Lambda}$						
Bits 7-5	OWPS - LF	PB Out	put FIF	O Wri	te Poir	nter St	atus	\mathbf{X}						
	Value = Wi	rite poi	nter sta	atus				X						
Bits 10-8	ORPS - LF	PB Outp	out FIF	O Rea	d Poir	iter Sta	atus							
	Value = Re Bit 11 0 = Output 1 = Output	C t FIFO r	DFF - L not full		itput Fl	IFO Fi	III							
Bit 12	OFE - LPB 0 = Output 1 = Output	t FIFÓ r	not em		y	У								
Bit 13	OFAE - LP 0 = Output 1 = Output	t FIFO I	nas soi	nethin	g othe		1 slot	filled						
Bits 18-14	VWPS - LF	PB Vide	eo FIFO) Write	e Point	er Sta	tus							
	Value = Wi	rite poir	nter sta	atus										
Bit 19	VDD - VIP 0 = No VIP 1 = VIP de	P device	e detec	ted at										
Bit 20	VOF - LPB 0 = Video F 1 = Video F	FIFO 0	not ful											
Bit 21	V0E - LPB 0 = Video F 1 = Video F	FIFO 0 FIFO 0	not en empty	npty										
Bit 22	VOAE - LP 0 = Video F 1 = Video F	FIFO 0	has so	methi	ng oth		n 1 slo	t filled						
Bits 27-23	VRPS - LP	PB Vide	o FIFC	Read	l Pointe	er Sta	us							

Value = Read pointer status

LPB/VIP Registers

Bits 31-28 Reserved

LPB In	terru	ot Flags	s Regi	ster (N	IMFF0	8)										
Read/\ Power-		efault: 0	000000		dress:	FF08H									Y	
Note th	nat bit	31 is re	ad only	у.											7	
15	14	13 12 11 10 9 8 7 6 5 4 3 2 1 0														
R 31	R 30	R 29	R 28	R 27	R 26	VT 25	R 24	VI 23	R 22	R 21	R 20	SPS 19	EFI 18	ELI 17	FEI 16	
VI	R	R	R	R	R	VTM	SPW	VIE	EB1E	EB0E	ODE	SPM	EFM	ELM		
Bit 0		FEI - LPB Output FIFO Empty Interrupt Status 0 = No interrupt 1 = LPB output FIFO empty														
			-			rs the int	errupt.									
Bit 1		ELI - End of Line Interrupt Status 0 = No interrupt 1 = HSYNC input received														
		Writin	ga1to	o this b	it clea	rs the int	errupt.		$\langle \rangle$							
Bit 2		EFI - End of Frame Interrupt Status 0 = No interrupt 1 = VSYNC input received														
		Writin	ga1to	o this b	it clea	rs the int	errupt.									
Bit 3		0 - No	interru	upt		etect Inte		atus								
						n occurs rs the int		SPD is	driven lo	ow by an	other de	evice wl	hile SP0	CLK is	not being drive	n low.
Bits 6-	4	Reser			X	X	Ť									
Bit 7		0 = Nc	o interr	rrupt S upt ive vide		ected										
		Writin	g a 1 to	o this b	it clea	rs the int	errupt.									
Bit 8		Reser				_										
Bit 9		0 = No	o interr			t Status										
Bits 15	i-10	Reser	ved													
Bit 16		0 = LF	PB outp	ut FIF	O emp	Empty In ty interro ty interro	upt disal	bled	e Mask							
Bit 17		0 = Er	nd of Li	ine inte	errupt c	ot Enable lisabled enabled	e Mask									
Bit 18		0 = Er	nd of fr	ame in	terrupt	rupt Ena disableo enableo	b	sk								

LPB/VIP Registers

Bit 19	SPM - Serial Port Start Detect Interrupt Mask 0 = Serial port start detect interrupt disabled 1 = Serial port start detect interrupt enabled
Bit 20	FDM - Decimation Field Drop Interrupt Enable Mask 0 = Decimation field drop interrupt disabled 1 = decimation field drop interrupt enabled
Bit 21	EB0E - Encoding Buffer 0 Interrupt Enable Mask 0 = Encoding buffer 0 interrupt disabled 1 = Encoding buffer 0 interrupt enabled
Bit 22	EB1E - Encoding Buffer 1 Interrupt Enable Mask 0 = Encoding buffer 1 interrupt disabled 1 = Encoding buffer 1 interrupt enabled
Bit 23	VIE - VBI Interrupt Enable Mask 0 = VBI Interrupt disabled 1 = VBI Interrupt enabled
Bit 24	SPW - Serial Port Wait 0 = Release SPCLK to float high 1 = Drive SPCLK low upon receipt of a serial port start condition
	Setting this bit to 1 enables serial port wait states until the Host is ready to process the data.
Bit 25	VTM - VIP Timeout Interrupt Mask 0 = VIP timeout interrupt disabled 1 = VIP timeout interrupt enabled
Bit 30-26	Reserved
Bit 31	 VI - VSYNC Indicator (Read Only) 0 = Active region for live video 1 = Vertical blanking region for live video (VSYNC active)

LPB Frame Buffer Address 0 Register (MMFF0C)

Read/Write Address: FF0CH Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	LPB BUFFER ADDRESS 0														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R			LPE	BUFF	ER AD	DRES	S 0		

Bits 24-0 LPB Frame Buffer Address 0

Value = starting address 0 (offset in bytes from the start of the frame buffer) for writing LPB data to the frame buffer

If live video mirroring is enabled (MMFF00_31 = 1), the address must be for the end of the first line. This value will normally be the same as the secondary stream frame buffer address 0. The value must start on an 8byte boundary. A value programmed in this field does not take effect until the next LPB VSYNC.

Bits 31-25 Reserved

LPB/VIP Registers

LPB Frame Buffer Address 1 Register (MMFF10)

Read/Write Address: FF10H Power-on Default: Undefined

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	LPB BUFFER ADDRESS 1															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
R	R	R	R	R	R	R			LPE	BUFF	ER A	DRES	SS 1			

Bits 24-0 LPB Frame Buffer Address 1

Value = starting address 1 (offset in bytes from the start of the frame buffer) for writing LPB data to the frame buffer

If live video mirroring is enabled (MMFF00_31 = 1), the address must be for the end of the first line.

This value will normally be the same as the secondary stream frame buffer address 1. Both address 0 and address 1 are defined when double buffering is used. The value must start on an 8-byte boundary. A value programmed in this field does not take effect until the next LPB VSYNC.

Bits 31-25 Reserved

VIP Control Register (MMFF14)

Read/Write Address: FF14H Power-on Default: Undefined

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VD	S	V	С		VIP READ/WRITE							S			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	VF	R	VF	W	R	R	R	R

Bits 11-0 VIP READ/WRITE ADDRESS

Value = Address of the VIP device register or FIFO to be accessed

Register addresses use bits 11-0. FIFO addresses use bits 11-8.

	ů la
Bits 13-12	VC - VIP Read/Write Command
	00 = Register write
	01 = FIFO write
	10 = Register read
	11 = FIFO read (FIFO ports 0 and 1 status only)
Bits 15-14	VDS - VIP Device Select
	00 = MPEG decoder
	01 = Video decoder
	10 = Reserved
	11 = Reserved
Bits 19-16	Reserved
Bits 21-20	VFW - VIP FIFO Write Burst Length
	00 = 4 bytes
	01 = 8 bytes
	10 = 12 bytes
	11 = 16 bytes
Bits 23-22	VRR - VIP Register Read/Write Burst Length
	00 = 1 byte
	01 = 2 bytes
	10 = 3 bytes
	11 = 4 bytes (register write only)
	• • • • • • • • •

Bits 31-24 Reserved

VIP R	ead/Wr	ite Da	ta Reg	ister (I	MMFF	18)										
Read/ Power	Write -on De	fault: L	Indefin		dress:	FF18H	I									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	7
						VIP R	EAD/W	RITE I	DATA							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
						VIP RI	EAD/W	RITE I	DATA				\square			

Bits 31-0 VIP READ/WRITE DATA

A write to this register triggers a read/write sequence based on the address information in MMFF14_11-0 for registers or 11-8 for FIFOs and the burst setting. The first byte in a burst uses bits 7-0, the second uses bits 15-8, etc.

Serial Port 1 Register (MMFF20)

Read/Write Address: FF20H Power-on Default: 00000000H

Bits 4-0 of this register can also be accessed via CRA0_4-0. This register is normally used for I²C communications.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	R	R	R	R	SPE	SDR	SCR	SDW	SCW
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit 0 SCW - Serial Clock Write 0 = SPCLK1 is driven low 1 = SPCLK1 is tri-stated

SPCLK1 carries the I2C clock. When the SPCLK1 pin is tri-stated, other devices may drive this line. The actual state of the pin is read via bit 2 of this register.

Bit 1 SDW - Serial Data Write 0 = SPD1 pin is driven low 1 = SPD1 pin is tri-stated

SPD1 carries the I2C data. When the SPD1 pin is tri-stated, other devices may drive this line. The actual state of the pin is read via bit 3 of this register.

 Bit 2
 SCR - Serial Clock Read (Read Only)

 0 = SPCLK1 is low

 1 = SPCLK1 is tri-stated (no device is driving this line)

 Bit 3
 SDR - Serial Data Read (Read Only)

 0 = SPD1 pin is low

 1 = SPD1 pin is tri-stated (no device is driving this line)

 Bit 4
 SPE - Serial Port 1 Enable

 0 = Use of bits 1-0 of this register disabled

 1 = Use of bits 1-0 of this register enabled

Bits 31-5 Reserved

LPB Video Input Window Size Register (MMFF24)

Read/Write Address: FF24H Power-on Default: Undefined

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R				١	/IDEO	INPUT	LINE	WIDTH	4			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R				VID	EO IN	PUT W	/INDO\	V HEIC	SHT			

Bits 11-0 VIDEO INPUT LINE WIDTH

Value = [Width in bytes of each video line] - 1

This is the width of the displayed line after the offset specified in MMFF28_11-0. Before the 1 is subtracted in Video 8 mode, the number of pixels must be rounded up to a multiple of 2.

Bits 15-12 Reserved

Bits 27-16 VIDEO INPUT WINDOW HEIGHT

Value = [height in lines of each video input frame] - 1

This is the number of displayed lines - 1 after the offset specified in MMFF28_24_16.

Bits 31-28 Reserved

LPB Video Data Offsets Register (MMFF28)

Read/Write Address: FF28H Power-on Default: Undefined

This register applies only to Video 8 mode

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R				HORI	ZONTA	AL VID	EO DA	TA OF	FSET			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R				VEF	TICAL	VIDE	D DAT	A OFF	SET			

Bits 11-0 HORIZONTAL VIDEO DATA OFFSET

Value = [number of LCLKs between HSYNC and the start of valid pixel data] - 2

- Bits 15-12 Reserved
- Bits 27-16 VERTICAL VIDEO DATA OFFSET

Value = number of HSYNCs between VSYNC and the first valid data line

This value must be at least 1.

Bits 31-28 Reserved

LPB Horizontal Decimation Control Register (MMFF2C)

Read/Write Address: FF2CH Power-on Default: Undefined

Four different horizontal decimation schemes are provided. MMFF00_15 = 0 means that MMFF00_7 selects the decimation scheme. MMFF00_15 = 1 means that MMFF78_31 selects the decimation scheme.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	VIDEO DATA MASK														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						VID	EO DA	ΤΑ ΜΑ	SK						

Bits 31-0 VIDEO DATA MASK (MMFF00_15 = 0)

Each 32 bytes of video data input is compared with this mask. If a bit in this mask is 1, the corresponding byte is discarded. If a bit is a 0, the corresponding byte is passed to the video memory. Normally, decimation starts with bit 0 after an HSYNC. If a horizontal video data offset is specified in MMFF28_11-0, decimation aligns with the start of data after the offset.

Bits 31-0 VIDEO DATA MASK (MMFF00_15 = 1)

Each Y component of 32 YU or YV pairs is compared with this mask. A 0 specifies that the corresponding Y be kept and a 1 specifies that the corresponding Y be dropped. The number of 0's must be either 0 or a multiple of 4. Kept Y's are paired sequentially, with each Y pair being assigned the UV pair associated with the first Y of the pair.

LPB Vertical Decimation Control Register (MMFF30)

Read/Write Address: FF30H

Power-on Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	VIDEO DATA LINE MASK														
31															
					,	VIDEO	DATA	LINE I	MASK						

Bits 31-0 VIDEO DATA LINE MASK

Each 32 lines of video data input is compared with this mask. If a bit in the mask is 0, the corresponding line is passed to video memory. If a bit is a 1, the corresponding line is discarded. If a data offset is specified in MMFF28_24-16, decimation aligns with the starting line after the offset.

LPB Line Stride Register (MMFF34)

Read/Write	Address: FF34H
Power-on Default:	0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R						LIN	E STR	IDE					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bits 12-0 LINE STRIDE

Value = byte offset of vertically adjacent pixels

This offset is added to the line starting address each HSYNC to get the new line starting address. Each line must begin on an 8-byte boundary.

Bits 31-13 Reserved

LPB F	rame I	Buffer	Addre	ss 2 R	egiste	r (MMF	F38)									
Read/ Power		fault: 0	00000		dress:	FF38H										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
					L	.PB BL	IFFER	ADDR	ESS 2							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
R	R	R	R	R	R	R			LPE	B BUFF	ER AD	DDRES	S 2			
													÷			

Bits 24-0 LPB FRAME BUFFER ADDRESS 2

Value = starting address 0 (offset in bytes from the start of the frame buffer) for writing LPB data to the frame buffer

If live video mirroring is enabled (MMFF00_31 = 1), the address must be for the end of the first line. This value will normally be the same as the secondary stream frame buffer address 2 and is used only for triple buffering. The value must start on an 8-byte boundary. A value programmed in this field does not take effect until the next LPB VSYNC.

Bits 31-25 Reserved

LPB Output FIFO Register (MMFF40)

Read/Write Address: FF40H, FF44H...,FF5CH Power-on Default: 0000000H

Writes to any of the addresses in this 8 doubleword address range will be transferred to the LPB output FIFO. This allows efficient use of the MOVSD assembly language instruction. Accesses must be to doubleword addresses.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						OUT	PUT F	IFO DA	ĀΤΑ						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						OUT	PUT F	IFO DA	ATA						

Bits 31-0 OUTPUT FIFO DATA

Note: Software must never transfer more compressed data than there is room for in the output FIFO. This information is read from MMFF04_3-0.

Bilinear Decimation 1 Register (MMFF70)

Read/Write Address: FF70H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DEST	ΓΙΝΑΤΙ	ON WI	DTH	SOURCE WINDOW WIDTH											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R		DE	STINA ⁻	TION V	VINDO	W WIE	TH	

Bits 11-0 SOURCE WINDOW WIDTH

Value = Source window width in pixels (Ws)

LPB/VIP Registers

Bits 23-12 DESTINATION WINDOW WIDTH

Value = Destination window width in pixels (Wd)

Bits 31-24 Reserved

LPB Bilinear Decimation 2 Register (MMFF74)

Read/Write Address: FF74H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
INT	EGER	FACTO	OR		DECIMAL DECIMATION FACTOR											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
R	R	R	R	R	R	R	R		INT	EGER	DECIN	IATION	N FAC	FOR		

Bits 11-0 DECIMAL DECIMATION FACTOR

Value = Decimal value of Ws/Wd (bilinear) Value = Decimal value of (Ws/Wd)/2 (quadlinear)

See MMFF70 for the definitions of Ws and Wd. For example, if Ws = 640 and Wd = 260, Ws/Wd = 2.461538461538. The integer value (2) is programmed in bits 23-12 and the decimal value (461538461538) is programmed in bits 11-0.

Bits 23-12 INTEGER DECIMATION FACTOR

Value = Integer value of Ws/Wd

Bits 31-24 Reserved

LPB Bilinear Decimation 3 Register (MMFF78)

Read/Write Address: FF78H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OFFS	ET IN	TEGEF	R = 0				(OFFSE	T DEC		VALUE				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
QDE	R	R	R	R	R	R	R	OFFSET INTEGER VALUE = 0							

Bits 11-0 OFFSET DECIMAL VALUE

Value = Decimal value of the offset for starting the line decimation

The offset value must be less than or equal to 0.5. This can be used to improve the selection of pixels for decimation. OFFSET INTEGER VALUE

Value = Integer value of the offset for starting the line decimation

This value must be all 0's.

Bits 30-24 Reserved

Bits 23-12

Bit 31 QDE - Quadlinear Decimation Enable

0 = Disable guadlinear decimation

1 = Enable quadlinear decimation

VBI Select Register (MMFF8C)

Read/Write Address: FF8CH Power-on Default: 00000000H

Only bit 1 of this register is required (and effective) when sliced VBI data is being captured (FFA0_4 = 1).

		1		1	1	1	1	1			1	1				-
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				VBI W	/IDTH						VB	I HEIG	HT		VE	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
R						VB	I STRI	DE						WIE	ΤΗ	
													\frown			
Bit 0		VE - \	/BI En	able												
		0 = VI	BI data	captu	re disa	bled										
		1 = VI	BI data	captu	re enal	bled										
Bits 5-	·1	VBI H	eiaht													
			5													
		Value	= # of	data li	nes to	be cap	tured i	n VBI p	period				Y			
Bits 17	7-6	VBI W	/idth													
			•	f bytes		-										
		Value	= [# 0	f words	s in a V	'BI line] - 1 (1	6-bit in	put)							
		 1 ·													•	
				Icludes	only v	alid da	ita afte	r the h	orizonta	al offse	et spec	ified in	MMFF	94_11	-0)	
Bits 30	D-18	VBI S	tride													
		Value	0.00	المامة												
		value	= QVV	ora-ali	gnea b	yte ons	set of v	enicali	y adjac	ent pix	eis					
		This n	nust be	the s	ame as	the lin	ne widtl	h for co	ontiguo	us data	а.					
Bit 31		Reser					.e mat		Junguo							
DIL JI		Reser	veu				K									

VBI Base Address Register (MMFF90)

Read/Write Address: FF90H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	VBI BASE ADDRESS														
31	30	29	28	27	26	25	24 23 22 21 20 19 18 17 16								
R	R	R	R	R	R	R	VBI BASE ADDRESS								

Bits 24-0 VBI Base Address

Value = Starting address for writing VBI data to the frame buffer

The address must be quadword aligned.

Bits 31-25 Reserved

VBI Data Offset Register (MMFF94)

Read/Write Address: FF94H Power-on Default: 00000000H

This register is not effective is sliced VBI data is being captured (MMFFA0_4 = 1).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	VBI HORIZONTAL DATA OFFSET											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	VBI VERTICAL DATA OFFSET								

Bits 11-0 VBI Horizontal Data Offset

Value = # of character clocks from HSYNC active and the start of valid VBI data

- Bits 15-12 Reserved
- Bits 24-16 VBI Vertical Data Offset

Value = # of HSYNCs between VSYNC active and the first valid VBI line

Bits 31-25 Reserved

VBI Vertical Decimation Control Register (MMFF98)

Read/Write Address: FF98H Power-on Default: 00000000H

This register is not effective is sliced VBI data is being captured (MMFFA0_4 = 1).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
	VBI DATA LINE MASK																			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16					
						VBID	VBI DATA LINE MASK													

Bits 31-0 VBI Data Line Mask

If a bit in the mask is 0, the corresponding line is passed to video memory. If a bit is a 1, the corresponding line is discarded.

Bit 31 aligns with the first VBI line to be captured as defined by the vertical data offset.

VBI Control Register (MMFF9C)

Read/Write Address: FF9CH Power-on Default: 00000000H

This register is not effective is sliced VBI data is being captured (MMFFA0_4 = 1).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	FFE	DSE	PWE	R	R		VBLA	NK W	IDTH		PV
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit 0 Pseudo VBLANK

0 = Do not create and use pseudo VBLANK signal

1 = Create and use pseudo VBLANK signal

This feature is used to provide a vertical blanking signal when one is not provided by the digitizer. When VSYNC is received, VBLANK goes high and stays high for the number of HSYNCs programmed in bits 5-1. When this bit is set, VBI data is captured during the VBLANK period.

Bits 5-1 VBLANK Width

Value = Width of VBLANK signal in HSYNCs

Bits 7-6 Reserved

Bit 8 PWE - Partial Write Enable 0 = Disable partial write of VBI data (less than DWord) 1 = Enable partial write of VBI data (less than DWord)

Setting this bit enables capture of VBI data lines that do not end on a DWord boundary.

Bit 9 DSE - VBI Data Bye Swap Enable 0 = Disable byte swap of VBI data 1 = Enable byte swap of VBI data

When this bit is enabled, the bytes in each DWord are swapped.

- Bit 10 FFE Video FIFO Flush Enable
 - 0 = Disable video FIFO flushing at the end of the VBI line
 - 1 = Enable video FIFO flushing at the end of the VBI line

When this bit is enabled, the video FIFO is flushed at the end of the VBI line or upon receipt of HSYNC, whichever comes first.

Bit 31-11 Reserved

VIP Transfer Control Register (MMFFA0)

Read/Write	Address: FFA0H
Power-on Default: 0000000F	Ή

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	S/2	R	R	TB	PDS	R	VDT	VIP TIMEOUT			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bits 3-0 VIP TIMEOUT

Value = # of VIP phases

An interrupt can be generated based on this timeout. See MMFF08_8. The power-on default is 1111b.

Bit 4	VDT - VBI Data Type 0 = Capture raw VBI data (required for Video 8 mode) 1 = Capture sliced VBI data
Bit 5	Reserved
Bit 6	PDS - Slave Power Down Signal 0 = VIP slave device power up signal (VIPCLK running) 1 = VIP slave device power down signal (VIPCLK turned off)
	Setting this bit stops VIPCLK when the next idle state is reached.
Bit 7	TB - Task Bit 0 = Task bit = 0 for active video 1 = Task bit = 1 for active video
Bits 9-8	Reserved
Bit 10	S/2 - Divide SCLK By 2 0 = SCLK undivided 1 = Divide SCLK by 2 for VIPCLK
D'1- 04 44	Deserved

Bits 31-11 Reserved

Section 10: 3D Engine Register Descriptions

All 3D engine registers described below are normally accessed via the BCI. However, they can be directly accessed via memorymapped I/O. The register identifier MM4xxxx means that the register is memory mapped at offset 004 xxxx from the base address. Registers/bits marked "Global" affect all triangle drawing operations and therefore should be reprogrammed only when the command queue is empty and the 3D engine is idle. Registers/bits marked "Local" can be changed on a triangle by triangle basis without affecting previously specified triangles.

Vertex 0 Z Coordinate Register (MM48508) (Rev. B)	
---	--

Read/Write Address: 104 8508H Power-on Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	VERTEX 0 Z COORDINATE														
04	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
31	30	29	20	21	20	23	~~	23	~~						10

Bits 31-0 VERTEX 0 Z COORDINATE

Value = z coordinate expressed in IEEE single precision floating point format

Vertex 1 Z Coordinate Register (MM48528) (Rev B)

Read/Write Address: 104 8528H Power-on Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	VERTEX 1 Z COORDINATE														
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
VERTEX 1 Z COORDINATE															

Bits 31-0 VERTEX 0 Z COORDINATE

Value = z coordinate expressed in IEEE single precision floating point format

Vertex 2 Z Coordinate Register (MM48548) (Rev. B)

Read/Write Address: 104 8548H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					V	ERTE>	< 2 Z C	OORE	INATE						
31	30	29	28	28 27 26 25 24 23 22 21 20 19 18 17 16											
					V	ERTE>	(2 Z C	OORE	INATE						

Bits 31-0

VERTEX 2 Z COORDINATE

Value = z coordinate expressed in IEEE single precision floating point format

BCI: 0AH

BCI:02H

3D Engine Registers

Z Pixel Offset Register (MM48580) (Rev. A only – Removed from Rev. B)

Read/ Power	Write -On De	efault: C	00000		dress:	004 85	80H									$\langle \rangle$	BCI:1DH
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
				ΖF	PIXEL (OFFSE	Т					R	R	R	R		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
						ΖF	PIXEL (OFFSE	T								

Bits 3-0 Reserved

Bits 31-4 Z PIXEL OFFSET

Value = z pixel offset in 1.8.19 (float)

Flush the front end when this value is changed.

Draw Local Control Register (MM48584)

Read/Write Address: 004 8584H Power-On Default: 0000000H

15 14 13 12 11 10 9 8 7 6 5 Ζ 3 2 1 0 R R R R R R R R BFA SABM D-S DABM 27 24 22 17 31 30 29 28 26 25 23 21 20 19 18 16 FΖ FW SS SM ΖE DE FΖ R R R R R R R R R

Bits 2-0	DABM - Destination Alpha Blend Mode 000 = Zero 001 = One 010 = Source color 011 = 1 - source color 100 = Source alpha 101 = 1 - source alpha 110 = Destination alpha 111 = 1 - destination alpha
Bit 3	 D-S - Destination Color - Source Color 0 = Disable 1 = Enable this alpha blending mode (other alpha blending modes are disabled)
Bits 6-4	SABM - Source Alpha Blend Mode 000 = Zero 001 = One 010 = Destination color 011 = 1 - destination color 100 = Source alpha 101 = 1 - source alpha 110 = Destination alpha 111 = 1 - destination alpha
Bit 7	 BFA - Binary Final Alpha 0 = Alpha for alpha blending source can be any value between 0-255 1 = Alpha for alpha blending source must be either 0 or 255
Bits 24-8	Reserved

BCI:1EH

S3 I[™]

3D Engine Registers

Bit 25	FZ - Force Z Writes Till After Alpha Test 0 = Do Z reads and writes before texture reads 1 = Do Z writes after alpha test
	Setting this bit to 1 may require flushing the pixel pipeline between triangles.
Bit 26	DE - Draw Update Enable 0 = Draw update disabled 1 = Draw update enabled
Bit 27	ZE - Z Update Enable 0 = Z update disabled 1 = Z update enabled
Bit 28	SM - Shade Mode 0 = Gouraud 1 = Flat (vertex 2 colors)
Bit 29	SS - Specular Shading Enable 0 = Specular shading disabled 1 = Specular shading enabled
Bit 30	 FW - Flush Pending Destination Writes 0 = Do not flush pending destination writes 1 = Flush pending destination writes before doing destination reads for this triangle
	If this bit is set, the destination write low watermark (MM485EC_17-12) must be programmed to all 0's and MM85EC_31-30 must be programmed to 01b.
Bit 31	FZ - Flush Pending Z Writes 1 = Do not flush pending Z writes 1 = Flush pending Z writes before doing Z reads for this triangle
	If this bit is set, the Z write low watermark (MM485E8_21-16) must be programmed to all 0"s.

Texture Palette Address Register (MM48588) (Local)

Read/Write Address: 004 8588H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PALETTE DATA ADDRESS							R	R	R					
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
					P	ALET	TE DA	fa adi	DRESS	3					

Bits 2-0 Reserved

Bits 31-3 PALETTE DATA ADDRESS

Value = QWord-aligned address in memory of the texture palette

This must be a linear address in AGP memory. For frame buffer memory, only bits 25-3 are valid.

BCI: 1FH

Read/Write

Power-on Default: 0000000H

Texture 0 Control Register (MM4858C) (Local)

Address: 004 858CH

3D Engine Registers

		on Bo	iaun. 00000	00011											
	15	14	13 1	2 11	10	9	8	7	6	5	4	3	2	_1	0
_			D LEVEL			1	<u>/IPMAF</u>						EM		MODE
_	31	30	29 2		26	25	24	23	22	21	20	19	18	17	16
	A2I	A1I	ABAS	C2I	C1I	CA2	CA1	CE	BAS	ETT	CC	TV	AM	TU	AM
	Bits 1-	0	FILTER MC 00 = Point = 01 = Bilinea 10 = Reser 11 = Triline	sample (1 ⁻ ar (4TPP) ved ar (16TPP								\sim			
	Bit 2		Enable MIF 0 = Treat te 1 = Enable	exture as a	-	e map le	evel (if N	/IPma	pped,	use lev	vel 0 o	nly)			
l	Bits 11	1-3	 MIPMAP LEVEL BIAS Value = Constant offset to MIPmap level (S4.4) 												
	Bits 15	5-12	Value = Co MAX D LE		et to N	/IPmap	b level (S	54.4)							
			Value = Maximum D level												
	Bits 17	7-16	 TUAM - Texture U Address Mode 00 = Wrap 01 = Clamp 10 = Mirror 11 = Reserved 												
ļ	Bits 19	9-18	TVAM - Te: 00 = Wrap 01 = Clamp 10 = Mirror 11 = Reser)	dress	Mode									
	Bit 20		CC - Color 0 = Disable 1 = Enable	ed	Enable	9									
	Bit 21		ETT - Enab 0 = Disable 1 = Enable	e texture tra	anspar	rency	;y								
ļ	Bits 23	3-22	 CBAS - Color Blend Alpha Select 00 = TEXTURE ALPHA 01 = DIFFUSE ALPHA 10 = FACTOR ALPHA 11 = CURRENT ALPHA 												
	Bit 24		CA1 - Colo 0 = Disable 1 = Enable	ed	by Alpł	na Enat	ble								
	Bit 25		CA2 - Colo 0 = Disable 1 = Enable	d	oy Alpł	na Enat	ble								
	Bit 26		C1I- Color 0 = Disable 1 = Enable)	t Enab	le									

BCI: 20H

3D Engine Registers

Bit 27	C2I- Color Arg2 Invert Enable 0 = Disable 1 = Enable	
Bits 29-28	ABAS - Alpha Blend Alpha Select 00 = TEXTURE ALPHA 01 = DIFFUSE ALPHA 10 = FACTOR ALPHA 11 = CURRENT ALPHA	
Bit 30	A1I - Alpha Arg1 Invert Enable 0 = Disable 1 = Enable	
Bit 31	A2I - Alpha Arg2 Invert Enable 0 = Disable 1 = Enable	

Texture 1 Control Register (MM48590) (Local)

Read/Write Address: 004 8590H Power-on Default: 00000000H BCI: 21H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	MAX D	LEVEL		MIPMAP LEVEL BIAS						EM	FILT	FILT MODE			
31	30	29	28	27	26	25	24	23	23 22 21			19	18	17	16
A2I	A1I	AB	AS	C2I	C1I	CA2	CA1	CB	AS	ETT	CC	TV	AM	TU	AM

E	Bits 1-0	FILTER MODE 00 = Point sample (1TPP) 01 = Bilinear (4TPP) 10 = Reserved 11 = Trilinear (16TPP)
E	Bit 2	Enable MIPmapping 0 = Treat texture as a single map level (if MIPmapped, use level 0 only) 1 = Enable MIPmapping
E	Bits 11-3	MIPMAP LEVEL BIAS
		Value = Constant offset to MIPmap level (S4.4)
E	Bits 15-12	MAX D LEVEL
		Value = Maximum D level
E	Bits 17-16	TUAM - Texture U Address Mode
		00 = Wrap 01 = Clamp
		10 = Mirror 11 = Reserved
E	Bits 19-18	TVAM - Texture V Address Mode
		00 = Wrap 01 = Clamp
		10 = Mirror
F	Bit 20	11 = Reserved CC - Color Compare Enable
-	0	0 = Disabled
	Bit 21	1 = Enabled ETT - Enable Texture Transparency
L		0 = Disable texture transparency
		1 = Enable texture transparency

3D Engine Registers

Bits 23-22	CBAS - Color Blend Alpha Select 00 = TEXTURE ALPHA 01 = DIFFUSE ALPHA 10 = FACTOR ALPHA 11 = CURRENT ALPHA
Bit 24	CA1 - Color Arg1 Copy Alpha Enable 0 = Disabled 1 = Enabled
Bit 25	CA2 - Color Arg2 Copy Alpha Enable 0 = Disabled 1 = Enabled
Bit 26	C1I- Color Arg1 Invert Enable 0 = Disable 1 = Enable
Bit 27	C2I- Color Arg2 Invert Enable 0 = Disable 1 = Enable
Bits 29-28	ABAS - Alpha Blend Alpha Select 00 = TEXTURE ALPHA 01 = DIFFUSE ALPHA 10 = FACTOR ALPHA 11 = CURRENT ALPHA
Bit 30	A1I - Alpha Arg1 Invert Enable 0 = Disable 1 = Enable
Bit 31	A2I - Alpha Arg2 Invert Enable 0 = Disable 1 = Enable

Texture 0 Address Register (MM48594) (Local)

Read/Write Address: 004 8594H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				TEX	FURE I	DATA	ADDRE	ESS					R	R=1	TL
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Т	EXTU	RE DA	TA AD	DRES	S					

 Bit 0
 TL - Texture Location

 0 = Texture is in frame buffer memory

 1 = Texture is in AGP memory

 Bit 1
 Reserved = 1

 This bit must always be set to 1 when texture 0 is used.

 Bit 2
 Reserved

 Bits 31-3
 TEXTURE DATA ADDRESS

 Value = QWord-aligned address in memory of the texture palette

 This must be a linear address in system memory. For frame buffer memory, only bits 24-3 are valid.

BCI: 22H

Savage4

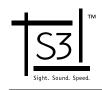
3D Engine Registers

Texture 1	Addre	ss Regis	ster (MI	M4859	8) (Loo	cal)										
Read/Write			Ad	ldress:	004 85	594H										BCI: 23H
Power-on [on Default: 0000000H															
15 14	13	3 12	11	10	9	8	7	6	5	4	3	2	1	0		
			TEX	TURE	DATA	ADDR	ESS					R	R=1	TL		
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
				Т	EXTU	RE DA	TA AD	DRES	S							
Bit 0 Bit 1	TL - Texture Location 0 = Texture is in frame buffer memory 1 = Texture is in AGP memory Reserved = 1															
Bit 2 Bits 31-3	This bit must always be set to 1 when texture 1 is used. Reserved TEXTURE DATA ADDRESS															
	Val	lue = QW	/ord-ali	gned a	ddress	in mei	mory o	f the te	xture p	alette		•				

This must be a linear address in system memory. For frame buffer memory, only bits 24-3 are valid.

Texture 0 Blending Control Register (MM4859C) (Local)

Address: 004 859CH


Read/Write

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CAB	CD2	CDB	C/	AS	CI	M2	CM1	CPS	CI2	C1A		CA2		CA	۹1
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CL	S	CDM	ASC	CSC	AD2	ADB	AAS	AN	Л2	AM1		AA2		AA	1

Bits 1-0	CA1 - Color Argument 1 Select 00 = TA_TEXTURE 01 = TA_DIFFUSE 10 = TA_FACTOR 11 = TA_CURRENT
Bits 4-2	CA2 - Color Argument 2 Select 000 = TA_CURRENT 001 = TA_DIFFUSE 010 = TA_FACTOR 011 = TA_SPECULAR 100 = TA_TEXTURE
	All other values are reserved.
Bit 5	CIA - Color Invert Alpha Enable 0 = Disabled 1 = Enabled
Bit 6	Cl2 - Color Invert Arg2 Enable for Mod1 0 = Disabled

	0 = Disabled 1 = Enabled
Bit 7	CPS - Color Pre-Modulate Select 0 = Select Arg1 input color 1 = Select Arg1 input alpha

3D Engine Registers

Bit 8	CM1 - Color Mod1 Select 0 = Select Arg1 1 = Select zero
Bits 10-9	CM2 - Color Mod2 Select 00 = Select Arg2 01 = Select Alpha 10 = Select 255 11 = Select premod
Bits 12-11	CAS - Color Add Select 00 = Select zero 01 = Select Arg2 10 = Reserved 11 = Select Alpha
Bit 13	CDB - Color Do Blend 0 = No blending 1 = Do blend
Bit 14	CD2 - Color Do 2's Complement 0 = No 2's complement 1 = Do 2's complement
Bit 15	CAB - Color Add Bias -0.5 Enable 0 = Disable 1 = Enable
Bits 17-16	AA1 - Alpha Argument 1 Select 00 = TA_TEXTURE 01 = TA_DIFFUSE 10 = TA_FACTOR 11 = TA_CURRENT
Bits 20-18	AA2 - Alpha Argument 2 Select 000 = TA_CURRENT 001 = TA_DIFFUSE 010 = TA_FACTOR 011 = TA_SPECULAR 100 = TA_TEXTURE
	All other values are reserved.
Bit 21	AM1 - Alpha Mod1 Select 0 = Select Arg1 1 = Select zero
Bits 23-22	AM2 - Alpha Mod2 Select 00 = Select Arg2 01 = Select Alpha 10 = Select 255 11 = Select premod
Bit 24	AAS Alpha Add Select 0 = Select zero 1 = Select Arg2
Bit 25	ADB - Alpha Do Blend 0 = No blending 1 = Do blend
Bit 26	AD2 - Alpha Do 2's Complement 0 = No 2's complement 1 = Do 2's complement
Bit 27	CSC - Color Stage Clamping Enable 0 = Disable 1 = Enable

3D Engine Registers

Bit 28	ASC - Alpha Stage Clamping Enable 0 = Disable 1 = Enable
Bit 29	CDM - Color Do Diffuse Mul 0 = No diffuse mul 1 = Do diffuse mul
Bits 31-30	CLS - Color Left Shift 00 = No shift 01 = 2x shift 10 = 4x shift 11 = Reserved

Texture 1 Blending Control Register (MM485A0) (Local)

Read/Write

Address: 004 85A0H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CAB	CD2	CDB	CA	٩S	C	Л2	CM1	CPS	CI2	C1A		CA2		C	41
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CL	S	R	ASC	CSC	AD2	ADB	AAS	AN	Л2	AM1		AA2		AA	۹1

Bits 1-0	CA1 - Color Argument 1 Select 00 = TA_TEXTURE 01 = TA_DIFFUSE 10 = TA_FACTOR 11 = TA_CURRENT
Bits 4-2	CA2 - Color Argument 2 Select 000 = TA_CURRENT 001 = TA_DIFFUSE 010 = TA_FACTOR 011 = TA_SPECULAR 100 = TA_TEXTURE
	All other values are reserved.
Bit 5	CIA - Color Invert Alpha Enable 0 = Disabled 1 = Enabled
Bit 6	Cl2 - Color Invert Arg2 Enable for Mod1 0 = Disabled 1 = Enabled
Bit 7	CPS - Color Pre-Modulate Select 0 = Select Arg1 input color 1 = Select Arg1 input alpha
Bit 8	CM1 - Color Mod1 Select 0 = Select Arg1 1 = Select zero
Bits 10-9	CM2 - Color Mod2 Select 00 = Select Arg2 01 = Select Alpha 10 = Select 255 11 = Select premod
Bits 12-11	CAS - Color Add Select 00 = Select zero 01 = Select Arg2 10 = Reserved 11 = Select Alpha

25H

3D Engine Registers

Bit 13	CDB - Color Do Blend 0 = No blending 1 = Do blend
Bit 14	CD2 - Color Do 2's Complement 0 = No 2's complement 1 = Do 2's complement
Bit 15	CAB - Color Add Bias -0.5 Enable 0 = Disable 1 = Enable
Bits 17-16	AA1 - Alpha Argument 1 Select 00 = TA_TEXTURE 01 = TA_DIFFUSE 10 = TA_FACTOR 11 = TA_CURRENT
Bits 20-18	AA2 - Alpha Argument 2 Select 000 = TA_CURRENT 001 = TA_DIFFUSE 010 = TA_FACTOR 011 = TA_SPECULAR 100 = TA_TEXTURE
	All other values are reserved.
Bit 21	AM1 - Alpha Mod1 Select 0 = Select Arg1 1 = Select zero
Bits 23-22	AM2 - Alpha Mod2 Select 00 = Select Arg2 01 = Select Alpha 10 = Select 255 11 = Select premod
Bit 24	AAS Alpha Add Select 0 = Select zero 1 = Select Arg2
Bit 25	ADB - Alpha Do Blend 0 = No blending 1 = Do blend
Bit 26	AD2 - Alpha Do 2's Complement 0 = No 2's complement 1 = Do 2's complement
Bit 27	CSC - Color Stage Clamping Enable 0 = Disable 1 = Enable
Bit 28	ASC - Alpha Stage Clamping Enable 0 = Disable 1 = Enable
Bit 29	Reserved
Bits 31-30	ALS - Alpha Left Shift 00 = No shift 01 = 2x shift 10 = 4x shift 11 = Reserved

BCI: 26H

3D Engine Registers

Texture Transparent Color Register (MM485A4) (Local)

Read/Write Address: 004 85A4H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					TRAN	SPARE	ENT TE	XTUR	E COL	.OR 0					
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
					TRAN	SPARE	ENT TE	XTUR	E COL	OR 1				,	

Bits 15-0 TRANSPARENT TEXTURE COLOR 0

Value = RGB565 (if ARGB1555 or ARGB4444 texture convert color to RGB565) Value = CLUT1555 or CLUT4444 (8-bit palettized mode)

Each texel color value read from memory is compared with this value. If it matches, the texel is considered to be fully transparent (alpha = 00H). For non-matches, the texel is considered to be opaque (alpha = FFH). This function is not supported in other modes. The compare enable is $MM4858C_21$.

Bits 31-16 TRANSPARENT TEXTURE COLOR 1

See the description for bits 15-0. The compare enable is MM48590_21.

Texture Description Register (MM485A8) (Local)

Read/Write Address: 004 85A8H Power-on Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
TEX	TURE	1 WID	TH	TEX	TURE	0 FOR	MAT	TEX	TURE	0 HEI	GHT	TEXTURE 0 WIDTH				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
LTP	TF	°S	DF	PD	T1	TO	TBL	TEX	TURE	1 FOR	MAT	TEX	TURE	1 HEI	GHT	

Bits 3-0 TEXTURE 0 WIDTH

Value = n

where the texture width is 2^{**n} . The maximum n allowed is 11 (width = 2048)

Bits 7-4 TEXTURE 0 HEIGHT

Value = n

where the texture height is $2^{**}n$. The maximum n allowed is 11 (height = 2048)

BCI: 27H

3D Engine Registers

Bits 11-8	TEXTURE 0 FORMAT 0000 = 4 bits/texel S3TC (block truncation coded) 0001 = 8 bits/texel color index. Palette entry format is RGB565. Palette table required. 0010 = 8 bits/texel color index. Palette entry format is ARGB1555. Palette table required. 0011 = 32 bits/texel ARGB8888 0100 = 16 bits/texel ARGB1555 0101 = 16 bits/texel ARGB4444 0110 = 16 bits/texel RGB565 0111 = 8 bits/texel color index. Palette entry format is ARGB4444. Palette table required. 1000 = 8-bit S3TC format with 4-bit alpha followed by 4-bit S3TC color 1001 = 8-bit S3TC format with 4-bit S3TC alpha followed by 4-bit S3TC color 1010 = 4-bit S3TC format with 4-bit alpha - L4, duplicate color, put alpha = FFH 1011 = 8-bit S3TC format with 4-bit alpha - A4L4, duplicate color 1100 = Luminance texture - L8, duplicate color, put alpha = FFH 1101 = Luminance alpha texture - A4L4, duplicate color and alpha 1110 = Intensity texture - L8, duplicate color and alpha 1111 = Alpha texture - A8, all colors set to FFH except alpha
Bits 15-12	TEXTURE 1 WIDTH
	Value = n
	where the texture width is 2**n. The maximum n allowed is 11 (width = 2048)
Bits 19-16	TEXTURE 1 HEIGHT
	Value = n
	where the texture height is 2^{**} n. The maximum n allowed is 11 (height = 2048)
Bits 23-20	TEXTURE 1 FORMAT 0000 = 4 bits/texel S3TC (block truncation coded) 0001 = 8 bits/texel color index. Palette entry format is RGB565. Palette table required. 0010 = 8 bits/texel color index. Palette entry format is ARGB1555. Palette table required. 0011 = 32 bits/texel ARGB8888 0100 = 16 bits/texel ARGB1555 0101 = 16 bits/texel ARGB4444 0110 = 16 bits/texel RGB565 0111 = 8 bits/texel color index. Palette entry format is ARGB4444. Palette table required. 1000 = 8-bit S3TC format with 4-bit alpha followed by 4-bit S3TC color 1001 = 8-bit S3TC format with 4-bit S3TC alpha followed by 4-bit S3TC color 1010 = 4-bit S3TC format with 4-bit alpha - L4, duplicate color, put alpha = FFH 1011 = 8-bit S3TC format with 4-bit alpha - A4L4, duplicate color 1100 = Luminance texture - L8, duplicate color, put alpha = FFH 1101 = Luminance alpha texture - A4L4, duplicate color and alpha 1110 = Intensity texture - L8, duplicate color and alpha 1111 = Alpha texture - A8, all colors set to FFH except alpha
Bit 24	TBL - Texture Blending Loop Enable 0 = Disabled
Bit 25	1 = Enabled T0 - Texture 0 Enable 0 = Disabled 1 = Enabled
Bit 26	T1 - Texture 1 Enable 0 = Disabled 1 = Enabled

3D Engine Registers

Bit 27	PD - Perspective Correction Disable 0 = Enabled 1 = Disabled
	Setting this bit disables perspective correction by forcing the W value used by the hardware to always be 1. This bit is reserved in Rev. B (no disable for perspective correction).
Bit 28	DF - Use D Fraction for Alpha 0 = Disabled 1 = Enabled
	MipMapping must be enabled before this is enabled.
Bits 30-29	TPS - Texture Palette Size 00 = 64 entries (16 QWords) 01 = 128 entries (32 QWords) 10 = 192 entries (48 QWords) 11 = 256 entries (64 QWords)
Bit 31	LTP - Load Texture Palette 0 = No effect 1 = Load new texture palette

Fog Table 0-7 Registers (MM485AC - MM485C8) (Global)

Read/Write Address: See below. Power-on Default: 00000000H

There are 8 Fog Table registers, each with the same definition given below. The register addresses are:

Fog Table Register # (n)	MMIO Address (Hex)	BCI Address (Hex)
0 (Entries 0-3)	004 85AC	28
1 (Entries 4-7)	004 85B0	29
2 (Entries 8-11)	004 85B4	2A
3 (Entries 12-15)	004 85B8	2B
4 (Entries 16-19)	004 85BC	2C
5 (Entries 20-23)	004 85C0	2D
6 (Entries 24-27)	004 85C4	2E
7 (Entries 28-31)	004 85C8	2F

The definition for each is:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		FO	G VAL	UE 4n-	+1					F	OG VA	LUE 4	'n		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
FOG VALUE 4n+3										FC)g val	UE 4n	+2		

Bits 7-0 FOG VALUE 4n

Value = 8-bit fog value 4n computed from fog parameters

n = Fog table register number

Bits 15-8 FOG VALUE 4n+1

Value = 8-bit fog value 4n+1 computed from fog parameters

n = Fog table register number

3D Engine Registers

Bits 23-16 FOG VALUE 4n+2

Value = 8-bit fog value 4n+2 computed from fog parameters

n = Fog table register number

Bits 31-24 FOG VALUE 4n+3

Value = 8-bit fog value 4n+3 computed from fog parameters

n = Fog table register number

Fog Control Register (MM485CC) (Global)

Read/Write Address: 004 85CCH Power-on Default: 0000000H BCI: 30H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		GRE	EN FO	G COL	OR					BL	JE FO	G COL	.OR		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
END SHIFT FM FE R TOTAL SHIFT							IIFT			RE	D FO	G COL	OR		

- Bits 7-0 BLUE FOG COLOR
 - Value = Blue fog color
- Bits 15-8 GREEN FOG COLOR

Value = Green fog color

Bits 23-16 RED FOG COLOR

Value = Red fog color

Bit 26-24 TOTAL SHIFT - Fog Table Z Total Shift

Value = Total bit length of shared pattern of Zw

- Bit 27 Reserved Bit 28 FE - Fog Enable 0 = Disable fog
 - 1 = Enable fog
- Bit 29 FM Fog Mode
 - 0 = Use table fog
 - 1 = Use vertex fog parameter
- Bit 31-30 END SHIFT Fog Table Z End Shift

Value = Number of 0's in the shared Zw pattern (max 3)

3D Engine Registers

Stencil Control Register (MM485D0) (Global)

Read/Write Address: 004 85D0H Power-on Default: 0000000H BCI: 31H

To use the stencil function, alpha testing must be disabled ($MM485E4_31 = 0$) and a 24-bit Z-Buffer must be defined and enabled ($MM485D8_5$ and 31 = 1). The stencil reference value (Sref below) is defined in $MM485D8_23-16$. The stencil frame buffer value is stored in the upper 8 bits of the 32-bit Z value that is used when 24-bit Z-Buffering is specified.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
STEN	CIL WI	RITE M	IASK			STEN	ICIL RE	EAD M	IASK			SE	ST	COM	PARE
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	ST P	ASS/Z PASS ST PASS/Z FAIL STENCIL FAIL STENCIL WRITE MAS									MASK		

R	R	R	ST PASS/Z PASS	ST PASS/Z FAIL	STENCIL FAIL	STENCIL WE
Dite 0		OT O				
Bits 2-	0		OMPARE - Stencil Co	mpare wode		
			Never passes Pass if Sref < Sfb			
			Pass if Sref = Sfb			
			Pass if Sref \leq Sfb			
		-	Pass if Sref > Sfb			
			Pass if Sref ≠ Sfb			
		110 =	Pass if Sref ≥ Sfb			
		111 =	Always passes		\land	
Bit 3		SE - 8	Stencil Enable			
		0 = Di	isable			
		1 = Ei	nable	v	X Z	
Bits 11	-4	STEN	ICIL READ MASK			
		Bit po	sitions set to 1 will be	read.		
Bits 19	-12	STEN	ICIL WRITE MASK			
		•	sitions set to 1 will be	written.		
Bits 22	2-20					
			Sfb = Sfb Sfb = 0			
			Sfb = 0			
			Sfb++ Clamp (increm	nent and clamp		
			Sfb- Clamp (decreme			
			Sfb = ^Sfb (invert)			
			Sfb++ (increment)			
			Sfb- (decrement)			
Bits 25	5-23	-	ICIL PASS/Z FAIL			
			Sfb = Sfb			
			Sfb = 0			
			Sfb = Sref Sfb++ Clamp (increm	ent and clamp		
			Sfb- Clamp (decreme			
			Sfb++ (increment)	sin and oramp)		
			Sfb- (decrement)			
		111 =	Sfb = ^Sfb (invert)			
Bits 28	3-26	STEN	ICIL PASS/Z PASS			
			Sfb = Sfb			
			Sfb = 0			
			Sfb = Sref	ant and alamp		
			Sfb++ Clamp (increm			
			Sfb = ^Sfb (invert)			
			Sfb++ (increment)			
			Sfb- (decrement)			

3D Engine Registers

Bits 31-29 Reserved

Z-Buffer Control Register (MM485D4) (Global)

Read/Write Address: 004 85D4H Power-on Default: 00000000H BCI: 32H

In the normal case for Rev. A, the W values from the vertex data are used in conjunction with this buffer. Therefore, "W" should replace "Z" in most instances below. The term Z-Buffer is retained here because this is the buffer that is used for the function that is normally associated with the term Z-Buffer, i.e., depth testing.

For Rev. B, both W buffering and true Z buffering are available (see bit 31).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	Z EXPONENT OFFSET R EZ R R ZB COMP														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ZID	FZ	R	R	R	R	FID	ΑZ	STENCIL REFERENCE VALUE							

Bits 2-0	ZB COMP - Z-Buffer Compare Mode 000 = z compare never passes 001 = Pass if Znew < Zzb $010 = Pass if Znew \le Zzb$ 100 = Pass if Znew > Zzb $101 = Pass if Znew \ne Zzb$ $101 = Pass if Znew \ne Zzb$ $110 = Pass if Znew \ge Zzb$ 111 = z compare always passes
Bits 4-3	Reserved
Bit 5	EZ - Enable Z-Buffer 0 = Disable Z compare and Z-Buffer updates 1 = Enable Z compare and Z-Buffer updates
Bit 6	Reserved
Bits 14-7	Z EXPONENT OFFSET
	Value = 8-bit 2's complement Z exponent offset
	This value is used to adjust the Z (actually W) range so that a fixed Z format can be used. The adjusted Z is then inverted and stored in the Z-Buffer unless bit 31 of this register is set to 1.
Bit 15	Reserved
Bits 23-16	STENCIL REFERENCE VALUE
Bit 24	Value - Sref value to be used in stencil comparisons (see MM485D0) AZ - Auto Z Clear Enable
	0 = Auot Z clear disabled 1 = Auto Z clear enabled
Bit 25	FID - Frame ID
DIL 20	FID - Flame ID
	When auto Z clear is enabled via bit 24 of this register, the driver should toggle this bit each frame, starting with a value of 1.
Bits 29-26	Reserved
Bit 30	FZ - Float Z Enable
	0 = Fixed Z stored in z buffer in Z32 format (both 32- and 16-bit Z) 1 = Float Z stored in z buffer in Z32 format (both 32- and 16-bit Z)

3D Engine Registers

Bit 31 ZID - Z Invert Disable (Rev. A) 0 = 1/adjusted Z stored in z buffer 1 = Z is not inverted by the hardware

This bit is set to 1 when the application requires that the Z Pixel Offset (BCI1D) be added to the non-inverted adjusted Z to form the value stored in the Z-Buffer (e.g., OpenGL), It is also set to one if perspective correction is turned off (BCI27_27 = 1) and Z values are programmed into the buffer by the driver.

Bit 31 Z/W- Z/W Buffer Select (Rev. B) 0 = Use W Buffer 1 = Use Z Buffer

Bit 5 of this register must be set to 1 for this bit to be effective.

Z-Buffer Offset Register (MM485D8) (Global)

Read/Write Address: 104 85D8H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R						Z-B	UFFEF	R OFF	SET					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ZBD		Z-E	BUFFE	r wid	TH		R	R	R	R	R	R	R	R	R

Bits 13-0 Z-BUFFER OFFSET

Value = 2K-aligned offset in frame buffer of 0,0 element of Z-Buffer

This value is padded with 11 LSB 0's to form a 24-bit address.

Bits 24-14 Reserved

Bits 30-25 Z-BUFFER WIDTH

Value = Z-Buffer width in tiles

For 16-bit tiles, this is ((width + 3FH) & FFC0H) >> 6 For 32-bit tiles, this is ((width + 1FH) & FFE0H) >> 5

where width is the display width in pixels. 16-bit tiles are 64 pixels wide. 32-bit tiles are 32 pixels wide. Thus, for example, if the width is 640 pixels, the value = 10 (decimal) for 16-bit pixels and 20 (decimal) for 32-bit pixels.

Bit 31 ZBD - Z-Buffer Depth 0 = 16 bits/Z coordinate 1 = 24 bits/Z coordinate

When this bit is set to 1, each coordinate is stored in the lower 24 bits of a DWord. The upper 8 bits can be used for the stencil buffer.

BCI: 33H

Read/Write

Destination Control Register (MM485DC) (Global)

Address: 004 85DCH

BCI:34H

3D Engine Registers

Power	·on De	fault: C	00000		uless.	004 8												D	JI.341
45	44	40	40	44	10	0	•	7	6	5	4	2	2	4	0				
15	14	DEST	12 INATIO	11 N OF	10 ESET	9	8	7 R	6	5	4	3 DWT	2	1	0	_	Y		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
DPF	A	٩M	R	R	R	R	R	R	R		DEST	INATIO	ON OF	FSET		$\overline{\mathbf{Z}}$			
Bits 6-	0	DWT	- Desti	nation	Width	in Tile:	6						Χ		y				
		Value	e = Des	tinatio	n width	in tiles	5												
					s is ((wi s is ((wi							\langle							
																	els wide 82-bit pi		, for
Bit 7		Rese	rved																
Bits 27	1-8	DEST	INATI	ON OF	FSET														
		Value	e = Bits	24-11	of a 25	5-bit 2k	K page-	aligne	d offse	t of the	currer	nt desti	nation	buffer					
		This v	/alue is	padde	ed by th	ne haro	dware v	with 11	LSB 0	's.									
Bits 28	3-22	Rese	rved																
Bits 30	0-29	00 = 1 01 = 2 10 = 4))	Y									
Bit 31		0 = R	- Destir GB565 RGB88	i (16-bi	,	ormat													
Draw	Contro	ol 0 Re	gister	(MM4	85E0) (Globa	al)												
Read/ Power	Write [.] -on De	fault: C	00000		ldress:	004 8	5E0H											BC	I: 35⊦
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	7			
TO	P SCI	SSORS	Y	DP			LEF	TMOS	T SCIS	SORS	хсо	ORDIN	IATE		1				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	4			
		ALP	HA RE	FERE	NCE				IOPM	JSES	CISSO	RS Y C	JOORI	JINAT	E				

Bits 10-0 LEFTMOST SCISSORS X COORDINATE (inclusive) Value = 0-based pixel count such that this is the first pixel of each line to be drawn (not clipped) Bit 11 DP - D Performance Accelerator Enable 0 = Disabled 1 = Enabled

Bits 23-12 TOPMOST SCISSORS Y COORDINATE (inclusive)

Value = 0-based scan line count such that this is the first scan line to be drawn (not clipped)

Note: The top is line 0.

Bits 31-24 ALPHA REFERENCE БH

BCI: 36H

3D Engine Registers

Value = 8-bit number used in alpha test comparison (Aref). Only the 5 MSBs are used.

Draw Control 1 Register (MM485E4) (Global)

Read/Write Address: 004 85E4H Power-on Default: 0500000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BO	TTOM	MOST	Υ	XY		RIGHTMOST SCISSORS X COORDINATE									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EAT		ATC		BC	CM	NN	DE	BO	TTOM	MOST	SCISS	SORS	7 COO	RDINA	TE

Bits 10-0 RIGHTMOST SCISSORS X COORDINATE (inclusive)

Value = 0—based pixel count such that all pixels after this count will be clipped

	value = 0—based pixel count such that all pixels after this count will be clipped
Bit 11	XY - XY Offset Enable 0 = Disable 1 = Enable
Bits 23-12	BOTTOMMOST SCISSORS Y COORDINATE (inclusive)
	Value = 0-base scanline count such that all lines after this count will be clipped
	Note: The top is line 0.
Bit 24	DE - Dither Enable 0 = Disable 1 = Enable (default)
Bit 25	NN - Non-Normalized Texture Coordinates0 = Normalized texture coordinate1 = Non-normalized texture coordinate
Bits 27-26	BCM - Backface Cull Mode 00 = Reserved 01 = Disable culling (default)

01 = Disable culling (default) 10 = Cull clockwise triangles

- 11 = Cull counterclockwise triangles
- Bits 30-28 ATC Alpha Test Compare 000 = Never pass 001 = Anew < Aref 010 = Anew = Aref 011 = Anew ≤ Aref 100 = Anew > Aref
 - $101 = Anew \neq Aref$ $110 = Anew \ge Aref$
 - 111 = Always pass

Bit 31

The Aref value is programmed in MM485E0_31-24..

- EAT Enable Alpha Test
- 0 = Disable alpha test
- 1 = Enable alpha test

BCI: 37H

3D Engine Registers

Z Read/Write Watermarks Register (MM485E8) (Global)

Read/Write Address: 004 85E8H Power-on Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	Z	Z READ HIGH WATERMARK						R	Z	READ	LOW	WATE	RMAR	K
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	Z WRITE HIGH WATERMARK						R	R	Z	WRITE	E LOW	WATE	RMAR	ĸĸ

Bits 5-0 Z READ LOW WATERMARK

Value = # of Z read FIFO entries such that when the FIFO full entries value is less than this number, the Z read memory accesses priority is raised to high

- Bits 7-6 Received
- Bit 13-8 Z READ HIGH WATERMARK

Value = # of Z read FIFO entries such that if the FIFO full entries value is greater than this number, no Z read FIFO memory requests are issued

- Bits 15-14 Reserved
- Bits 21-16 Z WRITE LOW WATERMARK

Value = # of Z write FIFO entries such that when the FIFO full entries value is less than this number, no Z write FIFO memory requests are issued

If the flush pending Z writes bit (MM48584_31) is set, this value must be all 0's. (Rev. A) For Rev. B, these bits are effective only when the Z flush bit (MM48584_31) is cleared to 0. If MM48584_31 is set to 1, the Z write low watermark value must be 0.

- Bits 23-22 Reserved
- Bits 29-24 Z WRITE HIGH WATERMARK

Value = # of Z write FIFO entries such that if the FIFO full entries value is greater than this number, the Z write memory accesses priority is raised to high

Bits 31-30 Reserved

3D Destination/Texture Read/Write Watermarks Register (MM485EC)

Read/Write Address: 004 85ECH Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3D D	EST W	/RITE I	_WM	3D D	DEST F	READ	HIGH WA	TERM	ARK	R	R	R	R	R	R
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
D	F	R	R	3D T	ĒXTUI	RE RE	AD WM	3D D	EST V	VRITE	HIGH	WATE	RMARK	DW	LWM

Bits 5-0 Reserved

Bit 11-6

3D DESTINATION READ HIGH WATERMARK

Value = # such that if the # of FIFO entries is greater than this watermark value, then the read will have low priority. If the # of entries is less than or equal to this value, the read will have high priority.

BCI: 38H

3D Engine Registers

Bits 17-12 3D DESTINATION WRITE LOW WATERMARK

Value = # of destination write FIFO entries such that when the FIFO full entries value is less than this number, no destination write FIFO memory requests are issued

If the flush pending destination writes bit (MM48584_30) is set, this value must be all 0's. (Rev. A) For Rev. B, these bits are effective only when the destination flush bit (MM48584_30) is cleared to 0. If MM48584_30 is set to 1, the destination write low watermark value must be 0.

Bits 23-18 3D DESTINATION WRITE HIGH WATERMARK

Value = # of destination write FIFO entries such that if the FIFO full entries value is greater than this number, the destination write memory accesses priority is raised to high

Bits 27-24 3D TEXTURE READ WATERMARK

Value = # of texture read FIFO entries such that when more than this number of entries are empty, the texture read priority is raised

- Bits 29-28 Reserved
- Bits 31-30 DF Destination Flush

This must be programmed to 01b when destination flush is enabled (MM48584_30 = 1).

Texture Blending Color Register (MM485F0) (Global)

Read/Write

Address: 00485F0H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			GRE	EN						BL	UE				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			ALP	'HA							R	Ð			

- Bits 7-0 BLUE Value = Blue color value Bits 15-8 GREEN Value = Green color value Bits 23-16 RED
 - Value = Red color value
- Bits 31-24 Alpha

Value - Alpha color value

BCI: 39H

3D Engine Registers

Section 11: Motion Compensation Register Descriptions

Motion compensation registers are normally accessed via the BCI. However, they can be directly accessed via memory-mapped I/O. The register identifier MM4xxxx means that the register is memory mapped at offset 004 xxxx from the base address.

Motion Compensation Frame Address 0 Register (MM48900)

Read/Write Address: 004 8900H Power-on Default: 00000000H

BCI: 40H

BCI: 41H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R				ΥC	ΟΑΤΑ Α	DDRE	SS FC	R PRE	EVIOU	S FRA	ME	Y		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R				Cb	DATA	ADDRE	ESS F	or Pr	EVIOU	IS FRA	ME			

Bits 13-0 Y DATA ADDRESS FOR PREVIOUS FRAME

Value = 2K-aligned address of the Y data frame buffer offset for the previous frame

- Bits 15-14 Reserved
- Bits 29-16 Cb DATA ADDRESS FOR PREVIOUS FRAME

Value = 2K-aligned address of the Cb data frame buffer offset for the previous frame

Bits 31-20 Reserved

Motion Compensation Frame Address 1 Register (MM48904)

Read/Write Address: 004 8904H Power-on Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R				Cr I	DATA	ADDRE	ESS FO	DR PR	EVIOU	S FRA	ME			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Р	D				V	DATA			OR FL						

Bits 13-0 Cr DATA ADDRESS FOR PREVIOUS FRAME

Value = 2K-aligned address of the Cr data frame buffer offset for the previous frame

Bits 15-14 Reserved

Bits 29-16 Y DATA ADDRESS FOR FUTURE FRAME

Value = 2K-aligned address of the Y data frame buffer offset for the future frame

Bits 31-20 Reserved

BCI: 42H

Motion Compensation Registers

Motion Compensation Frame Address 2 Register (MM48908)

Read/Write Address: 004 8908H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R				Cb	DATA		RESS I	OR FI	JTURE	FRAM	ΛE			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R		Cr DATA ADDRESS FOR FUTURE FRAME												

Bits 13-0 Cb DATA ADDRESS FOR FUTURE FRAME

Value = 2K-aligned address of the Cb data frame buffer offset for the future frame

- Bits 15-14 Reserved
- Bits 29-16 Cr DATA ADDRESS FOR FUTURE FRAME

Value = 2K-aligned address of the Cr data frame buffer offset for the future frame

Bits 31-20 Reserved

Motion Compensation Frame Address 3 Register (MM4890C)

Read/Write Address: 004 890CH Power-on Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R				Υ	ΟΑΤΑ Α	ADDRE	SS FO	DR CU	RREN	Γ FRAI	ИE			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R				Cb	DATA	ADDR	ESS F	OR CL	IRREN	T FRA	ME			

Bits 13-0 Y DATA ADDRESS FOR CURRENT FRAME

Value = 2K-aligned address of the Y data frame buffer offset for the current frame

- Bits 15-14 Reserved
- Bits 29-16 Cb DATA ADDRESS FOR CURRENT FRAME

Value = 2K-aligned address of the Cb data frame buffer offset for the current frame

Bits 31-20 Reserved

Motion Compensation Frame Address 4 Register (MM48910)

Read/Write Address: 004 8910H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FW	R				Cr	DATA	ADDRI	ESS F	OR CU	RREN	T FRA	ME			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PF	P	s	PCT FRAME HEIGHT FRAME WIDTH (FW)												

Bits 13-0 Cr DATA ADDRESS FOR CURRENT FRAME

Value = 2K-aligned address of the Cr data frame buffer offset for the current frame Reserved

Bit 14

BCI: 43H

BCI: 44H

Motion Compensation Registers

Bits 20-15	FRAME WIDTH
Bits 26-21	Value = Frame width in 16-pixel wide macroblocks FRAME HEIGHT
Bits 28-27	Value = Frame height in 16-pixel high macroblocks PCT - Picture Coding Type 00 = Reserved 01 = I-picture 10 = P-picture 11 = B-picture
Bits 30-29	PS - Picture Structure 00 = Reserved 01 = Top field 10 = Bottom field 11 = Frame
Bit 31	PF - P-Type Field Picture Flag 0 = First P-field picture 1 = Second P-field picture

Motion Compensation 9-bit IDCT Data Enable Register (MM48914)

Read/Write Address: 004 8914H Power-on Default: 0000000H BCI: 45H

This register applies only to the inter-macroblock. 9-bit IDCT must be enabled via MM48928_27. If a block is not coded, the enable bit has no effect.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	R	R	R	R	R	R	Y0	Y1	Y2	Y3	Cb	Cr
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit 0 Cr 9-bit Enable 0 = 8-bit IDCT data 1 = Expand IDCT data to 9 bits

Bit 1	Cb 9-bit Enable 0 = 8-bit IDCT data 1 = Expand IDCT data to 9 bits
Bit 2	Y3 9-bit Enable 0 = 8-bit IDCT data 1 = Expand IDCT data to 9 bits
Bit 3	Y2 9-bit Enable 0 = 8-bit IDCT data 1 = Expand IDCT data to 9 bits
Bit 4	Y1 9-bit Enable 0 = 8-bit IDCT data 1 = Expand IDCT data to 9 bits
Bit 5	Y0 9-bit Enable 0 = 8-bit IDCT data 1 = Expand IDCT data to 9 bits 1 = Y0 block coded
Bits 31-6	Reserved

BCI: 46H

Motion Compensation Registers

Motion Vector 0 Register (MM48918)

Read/Write	Address: 004 8918H
Power-on Default: 0000000	Н

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	MOTION VECTOR 0 HORIZONTAL COMPONENT											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	FS	R R MOTION VECTOR 0 VERTICAL COMPONENT											

Bits 11-0 MOTION VECTOR 0 HORIZONTAL COMPONENT

Value = Horizontal component of: (half pixel unit)

First forward motion vector [0][0] or Dual-prime motion vector @ same parity [0][0]

Bits 15-12 Reserved

Bits 25-16 MOTION VECTOR 0 VERTICAL COMPONENT

Value = Vertical component of: (half pixel unit)

First forward motion vector [0][0] or Dual-prime motion vector @ same parity [0][0]

Bits 27:26 Reserved Bit 28 FS - Motion Vector [0][0] Field Select 0 = Top reference field 1 = Bottom reference field

This bit applies only to non-dual-prime field prediction.

Bits 31-29 Reserved

Motion Vector 1 Register (MM4891C)

Read/Write Address: 004 891CH Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	MOTION VECTOR 1 HORIZONTAL COMPONENT											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	FS	R	R	MOTION VECTOR 1 VERTICAL COMPONENT									

Bits 11-0 MOTION VECTOR 1 HORIZONTAL COMPONENT

Value = Horizontal component of: (half pixel unit)

Second forward motion vector [1][0] or First dual-prime motion vector @ opposite parity [2][0]

Bits 15-12 Reserved

Bits 25-16 MOTION VECTOR 1 VERTICAL COMPONENT

Value = Horizontal component of: (half pixel unit)

Second forward motion vector [1][0] or First dual-prime motion vector @ opposite parity [2][0]

Bits 27-26 Reserved

BCI: 47H

Motion Compensation Registers

Bit 28		0 = T	Motion op refe ottom r	rence f	field		elect													2			
Bits 31	1-29	This t Rese	oit appl rved	ies onl	y to nc	n-dual	-prime	field p	oredi	ction								^				•	
Read/\	Write		egister	Ad	-	004 89	920H								(BCI: 4	зн
15	14	13	12	11	10	9	8	7		6	5	4		3		2	1		0				
R	R	R	R		I	MOTI	ON VI	ЕСТО	R 2 I	HOR	IZON	TAL	CC	OMP	109	NENT							
31	30	29	28	27	26	25	24	23		22	21	2	_	19		18	1		16				
R	R	R	FS	R	R		MC	TION	VEC	CTOF	8 2 V	ERT	IC/	LC	ON	MPON	IENT	Γ					
Bits 11	1-0	моті	ION VE	CTOR	2 HO	RIZON	TAL C	OMPO	ONE	NT		A				Y							
	-		e = Hori								R												
			backwa nd dual					nnosit	e nai	rity [?	101												
Bits 15	5-12	Rese		pinno	mode			ppoon	o pu		2101												
Bits 25			ION VE		2 \/=		COM			V		7											
DIIS ZU	5-10										\mathbf{V}												
		Value	e = Vert	ical co	mpone	ent of: (half pi	xel un	it)														
			backwa nd dual					pposit	e pa	rity [3	3][0]												
Bits 27	7-26	Rese	rved						Y														
Bit 28		0 = T	Motion op refe ottom r	rence f	field		elect	Y															
		This b	oit appl	ies onl	y to no	on-dual-	-prime	field p	oredi	ction													
Bits 31	1-29	Rese					•																
						Y																	
Motio	n Vect	or 3 R	egister	(MM4	8924)																		—
Read/\ Power		efault: C	000000		dress:	004 89)24H															BCI: 4	ЭН
45		40	40		40		•	-	<u> </u>	~	-					•				٦			
15 R	14 R	13 R	12 R	11	10	9 MOTI	8 ON VI	7 =сто		6 HOR	5 170N	4 TAI		3)MP		2 NFNT	1		0	-			
31	30	29	28	27	26	25	24	23		22	21	2		19		18	1	7	16				
R	R	R	FS	R	R		MC	TION	VEC	CTOF	8 3 V	ĒRT	ICA	L C	O	MPON	IENT	Γ					
Bits 11	1-0	МОТІ	ION VE	CTOR	3 HO	RIZON	TAL C	OMP	ONE	NT													
		Value	e = Hori	zontal	compo	onent o	f seco	nd ba	ckwa	ard m	otion	vec	tor	[1][1](ŀ	half piz	kel u	init)					
Bits 15	5-12	Rese	rved																				
	212	17696	i veu																				

Motion Compensation Registers

Bits 25-16 MOTION VECTOR 3 VERTICAL COMPONENT

Value = Vertical component of second backward motion vector [1][1](half pixel unit)

Bits 27-26	Reserved
Bit 28	FS - Motion Vector [1][1] Field Select 0 = Top reference field 1 = Bottom reference field

This bit applies only to non-dual-prime field prediction.

Bits 31-29 Reserved

Macroblock Description Register (MM48928)

Read/Write Address: 004 8928H Power-on Default: 0000000H

BCI: 4AH

Writing the this register via MMIO when BCI is disabled automatically kicks off decoding of a macroblock. This is used for testing.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MACROBLOCK ROW (MR)					MO	ΓΙΟΝ	M	BT	DCT	Y0	Y1	Y2	Y3	Cb	Cr
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	9B	MV0	MV1	MV2	MV3	M	ACRC	BLOC	CK CO	LUMN	1	MR

Bit 0	Cr 0 = Not coded 1 = Cr block coded
Bit 1	Cb 0 = Not coded 1 = Cb block coded
Bit 2	Y3 0 = Not coded 1 = Y3 block coded
Bit 3	Y2 0 = Not coded 1 = Y2 block coded
Bit 4	Y1 0 = Not coded 1 = Y1 block coded
Bit 5	Y0 0 = Not coded 1 = Y0 block coded
Bit 6	NOTE: Bits 5-0 apply only to the inter-macroblock. DCT -DCT Type 0 = Frame DCT 1 = Field DCT
Bits 8-7	MBT - Macroblock Type 00 = Intra 01 = Forward, inter 10 = Backward, inter 11 = Backward, forward, inter

Motion Compensation Registers

Bits 10-9	MOTION - Motion Type
	00 = Reserved
	01 = Field
	10 = Frame (or 16x8 MC) 11 = Dual prime
Bits 16-11	MACROBLOCK ROW
	Value = Y coordinate in units of macroblocks
	This is (mb_addr/mb_width), using integer division with truncation towards 0.
Bits 22-17	MACROBLOCK COLUMN
	Value = X coordinate in units of macroblocks
	This is (mb_addr mod mb_width)
Bit 23	MV3 - Motion Vector 3 Enable
	0 = Motion vector 3 disabled
	1 = Motion vector 3 enabled
Bit 24	MV2 - Motion Vector 2 Enable
	0 = Motion vector 2 disabled
	1 = Motion vector 2 enabled
Bit 25	MV1 - Motion Vector 1 Enable
	0 = Motion vector 1 disabled
	1 = Motion vector 1 enabled
Bit 26	MV0- Motion Vector 0 Enable
	0 = Motion vector 0 disabled
	1 = Motion vector 0 enabled
Bit 27	9B - 9-bit IDCT Enable
	0 = 9-bit IDCT disabled
	1 = 9-bit IDCT enabled
Bits 31-28	Reserved

Motion Compensation Registers

Section 12: Mastered Data Transfer Register Descriptions

Mastered Data Transfer registers are normally accessed via the BCI. However, they can be directly accessed via memory-mapped I/O. The register identifier MM4xxxx means that the register is memory mapped at offset 004 xxxx from the base address.

Mastered Data Transfer Control Register (MM48A00) - MIT/Pixel Formatter/Motion Compensation Modes

Read/Write Address: 004 8A00H Power-on Default: 00000000H

A write to this register with BCI disabled initiates the selected transfer.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			-	FRANS	SFER L	ENGT	H/STR	RIDE					CN	/ID TYI	Έ
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TD	420	DISP	CS	ST	F	М	SRC) PF	DES	T PF		RANS	FER L	ENGTI	4

Bits 2-0 CMD TYPE - Command Type 000 = Motion compensation data 010 = Mastered image transfer 011 = Pixel formatter

All other values reserved.

Bits 20-3 TRANSER LENGTH/STRIDE

MIT Value = [# of QWord units to be transferred] -1 Motion Compensation Value - [# of QWord units to be transferred] -1] - bits 5-3 must be 111 (8QWord-aligned) Formatter Value (linear) = Address offset between vertically adjacent (frame or 420 field) scan lines Formatter Value (tiled) - Address offset between vertically adjacent page stripes

Bits 22-21 DEST PF - Destination Pixel Format (Formatter only) 00 = Reserved 01 = YCbCr422 packed 10 = RGB565 10 = XRGB8888 Bits 24-23 SRC PF - Source Pixel Format (Formatter only) 00 = YCbCr420 planar 01 = YCbCr422 packed 10 = RGB565 10 = XRGB8888

Bits 26-25 FM - Formatter Mode for Oversampling 00 = No oversampling 01 = 2X 10 = 4X 11 = Reserved This function and only be used with tile

This function can only be used with tiled RGB565 frame buffer data as the source. The destination must be tiled RGB565 or XRGB8888 in the frame buffer. This function cannot be enabled simultaneously with color space conversion.

Bit 27 ST - Source Tiling (valid only if frame buffer is source)

- 0 = Source is not tiled
 - 1 = Source is tiled

BCI: 50H

Mastered Data Transfer Registers

Bit 28		CS - C 0 = Dis 1 = Ena	able .	ace C	onvers	ion En	able (F	ormatt	er only	/)			
		This fu	nction	cannot	be en	abled	simulta	neous	v with	oversa	mplin	n (hits 2	26-25)
Bits 30)-29	420 DI 00 = Fr 01 = Fr 10 = Fi 11 = Fi	SP - 42 ame to ame to eld to f	20 Disp o frame o field frame	olay (Fo				y with		, npm (g (bito 2	
			0.0.10										
		This ap	plies c	only to	YCbCr	420 sc	ource. I	t affect	t both l	uma a	nd chr	oma da	ata.
Bit 31		TD - Tr 0 = Sys 1 = Fra	stem m	emory	to fran							\wedge	
		This bit	applie	es only	to mas	stered	image	transfe	ers.		X		Y
Maste	red Da	ata Tran	sfer Co	ontrol	Regist	er (MN	M48A0	0) - Co	ommar	nd DM/	A Mod	le	*
Read/ Power		efault: 00	00000		ress: C	104 8A	00H						BCI: 50H
A write	e to this	s registe	r with E	BCI dis	abled i	nitiate	s a cor	nmand	DMA	transfe	r.		
15	14	13	12	11	10	9	8	7	6	5	4	3	2 1 0
	-			TI	RANS	ER C	OUNT						CMD TYPE
31	30	29	28	27	26	25	24	23	22	21	20	19	18 17 16
R	R	R	R	R	R	R	R	R	R	R		TRANS	SFER COUNT

Bits 2-0 CMD TYPE - Command Type 100 = Command DMA

All other values reserved.

Bits 20-3 TRANSFER COUNT

Value = [Transfer size in QWords] - 1

Bits 31-21 Reserved

Mastered Data Transfer Control Register (MM48A00) - Vertex Mode

Read/Write Address: 004 8A00H Power-on Default: 00000000H

A write to this register with BCI disabled initiates a vertex data transfer.

15	14	13	12 11 10 9 8 7 6 5 4 3 2									1	0		
			S	TART	ADDR	ESS					BT	MT	CN	/D TYI	PE
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						STA	RT AD	DRES	S						

Bits 2-0 CMD TYPE - Command Type 001 = Vertex fetching

All other values are reserved.

BCI: 50H

Mastered Data Transfer Registers

Bit 3	MT - Memory Type 0 = Frame buffer 1 = System memory
Bit 4	BT - Bus Type 0 = PCI 1 = AGP
Bits 31-5	This bit must be cleared to 0 when bit 3 of this register is cleared to 0. START ADDRESS
	Value = 4 QWord-aligned start address for vertex data to be transferred.
	If the data are in the frame buffer, only bits 24-5 are used.
Mastered Da	ta Transfer Source/Luma Address Register (MM48A04)

Mastered Data Transfer Source/Luma Address Register (MM48A04)

Read/Write Address: 004 8A04H Power-on Default: 0000000H BCI: 51H

This register applies to mastered image, pixel formatter, motion compensation and command DMA transfers.

15 1	4	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			S	OURC	E ADD	RESS			X		Q	VR	R	SMT	SL
31 3	80	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						SOL	JRCE	ADDRE	ESS						
0		SL - S	Source	Locatio	on					Y					
		0 = So	ource is	s in fra	me buf	fer me	mory								
		1 = So	ource is	s in sys	stem m	emory									
1					nory Ty										
							nysicall	ly conti	guous	and pa	age-loc	ked)			
		1 = Sc	ource is	s in AG	SP mer	nory									
		This bit must be cleared to 0 if the source is in frame buffer memory.													
2		Reser	ved												
s 4-3		QWR	- 420 (QWord	Resol	ution									
s 31-5		bits ar	= QW e rese RCE AL	rved.		used	in bits	31-5 of	this re	egister	for YCI	oCr420) sourc	e data n	node
		Value	= 4 Q	Nord-a	ligned	startin	g addr	ess of	the ent	ire sou	Irce bit	map			
		For fra	ame bu	iffer m	emory,	only b	its 24-	5 are v	alid.						
						-									

Mastered Data Transfer Registers

Maste	red Da	ita Tra	nsfer [Destina	ation A	ddres	s Regi	ister (N	/M48A	.08)							
Read/\ Power		fault: 0	00000		dress:	004 8/	\08H										BCI: 52H
This re	gister	applies	to ma	stered	image	and fo	ormatte	r transf	fers.								
15	14	13	12	11	10	9	8	7	6	5	4	3	2		10		
13	14	13		ESTIN		-	<u> </u>	1	U	J	R	R	R	SMT	SL	-	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
51	50	23	20	21							20	15		<u> </u>	110	2	
Bit 0 Bits 4- Bits 31 Maste	-5	0 = Do 1 = Do Writes Reser MIT D Value For fra	estinat estinat s to sys ved DESTIN = 4 Q ¹ ame bu	NATION Word-a	n frame n syste nemory N ADDI nligned emory,	e buffe m mer are no RESS startin only b	r mem nory bt supp g addr its 24-	orted fo ess of t 5 are va	the ent alid.	ire des	tination		ар				
Read/\ Power- This re	Write -on De	fault: 0	00000	Ad 00H	dress:	004 8/	чосн					,					BCI: 53H
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0]	
R	R	R	R	R	R				S	OURC		ГН					

22 21 20

SOURCE HEIGHT

18

17

16

19

Bits 9-0	SOURCE WIDTH

29

R

28

R

Value = Source width - 1 in QWords

27

R

2 pixel aligned for XRGB8888 (4 pixel aligned if destination is 16bpp) 4 pixel aligned for RGB565 16 pixel aligned for YCbCr

24 23

25

26

- Bits 15-10 Reserved
- Bits 26-16 SOURCE HEIGHT

Value = Source height -1 in lines

Bits 31-27 Reserved

31

R

30

R

PROPRIETARY AND CONFIDENTIAL

Page 221

S31 Sight. Sound. Speed.		Mastered Data	Transfe	r Re	gisters
Mastered Data Trans	sfer Formatter Destination Dimension	s Register (MM48A10)			
Read/Write Power-on Default: 00	Address: 004 8A10H 000000H		$\boldsymbol{\mathcal{A}}$		BCI: 54H

This register applies to pixel formatter transfers.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R						S	TRIDE	WIDT	н					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	DT

Bits 13-0 STRIDE WIDTH

Value = Destination stride in QWords

Bits 15-14 Reserved

Bit 16 **DT** - Destination Tiling 0 = linear (not tiled) 1 = tiled

This bit applies only when the destination is an RGB format in the frame buffer.

Bits 31-17 Reserved

Mastered Data Transfer Source/Cb Address Register (MM48A14)

Read/Write Address: 004 8A14H Power-on Default: 0000000H

This register applies to YCbCr420 formatter transfers.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SOURCE/Cb ADDRESS										Q١	٧R	R	SMT	SL
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						SOUR	CE/Cb	ADDF	RESS						

Bit 0	SL - Source Location 0 = Source is in frame buffer memory 1 = Source is in system memory
Bit 1	SMT - System Memory Type 0 = Source is in PCI memory (physically contiguous and page-locked) 1 = Source is in AGP memory
	This bit must be cleared to 0 if the source is in frame buffer memory.
Bit 2	Reserved
Bits 4-3	QWR - 420 QWord Resolution
	Value = QWord resolution used in bits 31-5 of this register.
Bits 31-5	SOURCE/Cr ADDRESS
	Value = 4 QWord-aligned starting address of the Cb data for YCbCr420 conversion

For frame buffer memory, only bits 24-5 are valid.

Savage4

BCI: 55H

Sight. Sound. Speed.

Mastered Data Transfer Registers

Savage4

Maste	ered Da	ata Tra	nster S	source	/Cr Ad	aress	Regis	ter (MI	vi48A1	8)							
Read/	Write			Ad	dress:	004 8A	18H										BCI: 56H
Power	r-on De	Default: 0000000H															
Thio r	agiator	ator applies to VChCr420 formattor transform															
111516	egistei	applies	pplies to YCbCr420 formatter transfers.													Y	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			SOURCE/Cr ADDRESS QWR R SMT												SL		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
						SOUF	CE/Ci	ADDF	RESS								
Bit 0				Locatio													
				s in fra													
				s in sys													
Bit 1				m Men													
				s in PC s in AG		• •	iysicali	y cont	guous	and pa	ige-loc	kea)					
		1 = 0		SIIIAC		nory					\frown						
		This b	oit mus	t be cle	ared to	o 0 if th	e soui	ce is i	n frame	buffer	memo	ory.					
Bit 2		Rese	rved														
Bits 4-	3	OW/R	- 420 (QWord	Resol	ution											
Dito 4	0	QUIN	420 0	QVIOIU	110000												
		Value	= QW	ord res	olution	used	n bits	31-5 of	f this re	gister.							
Bits 3	1-5	SOUF	RCE/Cr		ESS												
	-																
		Value	= 4 Q	Word-a	ligned	startin	g addr	ess of	the Cr	data fo	r YCb0	Cr420 o	conver	sion			
		_ /						<u> </u>									
		For fr	ame bu	uffer me	emory,	only b	its 24-	s are v	alid.								

Mastered Data Transfer Source Cr/Cb Strides Register (MM48A1C)

Read/Write Address: 004 8A1CH Power-on Default: 00000000H

This register applies to pixel formatter YCbCr420 transfers.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Cr MAP SOURCE STRIDE									R	R	R			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Cb N	AP S	OURCI	E STRI	DE					R	R	R

Bits 2-0 Reserved

Bits 15-3 Cr MAP SOURCE STRIDE

Value = Source stride in QWords of the Cr map

For linear data, this is the address offset between vertically adjacent pixels. For tiled data, this is the address offset between vertically adjacent page strips. The maximum stride is 64KB.

Bits 18-16 Reserved

Bits 31-19 Cb MAP SOURCE STRIDE

Value = Source stride in QWords of the Cb map

For linear data, this is the address offset between vertically adjacent pixels. For tiled data, this is the address offset between vertically adjacent page strips. The maximum stride is 64KB.

Section 13: Configuration/Status Register Descriptions

Configuration/status registers are accessed directly via memory-mapped I/O. The register identifier MM4xxxx means that the register is memory mapped at offset 004 xxxx from the base address. Two registers (Vertex Buffer Address and BCI Power Management) also have a BCI address.

Status Word 0 Register (MM48C00) (Rev A)

Read Only Address: 004 8C00H Power-on Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				FIL	LED C	OMMA	ND BL	JFFER	ENTR	IES (F	E)		Y		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	PF	MEI	R	MCI	2DI	3DI	BI	FE

Bits 16-0 FILLED COMMAND BUFFER ENTRIES

Value = # of filled positions in the command queue

	The number includes filled positions in both the on-chip and overflow buffers.
Bit 17	BI - BCI Idle 0 = Not idle 1 = Idle
Bit 18	3DI - 3D Graphics Engine Idle 0 = Not idle 1 = Idle
Bit 19	2DI - 2D Engine Idle 0 = Not idle 1 = Idle
Bit 20	MCI - Motion Compensation Processor Idle 0 = Not idle 1 = Idle
Bit 21	Reserved
Bit 22	MEI - Master Engine Idle 0 = Not idle 1 = Idle
Bit 23	PF - Page Flip Pending 0 = Not pending 1 = Pending
Bits 31-24	Reserved

PROPRIETARY AND CONFIDENTIAL

Status Word 0 Register (MM48C00) (Rev B)

	Read Only Address: 004 8C00H Power-on Default: 00000000H															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				FIL	LED C	OMMA	ND BL	JFFER	ENTR	IES (F	E)					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
PF	MEI	R	MCI	2DI	3DI	BI	R	R	R	R			FE			
-																

Bits 20-0 FILLED COMMAND BUFFER ENTRIES

Value = # of filled (DWORD) positions in the command queue

The number includes filled positions in both the on-chip and overflow buffers. The LSB of this field now reads 1 from the time the counter hits the upper threshold until just before its hits the lower threshold on the way down. When the counter hits the lower threshold, the LSB changes to 0 and remains in that state until just before it reaches the upper threshold on the way up.

Bits 24-21 Reserved

DI(3 24 21	
Bit 25	BI - BCI Idle 0 = Not idle 1 = Idle
Bit 26	3DI - 3D Graphics Engine Idle 0 = Not idle 1 = Idle
Bit 27	2DI - 2D Engine Idle 0 = Not idle 1 = Idle
Bit 28	MCI - Motion Compensation Processor Idle 0 = Not idle 1 = Idle
Bit 29	Reserved
Bit 30	MEI - Master Engine Idle 0 = Not idle 1 = Idle
Bit 31	PF - Page Flip Pending 0 = Not pending 1 = Pending

Status Word 1 Register (MM48C04)

Read Only Address: 004 8C04H Power-on Default: 0000000H

The event tag values in this register is passed as part of an UpdataShadowStatus BCI command.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						E	VENT	TAG 0)						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						E	VENT	TAG 1							

Bits 15-0 EVENT TAG 0

Value = 16-bit event tag reporting the status of command parsing at the time of an update shadow status request is reached by the parser

Bits 31-16 EVENT TAG 1

Value = 16-bit event tag reporting the status of command parsing at the time of an update shadow status request is reached by the parser

Status Word 2 Register (MM48C08)

Read Only Address: 004 8C08H Power-on Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VERT	ICAL F	RETRA	CE CC	UNT				S	CAN L	INE N	UMBE	R			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	VERT	RETF	RACE

Bits 10-0 SCAN LINE NUMBER

Value = Number of the scan line currently being refreshed

Bits 18-11 VERTICAL RETRACE COUNT

Value = 8-bit vertical retrace counter current value

An 8-bit counter is incremented each vertical retrace. The counter rolls over to 0 when it reaches its maximum.

Bits 31-19 Reserved

Read/Write

Shadow Status Address Register (MM48C0C)

Address: 004 8C0CH

Power-on Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			SHAD	OW ST	FATUS	ADDF	RESS				R	R	R	R	SUE
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					SH	IADOV	V STA	TUS A	DDRES	SS					

Bit 0 SUE - Status Update Enable

0 = Disable updating the shadow status in system memory

1 = Enable updating the shadow status in system memory

BCI must be disabled when this bit is set. Updates are generated either by an UpdateShadowStatus BCI command or by passing a threshold programmed in MM48C10 (assuming MM48C18_1 = 1).

Bits 4-1 Reserved

Bits 31-5 SHADOW STATUS ADDRESS

Value = Bits 31-5 of the physical address of Status Word 0 in locked system memory

This value is padded with five 0's by the hardware (32-byte aligned).

Command Buffer Thresholds Register (MM48C10)

Read/Write Address: 004 8C10H Power-on Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			CON	/MANE	D BUF	FER ST	ΓOP W	'RITE (UPPE	R) THF	RESHC	DLD			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			COMN	1and I	BUFFE	R RES	SUME \	WRITE	(LOW	ER) TH	IRESH	IOLD		1	

Bits 15-0 COMMAND BUFFER STOP WRITE (UPPER) THRESHOLD

Value = # of command queue entries empty in DWORDs (Rev. A) or 32 DWORD units (Rev. B)

When this many 32-bit queue entries are used (both on- and off-chip)) and $MM8C18_2 = 1$ and $MM8C0C_0 = 1$, the Shadow Status in system memory is updated to indicate that the CPU must stop register writes. Software reads bits 16-0 of Status Word 0 to determine the number of entries. This update occurs only as the threshold is passed as the queue is filling. This value must be greater than the resume write threshold in bits 31-16 of this register.

Bits 31-16 COMMAND BUFFER RESUME WRITE (LOWER) THRESHOLD

Value = # of command queue entries in DWORDs (Rev. A) or 32 DWORD units (Rev. B)

When this many 32-bit queue entries are used (both on- and off-chip) and $MM8C18_2 = 1$ and $MM8C0C_0 = 1$, the Shadow Status in system memory is updated to indicate that the CPU can resume register writes. Software reads bits 16-0 of Status Word 0 to determine the number of entries. This update occurs only as the threshold is passed as the queue is emptying. This value must be less than the stop write threshold in bits 16-0 of this register.

Command Overflow Buffer Register (MM48C14)

Read/Write (See bits) Address: 004 8C14H Power-on Default: 0000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R				CC	DMMAI	ND OV	ERFLO	OW BU	FFER	OFFSI	ΞT			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CC	OB SIZ	E	WC	R	R	R	R	R	R	R	R	R	R	R	R

Bits 13-0 COMMAND OVERFLOW BUFFER OFFSET (Read/Write)

Value - Bits 24-11 of the address offset of the command overflow buffer in the frame buffer

This value is padded with eleven 0's by the hardware (2K-aligned).

Bits 27-14 Reserved

Bit 28

- WC Write Combining Enable
 - 0 = Write combining disabled
 - 1 = Write combining enabled

When write combining is enabled, the driver must ensure that there is no address gap within 32 BCI entries (addresses must be consecutive)

Bits 31-29	COB SIZE - COMMAND OVERFLOW BUFFER SIZE (Read/Write) (Rev. A)
	000 = 256 entries (2KB address alignment)
	001 = 512 entries (2KB address alignment)
	010 = 1K entries (4KB address alignment)
	011 = 2K entries (8KB address alignment)
	100 = 4K entries (16KB address alignment)
	101 = 8K entries (32KB address alignment)
	110 = 16K entries (64KB address alignment)
	111 = 32K entries (128KB address alignment)
	Each entry uses 4 bytes. This buffer is enabled via MM48C18_2.
Bits 31-29	COB SIZE - COMMAND OVERFLOW BUFFER SIZE (Read/Write) (Rev. B)
	000 = 8K entries
	001 = 16K entries
	010 = 32K entries
	011 = 64K entries
	100 = 128K entries
	101 = 256K entries
	110 = 512K entries
	111 = 1M entries

Command Overflow Buffer Pointers Register (MM48C18)

Read/Write Address: 004 8C18H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CBE	R	CMD	OVEF	RFLOW	/ POIN	ITER	R	R	R	R	R	BE	OQE	CSU	R
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					COM	MAND	BUFF	ER EN	TRIES	(CBE)				

Bit 0	Reserved
Bit 1	CSU - Command Buffer Status Update 0 = Command buffer status update disabled
	1 = Command Buffer status update enabled
	Updating is based on the thresholds in MM48C10. MM8C0C_0 must also be set to 1 for this update to occur.
Bit 2	OQE - Command Overflow Buffer Enable
	0 = Overflow command circular buffer disabled
	1 = Overflow command circular buffer enabled
Bit 3	BE - BCI Enable
	0 = BCI function disabled 1 = BCI function enabled
	This bit affects all BCI functions.
Bits 8-4	Reserved
Bits 13-9	CMD OVERFLOW POINTER
	Value = # of commands and MMIO register writes in the command overflow buffer
Bit 14	Reserved
Bits 31- 15	COMMAND BUFFER ENTRIES
	Value - # of antrias (on and off ship) in the command buffer
	Value = # of entries (on and off chip) in the command buffer

Read/					dress:	104 80	20H									BCI: 3
Power	-on De	fault: 0	00000	00H												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			VERT	EX BL	IFFER	ADDR	ESS				R	R	R	SMT	SL	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
					VE	RTEX	BUFF	ER AD	DRES	S						
Bit 0		SL - V	ertex l	Buffer I	_ocatio	n									Y	
		0 = Ve	ertex b	uffer is	in fran	ne buff	er men	nory								
		1 = Ve	ertex b	uffer is	in sys	tem me	emory									
Bit 1		SMT -	Syste	m Mer	nory Ty	/pe										
								ysically	/ contig	guous a	and pag	ge-lock	ed)			
		1 = Ve	ertex b	uffer is	in AG	P mem	ory									
		-				0.16.11										
				t de cie	eared to		ie sour	ce is li	n frame	e buffer	memo	ory.				
Bits 4-	2	Reser	ved							-						
Bits 31	-5	VERT	EX BL	JFFER	ADDR	ESS				R						
		Value	= 4 Q	Word-	aligned	addre	ss of th	ne star	t of the	e vertex	buffer					
						م به اب د			-11-1							
			ame ni	itter m	emorv	oniv p	its 23-8	o are v	alld.							
		FULIT			sinory,					A						

Read/Write Address: 004 8C24H Power-on Default: 00000000H

BCI: 5FH

With automatic clock management and BCI operation enabled for a particular block, the clock to that block is turned off when the block is idle. With automatic clock management for a block disabled, the clock is turned on/off by the corresponding control bit (one of bits 8-11 of this register).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R	R	R	MT	MC	2D	3D	R	R	R	R	AMT	AMC	A2D	A3D
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit 0	A3D - Automatic 3D Engine Clock Management Enable 0 = Automatic 3D engine clock management disabled (use bit 8 to enable/disable clock) 1 = Automatic 3D engine clock management enabled (disable clock when engine idle)
Bit 1	 A2D - Automatic 2D Engine Clock Management Enable 0 = Automatic 2D engine clock management disabled (use bit 9 to enable/disable clock) 1 = Automatic 2D engine clock management enabled (disable clock when engine idle)
Bit 2	 AMC - Automatic Motion Compensation Engine Clock Management Enable 0 = Automatic motion compensation engine clock management disabled (use bit 10 to enable/disable clock) 1 = Automatic motion compensation engine clock management enabled (disable clock when engine idle)
Bit 3	AMT - Automatic Mastered Transfer Engine Clock Management Enable 0 = Automatic mastered transfer engine clock management disabled (use bit 11 to enable/disable clock) 1 = Automatic mastered transfer engine clock management enabled (disable clock when engine idle)
Bits 7-4	Reserved
Bit 8	3D - 3D Engine Clock Enable 0 = Clock to 3D Engine enabled 1 = Clock to 3D Engine disabled

Bit 9	2D - 2D Engine Enable 0 = 2D Engine disabled 1 = 2D Engine enabled	
Bit 10	MC - Motion Compensation Engine Enable 0 = Motion Compensation Engine disabled 1 = Motion Compensation Engine enabled	
Bit 11	MT - Mastered Transfer Engine Enable 0 = Mastered Transfer Engine disabled 1 = Mastered Transfer Engine enabled	
Bits 31-12	Reserved	

Tiled Surface Register (MM48C40, MM48C44, MM48C48, MM48C4C, MM48C50)

Read/Write Address: 004 8C40H Power-on Default: 00000000H

For address mapping 0 (CRB0_7 = 1), all five of the tiled surface registers listed above are defined by this register and apply to Tile Surface Address Aperture 0-4 respectively. For address mapping 1 (CRB0_7 = 0), only MM48C40, MM48C44 and MM48C48 are valid and apply to Tiled Surface Address Aperture 0-2 respectively.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TILED SURFACE FRAME BUFFER OFFSET														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BP	P	YF		S3TC			TILED	SURF	ACE V	VIDTH					

Bits 19-0 TILED SURFACE FRAME BUFFER OFFSET

Value = 4-QWord-aligned address offset in the frame buffer

This alignment can be used for texture surfaces. 2K-alignment (2 additional LSB 0's) must be used for the Z-Buffer and draw buffers.

Bits 25-20 TILED SURFACE WIDTH

Value = Surface width in tiles

For 4 bits, this (width + 3FH) >>6

For 8 and 16-bit tiles, this is ((width + 3FH) & FFC0H) >> 6

For 32-bit tiles, this is ((width + 1FH) & FFE0H) >> 5

where width is the surface width in pixels. 4-, 8- and 16-bit tiles are 64 pixels wide. 32-bit tiles are 32 pixels wide. Thus, for example, if the width is 640 pixels, the value = 10 (decimal) for 8- and 16-bit pixels and 20 (decimal) for 32-bit pixels.

Bits 28-26	S3TC - S3TC Surface Width	
	000 = 64 pixels or less	

- 001 = 128 pixels
- 010 = 256 pixels
- 011 = 512 pixels
- 100 = 1024 pixels
- 101 = 2048 pixels
- 110 = Reserved
- 111 = Reserved
- Bit 29 YF Y Range Flag
 - 0 = Y range is from 23:13 for 8-bit and 32-bit format, from 23:12 for 16-bit format and from 23-14 for 4-bit format 1 = Y range is from 23:12 for 32-bit format and from 23:11 for 16-bit format

Configuration/Status Registers

Bits 31-30 BPP - Tiled Surface Bits/Pixel

- 00 = 4 bits/pixel
- 01 = 8 bits/pixel
- 10 = 16 bits/pixel
- 11 = 32 bits/pixel

Alternate Status Word 0 Register (MM48C60) (Rev. A)

Address: 004 8C60H Read Only Power-on Default: 0000000H

This register provides the same information as MM48C00.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FILLED COMMAND BUFFER ENTRIES (FE)															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	R	R	R	R	R	R	R	PF	MEI	R	MCI	2DI	3DI	BI	FE

Bits 16-0 FILLED COMMAND BUFFER ENTRIES

Value = # of filled positions in the command queue

and the first state of **C**ills of the state

	The number includes filled positions in both the on-chip and overflow buffers.
Bit 17	BI - BCI Idle 0 = Not idle 1 = Idle
Bit 18	3DI - 3D Graphics Engine Idle 0 = Not idle 1 = Idle
Bit 19	2DI - 2D Engine Idle 0 = Not idle 1 = Idle
Bit 20	MCI - Motion Compensation Processor Idle 0 = Not idle 1 = Idle
Bit 21	Reserved
Bit 22	MEI - Master Engine Idle 0 = Not idle 1 = Idle
Bit 23	PF - Page Flip Pending 0 = Not pending 1 = Pending
Bits 31-24	Reserved

Alternate Status Word 0 Register (MM48C60) (Rev B)

Read Only Address: 004 8C60H Power-on Default: 00000000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FILLED COMMAND BUFFER ENTRIES (FE)															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
D	D	P	P	P	P	R	R	PF	MEI	R	MCI	2DI	3DI	BI	FE

Bits 16-0 FILLED COMMAND BUFFER ENTRIES

Value = # of filled positions in the command queue

The number includes filled positions in both the on-chip and overflow buffers.

	· · · · · · · · · · · · · · · · · · ·
Bit 17	BI - BCI Idle 0 = Not idle
	1 = Idle
Bit 18	3DI - 3D Graphics Engine Idle
	0 = Not idle 1 = Idle
Bit 19	2DI - 2D Engine Idle
	0 = Not idle 1 = Idle
Bit 20	MCI - Motion Compensation Processor Idle 0 = Not idle
	1 = Idle
Bit 21	Reserved
Bit 22	MEI - Master Engine Idle
	0 = Not idle
	1 = Idle
Bit 23	PF - Page Flip Pending
	0 = Not pending 1 = Pending
Bits 31-24	Reserved

Alternate Status Word 1 Register (MM48C64))

Read Only Address: 004 8C64H Power-on Default: 00000000H

This register provides the same information as MM48C04

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VERTEX BUFFER TAG															
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
CURRENT TEXTURE SURFACE TAG															

Bits 15-0 EVENT TAG

Value = 16-bit event tag reporting the status of command parsing at the time of an update shadow status request is reached by the parser

Bits 31-16 CURRENT TEXTURE SURFACE TAG

Value = 16-bit texture surface counter current value

A 16-bit counter is incremented each time the Texture Address register (MM485C4) is updated. The DirectDraw driver uses this to synchronize re-use of surface memory through LockSurface.

Index

Index

1

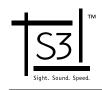
1.5V	
auto adjust of drive	54, 55
pad compensation	54
1280x1024x24 support	87

2

24 bpp packed	151
2D Engine	
enable	89
2D Graphics Engine	
axial step constant	136
background color	140
background/foreground mix	142
bitplane read mask	141
bitplane write mask	140
clipping	146
clock select	134
color compare 141	, 146
color source 142	2, 143
command types	. 139
current X position	136
current Y position	. 135
destination base address	145
destination X position	137
destination Y position	136
diagonal step constant	
drawing direction	138
enable	134
enable 8 bpp or greater	76
foreground color	140
idle status), 231
line error term	137
major axis pixel count	
memory mapping	71
minor axis pixel count	143
scissors	144
screen width	82
select mix register	145
short stroke vector	
software reset	133
source base address	145

3

32 bits/pixel operation 146
3D engine
scissors 204
3D Engine
backface cull mode 205


color compare	190, 191, 199
command buffer entries	223, 224, 230, 231
destination control	
Enable	
fog control	
fog table registers	
idle status	223, 224, 230, 231
mipmapping	
texture address	192, 193
texture control	190, 191
texture description	197
texture surface tag	
texture transparancy	
texture transparent color	
vertex buffer tag	
Z buffering control	201, 202

4

4 bank SDRAM support	103
----------------------	-----

Α

AD bus	
drive control	
AGP	
2x clock skew control	111
4x capability	108
clock select	75
clock skew	47, 48, 88
clocking	126
command priority select	93
command register	126
command suspend	
enable	
FIFO status	126
IDSEL	75
PLL bypass	
PLL powerdown	
side band addressing enable	
sideband addressing support	
status register	
stop SB_STB	
suspend mode	
voltage select	
alpha blending	

Configuration/Status Registers

В

backface cull mode 20	05
BCI	. 4
command circular buffer22	27
enable2	27
enable (2D) 14	48
global bitmap descriptor 14	48
interrupt 131, 132, 13	
power management 22	28
primary bitmap descriptor1	49
secondary bitmap descriptor1	50
bilinear decimation 180, 12	
BIOS ROM	
data 10	05
flash ROM address 10	04
programmability	74
serial versus parallel 108, 187, 18	38
bits/pixel	
color depth	
BLANK pedestal enable	48
blank/border select	72
blending 1	55
block write	
enable 1 cycle operation 10	
burst command interface	
bus master enable 1	14
byte mode addressing	23
byte swap1	39

С

capabilities list pointer12	23
character clock	
dot clocks per	9
chip ID	71
chroma keying 151, 15	53
clipping	
2D	16
2D disable 14	6
clock generator	
new DCLK PLL load 4	
new ECLK PLL load 5	
new MCLK and DCLK PLL load 4	4
new MCLK PLL load 4	13
CLUT	
18- or 24-bit select 4	
color compare 14	
2D graphics 141, 14	16
3D 190, 191, 19	
3D enable	
VGA	
color depth (bpp) 8	32
color keying 15	
in KRGB mode 15	
on color index 15	52

command buffer	
registers	226
thresholds	226
command circular buffer	
overflow buffer enable	227
configuration strapping	
unlocking access to registers	76
CPU base address	
enable	
specify	91
cursor	
end	
location address	
start	17
update policy	79

D

D2 PCI management state enable	78
internal reference current adjust	49
DCLK	
control	47
external input	
external output	
halving	
invert	
inverted	
loading new frequency	
PLL M parameter	
PLL N parameter	
PLL R parameter	
programming 4	1, 42, 52, 53
DDC communications	
decimation	
destination base address	
display active status	6
display FIFO fetch	
enable	
specify start position	
display memory	
refresh cycle control	20
size specification	74
type select	
display pitch	20
display start address	
double buffering	
select	159
doubleword mode addressing	20, 21, 71
drive control	

Index

Ε

ECLK	
IREF control	50
loading new frequency	50
enable	
hardware graphics cursor	79
linear addressing	
LPB	171
PCI bus master operation	114
video display	7, 135
end horizontal blank	
end horizontal sync position	14
end vertical blank	22

F

FIFO fetch delay 100
flat panel
centering and expansion for 15/16 or 32 bpp 102
detect 50
display enable positioning60
hardware cursor fix 55
horizontal centering56
horizontal expansion56
horizontal expansion factor 59
panel detect 50
PanelLink 12/24-bit interface 50
strapping bit108
sync positioning61
vertical centering57
vertical expansion 57
vertical expansion factor 60
flicker filter
odd/even field status
fog
control
fog table registers

gamma correction
enable47set CLUT for 24-bit operation47genlock support152global bitmap descriptor
registers148select82GOP086GPOUT
pin state control40green PC
HSYNC/VSYNC control40

G

Н

	hardware graphics cursor
)	background color
)	enable 79
	fix for flat panel display55
9	foreground color 80
4	pattern display x origin 81
1	pattern display y origin 82
4	storage start address 81
5	Windows/X-Windows modes
3	x origin 80
4	y origin 80
2	HDTV support 152
	high speed text display71
	high speed text font writing76
	horizontal blank
)	end 13
	start 13
2	horizontal decimation type 172
2	horizontal display enable
)	delay 88
5	horizontal display end 13
5	horizontal downscaling mode 153
3	horizontal expansion
)	alternate 56
D	 horizontal sync
)	control for power management 40
) 3 1	polarity5
V	horizontal sync position
7	end 14
7	start 14
)	horizontal total 12
	HSYNC
2	skew by character clocks 15

I

I/O access	
disable	
enable	114
I2C port	104
add wait states	175
ID, chip	70, 71
interlaced operation	77, 79
interrupt	
2D Graphics Engine busy interrupt status	131
2D Graphics Engine interrupt enable	132
enable	72
FIFO empty interrupt enable	132
FIFO empty interrupt status	131
FIFO overflow interrupt enable	132
FIFO overflow interrupt status	131
LPB	174
vertical retrace interrupt clear	19

vertical retrace interrupt enable 19, 131, 13	32
vertical retrace interrupt status	6
interrupt pin claimed12	24

L

L parameter 102, 10	3 pr
latency timer 11	6 us
LCLK	merr
invert 17	2 er
line compare2	3 merr
linear addressing	Μ
bypass VGA logic	9 merr
enable	-
window position. 117, 118, 119, 120, 121, 122, 12	3 mipr
window size	
live video	ch
tearing 10	1 m
Local Peripheral Bus	moti
LBP	1 er
LPB	m
bilinear decimation 180, 18	1 re
color byte swap 17	1
decimation	9
enable	
frame buffer address 175, 18	0 nibb
horizontal decimation type 17	1
input window size	8
interrupt	
interrupts 17	
line stride 17	
live video data mirroring 17	
mode select	
odd/even field detect 17	2
omit stride 17	
output FIFO 173, 18	0 pad
quadlinear decimation 18	
reset 17	
skip frames17	
sync polarity 17	
VBI enable	
VBI parameters	
video FIFO 172, 17	
VSYNC indicator	
write priority 10	
LUT write cycle control 4	

Μ

control	217, 218
engine idle status	223, 224, 230, 231
maximum scan line	
MCLK	
external output	
loading new frequency	
programming	
use external input	
memory mapped access	
enable	114
memory mapped I/O	
MMIO only select	
memory mapping	
Enhanced/VGA modes	71
mipmapping	190, 191
MMIO	
chip wakeup	135
memory mapped I/O	
motion compensation	
engine idle status	223, 224, 230, 231
macroblock description	211, 214
registers	209
_	

Ν

nibble swa	p	83
1110010 0110	P	~~

0

offset	20
overflow command circular buffer	
enable2	27

Ρ

pad compensation	54
palette registers	32
lock access	72
panning	. 16, 33, 34
pattern fill	139
PCI bus	
bus master enable	114
bus master latency timer	116
maximum latency	
minimum grant	124
received master abort	
received target abort	
subvendor ID	
PCI Bus	
BIOS ROM access enable	123
BIOS ROM base address	123
capabilities list	114
capabilities list pointer	
capability identifier	
disable read bursts	
enable disconnect	

Index

enable I/O accesses
master abort handling during DAC cycles
power management
power management D2 state enable
retry handling during DAC cycles
subsystem ID 123
subsystem ID shadow CR registers
subsystem vendor ID shadow CR registers 99
PD bus drive strength
pitch
PLL M parameter 41, 51
PLL N parameter 40, 51
PLL R parameter 40, 51
power management
BCI 228
HSYNC control 40
VSYNC control 40
primary bitmap descriptor
registers 149

Q

quadlinear decimation	
quadword mode addressing 20	

R

RAMDAC	
18- or 24-bit CLUT select	
access	
clock doubled operation	45
color mode select	90
gain adjust	48
lock writes	72
LUT write cycle control	
PCI bus snooping	
power down	45
power down CLUT	
power down sense circuit	
, power saving disable	
power up time	
signature testing	
refresh	-, -
clock speed select	101
refresh, DRAM	
reinterlacing	
enable	172
reset	
2D Graphics Engine	133
LPB	
software	
0011101	

revision status	. 70, 71
row scan count	16

S

Savage4 LT indicator	
scissors	. 204
SCLK	
divide	
source select	. 109
screen off	
screen width	82
SDCLKR	
delay 4	8, 88
SDRAM	
4 bank support	. 103
refresh control	76
SDRAM/SGRAM	
auto refresh to new command timing	90
CAS latency	93
last data in to row precharge delay timing	90
minimum low time	91
time select for consecutive bank accesses	93
SDRAS	
precharge timing	91
secondary bitmap descriptor	
registers	. 150
SENSE	
circuit enabled	46
status of internal signal	6
serial BIOS ROM	
select	. 108
serial BIOS ROM select 187	
serial port	,
register	. 177
SGRAM	,
enable 1 cycle block write operation	. 100
mode set	
refresh control	
refresh disable	
Tbpl parameter	
Trcd parameter	
shadow status	
enable update	225
sideband addressing support	
software reset	
source base address	145
srreams processor	
triple buffering	156
start address	
start horizontal blank	
start horizontal sync position	
start vertical blank	
stepping information	
	5,71

Configuration/Status Registers

streams processor

	blending	155
	chroma keying	153
	color/chroma keying	151
	compose modes	156
	display FIFO fetch delay	100
	display FIFO fetch timing	100
	double buffering	157, 158
	FIFO control	163
	filter characteristics	151, 152
	filter constants	154
	input data formats	151, 153
	mode select	90
	primary stream stride	157
	primary stream window	163
	register loading	89
	scaling	
	secondary stream stride	161, 168
	secondary stream window	164
	switch display buffer between VSYNCs.	156
su	bsystem ID	123
	information source select	75
	shadow CR registers	96, 99

Т

target abort	115
texture	
address	
control	190, 191
current surface tag	232
description	
transparency	
transparent color	197
tiled surface definition	229
tiling	
primary stream on/off	157
secondary stream on/off	161
timeout registers	
triple buffering	
select	159
tri-state off	
HSYNC	
VSYNC	84
TV	
8 bpp modes	
8 bpp output	
DAC output level	
enable digital data output	
encoder mode	
external encoder strapping	
return clock phase	50
TVCLK delay	52
use flat panel logic	49
TV DAC	
control	46, 51

gain adjust	 48
output level	
two page screen	
1.3	

U

underline location	21
unlocking	
configuration strapping registers	76
extended sequencer registers	39
S3 VGA registers	75
system control/extension registers	

V

VBI
enable
parameters 182, 183, 184
VCLK
phase with respect to DCLK
vertex buffer address
vertical blank
end
start
vertical display end
vertical display end
vertical expansion[alternate]
enable
luma only
vertical retrace
counter value
enable interrupt
end
start
vertical sync
active status
control for power management 40
polarity
vertical total
VGA graphics mode select
VGA memory bus width 71
VGA memory mapping71, 72
video BIOS
access enable (PCI) 123
base address (PCI) 123
video display enable 31
VIP
control 176
device select 176
power down 185
timeout 185
VSYNC
change buffer between 156

Index

W

wakeup 135
watermarks
3D destination/texture read/write 206
primary stream 165
secondary stream 166
Z read/write 206
word mode addressing 20, 22, 23
write blocking
enable software control 169
write combining enable 226

Χ

X-Windows

Ζ

Z buffering	
control	201, 202
offset	203

