
3Dlabs

GLINT 500TX™

Programmer’s Reference
Manual

Issue 2

GLINT 500TX Programmer’s Reference Manual

3Dlabs Proprietary and Confidential i

The material in this document is the intellectual property of 3Dlabs. It is provided solely
for information. You may not reproduce this document in whole or in part by any
means. While every care has been taken in the preparation of this document, 3Dlabs
accepts no liability for any consequences of its use. Our products are under continual
improvement and we reserve the right to change their specification without notice.

3Dlabs products and technology are protected by a number of worldwide patents.
Unlicensed use of any information contained herein may infringe one or more of these
patents and may violate the appropriate patent laws and conventions.

3Dlabs is the worldwide trading name of 3Dlabs Inc. Ltd.
3Dlabs and GLINT are registered trademarks of 3Dlabs.

OpenGL is a trademark of Silicon Graphics, Inc. The X Window System and PEX are
trademarks of the Massachusetts Institute of Technology. UNIX is a registered
trademarks of UNIX System Laboratories. Microsoft Windows, Win32, Microsoft
Windows 95 and Microsoft Windows NT are trademarks of Microsoft Corp. Macintosh
and QuickDraw are trademarks of Apple Computers Inc.
All other trademarks are acknowledged.

© Copyright 3Dlabs Inc. Ltd. 1997. All rights reserved worldwide.

3Dlabs Inc.
181 Metro Drive, Suite 520,

San Jose, CA 95110
United States

Tel: (408) 436 3455
Fax: (408) 436 3458

Email: info@3Dlabs.com
WWW: http://www.3Dlabs.com

3Dlabs Ltd.
Meadlake Place

Thorpe Lea Road. Egham
Surrey, TW20 8HE
United Kingdom

Tel: +44 (0) 1784 470555
Fax: +44 (0) 1784 470699

GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabsii

Change History
Document Issue Date Change
109.6.2 1 29 April 96 First Draft
109.6.3 1 4 June 1997 General Update

GLINT 500TX Programmer’s Reference Manual Contents

3Dlabs Proprietary and Confidential iii

Contents

1. Introduction 1
1.1 How to use this manual ... 1
1.2 Further Reading .. 2

2. Architecture Overview 3
2.1 Functional Overview.. 3

3. Programming Model 7
3.1 GLINT as a Register file .. 7
3.2 GLINT I/O Interface... 9
3.3 Other Interrupts .. 18
3.4 Synchronization... 19
3.5 Host Framebuffer Bypass ... 20
3.6 Host Localbuffer Bypass ... 21
3.7 Register Read back... 21
3.8 Byte Swapping... 22
3.9 Red and Blue Swapping ... 23

4. Hardware Data Structures 24
4.1 Localbuffer .. 24
4.2 Framebuffer .. 30
4.3 Double Buffering... 37

5. Graphics Programming 44
5.1 The Graphics HyperPipeline .. 44
5.2 A Gouraud Shaded Triangle ... 47
5.3 Rasterizer Unit .. 53
5.4 Scissor Unit... 80
5.5 Stipple Unit .. 84
5.6 Color DDA Unit ... 88
5.7 Texture Mapping... 92
5.8 Fog Unit ... 113
5.9 Antialias Application Unit .. 118
5.10 Alpha Test Unit... 120
5.11 Localbuffer Read/Write Unit .. 122
5.12 Pixel Ownership Test Unit... 128
5.13 Stencil Test Unit ... 130
5.14 Depth Test Unit.. 134
5.15 Framebuffer Read/Write Unit .. 139
5.16 Alpha Blend Unit... 154
5.17 Color Format Unit... 159
5.18 Logical Op Unit .. 164
5.19 Framebuffer Writemasks .. 167
5.20 Host Out Unit .. 169

6. Initialization 174
6.1 Initializing GLINT .. 174
6.2 System Initialization .. 174
6.3 Window Initialization .. 179
6.4 Application Initialization.. 181

7. Multi-GLINT Systems 182
7.1 Overview... 182

Contents GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabsiv

7.2 Setting up the Graphics Processor .. 183
7.3 The Host Connection .. 185
7.4 The Video Connection .. 185
7.5 Performance .. 185
7.6 A General Purpose Dual GLINT System .. 185

8. Performance Tips 187
8.1 VRAM Block Writes.. 187
8.2 Fast double buffering in a window.. 188
8.3 Improving PCI bus bandwidth for Programmed I/O and DMA 188
8.4 PCI burst transfers under Programmed I/O .. 188
8.5 Using PCI Disconnect under Programmed I/O... 189
8.6 Using bus mastership (DMA)... 189
8.7 Disabling units not in use .. 190
8.8 Rapidly clearing the localbuffer - 1 ... 190
8.9 Rapidly clearing the localbuffer - 2 ... 190
8.10 Rapid clear of the localbuffer & framebuffer.. 191
8.11 Use of the framebuffer (or localbuffer) bypass .. 191
8.12 Loading registers in unit order .. 191
8.13 Avoiding Unnecessary Register Updates .. 191
8.14 Miscellaneous Generic Graphics Tips ... 192

Appendix A Graphics Register Reference 193
Appendix B Pseudocode Definitions 292
Appendix C Screen Widths Table 295
Appendix D Register Table 297
Appendix E Software Compatibility 301
Appendix F Accurate Rendering 304
Glossary 312
Index.. 315

GLINT 500TX Programmer’s Reference Manual Contents

3Dlabs Proprietary and Confidential v

Figures
Figure 2.1 High level blocks in the GLINT architecture .. 4
Figure 3.1 ...12
Figure 3.2 ...14
Figure 4.1 ...24
Figure 4.2 ...25
Figure 4.3 Example memory organization...31
Figure 5.1 HyperPipeline...45
Figure 5.2 Example Triangle ..47
Figure 5.3 Screen aligned trapezoid and flat topped triangle ..47
Figure 5.4 Dominant and Subordinate Sides of a Triangle ..48
Figure 5.5 Rasterizing a triangle. ..54
Figure 5.6 Polyline ..56
Figure 5.7 Antialiased Line ..58
Figure 5.8 Antialiased Point ...60
Figure 5.9 Relationship between Bitmask and Scanning Directions..64
Figure 5.10 GLINT Copy Operation ...68
Figure 5.11 Real Coordinate Representation ...71
Figure 5.12 Screen Scissor and User Scissor Tests ...81
Figure 5.13 Scissor Register ...81
Figure 5.14 LineStippleMode Register ...85
Figure 5.15 AreaStippleMode Register ...86
Figure 5.16 LoadLineStippleCounters register ..86
Figure 5.17 GLINT Color Representation..88
Figure 5.18 Color Interpolation ...89
Figure 5.19 Fixed Point Color Format ...89
Figure 5.20 ColorDDAMode Register ...90
Figure 5.21 TextureAddressMode Register ...95
Figure 5.22 Texture Patch Example ...99
Figure 5.23 Interpolant Fixed Point Format ...101
Figure 5.24 TextureReadMode Register ...104
Figure 5.25 TextureFormat Register ...105
Figure 5.26 TextureColorMode Register ..108
Figure 5.27 Fog Interpolation Over A Triangle ...113
Figure 5.28 Fog Interpolant Fixed Point Format ...114
Figure 5.29 RGBA Fogging ...115
Figure 5.30 FogMode Register ...115
Figure 5.31 Polygon Antialiasing..119
Figure 5.32 AntialiasMode Register ..119
Figure 5.33 AlphaTestMode Register ...121
Figure 5.34 LBReadMode Register...124
Figure 5.35 LBWriteMode Register ...125
Figure 5.36 LBReadFormat / LBWriteFormat Register Layout ..126
Figure 5.37 Window Register ..128

Contents GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabsvi

Figure 5.38 StencilMode Register ..132
Figure 5.39 StencilData Register. ...132
Figure 5.40 Depth Interpolation ..135
Figure 5.41 Depth Derivative Format. ...135
Figure 5.42 DepthMode Register. ..136
Figure 5.43 FBReadMode Register...147
Figure 5.44 PatternRamMode Register ...147
Figure 5.45 FBWriteMode Register ...148
Figure 5.46 AlphaBlendMode Register ...156
Figure 5.47 DitherMode Register ..162
Figure 5.48 LogicalOpMode Register ...165
Figure 5.49 FilterMode Register ..171
Figure 5.50 StatisticMode Register ...172

GLINT 500TX Programmer’s Reference Manual Contents

3Dlabs Proprietary and Confidential vii

Tables
Table 4.1 ..24
Table 4.2 ..34
Table 5.1 Command Register Descriptions..73
Table 5.2 Rasterizer Registers...74
Table 5.3 Render Command Register Fields ...78
Table 5.4 Rasterizer Mode Register ..79
Table 5.5 Color Interpolation Registers ..90
Table 5.6 Texture Interpolation Registers ...95
Table 5.7 OpenGL Filter Modes ..96
Table 5.8 TextureReadMode Register ..97
Table 5.9 Texel Format Register ..102
Table 5.10 Supported Texel Formats..103
Table 5.11 Other Texture Read Registers ...105
Table 5.12 Other Texture Color Registers ..108
Table 5.13 Alpha Test Comparison Tests ...120
Table 5.14 Localbuffer Read/Write Modes. ..123
Table 5.15 Localbuffer Configurations ...124
Table 5.16 Stencil Functions..130
Table 5.17 Possible Update Operations for Stencil Planes ...130
Table 5.18 Stencil Operations..131
Table 5.19 Stencil Sources ...131
Table 5.20 Depth Comparison Modes. ..134
Table 5.21 Depth Sources. ..134
Table 5.22 Depth Interpolation Registers. ..136
Table 5.23 Framebuffer Read/Write Modes ...140
Table 5.24 Source Blending Functions ...154
Table 5.25 Destination Blending Functions..154
Table 5.26 Source Blending Functions ...155
Table 5.27 GLINT Color Modes ...157
Table 5.28 GLINT Color Modes ...160
Table 5.29 Dither Methods ...161
Table 5.30 Ordered Dither Matrices, 4x4 and 2x2. ..161
Table 5.31 Logical Operations ...165
Table 5.32 Filter Modes ..169

GLINT 500TX Programmer’s Reference Manual 1. Introduction

3Dlabs Proprietary and Confidential 1

1. Introduction

The GLINT family of high performance graphics processors combine workstation class
3D graphics acceleration and state of the art 2D performance in a single chip. All 3D
rendering operations are accelerated by GLINT, including Gouraud shading, depth
buffering, antialiasing, alpha blending and texture mapping .

Implemented around a scaleable memory architecture, GLINT reduces the cost and
complexity of delivering high performance 3D graphics within a windowing
environment - making it ideal for a wide range of graphics products from PC boards to
high end workstation accelerators.

This document has been written as the reference for programmers and system
designers who wish to develop software to drive the GLINT 500TX. For
convenience, the GLINT 500TX is referred to throughout simply as GLINT. There
are separate manuals for the GLINT 300SX and GLINT Delta processors.

Familiarity with the OpenGL Specification will be useful when reading this document.

1.1 How to use this manual
Chapter 2 gives an overview of GLINT, its capabilities and architecture, and highlights
the key differences between the GLINT 300SX and GLINT 500TX.

Chapter 3 details the programming model for the chip, including the DMA interface,
and the host framebuffer and localbuffer bypass route.

Chapter 4 describes the hardware data structures that GLINT supports in the
framebuffer and the localbuffer.

Chapter 5 describes how to use GLINT for graphics rendering.

Chapter 6 describes the initialization of GLINT.

Chapter 7 discusses programming systems with multiple GLINT chips.

Chapter 8 provides some programming performance tips.

Appendix A details the GLINT graphics registers, their format and use.

Appendix B gives the format used in the pseudocode examples throughout the
document.

Appendix C gives a table used to set up common screen widths.

Appendix D tabulates the GLINT registers showing the groupings which may be used to
improve performance when using DMA.

Appendix E details software compatibility issues between the GLINT 300SX and
500TX.

Appendix F gives example code for rendering a triangle accurately.

A Glossary of technical terms follows the Appendices.

1. Introduction GLINT

Proprietary and Confidential 3Dlabs2

1.2 Further Reading
• GLINT 500TX Data Sheet, 3Dlabs

• GLINT 500TX Hardware Reference Manual , 3Dlabs

• GLINT 500TX Architecture Overview, 3Dlabs

• OpenGL Programming Guide, Jackie Neider et al, Reading MA: Addison-
Wesley

• OpenGL Reference Manual , Jackie Neider et al, Reading MA: Addison-
Wesley

• The OpenGL Graphics System: A Specification (Version 1.0) , Mark Segal and
Kurt Akeley, SGI (see below)

• PCI Local Bus Specification Rev2.1 , 1Jun95, PCI Special Interest Group,
PO Box 14070, Hillsboro, Oregon 97214 (503-797-4207)

• Multiprocessor Methods For Computer Graphics Rendering , Scott Whitman,
ISBN 0-86720-229-7

• Microsoft WIN32 Software Development Kit 3.1 , Microsoft

• Windows NT 3.1 Graphics Programming , Emeryville CA, Ziff-Davis Press

• The X Window System, Sebastopol CA, O'Reilly & Associates Inc.

• The X Window System Server, Elias Israel and Erik Fortune, Digital Press

• Computer Graphics: Principles and Practice , James D. Foley et al, Reading
MA: Addison-Wesley

1.

GLINT 500TX Programmer’s Reference Manual 2. Architecture

3Dlabs Proprietary and Confidential 3

2. Architecture Overview

2.1 Functional Overview
GLINT is a single chip 3D graphics processor. It fully implements the functionality of
"The OpenGL Machine" from edge walk and span interpolation downwards through
fragment level processing including:

• Point, Line, Triangle and Bitmap primitives

• Flat and Gouraud shading

• Texture and Fog

• Antialiasing

• Scissor and Stipple

• Alpha test, Stencil test, Depth (Z) buffer test

• Alpha Blending

• Dithering

• Logical Operations

• Writemasks

Systems using GLINT can easily be configured to address a wide range of price,
performance and functionality points by simply tuning the external memory design.
GLINT supports 4, 8, 16, 20 or 32-bit RGBA and 4 and 8-bit color index framebuffers.
The framebuffer can be a maximum of 32Mbytes in size.

2. Architecture Overview GLINT

Proprietary and Confidential 3Dlabs4

2.1.1 Block Diagram

Localbuffer
Bypass

DMA
Control

Data
Formatter

Input
FIFO

Output
FIFO

Framebuffer
Bypass

Framebuffer Memory
Interface

EPROM
Controls

Video Logic
Controls

Localbuffer

Shared
Framebuffer
Control Signals

Framebuffer

Timing
Control
Signals

Graphics
Core

VTG
Interface

Localbuffer Memory
Interface

External Video
Logic Interface

Expansion
ROM Interface

Shared
Framebuffer

Interface

Video Timing
Generator

PCI
Bus

GLINT 500TX Graphics Processor

Figure 0.1 High level blocks in the GLINT architecture

The GLINT architecture consists of a Graphics Core augmented by I/O and memory
interfaces as shown in Figure 0.1. There are three external interfaces to GLINT: the
Host Bus Interface (PCI Local Bus), the Localbuffer Interface and the Framebuffer
Interface.

The framebuffer incorporates:
• Color buffer (optionally including back, left and right buffers in addition

to the front buffer) up to 32 bit RGBA

• Overlay (optional)

• Underlay (optional)

• Window control buffer (optional)

The localbuffer (any or all of which can be duplicated for the overlays) incorporates:
• Depth (Z) buffer (optional) up to 32 bits

• Stencil buffer (optional) up to 8 bits

• Fast Clear Planes (optional) up to 8 planes

• Pixel Ownership buffer (for optional Graphic ID s) up to 4 bits, to
support per pixel clipping

• Texture Map Storage

2.1.2 Host Interface

Conceptually GLINT can be viewed as a register file. Control register s are primed with

GLINT 500TX Programmer’s Reference Manual 2. Architecture

3Dlabs Proprietary and Confidential 5

the information required for a primitive, and then to start the chip drawing a write is
made to a Command register.

Data can be provided to GLINT either using programmed I/O through the FIFO, or
using the internal DMA channel. In addition to being able to set any of the standard
graphics registers, the GLINT DMA controller accepts data for some common groups
of registers in an auto-increment mode to maximize bandwidth. The DMA mode also
allows a sequence of data entries to be written to the same register.

The chip also supports a bypass route to the framebuffer and to the localbuffer to allow
direct read/write of pixels, and implementation of algorithms not directly supported by
GLINT.

2.1.3 Task Switching

Where multiple applications wish to make simultaneous access to GLINT, it is the
responsibility of the software driving the chip to handle the loading of the correct state.
GLINT has been designed to support a number of different software architectures. For
instance some of the facilities available are:

• Synchronous operation means that a new task can load its context
without waiting for current rendering to complete

• All loadable state can be read back

• Sync command to flush all rendering which can be polled or return an
interrupt

2.1.4 The GLINT Family

The GLINT 500TX is pin and software compatible with the GLINT 300SX. The major
enhancements in the GLINT 500TX are:

• Greatly enhanced hardware support for texture mapping ;

• 50% increase in Gouraud shaded, depth buffered triangle rendering rate;

• 100% increase in peak Gouraud shaded, depth buffered pixel rendering
rate;

• Extended Data Out (EDO) DRAMs may be used for the localbuffer;

• Support for multiple GLINT configurations;

• Increased GUI acceleration;

• Support for Apple's QuickDraw 3D texture and alpha blend modes.

The GLINT 500TX registers are a superset of those in the GLINT 300SX.

2.1.5 GLINT 500TX Texture Mapping Enhancements

The GLINT 500TX enhances the texture mapping capabilities of the GLINT 300SX
with additional hardware functionality:

• Storage of texture maps in localbuffer;

• Interpolation of texture coordinates;

2. Architecture Overview GLINT

Proprietary and Confidential 3Dlabs6

• Calculation of perceptively correct texture map addresses;

• Retrieval of texture data from the localbuffer memory;

• Formatting of the data from th e wide variety of texture map formats into
a uniform internal format;

• Nearest Neighbor, Bilinear or trilinear interpolation of texture values;

• Assistance to the host in doing Mip Mapping by reading the texel data
and filtering. The host supplies the two mip map addresses and the
inter-map interpolation coefficient.

This extra functionality means that the GLINT 500TX performs all the rendering
operations required for nearest neighbor or bilinear texture mapping and greatly assists
in performing trilinear mip mapping.

GLINT 500TX Programmer’s Reference Manual 3. Programming

3Dlabs Proprietary and Confidential 7

3. Programming Model

This chapter describes the programming model for GLINT. It describes the interface
conceptually rather than detailing specific registers and their exact usage. In depth
descriptions of how to program GLINT for specific drawing operations may be found
in later chapters.

3.1 GLINT as a Register file
The simplest way to view the interface to GLINT is as a flat block of memory-mapped
registers (i.e. a register file). This register file appears as part of Region 0 of the PCI
address map for GLINT. See the GLINT Hardware Reference Manual for details of this
address map.

When a GLINT host software driver is initialized it can map the register file into its
address space. Each register has an associated address tag, giving its offset from the base
of the register file (since all registers reside on a 64-bit boundary, the tag offset is
measured in multiples of 8 bytes). The most straightforward way to load a value into a
register is to write the data to its mapped address. In reality the chip interface comprises
a 32 entry deep FIFO, and each write to a register causes the written value and the
register’s address tag to be written as a new entry in the FIFO.

Programming GLINT to draw a primitive consists of writing initial values to the
appropriate registers followed by a write to a command register. The last write triggers
the start of rendering.

GLINT has a few hundred registers. All registers are 32 bits wide and should be 32-bit
addressed. Many registers are split into bit fields

NoteNote: bit 0 is the least significant bit..

This document describes in detail the graphics registers shown in the text as bold font
(for example: AlphaBlendMode). In addition there are registers related to initialization
and I/O, which are documented in the GLINT Hardware Reference Manual. Where
these registers are referred to in the text of this manual, they are shown in italic font, for
example: InFIFOSpace.

In future chip revisions the register file may be extended and currently unused bits
in certain registers may be assigned new meanings. Software developers should
ensure that only defined registers are written to and that undefined bits in registers
are always written as zeros. The only exception to this rule is that in certain registers it
is convenient to allow sign extended values to be written. These fields are marked as "not
used" in Appendix A.

Register Types

GLINT has three main types of register:
• Control Registers

• Command Registers

3. Programming Model GLINT

Proprietary and Confidential 3Dlabs8

• Internal Registers

Control Registers are updated only by the host - the chip effectively uses them as read-
only registers. Examples of control registers are the Scissor Clip unit min and max
registers. Once initialized by the host, the chip only reads these registers to determine
the scissor clip extents.

Command Registers are those which, when written to, typically cause the chip to start
rendering (some command registers such as ResetPickResult or Sync do not initiate
rendering). Normally, the host will initialize the appropriate control registers and then
write to a command register to initiate drawing. There are two types of command
registers: begin-draw and continue-draw. Begin-draw commands cause rendering to start
with those values specified by the control registers. Continue-draw commands cause
drawing to continue with internal register values as they were when the previous drawing
operation completed. Making use of continue-draw commands can significantly reduce
the amount of data that has to be loaded into GLINT when drawing multiple connected
objects such as polylines. Examples of command registers include the Render and
ContinueNewLine registers.

Note:Note: For convenience in this document we often refer to "sending a Render command to
GLINT" rather than saying "the Render Command register is written to, which
initiates drawing".

Internal Registers are not accessible to host software. They are used internally by the
chip to keep track of changing values. Some control registers have corresponding
internal registers. When a begin-draw command is sent and before rendering starts, the
internal registers are updated with the values in the corresponding control registers. If a
continue-draw command is sent then this update does not happen and drawing
continues with the current values in the internal registers. For example, if a line is being
drawn then the StartXDom and StartY control registers specify the (x, y) coordinates of
the first point in the line. When a begin-draw command is sent these values are copied
into internal registers. As the line drawing progresses these internal registers are updated
to contain the (x, y) coordinates of the pixel being drawn. When drawing has completed
the internal registers contain the (x, y) coordinates of the next point that would have
been drawn. If a continue-draw command is now given these final (x, y) internal values
are not modified and further drawing uses these values. If a begin-draw command had
been used the internal registers would have been re-loaded from the StartXDom and
StartY registers.

For the most part internal registers can be ignored. It is helpful to appreciate that they
exist in order to understand the continue-draw commands.

Efficiency Issues and Register Types

Software developers wishing to write device drivers for GLINT should become familiar
with the different types of registers. Some control registers such as the StartX and
StartY registers have to be updated for almost every primitive whereas other control
registers such as the ScissorMaxXY or the LogicalOpMode can be updated much less
frequently. Pre-loading of the appropriate control registers can reduce the amount of
data that has to be loaded into the chip for a given primitive thus improving efficiency.
In addition, as described above, the final values in internal registers can sometimes be

GLINT 500TX Programmer’s Reference Manual 3. Programming

3Dlabs Proprietary and Confidential 9

used for subsequent drawing operations.

The table in Appendix D lists the graphics registers according to their type.

Due to the structure of the internal HyperPipeline, when several graphics control
registers are being loaded, it is slightly more efficient to load them in the order listed in
Appendix D. For instance registers in the rasterizer should be loaded before registers in
the GID/Stencil/Depth unit.

3.2 GLINT I/O Interface
There are a number of ways of loading GLINT registers for a given context:

• The host writes a value to the mapped address of the register

• The host writes address-tag/data pairs into a host memory buffer and
uses the on-chip DMA to transfer this data to the FIFO.

• The host can perform a Block Command Transfer by writing address
and data values to the FIFO interface registers.

In cases where the host writes data values directly to the chip (via the register file) it has
to worry about FIFO overflow (unless PCI Disconnect is enabled). The InFIFOSpace
register indicates how many free entries remain in the FIFO. Before writing to any
register the host must ensure that there is enough space left in the FIFO. The values in
this register can be read at any time. When using DMA, the DMA controller will
automatically ensure that there is room in the FIFO before it performs further transfers.
Thus a buffer of any size up to 64K, 32bit words, can be passed to the DMA controller.
The FIFO and DMA controller are described in more detail below.

3.2.1 PCI Disconnect

The PCI bus protocol incorporates a feature known as PCI Disconnect, which is
supported by GLINT. PCI Disconnect is enabled by writing to bit zero of the
DisconnectControl register which is at offset 0x68 in PCI Region0. Once the GLINT is in
this mode, if the host processor attempts to write to the full FIFO then instead of the
write being lost, the GLINT chip will assert PCI Disconnect which will cause the host
processor to keep retrying the write cycle until it succeeds.

This feature allows faster download of data to GLINT, since the host need not poll the
InFIFOSpace register but should be used with care since whenever the PCI Disconnect is
asserted the bus is effectively hogged by the host processor until such time as the
GLINT frees up an entry in its FIFO. In general this mode should only be used either
for operations where it is known that the GLINT can consume data faster than the host
can generate it, or where there are no time critical peripherals sharing the PCI bus.

NoteNote If a GLINT Delta geometry processor is in front of the GLINT 500TX, then the PCI
Disconnect must always be set on the GLINT 500TX for the secondary PCI bus, and the
host PCI bus Disconnect is then controlled by the GLINT Delta, whose
DisconnectControl register is at 0x868 in PCI Region0 of the GLINT Delta.

3.2.2 FIFO control

The description above considered the GLINT interface to be a register file. More

3. Programming Model GLINT

Proprietary and Confidential 3Dlabs10

precisely, when a data value is written to a register this value and the address tag for that
register are combined and put into the FIFO as a new entry. The actual register is not
updated until GLINT processes this entry. In the case where GLINT is busy performing
a time consuming operation (e.g. drawing a large polygon), and not draining the FIFO
very quickly, it is possible for the FIFO to become full. If a write to a register is
performed when the FIFO is full no entry is put into the FIFO and that write is
effectively lost (unless PCI Disconnect is enabled as described above).

The input FIFO is 32 entries deep and each entry consists of a tag/data pair. The
InFIFOSpace register can be read to determine how many entries are free. The value
returned by this register will never be greater than 32.

An example of loading GLINT registers using the FIFO is given below. The pseudocode
fills a series of rectangles. Details of the conventions used in the pseudocode examples
may be found in Appendix B.

Assume that the data to draw a single rectangle consists of 8 words (including the
Render command).

Note:Note: Some data values are in 16.16 fixed point format.

for (i = 0; i < nrects; ++i) {
while (*InFIFOSpace < 8)

; // wait for room

StartXDom(rect->x1 << 16);
StartXSub(rect->x2 << 16);
dXDom(0x0);
dXSub(0x0);
Count(rect->y2 - rect->y1);
YStart(rect->y1 << 16);
dY(1 << 16);
Render(GLINT_TRAPEZOID_PRIMITIVE);

}

To check the status of the FIFO before every write is very inefficient so it is checked
before loading the data for each rectangle. Since the FIFO is 32 entries deep, a further
optimization is to wait for all 32 entries to be free after every second rectangle. Further
optimizations can be made by moving dXDom, dXSub and dY outside the loop (as they
are constant for each rectangle) and doing the FIFO wait after every third rectangle.

The InFIFOSpace FIFO control register contains a count of the number of entries
currently free in the FIFO. The chip increments this register for each entry it removes
from the FIFO and decrements it every time the host puts an entry in the FIFO.

3.2.3 The DMA Interface

Loading registers directly via the FIFO is often an inefficient way to download data to
GLINT. Given that the FIFO can accommodate only a small number of entries,
GLINT has to be frequently interrogated to determine how much space is left. Also,
consider the situation where a given API function requires a large amount of data to be
sent to GLINT. If the FIFO is written directly then a return from this function is not
possible until almost all the data has been consumed by GLINT. This may take some

GLINT 500TX Programmer’s Reference Manual 3. Programming

3Dlabs Proprietary and Confidential 11

time depending on the types of primitives being drawn.

To avoid these problems GLINT provides an on-chip DMA controller which can be
used to load data from arbitrary sized (< 64K 32-bit words) host buffers into the FIFO.
At chip reset the MasterEnable bit in the CFGCommand register must be set to allow
DMA to operate (see the GLINT 500TX Hardware Reference Manual for further
details). Then, for the simplest form of DMA, the host software has to prepare a host
buffer containing register address tag descriptions and data values. The host then writes
the base address of this buffer to the DMAAddress register and the count of the number
of words to transfer to the DMACount register. Writing to the DMACount register starts
the DMA transfer and the host can now perform other work. In general, if the complete
set of rendering commands required by a given call to a driver function can be loaded
into a single DMA buffer, then the driver function can return. Meanwhile, in parallel,
GLINT is reading data from the host buffer and loading it into its FIFO. FIFO overflow
never occurs since the DMA controller automatically waits until there is room in the
FIFO before doing any transfers.

The only restriction on the use of DMA control registers is that before attempting to
reload the DMACount register the host software must wait until previous DMA has
completed. It is valid to load the DMAAddress register while the previous DMA is in
progress since the address is latched internally at the start of the DMA transfer. Many
display driver functions can be implemented using the following skeleton structure:

do any pre-work
DMAAddress(address of dma_buffer);
while (*DMACount != 0)

; // wait for DMA to complete
// note use a backoff algorithm here

copy render data into DMA buffer
DMACount(number of words in DMA buffer)
return

Using DMA leaves the host free to return to the application, while in parallel, GLINT is
performing the DMA and drawing. This can increase performance significantly over
loading a FIFO directly. In addition, some algorithms require that data be loaded
multiple times (e.g. drawing the same object across multiple clipping rectangles). Since
the GLINT DMA only reads the buffer data, it can be downloaded many times simply
by restarting the DMA. This can be very beneficial if composing the buffer data is a time
consuming task.

A further optimization is to use a double buffered mechanism with two DMA buffers.
This allows the second buffer to be filled before waiting for the previous DMA to
complete thus further improving the parallelism between host and GLINT processing.

do any pre-work
get free DMA buffer and mark as in use
put render data into this new buffer
DMAAddress(address of new buffer)
while (*DMACount != 0)

; // wait for DMA to complete
// using a back off algorithm

DMACount(number of words in new buffer)

3. Programming Model GLINT

Proprietary and Confidential 3Dlabs12

mark the old buffer as free
return

In general the DMA buffer format consists of a 32-bit address tag description word
followed by one or more data words. The DMA buffer consists of one or more sets of
these formats. The following paragraphs describe the different types of tag description
words that can be used.

DMA Tag Description Format

When DMA is performed each 32-bit tag description in the DMA buffer conforms to
the following format.

08162431

Count or Mask reserved

Mode
0 = Hold tag
1 = Increment tag
2 = Indexed tag
3 = Reserved

Address Tag

Figure 0.1

There are 3 different tag addressing modes for DMA: hold, increment and indexed. The
different DMA modes are provided to reduce the amount of data which needs to be
transferred, hence making better use of the available DMA bandwidth. Each of these is
described in the following sections. Each row in the following diagrams represents a 32-
bit value in the DMA buffer. The address tag for each register is given in the Graphics
Register Reference Appendix A.

Hold Format
address-tag with Count=n-1, Mode=0
value 1
...
value n

In this format the 32-bit tag description contains a tag value and a count specifying the
number of data words following in the buffer. The DMA controller writes each of the
data words to the same address tag. For example, this is useful for image download
where pixel data is continuously written to the Color register. The bottom 9 bits specify
the register to which the data should be written; the high-order 16 bits specify the
number of data words (minus 1) which follow in the buffer and which should be written
to the address tag

Note:Note: The 2-bit mode field for this format is zero so a given tag value can simply be loaded into
the low order 16 bits).

A special case of this format is where the top 16 bits are zero indicating that a single data

GLINT 500TX Programmer’s Reference Manual 3. Programming

3Dlabs Proprietary and Confidential 13

value follows the tag (i.e. the 32-bit tag description is simply the address tag value itself).
This allows simple DMA buffers to be constructed which consist of tag/data pairs. For
example to render a horizontal span 10 pixels long starting from (2,5) the DMA buffer
could look like this:

StartXDom
2 << 16
StartY
5 << 16
StartXSub
12 << 16
Count
1
Render
(trapezoid render command)

Increment Format
address-tag with Count=n-1, Mode=1
value 1
...
value n

This format is similar to the hold format except that as each data value is loaded the
address tag is incremented (the value in the DMA buffer is not changed; GLINT
updates an internal copy). Thus, this mode allows contiguous GLINT registers to be
loaded by specifying a single 32-bit tag value followed by a data word for each register.
The low-order 9 bits specify the address tag of the first register to be loaded. The 2 bit
mode field is set to 1 and the high-order 16 bits are set to the count (minus 1) of the
number of registers to update. To enable use of this format, the GLINT register file has
been organized so that registers which are frequently loaded together have adjacent
address tags. For example, the 32 AreaStipplePattern registers can be loaded as follows:

AreaStipplePattern0, Count=31, Mode=1
row 0 bits
row 1 bits
...
row 31 bits

3. Programming Model GLINT

Proprietary and Confidential 3Dlabs14

Indexed Format

GLINT address tags are 9 bit values. For the purposes of the Indexed DMA Format
they are organized into major groups and within each group there are up to 16 tags. The
low-order 4 bits of a tag give its offset within the group. The high-order 5 bits give the
major group number. Appendix D Register Table, lists the individual registers with their
Major Group and Offset.

09 4

Major Group Offset

8

Figure 0.2

This format allows up to 16 registers within a group to be loaded while still only
specifying a single address tag description word.

address tag with Mask, Mode=2
value 1
...
value n

If the Mode of the address tag description word is set to indexed mode then the high-
order 16 bits are used as a mask to indicate which registers within the group are to be
used. The bottom 4 bits of the address tag description word are unused. The group is
specified by bits 4 to 8. Each bit in the mask is used to represent a unique tag within the
group. If a bit is set then the corresponding register will be loaded. The number of bits
set in the mask determines the number of data words that should be following the tag
description word in the DMA buffer. The data is stored in order of increasing
corresponding address tag. For example,

0x003280F0
value 1
value 2
value 3

The Mode bits are set to 2 so this is indexed mode. The Mask field (0x0032) has 3 bits
set so there are three data words following the tag description word. Bits 1, 4 and 5 are
set so the tag offsets are 1, 4 and 5. The major group is given by the bits 4-8 which are
0x0F (in indexed mode bits 0-3 are ignored). Thus the actual registers to update have
address tags 0x0F1, 0x0F4 and 0x0F5. These are updated with value 1, value 2 and value
3 respectively.

DMA Example

The following pseudo-code shows the previous example of drawing a series of rectangles
but this time using the DMA controller. This example uses a single DMA buffer and the
simplest Hold Mode for the tag description words in the buffer.

UINT32 *pbuf;

GLINT 500TX Programmer’s Reference Manual 3. Programming

3Dlabs Proprietary and Confidential 15

DMAAddress(physical address of dma_buffer)
while (*DMACount != 0)

; // wait for DMA to complete
pbuf = dma_buffer;

*pbuf++ = GlintTagdXDom;
*pbuf++ = 0;
*pbuf++ = GlintTagdXSub;
*pbuf++ = 0;
*pbuf++ = GlintTagdY;
*pbuf++ = 1 << 16;
for (i = 0; i < nrects; ++i) {

*pbuf++ = GlintTagStartXDom;
*pbuf++ = rect->x1 << 16; // Start dominant edge
*pbuf++ = GlintTagStartXSub
*pbuf++ = rect->x2 << 16; // Start of subordinate
*pbuf++ = GlintTagCount;
*pbuf++ = rect->y2 - rect->y1;
*pbuf++ = GlintTagYStart;
*pbuf++ = rect->y1 << 16;
*pbuf++ = GlintTagRender;
*pbuf++ = GLINT_TRAPEZOID_PRIMITIVE;

}
// initiate DMA
DMACount((int)(pbuf - dma_buffer))

The example assumes that a host buffer has been previously allocated and is pointed at
by “dma_buffer”.

DMA Buffer Addresses

Host software must generate the correct DMA buffer address for the GLINT DMA
controller. Normally, this means that the address passed to GLINT must be the physical
address of the DMA buffer in host memory. The buffer must also reside at contiguous
physical addresses as accessed by GLINT. On a system which uses virtual memory for
the address space of a task, some method of allocating contiguous physical memory, and
mapping this into the address space of a task, must be used.

If the virtual memory buffer maps to non-contiguous physical memory then the buffer
must be divided into sets of contiguous physical memory pages and each of these sets
transferred separately. In such a situation the whole DMA buffer cannot be transferred
in one go; the host software must wait for each set to be transferred. Often the best way
to handle these fragmented transfers is via an interrupt handler.

DMA Interrupts

GLINT provides interrupt support, as an alternative means of determining when a
DMA transfer is complete. If enabled, the interrupt is generated whenever the
DMACount register changes from having a non-zero to having a zero value. Since the
DMACount register is decremented every time a data item is transferred from the DMA
buffer this happens when the last data item is transferred from the DMA buffer.

3. Programming Model GLINT

Proprietary and Confidential 3Dlabs16

To enable the DMA interrupt, the DMAInterruptEnable bit must be set in the IntEnable
register. The interrupt handler should check the DMAFlag bit in the IntFlags register to
determine that a DMA interrupt has actually occurred. To clear the interrupt a word
should be written to the IntFlags register with the DMAFlag bit set to one.

A typical use of DMA interrupts might be as follows:
prepare DMA buffer
DMACount(n); // start a DMA transfer
prepare next DMA buffer
while (*DMACount != 0) {

mask interrupts
set DMA Interrupt Enable bit in IntEnable register
sleep on interrupt handler wake up
unmask interrupts

}
DMACount(n) // start the next DMA sequence

The interrupt handler could then be:
if (*IntFlags & DMA Flag bit) {

reset DMA Flag bit in IntFlags
send wake up to main task

}

Interrupts are complicated and depend on the facilities provided by the host operating
system. The above pseudocode only hints at the system details.

This scheme frees the processor for other work while DMA is being completed. Since
the overhead of handling an interrupt is often quite high for the host processor, the
scheme should be tuned to allow a period of polling before sleeping on the interrupt.

3.2.4 Output FIFO and Graphics Processor FIFO Interfa ce

To read data back from GLINT an output FIFO is provided. Each entry in this FIFO is
32-bits wide and it can hold tag or data values. Thus its format is unlike the input FIFO
whose entries are always tag/data pairs (we can think of each entry in the input FIFO as
being 41 bits wide – 9 bits for the tag and 32 bits for the data). The type of data written
by GLINT to the output FIFO is controlled by the FilterMode register. This register
allows filtering of output data in various categories including the following:

• Depth: output in this category results from an image upload of the
Depth buffer.

• Stencil: output in this category results from an image upload of the
Stencil buffer.

• Color: output in this category results from an image upload of the
framebuffer.

• Synchronization: synchronization data is sent in response to a Sync
command.

The data for the FilterMode register consists of 2 bits per category. If the least
significant of these two bits is set (0x1) then output of the register tag for that category is

GLINT 500TX Programmer’s Reference Manual 3. Programming

3Dlabs Proprietary and Confidential 17

enabled; if the most significant bit is set (0x2) then output of the data for that category is
enabled. Both tag and data output can be enabled at the same time. In this case the tag is
written first to the FIFO followed by the data. The FilterMode register is described in
more detail in section § 0.

For example, to perform an image upload from the framebuffer, the FilterMode register
should have data output enabled for the Color category. Then, the rectangular area to be
uploaded should be described to the rasterizer. Each pixel that is read from the
framebuffer will then be placed into the output FIFO. If the output FIFO becomes full,
then GLINT will block internally until space becomes available. It is the programmer’s
responsibility to read all data from the output FIFO. For example, it is important to
know how many pixels should result from an image upload and to read exactly this many
from the FIFO.

To read data from the output FIFO the OutputFIFOWords register should first be read to
determine the number of entries in the FIFO (reading from the FIFO when it is empty
returns undefined data). Then this many 32-bit data items are read from the FIFO. This
procedure is repeated until all the expected data or tag items have been read. The address
of the output FIFO is described below.

NB all expected data must be read back. GLINT will block if the FIFO becomes full.
Programmers must be careful to avoid the deadlock condition that will result if the host
is waiting for space to become free in the input FIFO while GLINT is waiting for the
host to read data from the output FIFO.

Graphics Processor FIFO Interface

GLINT has a sequence of 1K x 32 bit addresses in the PCI Region 0 address map called
the Graphics Processor FIFO Interface. To read from the output FIFO any address in
this range can be read (normally a program will choose the first address and use this as
the address for the output FIFO). All 32-bit addresses in this region perform the same
function – the range of addresses is provided for data transfer schemes which force the
use of incrementing addresses.

Writing to a location in this address range provides raw access to the input FIFO. Again,
the first address is normally chosen. Thus the same address can be used for both input
and output FIFOs. Reading gives access to the output FIFO; writing gives access to the
input FIFO.

Writing to the input FIFO by this method is different from writing to the memory
mapped register file. Since the register file has a unique address for each register, writing
to this unique address allows GLINT to determine the register for which the write is
intended. This allows a tag/data pair to be constructed and inserted into the input FIFO.
When writing to the raw FIFO address an address tag description must first be written
followed by the associated data. In fact, the format of the tag descriptions and the data
that follows is identical to that described above for DMA buffers. Instead of using the
GLINT DMA it is possible to transfer data to GLINT by constructing a DMA-style
buffer of data and then copying each item in this buffer to the raw input FIFO address.
Based on the tag descriptions and data written GLINT constructs tag/data pairs to enter
as real FIFO entries. The DMA mechanism can be thought of as an automatic way of
writing to the raw input FIFO address.

Note:Note: When writing to the raw FIFO address the FIFO full condition must still be checked by

3. Programming Model GLINT

Proprietary and Confidential 3Dlabs18

reading the InFIFOSpace register. However, writing tag descriptions does not cause any
entries to be entered into the FIFO – such a write simply establishes a set of tags to be
paired with the subsequent data. Thus, free space need be ensured only for actual data
items that are written (not the tag values). For example, in the simplest case where each
tag is followed by a single data item, assuming that the FIFO is empty, then 32 writes
are possible before checking again for free space.

See the GLINT Hardware Reference Manual for more details of the Graphics Processor
FIFO Interface address range.

3.3 Other Interrupts
GLINT also provides interrupt facilities for the following:

• Sync: If a Sync command is sent and the Sync interrupt has been enabled
then once all rendering has been completed, a data value is entered into
the Host Out FIFO, and a Sync interrupt is generated when this value
reaches the output end of the FIFO. Synchronization is described
further in the next section.

• External: this provides the capability for external hardware on a GLINT
board (such as an external video timing generator) to generate interrupts
to the host processor.

• Error: if enabled the error interrupt will occur when GLINT detects
certain error conditions, such as an attempt to write to a full FIFO.

• Vertical Retrace: if enabled a vertical retrace interrupt is generated at the
start of the video blank period.

Each of these are enabled and cleared in a similar way to the DMA interrupt. See the
GLINT Hardware Reference Manual for more details.

GLINT 500TX Programmer’s Reference Manual 3. Programming

3Dlabs Proprietary and Confidential 19

3.4 Synchronization
There are three main cases where the host must synchronize with GLINT:

• before reading back from registers

• before directly accessing the framebuffer or the localbuffer via the bypass
mechanism

• framebuffer management tasks such as double buffering (though this
may be better handled using the SuspendUntilFrameBlank command)

Synchronizing with GLINT implies waiting for any pending DMA to complete and
waiting for the chip to complete any processing currently being performed. The
following pseudo-code shows the general scheme:

GlintData data;

// wait for DMA to complete
while (*DMACount != 0) {

poll or wait for interrupt
}

while (*InFIFOSpace < 2) {
; // wait for free space in the FIFO

}

// enable sync output and send the Sync command
data.Word = 0;
data.FilterMode.Synchronization = 0x1;
FilterMode(data.Word);
Sync(0x0);

/* wait for the sync output data */
do {

while (*OutFIFOWords == 0)
; // poll waiting for data in output FIFO

} while (*OutputFIFO != Sync_tag);

Initially, we wait for DMA to complete as normal. We then have to wait for space to
become free in the FIFO (since the DMA controller actually loads the FIFO). We need
space for 2 registers: one to enable generation of an output sync value, and the Sync
command itself. The enable flag can be set at initialization time. The output value will be
generated only when a Sync command has actually been sent, and GLINT has then
completed all processing.

Rather than polling it is possible to use a Sync interrupt as mentioned in the previous
section. As well as enabling the interrupt and setting the filter mode, the data sent in the
Sync command must have the most significant bit set in order to generate the interrupt.
The interrupt is generated when the tag or data reaches the output end of the Host Out
FIFO. Use of the Sync interrupt has to be considered carefully as GLINT will generally
empty the FIFO more quickly than it takes to set up and handle the interrupt.

3. Programming Model GLINT

Proprietary and Confidential 3Dlabs20

3.5 Host Framebuffer Bypass
Normally, the host will access the framebuffer indirectly via commands sent to the
GLINT FIFO interface. However, GLINT does provide the whole framebuffer as part
of its address space so that it can be memory mapped by an application. Access to the
framebuffer via this memory mapped route is independent of the GLINT FIFO.

Drivers may choose to use direct access to the framebuffer for algorithms which are not
supported by GLINT. The framebuffer bypass supports big-endian, little-endian and
GIB-endian formats. These are described in a later section.

A driver making use of the framebuffer bypass mechanism should synchronize
framebuffer accesses made through the FIFO, with those made directly through the
memory map. If data is written to the FIFO and then an access is made to the
framebuffer, it is possible that the framebuffer access will occur before the commands in
the FIFO have been fully processed. This lack of temporal ordering is generally not
desirable.

Once mapped in, the framebuffer can be read or written with 8, 16 or 32-bit accesses.
GLINT does not use bank switching since it is a PCI device and the PCI bus provides a
32 bit address space 1. With GLINT the complete framebuffer is mapped in as a linear
32-bit addressable memory region.

The framebuffer is accessible via Regions 2 and 4 of the PCI address map for GLINT.

3.5.1 Framebuffer Dimensions and Depth

At reset time the hardware stores the size of the framebuffer in the FBMemoryControl
register. This register can be read by software to determine the amount of VRAM on the
display adapter. For a given amount of VRAM, software can configure different screen
resolutions and off-screen memory regions.

The framebuffer width must be set up in the FBReadMode register. The first 9 bits of
this register define 3 partial products which determine the offset in pixels from one
scanline to the next. Typically, these values will be worked out at initialization time and a
copy kept in software. When this register needs to be modified the software copy is
retrieved and any other bits modified before writing to the register.

Once the offset from one scanline to the next has been established, determining the
visible screen width and height becomes a clipping issue. The visible screen width and
height are set up in the ScreenSize register and enabled by setting the
ScreenScissorEnable bit in the ScissorMode register.

The framebuffer depth (8, 16 or 32-bit) is controlled by the PixelSize register. This
register provides a 2 bit field to control which of the three pixel depths is being used.
The pixel depth can be changed at any time without the need for any synchronization.

The pixel depth must be set at initialization time. On the GLINT 300SX it was useful to
change the pixel depth temporarily to optimize certain 2D rendering operations. This is
no longer necessary on the GLINT 500TX due to the introduction of the span

1On address limited buses such as ISA, devices limit the amount of address space that they occupy by using bank
switching hardware. This typically provides a 64K byte window through which part of the framebuffer is visible.
Hardware registers control which part of the framebuffer is visible through this window.

GLINT 500TX Programmer’s Reference Manual 3. Programming

3Dlabs Proprietary and Confidential 21

operations discussed later. However code written to use this technique will still work as
long as the pixel size is set using the PixelSize register. See Appendix E for further
details.

3.6 Host Localbuffer Bypass
As with the framebuffer, the localbuffer can be mapped in and accessed directly. The
host should synchronize with GLINT before making any direct access to the localbuffer.

At reset time the hardware saves the size of the localbuffer in the LBMemoryControl
register (localbuffer visible region size). In bypass mode the number of bits per pixel is
either 32 or 64. This information is also set in the LBMemoryControl register (localbuffer
bypass packing). This pixel packing defines the memory offset between one pixel and the
next. A further set of 3 bits (localbuffer width) in the LBMemoryControl register defines
the number of valid bits per pixel. A typical localbuffer configuration might be 48 bits
per pixel but in bypass mode the data for each pixel starts on a 64-bit boundary. In this
case valid pixel data will be contained in bits 0 to 47. Software must set the
LBReadFormat, and LBWriteFormat registers to tell GLINT how to interpret these
valid bits.

Host software must set the width in pixels of each scanline of the localbuffer in the
LBReadMode register. The first 9 bits of this register define 3 partial products which
determine the offset in pixels from one scanline to the next. As with the framebuffer
partial products, these values will usually be worked out at initialization time and a copy
kept in software. When this register needs to be modified the software copy is retrieved
and any other bits modified before writing to the register. If the system is set up so that
each pixel in the framebuffer has a corresponding pixel in the localbuffer then this width
will be the same as that set for the framebuffer.

The localbuffer is accessible via Regions 1 and 3 of the PCI address map for GLINT.
The localbuffer bypass supports big-endian and little-endian formats. These are
described in a later section.

3.7 Register Read back
Under some operating environments, multiple tasks will want access to the GLINT chip.
Sometimes a server task or driver will want to arbitrate access to GLINT on behalf of
multiple applications. In these circumstances, the state of the GLINT chip may need to
be saved and restored on each context switch. To facilitate this, the GLINT registers can
be read back. For details of which registers are readable, see the Graphics Register
Reference Appendix A. Internal and command registers cannot be read back.

To perform a context switch the host must first synchronize with GLINT. This means
waiting for outstanding DMA to complete, sending a Sync command and waiting for the
sync output data to appear in the output FIFO. After this the registers can be read back.

To read a GLINT register the host reads the same address which would be used for a
write, i.e. the base address of the register file plus the offset value for the register.

Note:Note: Since internal registers cannot be read back care must be taken when context switching a
task which is making use of continue-draw commands. Continue-draw commands rely on
the internal registers maintaining previous state. This state will be destroyed by any

3. Programming Model GLINT

Proprietary and Confidential 3Dlabs22

rendering work done by a new task. To prevent this, continue-draw commands should be
performed via DMA since the context switch code has to wait for outstanding DMA to
complete. Alternatively, continue-draw commands can be performed in a non-preemptable
code segment.

Normally, reading back individual registers should be avoided. The need to synchronize
with the chip can adversely affect performance. It is usually more appropriate to keep a
software copy of the register which is updated when the actual register is updated.

3.8 Byte Swapping
Internally GLINT operates in little-endian mode. However, GLINT is designed to work
with both big- and little-endian host processors. Since the PCI Bus specification defines
that byte ordering is preserved regardless of the size of the transfer operation, GLINT
provides facilities to handle byte swapping. Each of the Configuration Space, Control
Space, Framebuffer Bypass and Localbuffer Bypass memory areas have both big and
little endian mappings available. The mapping to use typically depends on the endian
ordering of the host processor.

The Configuration Space may be set by a resistor in the board design to be either little
endian or big endian.

The Control Space in PCI address region 0, is 128K bytes in size, and consists of two
64K sized spaces. The first 64K provides little endian access to the control space
registers; the second 64K provides big endian access to the same registers.

The framebuffer bypass consists of two PCI address regions: Region 2 and Region 4.
Each is independently configurable by the Aperture0 and Aperture1 control registers
respectively, to one of three modes: no byte swap, 16-bit swap, full byte swap.

The 16 bit mode is needed for the following reason. If the framebuffer is configured for
16-bit pixels and the host is big-endian then simply byte swapping is not enough when a
32-bit access is made (to write two pixels). In this case, the required effect is that the
bytes are swapped within each 16-bit word, but the two 16-bit halves of the 32-bit word
are not swapped. This preserves the order of the pixels that are written as well as the
byte ordering within each pixel. The 16 bit mode is referred to as GIB-endian in the PCI
Multimedia Design Guide, version 1.0.

The localbuffer bypass consists of two PCI address regions: Region 1 and Region 3.
Each is independently configurable by the Aperture0 and Aperture1 control registers
respectively, to one of two modes: no byte swap, full byte swap.

To save on the size of the address space required for GLINT, board vendors may
choose to turn off access to the big endian regions (3 and 4) by the use of resistors on
the board.

There is a bit available in the DMAControl control register to enable byte swapping of
DMA data. Thus for big-endian hosts, this control bit would normally be enabled.

See the GLINT Hardware Reference Manual for more details of these control registers.

Additional support is provided within the graphics core of the chip to byte swap images
and bitmasks as they are transferred to and from the host. These are documented in the
relevant sections of chapter 5.

GLINT 500TX Programmer’s Reference Manual 3. Programming

3Dlabs Proprietary and Confidential 23

3.9 Red and Blue Swapping
For a given graphics board the RAMDAC and/or API will usually force a given
interpretation for true color pixel values. For example, 32-bit pixels will be interpreted as
either ARGB (alpha at byte 3, red at byte 2, green at byte 1 and blue at byte 0) or ABGR
(blue at byte 2 and red at byte 0). The byte position for red and blue may be important
for software which has been written to expect one byte order or the other, in particular
when handling image data stored in a file.

GLINT provides two registers to specify the byte positions of blue and red internally. In
the Alpha Blend Unit the AlphaBlendMode register contains a 1-bit field called
ColorOrder. If this bit is set to zero then the byte ordering is ABGR; if the bit is set to
one then the ordering is ARGB. As well as setting this bit in the Alpha Blend unit, it
must also normally be set in the Color Formatting unit, though in some cases it may be
useful to set them differently. In this unit the DitherMode register contains a Color
Order bit with the same interpretation. The order applies to all of the true color pixel
formats, regardless of the pixel depth. See § 0 and § 0 for more details of the Alpha
Blend and Color Formatting units.

Image and bitmask data can also be optionally byte/word swapped as part of the
download process by setting the appropriate bit in the RasterizerMode register. Finally
image data can be optionally byte/word swapped by setting the appropriate bit in the
FilterMode register of the Host Out unit. These operations are controlled independently
of DMA byte swapping operations.

1.

4. Hardware Data Structures GLINT

Proprietary and Confidential 3Dlabs24

4. Hardware Data Structures

4.1 Localbuffer
The localbuffer holds per pixel information corresponding to each displayed pixel. The
per pixel information held in the localbuffer are Graphic ID (GID), Depth, Stencil and
Frame Count Planes (FCP). The possible formats for each of these fields, and their use
are covered individually in the following sections.

In addition spare localbuffer memory may be used to store texture maps. This is
discussed further in section 4.1.6 below.

The maximum width of the localbuffer is 48 bits, however this can be reduced by
changing the external memory configuration, albeit at the expense of reducing the
functionality or dynamic range of one or more of the fields.

The localbuffer memory can be from 16 bits (assuming a depth buffer is always needed)
to 48 bits wide in steps of 4 bits. The four fields supported in the localbuffer, their
allowed lengths and positions are shown in the following table:

Field Lengths Start bit positions
Depth 16, 24, 32 0
Stencil 0, 4, 8 16, 20, 24, 28, 32
FrameCount 0, 4, 8 16, 20, 24, 28, 32, 36, 40
GID 0, 4 16, 20, 24, 28, 32, 36, 40, 44, 48

Table 0.1

In addition there is a compact mode for a 32bit wide localbuffer with depth(24bit),
stencil(1bit), FrameCount(4bits) and GID(3bits).

The order of the fields is as shown with the depth field at the least significant end and
GID field at the most significant end. The GID is at the most significant end so that
various combinations of the Stencil and FrameCount field widths can be used on a per
window basis without the position of the GID fields moving. If the GID field is in a
different positions in different windows then the ownership tests become impossible to
do.

The localbuffer data is always formatted into a consistent internal format which is:

DepthStencilFCMGID

081624324048

DepthStencilGID FrameCount

Figure 0.1

The GID, FrameCount, Stencil and Depth fields in the localbuffer are converted into
the internal format by right justification if they are less than their internal widths, i.e. the

GLINT 500TX Programmer’s Reference Manual 4. Hardware Data

3Dlabs Proprietary and Confidential 25

unused bits are the most significant bits and they are set to 0.

The format of the localbuffer is specified in two places: the LBReadFormat register and
the LBWriteFormat register.

08162431

reserved

Depth Width

FrameCount Width
FrameCount Position

GID Width
GID Position

Compact32

Stencil Width

Stencil
Position

Figure 0.2

It is still possible to part populate the localbuffer so other combinations of the field
widths are possible (i.e. depth field width of 0).

Any non-bypass read or write to the localbuffer always reads or writes all 48 bits
simultaneously.

4.1.1 GID field

The 4 bit GID field is used for pixel ownership tests to allow per pixel window clipping.
Each window using this facility is assigned one of the GID values, and the visible pixels
in the window have their GID field set to this value. If the test is enabled the current
GID (set to correspond with the current window) is compared with the GID in the
localbuffer for each fragment. If they are equal this pixel belongs to the window so the
localbuffer and framebuffer at this coordinate may be updated.

Using the GID field for pixel ownership tests is optional and other methods of achieving
the same result are:

• clip the primitive to the window's boundary (or rectangul ar tiles which
make up the window's area) and render only the visible parts of the
primitive

• use the scissor test to define the rectangular tiles which make up the
window's visible area and render the primitive once per tile (This may be
limited to only those tiles which the primitive intersects).

The GID field can be 0 or 4 bits wide. More details on the GID field and these registers
may be found in the Graphics Programming chapter.

Note:Note: GID planes are distinct from and serve a different purpose to Wind ow ID planes which
are described later.

4.1.2 Depth Field

The depth field holds the depth (Z) value associated with a pixel and can be 16, 24 or 32
bits wide.

4. Hardware Data Structures GLINT

Proprietary and Confidential 3Dlabs26

4.1.3 Stencil Field

The stencil field holds the stencil value associated with a pixel and can be 0, 4 or 8 bits
wide, or 1bit wide in the Compact32 mode.

The width of the stencil buffer is also stored in the StencilMode register and is needed
for clamping and masking during the update methods. The stencil compare mask should
be set up to exclude any absent bits from the stencil compare operation.

4.1.4 FrameCount Field

The Frame Count Field holds the frame count value associated with a pixel and can be
0, 4 or 8 bits wide. It is used during animation to support a fast clear mechanism to aid
the rapid clearing of the depth and/or stencil fields needed at the start of each frame.

The fast clear mechanism provides a method where the cost of clearing the depth and
stencil buffers can be amortized over a number of clear operations issued by the
application. This works as follows:

The system must be configured with 4 or 8 FrameCount planes, such that each pixel has
storage for its own corresponding FrameCount value.

The Clear

The area that the application is rendering to comprising say S pixels, is divided up into n
regions, where n is the range of the frame counter (for a system with 4 FrameCount
planes n=24=16, with 8 FrameCount planes n=256). Every time the application issues a
clear command the reference FrameCount is incremented (and allowed to roll over if it
exceeds the maximum value n) and only the i th region is cleared.

The clear of the i th region updates the depth(Z) and/or stencil buffers to their
corresponding new values - typically this might be infinity for the depth(Z) and zero for
the stencil buffer. At the same time the FrameCount buffer for every pixel in the i th
region is updated with the latest reference FrameCount value. The region is smaller than
the full region the application specifies to be cleared, so only S/n pixels need to be
written. This takes of order 1/n th as long as clearing the full S pixels.

Lastly the latest reference FrameCount is stored in the Window register, and the
depth(Z) and/or stencil value(s) used in the clear , are stored FastClearDepth register
and the StencilData register for later use as detailed below.

Drawing the Next Frame

Now the application starts to render the i th frame. When the localbuffer is read for a
depth(Z) comparison, or stencil operation, the FrameCount value for the pixel is also
read by the chip and tested against the reference FrameCount in the Window register. If
the FrameCount values are found to be the same, then the localbuffer data is used
directly.

However, whenever the FrameCount is found to be different from the reference
FrameCount, the data which would have been written if all S pixels in the localbuffer had
been cleared (contained in the FastClearDepth and/or StencilData registers), is
substituted by the chip for the stale data returned from the read.

GLINT 500TX Programmer’s Reference Manual 4. Hardware Data

3Dlabs Proprietary and Confidential 27

In any new writes to the localbuffer, the chip will set the FrameCount to the reference
value held in the Window register, thus the next read on this pixel will not return stale
data and will not result in a substitution.

Other Considerations

The fast clear mechanism does not present a total solution as the application can elect to
clear just the stencil planes or just the depth planes, or both. The situation where the
stencil planes only are 'cleared' using the fast clear method, then some rendering is done
and then the depth planes are 'cleared' using the fast clear will leave ambiguous pixels in
the localbuffer. The driver software will need to catch this situation, and fall back to
using a per pixel write to do the second clear. Which field(s) the frame count plane refers
to is recorded in the Window register.

When clear data is substituted for real memory data (during normal rendering
operations) the depth writemask and stencil writemasks are ignored to mimic the
operation of clearing under OpenGL.

In addition to the fast clear mechanism the extent of all updates to the localbuffer and
framebuffer can be recorded (MinRegion and MaxRegion registers) and read back
(MinHitRegion and MaxHitRegion commands) to give the bounding box of the
smallest area to clear. For some applications this will be significantly smaller than the
whole window or screen, and hence faster.

4.1.5 Texture Map Storage

To achieve high texture mapping performance, GLINT stores the texture maps in a
texture store within the localbuffer. The texture store occupies the spare localbuffer
entries after each pixel has allocated an entry for depth, stencil etc., i.e. the texture store
and the per pixel buffers occupy distinct address spaces.

Each entry in the texture store contains 32 bits. If localbuffer entries contain more than
32 bits, then the extra bits will not be used for texture storage. If a texture map is less
than 32 bits deep, then the entries will be packed into the 32 bit words, e.g. if a texture
map is 8 bits deep, then each 32 bit word in the texture store will contain 4 texture map
entries.

Increasing the size of the texture store will increase both image quality (larger textures
may be used) and rendering performance (textures will not have to be swapped in and
out of the texture store). Hence GLINT based designs should include as much texture
store as possible within the given design and price constraints. Typical high end graphics
workstations contain 4 Mbytes of texture store.

The localbuffer should optimally be organized as two separate physical banks, with the
Depth(Z) buffer configured by software to be in one bank, and texture storage allocated
in the other bank. This is because the GLINT supports two pagemode detectors,
allowing Depth(Z) buffered texture mapped rendering to be carried out without forcing
a page break on every localbuffer memory access.

4.1.6 Calculating The Required Localbuffer Size

The required localbuffer size can be calculated using the following steps:

1. Choose the number of bits in the depth field. The typical options are 16 or 24 bits.

4. Hardware Data Structures GLINT

Proprietary and Confidential 3Dlabs28

2. Choose the number of bits in the stencil field. If the design should support OpenGL,
then the typical choice is 4 bits.

3. Choose the number of bits in the fast clear control field. This is optional but is
typically 4 bits.

4. Choose the number of bits in the Graphics ID field. For designs which support X
Windows this may be 4 and otherwise it’s typically zero.

5. Add the answers from steps 1 to 4 together. This gives a minimum number of bits
for each localbuffer entry.

6. If the value from step 5 is greater than 32, then use this value as the number of bits
for each localbuffer entry, otherwise use 32.

7. Determine the maximum screen resolution. The localbuffer should contain an entry
for each pixel on the screen. So the maximum screen resolution and the number of
bits for each localbuffer entry give a minimum size for the localbuffer.

For example, if the maximum screen resolution is 1024 x 768 and the number of bits
for each localbuffer entry is 32, then the minimum local buffer size is
1024 x 768 x 4 bytes = 3 Mbytes.

8. Space should now be allocated for the texture store. This space should typically be 4
Mbytes. The texture storage space plus the value from step 7 give the required
localbuffer size.

Here is an example configuration:
Max screen resolution 1152 x 900
Depth field 24 bits
Stencil field 4 bits
Fast Clear Control 4 bits
Graphics ID None
Texture Store Entry 32 bits
Texture Store Size 4 Mbytes†

Localbuffer Size 8 Mbytes
(e.g. four 2M x 8 bit devices)

NoteNote†: The available texture store size will increase if a lower screen resolution is used with the
same size localbuffer.

In a multi-GLINT design the localbuffer storage may be duplicated.

4.1.7 Localbuffer Coordinates

The coordinates generated by the rasterizer 1 are 16 bit 2's complement numbers, and so
have the range +32767 to -32768. The rasterizer will produce values in this range,
however any which have a negative coordinate, or exceed the screen width or height (as
programmed into the ScreenSize register) are discarded.

1The input co-ordinates to the rasterizer are in 16.16 fixed point format.

GLINT 500TX Programmer’s Reference Manual 4. Hardware Data

3Dlabs Proprietary and Confidential 29

Coordinates can be defined window relative or screen relative and this is only relevant
when the coordinate gets converted to an actual physical address in the localbuffer. In
general it is expected that the windowing system will use absolute coordinates and the
graphics system will use relative coordinates (to be independent of where the window
really is).

GUI systems (such as Microsoft Windows, Microsoft Windows NT and The X Window
System) usually have the origin of the coordinate system at the top left corner of the
screen but this is not true for all graphics systems. For instance OpenGL uses the
bottom left corner as its origin. The WindowOrigin bit in the LBReadMode register
selects the top left (0) or bottom left (1) as the origin.

The actual equations used to calculate the localbuffer address to read and write are:

Bottom left origin
Destination address = LBWindowBase - Y/S * W + X

Source address = LBWindowBase - Y/S * W + X + LBSourceOffset

Top left origin
Destination address = LBWindowBase + Y/S * W + X

Source address = LBWindowBase + Y/S * W + X + LBSourceOffset

where:
X is the pixel's X coordinate.
Y is the pixel's Y coordinate.
LBWindowBase holds the base address in the localbuffer of the current

window.
LBSourceOffset is normally zero except during a copy operation where

data is read from one address and written to another
address. The offset between source and destination is
held in the LBSourceOffset register.

S is the Scanline interval for multi-GLINT systems
W is the screen width. Only a subset of widths are

supported and these are encoded into the PP0, PP1
and PP2 fields in the LBReadMode register. See the
table in Appendix C for more details.

These address calculations translate a 2D address into a linear address.

Note:Note: Turning on Patch addressing introduces additional complexity into the address
calculation which is beyond the scope of this manual. Localbuffer bypass accesses are not
recommended when Patch mode addressing is enabled.

The Screen width is specified as the sum of selected partial products so a full multiply
operation is not needed. The partial products are selected by the fields PP0, PP1 and
PP2 in the LBReadMode register. The range of widths supported by this technique are
tabulated in Appendix C, together with the values for each of the PP fields. This table
holds all the common screen widths.

4. Hardware Data Structures GLINT

Proprietary and Confidential 3Dlabs30

For arbitrary width screens, for instance bitmaps in 'off screen' memory, the next largest
width from the table must be chosen. The difference between the table width and the
bitmap width will be an unused strip of pixels down the right hand side of the bitmap.

Note:Note: that such bitmaps can be copied to the screen only as a series of scanlines rather than as a
rectangular block. However, often windowing systems store offscreen bitmaps in
rectangular regions which use the same stride as the screen. In this case normal bitblts can
be used.

4.2 Framebuffer
The framebuffer is a region of memory where the information produced during
rasterization is written prior to being displayed. This information is not restricted to
color but can include window control data for LUT management and double buffering 1.

The framebuffer region can hold up to 32MBytes and there are very few restrictions on
the format and size of the individual buffers which make up the video stream. Typical
buffers include:

• True color or color index main pl anes,

• Overlay planes,

• Underlay planes,

• Window ID planes for LUT and double buffer management,

• Cursor planes.

Any combination of these planes can be supported up to a maximum of 32MBytes, but
usually it is the video level processing which is the limiting factor. The remainder of this
section examines the options and choices available from GLINT for rendering, copying,
etc. data to these buffers. The necessary video hardware, and how it is controlled is
outside the scope of this document.

To access alternative buffers either the FBPixelOffset register can be loaded, or the base
address of the window held in the FBWindowBase register can be redefined. This is
described in more detail below.

4.2.1 Buffer Organization

Each buffer resides at an address in the framebuffer memory map. For rendering and
copying operations the actual buffer addresses can be on any pixel boundary. Display
hardware will place some restrictions on this as it will need to access the multiple buffers
in parallel to mix the buffers together depending on their relative priority, opacity and
double buffer selection. For instance, visible buffers (rather than offscreen bitmaps) will
typically need to be on a page boundary.

Consider the following highly configured example with a 1280x1024 double buffered
system with 32 bit main planes (RGBA), 8 bit overlay and 4 bits of window control
information (WID). The framebuffer memory map for this example is shown below:

1Although the term 'double buffering' is used here everything is just as applicable to single or double buffered
stereoscopic displays.

GLINT 500TX Programmer’s Reference Manual 4. Hardware Data

3Dlabs Proprietary and Confidential 31

Combining the WID and overlay planes in the same 32 bit pixel has the advantage of
reducing the amount of data to copy when a window moves, as only two copies are
required - one for the main planes and one for the overlay and WID planes.

Note the position of the overlay and WID planes. This was not an arbitrary choice but
one imposed by the (presumed) desire to use the color processing capabilities of GLINT
(dither and interpolation) in the overlay planes. The conversion of the internal color
format to the external one stored in the framebuffer depends on the size and position of
the component. The possible formats are given in Error! Reference source not found. .
Note that GLINT does not support all possible configurations. For example; if the
overlay and WID bits were swapped, then eight bit color index starting at bit 4 would be
required to render to the overlay, but this is not supported.

Front Buffer

Back Buffer

Overlay Buffer

WID Buffer

1M

2M

3M

4M

5M

6M

7M

8M 31 23 15 7 0 Bit

Unpopulated

Unpopulated

Unpopulated

Figure 0.3 Example memory organization

4.2.2 Framebuffer Coordinates

Coordinate generation for the framebuffer is similar to that for the localbuffer, however,
there are some key differences.

As was mentioned before, the coordinates generated by the rasterizer 1 are 16 bit 2's
complement numbers. Coordinates can be defined as window relative or screen relative,
though this is only relevant when the coordinate gets converted to an actual physical

1The input co-ordinates to the rasterizer are in 16.16 format.

4. Hardware Data Structures GLINT

Proprietary and Confidential 3Dlabs32

address in the framebuffer. The WindowOrigin bit in the FBReadMode register selects
top left (0) or bottom left (1) as the origin for the framebuffer.

The actual equations used to calculate the framebuffer address to read and write are:

Bottom left origin
Destination address = FBWindowBase - Y/S * W + X +

FBPixelOffset

Source address = FBWindowBase - Y/S * W + X + FBPixelOffset +
FBSourceOffset

Top left origin
Destination address = FBWindowBase + Y/S * W + X +

FBPixelOffset

Source address = FBWindowBase + Y/S * W + X + FBPixelOffset +
FBSourceOffset

where:
X is the pixel's X coordinate,
Y is the pixel's Y coordinate,
S is the scanline interval for multi-GLINT systems
FBWindowBase holds the base address in the framebuffer of the

current window.
FBPixelOffset is normally zero except when multi-buffer writes are

needed1 when it gives a way to access pixels in
alternative buffers without changing the
FBWindowBase register. This is useful as the window
system may be asynchronously changing the window's
position on the screen. It is held in the FBPixelOffset
register.

FBSourceOffset is normally zero except during a copy operation where
data is read from one address and written to another
address. The FBSourceOffset is held in the
FBSourceOffset register.

W is the screen width. Only a subset of widths are
supported and these are encoded into the PP0, PP1
and PP2 fields in the FBReadMode register. See the
table in Appendix C for more details.

These address calculations translate a 2D address into a linear address so non power of
two framebuffer widths (i.e. 1280) are economical in memory.

The width is specified as the sum of selected partial products so a full multiply operation
is not needed. The partial products are selected by the fields PP0, PP1 and PP2 in the
FBReadMode register. This is the same mechanism as is used to set the width of the

1OpenGL, for example, allows any combination of the Front, Back, Left and Right color buffers to be updated
'simultaneously'.

GLINT 500TX Programmer’s Reference Manual 4. Hardware Data

3Dlabs Proprietary and Confidential 33

localbuffer, however the widths may be set independently. The range of widths
supported by this technique are tabulated in Appendix C, together with the values for
each of the PP fields. This table holds all the common screen widths.

For arbitrary screen sizes, for instance when rendering to 'off screen' memory such as
bitmaps, the next largest width from the table must be chosen. The difference between
the table width and the bitmap width will be an unused strip of pixels down the right
hand side of the bitmap.

Note that such bitmaps can be copied to the screen only as a series of scanlines rather
than as a rectangular block. However, often windowing systems store offscreen bitmaps
in rectangular regions which use the same stride as the screen. In this case normal bitblts
can be used.

4.2.3 Color Formats

The contents of the framebuffer can be regarded in two ways:
• As a collection of fields of up to 32 bits with no meaning or assumed

format as far as GLINT is concerned. Bit planes may be allocated to
control cursor, LUT, multi-buffer visibility or priority functions. In this
case GLINT will be used to set and clear bit planes quickly but not
perform any color processing such as interpolation or dithering. All the
color processing can be disabled so that raw reads and writes are done
and the only operations are writemasking and logical ops. This allows the
control planes to be updated and modified as necessary. Obviously this
technique can also be used for overlay buffers, etc. providing color
processing is not required.

• As a collection of one or more color components. All the processing of
color components, except for the final writemask and logical ops are
done using the internal color format of 8 bits per red, green, blue and
alpha color channels. The final stage before writemask and logical ops
processing converts the internal color format to that required by the
physical configuration of the framebuffer and video logic. The range of
supported formats are given in Error! Reference source not found. .
The nomenclature n@m means this component is n bits wide and starts
at bit position m in the framebuffer. The least significant bit position is 0
and a dash in a column indicates that this component does not exist for
this mode. The ColorOrder is specified by a bit in the DitherMode
register.

Some important points to note:
• The alpha channel is always associated with the RGB color channels

rather than being a separate buffer. This allows it to be moved in parallel
and to work correctly in multi-buffer updates and double buffering. If
the framebuffer is not configured with an alpha channel (e.g. 24 bit
framebuffer width with 8:8:8:8 RGB format) then some of the rendering
modes which use the retained alpha buffer cannot be used. In these cases
the NoAlphaBuffer bit in the AlphaBlendMode register should be set so
that an alpha value of 255 is substituted. For the RGB modes where no
alpha channel is present (e.g. 3:3:2) then this substitution is done

4. Hardware Data Structures GLINT

Proprietary and Confidential 3Dlabs34

automatically.

• For the Front and Back modes the data value is replicated into both
buffers. Note though the Front and Back modes are identical, the
redundant modes are included for symmetry with the Color format field
of the AlphaBlendMode register.

• All writes to the framebuffer try to update all 32 bits irrespective of the
color format. This may not matter if the memory planes don't exist, but
if they are being used (as overlay planes, for example) then the
writemasks (FBSoftwareWriteMask or FBHardwareWriteMask) must
be set up to protect the alternative planes.

Internal Color Channel
Format Name R G B A

0 8:8:8:8 8@0 8@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4:4:4:4 4@0 4@4 4@8 4@12

Color 3 4:4:4:4Front 4@0 4@8 4@16 4@24
Order: 4 4:4:4:4Back 4@4 4@12 4@20 4@28
BGR 5 3:3:2Front 3@0 3@3 2@6 255

6 3:3:2Back 3@8 3@11 2@14 255
7 1:2:1Front 1@0 2@1 1@3 255
8 1:2:1Back 1@4 2@5 1@7 255
13 5:5:5Back 5@16 5@21 5@26 255
0 8:8:8:8 8@16 8@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:4:4 4@8 4@4 4@0 4@12

Color 3 4:4:4:4Front 4@16 4@8 4@0 4@24
Order: 4 4:4:4:4Back 4@20 4@12 4@4 4@28
RGB 5 3:3:2Front 3@5 3@2 2@0 255

6 3:3:2Back 3@13 3@10 2@8 255
7 1:2:1Front 1@3 2@1 1@0 255
8 1:2:1Back 1@7 2@5 1@4 255
13 5:5:5Back 5@26 5@21 5@16 255

CI 14 CI8 8@0 0 0 0
15 CI4 4@0 0 0 0

Table 0.2

• When reading the framebuffer RGBA components are scaled to their
internal width of 8 bits, if needed for alpha blending.

CI values are left justified with the unused bits (if any) set to zero and are
subsequently processed as the red component. The result is replicated
into each of the streams G,B and A giving four copies for CI8 and eight
copies for CI4.

• The 5:5:5 Back format is designed to support multiple independent

GLINT 500TX Programmer’s Reference Manual 4. Hardware Data

3Dlabs Proprietary and Confidential 35

15bpp double buffered windows, on systems which have a RAMDAC
that can select the front and back buffer on a per pixel basis based on
the top bit of the 32bit pixel stream. The front or back buffer may be
selected for writing using writemasking.

• The 4:4:4:4 Front and Back formats are designed to support 12 bit
double buffering with 4bit Alpha, in a 32 bit system.

• The 3:3:2 Front and Back form ats are designed to support 8 bit double
buffering in a 16 bit system.

• The 1:2:1 Front and Back formats are designed to support 4 bit double
buffering in an 8 bit system.

• It is possible to have a color index buffer at other positions as long as
reduced functionality is acceptable. For example a 4 bit CI buffer at bit
position 16 can be achieved using writemasking and 4:4:4:4 Front format
with color interpolation, however dithering is lost.

The format information needs to be stored in two places: the DitherMode register and
the AlphaBlendMode register.

4.2.4 Overlays and Underlays

In a GUI system there are two possible relationships between the overlay planes (or
underlay) and the main planes.

• The overlay planes are fixed to the main planes, so that if the window is
moved then both the data in the main planes and overlay planes move
together.

• The overlay planes are not fixed to the main planes but floating, so that
moving a window only moves the associated main or overlay planes.

In the fixed case both planes can share the same GID. The pixel offset is used to
redirect the reads and writes between the main planes and the overlay (underlay) buffer.
The pixel ownership tests using the GID field in the localbuffer work as expected.

In the floating case different GIDs are the best choice, because the same GID planes in
the localbuffer can not be used for pixel ownership tests. The alternatives are not to use
the GID based pixel ownership tests for one of the buffers but rely on the scissor
clipping, or to install a second set of GID planes so each buffer has it's own set. GLINT
allows either approach.

If rendering operations to the main and overlay planes both need the depth or stencil
buffers, and the windows in each overlap then each buffer will need its own exclusive
depth and/or stencil buffers. This is easily achieved with GLINT by assigning different
regions in the localbuffer to each of the buffers. Typically this would double the
localbuffer memory requirements.

One scenario where the above two considerations do not cause problems, is when the
overlay planes are used exclusively by the GUI system, and the main planes are used for
the 3D graphics.

4. Hardware Data Structures GLINT

Proprietary and Confidential 3Dlabs36

4.2.5 VRAM Modes

High performance systems will typically use VRAM for the framebuffer and the
extended functionality of VRAM over DRAM can be used to enhance performance for
many rendering tasks.

Hardware Writemasks.

These allow writemasking in the framebuffer without incurring a performance penalty. If
hardware writemasks are not available, GLINT must be programmed to read the
memory, merge the value with the new value using the writemask, and write it back.

To use hardware writemasking, the required writemask is written to the
FBHardwareWriteMask register, the FBSoftwareWriteMask register should be set to
all 1's, and the number of framebuffer reads is set to 0 (for normal rendering). This is
achieved by clearing the ReadSource and ReadDestination enables in the FBReadMode
register.

To use software writemasking, the required writemask is written to the
FBSoftwareWriteMask register and the number of framebuffer reads is set to 1 (for
normal rendering). This is achieved by setting the ReadDestination enable in the
FBReadMode register.

Block Writes

Block writes cause consecutive pixels in the framebuffer to be written simultaneously.
This is useful when filling large areas but does have some restrictions:

• No depth, stencil or GID testing can be done

• All the pixels must be written with the same value so no color
interpolation, blending, dithering or logical ops can be done

Block writes are not restricted to rectangular areas and can be used for any trapezoid.
Hardware writemasking is available during block writes.

The following registers need to be set up before block fills can be used:

FBBlockColor register with the value to write to each pixel

Sending a Render command with the PrimitiveType field set to "trapezoid" and the
FastFillEnable field set, will then cause block filling of the area. Note that during a block
fill of a trapezoid any inappropriate state is ignored so even if color interpolation, depth
testing and logical ops, for example, are enabled they have no effect.

See the discussion on span operations later in this manual for further details.

GLINT 500TX Programmer’s Reference Manual 4. Hardware Data

3Dlabs Proprietary and Confidential 37

4.3 Double Buffering
Double buffering is a technique used to achieve visually smooth animation, by rendering
a scene to an offscreen buffer, before quickly displaying it.

Which techniques are available will depend on the board design, however, this section
discusses how GLINT may be used to provide support for four common types of
double buffering, assuming that the framebuffer memory and LUT-DAC have the
necessary capabilities.

• BitBLT

• Full Screen

• Bitplane

• Colorspace

4.3.1 BitBlt Double Buffering

BLT double buffering in its simplest form requires a complete duplicate buffer of non-
displayed VRAM to be maintained. To swap buffers a BLT is performed onto the
displayable area. The features are:

• takes significant time to swap buffers

• the offscreen buffer requires as much VRAM as is displayed

• any number of windows can be independently double buffered

• pixel depth is limited only by the available VRAM.

4.3.2 Full Screen Double Buffering

This section describes how to implement full-screen double buffering with GLINT
when using the internal timing generator. To perform full-screen double buffering the
available VRAM must be partitioned into two parts – buffer 0 and buffer 1 – each of
which contains enough memory to display a full screen of pixel information. The
partitioning consists of deciding the offset into VRAM at which a given buffer starts.
This offset is used to program various GLINT registers. For a given resolution and pixel
depth there must be enough VRAM configured on the display adapter for this to be
possible. For example, with 32 bit deep pixels and 4MB of VRAM it is possible to
implement full-screen double buffering at 800x600 resolution, but not at 1024x768.

There are two factors to consider for full-screen double buffering. Firstly, the video
output hardware must be configured to display the pixels from the correct buffer.
Secondly, the GLINT chip must be programmed to render into the correct buffer. To
achieve smooth animations, the buffer being rendered into is usually different from the
buffer being displayed.

Some sample code to work out the location in VRAM of a second buffer for the
purposes of full-screen double buffering is given below.

Video Output

To display a given buffer, the video output hardware must be programmed with the

4. Hardware Data Structures GLINT

Proprietary and Confidential 3Dlabs38

offset of that buffer in VRAM. In the GLINT internal timing generator this is controlled
by the VTGFrameRowAddr register located in the GLINT control space at offset 0x3068.
It is updated immediately it is written, but is not used by the video hardware until the
start of the next frame. This register contains a count measured in RAS (row address)
length units. A RAS length unit is the number of bytes that make up a VRAM row
address line. This value will be board rather than GLINT specific, and may be calculated
as follows:

RLP = 1024 * (4/BYP) * IL

where:

RLP = RAS length in pixels

BYP = bytes per pixel

IL = 1 for non-interleaved VRAMs
2 for 2 way interleaved VRAMs
4 for 4 way interleaved VRAMs

For example on a board which uses 2 way interleaved VRAMS the length in pixels would
be:

8bpp: 1024 * (4/1) * 2 = 8K pixels

16bpp: 1024 * (4/2) * 2 = 4K pixels

32bpp: 1024 * (4/ 4) * 2 = 2K pixels

The interleave value can be worked out by reading the FBModeSel control space register.
This is described in the GLINT 500TX Hardware Reference Manual. The value 1024 is
related to the width of the video shift register and never changes.

Note that for a given board design RLP will depend on the pixel depth only and not the
resolution.

The value loaded into the VTGFrameRowAddress register is multiplied by the RAS line
length to give an offset into VRAM at which to start scanning pixels for the currently
displayed buffer. This means that a given buffer must start on a RAS line boundary.

One common configuration for a double buffered system is to position buffer 0 at RAS
line 0, and buffer 1 at the first RAS boundary after the end of buffer 0. Note that in this
case the pixel coordinates of the start of buffer 1, may have an X coordinate which is
not zero. It depends on whether the pixel coordinate at the start of the first scanline past
the end of the screen lies on the correct boundary.

Here are some examples for 32 bit pixels on a 2 way interleaved board:

640x480: Buffer 0 at RAS 0, coordinates (0, 0).
Buffer 1 at RAS 150, coordinates (0, 480).

800x600: Buffer 0 at RAS 0, coordinates (0, 0).
Buffer 1 at RAS 235, coordinates (480, 601).

1024x768: Buffer 0 at RAS 0, coordinates (0, 0).
Buffer 1 at RAS 384, coordinates (0, 768).

GLINT 500TX Programmer’s Reference Manual 4. Hardware Data

3Dlabs Proprietary and Confidential 39

For most standard resolutions, except 800x600, the start of the first scanline after the
visible screen coincides with a RAS boundary. Hence, in the examples, the pixel
coordinates of the start of buffer 1 have an X value of 0 and a Y value equal to the
screen height.

The 800x600 resolution is different, since 800*600 = 480000 is not divisible by 2K. In
this case the first RAS boundary after the end of buffer 0 lies at a pixel coordinate with
X = 480 and Y = 601. In other words, from the end of buffer 0, slightly more than one
and a half scanlines must be skipped to get to the next boundary. It does not matter that,
conceptually, this position is not aligned with the left edge of the screen when buffer 0 is
being displayed.

To swapbuffers the VTGFrameRowAddress register is loaded with the RAS line value for
the buffer to be displayed.

GLINT Rendering

The video output hardware (when using the internal timing generator) restricts the
position of each buffer to be on a RAS boundary. When determining the VRAM
location of a pixel being rendered GLINT works in screen coordinates. Thus we need to
translate the RAS address of the start of a buffer into a pixel position in screen
coordinates. We do this as follows:

Y = (RA * RLP) / WP

X = (RA * RLP) % WP

where:

Y = Y position in screen coordinates

X = X position in screen coordinates

RA = RAS line value for the given buffer

RLP = RAS length in pixels

WP = width of the screen in pixels
For example, at a pixel depth of 32 and a screen resolution of 800x600, as noted above
RA = 235 and RWP = 2048 pixels. So the (X, Y) coordinates of buffer 1 are:

Y = (235 * 2048) / 800 = 601

X = (235 * 2048) % 800 = 480

Hence buffer 1 starts at (480, 601).

To simplify the calculation of pixel coordinates that are loaded into GLINT, this value
may be loaded into the FBPixelOffset register. The last thing GLINT does before
passing a pixel address to the framebuffer interface is to add the value in the
FBPixelOffset register to its address. Thus it is possible to move the rendering origin to
any pixel location in VRAM. When swapping buffers it is normal to move this position
to be the pixel at which a given buffer starts. Thus, in the example just given, to start

4. Hardware Data Structures GLINT

Proprietary and Confidential 3Dlabs40

rendering into buffer 1, we would load (800 * 601) + 480 = 481280 into the
FBPixelOffset register.

To summarize, generally buffer 0 will be at RAS value 0 and screen coordinates (0, 0). So
to display buffer 0 we load 0 into VTGFrameRowAddress and to render into buffer 0 we
load 0 into the FBPixelOffset register. Buffer 1 will normally live at some offset into
VRAM. As an example, for 32 bpp at 800x600 as worked out above, we load 235 into
VTGFrameRowAddress to display buffer 1 and we load 481280 into FBPixelOffset to
render into buffer 1.

These values can be pre-calculated at system startup ready to be loaded as required.

Synchronization

The commonest use of double buffering is to display one buffer (the front buffer) while
rendering into the other (the back buffer). When the rendering has been completed to
this buffer, the buffers are swapped and rendering continues into the new back buffer.
As a general rule, buffers should not be swapped until all rendering to the back buffer
has completed so that the buffer swap does not result in visible tearing, or screen
breakup.

GLINT reads the VTGFrameRowAddr register at the end of each vertical blanking period
to determine the starting pixel for the next frame to be displayed. Thus, in principle, this
register can be written at any time to swap buffers and will only take effect on the next
frame. The same is not true of loading the FBPixelOffset register. This register gets
updated as soon as the command to load it works its way through the input FIFO.
Hence, any rendering that takes place after the FBPixelOffset has been loaded will occur
in the new buffer. If care is not taken this can result in rendering being seen before the
buffers have been swapped. The following scheme would probably produce picture
break-up:
VTGFrameRowAddr = 0 // display buffer 0
FBPixelOffset = Buf1_Offset // draw to buffer 1 now
Render Commands // draw next frame
VTGFrameRowAddr = Buf1_RAS // display buffer 1
FBPixelOffset = 0 // draw to buffer 1 now
Render Commands // draw next frame

There are two problems here. Firstly, even though the write to the VTGFrameRowAddr
register happens immediately, GLINT does not actually swap the buffers till the end of
the next vertical blanking period. Thus the start of rendering of the next frame may be
seen in the front buffer prior to the buffer swap. Secondly, once a command has been
loaded into the input FIFO the host is free to continue with other work, while GLINT
executes the command. Accesses to the VTGFrameRowAddr register bypass the FIFO so
it is possible for the host to update it, and for the buffer swap to happen, before GLINT
has completed rendering the last frame.

The GLINT 500TX includes the SuspendUntilFrameBlank command to solve these
problems without the need for the host synchronizing with GLINT. Here is the correct
version of the above example:

GLINT 500TX Programmer’s Reference Manual 4. Hardware Data

3Dlabs Proprietary and Confidential 41

SuspendUntilFrameBlank(parameters) // display buffer 0
FBPixelOffset = Buf1_Offset // draw to buffer 1 now
Render Commands // draw next frame
SuspendUntilFrameBlank(parameters) // display buffer 1
FBPixelOffset = 0 // draw to buffer 0 now
Render Commands // draw next frame

The SuspendUntilFrameBlank command will flush all outstanding reads and writes to
the framebuffer, and will prevent any further framebuffer memory accesses until after
the buffers have been swapped.

The data that is loaded into the SuspendUntilFrameBlank command enables GLINT
to swap the buffers automatically when the VBLANK occurs either by loading a new
buffer offset into the VTGFrameRowAddr register as discussed above, or by updating one
or more registers in the RAMDAC where colorspace double buffering is being used. For
full details see the detailed description in the register reference, Appendix A.

Thus a single command register access ensures that:
• all rendering has completed to the back buffer

• the chip will wait for VBLANK before carrying out the swap

• the host can continue sending rendering commands to GLINT without
risk of them affecting the displayed buffer.

As a general performance note, it is best to send non-framebuffer related commands to
GLINT following the SuspendUntilFrameBlank command. For example, any
commands to clear the Z buffer between frames should be sent as these will not affect
the framebuffer and will be executed while GLINT waits for the VBLANK. This allows
better overlap between the host and GLINT. In general any commands that will not
cause rendering to the framebuffer to occur can be queued in the GLINT FIFO before
waiting on VBLANK.

Eventually more framebuffer rendering commands will be sent by the host, and the
GLINT will then stall its hyperpipeline until the buffer swap completes. Ideally the host
should use this time to prepare additional DMA buffers, assuming that an interrupt
driven DMA driver is being used.

Using this scheme the host will not normally ever need to wait for VBLANK, unless it is
making framebuffer memory accesses through the bypass.

To wait for VBLANK we can poll the VTGVLineNumber register (there is also a
VBLANK interrupt available). This register is reset to 1 at the start of the VBLANK
period and is incremented by one for each scanline as the video scanner moves down
the screen. Thus polling for this register to have a value of 1 indicates the start of
VBLANK. Since this register always has a value ≥1, it is better to wait for its value to be
less than some small positive integer such as 3 or 4. The vertical blanking period typically
lasts for 10 – 30 scanlines so this improves our hit rate but still leaves plenty of blanking
time for us to complete any work we have to do.

4.3.3 Bitplane Double Buffering

Bitplane double buffering is of use at 32bpp framebuffer depth using 32768 5:5:5:1 true
color mode. It relies on the board being designed with a RAMDAC which will select

4. Hardware Data Structures GLINT

Proprietary and Confidential 3Dlabs42

between the high and low 16bits of its input stream based on whether bit31 is set or
clear. Effectively the front and back buffer for each pixel, become interleaved within the
same 32bit word in the framebuffer, i.e. buffer 0 becomes the lower 16bits and buffer 1
becomes the upper 16bits.

The buffer swap is thus implemented as a block fill of bit31 of the interior of a window
with either one or zero. While this is not as quick as full screen double buffering which
just requires a single register VTGFrameRowAddr to be updated, it is many times quicker
than BitBlt double buffering, and like the BitBlt case allows any number of windows to
be hardware double buffered simultaneously.

Note that when rendering GUI data (such as window borders, titles etc.) bit31 must
always be set to the same value so that these pixels are always displayed from the same
buffer. The hardware writemask can then be used to write to only the high (or only the
low) nibbles when rendering the animating contents of a window.

The features are:
• "almost instantaneous" buffer swap

• no offscreen buffer required (e.g. 1152x900 would be the maximum
resolution on a 4MB framebuffer at 32bpp depth)

• Multiple windows can be double buffered. GUI can write with no
performance penalty.

• Only useful at 5:5:5:1 RGB color depth.

In order to allow the Microsoft Windows 95 DIB engine to render direct to the
framebuffer in the 5:5:5:1 format, a special framebuffer bypass option is supported
which presents the front and back buffers uninterleaved, i.e. as a 5:5:5:1 16bpp packed
framebuffer. This allows rarely used complex primitives to be punted back to the
Microsoft implemented DIB engine, rather than being implemented in the display driver.

4.3.4 Color Space Double Buffering

Colorspace double buffering is primarily of use at 32bpp framebuffer depth using 4096
colors, though in principal the technique can be used at other depths.

It relies on the board being designed with a LUT-DAC which can toggle between
displaying the high nibbles of each of the R, G and B 8bit streams, to displaying the low
nibbles. This effectively interleaves the pixels of a 12bit true color RGB front buffer with
a 12bit true color RGB back buffer at the same 32bit memory location in VRAM.

The implementation of the toggling will depend on the particular RAMDAC. Some have
a readmask on the input which can be updated with a single memory access. Others can
accept writes sufficiently quickly that their complete LUT can be reloaded by the host
during the VBLANK.

GLINT can be set into a mode where it replicates the pixel color information into the
high and low nibbles. This is useful when it is rendering GUI data (such as window
borders, titles etc.). The hardware writemask can then be used to write to only the high
(or only the low) nibbles when rendering the animating contents of the window.

The features are:
• "instantaneous" buffer swap

GLINT 500TX Programmer’s Reference Manual 4. Hardware Data

3Dlabs Proprietary and Confidential 43

• no offscreen buffer required (e.g. 1152x900 would be the maximum
resolution on a 4MB framebuffer at 32bpp depth)

• ONE window can be double buffered. GUI can double write with no
performance penalty.

• in practice most useful at 12bpp RGB

For further details see section § 0 and §0 of this manual, and refer to the IBM RGB525
data sheet

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs44

5. Graphics Programming

GLINT provides a rich variety of operations for 2D and 3D graphics supported
by its HyperPipelined architecture. Section § 0 shows the basic units in the
HyperPipeline, section § 0 shows how to use GLINT to render a simple graphic
primitive, the Gouraud shaded triangle, and sections § 0 to §0 describe each of the
units in detail.

5.1 The Graphics HyperPipeline
This section describes each of the units in the graphics HyperPipeline. Figure 0.1
shows a schematic of the pipeline. In this diagram, the localbuffer contains the
pixel ownership values (known as Graphic IDs), the FrameCount Planes (FCP),
Depth (Z) and Stencil buffer. The framebuffer contains the Red, Green, Blue and
Alpha bitplanes. The units in the HyperPipeline are:

• Rasterizer scan converts the given primitive into a series of
fragments for processing by the rest of the pipeline.

• Scissor Test clips out fragments that lie outside the bounds of a
user defined scissor rectangle and also performs screen clipping to
stop illegal accesses outside the screen memory.

• Stipple Test masks out certain fragments according to a specified
pattern. Line and area stipples are available.

• Color DDA is responsible for generating the color information
(True Color RGBA or Color Index(CI)) associated with a
fragment.

• Texture is concerned with mapping a portion of a specified image
(texture) onto a fragment. The process involves interpolating to
determine the texel coordinates including perspective division,
reading the texels, filtering to calculate the texture color, and
application which applies the texture color to the fragment color.

• Fog blends a fog color with a fragment's color according to a given
fog factor. Fogging is used for depth cueing images and to
simulate atmospheric fogging.

• Antialias Application combines the incoming fragment's alpha
value with its coverage value when antialiasing is enabled.

• Alpha Test conditionally discards a fragment based on the
outcome of a comparison between the fragments alpha value and a
reference alpha value.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 45

LB
Bypass

FB
Bypass

Localbuffer Interface

Framebuffer Interface

LB
Read

Logical
Op/
Mask

Host
Out

Alpha
Blend

FB
Read

FB
Write

Output
FIFO

Color
Format
(Dither)

Texture Fog Anti-
Aliasing

Alpha
Test

Color
DDA

Scissor/
Stipple

RasterizerInput
FIFO

GID/
Stencil
Depth

LB
Write

Router

AA

A

D D

DD

PCI Bus

LB
Memory

FB
Memory

D

Figure 0.1 HyperPipeline

• GID (Pixel Ownership) is concerned with ensuring that the
location in the framebuffer for the current fragment is owned by
the current visual. Comparison occurs between the given fragment
and the Graphic ID value in the localbuffer, at the corresponding
location, to determine whether the fragment should be discarded.

• Stencil Test conditionally discards a fragment based on the
outcome of a test between the given fragment and the value in the
stencil buffer at the corresponding location. The stencil buffer is
updated dependent on the result of the stencil test and the depth
test.

• Depth Test conditionally discards a fragment based on the
outcome of a test between the depth value for the given fragment
and the value in the depth buffer at the corresponding location.
The result of the depth test can be used to control the updating of

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs46

the stencil buffer.

• Alpha Blending combines the incoming fragment's color with the
color in the framebuffer at the corresponding location.

• Color Formatting converts the fragment's color into the format
in which the color information is stored in the framebuffer. This
may optionally involve dithering.

• Logical Op/Framebuffer Mask performs Logical Operations
between the fragment and destination, and optionally applies a
writemask.

• Host Out optionally gathers statistics for picking and extent
checking, and returns data to the host for image uploads.

The HyperPipeline structure of GLINT is very efficient at processing fragments,
for example, texture mapping calculations are not actually performed on fragments
that get clipped out by scissor testing. This approach saves substantial
computational effort. The pipelined nature does however mean that when
programming GLINT you should be aware of what all the pipeline stages are
doing at any time, for example, many operations require both a read and/or write
to the localbuffer and framebuffer, it is not sufficient to set a logical operation to
XOR and enable logical operations, you must also enable the reading/writing of
data from/to the framebuffer.

5.1.1 The Router

One important performance feature of the hyperpipeline is the Router. This is
essentially a switch which allows the order of some of the units to be swapped, by
setting or clearing the Order bit of the RouterMode register.

Textured primitives are typically more costly than non-textured primitives. When
the Order bit is set fragments are tested against the GID (Pixel Ownership),
Stencil and Depth(Z), prior to the texture value being calculated. If the fragment
fails any of these tests, then nothing will be drawn, and so there is normally no
need to calculate the texture value, leading to higher performance.

OpenGL defines the order of operations on a fragment to be texture, alpha test,
stencil and then depth(Z), which is the sequence used when the Order bit in the
Router register is cleared. However, if the alpha test is disabled (or cannot reject
fragments) then OpenGL compatible semantices are maintained even if the
operation order is changed to the more optimal stencil, depth(Z), texture, alpha
test.

The order can be dynamically reconfigured at any time without any need to
synchronize simply by writing to the Order bit.

5.2

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 47

A Gouraud Shaded Triangle
In this section we show how to render a typical 3D graphics primitive, the
Gouraud shaded, depth buffered triangle using GLINT. For this example assume
that the triangle is to be drawn into a window which has its colormap set for RGB
as opposed to color index operation. This means that all three color components;
red, green and blue, must be handled. Also, assume the coordinate origin is
bottom left of the window and drawing will be from top to bottom. GLINT can
draw from top to bottom or bottom to top.

For clarity the equations below are shown in full, though in practice there are
many common terms and factors which need only be computed once. A full C
code example is given in Appendix F.

Consider a triangle with vertices, v 1, v2 and v3 where each vertex comprises X, Y
and Z coordinates, shown below. Each vertex has a different color made up of
red, green and blue (R, G and B) components. The alpha component will be
omitted for this example.

Top half

Lower half

(X1Y1Z1

R1G1B1)

(X2Y2Z2

R2G2B2)

(X3Y3Z3

R3G3B3)

 V1

 V2

 V3

Figure 0.2 Example Triangle

The diagram makes a distinction between top and bottom halves, this is because
GLINT is designed to rasterize screen aligned trapezoids and flat topped or
bottomed triangles as shown below:

Figure 0.3 Screen aligned trapezoid and flat topped triangle

5.2.1 Initialization

GLINT requires many of its registers to be initialized in a particular way,
regardless of what is to be drawn, for instance, the screen size and appropriate

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs48

clipping must be set up. Normally this only needs to be done once and for clarity
this example assumes that all initialization has already been done. More details may
be found in chapter 6.

Other state will change occasionally, though not usually on a per primitive basis,
for instance enabling Gouraud shading and depth buffering. A detailed treatment
will be found in later sections of this chapter, and details are not included here.

5.2.2 Dominant and Subordinate Sides of a Triangle

The dominant side of a triangle is that with the greatest range of Y values. The
choice of dominant side is optional when the triangle is either flat bottomed or flat
topped.

GLINT always draws triangles from the dominant edge towards the subordinate
edges. This simplifies the calculation of set up parameters as will be seen below.

Dominant
Side

Subordinate
Sides

Dominant
Side

Subordinate
Side

Subordinate
Side

Figure 0.4 Dominant and Subordinate Sides of a Triangle

5.2.3 Calculating Color values for Interpolation

To draw from left to right, top to bottom, the color gradients (or deltas) required
are:

dRdy13 =
R3 − R1

Y 3 − Y 1
dGdy13 =

G3 − G1

Y 3 − Y1
dBdy13 =

B3 − B1

Y 3 − Y 1

And from the plane equation:

dRdx = {(R1 − R3) ×
(Y 2 − Y 3)

c
}−{(R2 − R3) ×

(Y 1 −Y 3)

c
}

dGdx = {(G1 − G3) ×
(Y 2 − Y3)

c
}− {(G2 − G3) ×

(Y 1 −Y 3)

c
}

dBdx = {(B1 − B3) × (Y 2 − Y 3)

c
} −{(B2 − B3) × (Y1 − Y 3)

c
}

where, to be independent of the order the vertices are provided:
c = abs{(X1 − X 3) × (Y 2 − Y 3) − (X2 − X3) × (Y 1 − Y 3)}

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 49

These values allow the color of each fragment in the triangle to be determined by
linear interpolation. For example, the red component color value of a fragment at
Xn,Ym could be calculated by:

• adding dRdy13, for each scanline between Y 1 and Yn, to R1.

• then adding dRdx for each fragment along scanline Y n from the
left edge to Xn.

The example chosen has the 'knee' i.e. vertex 2, on the right hand side, and
drawing is from left to right. If the knee were on the left side (or drawing was
from right to left), then the Y deltas for both the subordinate sides would be
needed to interpolate the start values for each color component (and the depth
value) on each scanline. For this reason GLINT always draws triangles starting
from the dominant edge and towards the subordinate edges. For the example
triangle, this means left to right.

5.2.4 Register Set Up for Color Interpolation

For the example triangle, the GLINT registers must be set as follows, for color
interpolation. Note that the format for color values is 24bit, fixed point 2's
complement.

// Load the color start and delta values to draw
// a triangle

RStart (R1)
GStart (G1)
BStart (B1)
dRdyDom (dRdy13) // To walk up the dominant edge
dGdyDom (dGdy13)
dBdyDom (dBdy13)
dRdx (dRdx) // To walk along the scanline
dGdx (dGdx)
dBdx (dBdx)

5.2.5 Calculating Depth Gradient Values

To draw from left to right and top to bottom, the depth gradients (or deltas)
required for interpolation are:

dZdy13 =
Z 3 − Z1

Y 3 − Y1

And from the plane equation:

dZdx ={(Z1 − Z 3) ×
(Y 2 − Y 3)

c
}− {(Z 2 − Z 3) ×

(Y1 − Y 3)

c
}

where, as before:

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs50

c = abs{(X1 − X 3) × (Y 2 − Y 3) − (X2 − X3) × (Y 1 − Y 3)}

The divisor, shown here as c, is the same as for color gradient values. The two
deltas, dZdy13 and dZdx allow the Z value of each fragment in the triangle to be
determined by linear interpolation as was described for the color interpolation
above.

5.2.6 Register Set Up for Depth Testing

Internally GLINT uses fixed point arithmetic. The formats for each register are
described later. Each depth value must be converted into a 2's complement 16.32
bit fixed point number and then loaded into the appropriate pair of 32 bit
registers. The 'Upper' or 'U' registers store the integer portion, whilst the 'Lower'
or 'L' registers store the 16 fractional bits, left justified and zero filled.

For the example triangle, GLINT would need its registers set up as follows:

// Load the depth start and delta values
// to draw a triangle

ZStartU (Z1_MS)
ZStartL (Z1_LS)
dZdyDomU (dZdy13_MS)
dZdyDomL (dZdy13_LS)
dZdxU (dZdx_MS)
dZdxL (dZdx_LS)

5.2.7 Calculating the Slopes for each Side

GLINT draws filled shapes such as triangles as a series of spans with one span per
scanline. Therefore it needs to know the start and end X coordinate of each span.
These are determined by 'edge walking'. This process involves adding one delta
value to the previous span's start X coordinate and another delta value to the
previous span's end x coordinate to determine the X coordinates of the new span.
These delta values are in effect the slopes of the triangle sides. To draw from left
to right and top to bottom, the slopes of the three sides are calculated as:

dX13 = X3 − X1

Y 3 − Y1
dX12 = X2 − X1

Y 2 − Y 1
dX 23 = X3 − X 2

Y3 − Y 2

This triangle will be drawn in two parts, top down to the 'knee' i.e. vertex 2 and
then from there to the bottom. The dominant side is the left side so for the top
half:

dXDom = dX13 dXSub = dX12

The start X,Y, the number of scanlines, and the above deltas give GLINT enough
information to edge walk the top half of the triangle. However, to indicate that
this is not a flat topped triangle (GLINT is designed to rasterize screen aligned
trapezoids and flat topped triangles), the same start position in terms of X must be

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 51

given twice as StartXDom and StartXSub.

To edge walk the lower half of the triangle, selected additional information is
required. The slope of the dominant edge remains unchanged, but the subordinate
edge slope needs to be set to:

dXSub = dX23

Also the number of scanlines to be covered from Y 2 to Y3 needs to be given.
Finally to avoid any rounding errors accumulated in edge walking to X 2 (which can
lead to pixel errors), StartXSub must be set to X 2.

5.2.8 Rasterizer Mode

The GLINT rasterizer has a number of modes which can be set which have effect
from the time they are set until they are modified and can thus affect many
primitives. In the case of the Gouraud shaded triangle the default value for these
modes are suitable.

RasterizerMode(0) // Default rasterizer mode

5.2.9 Subpixel Correction

GLINT can perform subpixel correction of all interpolated values when rendering
aliased trapezoids. This correction ensures that any parameter
(color/depth/texture/fog) is correctly sampled at the center of a fragment.
Subpixel correction will generally always be enabled when rendering any trapezoid
which is smooth shaded, textured, fogged or depth buffered. Control of subpixel
correction is in the Render command register described in the next section, and is
selectable on a per primitive basis. A full code example is given in Appendix F.

5.2.10 Rasterization

GLINT is almost ready to draw the triangle. Setting up the registers as described
here and sending the Render command will cause the top half of the example
triangle to be drawn.

For drawing the example triangle, all the bit fields within the Render command
should be set to 0 except the PrimitiveType which should be set to trapezoid and
the SubPixelCorrectionEnable bit which should be set to TRUE.

// Draw triangle with knee

// Set deltas

StartXDom (X1<<16) // Converted to 16.16 fixed
point
dXDom (((X3 - X1)<<16)/(Y3 - Y1))
StartXSub (X1<<16)

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs52

dXSub (((X2 - X1)<<16)/(Y2 - Y1))
StartY (Y1<<16)
dY (-1<<16)
Count (Y1 - Y2)

// Set the render command mode
render.PrimitiveType = GLINT_TRAPEZOID_PRIMITIVE
render.SubPixelCorrectionEnable = TRUE

// Draw the top half of the triangle

Render(render)

After the Render command has been issued, the registers in GLINT can
immediately be altered to draw the lower half of the triangle. Note that only two
registers need be loaded and the command ContinueNewSub sent. Once GLINT
has received ContinueNewSub, drawing of this sub-triangle will begin.

// Set-up the delta and start for the new edge

StartXSub (X2<<16)
dXSub (((X3 - X2)<<16)/(Y3 - Y2))

// Draw sub-triangle

ContinueNewSub (Y2 - Y3) // Draw lower half

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 53

5.3 Rasterizer Unit
The rasterizer decomposes a given primitive into a series of fragments for
processing by the rest of the HyperPipeline.

GLINT can directly rasterize:
• aliased screen aligned trapezoids

• aliased single pixel wide lines

• aliased single pixel points

• antialiased screen aligned trapezoids

• antialiased circular points

All other primitives are treated as one or more of the above, for example an
antialiased line is drawn as a series of antialiased trapezoids.

5.3.1 Trapezoids

GLINT's basic area primitive is the screen aligned trapezoid. This is characterized
by having top and bottom edges parallel to the X axis. The side edges may be
vertical (a rectangle), but in general will be diagonal. The top or bottom edges can
degenerate into points in which case we are left with either flat topped or flat
bottomed triangles. Any polygon can be decomposed into screen aligned
trapezoids or triangles. Usually, polygons are decomposed into triangles because
the interpolation of values over non-triangular polygons is ill defined. The
rasterizer does handle flat topped and flat bottomed 'bow tie' polygons which are a
special case of screen aligned trapezoids.

To render a triangle, the approach adopted to determine which fragments are to
be drawn is known as 'edge walking'. Suppose the aliased triangle shown in Figure
0.5 was to be rendered from top to bottom and the origin was bottom left of the
window. Starting at (X1, Y1) then decrementing Y and using the slope equations
for edges 1-2 and 1-3, the intersection of each edge on each scanline can be
calculated. This results in a span of fragments per scanline for the top trapezoid.
The same method can be used for the bottom trapezoid using slopes 2-3 and 1-3.

It is usually required that adjacent triangles or polygons which share an edge or
vertex are drawn such that pixels which make up the edge or vertex get drawn
exactly once. This may be achieved by omitting the pixels down the left or the
right sides and the pixels along the top or lower sides. GLINT has adopted the
convention of omitting the pixels down the right hand edge. Control of whether
the pixels along the top or lower sides are omitted depends on the start Y value
and the number of scanlines to be covered. With the example, if StartY = Y1 and
the number of scanlines is set to Y1-Y2, the lower edge of the top half of the
triangle will be excluded. This excluded edge will get drawn as part of the lower
half of the triangle.

To minimize delta calculations, triangles may be scan converted from left to right
or from right to left. The direction depends on the dominant edge, that is the edge

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs54

which has the maximum range of Y values. Rendering always proceeds from the
dominant edge towards the relevant subordinate edge. In the example above, the
dominant edge is 1-3 so rendering will be from right to left.

Subordinate Edge 1-2

Dominant Edge 1-3

dXDom
Top

Trapezoid

Bottom
Trapezoid

(X1,Y1)

Subordinate Edge 2-3

dXSub 1-2

dXSub 2-3

(X2,Y2)

(X3,Y3)

Knee

Figure 0.5 Rasterizing a triangle.

The sequence of actions required to render a triangle (with a 'knee') are:
• Load the edge parameters and derivatives for the dominant edge

and the first subordinate edges in the first triangle.

• Send the Render command. This starts the scan conversion of the
first triangle, working from the dominant edge. This means that
for triangles where the knee is on the left we are scanning right to
left, and vice versa for triangles where the knee is on the right.

• Load the edge parameters and derivatives for the remaining
subordinate edge in the second triangle.

• Send the ContinueNewSub command. This starts the scan
conversion of the second triangle.

Pseudocode for the above example is:
// Set the rasterizer mode to the default, see
// §0

RasterizerMode(0)

// Set-up the start values and the deltas.
// Note that the X and Y coordinates are converted
// to 16.16 format

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 55

StartXDom (X1<<16)
dXDom (((X3- X1)<<16)/(Y3 - Y1))
StartXSub (X1<<16)
dXSub (((X2- X1)<<16)/(Y2 - Y1))
StartY (Y1<<16)
dY (-1<<16) // Down the screen
Count (Y1 - Y2)

// Set the render mode to aliased primitive with
// subpixel correction.

render.PrimitiveType = GLINT_TRAPEZOID_PRIMITIVE
render.SubpixelCorrectionEnable = GLINT_TRUE
render.AntialiasEnable = GLINT_DISABLE

// Draw top half of the triangle

Render(render)

// Set the start and delta for the second half of
// the triangle.

StartXSub (X2<<16)
dXSub (((X3- X2)<<16)/(Y3 - Y2))

// Draw lower half of triangle

ContinueNewSub (abs(Y2 - Y3))

After the Render command has been sent, the registers in GLINT can
immediately be altered to draw the second half of the triangle. For this, note that
only two registers need be loaded and the command ContinueNewSub be sent.
Once drawing of the first triangle is complete and GLINT has received the
ContinueNewSub command, drawing of this sub-triangle will start. The
ContinueNewSub command register is loaded with the remaining number of
scanlines to be rendered.

5.3.2 Lines

Single pixel wide aliased lines are drawn using a DDA algorithm, so all GLINT
needs by way of input data is StartX, StartY, dX, dY and length. The algorithm
calculates:

while (length--)
{

X = X + dx
Y = Y + dy
plot ((int)X, (int)Y)

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs56

}

Consider rendering a two segment
polyline from (X 1, Y1) to (X2, Y2) to (X3,
Y3)

Both segments are X major so:

abs (Xn+1 - Xn) > abs (Yn+1- Yn)

The pseudocode to render this line is
shown below.

(X1, Y1)

(X2, Y2)

(X3, Y3)

Figure 0.6 Polyline

// Load the delta values for the first segment.

StartXDom (X1<<16)
dXDom (1.0<<16)
StartY (Y1<<16)
dY (((Y2- Y1)<<16)/(X2 - X1))
Count (abs (X2 - X1))

// Set the render mode
render.PrimitiveType = GLINT_LINE_PRIMITIVE

// Start rendering

Render(render)

// The first segment is complete, load delta
// for the second

dXDom (1.0<<16)
dY (((Y3- Y2)<<16)/(X3 - X2))

// Continue with the second segment

ContinueNewLine (abs (X3 - X2))

Note that the mechanism to render the second segment with the
ContinueNewLine command is analogous to the ContinueNewSub command
used at the knee of a triangle.

When a Continue command is issued some error will be propagated along the
line, to minimize this, a choice of actions are available as to how the DDA units
are restarted on the receipt of a Continue command. It is recommended that for
OpenGL rendering the ContinueNewLine command is not used and individual
segments are rendered.

Antialiased lines, of any width, are rendered as antialiased screen-aligned
trapezoids.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 57

5.3.3 Points

GLINT supports a single pixel aliased point primitive. For points larger than one
pixel, trapezoids should be used. The fields in the Render command register are
described in detail later, however, in this case the PrimitiveType field in the
Render command should be set to equal GLINT_POINT_PRIMITIVE. The
pseudocode portion to render an aliased unity sized point is:

// Set the rasterizer mode to the default, see
// §0

RasterizerMode(0)

// Set-up the start values and the deltas.
// Note that the X and Y coordinates are converted
// to 16.16 format

StartXDom (X<<16)
StartY (Y<<16)

// Set-up the render command.
render.PrimitiveType = GLINT_POINT_PRIMITIVE

// Render the point

Render (render)

5.3.4 Antialiasing

GLINT uses a subpixel point sampling algorithm to antialias primitives. GLINT
can directly rasterize antialiased trapezoids and points. Other primitives are
composed from these base primitives.

The rasterizer associates a coverage value with each fragment produced when
antialiasing. This value represents the percentage coverage of the pixel by the
fragment. GLINT supports two levels of antialiasing quality:

• normal, which represents 4x4 pixel subsampling

• high, which represents 8x8 pixel subsampling

Selection between these two is made by the AntialiasingQuality bit within the
Render command register.

When rendering antialiased primitives with GLINT the FlushSpan command is
used to terminate rendering of a primitive. This is due to the nature of GLINT
antialiasing. When a primitive is rendered which does not happen to complete on
a scanline boundary, GLINT retains antialiasing information about the last sub-
scanline(s) it has processed, but does not generate fragments for them unless a
FlushSpan command is received. The commands ContinueNewSub,
ContinueNewDom or Continue can then be used, as appropriate, to maintain

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs58

continuity between adjacent trapezoids. This allows complex antialiased primitives
to be built up from simple trapezoids or points.

To illustrate this consider using screen aligned trapezoids to render an antialiased
line. The line will in general consist of three screen aligned trapezoids as shown in
the diagram below.

Trapezo id A

Trapezo i d B

Trapezo id C

d X D om 1

d X S ub1

d X S ub2

d X D om 2

K nee1

K nee2

count1

count2

count3

Figure 0.7 Antialiased Line

The procedure to render the line is as follows:

// Set-up the blend and coverage application units
// as appropriate - not shown
// In this example only the edge deltas are shown
// loaded into registers for clarity. In reality
// start X and Y values are required. This example
uses
// 4x4 antialiasing.

// Render Trapezoid A

dY(1<<14)
dXDom(dXDom1<<14)
dXSub(dXSub1<<14)
Count(count1<<2)
render.PrimitiveType = GLINT_TRAPEZOID
render.AntialiasEnable = GLINT_TRUE
render.AntialiasQuality = GLINT_MIN_ANTIALIAS
render.CoverageEnable = GLINT_TRUE
Render(render)

// Render Trapezoid B

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 59

dXSub(dXSub2<<14)
ContinueNewSub(count2<<2)

// Render Trapezoid C

dXDom(dXDom2<<14)
ContinueNewDom(count3<<2)

// Now we have finished the primitive flush out
// the last scanline
FlushSpan()

Note that when rendering antialiased primitives, any count values should be given
in subscanlines. For example if the quality is 4x4 then the count will be 4 times the
number of scanlines completely covered by the primitive plus the number of
subscanlines contained in the remaining partially covered scanlines. Also, if using
4x4 quality then any delta value must be divided by 4. If using 8x8 quality then the
multiply/divide factor is 8.

When rendering, AntialiasEnable must be set in the AntialiasMode register to
scale the fragments color by the coverage value. An appropriate blending function
should also be enabled. See the Antialias Application and Alpha Blend sections for
more details.

Note, when rendering antialiased bow-ties, the coverage value on the cross-over
scanline may be incorrect.

Section §0 describes in more detail how to render scenes with antialiased polygons.

GLINT can render small antialiased points. Antialiased points are treated as
circles, with the coverage of the boundary fragments ranging from 0% to 100%.
GLINT supports:

• point diameter of 0.5 to 16.0 in steps of 0.25 for 4x4 antialiasing

• point diameter of 0.25 to 8.0 in steps of 0.125 for 8x8 antialiasing

To scan convert an antialiased point as a circle, GLINT traverses the boundary in
sub scanline steps to calculate the coverage value. For this, the sub scanline
intersections are calculated incrementally using a small table. The table holds the
change in X for a step in Y. Symmetry is used so the table only holds the delta
values for one quadrant.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs60

XRight += Table[0]

XRight += Table[1]

XRight += Table[2]

XLeft -= Table[0]

XLeft -= Table[1]

XLeft -= Table[2]

XRight = StartXDom
XLeft = StartXSub

XRight -= Table[2]

XRight -= Table[1]

XRight -= Table[0]

XLeft +=Table[2]

XLeft += Table[1]

XLeft += Table[0]

Figure 0.8 Antialiased Point

The pattern of table accesses, additions and subtractions are shown in Figure 0.8
for an odd diameter point. On the diagram the symbol +/-= Table[n] by an arrow
indicates the contents of the table at address n are added/subtracted to move
along the arrow.

StartXDom, StartXSub and StartY are set to the top or bottom of the circle and
dY set to the subscanline step. In this example the point table will have three
entries. Note in the case of an even diameter, the last of the required entries in the
table is set to zero. Appendix A Register Reference, gives full details of how the
point table is laid out.

Note, as the table is configurable, point shapes other than circles can be rendered.
Also if the StartXDom and StartXSub values are not coincident then horizontal
thick lines with rounded ends, can be rendered.

5.3.5 Span Operations

The GLINT 500TX has greatly increased the speed of many 2D operations
through the addition of 3Dlabs proprietary Span Filling technology.

The span mechanism may be used for various operations such as image upload,
image download, filling with constant color, filling with a pattern, character glyphs,
monochrome bitmaps, copies and copies with logical ops. Any trapezoid may be
used and the scanning direction may be left-to-right or right-to-left.

2D performance is greatly improved by:
• Better utilization of the VRAM block fill capability for solid fills,

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 61

stippled fills, characters and pattern fills.

• The span mechanism is independent of pixel size. Hence
maximum use is made of the framebuffer bandwidth for 8, 16 and
32 bit wide pixels.

• Multiple pixels are processed in parallel.

• No alignment restrictions. Any span operation may be performed
to any pixel alignment for all pixel sizes.

• Page break overheads are amortized over many more read and
write operations during a BitBlt operation. Hence performance of
BitBlt operations is much closer to the peak bandwidth of the
memory.

• Window or screen relativ e operations are supported.

• Scissor clipping can also be used in conjunction with span
operations.

The span mechanism does have some restrictions:
• No accesses to the localbuffer are made. Hence GID, Stencil and

Depth tests are not available.

• 3D operations including gouraud shading, alpha tests, alpha blend,
dither operations, fogging and anti-aliasing are not available.

When the span operation is enabled, the rasterizer divides the pixels between the
left and right hand edges of the polygon or rectangle into a succession of spans,
each 32 pixels wide. Each span is described by a 32 bit wide span mask and each
pixel in the span has a corresponding bit in the span mask. If a bit in the span
mask is set, then the corresponding pixel will be read and/or written. The least
significant bit in the span mask (bit 0) corresponds to the left most pixel on the
screen for the span. The span mask does not have any fixed alignment with the
pixels stored in the framebuffer, i.e. the first pixel in the span may correspond to
any pixel in the framebuffer. Any masking or shifting to align the span data being
read or written to the 64 bit framebuffer architecture is performed automatically.

Span filling may be performed left-to-right or right-to-left. However the pixels
within an individual span are always read and/or written in a left to right order.
Hence if a bitmask or image download data is provided, then the data in each
individual span must be ordered left to right. Normally if any data is provided,
then span filling should be performed left-to-right.

5.3.6

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs62

Span Mask Processing

The span mask undergoes several processing steps before it is used by the
Framebuffer Interface Unit to determine which pixel to read and/or write:

• The Rasterizer generates the mask using the left and right hand
edge information. Note that the edges may be vertical or sloped.

• If SyncOnBitMask is enabled in the Render command, then the
span mask is ANDed with the bit mask data provided by the host.
If no bit mask data is present, then the Rasterizer will wait for it to
arrive before proceeding. The bit mask data may be optionally
inverted, byte swapped, word swapped or mirrored (in any
combination) before the ANDing is performed. The inversion
may be used to enable drawing of the background bits. The byte
and word swapping allows bit mask data from different endian
hosts to be accommodated. The mirror operation swaps bits 0
and 31, bits 1 and 30, etc. which changes the left most pixel in a
span from being controlled by the least significant bit to the most
significant bit in the bit mask.

• If the Screen Scissor is enabled, then pixels falling outside the left
and right edges of the screen scissor region have their
corresponding bits in the span mask cleared.

• If the User Scissor is enabled, then pixels falling outside the left
and right edges of the user scissor region have their corresponding
bits in the span mask cleared.

• If Area Stippling is enabled, then the stipple mask is extracted
from the area stipple table for the appropriate scan line and
expanded, if necessary, to 32 bits by replication. The normal
offset, select and mirror controls in X and in Y may be used as for
non span rendering. The stipple mask is ANDed with the span
mask.

• If texture mapping is enabled, then a texel is read from the
localbuffer (under control of the TextureAddressMode,
TextureReadMode and the S, T and Q DDA parameters). If the
texel is to be used as a bit mask, then any specified texel formatting
is performed and the final 32 bit texel value is optionally inverted,
byte swapped and mirrored before being ANDed with the span
mask. This procedure allows character bit masks to be held in the
localbuffer.

• The span mask is now used (in conjunction with some mode bits)
to read and/or write pixel data in the framebufffer.

• Finally the span mask may be optionally used to grow the extent
region, or perform picking as part of the statistics operation in the
Host Out Unit.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 63

5.3.7 Block Write Operation

The span operation of the GLINT 500TX includes the block write functionality
of the GLINT 300SX. The same algorithms that used block write to fill trapezoids
on the GLINT 300SX will also work on the GLINT 500TX. However, the block
write size is now fixed at 32 pixels for all depths. This means that it is no longer
necessary to specify the block write size in the FastFillIncrement field of the
Render command, nor in the BlockWidth field of the FBWriteMode register. In
the GLINT 500TX these bits are now unused and their values are ignored.

5.3.8 Pixel Sizes

The GLINT 300SX core operated independently of the pixel depth. With the
introduction of span operations, and in order to maximize the number of pixels
per 32 bits processed, the GLINT 500TX core now takes account of the depth of
the pixels. The Rasterizer unit includes a new register called the PixelSize register.
This register replaces the relevant bits in the PCI FBModeSel register. The bits in
FBModeSel are now read-only. To change pixel depth on the GLINT 500TX, the
core register must be used instead.

The PixelSize register can have the following values:

0 = 32 bit pixels
1 = 16 bit pixels
2 = 8 bit pixels

Since the PixelSize register is a core register, it can be modified at any time
without affecting in-progress rendering. Thus, unlike the GLINT 300SX it is not
necessary to synchronize with the chip before changing pixel depth.

5.3.9 Sub Pixel Precision and Correction

As the rasterizer has 16 bits of fraction precision, and the screen width used is
typically less than 2 16 wide a number of bits called subpixel precision bits, are
available. Consider a screen width of 4096 pixels. This figure gives a subpixel
precision of 4 bits (4096=2 12). The extra bits are required for a number of reasons:

• antialiasing (where vertex start positions can be supplied to
subpixel precision)

• when using an accumulation buffer (where scans are rendered
multiple times with jittered input vertices)

• for correct interpolation of parameters to give high quality shading
as described below

GLINT supports subpixel correction of interpolated values when rendering
aliased trapezoids. Subpixel correction ensures that all interpolated parameters
associated with a fragment (color, depth, fog, texture) are correctly sampled at the
fragment's center. This correction is required to ensure consistent shading of
objects made from many primitives. It should generally be enabled for all aliased
rendering which uses interpolated parameters.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs64

Subpixel correction is not applied to antialiased primitives.

5.3.10 Bitmaps

A Bitmap primitive is a trapezoid or line of ones and zeros which control which
fragments are generated by the rasterizer. Only fragments where the
corresponding Bitmap bit is set are submitted for drawing. The normal use for this
is in drawing characters, although the mechanism is available for all primitives. The
Bitmap data is by default, packed contiguously into 32 bit words so that rows are
packed adjacent to each other. Bits in the mask word are by default used from the
least significant end towards the most significant end and are applied to pixels in
the order they are generated in. The relationship between bits in the mask and the
scanning order is shown in Figure 0.9.

The rasterizer scans through the bits in each word of the Bitmap data and
increments the X,Y coordinates to trace out the rectangle of the given width and
height. By default, any set bits (1) in the Bitmap cause a fragment to be generated,
any reset bits (0) cause the fragment to be rejected.

0 1 2 3

4 5 6 7

8 9 A B

C D E F

BitMask value

0123456789ABCDEF

0 1 2 3

4 5 6 7

8 9 A B

C D E F F E D C

B A 9 8

7 6 5 4

3 2 1 0 F E D C

B A 9 8

7 6 5 4

3 2 1 0

Figure 0.9 Relationship between Bitmask and Scanning Directions

The selection of bits from the BitMaskPattern register can be mirrored, that is,
the pattern is traversed from MSB to LSB rather than LSB to MSB. The 500TX
allows the pattern to be byte swapped on download. This is useful for
downloading Windows bitmaps in their native format. Also, the sense of the test
can be reversed such that a set bit causes a fragment to be rejected and vice versa.
This control is found in the RasterizerMode register, described in section § 0.

When one Bitmap word has been exhausted and pixels in the rectangle still remain
then rasterization is suspended until the next write to the BitMaskPattern register.
Any unused bits in the last Bitmap word are discarded.

For example a 5 pixel wide, 8 pixel high bitmap requires a register set up as
follows:

// Set the rasterizer mode to the default, see

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 65

// §0

RasterizerMode(0)

// Set-up the start values and the deltas.
// Note that the X and Y coordinates are converted
// to 16.16 format

StartXDom (X<<16)
dXDom (0)
StartXSub ((X + 5)<<16) // Right hand edge
pixels
 // get missed off.

StartY (Y<<16)
dY (1<<16)
Count (8)

// At least the following bits require setting for
// the Render command.

render.PrimitiveType = GLINT_TRAPEZOID_PRIMITIVE
render.SyncOnBitMask = GLINT_TRUE

// Issue render command. First fragment will be
// generated on receipt of the BitMaskPattern.

Render (render)

// 8x5 pixel bitmap requires 40 bits, and so 2
// 32 bit words.

BitMaskPattern (patternWord0)
BitMaskPattern (patternWord1)

Rendering will start as soon as the first patternWord is loaded into the
BitMaskPattern register.

The GLINT 500TX provides the ability to start a scanline at an arbitrary offset
into the first bitmask that is downloaded for each scanline, and to discard unused
bits at the end of a scanline. This is useful for allowing the host to download data
directly from a host bitmap without having to shift and pack the bits. This
functionality is controlled by the BitMask Packing and BitMask Offset bits in the
RasterizerMode register.

5.3.11 Span Operations and Bitmaps

The fastest way to render downloaded bitmap data, not requiring logical op
processing, is to use a span operation. The rasterizer is set up as normal setting the
FastFillEnable bit.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs66

When the bitmap data is downloaded, it is now ANDed with the span mask
generated by the rasterizer. This resulting mask is passed through the core to be
used as the VRAM block fill mask. Thus a single VRAM access can be used to
process up to 32 pixels. Since, only the foreground color can be set with a block
fill. If it is necessary to also plot the background color then, the operation should
be repeated for the background color but with the InvertBitMask bit set in the
RasterizerMode register.

Since the downloaded bitmask data will be ANDed with masks generated by the
Rasterizer without any re-alignment being performed, it is up to the host software
to ensure that the masks match up. This can be achieved in two ways. First, the
host software can align the bits that it downloads to match the alignment of the
Rasterizer. A faster way is to use the User Scissor. This is the recommended
method. Note that this is a general algorithm. In the special case where the data to
be downloaded is already aligned to 32 bits on both the left and right edges then
the scissor need not be used.

For example, suppose that we want to download data to fill a rectangle with left
edge at 10 and right edge at 200. And further, assume that the host bitmap data is
to be loaded from an offset of 35 within the bitmap. Our goal is to match the bit
at offset 35 with the pixel at offset 10.

Since we want to do the least amount of work on the host by avoiding shifting the
data, we will actually download the host bitmap data at the previous 32-bit
boundary. This means that we must set GLINT up to discard the first 3 bits of
data. We achieve this by rasterizing a rectangle whose left edge is 3 pixels less than
that required, in this case we would rasterize the left edge to start at pixel 7. This
causes the source bitmap data to be correctly aligned with the mask data produced
by the rasterizer. But, in order to protect the 3 pixels that we would otherwise
overwrite, we use the scissor clip and set its bounds to be those of the original
rectangle.

When using a span operation like this, the rasterizer will wait for new bitmask data
to be downloaded at the start of each scanline. So we do not have to perform the
alignment operation on the right hand edge.

The following gives the outline for this algorithm:

leftalign = bitmapxleft & 31
width = Xright - Xleft + leftalign

StartXDom ((Xleft - leftalign)<<16)
dXDom (0)
StartXSub (Xright<<16)

StartY (Y<<16)
dY (1<<16)
Count (height)

// protect the edge pixels with the scissor

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 67

minXY.X = Xleft
minXY.Y = Y
maxXY.X = Xright
maxXY.Y = Y + height
ScissorMinXY(minXY) // Load the registers
ScissorMaxXY(maxXY)

// Enable the unit
scissorMode.UserScissorEnable = GLINT_ENABLE
scissorMode.ScreenScissorEnable = GLINT_ENABLE

// At least the following bits require setting for
// the Render command.

render.PrimitiveType = GLINT_TRAPEZOID_PRIMITIVE
render.SyncOnBitMask = GLINT_TRUE
render.FastFillEnable = GLINT_TRUE

// Issue render command. First fragment will be
// generated on receipt of the BitMaskPattern.

Render (render)

// download the bits from the source bitmap 32 bits
at
// a time aligning the bitmap pointer at the start
of
// each scanline

BitmapBase += bitmapyorg * bitmapwidth
bitmapxleft &= ~31
for (h = 0; h < height; ++h) {

pulBitmap = BitmapBase + bitmapxleft/8;
for (c = 0; c < width; c += 32) {

BitMaskPattern(pulBitmap)
pulBitmap += sizeof(ULONG)

}
BitmapBase += bitmapwidth

}

A similar algorithm can be used to implement fast text rendering. For example, for
fonts where each line fits into 32 bits, each line of a glyph can be downloaded as a
mask.

5.3.12 Image Copy/Upload/Download

GLINT supports three "pixel rectangle" operations: copy, upload and download.
These can apply to the Depth or Stencil Buffers (held within the localbuffer) or
the framebuffer as will be seen in section § 0.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs68

GLINT copy moves raw blocks of data around buffers. To zoom or re-format
data external software must upload the data, process it and then download it again.

To copy a rectangular area, the rasterizer would be configured to render the
destination rectangle, thus generating fragments for the area to be copied. GLINT
copy works by adding a linear offset to the destination fragment's address to find
the source fragment's address. The calculation of the offset value is as shown in
the diagram below:

Note that the offset is independent of the origin of the buffer or window, as it is
added to the destination address. Care must be taken when the source and
destination overlap to choose the source scanning direction so that the
overlapping area is not overwritten before it has been moved. This may be done
by swapping the values written to the StartXDom and StartXSub, or by changing
the sign of dY and setting StartY to be the opposite side of the rectangle.

Source
Rectangle

X Off s et

Y Of f s et * S creen W idth + X Of f s e t

Destination
Rectangle

Screen Width

Increasing
Physical
Address

Offset = -

Offset

Y Offset

Figure 0.10 GLINT Copy Operation

Localbuffer copy operations are correctly tested for pixel ownership. Note that
this implies two reads of the localbuffer, one to collect the source data, and one to
get the destination GID for the pixel ownership test.

GLINT buffer upload/downloads are very similar to copies in that the region of
interest is generated in the rasterizer. However, the localbuffer and framebuffer
are generally configured to read or to write only, rather than both read and write.
The exception is that an image load may use pixel ownership tests, in which case
the localbuffer destination read must be enabled.

Units which can generate fragment values, the color DDA unit for example,
should generally be disabled for any copy/upload/download operations.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 69

Warning: During image upload, all the returned fragments must be read from the
Host Out FIFO, otherwise the GLINT pipeline will stall. In addition it is strongly
recommended that any units which can discard fragments (for instance the
following tests: bitmask, alpha, user scissor, screen scissor, stipple, pixel
ownership, depth, stencil), are disabled otherwise a shortfall in pixels returned may
occur, also leading to deadlock.

Note that because the area of interest in copy/upload/download operations is
defined by the rasterizer, it is not limited to rectangular regions.

Color formatting can be used when performing image copies, uploads and
downloads. This allows data to be formatted from, or to, any of the supported
GLINT color formats, section § 0 fully describes this operation.

An example of a rectangular copy may be found in section § 0.

5.3.13 Span Operations and Image Copy/Upload/Download

2D image operations to and from the framebuffer can be optimized by using a
span operation. The benefits are greatest at lower pixel depths since packed pixel
data is transferred through the core.

To use span operations when copying pixel data within the framebuffer is
straightforward. The FastFillEnable and SpanOperation bits in the Render
command must be set as follows. This will work both with and without logical op
processing.

render.FastFillEnable = GLINT_TRUE
render.SpanOperation = 1

For image download operations, the GLINT 500TX supports multiple pixel
download using span operations. This is not supported where logical op
processing is required. For a straightforward packed pixel image download, the
algorithm is very similar to that for monochrome bitmap download using spans.

The source data should be downloaded in 32 bit quantities, starting on a 32 bit
boundary. The host should download as many 32 bit quantities per scanline as are
necessary to include all pixels to be downloaded. The rasterizer should be set to
rasterize the appropriate rectangle but adjusting the left edge backwards to allow
for extra pixels required in aligning the source. Finally, the scissor unit should be
enabled to clip out the extra left hand pixels now being rasterized.

For image upload, a similar algorithm applies. In this case the image data can be
delivered to the output FIFO as packed 32 bit data. For pixels at the start and end
of each scanline the GLINT 500TX will zero out any pixels which are outside the
rectangle being rasterized. In this case the scissor unit is not required, but using it
will mean that unwanted left-hand pixels are also returned as zero.

5.3.14

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs70

Rasterizer Mode

A number of long-term modes can be set using the RasterizerMode register.
These are:

• ByteSwapBitMask: This is a two-bit flag which specifies that any
bits which are downloaded as part of a SyncOnBitMask operation
will be byte re-ordered before being used. There are four re-
ordering possibilities. Assuming that the bytes are downloaded in
the order ABCD then we get the following re-ordering depending
on the value of this two bit field:
0: ABCD (no swap)
1: BADC (swap within halfwords)
2: CDAB (halfword swap)
3: DCBA (full byte swap)
Using a value of 3 is most useful when used in conjunction with
the MirrorBitMask bit for handling Microsoft Windows bitmaps
since this causes a complete byte swap of the downloaded data.

• MirrorBitMask: This is a single bit flag which specifies the
direction that bits are checked in the BitMaskPattern register. If
the bit is reset, the direction is from least significant to most
significant (bit 0 to bit 31), if the bit is set, it is from most
significant to least significant (from bit 31 to bit 0).

• InvertBitMask: This is a single bit which controls the sense of the
accept/reject test when using a Bitmask. If the bit is reset then
when the BitMask bit is set the fragment is accepted and when it is
reset the fragment is rejected. When the bit is set the sense of the
test is reversed.

• BitMaskPacking: This is a single bit which controls the packing of
bits which are downloaded as part of a SyncOnBitMask operation.
If this bit is reset then any spare bits at the end of a scanline are
used to start the next scanline. If this bit is set then extra bits at
the end of a scanline are discarded. This is not available for use
with span fills.

• BitMaskOffset: This is a 5 bit field which specifies the first bit to
be used in the first bitmask word of every scanline downloaded as
part of a SyncOnBitMask operation. This is not available for use
with span fills.

• Fraction Adjust: These 2 bits control the action taken by the
rasterizer on receiving a ContinueNewLine command. As GLINT
uses a DDA algorithm to render lines, an error accumulates in the
DDA value. GLINT provides for greater control of the error by:
a) leaving the DDA running, which means errors will be
propagated along a line.
OR
b) setting the fraction bits to either zero, a half or almost a half

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 71

(0x7FFF).

• Bias Coordinates i s a 2-bit field with the following actions:-
0 - Add 0 to the coordinates (Effectively do nothing)
1 - Add exactly one half to the coordinates
2 - Add nearly one half (0x7FFF) to the coordinates

• Host Data Byte Swapping: The data downloaded by the host when
using SyncOnHostData can have its bytes re-ordered. If the
downloaded data has a byte ordering of ABCD then, this 2 bit
field specifies re-ordering as follows:
0: ABCD (no swap)
1: BADC (swap within halfwords)
2: CDAB (halfword swap)
3: DCBA (full byte swap)

• Y Limits Clipping: When set, this bit enables Y Limits clipping.
When reset Y Limits clipping is disabled. This is described in the
next section.

• Multi GLINT: If set this bit causes the rasterizer to work in multi-
GLINT mode. If reset the rasterizer works in single GLINT
mode.

5.3.15 Y Limits Clipping

The rasterizer will normally rasterize all pixels on every scanline, generating a
fragment per pixel. If large numbers of scanlines are subsequently clipped out by,
for example, one of the scissor units, then a lot of time can be wasted. The
Ylimits register has been added to provide a way of quickly eliminating whole
scanlines for a given primitive. This is effectively a Y scissor clip in the Rasterizer.

If Y limits testing has been enabled in the RaserizerMode register, and if a
scanline being rasterized falls outside the Y limits bounds, then the rasterizer will
move directly onto the next scanline without rasterizing in X.

Y Limits clipping is automatically disabled when SyncOnHostData or
SyncOnBitMask is used.

5.3.16 Rasterizer Unit Registers

Real coordinates with fractional parts are provided to the rasterizer in 2's
complement 16 bit integer, 16 bit fraction format, as illustrated below:

Integer Portion 16 bits Fractional Portion 16 bits

08162431

Figure 0.11 Real Coordinate Representation

Table 0.1 Command Register Descriptions lists the command registers which
control the rasterizer unit. The control registers are shown separately in Table 0.2

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs72

Rasterizer Registers.

Register Name Data Field Description

Render See below Starts the rasterization process

ContinueNewDom 16 bit
integer

Allows the rasterization to continue with a new dominant
edge. The dominant edge DDA in the rasterizer is reloaded
with the new parameters. The subordinate edge is carried
on from the previous trapezoid. This allows any convex
polygon to be broken down into a collection of trapezoids,
with continuity maintained across boundaries.

Note however, that other DDAs are not reloaded with new
start values until the next Render command. Thus it is not
possible to use this command, for example, to Gouraud
shade a triangle from left to right which has a knee on the
left hand side. To avoid this, 3D rendering should always
start from the side without the knee.

The data field holds the number of scanlines (or sub
scanlines) to fill. This count is not loaded into the Count
register.

ContinueNewSub 16 bit
integer

Allows the rasterization to continue with a new subordinate
edge. The subordinate DDA is reloaded with the new
parameters. The dominant edge is carried on from the
previous trapezoid. This is useful when scan converting
triangles with a 'knee' (i.e. two subordinate edges).

The data field holds the number of scanlines (or sub
scanlines) to fill. This count is not loaded into the Count
register.

Continue 16 bit
integer

Allows the rasterization to continue after new delta value(s)
have been loaded, but does not cause either of the
trapezoid's edge DDAs to be reloaded.

The data field holds the number of scanlines (or sub
scanlines) to fill. This count is not loaded into the Count
register.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 73

ContinueNewLine 16 bit
integer

Allows rasterization to continue for the next segment in a
polyline. The XY position is carried on from the previous
line, but the fraction bits in the DDAs can be: kept, set to
zero, half, or nearly one half, under control of the
RasterizerMode.

The data field holds the number of pixels or subpixels in a
line. This count is not loaded into the Count register.

The use of ContinueNewLine is not recommended in
OpenGL as for the second and subsequent segments the
DDA units will start with a slight error compared with the
value they would have been loaded with.

FlushSpan Not used Used when antialiasing to force the last span out when not
all sub spans may be defined.

PixelSize 0 = 32
bits
1 = 16
bits
2 = 8 bits

Configures the Rasterizer (and other core units) with the
size of pixel to process when spans are used. It also informs
the framebuffer interface Unit, but in this case all reads and
writes are affected and not just spans. This replaces the
pixel size field in the PCI FBModeSel register and works the
same way for single pixel reads and writes (i.e. the
framebuffer can be set to 32 bit pixels even though it is
displaying 8 bit pixels to process 4 pixels at a time).

WaitForCompletio
n

Not used This is used to suspend the GLINT 500TX core until all
outstanding reads and writes in both the localbuffer and
framebuffer memory units have completed. This is
intended to prevent a new primitive from starting to be
rasterized before the previous primitive is completely finished.
It would be used, for example, to separate texture
downloads from the surrounding primitives. The same
functionality can be achieved using the Sync message and
waiting for it in the Host Out FIFO; however, this method
doesn’t involve the host and can be inserted into a DMA
buffer.

Table 0.1 Command Register Descriptions

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs74

RasterizerMode See below Defines the long term mode of operation of the rasterizer.

StartXDom Fixed point
16.16 format

Initial X value for the dominant edge in trapezoid filling, or
initial X value in line drawing.

dXDom Fixed point
16.16 format

Value added when moving from one scanline (or sub
scanline) to the next for the dominant edge in trapezoid
filling.
Also holds the change in X when plotting lines so for Y
major lines this will be some fraction (dx/dy), otherwise it is
normally ± 1.0, depending on the required scanning
direction.

StartXSub Fixed point
16.16 format

Initial X value for the subordinate edge.

dXSub Fixed point
16.16 format

Value added when moving from one scanline (or sub
scanline) to the next for the subordinate edge in trapezoid
filling.

StartY Fixed point
16.16 format

Initial scanline (or sub scanline) in trapezoid filling, or initial
Y position for line drawing.

dY Fixed point
16.16 format

Value added to Y to move from one scanline to the next.
For X major lines this will be some fraction (dy/dx),
otherwise it is normally ± 1.0, depending on the required
scanning direction.

Count 16 bit integer Number of pixels in a line.
Number of scanlines in a trapezoid.
Number of sub scanlines in an antialiased trapezoid.
Diameter of a point in sub scanlines.

BitMaskPattern 32 bits defined
earlier

Value used to control the BitMask stipple operation (if
enabled).

PointTable0
PointTable1
PointTable2
PointTable3

Packed dx point
data.

Antialias point data table. There are 4 words in the table and
the register tag is decoded to select a word.

ScanLine
Ownership

See Multi-
GLINT chapter

Defines which scanlines are owned when in multi-GLINT
mode.

Ylimits Ymax: 2’s
complement 16
bit value in the
upper word.
Ymin: 2’s
complement 16
bit value in the
lower word.

Defines the Y extents the rasterizer should fill between. A
scanline is filled if its Y value satisfies:
Ymin £ Y < Ymax

Table 0.2 Rasterizer Registers

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 75

For efficiency, the Render command register has a number of bit fields that can
be set or cleared per render operation, and which qualify other state information
within GLINT. These bits are AreaStippleEnable, LineStippleEnable,
ResetLineStipple, TextureEnable FogEnable, CoverageEnable and
SubpixelCorrection.

One use of this feature can occur when a window is cleared to a background color.
For normal 3D primitives, stippling and fog operations may have been enabled,
but these are to be ignored for window clears. Initially the FogMode,
AreaStippleMode and LineStippleMode registers are enabled through the
UnitEnable bits. Now bits need only be set or cleared within the Render
command to achieve the required result, removing the need for the FogMode,
AreaStippleMode and LineStippleMode registers to be loaded for every render
operation.

The bit fields of the Render command register are detailed below:

Bit No. Name Description

0 AreaStippleEnable This bit, when set, enables area stippling of the fragments
produced during rasterization. Note that area stipple in the
Stipple Unit must be enabled as well for stippling to occur.

When this bit is reset no area stippling occurs irrespective of the
setting of the area stipple enable bit in the Stipple Unit.

This bit is useful to temporarily force no area stippling for this
primitive.

1 LineStippleEnable This bit, when set, enables line stippling of the fragments
produced during rasterization in the Stipple Unit. Note that line
stipple in the Stipple Unit must be enabled as well for stippling to
occur.

When this bit is reset no line stippling occurs irrespective of the
setting of the line stipple enable bit in the Stipple Unit.

This bit is useful to temporarily force no line stippling for this
primitive.

2 ResetLineStipple This bit, when set, causes the line stipple counters in the Stipple
Unit to be reset to zero, and would typically be used for the first
segment in a polyline. This action is also qualified by the
LineStippleEnable bit and also the stipple enable bits in the
Stipple Unit.

When this bit is reset the stipple counters carry on from where
they left off (if line stippling is enabled)

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs76

3 FastFillEnable This bit, when set, causes the span fill mechanisms to be used for
the rasterization process. The type of span filling is specified in
the SpanOperation field. When this bit is reset the normal
rasterization process occurs. This bit only has an effect if the
PrimitiveType is Trapezoid.

4, 5 Unused The block fill size is always 32 pixels on a GLINT 500TX.

6, 7 PrimitiveType This two bit field selects the primitive type to rasterize. The
primitives are:
0 = Line
1 = Trapezoid
2 = Point

8 AntialiasEnable This bit, when set, causes the generation of sub scanline data and
the coverage value to be calculated for each fragment. The
number of sub pixel samples to use is controlled by the
AntialiasingQuality bit.

When this bit is reset normal rasterization occurs. This bit only
has an effect if the PrimitiveType is Trapezoid.

9 AntialiasingQuality This bit, when set, sets the sub pixel resolution to be 8x8.

When this bit is reset the sub pixel resolution is 4x4.

10 UsePointTable When this bit and the AntialiasingEnable are set, the dx values
used to move from one scanline to the next are derived from the
Point Table. This bit only has an effect if the PrimitiveType is
Trapezoid.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 77

11 SyncOnBitMask This bit, when set, causes a number of actions:

The least significant bit or most significant bit (depending on the
MirrorBitMask bit) in the Bit Mask register is extracted and
optionally inverted (controlled by the InvertBitMask bit). If this
bit is 0 then the corresponding fragment is culled from being
drawn.

After every fragment the BitMaskPattern register is rotated by
one bit.

If all the bits in the BitMaskPattern register have been used then
rasterization is suspended until a new BitMaskPattern is received.
If any other register is written while the rasterization is suspended
then the rasterization is aborted. The register write which caused
the abort is then processed as normal .

Note the behavior is slightly different when the SyncOnHostData
bit is set to prevent a deadlock from occurring. In this case the
rasterization doesn't suspend when all the bits have been used
and if new BitMaskPattern data words are not received in a
timely manner then the subsequent fragments will just reuse the
bitmask.

12 SyncOnHostData When this bit is set a fragment is produced only when one of the
following registers has been written by the host: Depth, FBData,
Stencil, Color or FBSourceData . If SyncOnBitMask is reset,
then if any register other than one of these four is written to, the
rasterization is aborted. If SyncOnBitMask is set, then if any
register other than one of these four, or BitMaskPattern, is
written to, the rasterization is aborted. The register write which
caused the abort is then processed as normal . Writing to the
BitMaskPattern register doesn't cause any fragments to be
generated.

13 TextureEnable This bit, when set, enables texturing of the fragments produced
during rasterization. Note that the Texture Units must be
suitably enabled as well for any texturing to occur.

When this bit is reset no texturing occurs irrespective of the
setting of the Texture Unit controls.

This bit is useful to temporarily force no texturing for this
primitive.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs78

14 FogEnable This bit, when set, enables fogging of the fragments produced
during rasterization. Note that the Fog Unit must be suitably
enabled as well for any fogging to occur.

When this bit is reset no fogging occurs irrespective of the setting
of the Fog Unit controls.

This bit is useful to temporarily force no fogging for this
primitive.

15 CoverageEnable This bit, when set, enables the coverage value produced as part of
the antialiasing to weight the alpha value in the alpha test unit.
Note that this unit must be suitably enabled as well. When this bit
is reset no coverage application occurs irrespective of the setting
of the AntialiasMode in the Alpha Test unit.

16 SubPixelCorrection
Enable

This bit, when set enables the sub pixel correction of the color,
depth, fog and texture values at the start of a scanline. When this
bit is reset no correction is done at the start of a scanline. Sub
pixel corrections are only applied to aliased trapezoids.

17 Reserved

18 SpanOperation This bit, when clear, indicates that writes are to use the constant
color found in the FBBlockColor register. When this bit is set
write data is variable and is either provided by the host (i.e.
SyncOnHostData is set) or is read from the framebuffer, or the
Pattern RAM.

Table 0.3 Render Command Register Fields

A number of long-term rasterizer modes are stored in the RasterizerMode
register as shown below:

Bit No. Name Description

0 MirrorBitMask When this bit is set the bitmask bits are consumed from the most
significant end towards the least significant end.

When this bit is reset the bitmask bits are consumed from the least
significant end towards the most significant end.

1 InvertBitMask When this bit is set the bitmask is inverted first before being tested.

2,3 FractionAdjust These bits control the action of a ContinueNewLine command and
specify how the fraction bits in the Y and XDom DDAs are adjusted

0: No adjustment is done
1: Set the fraction bits to zero
2: Set the fraction bits to half
3: Set the fraction to nearly half , i.e. 0x7fff

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 79

4,5 BiasCoordinates These bits control how much is added onto the StartXDom,
StartXSub and StartY values when they are loaded into the DDA
units. The original registers are not affected:

0: Zero is added
1: Half is added
2: Nearly half , i.e. 0x7fff is added

6 Reserved

7,8 ByteSwapBitMask This bit controls the byte swapping of the BitMask data before it is
used. If the bytes are labeled ABCD on input, then the bytes are
swapped as follows:.

0: ABCD
1: BADC
2: CDAB
3: DCBA

9 BitMaskPacking This bit controls whether the BitMask data is packed or if new
BitMask data is required on every scanline.

0: BitMask data is packed
1: BitMask data is provided for each scanline

10 .. 14 BitMaskOffset These 5 bits hold the position in the 32 bit BitMask data where the
first bit is taken from for the BitMask test for the first BitMask data
on a new scanline. Subsequent BitMask data starts from bit 0 until
the next scanline. Successive bits are taken from increasing bit
positions until the bit mask is consumed (i.e. bit 31 is reached). The
least significant bit is bit zero.

15,16 HostDataByteSwapM
ode

These bits control the byte swapping of data associated with the
SyncOnHostData operation. If the bytes are labeled ABCD on input,
then the bytes are swapped as follows:.

0: ABCD
1: BADC
2: CDAB
3: DCBA

17 MultiGLINT This bit selects whether the rasterizer is to work in single GLINT
mode, or in multi-GLINT mode and consequently only process the
scanlines allocated to it.

0: Single GLINT mode
1: Multi-GLINT mode

18 YLimitsEnable This bit, when set, enables the Y limits testing to be done between
the minimum and maximum Y values given by the Ylimits register.

Table 0.4 Rasterizer Mode Register

5.3.17 Examples

Many examples of the use of the rasterizer are found throughout the manual.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs80

5.4 Scissor Unit
Two scissor tests are provided in GLINT, the User Scissor test and the Screen
Scissor test. The user scissor checks each fragment or span against a user supplied
scissor region; the screen scissor checks that the fragment or span lies within the
screen.

5.4.1 User Scissor Test

The user scissor test, tests each fragment as follows:
XMin <= X < XMax

YMin <= Y < YMax

Where X and Y are the coordinates for the fragments, and XMin, XMax, YMin
and YMax define the user supplied scissor region. If a fragment fails the test it is
discarded. The test may be screen or window relative.

5.4.2 Screen Scissor Tests

This test ensures that a fragment lies within the screen boundaries. For each
fragment the XY origin stored in the WindowOrigin register is added to the
fragment coordinates and this is tested against the screen boundaries stored in the
ScreenSize register. Since the X and Y coordinates are held as 2's complement
numbers, the window origin can be moved off the edges of the screen.

Note that the WindowOrigin register only affects the origin for clipping, it does
not affect the base address for rendering. Section § 0 Window Initialization gives
further details on how to set the base address of a window for rendering.

The following test is made:

0 ≤ (X + WX) < SW

0 ≤ (Y + WY) < SH

Where:

X = Fragment X coordinate WX = Window origin X coordinate

Y = Fragment Y coordinate WY = Window origin Y coordinate

SW = Screen Width

SH = Screen Height

The diagram below shows a simple scenario of a screen with a single window
which has a user defined scissor region. The shaded area shows the region where
fragments pass the user and screen scissor tests and so can progress in the
pipeline. Fragments outside this region are culled from the pipeline.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 81

(X, Y)

Screen
Height
(SH)

Screen Width (SW)

Window Origin
(WX, WY)

User
Scissor

Min

User
Scissor
Max

Writeable Region

Scissor Region

Screen

Figure 0.12 Screen Scissor and User Scissor Tests

This test may reject fragments if some part of a window has been moved off the
screen. It will not reject fragments if part of a window is simply overlapped by
another window (GID testing can be used to detect this, see section § 0).

5.4.3 Registers

The unit is controlled by the ScissorMode register:

08162431

User scissor enable
0 = Disable
1 = Enabled

Screen scissor enable
0 = Disabled
1 = Enabled

Figure 0.13 Scissor Register

The screen scissor test would normally always be enabled. The most common
exception is during image upload.

The user scissor region is specified by two registers ScissorMinXY and
ScissorMaxXY the X values are stored in the least significant 16 bits of the
register, the Y values in the most significant 16 bits of the register.

The WindowOrigin register has the X coordinate of the origin stored in the least
significant 16 bits of the register, and the Y coordinate in the most significant 16
bits of the register. As each fragment is generated by the rasterization unit this

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs82

origin is added to the coordinates of the fragment to generate its screen
coordinates.

The ScreenSize register specifies the screen width and height, with the width in
the least significant 16 bits and the height in the most significant 16 bits.

5.4.4 Span Operations and the Scissor Unit

If a span mask is presented to the scissor unit, then the mask is modified to zero
out bits corresponding to pixels which lie outside the scissor region. This is true
for both the user scissor and the screen scissor.

An example of how to use this was given above.

5.4.5 Scissor Example

To enable screen scissor for a region: 10 <= X < 500, 100 <= Y < 200 with a
screen size of 1280x1024 and the window origin at (100,100).

// Set the screen size
screenSize.Width = 1280
screenSize.Height = 1024

ScreenSize(screenSize)

// Set the window origin
windowOrigin.X = 100
windowOrigin.Y = 100

// Set-up the user scissor values
minXY.X = 10
minXY.Y = 100
maxXY.X = 500
maxXY.Y = 200
ScissorMinXY(minXY) // Load the registers
ScissorMaxXY(maxXY)

// Enable the unit
scissorMode.UserScissorEnable = GLINT_ENABLE
scissorMode.ScreenScissorEnable = GLINT_ENABLE

ScissorMode(scissorMode)

// Render primitives

5.4.6 Area Stipple Example

A repeating area stipple pattern of 2x2 pixels producing a 50% grey area:

AreaStiPPlePattern0 (0xAAAAAAAA)
AreaStipplePatternl (0x55555555)

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 83

AreaStipplePattern2 (0xAAAAAAAA)
AreaStipplePattern3 (0x55555555)
AreaStipplePattern4 (0xAAAAAAAA)
AreaStipplePatfern5 (0x55555555)
RTeaStipplePattern6 (0xAAAAAAAA)
AreaStipplePattern7 (0x55555555)
AreaStipplePattern31(0x55555555)

// Set-up mode register
areaStippleMode.UnitEnable = GLINT_ENABLE
areaStippleMode.Xselect = 0
areaStippleMode.Yselect = 0
areaStippleMode.Xoffset = 0
areaStippleMode.Yoffset = 0
areaStippleMode.lnvert = 0
areaStippleMode.MirrorY = 0
areaStippleMode.MirrorX = 0

// Load mode register
AreaStippleMode(areaStippleMode)

// When issuing a Render command, the
// AreaStippleEnable bit should be set to
enabled:
// Arender.AreaStippleEnable = GLINT_TRUE

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs84

5.5 Stipple Unit
Stippling is a process whereby each fragment is checked against a bit in a defined
pattern, the fragment can either be rejected or accepted depending on the result of
the stipple test. If it is rejected, then it undergoes no further processing, otherwise
it proceeds down the pipeline. GLINT supports two types of stippling, line and
area.

5.5.1 Area Stippling

A 32 x 32 bit area stipple pattern can be applied to fragments. The least significant
n bits of the fragment's (X,Y) coordinates, index into a 2D stipple pattern. If the
selected bit in the pattern is set, then the fragment passes the test, otherwise it is
rejected. The number of address bits used, allow regions of 1,2,4,8,16 and 32 pixels
to be stippled. The address selection can be controlled independently in the X
and Y directions. In addition the bitpattern can be inverted or mirrored. Inverting
the bit pattern has the effect of changing the sense of the accept/reject test. If the
mirror bit is set the most significant bit of the pattern is towards the left of the
window, the default is the converse.

In some situations window relative stippling is required but coordinates are only
available screen relative. To allow window relative stippling, an offset is available
which is added to the coordinates before indexing the stipple table. X and Y
offsets can be controlled independently.

Area stippling is enabled using the AreaStippleMode register and must be
qualified by the AreaStippleEnable bit in the Render command register.

5.5.2 Line Stippling

In this test, fragments are conditionally rejected on the outcome of testing a linear
stipple mask. If the bit is zero then the test fails, otherwise it passes. The line
stipple pattern is 16 bits in length and is scaled by a repeat factor, r, (in the range 1
to 512). The stipple mask bit, b, which controls the acceptance or rejection of a
fragment is determined using:

b = (floor (s / r)) mod 16

where s is the stipple counter which is incremented for every fragment (normally
along the line). This counter may be reset at the start of a polyline, but between
segments it continues as if there were no break.

The stipple pattern can be optionally mirrored, that is the bit pattern is traversed
from most significant to least significant bits, rather than the default, from least
significant to most significant.

The UpdateLineStippleCounters register controls initialization of the line stipple
counters, which can be reset or loaded from a previously saved value. The
SaveLineStippleCounters register is used to save the current line stipple counters.
The combination of UpdateLineStippleCounters and SaveLineStippleCounters
is useful to implement stippling of wide polylines.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 85

Line stippling is enabled using the LineStippleMode register and must be qualified
by the LineStippleEnable bit in the Render command register.

5.5.3 Span Operations and Stippling

A span mask generated by the rasterizer will be modified by the area stipple if it is
enabled. The line stipple has no effect on the span mask.

If area stippling is enabled, then the current stipple mask is replicated to form a
full 32 bit mask. This is ANDed with the span mask. The stipple mask replication
happens after all mirroring, inverting and shifting have been performed.

This is very useful for enabling use of the VRAM block write capability for doing
monochrome pattern expansions. For example, Microsoft Windows monochrome
brushes are normally 8x8. If this brush pattern is stored in the area stipple and
solid fill with span operation is enabled, then the foreground color for the pattern
will be rendered using block writes. The background color can be filled on a
second pass by turning on the InvertStipplePattern bit in the AreaStippleMode
register.

5.5.4 Registers

The LineStippleMode register controls line stipple:

08162431

Enable unit
0 = Disable
1 = Enable

stipple mask repeat factor

Mirror Stipple Mask
0 = no mirror
1 = mirror

Figure 0.14 LineStippleMode Register

The repeat factor is set to one less than the required value.

The least significant bit of the UpdateLineStippleCounters register, controls
loading the line stipple counters. If set the line stipple counters are loaded with the
previously saved values. If reset, the counters are cleared to zero. The counters can
also be reset by means of the ResetLineStipple bit in the Render command.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs86

The AreaStippleMode register controls area stipple operation:

08162431

Enable unit
0 = Disable
1 = Enable

Y sel X sel

Address select
0 = 1 bit
1 = 2 bits
2 = 3 bits
3 = 4 bits
4 = 5 bits

X OffsetY Offset

Mirror Y
0 = no mirror
1 = mirror

Mirror X
0 = no mirror
1 = mirror

Invert Stipple Pattern
0 = no invert
1 = invert

Figure 0.15 AreaStippleMode Register

The EnableUnit bit in the LineStippleMode and AreaStippleMode registers are
qualified by the LineStippleEnable and AreaStippleEnable bits in the Render
command register.

SaveLineStippleCounters register (which has no data field) saves the line stipple
counters internally.

The area stipple is set up in the AreaStipplePatternn register, where n represents
an integer between 0 and 31.
The LoadLineStippleCounters register is shown below:

08162431

repeat_counterrepeat_counter bit_counter bit_counter

Segment register 'Live' counters

Figure 0.16 LoadLineStippleCounters register

5.5.5 Examples

A repeating area stipple pattern of 2x2 pixels producing a 50% grey area:
// Use only the first two table entries
AreaStipplePattern0(0x1)
AreaStipplePattern1(0x2)

// Set-up mode register
areaStippleMode.UnitEnable = GLINT_ENABLE
areaStippleMode.XSel = 0 // Address index based on
areaStippleMode.YSel = 0 // LSB of address, repeats
 // every 2nd pixel in X &
Y
areaStippleMode.XOffset = 0
areaStippleMode.YOffset = 0

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 87

areaStippleMode.Invert = 0
areaStippleMode.MirrorY = 0
areaStippleMode.MirrorX = 0

// Load mode register
AreaStippleMode(areaStippleMode)

// When the Render command is sent the
AreaStippleEnable
// bit should be set in addition to the area
stipple
// test being enabled:
// render.AreaStippleEnable = GLINT_TRUE

A line stipple which rejects alternate fragments:
// Set counters to zero
UpdateLineStippleCounters(0x0)

// Set the stipple mode
lineStippleMode.UnitEnable = GLINT_ENABLE
lineStippleMode.RepeatFactor = 0 // Repeat factor
1
lineStippleMode.StippleMask = 0xAAAA

LineStippleMode(lineStippleMode)
// When issuing a Render command the
LineStippleEnable // bit should be set in addition
to the line stipple
// test being enabled:
// render.LineStippleEnable = GLINT_TRUE

5.6

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs88

Color DDA Unit
The color DDA unit is used to associate a color with a fragment produced by the
rasterizer. This unit should be enabled for rendering operations and disabled for
pixel rectangle operations (i.e. copies, uploads and downloads).

5.6.1 RGBA and Color-Index(CI) Modes

Two color modes are supported by GLINT, true color RGBA and color index
(CI).

GLINT's internal color representation is RGBA with 8 bits per component:

08162431

RedGreenBlueAlpha

Figure 0.17 GLINT Color Representation

This format is the same for all the different framebuffer configurations supported.
If the number of bits in the framebuffer for a color component is less than 8 then
the color value is left shifted into the most significant bits of that components
field. The unused least significant bits should be set to zero.

In CI mode the color index is placed in the lower byte of the 32 bit register (i.e.,
the red component). If less than 8 bits are used the index is left justified to be in
the most significant end of the red component. The unused least significant bits
should be set to zero.

5.6.2 Gouraud Shading

When in Gouraud shading mode, the color DDA unit performs linear
interpolation given a set of start and increment values. Clamping is used to ensure
that the interpolated value does not underflow or overflow the permitted color
range.

dCdy Dom dCdX

S ubordinate E dg es

D ominant Edg e

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 89

dCdyDom = color gradient in the Y direction along the dominant edge
dCdx = color gradient in the X direction

Figure 0.18 Color Interpolation

For a Gouraud shaded trapezoid, GLINT interpolates from the dominant edge of
a trapezoid to the subordinate edges. This means that two increment values are
required per color component, one to move along the dominant edge and one to
move across the span to the subordinate edge. This is illustrated in Figure 0.18,
where C represents a color component (red, green, blue, alpha or color index).

See section 5.2 A Gouraud Shaded Triangle for details of how to calculate the
required increment values.

For Gouraud shaded lines, each line is treated as the dominant edge of a trapezoid,
and so no dCdx increment is required.

To allow accurate interpolation, the increment values are specified in a 24bit fixed
point format. The format is 2's complement with 9 bits integer and 15 bits
fraction:

08162431

Integer Fraction

Figure 0.19 Fixed Point Color Format

Note that if you are rendering to multiple buffers and have initialized the start and
increment values in the color DDA unit, then any subsequent Render command
will cause the start values to be reloaded.

If subpixel correction has been enabled for a primitive, then any correction
required will be applied to the color components.

5.6.3 Flat Shading

In flat shading mode, a constant color is associated with each fragment. This color
is loaded into the ConstantColor register which has the format shown in Figure
0.17.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs90

5.6.4 Registers

The control register for the color DDA unit is the ColorDDAMode register:

08162431

Unit enable
0 = Disable
1 = Enable

Shade Mode
0 =Flat
1 = Gouraud

Figure 0.20 ColorDDAMode Register

The registers to set up Gouraud shading in the color DDA unit are:
Register Data Field Description
RStart Fixed point 9.15 format Red start value
dRdx Fixed point 9.15 format Red derivative per unit X
dRdyDom Fixed point 9.15 format Red derivative per unit Y, dominant

edge
GStart Fixed point 9.15 format Green start value
dGdx Fixed point 9.15 format Green derivative per unit X
dGdyDom Fixed point 9.15 format Green derivative per unit Y,

dominant edge
BStart Fixed point 9.15 format Blue start value
dBdx Fixed point 9.15 format Blue derivative per unit X
dBdyDom Fixed point 9.15 format Blue derivative per unit Y, dominant

edge
AStart Fixed point 9.15 format Alpha start value
dAdx Fixed point 9.15 format Alpha derivative per unit X
dAdyDom Fixed point 9.15 format Alpha derivative per unit Y,

dominant edge

Table 0.5 Color Interpolation Registers

5.6.5 Flat Shading Example

A flat shaded primitive:

// Set DDA to flat shade mode
colorDDAMode.UnitEnable = GLINT_ENABLE
colorDDAMode.Shade = GLINT_FLAT_SHADE_MODE
ColorDDAMode(colorDDAMode)
ConstantColor(0xFFFFFFFF) // Load the flat

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 91

color

5.6.6 Gouraud Shaded Trapezoid Example

See section §0 for details of how to calculate delta values.

// Enable unit in Gouraud shading mode
colorDDAMode.UnitEnable = GLINT_ENABLE
colorDDAMode.Shade = GLINT_GOURAUD_SHADE_MODE

ColorDDAMode(colorDDAMode)

// Load the color start values and deltas for
dominant
// edge and the body of the trapezoid

RStart() // Set-up the red component start value
dRdx() // Set-up the red component increments
dRdyDom()
GStart() // Set-up the green component start value
dGdx() // Set-up the green component increments
dGdyDom()
BStart() // Set-up the blue component start value
dBdx () // Set-up the blue component increments
dBdyDom ()

5.6.7 Gouraud Shaded Line Example

See section §0 for details of how to calculate delta values.

// Set DDA for Gouraud shaded mode
colorDDAMode.UnitEnable = GLINT_ENABLE
colorDDAMode.Shade = GLINT_GOURAUD_SHADE_MODE
ColorDDAMode(colorDDAMode)

// For lines we need only start values and
// dominant edge deltas

RStart() // Set-up the red component start value
dRdyDom() // Set-up the red component increment
GStart() // Set-up the green component start value
dGdyDom() // Set-up the green component increment
BStart() // Set-up the blue component start value
dBdyDom() // Set-up the blue component increment

5.7

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs92

Texture Mapping
For each fragment within a primitive, texture mapping involves the following
stages:

• calculation of the texture coordinates for each fragment.

• fetching the appropriate texel data from the localbuffer.

• derivation of the texture color from t he texel(s) (a filtering process).

• application of the texture color to the fragment's color, which is dependent on
the texture application mode.

See the OpenGL Specification , and OpenGL Programming Guide for details of the
theory and practice of texture mapping .

In addition to the texel filtering and application operations supported in the
GLINT 300SX, the GLINT 500TX also:

• Interpolates the texture coordinates.

• Calculates the perspectively correct texture map address(es).

• Reads the texel data from the localbuffer memory.

• Formats the data from the wide variety of texture map formats into a uniform
internal format.

• Assists the host in doing mip mapping by reading the texel data and filtering.
The host supplies the two mip map addresses and the inter-map interpolation
coefficient on a pixel by pixel basis.

The texture operation is carried out in three phases:

• Texture Address Generation

• Texture Read

• Texture Color Generation and application

5.7.1 Texture Address Generation

To generate the texture addresses, DDAs are used to interpolate the texture
coordinates over a trapezoid or line primitive.

There are two general modes of operation: 2D and 3D. In 3D mode, the task
divides into the following steps:

• interpolate the texture coordinates (S, T, Q) using the DDA units

• perspective correction of the coordinates by calculating S/Q and T/Q

• wrap the corrected coordinates (s, t) using mirror, repeat or clamp operations to
map the coordinates into the range 0.0 to 1.0 (u, v)

• pass the resulting coordinates (u, v) to the texture read unit

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 93

For the 2D mode, the perspective correction stage is omitted and the wrap
operation is always a repeat operation.

Texture Coordinate Nomenclature

A vertex has a homogeneous coordinate and texture coordinate donated by:

[] [] x y z w and s t r qe e e e e e e e

In OpenGL the texture coordinate is transformed using a 4x4 matrix (frequently
this is a unit matrix) and the default values for r qe e, are 0.0 and 1.0 respectively.
re is a place holder in anticipation of 3D textures, and qe can be used to apply
perspective projections to the texture map. The values of S, T and Q are given by:

S
s
w

T
t
w

Q
q
w

e

e

e

e

e

e

= = =

The S, T and Q parameters are interpolated in DDA units in the same way all
other interpolants in GLINT are. The 9 registers: SStart, dSdx, dSdyDom,
TStart, dTdx, dTdyDom, QStart, dQdx and dQdyDom hold the start, dx and
dyDom parameters for S, T and Q. The values of S, T and Q at each vertex are
used to calculate the gradient values in much the same way as the color gradients
when Gouraud shading.

The fixed point format of these registers can be defined as you wish, but they
must be the same - the divide operation yields consistent internal results. One
method of ensuring that the full range of accuracy available in the DDAs is used
but not exceeded (the DDAs will clamp if the range is exceeded) is to normalize
the S, T, Q values before calculating the gradient values. For example, for a
triangle primitive this involves finding the maximum absolute value of the 9 values
defined at the vertices and scaling the other 8 values appropriately.

At each pixel there is a division operation to achieve perspective correction of the
texture coordinates and derive the s, t coordinates used to index the texture map
through the equations:

s =
S

Q
 t =

T

Q

After the division, the s, t coordinates are wrapped to lie in the range 0.0 to 1.0
inclusive (and therefore within the range of the defined texture map). The
wrapped coordinates are denoted as u, v. It is the u, v coordinates that are passed
on to the Texture Read Unit which uses them to calculate the physical address in
the localbuffer where the texture is stored.

Texture Coordinate Wrapping Modes

Three wrapping modes are available, and s and t can be wrapped differently. The
selected mode is held in the SWrap and TWrap fields in the TextureAddressMode

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs94

register, and in the UWrap and VWrap fields in the TextureReadMode register.
Clamp This tests the coordinate against 1.0 and if the coordinate is

larger sets the coordinate to 1.0. Similarly if the coordinate is less
that 0.0 it is set to 0.0.

This causes texels outside of the texture map to be set to the
edge values.

u

s

1.0

Repeat The integer part of the coordinate is discarded just to leave the
fractional part. The Repeat mode creates a saw-tooth transfer
function, which as the name suggests, causes the texture pattern
to be repeated (i.e. tiled) over the polygon. Abutting edges are
from opposite sides of the texture map so unless care is taken a
discontinuity may be seen.

u

s

1.0

Mirror This is similar to Repeat, but when the integer part is odd the
value (1.0 - fraction) is used instead of just the fraction. This
creates a triangle transfer function, which has the advantage that
butting edges always match.

u

s

1.0

The Repeat and Clamp modes are identical to those defined by OpenGL.

Texture Address Registers

The TextureAddressMode register contains four control bits:

• An enable bit, which when clear stops this unit generating texture coordinates.
If this bit is set and the texture enable bit in the Render command is set then
texture coordinates are generated.

• S Wrap. Reduces the texel s coordinate into the narrow u range as outlined
above.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 95

• T Wrap. Reduces the texel t coordinate into the narrow v range as outlined
above.

• Operation bit. When this is clear the addresses are calculated in '2D mode' so
no perspective correction is done. This will typically run twice as fast as when
in '3D mode' where perspective correction is done. In the 2D case the wrap
operation is always “repeat” as the DDA units are allowed to wrap around and
have the fixed 0.32 fixed point format.

08162431

Enable
Address
Generation
0 = Disable
1 = Enable

Operation
0 = 2D mode
1 = 3D mode T Wrap

0 = Clamp
1 = Repeat
2 = Mirror

S Wrap
0 = Clamp
1 = Repeat
2 = Mirror

Reserved

Figure 0.21 TextureAddressMode Register

The following registers set up the texture interpolation deltas :
Register Data Field Description
SStart S start value
dSdx S derivative per unit X
dSdyDom S derivative per unit Y, dominant edge
TStart T start value
dTdx T derivative per unit X
dTdyDom T derivative per unit Y, dominant edge
QStart Q start value
dQdx Q derivative per unit X
dQdyDom Q derivative per unit Y, dominant edge

Table 0.6 Texture Interpolation Registers

5.7.2 Texture Read Phase

The texture read phase fetches and formats texel data from the localbuffer. This
involves taking the u, v coordinates generated by the texture address unit and
calculating the physical address in the localbuffer where the texture is stored. The
texture information (texels) are read and converted into the internal format (8 bits
per component) before being passed onto the Texture Color Generation. The
interpolation coefficients (if any are needed) are derived from the u, v coordinates
and passed on as well.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs96

Filter Modes

All the filter modes of OpenGL are supported, that is:

Minification Nearest
Linear
NearestMipMapNearest
NearestMipMapLinear
LinearMipMapNearest
LinearMipMapLinear

Magnification Nearest
Linear

Table 0.7 OpenGL Filter Modes

Minification is the name given to the filtering situation where multiple texels map
to a single fragment, while magnification is the name given to the filtering
situation where only a portion of a single texel maps to a single fragment.

Nearest is the simplest form of filtering where the nearest texel to the texture
coordinate location is selected.

Linear is a more sophisticated filtering algorithm which is dependent on the type
of primitive. For lines (which are 1D), it involves linear interpolation between the
two nearest texels. For polygons and points which are considered to have finite
area, linear is in fact bi-linear interpolation which interpolates between the nearest
4 texels.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 97

Calculating the Texel Address(es)

The address generation is controlled by the TextureReadMode register. It has the
following fields (which are explained in more detail later on):

Field Width Function
Enable 1 Enables texel reads.
Width 4 1…2048 encoded as a power of two.
Height 4 1…2048 encoded as a power of two.
Depth 3 1…32 encoded as a power of two.
Border 1 No border (0) or border present (1)
Patch 1 No (0), or Yes (1)
MagFilter 1 Nearest (0), Linear (1)
MinFilter 3 Nearest (0), Linear (1),

Nearest Mipmap Nearest (2),
Nearest Mipmap Linear (3),
Linear Mipmap Nearest (4),
Linear Mipmap Linear (5)

UWrap 2 Clamp (0), Repeat (1) or Mirror (2)
VWrap 2 Clamp (0), Repeat (1) or Mirror (2)
MapType 1 1D (0) or 2D (1)
MipmapAssist 1 Disabled (0) or Enabled (1).

Table 0.8 TextureReadMode Register

The texel address(es) is calculated from the following parameters:

• Dimensions. A texture map is a two dimensional image, possibly with differing
width and height. The width and height are given by (2n+2b) and (2m+2b)
respectively where b is one when a border is present, otherwise it is zero. The
values of n, m and b are stored in the TextureReadMode register in the Width,
Height and Border fields respectively. The width or height can be one (more
normally height) so the texture map is reduced to be one dimensional as
required for 1D maps in OpenGL. The largest texture map supported is 2K by
2K without a border, or 2050x2050 with a border. When a texture map
doesn't fit in with the above width and height equations it must be padded out
to the nearest acceptable size. This is likely to occur when a font is held as a
texture map but will not cause any problems as the texture coordinate DDAs
can be adjusted.

• Borders. In OpenGL any texture map can have an extra row on the top and
bottom, and an extra column on the left and right of the map so the size of a
texture map may not be a power of 2. These extra border texels are only ever
accessed during linear filtering, but may need to be skipped over when not
needed. If a border has not been provided in the texture map, but a border
texel is needed, they are taken from the BorderColor register.

• Texel Size. A texel may be 1, 2, 4, 8, 16 or 32 bits in size. The interpretation of

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs98

these bits is covered later and is of no concern for the address calculation. Texel
ordering within a word is always sequential and can start from either end. The
texel size, d, is encoded as a power of 2 so it can have the values 0…5 inclusive
and is held in the Depth field in the TextureReadMode and TextureFormat
registers.

• Base Address. The base address is given in units of the smallest texel size (i.e. 1
bit). The address is 29 bits in size to accommodate bit level addressing in a
maximal memory system of 16M words (i.e. 24 + 5). A texture map must
always start on the natural boundary for the size of texels it contains. For
example a 32 bit texture will always have the bottom 5 bits set to zero. This fine
level of addressing allows sub images in the texture map to be used. It is not
intended to allow more efficient packing of texture maps in memory (i.e. it is
not possible to store two 4x4 one bit maps in one localbuffer word) as texture
download only replaces the contents of a whole localbuffer word and will not
do a merge. The base address is held in the TextureBaseAddress register with
the pixel address in the high order 24-bits.

• Origin. The origin is always at the base address (i.e. 0, 0) and all texels in the
texture map are at higher addresses.

• Texture map patch. Storing the texture map in memory with one row following
the next can gives poor access times when scanning along a column due to the
page breaks. If the texture map is smaller than the page size then this will not
occur, but frequently the texture map will be much larger than the page size so
it is a concern. To make the access time less dependent on the scanning
direction the texture map can be optionally stored in patches such that a 2D
region of the map is stored in the same DRAM page. All the texels within a
word are always sequential along a row and a patch is 16x16 words, hence the
patch size in texels varies from 16x16 (for 32 bit texels) to 512x16 (for 1 bit
texels). If packed texture maps are required then the packing can be done
automatically during texture download, or must be done by the host if the
localbuffer bypass is used. Note that some wastage of the memory space will
occur if the texture map dimensions are not an integer multiple of the patch
size.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 99

2D texture with 32bit
texels ordered in patches

255
.
.
.

16……………….31
0 1 2 .………..14 15

511
.
.
.

272…………….287
256 ….………...271

m

n

16

16

width/16 * 256

0 1 2 ..…………255
.
256 ..……..……511

. ..

n m

1D memory layout

width

Figure 0.22 Texture Patch Example

The patch mode is only useful when the width of the map exceeds 16 words.

The patch mode works best when the height of the map is greater than 16
texels. For maps which are less than this in height a portion of the patch will
not be used so the texel data will be spread out in memory. Consider a 1K
word x 4 texture map. This will occupy a quarter of the patch memory so 16K
words need to be set aside for 4K of texels. Moving between rows will occur
without page breaks, where as in the non patch case it would incur a page
break. It is possible to interleave 4 such maps so getting the benefit of less page
breaks without the cost of the additional memory.

• Filter and MapType. The filter (Nearest or Linear) and map type (1D or 2D)
determine how many addresses are generated. Note that the MinFilter is not
normally used.

A texel on the map has the integer coordinates i, j and these are calculated from u,
v and the width and height values. These integer coordinates are guaranteed to lie

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs100

on the texture map (excluding the border texels, if present), so for the nearest
filter mode the texel is just read and used.

For the linear filter mode and 2D MapType the four texels (i, j), (i+1, j), (i, j+1)
and (i+1, j+1) are read, with obvious reductions for the 1D MapType. The
coordinates (i+1) and/or (j+1) may not lie on the texture map. If the texture map
has a border (specified in the Border field) then the appropriate texel from the
texture map is read, otherwise texel is taken from the BorderColor register. The
texel color stored in this register is in the normal 8:8:8:8 format.

Texture Memory Layout

The 500TX has dual page detectors in the localbuffer interface so if there are two
banks of memory then accesses can toggle between banks without breaking page
in either bank. This is important when depth buffering and texture mapping are
being done at the same time as their respective accesses are interleaved. Keeping
the depth buffer in one bank and the textures in the other will give the best
performance. If this separation is not possible because there is only a single bank
of memory, or the depth buffer or texture maps have overflowed into the other
bank there will be a performance impact, but this is reduced by the texture cache
and other features of the memory interface unit.

Texture Cache

The texture data is cached to improve performance by reducing the demand for
localbuffer bandwidth. The texture cache is fully associative with a LRU (least
recently used) replacement policy and can hold eight 32 bit words. This translates
into, for example, a 8x8 by 4 bit texture map. In the cases where a cache doesn't
help because there is no re-use of data then the localbuffer is read, however
texture reads are grouped together to reduce their impact on other localbuffer
accesses by breaking page.

The cache is managed under software control and the TextureCacheControl
command is used to invalidate the cache (after a texture download, for example),
or to disable the cache.

Mipmapping Assistance

The GLINT 500TX does not implement mip mapping directly, but will assist the
host in doing mipmapping more efficiently.

A mipmap is an ordered set of arrays representing the same image. Each array has
half the linear resolution of the preceding one. This technique allows minification
filtering to occur with a constant time overhead irrespective of the size of the
projected area.

The first filter name for mipmapping in the Min Filter field specifies the filtering
to be done on a level, and the second filter name specifies the filtering to be done
between levels.

Mipmap assistance is enabled by setting the MipMapAssist bit in the
TextureReadMode register. When this bit is set the filter operation is taken from
MinFilter field in the same register (normally this field is ignored and only present

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 101

for forwards compatibility).

Textured fragments that are filtered using the mipmap technique require the
calculation of a value for a variable called rho which is a measure of the projected
area of the fragment on the texture map. This variable is used to select the one or
two texture maps to use, the intermap interpolation coefficient (if two maps are
being used) and the filter mode (which may be different between minification and
magnification). These values are used to update the TextureBaseAddress,
TextureBaseAddressLR, TextureReadMode registers and the inter-map
interpolation coefficient is written to the Interp0, Interp2 or Interp4 register as
directed by the following table.

Min Filter mode Host Interp register
Nearest None
Linear None

1D NearestMipMapNearest None
NearestMipMapLinear Interp0
LinearMipMapNearest None
LinearMipMapLinear Interp2
Nearest None
Linear None

2D NearestMipMapNearest None
NearestMipMapLinear Interp0
LinearMipMapNearest None
LinearMipMapLinear Interp4

The interpolants are specified as 9 bit unsigned fixed point numbers. The format
is 1 bit integer and 8 bits fraction. The input values will usually lie in the range 0.0
to 1.0.

08162431

 FI

Integer Fraction

Figure 0.23 Interpolant Fixed Point Format

For the situations where rho is considered to be a constant for all fragments in a
primitive, the following state set-up is required before rasterizing the primitive:

TextureBaseAddress
TextureBaseAddressLR // if needed
Interp // depends on the filter mode
TextureReadMode // width,height and min filter
// set up texture interpolation deltas
// set up primitive interpolation deltas
// render primitive

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs102

The addresses of the two maps are held in TextureBaseAddress and
TextureBaseAddressLR registers. The second register holds the address of the
Low Resolution map whose width and height is half that of the first map. Recall
that the width and height values in TextureReadMode register are defined as
powers of 2 so the values used in the address calculations are one less and clamped
to zero if the subtraction would cause either to go negative. All other parameters
about the maps (depth, border, patch, U wrap, V wrap, map type) are the same
for both maps.

Depending on the 'on map' filtering mode and the map type, up to four texels on
each level may be read at (i, j), (i+1, j), (i, j+1) and (i+1, j+1).

For the situations where rho varies for each fragment in a primitive, more
interaction with the host is involved. A description for this case is beyond the
scope of this manual - please contact 3Dlabs for full details.

Texel Formatting

The texel formatting is controlled by the TextureFormat register and it has the
following fields:

FieldField WidthWidth FunctionFunction
Order 1 Little endian (0) or big endian (1)
Format 1 Alternative 16 bit format.
ColorOrder 1 BGR (0) or RGB (1)
NumComps 2 1, 2, 3 or 4
OutputFormat 2 Texel (0), Color (1) or Bitmask (2)
MirrorBitMask 1 No (0) or Yes (1)
InvertBitMask 1 No (0) or Yes (1)
ByteSwapBitMask 1 No (0) or Yes (1)

Table 0.9 Texel Format Register

Only the least significant 32 bits of the localbuffer are used for texture storage. If
the localbuffer is wider then the additional bits are ignored during texture reads,
and overwritten with zeros during texture downloads.

A texel can be 1, 2, 4, 8, 16 or 32 bits in size (depth) and is converted into the
internal 32 bit wide texel format.

The first step is to extract the appropriate bits from the data returned by the
localbuffer. The texel's coordinates, depth and order determine which texel out of
the 32 bit localbuffer word is extracted. If the order is little endian then increasing
u (or i) coordinate runs from the most significant end towards the least significant
end of the 32 bits and vice versa for big endian order.

The next stage is to take the texel data and extract the RGBA components and
format them into the 32 bit internal format. OpenGL defines texture maps as
having 1, 2, 3 or 4 components and the formats supported are:

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 103

Number of Components
Color
Order

Localbuffer
Texel
Width

Format

1 2 3 4
X 1 X LUT LUT LUT LUT
X 2 X LUT LUT LUT LUT
X 4 X LUT LUT LUT LUT

8 X L8 A4L4 B2G3R3 A1B2G3R2
BGR 16 0 - A8L8 B5G6R5 A4B4G4R4

16 1 - A8L8 B5G5R5 A1B5G5R5
32 X - - - A8B8G8R8
8 X L8 A4L4 R3G3B2 A1R2G3B2

RGB 16 0 - A8L8 R5G6B5 A4R4G4B4
16 1 - A8L8 R5G5B5 A1R5G5B5
32 X - - - A8R8G8B8

Table 0.10 Supported Texel Formats

The 1, 2 and 4 bit texels are converted using a LUT to the internal format. The
LUT converts an indexed texel value into an RGBA value. The LUT is loaded by
writing to the TexelLUT[16] registers. For 3D this allows texture maps to be
compressed so that they take up less memory.

For 2D it allows a one bit texture to be used as a stipple to provide a foreground
and background color. A 4 bit texture can be used to hold CI dither offsets which
the LUT translates into color values (RGBA or CI). This allows Microsoft
Windows compatible CI dithering to be implemented.

The table's entries show how the texel data is expanded into the internal format.
The subscripts are the number of bits in the corresponding component and the
component ordering is with least significant on the right. The luminance values (L)
are replicated into the RGB components. When no alpha (A) value is specified it is
set to 255. A dash indicates an over specification of the format (i.e. an 8 bit
luminance value in a 16 bit wide field). If such a combination occurs then the
nearest earlier entry for this number of components is used and the extraneous
data is ignored

The 32 bit texel value is now optionally (in this order):

• Byte swapped. If the bytes are labeled ABCD on input then after byte
swapping they will have the order DCBA. This allows the normal bit mask
format provided by Microsoft Windows to be used directly.

• Mirrored. This swaps bit 0 and bit 31, bit 1 and bit 30, etc. so when no
mirroring is enabled the least significant bit in the texel will be the left most
pixel in the span. With mirroring the most significant bit in the texel will be
the left most pixel in the span.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs104

• Inverted. This simply inverts the texel bits before they are used. This allows
the same bit mask to be used to fill in the foreground pixels in one color and
then the background pixels in a different color on a second rasterization pass
with inversion occurring.

These operations are identical to those provided in the rasterizer for bit mask
operations and are intended to allow bit mask data to be held in the localbuffer for
use with 2D span processing. However, these operations are available for use in
the general 3D case.

The next stage is controlled by the OutputFormat bits in the TextureFormat
register. They have the following effect:

• Texel. The texel is passed to the Texture Color Unit for further texture
processing.

• Color. This would be used by 2D operations as no further texture processing is
needed.

• BitMask. The 32 bit texel is held locally and is ANDed with the next span data
sent from the rasterizer and subsequently used to read and/or write a span of
data.

Texture Read Registers

The TextureReadMode register controls the general operation of texel reads and
has the following format:

Enable
Texture Read
0 = Disable
1 = Enable

Patch
0 = No
1 = Yes

Border
0 = No border
1 = Border present

WidthHeightDepth

Mag Filter
0 = Nearest
1 = Linear

Mip map Assist
0 = Disabled
1 = Enabled

Min Filter
0 = Nearest
1 = Linear
2 = NearestMipMapNearest
3 = NearestMipMapLinear
4 = LinearMipMapNearest
5 = LinearMipMapLinear

Texture map type
0 = 1D
1 = 2D

U Wrap
0 = Clamp
1 = Repeat
2 = Mirror

V Wrap
0 = Clamp
1 = Repeat
2 = Mirror

Reserved

Figure 0.24 TextureReadMode Register

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 105

08162431

Order
0 = Little Endian
1 = Big Endian

Number Comps
0 = 1
1 = 2
2 = 3
3 = 4

Format

Color Order
0 = BGR
1 = RGB

Output Format
0 = Texel
1 = Color
2 = BitMask

Mirror BitMask
0 = No Mirror
1 = Mirror

Invert BitMask
0 = No Invert
1 = Invert

ByteSwap BitMask
0 = No Byte Swap
1 = Byte Swap

Reserved

Figure 0.25 TextureFormat Register

Other registers in the texture read unit:
Register Data Field Description
TexelCoordU 20 ls bits store

coordinate
Only used if host needs to provide
a texture coordinate

TexelCoordV 20 ls bits store
coordinate

Only used if host needs to provide
a texture coordinate

TextureBaseAddress 29 bit address Lower 5 bits specify address within
a word

TextureBaseAddressLR 29 bit address Lower resolution map address
when mip map assistance is
enabled. Lower 5 bits specify
address within a word.

BorderColor 32 bit color format.
Red in lower byte

Only relevant when filter
operation is linear

TexelLUT[16] 32 bit texel/color
format. Red in lower
byte

Relevant for 1, 2 & 4 bit texels

TexelCacheControl Bit0:
 0=No invalidate
 1= Invalidate cache
Bit 1:
 0=Disable cache
 1=Enable cache

Allows software control of the
texture cache operation

Table 0.11 Other Texture Read Registers

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs106

5.7.3 Texture Color Generation

The final phase of the texturing process combines the incoming fragment's color
(generated in the color DDA unit) with the texture color value generated from the
texture read phase. The function used to combine these two colors is referred to
as the texture application mode. The available options are split into two types -
OpenGL and QuickDraw3D. The OpenGL options are one of Decal, Blend or
Modulate. The QuickDraw3D options are any combination of Decal, Modulate or
Highlight.

OpenGL Application Modes

Once the texture value, R, has been calculated it is used in one of three ways:
Modulate, Decal, or Blend. The vector equations for these three options are:

Modulate Crgba = Rrgba * Frgba

Decal Crgb = Lerp Frgb , Rrgb, Ra()
C

a = F
a

Blend Crgb = Lerp Frgb , Krgb , Rrgb()
C

a = F
a * R

a

Where:
R = Texture color
F = Fragment color
K = Texture Environment color
C = Final color
Lerp(A, B, α) linearly interpolates between A and B using α as the

interpolation coefficient:
() ()Lerp A B A B, , = − ∗ + ∗1

and the subscripts identify individual color components.

Apple Texture Modes

These texture application modes support the QuickDraw3D API.

Once the texture value, R, has been calculated it is used in the following ways (any
combination of these operations are allowed and they are done in the order given).

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 107

Type Application
Mode

Equation

Decal bit 0 If enabled

 Rrgb = Ra Rrgb + 1 − Ra()Frgb

 Ra = Fa

else

 Rrgb = Rrgb

 Ra = Ra Fa

Modulate bit 1 Rrgb = Rrgb * Kd

Ra = Ra

Highlight bit 2 Rrgb = Rrgb + Ks

Ra = Ra

Where:
R = Texture color
F = Fragment color
Kd = interpolated diffuse color
Ks = interpolated specular color

and the subscripts identify individual color components.

The Ks and Kd values are taken from the Ks and Kd DDA units respectively.
The 6 registers: KsStart, dKsdx, dKsdyDom, KdStart, dKddx and dKddyDom
hold the start, dx and dyDom parameters for Ks and Kd. The format is 2's
complement 2.22 fixed point format with an effective range of ±1.999. The values
of Ks and Kd at each vertex are used to calculate the gradient values in much the
same way as the color gradients, when Gouraud shading.

The parameters to control the two DDA units are loaded into the red, green and
blue values (there is no alpha value) and are held as 1.8 unsigned fixed point
numbers so values greater than 1.0 can be represented.

The final value R is the color used in subsequent color calculations

This style of texture application is used when the TextureType field in the
TextureColorMode register is Apple.

Compatibility with GLINT 300SX texturing

The following texture registers still exist for backward compatibility: Texel[0...7]
and TextureFilter but are not needed when GLINT 500TX texturing capabilities
are being used. Existing code that implements texturing for the GLINT 300SX
will operate similarly on the GLINT 500TX provided that texel reads and texture
address generation are disabled (by clearing the bit0 of the TextureReadMode and
TextureAddressMode registers respectively).

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs108

Texture Color Registers

The application of texture is qualified by the TextureEnable bit in the Render
command register. The following registers control the application of textures.

08162431

Enable Texture
0 = Disable
1 = Enable

TextureType
0 = OpenGL
1 = Apple

Application
Mode

KdDDA
0 = Disable
1 = Enable

KsDDA
0 = Disable
1 = Enable

Figure 0.26 TextureColorMode Register

Register Data Field Description
TextureEnvColor 32 bit RGBA format, R in least

significant byte
standard internal color
format, see Figure 0.17

KsStart 24 bit 2's comp fix pt Ks start value
dKsdx 24 bit 2's comp fix pt Ks derivative unit X
dKsdyDom 24 bit 2's comp fix pt Ks derivative unit Y,

dominant edge
KdStart 24 bit 2's comp fix pt Kd start value
dKddx 24 bit 2's comp fix pt Kd derivative unit X
dKddyDom 24 bit 2's comp fix pt Kd derivative unit Y,

dominant edge

Table 0.12 Other Texture Color Registers

5.7.4 Downloading Texture Maps

Texture maps are downloaded into the localbuffer by simply writing the data to
the TextureData register (ideally using the on-chip DMA controller). In this
mode of operation the peak download rate is 50M words per second 1. The bypass
path to the localbuffer can also be used but this will be much slower.

Texels which are less than 32 bits in size will need to be packed into a 32 bit word
before they are downloaded and the packing must be compatible with the way the
texels will subsequently be read. Note that the presence of a border in the texture
map will complicate the packing as some 32 bit words will now contain texels
from adjacent rows.

Texture maps are always stored linearly in memory.

1Other system factors such as memory speed, PCI clock frequency, etc. will reduce the system download speed.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 109

The base address of the texture map is specified in the LBWindowBase register
so it will need to be restored after texture download is complete. The texel word to
write to is specified by the TextureDownloadOffset . This register auto
increments after every texture word is written to the localbuffer, so generally is
zeroed at the start of the download, and ignored thereafter. Where the
TextureDownloadOffset register is useful is if the texture map is downloaded in
strips, maybe due to the size of the DMA buffer being smaller than the texture
map, or for context switching reasons. At the start of each strip the
TextureDownloadOffset register is loaded with the offset value for the start of
this strip. The offset is 24 bits in size. The LBWindowBase register always gives
the base address of the texture map and should never be used to give the address
of a strip (other than the first one) otherwise any address patching will not work
properly.

If the Patch bit in the LBReadMode register is set, the texture map address is
modified to be compatible with the patching used when reading the texture maps.
A patch is always 16 x 16 words, or 16 * (6 - d) by 16 texels where d is the number
of bits in a texel expressed as a power of 2. To form the correct address the
Localbuffer Unit needs to know the width of the texture map and this is encoded
in the PatchCode (in the LBReadMode register) as follows:

width in words Patch code
32 0
64 1

128 2
256 3
512 4
1024 5
2048 6

Two notes on patching:

1. The patch mode is only useful when the width of the map exceeds 16 words.

2. The patch mode works best when the height of the map is greater than 16
texels. For maps which are less than this in height a portion of the patch will
not be used so the texel data will be spread out in memory. Consider a 1K
word x 4 texture map. This will occupy a quarter of the patch memory so 16K
words need to be set aside for 4K of texels. Moving between rows will occur
without page breaks, where as in the non patch case it would incur a page
break. It is possible to interleave 4 such maps so getting the benefit of less page
breaks without the cost of the additional memory.

In summary the only registers which need to be set up for a texture download
operation are:

• LBWindowBase

• TextureDownloadOffset

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs110

• LBReadMode (PatchEnable and PatchCode fields only).
There is a danger that a texture mapped primitive immediately following a texture
download may start to read texel data still waiting to be written (texture units
before localbuffer units), or conversely a download may overwrite texel data in the
process of being read (localbuffer units before texture units). If there is any
chance this situation might arise then the WaitForCompletion command can be
used to prevent a rendering action from starting until all the fragments associated
with the previous render action have been written to memory. This command is
conceptually similar to the Sync command but the host does not need to read
from the output FIFO. There is no data field required with the
WaitForCompletion command.

The texture download mechanism outlined defines what is needed. However the
semantics of texture downloading in OpenGL allows for all the fragment
formatting operations to be available when downloading images. The normal case
will be a straight download with no fragment processing. When this is not so the
texture map will need to be processed, maybe into off-screen framebuffer, before
loading into the localbuffer as described above.

5.7.5 Texture Order

Any texture operations will cause a loss in performance over the same non-
textured rendering, so it is a good idea only to texture those pixels which pass all
the depth, stencil and GID tests. OpenGL defines the order in which operations
are to be performed on fragments as texture, alpha test, stencil and then depth. It
is very likely that in a typical scene many textured fragments will get rejected by
the depth test, say, which isn't the most effective use of the texturing capacity. If
the alpha test is disabled (or cannot reject fragments) then OpenGL compatible
semantics are still maintained if the order is rearranged to be stencil, depth, texture
and then alpha test.

The GLINT 500TX has a pipeline which can be re-configured into either of the
two orders (TextureDepth or DepthTexture) by writing to the RouterMode
register. Changing the pipeline order is self synchronizing so the user does not
need to wait for the pipeline to empty first.

5.7.6 Texture Download Example

This example shows the state preparation needed to download a texture map in a
single block from host memory into the localbuffer with patching enabled .

// Texture Download with patching enabled
lbReadMode.Patch = GLINT_TRUE
lbReadMode.PatchCode = widthLog2 + depthLog2 - 10
LBReadMode(lbReadMode)

LBWindowBase(LocalBufferTextureBaseAddress)

TextureDownloadOffset(0)

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 111

// have the texture cache enabled but invalidate
the
// cache
TextureCacheControl
(GLINT_TEXTURE_CACHE_CONTROL_ENABLE|
GLINT_TEXTURE_CACHE_CONTROL_INVALIDATE)

// ensure wait for any outstanding texture reads to
// finish
WaitForCompletion()

// loop through texture data in 32bit steps
for (i=0 ; i< cDWORDS ; i++)

TextureData(textureData)

// ensure wait for outstanding texture writes to
// finish
WaitForCompletion()

5.7.7 Texture Mapping Example

This example shows how to prepare GLINT 500TX state render a textured
triangle primitive. It assumes the texture has been downloaded using the approach
in section §0. This example describes the usual case where the texture filter
function (nearest or linear) does not vary across the primitive. In this case there is
no involvement required from the host per pixel.

// Prepare the texture address unit
textureAddressMode.EnableUnit = GLINT_ENABLE
textureAddressMode.SWrap = GLINT_REPEAT
textureAddressMode.TWrap = GLINT_CLAMP
textureAddressMode.Operation = GLINT_ENABLE // 3D
mode
TextureAddressMode(textureAddressMode)

// Prepare the texture read unit
textureReadMode.EnableUnit = GLINT_ENABLE
textureReadMode.Width = widthLog2
textureReadMode.Height = heightLog2
textureReadMode.Depth = depthLog2
textureReadMode.Patch = GLINT_TRUE
textureReadMode.MagFilter = GLINT_NEAREST
textureReadMode.UWrap = GLINT_REPEAT
textureReadMode.VWrap = GLINT_CLAMP
textureReadMode.TextureType = GLINT_ENABLE // 2D
type
textureReadMode.MipmapAssist = GLINT_DISABLE
TextureReadMode(textureReadMode)

// Prepare the texture format unit

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs112

textureFormat.Data = 0 // set all fields to
0
textureFormat.NumberComps = GLINT_4_COMPONENTS
textureFormat.OutputFormat = GLINT_TEXEL

// Enable the texture application mode
textureColorMode.EnableTexture = GLINT_TRUE
textureColorMode.ApplicationMode = GLINT_DECAL
TextureColorMode(textureColorMode)

// Point at the defined texture in localbuffer
TextureBaseAddress(LocalBufferTextureBaseAddress <<
5)

// Set-up to render into the framebuffer
// Not shown.
// Normalise S, T, Q values from all 3 vertices
// Not shown.
// Calculate the S, T, Q deltas
// Not shown.
// Set-up the S, T, Q delta values
SStart()
dSdx()
dSdyDom()
TStart()
dTdx()
dTdyDom()
QStart()
dQdx()
dQdyDom()

// Render triangle
// rasterization deltas not shown
render.PrimitiveType = GLINT_TRAPEZOID_PRIMITIVE
render.TextureEnable = GLINT_TRUE
Render(render)

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 113

5.8 Fog Unit
The fog unit is used to blend the incoming fragment's color (generated by the
color DDA unit, and potentially modified by the texture unit) with a predefined
fog color. Fogging can be used to simulate atmospheric fogging, and also to depth
cue images.

Fog application has two stages: derivation of the fog index for a fragment; and the
application of the fogging effect. The fog index is a value which is interpolated
over the primitive using a DDA in the same way color and depth are interpolated.
The fogging effect is applied to each fragment using one of the equations
described below.

The GLINT 500TX performs the fog calculations in parallel to the texture
filtering and application so (unlike the GLINT 300SX) there is no degradation in
performance when both fog and texture are enabled.

Note that although the fog values are linearly interpolated over a primitive the fog
values can be calculated on the host using a linear fog function (typically for simple
fog effects and depth cueing) or a more complex function to model atmospheric
attenuation. This would typically be an exponential function.

5.8.1 Fog Index Calculation - The Fog DDA

The fog DDA is used to interpolate the fog index (f) across a primitive. The
mechanics are similar to those of the other DDA units, as the diagram below
illustrates:

dF dy D om dF dX

S ubordinate Edg es

D ominant E dg e

Figure 0.27 Fog Interpolation Over A Triangle

where:
dFdX = Fog gradient in the X direction.
dFdyDom = Fog gradient along the dominant edge of a primitive.

Note that for fogged lines the dFdx delta is not required.

The fog index is specified as a 32bit fixed point value. The format is 2's
complement with 10 bits integer and 22 bits fraction.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs114

08162431

Integer Fraction

Figure 0.28 Fog Interpolant Fixed Point Format

The DDA has an internal range of approximately +511 to -512, in some cases
primitives may exceed these bounds. This problem typically occurs for very large
polygons which span the whole depth of a scene. The correct solution is to
tessellate the polygon until polygons lie within the acceptable range, however, the
visual effect is frequently negligible and can often be ignored.

The fog DDA calculates a fog index value which is clamped to lie in the range 0.0
to 1.0 before it is used in the fogging equations described below.

5.8.2 RGBA Fogging Equation

Fogging is applied differently depending on the color mode. For RGBA mode the
fogging equation is:

C = fCi + (1-f)Cf

where:
C = outgoing fragment color
Cf = fog color
Ci = incoming fragment color
f = fog index

The equation is applied to the color components, red, green and blue; alpha is not
modified. The diagram below shows how the fogging would typically affect
fragments. Initially no fogging occurs, f ≥ 1.0, then a region of linear combination
of the fragment color and fog color occurs 0.0 < f < 1.0, followed by a region of
constant fog color, f ≤ 0.0.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 115

Fragment Color Linear Fogging Range Fogged Color

-512

Fragment Color

+511

0

1.0

C = Ci

C = f Ci +(1-f) Cf

C = Cf

Increasing Screen Depth

Fog Index (f)

Figure 0.29 RGBA Fogging

5.8.3 CI Fogging Equation

For color index mode the equation is:
I = Ii + (1-f)If

where:
I = outgoing fragment color index
Ii = incoming fragment color index
f = fog index
If = fog color index

5.8.4 Registers

The FogMode register is used to enable and disable fogging (qualified by the fog
application bit in the Render command register).

08162431

Enable Fog
0 = Disable
1 = Enable

Color Mode
0 = RGBA
1 = CI

Figure 0.30 FogMode Register

Additional fog registers are, FogColor, which holds the fog color in the standard

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs116

color format. FStart, dFdx & dFdyDom which control the fog DDA and are
formatted in 2's complement 10.22 fixed point format as described above.

5.8.5 Fog Example

A Gouraud shaded, fogged RGBA trapezoid, with the fog color set to white (see
§0 for details of how to calculate color and fog delta values).

// Enable color DDA unit in Gouraud shading mode
colorDDAMode.UnitEnable = GLINT_ENABLE
colorDDAMode.Shade = GLINT_GOURAUD_SHADE_MODE

ColorDDAMode(colorDDAMode)

// Enable the Fog unit
fogMode.FogEnable = GLINT_TRUE
fogMode.ColorMode = GLINT_RGBA_MODE

FogMode(fogMode)

// Set the fog color to white
FogColor(0xFFFFFFFF)

// Load the color start values and deltas for
// dominant edge and the body of the trapezoid

RStart() // Set-up the red component start value
dRdX() // Set-up the red component increments
dRdYDom()
GStart() // Set-up the green component start value
dGdX() // Set-up the green component increments
dGdYDom()
BStart() // Set-up the blue component start value
dBdX() // Set-up the blue component increments
dBYDom()

// Load the start value and delta for dominant edge
// and the body of the trapezoid
// Note that the fog deltas are calculated in the
// same way as the color deltas

FStart() // Set-up the fog component start value
dFdX() // Set-up the fog component increments
dFdYDom()

// When issuing a Render command the FogEnable bit
// should be set in addition to the fog unit being
// enabled:
// render.FogEnable = GLINT_TRUE

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 117

5.9

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs118

Antialias Application Unit
Antialias application controls the combining of the coverage value generated by
the rasterizer with the color generated in the color DDA units. The application
depends on the color mode, either RGBA or Color Index (CI).

5.9.1 Antialias Application

When antialiasing is enabled this unit is used to combine the coverage value
calculated for each fragment with the fragment's alpha value. In RGBA mode the
alpha value is multiplied by the coverage value calculated in the rasterizer (its range
is 0% to 100%). The RGB values remain unchanged and these are modified later
in the Alpha Blend unit which must be set up appropriately. In CI mode the
coverage value is placed in the lower 4 bits of the color field. The Color Look Up
Table is assumed to be set up such that each color has 16 intensities associated
with it, one per coverage entry.

5.9.2 Polygon Antialiasing

A number of issues should be considered when using GLINT to render antialiased
polygons. Depth buffering cannot be used with GLINT antialiasing. This is
because the order the fragments are combined in is critical in producing the
correct final color. Polygons must therefore be depth sorted, and rendered front
to back, using the alpha blend modes: SourceAlphaSaturate for the source blend
function and One for the destination blend function. In this way the alpha
component of a fragment represents the percentage pixel coverage, and the blend
function accumulates coverage until the value in the alpha buffer equals one, at
which point no further contributions can made to a pixel.

Although this technique works well in many cases, it is an approximation.
Consider the case below which shows three polygons of equal depth which
intersect a single pixel. In this case there would ideally be a contribution from each
of the polygons. However, if the rendering order is polygon A followed by
polygon B, each of which contributes approximately 50% pixel coverage, then
polygon C will make no contribution to the pixel as the alpha value is 'saturated'
(50%+50%=100%).

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 119

Pol ygon A

Pol ygon B Pi xel

Pol ygon C

Figure 0.31 Polygon Antialiasing

For the antialiasing of general scenes, with no restrictions on rendering order, the
accumulation buffer is the preferred choice. This is indirectly supported by
GLINT via image uploading and downloading, with the accumulation buffer
residing on the host.

When antialiasing, interpolated parameters which are sampled within a fragment
(color, fog and texture), will sometimes be unrepresentative of a continuous
sampling of a surface, and care should be taken when rendering smooth shaded
antialiased primitives. This problem does not occur in aliased rendering, as the
sample point is consistently at the center of a pixel.

See The OpenGL Programming Guide for more details of antialiasing.

5.9.3 Registers

The AntialiasMode register controls the unit:

08162431

Color mode
0 = RGBA
1 = CI

Antialias Enable
0 = Disabled
1 = Enabled

Figure 0.32 AntialiasMode Register

For the coverage application to take place the enable in the AntialiasMode register
must be qualified by the CoverageEnable bit in the Render command register.

5.9.4 Antialias Example

Enable antialiasing for a RGBA primitive:

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs120

// Set AA application for RGBA primitive
antialiasMode.AntialiasEnable = GLINT_TRUE
antialiasMode.ColorMode = GLINT_RGBA

AntialiasMode(antialiasMode)

// Set the blend mode to an appropriate value if
// blending is required. Not shown.

// When issuing a Render command the CoverageEnable
// bit should be set in addition to the antialias
// unit being enabled:
// render.CoverageEnable = GLINT_TRUE

5.10 Alpha Test Unit
The alpha test compares a fragment's alpha value with a reference value. Alpha
testing is not available in color index (CI) mode.

5.10.1 Alpha Test

The alpha test conditionally rejects a fragment based on the comparison between a
reference alpha value and one associated with the fragment, the available tests are:

Mode Comparison Function Mode Comparison Function
0 Never 4 Greater
1 Less 5 Not Equal
2 Equal 6 Greater Than or Equal
3 Less Than or Equal 7 Always

Table 0.13 Alpha Test Comparison Tests

The sense of the test is such that if the comparison mode is set to Less and the
reference value is set to 0x80, then fragments with alpha values between 0x0 and
0x7F will pass the test and fragments with alpha values between 0x80 and 0xFF
will fail the test and be rejected.

5.10.2 Registers

The AlphaTestMode register controls the alpha test:

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 121

08162431

reference cmp

Enable unit
0 = Disable
1 = Enable

See Table
5.9

Figure 0.33 AlphaTestMode Register

5.10.3 Alpha Test Example

Set the alpha test mode to be LESS and the reference value to be 0x80:
// Enable unit and set modes
alphaMode.UnitEnable = GLINT_ENABLE
alphaMode.Compare = GLINT_ALPHA_COMPARE_MODE_LESS
alphaMode.Reference = 0x80
AlphaMode(alphaMode) // Load register
// Render primitives

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs122

5.11 Localbuffer Read/Write Unit
The localbuffer holds the Graphic ID, FrameCount, Stencil and Depth data
associated with a fragment. The localbuffer read/write unit controls the operation
of GID testing, depth testing and stencil testing.

5.11.1 Localbuffer Read

The LBReadMode register can be configured to make 0, 1 or 2 reads of the
localbuffer. The following are the most common modes of access to the
localbuffer:

• Normal rendering without depth, stenc il or GID testing. This
requires no localbuffer reads or writes.

• Normal rendering without depth or stencil testing and with GID
testing. This requires a localbuffer read to get the GID from the
localbuffer.

• Normal rendering with depth and/or stencil testing required which
conditionally requires the localbuffer to be updated. This requires
localbuffer reads and writes to be enabled.

• Copy operations. Operations which copy all or part of the
localbuffer with or without GID testing. This requires reads and
writes enabled.

• Image upload/download operations. Operations which download
depth or stencil information to the localbuffer or read depth,
stencil fast clear or GID from the localbuffer.

The address calculation implements the following equations, it applies to reads and
writes:

Bottom left origin -
Destination address = LBWindowBase - Y/S * W + X

Source address = LBWindowBase - Y/S * W + X +
LBSourceOffset

Top left origin -
Destination address = LBWindowBase + Y/S * W + X

Source address = LBWindowBase + Y/S * W + X +
LBSourceOffset

where:
Destination
address

is the address any write will be made to and any destination
read will be made from.

Source address is the address a source read will be made from.
X is the pixel's X coordinate.
Y is the pixel's Y coordinate.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 123

S is the Scanline interval for multi-GLINT 500TX systems
LBWindowBase holds the base address in the localbuffer of the current

window.
LBSourceOffset is normally zero except during a copy operation where data

is read from one address and written to another address.
The offset from destination to source is held in the
LBSourceOffset register.

W is the screen width. Only a subset of widths are supported
and these are encoded into the PP0, PP1 and PP2 fields in
the LBReadMode register. See the table in Appendix C for
more details.

Note:Note: Turning on Patch addressing introduces additional complexity into the address
calculation which is beyond the scope of this manual. Localbuffer bypass accesses are
not recommended when Patch mode addressing is enabled.

The localbuffer can be read in three formats: LBDefault, LBStencil or LBDepth.
These tell GLINT which areas of the localbuffer is required. LBDefault is used for
all copy and rendering operations, LBStencil and LBDepth are used for image
upload of the Stencil and Depth planes 1. The table below summarizes the
common rendering operations and the read modes required for them:

ReadSource ReadDestination Writes Data Type Rendering Operation
Disabled Disabled Disabled - Rendering with no GID, Depth or

Stencil enabled.
Disabled Enabled Disabled LBDefault Rendering with no Stencil or depth

tests enabled, but with GID testing
enabled

Disabled Enabled Enabled LBStencil
LBDepth

Image download. GID testing
optional.

Disabled Enabled Disabled LBStencil
LBDepth

Image upload. GID testing optional.

Disabled Enabled Enabled LBDefault Rendering with depth and/or stencil
updates enabled. GID testing
optional.

Enabled Enabled Enabled LBDefault Copy operations with GID testing.
Enabled Disabled Enabled LBDefault Copy operations with no GID

testing.

Table 0.14 Localbuffer Read/Write Modes.

1Note that these fields are read independently because the width of the localbuffer is greater than the width of
the host data bus.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs124

5.11.2 Localbuffer Write

Writes to the localbuffer must be enabled to allow any update of the localbuffer to
take place. The LBWriteMode register has two data fields, EnableWrite controls
the buffer updating and UpLoadData is used for reading back depth and stencil
values and for picking.

5.11.3 Localbuffer Data Formats

The four data fields supported in the localbuffer and their allowed lengths and
positions are shown in the following table:

Field Lengths Start positions
Depth 16, 24, 32 0
Stencil 0, 4, 8 16, 20, 24, 28, 32
FrameCount 0, 4, 8 16, 20, 24, 28, 32, 36, 40
GID 0, 4 16, 20, 24, 28, 32, 36, 40, 44, 48

Table 0.15 Localbuffer Configurations

In addition there is a compact mode for a 32bit wide localbuffer where depth is
24bits, stencil is 1bit, FrameCount is 4bits, and GID is 3bits.

The LBReadFormat and LBWriteFormat registers must be configured to the
appropriate values, see Figure 0.34. The format can be different for different
windows.

Note:Note: The LBReadFormat and LBWriteFormat registers should not be written to
while there are pending reads to the localbuffer. To avoid this a write to these
registers should normally be preceded by a WaitForCompletion command.

5.11.4 Registers

The LBReadMode register is as shown below:

08162431

reserved

Partial product
selection

PP0PP1PP2reserved

Read Source enable
Read Destination enable

Data Type

Window Origin

Patch

Scanline Interval

Patch Code

Figure 0.34 LBReadMode Register

The Partial Product fields PP0, PP1, and PP2 define the width of the localbuffer.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 125

They are described in the Hardware Data Structures chapter.

ReadSourceEnable and ReadDestinationEnable control localbuffer reads of the
destination address and source address respectively. DataType controls the format
of localbuffer data, and WindowOrigin specifies if the window origin is Top Left
or Bottom Left.

When the Patch bit is set then Patch mode addressing is enabled. This typically
results in more efficient memory bandwidth utilization in the localbuffer, as it
minimizes the number of page breaks generated when rendering a primitive, and
so should be viewed as the normal default case. One case where this mode should
not be enabled is when a datastructure needs to be accessed through the
localbuffer bypass.

The ScanlineInterval is used in multi-GLINT 500TX systems. See chapter 7. For
more details.

The PatchCode controls the address generation for texture mapping . See section
5.7.4 for further details.

08162431

reserved

Write Enable
0 = Writes disabled
1 = Writes enabled

UpLoadData
0 = None
1 = LBDepth
2 = LBStencil

Figure 0.35 LBWriteMode Register

The localbuffer format must be specified for both reads and writes using the
LBReadFormat and LBWriteFormat registers. Normally these registers are set to
identical values. It may be useful to set them to different values when, say, copying
between two windows using different depth widths. In all cases care should be
taken to ensure that the field widths and positions are such that the fields do not
overlap.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs126

08162431

reserved

Depth Width

FrameCount Width
FrameCount Position

GID Width
GID Position

Compact32

Stencil Width

Stencil
Position

Figure 0.36 LBReadFormat / LBWriteFormat Register Layout

LBWriteMode is a single bit register. When the least significant bit is set, writes to
the localbuffer are enabled.

LBSourceOffset holds a 24 bit 2's complement value used in copy operations.

LBWindowBase updates the base address of the localbuffer.

5.11.5 LocalBuffer Example

The following is an example of a rendering operation with localbuffer read and
write. GLINT is configured with a 32 bit localbuffer such that 24 bits are used for
depth, 4 bits for stencil and 4 bits for fast clear with a screen size of 800x600.

// Set the localbuffer read and write formats to be
// 24bit depth, 4 stencil and 4 fast clear.

lbReadFormat.DepthWidth = 1 // 24 bit
lbReadFormat.StencilWidth = 1 // 4 bit
lbReadFormat.StencilPosition = 2 // bit 24
lbReadFormat.FrameCountWidth = 1 // 4 bit
lbReadFormat.FrameCountPosition = 3 // bit 28
lbReadFormat.GIDWidth = 0 // No GID
planes
lbReadFormat.GIDPosition = 0
lbReadFormat.Compact32 = GLINT_FALSE

LBReadFormat(lbReadFormat) // Load read format
LBWriteFormat(lbReadFormat) // Write is same read

// Set the localbuffer write mode
LBWriteMode (GLINT_ENABLE)

// Set the localbuffer read mode

// Partial products for 800 : 32 + 256 + 512

lbReadMode.PP0 = 1 // 32 (<< 5)
lbReadMode.PP1 = 4 // 256 (<< 8)

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 127

lbReadMode.PP2 = 5 // 512 (<< 9)

lbReadMode.ReadSource = GLINT_DISABLE
lbReadMode.ReadDestination = GLINT_ENABLE
lbReadMode.FastClearEnable = GLINT_FALSE
lbReadMode.DataType = GLINT_LBDEFAULT
lbReadMode.WindowOrigin = as appropriate
lbReadMode.Patch = GLINT_FALSE
lbReadMode.ScanlineInterleave = 0
lbReadMode.PatchCode = 0
LBReadMode(lbReadMode)

// Now ready to render with localbuffer read and
// write suitable for stencil and depth buffering
// operations.

5.12

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs128

Pixel Ownership Test Unit
Any fragment generated by the rasterizer may undergo a pixel ownership test. This
test establishes the current fragment's write permission to the localbuffer and
framebuffer.

5.12.1 Pixel Ownership Test

The ownership of a pixel is established by testing the GID of the current window
against the GID of a fragment's destination in the GID buffer. If the test passes,
then a write can take place, otherwise the write is discarded. The sense of the test
can be set to one of: always pass, always fail, pass if equal, or pass if not equal. Pass
if equal is the normal mode. In GLINT the GID planes, if present, are 4 bits deep
allowing 16 possible Graphic ID's. The current GID is established by setting the
Window register.

If the unit is disabled fragments pass through undisturbed.

5.12.2 Register

Pixel ownership is controlled by the Window register:

08162431

reserved

Unit Enable

LB Update
Source

FrameCount GID

Stencil FCPDepth FCP Compare Mode

Force
LB Update

Override
Write Filtering

Figure 0.37 Window Register

The CompareMode field will generally be set to 'Pass if Equal' for GID testing,
with the current GID in the appropriate field.

The ForceLBUpdate bit is used to allow all the fields in the localbuffer to be
updated simultaneously, ForceLBUpdate overrides all GID, stencil and Depth
testing.

DepthFCP and StencilFCP bits are used to control the fast clearing of the stencil
and depth buffers. FrameCount is the frame counter value for current frame. This
is described in more detail in section § 0.

LBUpdate source is used in conjunction with the ForceLBUpdate bit to select
whether the source data comes from: the localbuffer, or values held in local
registers (Depth, Window, Stencil). The combination of LBUpdateSource being
set to LBSourceData, and the force LBUpdate bit being enabled is particularly
useful when copying a window from one location on the screen to another. The
combination of LBUpdateSource being set to Registers and the force LBUpdate

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 129

bit being enabled is particularly useful for initializing the contents of the various
localbuffer fields in a window.

Normally GLINT detects the case where the data to be written to the localbuffer
is the same as the data read from the localbuffer, and avoids performing the write.
Setting the OverrideWriteFiltering bit prevents these writes from being filtered
out. This is of value when the localbuffer read format is different from the
localbuffer write format since the comparison is done on the internal data format.

5.12.3 Pixel Ownership Example

Setting the Window register for normal 3D operations with GID testing but no
fast clear planes:

// Set Window modes.

window.UnitEnable = GLINT_ENABLE
window.GID = as appropriate
window.CompareMode = GLINT_PASS_IF_EQUAL
window.LBUpdate = GLINT_NO_FORCE
window.FCS = don't care
window.StencilFCP = GLINT_DISABLE
window.DepthFCP = GLINT_DISABLE
window.OverrideWriteFiltering = GLINT_DISABLE
Window(window)

// Note: Window base in framebuffer and localbuffer
// may need updating.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs130

5.13 Stencil Test Unit
The stencil test conditionally rejects fragments based on the outcome of a
comparison between the value in the stencil buffer and a reference value. The
stencil buffer is updated according to the current stencil update mode which
depends on the result of the stencil test and the depth test.

5.13.1 Stencil Test

This test only occurs if all the preceding tests (bitmask, scissor, stipple, alpha, pixel
ownership) have passed. The stencil test is controlled by the stencil function and the
stencil operation . The stencil function controls the test between the reference stencil
value and the value held in the stencil buffer. If the test is LESS and the result is
true then the fragment value is less than the source value. The stencil operation
controls the updating of the stencil buffer, and is dependent on the result of the
stencil and depth tests.

The table below shows the stencil functions available:

Mode Comparison Function Mode Comparison Function
0 Never 4 Greater
1 Less 5 Not Equal
2 Equal 6 Greater or Equal
3 Less or Equal 7 Always

Table 0.16 Stencil Functions

If the stencil test is enabled then the stencil buffer will be updated depending on
the outcome of both the stencil and the depth tests (if the depth test is disabled the
depth result is set to pass). Refer to the tables below and the definition of the
StencilMode register in section § 0 to fully understand their relationship.

Stencil Test
Pass Fail

Depth Test Pass dppass sfail
Fail dpfail sfail

Table 0.17 Possible Update Operations for Stencil Planes

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 131

The entries dppass, dpfail and sfail are set to one of the update operations below.
Source stencil is the value in the stencil buffer:

Update Method Mode Stencil Value
Keep 0 Source stencil
Zero 1 0
Replace 2 Reference stencil
Increment 3 Clamp (Source stencil + 1) to 2 stencil width - 1
Decrement 4 Clamp (Source stencil -1) to 0
Invert 5 ~Source stencil

Table 0.18 Stencil Operations

In addition a comparison bit mask is supplied in the StencilData register. This is
used to establish which bits of the source and reference value are used in the
stencil function test. It should normally be set to exclude the top four bits when
the stencil width has been set to 4 bits in the StencilMode register.

The source stencil value can be from a number of places as controlled by a field in
the StencilMode register:

StencilSource Mode Use
Test logic 0 This is the normal mode.
Stencil register 1 This is used, for instance, in the OpenGL draw pixels function

where the host supplies the stencil values in the Stencil register.
This is used when a constant stencil value is needed, for
example, when clearing the stencil buffer when fast clear planes
are not available.

LBSourceData:
(stencil value read
from the
localbuffer)

2 This is used, for instance, in the OpenGL copy pixels function
when the stencil planes are to be copied to the destination.
The source is offset from the destination by the value in
LBSourceOffset register.

Source stencil value
read from the
localbuffer

3 This is used, for instance, in the OpenGL copy pixels function
when the stencil planes in the destination are not to be
updated. The stencil data will come either from the localbuffer
data, or the FCStencil register, depending on whether fast clear
operations are enabled.

Table 0.19 Stencil Sources

See The OpenGL Reference Manual and The OpenGL Programming Guide from Addison-
Wesley for more details of the stencil operations and examples of its use.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs132

5.13.2 Registers

Stencil test is controlled by the StencilMode register:

08162431

reserved

Unit
Enable

dpfail dppasssfail

Update Method

Unsigned Compare
Function

Stencil Source

Stencil Width

Figure 0.38 StencilMode Register

The StencilData register holds the other data associated with the test.

08162431

stencil write mask reference stencilcompare maskFCStencil

Figure 0.39 StencilData Register.

The stencil writemask is used to control which stencil planes are updated as a
result of the test. The FCStencil field holds the stencil fast clear value.

The Stencil register holds an externally sourced stencil value. It is a 32bit register
of which only the least significant 8bits are used. The unused most significant bits
should be set to zero.

The stencil unit must be enabled to update the stencil buffer. If it is disabled then
the stencil buffer will only be updated if ForceLBUpdate is set in the Window
register.

5.13.3 Stencil Example

This example sets the stencil unit to use a supplied reference value (0x80) and to
test fragments to be LESS than this value. It also sets the stencil planes update
function to be Increment if the test passes and the depth test passes (or is not
enabled), otherwise it sets the update function to Keep.

// Set the localbuffer read and write modes
// See section §0

// Set the stencil modes

stencilMode.UnitEnable = GLINT_ENABLE
stencilMode.DPPass = GLINT_STENCIL_METHOD_INCREMENT
stencilMode.DPFail = GLINT_STENCIL_METHOD_KEEP
stencilMode.SFail = GLINT_STENCIL_METHOD_KEEP

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 133

stencilMode.CompareFunction =
GLINT_STENCIL_COMPARE_LESS
stencilMode.StencilSource = GLINT_SOURCE_TEST_LOGIC
stencilMode.Width = as appropriate
StencilMode(stencilMode)

// Set the reference stencil value and set the
// compare and writemasks to 0xFF

stencilData.ReferenceStencil = 0x80
stencilData.CompareMask = 0xFF
stencilData.StencilWriteMask = as appropriate for

width of Stencil buffer
stencilData.FCStencil = don't care

StencilData(stencilData)

// Enable the depth test here if required, if not
// enabled the result of the depth test is set to
// pass.

5.14

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs134

Depth Test Unit
The depth (Z) test, if enabled, compares a fragment's depth against the
corresponding depth in the depth buffer. The result of the depth test can effect
the updating of the stencil buffer if stencil testing is enabled.

5.14.1 Depth Test

This test is only performed if all the preceding tests (bitmask, scissor, stipple,
alpha, pixel ownership, stencil) have passed. The comparison tests available are:

Mode Comparison Function Mode Comparison Function
0 Never 4 Greater
1 Less 5 Not Equal
2 Equal 6 Greater Than or Equal
3 Less Than or Equal 7 Always

Table 0.20 Depth Comparison Modes.

The test compares the fragment's depth against a source depth value. If the
compare function is LESS and the result is true then the fragment value is less
than the source value. The source value can be obtained from a number of places
as controlled by a field in the DepthMode register.

StencilSource Mode Use
Test logic 0 This is the normal mode.
Stencil register 1 This is used, for instance, in the OpenGL draw pixels function

where the host supplies the stencil values in the Stencil register.
This is used when a constant stencil value is needed, for
example, when clearing the stencil buffer when fast clear planes
are not available.

Source stencil value
read from the
localbuffer

2 This is used, for instance, in the OpenGL copy pixels function
when the stencil planes in the destination are not to be
updated. The stencil data will come either from the localbuffer
data, or the FCStencil register, depending on whether fast clear
operations are enabled.

LBSourceData:
(stencil value read
from the
localbuffer)

3 This is used, for instance, in the OpenGL copy pixels function
when the stencil planes are to be copied to the destination.
The source is offset from the destination by the value in
LBSourceOffset register.

Table 0.21 Depth Sources.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 135

When using the depth DDA for normal depth buffered rendering operations the
depth values required are similar to those required for the color values in the color
DDA unit:

Zstart = Start Z Value

dZdYDom = Increment along dominant edge.

dZdX = Increment along the scan line.

The dZdX value is not required for Z-buffered lines.

dZdy D om dZdX

S ubordinate Edg es

D ominant E dg e

ZStart

Figure 0.40 Depth Interpolation

The number format for the increment values is 2's complement fixed point
integer: 32 bits integer and 16 bits fraction. All the start, derivative and internal
data is in this format. This is mapped into the Upper and Lower registers (U and
L) as shown below:

32 bits Integer 16 bits fraction remaining bits 0

U L

Figure 0.41 Depth Derivative Format.

The depth unit must be enabled to update the depth buffer. If it is disabled then
the depth buffer will only be updated if ForceLBUpdate is set in the Window
register.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs136

5.14.2 Registers

Operation of the Depth unit is controlled by the DepthMode register:

08162431

1 = LBData

srccmp
mode

New depth source
0 = DDA

2 = Depth register
3 = LBSourceData

Write Mask
0 = no write
1 = write

Unit Enable
0 = Disable
1 = Enable

Compare mode
0 = Never
1 = Less
2 = Equals
3 = Less Equal
4 = Greater
5 = Not Equal
6 = Greater Equal
7 = Always

Figure 0.42 DepthMode Register.

The single bit writemask is used to control updating all the bits in the depth
buffer.

The FastClearDepth register holds the 32 bit fast clear depth (FCDepth) value.

The Depth register holds an externally sourced 32 bit depth value. If the depth
buffer holds less than 32bits then the user supplied depth value is right justified to
the least significant end of the register. The unused most significant bits should be
set to zero.

The DDA and other registers are shown below (note the increment values are
split into two registers):

Register Description
ZStartU Depth start value
ZStartL
dZdxU Depth derivative per unit X
dZdxL
dZdyDomU Depth derivative per unit Y, dominant edge, or

along a line.
dZdyDomL

Table 0.22 Depth Interpolation Registers.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 137

5.14.3 Depth Example

Rendering a Gouraud shaded depth buffered trapezoid.

// Set the localbuffer read and write modes
// See section §0

// Set the depth mode

depthMode.UnitEnable = GLINT_ENABLE
depthMode.WriteMask = 1
depthMode.NewDepthSource =
GLINT_NEW_DEPTH_SOURCE_DDA
depthMode.CompareMode =
GLINT_DEPTH_COMPARE_MODE_LESS

DepthMode(depthMode)

// Load the depth start values and deltas for
// dominant edge and the body of the trapezoid

ZStartU() // Load upper and lower start values
ZStartL()
dZdxU() // Load upper and lower dZdX deltas
dZdxL()
dZdyDomU()// Load upper and lower dominant edge

//deltas
dZdyDomL()

// Enable unit in Gouraud shading mode
colorDDAMode.UnitEnable = GLINT_ENABLE
colorDDAMode.Shade = GLINT_GOURAUD_SHADE_MODE

ColorDDAMode(colorDDAMode)

// Load the color start values and deltas for
// dominant edge and the body of the trapezoid

RStart() // Set-up the red component start value
dRdX() // Set-up the red component increments
dRdYDom()
GStart() // Set-up the green component start value
dGdX() // Set-up the green component increments
dGdYDom()
BStart() // Set-up the blue component start value
dBdX() // Set-up the blue component increments
dBYDom()

// Render primitive

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs138

5.15

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 139

Framebuffer Read/Write Unit
Before rendering can take place GLINT must be configured to perform the
correct framebuffer read and write operations. Framebuffer read and write modes
affect the operation of alpha blending, logic ops, writemasks, image
upload/download operations and the updating of pixels in the framebuffer.

The framebuffer read and write units are set up in different ways depending on
whether Span Operations are being used. Normally, span operations are used for
2D rendering in order to maximize memory bandwidth. Span operations allow
multiple pixels to be read and processed in parallel. The following sections discuss
the use of the framebuffer read and write units for both standard operation and
span operations.

5.15.1 Standard Framebuffer Read Operation

The FBReadMode register allows GLINT to be configured to make 0, 1 or 2
reads of the framebuffer. The following are the most common modes of access to
the framebuffer:

• Rendering operations with no logical operations, software writemasking or
alpha blending. In this case no read of the framebuffer is required and
framebuffer writes should be enabled.

• Rendering operations which use logical ops, software writemasks or alpha
blending. In these cases the destination pixel must be read from the
framebuffer and framebuffer writes must be enabled.

• Here set-up varies depending what functionality is required. If alpha blending,
logic ops or software writemasks are used the framebuffer is read twice i.e. both
the source and the destination. When alpha blending and logic ops are not
needed, and hardware writemasks are used (or when the software writemask
allows updating of all bits in a pixel) only one read is required.• Image
upload. This requires reading of the destination framebuffer pixels to be
enabled and framebuffer writes to be disabled.

• Image download. This case requires no framebuffer reads (as long as software
writemasking, alpha blending and logic ops are disabled) but writes must be
enabled.

Note that avoiding unnecessary additional reads will enhance performance.

The data read from the framebuffer may be tagged either FBDefault (data which
may be written back into the framebuffer or used in some manner to modify the
fragment color) or FBColor (data which will be uploaded to the host). Table 0.23

Framebuffer Read/Write Modes summarizes the framebuffer read/write
control for common rendering operations:

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs140

ReadSource ReadDestination Writes Read Data
Type

Rendering Operation

Disabled Disabled Enabled - Rendering with no logical operations,
software writemasks or blending.

Disabled Disabled Enabled - Image download.
Disabled Enabled Disabled FBColor Image upload.
Enabled Disabled Enabled FBDefault Image copy with hardware writemasks

and no alpha blending orlogical
operations

Disabled Enabled Enabled FBDefault Rendering using logical operations,
software writemasks or blending.

Enabled Enabled Enabled FBDefault Image copy with software writemasks,
alpha blending or logic ops.

Table 0.23 Framebuffer Read/Write Modes

5.15.2 Framebuffer Read Span Operations

As well as performing standard, single pixel at a time, read operations the
framebuffer read unit can be used to process span operations. The simplest type
of operation is where a span mask is presented to the read unit and the
ReadSource bit is enabled. This will cause the unit to read a complete span of
pixels from the framebuffer in a packed format. The data is always read as a set of
32 bit words. For example, at 8 bits per pixel, up to eight 32 bit words will be read
per span; at 16 bits per pixel up to sixteen 32 bit words will be read. In all cases, up
to 32 pixels worth of data is read per span. This allows maximum use of both
memory and core bandwidth since multiple pixels are being processed.

Since a span mask may not necessarily have all its bits set to 1 (i.e. only a subset of
pixels in the span need to be processed), it would be wasteful of memory
bandwidth to always read the complete span. For example, at the right hand edge
of a rectangle which is being copied, we want the read unit to only read up to the
rightmost pixel but not beyond. Whether a 32 bit word is read depends on the
corresponding bit values in the span mask. Since each bit in the mask represents a
pixel, either 1, 2 or 4 bits will represent a 32 bit word for the depths 32, 16 and 8
bits respectively. If the group of bits representing a 32 bit word is non-zero then
the corresponding 32 bits will be read from the framebuffer. Thus:

• at 32 bits per pixel, a single bit in the span mask corresponds to 32
bits in the framebuffer and 32 bit words will be read only at those
locations where the corresponding bit in the span mask is a 1.

• at 16 bits per pixel, 2 bits in the span mask represent 32 bits in the
framebuffer. A 32 bit word will be read only at those locations
where the corresponding 2 span bits form a non-zero value.

• at 8 bits per pixel, a 32 bit word will be read only at those locations
where the corresponding 4 span bits form a non-zero value.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 141

The number of 32bit words read from the framebuffer is thus a function of the
span mask and the number of bits per pixel, though this is not normally of interest
to the programmer. However, the number of 32bit words becomes important for
span operations where the data is downloaded from the host. For example, an
image download operation using a span operation only requires those 32 bit words
which contain required pixel data to be downloaded. Some examples of this are
given later.

5.15.3 Merge-copy Span Operations

To understand the way in which the read units works we will examine the way in
which a span operation with a logic op works. In particular we consider the case
where both ReadSource and ReadDestination bits are set in the FBReadMode
register. For example, this would be the case when copying data within the
framebuffer with an xor logic op.

To perform this operation, the framebuffer read unit must read both a source
span of data and a destination span of data. These spans must then be merged so
that the data presented to the logic op unit consists of source and destination
pairs. Since the logic op unit can combine up to 32 bits at a time, the data can be
presented in the form of packed 32 bit words (at 8 bits per pixel this means that
the logic op unit can work on 4 pixels at a time).

It would be wasteful of memory bandwidth to read 32 bits from the source
followed by 32 bits from the destination. This would result in too many VRAM
page breaks. So the read unit reads a complete source span and stores it internally
in a data area known as the Pattern RAM. Then the destination span is read. As
the destination span is read, it is merged with the saved source span data so that
the data which the logical op unit sees comprises corresponding sections of source
and destination data. The logic op unit can then combine this data and present a
series of 32 bit results to the framebuffer write unit.

The Pattern RAM is so named because it can be used for pattern filling operations
as well as a temporary store for source pixel data. This functionality is described
below.

5.15.4 PatternRamMode register

To control the operation of the Pattern RAM the GLINT 500TX introduces a
new register called the PatternRamMode. This register controls whether the
Pattern RAM is enabled and how to interpret the contents. Its layout is described
below.

The PatternEnable bit is used in conjunction with the ReadSource and
ReadDestination bits from the FBReadMode register to specify different
operations. The following table indicates the different operations that can be
specified using these 3 mode bits.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs142

PatternRam
Enable

ReadSource
Enable

ReadDestination
Enable

Operation

0 0 0 No span reads are done, nor is data sourced from
the pattern ram. This is the optimal mode for
spanfills with constant color. If a span fill with
variable color is required then the host must supply
the data by writing to the Color, FBData, or
FBSourceData registers.

0 0 1 Used for image upload or destination only logical
ops. The pattern RAM will be overwritten and left
containing indeterminate data by this operation.

0 1 0 Used for a straight blit operation, or source only
logical op. The pattern RAM will be overwritten
and left containing indeterminate data by this
operation.

X 1 1 Span reads of source and destination regions for a
ROP2 blit operation. The source span is read first
and saved in the pattern ram. The destination span
is then read and the data interleaved with data from
the pattern ram while sending it to the logical op
unit.

1 0 0 No span reads but the data is sourced from the
pattern ram for latter use in a span write with
variable color.

1 0 1 Span read but the data does not go into the pattern
ram. The destination span data is interleaved with
data from the pattern ram while sending to the
logical op unit. The contents of the pattern ram are
left intact so this can be reused without having to
load the pattern in again.

1 1 0 The source span is read and saved in the pattern
ram. No data is sent to the logical op unit, so this
mode can be used to load the pattern ram from the
framebuffer for later use as pattern data. Writes
would normally be disabled, however if the write
mode is set up for variable color then nothing will
be drawn, as no color data is provided. A write
with constant color will however go ahead if
enabled.

5.15.5 Framebuffer Address Calculations

For both the read and the write operations, an offset is added to the calculated

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 143

address. The source offset (FBSourceOffset) is used for copy operations. The
pixel offset (FBPixelOffset) can be used to allow multi-buffer updates. The offsets
should be set to zero for normal rendering. The address calculation implements
the following equations:

Bottom left origin
Dest addr = FBWindowBase - Y/S * W + X + FBPixelOffset

Srce addr = FBWindowBase - Y/S * W + X + FBPixelOffset +
FBSourceOffset

Top left origin
Dest addr = FBWindowBase + Y/S * W + X + FBPixelOffset

Srce addr = FBWindowBase + Y/S * W + X + FBPixelOffset +
FBSourceOffset

where:
Dest addr is the address in the framebuffer which is written to if

writes are enabled, and is also the address read when
ReadDestination is enabled.

Srce addr is the address in the framebuffer which is read from when
ReadSource is enabled.

X is the pixel's X coordinate,
Y is the pixel's Y coordinate,
S is the scanline interval for multi-GLINT systems
FBWindowBase holds the base address in the framebuffer of the current

window.
FBPixelOffset is normally zero except when multi-buffer writes are

needed1 when it gives a way to access pixels in alternative
buffers without changing the FBWindowBase register.
This is useful as the window system may be asynchronously
changing the window's position on the screen. It is held in
the FBPixelOffset register.

FBSourceOffset is normally zero except during a copy operation where data
is read from one address and written to another address.
The FBSourceOffset is held in the FBSourceOffset register
and is the offset from destination to source.

1OpenGL, for example, allows any combination of the Front, Back, Left and Right color buffers to be updated
'simultaneously'. In this case a scene would be rendered multiple times changing the FBPixelOffset as
appropriate. When using this mode it is important to ensure that the buffers which affect the rendering are
updated only once, for example, when rendering with depth buffering enabled, localbuffer writes should only be
enabled for the last buffer updated.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs144

W is the screen width. Only a subset of widths are supported
and these are encoded into the PP0, PP1 and PP2 fields in
the FBReadMode register. See the table in Appendix C for
more details.

The address calculations for span operations are the same as those for non-span
operations.

5.15.6 Standard Framebuffer Write

Framebuffer writes must be enabled to allow the framebuffer to be updated. A
single 1 bit flag controls this operation.

The framebuffer write unit is also used to control the operation of fast block fills,
if supported by the framebuffer.

When uploading images the UpLoadData bit can be set to allow color formatting
(which takes place in the Alpha Blend unit). See sections § 0 and §0 for more
details.

5.15.7 Span Operations and Framebuffer Write

If the SpanOperation bit in the Render command is zero then the write unit will
use the span mask as a block fill mask and will fill the 32 pixel span with the
current block color. If the SpanOperation bit is set to indicate variable color span
filling, then either the FBReadMode register must be set to allow data to be read
from the framebuffer or pattern RAM, or the host must provide the data (i.e. the
SyncOnHostData bit in the Render command must be set). Failure to meet these
conditions will NOT hang the chip but will lead to indeterminate results.

For block fills, the fill size is always 32 pixels regardless of the pixel depth or the
type of the memory fitted (for the GLINT 300SX the block size depends on the
memory configuration). The block fill color is 64 bits wide. This can be specified
using the FBBlockColor register in which case this 32 bit value is replicated by the
write unit to form 64 bits. Or the 64 bits can be explicitly specified using the
FBBlockColorL (lower 32 bits) and FBBlockColorU (upper 32 bits) registers. At
8 and 16 bits per pixel depths it is up to the host software to replicate the block
color to fill all 32 bits.

As with the standard mode of operation, in order to write data the WriteEnable
bit must be set the FBWriteMode register.

To upload span data the UpLoadData bit should be set and the WriteEnable bit
should be cleared. This allows image uploads data to be delivered to the host in a
packed form. i.e. at a pixel depth of 8 bits, 4 pixels per 32 bit word can be read
back from the output FIFO; at a depth of 16 bits, 2 pixels per 32 bit word can be
read back.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 145

5.15.8 Using the Pattern RAM

As we have seen the pattern RAM can be used as an area in which the GLINT
500TX temporarily stores data read back from the framebuffer. It can also be used
explicitly by the host software to perform pattern fills.

The Pattern RAM contains 128 bytes of storage arranged as 32 x 32 bit registers.
This is enough to store a full span of data at a depth of 32 bits per pixel. It is also
enough space to contain a full 8x8 pattern at both 8 and 16 bits per pixel. At a
depth of 32 bits per pixel, half am 8x8 pattern can be stored. It is then possible to
pattern fill a region in two passes. This data is stored in the same packed format as
span data. The PatternRamMode register contains three fields, Xmask, Yshift and
Ymask which allow the format of this data to be specified when the PatternEnable
bit is set.

The start position in the pattern ram where a spans worth of pattern data is read
from is initially determined from the Y coordinate associated with the span mask.
The start address is given by:

Yoffset = (Y << Yshift) & Ymask

where Yshift and Ymask are in the PatternRamMode register. Only the least
significant 5 bits of the Y address are of interest.

The X offset is similarly given:
Xoffset = offset & Xmask

where the offset is the bit, pair or nibble offset for 32, 16 and 8 bit pixels
respectively. The pattern ram address is then:

pattern ram addr = Yoffset + Xoffset

For an 8x8 bit pattern the values of the X and Y shift and masks are as follows:

Pixel
size

Y shift Y mask X mask Notes

8 1 0x0F 0x01 Pattern fills lower half of the
pattern ram

16 2 0x1f 0x03 Pattern fills all of ram.
32 2 0x18 0x07 Pattern ram contains even rows

of pattern first and then odd
rows on second pass.

The Yshift and mask values can be set up for different pattern sizes other than the
8x8 outlined here. The pattern must have a width of 2, 4, 8, 16 or 32, but can have
any height. Also in a multi GLINT system there can be one pattern common to
all GLINTs or the pattern can be divided up so each GLINT only gets the parts
of the pattern it needs for its scanlines.

This pattern filling technique has an advantage over the alternative method of
using the texture unit, in that 2 or 4 pixels are processed at a time whereas using

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs146

the texture method only one pixel at a time is dealt with. The pattern RAM can be
used to supply constant color by setting the PatternRamMode register to 0x1 (i.e.
the shift and mask are both set to zero), and then loading the color into the
Pattern RAM at offset 0. At Pixel depths of 8bpp and 16bpp, the color needs to
be replicated to fill all 32bits.

This is useful when performing logical ops where the source is a solid color, as it
allows all the benefits of span processing to be achieved.

Note that the pattern is always aligned to the start of a span. This has two
consequences:

• If the pattern needs to be aligned relative to some other reference
point, then the pattern must be rotated (in X and Y) to give the
correct alignment. For example if the pattern is relative to the
window origin, and a small rectangle inside the window is to be
filled to repair the window background pattern, then the pattern
must be rotated.

• Filling trapezoidal areas (as opposed to rectangular areas) will cause
the pattern to be sheared. In this case the only alternative is to use
the texture unit.

5.15.9 Frame Blank Synchronization

The SuspendUnitFrameBlank command register may be used to stall the
GLINT pipeline until the next frameblank. For double buffering, it is beneficial to
synchronize to the monitor blanking. By using this register, full screen double
buffering can be controlled through the pipeline and the host does not need to
wait for vertical frame blank itself. Instead, once the SuspendUntilFrameBlank
command register has been loaded, the host can continue to load GLINT registers
and issue commands. GLINT will continue processing these as long as they do
not involve writing to the framebuffer.

The SyncMode data field determines how the buffer swap is to be controlled.
Options are:

• wait for vertical frame blank and update external video register

• update external video register immediately

• wait for vertical frame blank then update the VTGFrameRowAddr
register immediately.

Note: This command register cannot be used in a multi-GLINT system.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 147

5.15.10 Registers

The FBReadMode register layout is as follows:

08162431

reserved

Partial product
selection

PP0PP1PP2reserved

Read Source enable
Read Destination enable

Data Type

Window OriginScanline Interval

reserved

Figure 0.43 FBReadMode Register

See the chapter on Hardware Data Structures for more details of GID, Window
Origin, and Partial Products.

The layout of the PatternRamMode register is as follows:

Figure 0.44 PatternRamMode Register

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs148

FBWindowBase holds the base address of the window in the framebuffer in 24
bit unsigned format. The FBPixelOffset and FBSourceOffset registers hold 24 bit
2's complement offsets used in copy operations and multi-buffer updates, as
described above.

The FBWriteMode controls the framebuffer write operations:

08162431

Reserved

Write Enable
0 = Writes disabled
1 = Writes ensabled

UpLoadData
0 = Disabled
1 = Enabled

reserved

Figure 0.45 FBWriteMode Register

5.15.11 Simple Image Copy Example

This example copies a rectangular region of the framebuffer, without moving any
data in the localbuffer. Pixel ownership tests are enabled. The region extends from
the origin (0,0) to (100,100) and will be shifted right by 200 pixels. The destination
rectangle is scan converted.

// First set-up the framebuffer read mode
fbReadMode.ReadSource = GLINT_ENABLE
fbReadMode.ReadDestination = GLINT_DISABLE
fbReadMode.DataType = GLINT_FBDEFAULT

FBReadMode(fbReadMode) // Update register

// Now enable framebuffer write
fbWriteMode.WriteEnable = GLINT_ENABLE
FBWriteMode(fbWriteMode) // Update register

// Offsets. No Pixel offset, source offset of 200
FBPixelOffset(0x0)
FBSourceOffset(-200)

// The localbuffer unit should be enabled to allow
// GID testing.
lbReadMode.ReadSource = GLINT_DISABLE
lbReadMode.ReadDestination = GLINT_ENABLE
lbReadMode.DataType = GLINT_LBDEFAULT
lbReadMode.WindowOrigin = as appropriate
LBReadMode(lbreadmode)

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 149

// Disable localbuffer writes
lbWriteMode.WriteEnable = GLINT_DISABLE
LBWriteMode(lbWriteMode) // Update register

// Enable GID testing.
window.UnitEnable = GLINT_TRUE
window.CompareMode = GLINT_GID_COMPARE_EQUAL
window.ForceLBUpdate = GLINT_FALSE
window.LBUpdate = don't care
window.StencilFCP = GLINT_DISABLE
window.DepthFCP = GLINT_DISABLE
Window(window)

// All the units which could remove the fragment
// must be disabled (Stipple, Alpha, Stencil,
Depth)
// except the Scissor test which is still needed
for
// screen and possibly window clipping.

// If software writemasks are to be used then they
// are set appropriately, and the framebuffer set
up
// to do extra read operation

// Disable the color DDA unit, we do not want to
// associate a color with this fragment.
colorDDAMode.UnitEnable = GLINT_FALSE
ColorDDAMode(colorDDAMode)

// Define the region we wish to copy to.
StartXDom(200<<16)
StartXSub(300<<16)
dXSub(0)
dXDom(0)
StartY(0)
dY(1<<16)
Count(100)

render.PrimitiveType = GLINT_TRAPEZOID

Render(render) // Start the rasterization

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs150

5.15.12 Span Operation Image Copy Example
This example copies a rectangular region of the framebuffer, using a span fill
operation with an xor logic op. The region extends from the origin (0,0) to
(100,100) and will be shifted right by 200 pixels. The destination rectangle is scan
converted.
Note that this is almost identical to how one would copy pixels using the standard
rasterization method. The PatternRamMode is explicitly disabled and the Render
command specifies that variable color span filling is to be used. This code will
perform an optimal copy at all pixel depths. Also, note that to turn this back into a
simple screen-to-screen blt, the ReadDestination bit would be cleared and the
logic op unit would be disabled.

// First set-up the framebuffer read mode
fbReadMode.ReadSource = GLINT_ENABLE
fbReadMode.ReadDestination = GLINT_ENABLE
fbReadMode.DataType = GLINT_FBDEFAULT

FBReadMode(fbReadMode) // Update register

// Now enable framebuffer write
fbWriteMode.WriteEnable = GLINT_ENABLE
FBWriteMode(fbWriteMode) // Update register

// Enable the logic op unit
logicop.UnitEnable = GLINT_TRUE
logicop.LogicOp = XOR
LogicOpMode(logicop)

// Disable the Pattern RAM register
patRamMode.PatternEnable = GLINT_DISABLE
PatternRamMode(patRamMode) // Update register

// Offsets. No Pixel offset, source offset of 200
FBPixelOffset(0x0)
FBSourceOffset(-200)

// Define the region we wish to copy to.
StartXDom(200<<16)
StartXSub(300<<16)
dXSub(0)
dXDom(0)
StartY(0)
dY(1<<16)
Count(100)

render.PrimitiveType = GLINT_TRAPEZOID
render.FastFillEnable = 1 // use span operation
render.SpanOperation = 1 // variable color
Render(render) // Start the rasterization

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 151

5.15.13 Span Operation Image Copy Example using Pattern RAM

This example assumes that the pixel depth has been set to 8 bits per pixel and uses
the pattern RAM to perform a pattern fill using an 8x8 pattern.

// First set-up the framebuffer read mode
fbReadMode.ReadSource = GLINT_DISABLE
fbReadMode.ReadDestination = GLINT_DISABLE
fbReadMode.DataType = GLINT_FBDEFAULT

FBReadMode(fbReadMode) // Update register

// Now enable framebuffer write
fbWriteMode.WriteEnable = GLINT_ENABLE
FBWriteMode(fbWriteMode) // Update register

// Offsets. No Pixel offset
FBPixelOffset(0x0)

// download the data for the 8x8 pattern. Assume
that // the source data is contained in a byte
array called
// Pat8.
pat = Pat8;
for (i = 0; i < 8; i++)
{

ulValue = pat[0] |
(pat[1] << 8) |
(pat[2] << 16) |
(pat[3] << 24]);

PatternRamData[i](ulValue)
pat += 4;

}

// Enable the Pattern RAM register for an 8x8
pattern
// of depth 8 bits per pixel.
patRamMode.PatternEnable = GLINT_ENABLE
patRamMode.Ymask = 0x0F
patRamMode.Yshift = 1
patRamMode.Xmask = 1
PatternRamMode(patRamMode) // Update register

// Define the region we wish to copy to.
StartXDom(200<<16)
StartXSub(300<<16)
dXSub(0)
dXDom(0)
StartY(0)

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs152

dY(1<<16)
Count(100)

render.PrimitiveType = GLINT_TRAPEZOID
render.FastFillEnable = 1 // use span operation
render.SpanOperation = 1 // variable color

Render(render) // Start the rasterization

5.15.14 Span Operation Solid Fill Example

This example uses the pattern RAM to perform a solid color fill with logicop. The
code works for all 3 color depths. Note that if a logicop is not required we could
simply clear the ReadDestination bit and disable the logic op unit, but this would
be far slower than using a constant color span fill. To use a span fill we would load
the solid color into the FBBlockColor register, and clear the SpanOperation bit in
the Render command.

// First set up the framebuffer read mode
fbReadMode.ReadSource = GLINT_DISABLE
fbReadMode.ReadDestination = GLINT_ENABLE
fbReadMode.DataType = GLINT_FBDEFAULT

FBReadMode(fbReadMode) // Update register

// Now enable framebuffer write
fbWriteMode.WriteEnable = GLINT_ENABLE
FBWriteMode(fbWriteMode) // Update register

// Offsets. No Pixel offset
FBPixelOffset(0x0)

// Enable the logic op unit for xor
logicop.UnitEnable = GLINT_TRUE
logicop.LogicOp = XOR
LogicOpMode(logicop)

// Enable the Pattern RAM register for a solid
color.
// i.e. Yshift and masks are set to zero.
patRamMode = 1;
PatternRamMode(patRamMode) // Update register

// replicate the color if necessary and load into
// entry zero of the Pattern RAM.
ulColor = SolidColor; // start at 32 bit depth
if (PixelDepth < 32)
{

ulColor |= ulColor << 16; // 16 bit depth
if (PixelDepth < 16)

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 153

ulColor |= ulColor << 8; // 8 bit depth
}
PatternRamData0(ulColor)

// Define the region we wish to write to
StartXDom(200<<16)
StartXSub(300<<16)
dXSub(0)
dXDom(0)
StartY(0)
dY(1<<16)
Count(100)

render.PrimitiveType = GLINT_TRAPEZOID
render.FastFillEnable = 1 // use span operation
render.SpanOperation = 1 // variable color

Render(render) // Start the rasterization

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs154

5.16 Alpha Blend Unit
Alpha blending combines a fragment's color with those of the corresponding pixel
in the framebuffer. Blending is supported in RGBA and BGRA modes only.

5.16.1 OpenGL Alpha Blending

The alpha blend unit, combines the fragment's color value with that stored in the
framebuffer, using the blend equation:

Co = CsS + CdD

where: Co is the output color, C s is the source color (calculated internally) and C d
is the destination color read from the framebuffer.

The source blending function, S, and the destination blending function, D, are
defined in the following tables. These tables assume a number range of 0.0 to 1.0.

Mode Value R G B A
0 Zero 0 0 0 0
1 One 1 1 1 1
2 Destination Color Rd Gd Bd Ad

3 One Minus Destination Color 1 - Rd 1 - Gd 1 - Bd 1 - Ad

4 Source Alpha As As As As

5 One Minus Source Alpha * 1 - As 1 - As 1 - As 1 - As

6 Destination Alpha Ad Ad Ad Ad

7 One Minus Destination Alpha 1 - Ad 1 - Ad 1 - Ad 1 - Ad

8 Source Alpha Saturate min of
(As, 1 - Ad)

min of
(As, 1 - Ad)

min of
(As, 1 - Ad)

1

Table 0.24 Source Blending Functions

Mode Value R G B A
0 Zero 0 0 0 0
1 One 1 1 1 1
2 Source Color Rs Gs Bs As

3 One Minus Source Color 1 - Rs 1 - Gs 1 - Bs 1 - As

4 Source Alpha As As As As

5 One Minus Source Alpha 1 - As 1 - As 1 - As 1 - As

6 Destination Alpha Ad Ad Ad Ad

7 One Minus Destination Alpha 1 - Ad 1 - Ad 1 - Ad 1 - Ad

Table 0.25 Destination Blending Functions

* One Minus Value is sometimes referred to as Inverse Value.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 155

If the blend operations require any destination color components then the
framebuffer read mode must be set appropriately, see section 5.14.

In some situations blending is desired when no retained alpha buffer is present. in
this case the alpha value which is considered to be read from the framebuffer will
be set to 1.0. The NoAlphaBuffer bit in the AlphaBlendMode register controls
this.

See The OpenGL Reference Manual and The OpenGL Programming Guide from Addison-
Wesley for more details of alpha blending.

5.16.2 QuickDraw3D Alpha Blending

When the AlphaType bit in the AlphaBlendMode register is set then
QuickDraw3D style alpha blend equations are followed. The OpenGL equations
above are used for the RGB components, but the alpha channel is treated
differently and has a single source and destination blend functions as follows:

Ca = 1- (1 - C sa) * (1 - Cda)

The source and destination blend functions should be set as follows:
Name Source Blend Destination Blend
Pre-multiplied ONE ONE_MINUS_SRC_ALPHA
Interpolated SRC_ALPHA ONE_MINUS_SRC_ALPHA

Table 0.26 Source Blending Functions

The alpha calculation is the same for both modes.

5.16.3 Image Formatting

The alpha blend and color formatting units can be used to format image data into
any of the supported GLINT framebuffer formats, though conversion between
CI and RGB modes or vice versa are not supported.

Consider the case where the framebuffer is in RGBA 4:4:4:4 mode, and an area of
the screen is to be uploaded and stored in an 8 bit RGB 3:3:2 format. The
sequence of operations is:

• Set the rasterizer as appropriate (described in section § 0)

• Enable framebuffer reads

• Disable framebuffer writes and set the UpLoadData bit in the
FBWriteMode register

• Enable the alpha blend unit with a blend function which passes the
destination value and ignores the source value (source blend Zero,
destination blend One) and set the color mode to RGBA 4:4:4:4

• Set the color formatting unit to format the color of incoming
fragments to an 8 bit RGB 3:3:2 framebuffer format.

The upload now proceeds as normal.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs156

The same technique can be used to download data which is in any supported
framebuffer format, in this case the rasterizer is set to sync with FBData, rather
than Color. In this case framebuffer writes are enabled, and the UpLoadData bit
cleared.

5.16.4 Registers

The unit is controlled by the AlphaBlendMode register:

08162431

reserved

Alpha blend
enable

Src blendDst blend

Color format

NoAlphaBuffer

Alpha Type

Color Order

Alpha Dst

Figure 0.46 AlphaBlendMode Register

The color format and order is needed as the destination color is read from the
framebuffer and needs to be converted into the internal GLINT representation, it
should therefore be set as appropriate for the framebuffer.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 157

Internal Color Channel
Format Name R G B A

0 8:8:8:8 8@0 8@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4:4:4:4 4@0 4@4 4@8 4@12

Color 3 4:4:4:4Front 4@0 4@8 4@16 4@24
Order: 4 4:4:4:4Back 4@4 4@12 4@20 4@28
BGR 5 3:3:2Front 3@0 3@3 2@6 255

6 3:3:2Back 3@8 3@11 2@14 255
7 1:2:1Front 1@0 2@1 1@3 255
8 1:2:1Back 1@4 2@5 1@7 255
13 5:5:5Back 5@16 5@21 5@26 255
0 8:8:8:8 8@16 8@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:4:4 4@8 4@4 4@0 4@12

Color 3 4:4:4:4Front 4@16 4@8 4@0 4@24
Order: 4 4:4:4:4Back 4@20 4@12 4@4 4@28
RGB 5 3:3:2Front 3@5 3@2 2@0 255

6 3:3:2Back 3@13 3@10 2@8 255
8 1:2:1Back 1@7 2@5 1@4 255
7 1:2:1Front 1@3 2@1 1@0 255
13 5:5:5Back 5@26 5@21 5@16 255

CI 14 CI8 8@0 0 0 0
15 CI4 4@0 0 0 0

Table 0.27 GLINT Color Modes

The framebuffer may be configured to be RGBA or Color Index (CI). Table 0.27
shows the full list of color modes supported by GLINT. The R, G, B and A
columns show the width of each color component. n@m means that n bits
starting at bit position m are read and scaled to fit the 8bit internal color channel
format. The least significant bit position is zero. A numerical value (0 or 255)
indicates the value substituted when the corresponding channel does not exist in
the framebuffer.

For the Front and Back Modes the value to be blended is read only from the low
bits or high bits respectively. This is to assist with color space double buffering.

When 5:5:5 bitplane double buffering is required, the 5:5:5:5 mode with the
NoAlphaBuffer bit in the AlphaBlendMode register set, is used to select the front
buffer. The back buffer is selected by using the 5:5:5Back mode, in which case the
state of the NoAlphaBuffer bit is ignored.

5.16.5 Alpha Blend Example

This example sets the blend mode to allow antialiasing of polygons, i.e. source
blend function = Source Alpha Saturate, destination blend function = One. These

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs158

blend functions are suitable for polygon antialiasing when polygons are drawn in
front to back order, and the depth test is disabled.

// Enable framebuffer reads allow blend operation
// - Not Shown -

// Set the alpha mode.
alphaBlendMode.UnitEnable = GLINT_ENABLE
alphaBlendMode.SourceBlend =
GLINT_BLEND_SRC_ALPHA_SATURATE
alphaBlendMode.DestinationBlend = GLINT_BLEND_ONE
alphaBlendMode.ColorFormat = as appropriate

AlphaBlendMode(alphaBlendMode) // Load register

// Enable antialias application and disable
// depth testing
// - Not Shown -

// Render polygons sorted front to back with
// Coverage Enable bit set in the Render command
// - Not Shown -

5.17

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 159

Color Format Unit
The color format unit converts from GLINT's internal color representation to a
format suitable to be written into the framebuffer. This process may optionally
include dithering of the color values for framebuffers with less than 8 bits width
per color component. If the unit is disabled then the color is not modified in any
way.

5.17.1 Color Formats

The framebuffer may be configured to be RGBA or Color Index (CI). Table 0.23
Framebuffer Read/Write Modes shows the full list of color modes supported

by GLINT.

The R, G, B and A columns show the width of each color component. n@m
means that the internal color channel is converted into an n bit number and
stored in the framebuffer at bit position m. The least significant bit position is bit
zero, and a dash in a column indicates that this component does not exist in the
framebuffer for this mode.

For the Front and Back Modes the value is replicated into both buffers, and
writemasks may be used to only update one buffer. Note the redundant
duplication of the Front and Back modes is retained for symmetry with the Color
format field of the AlphaBlendMode register.

The 5:5:5 Back format is designed to support multiple independent 15bpp double
buffered windows, on systems which have a RAMDAC that can select the front
and back buffer on a per pixel basis based on the top bit of the 32bit pixel stream.
The front or back buffer may be selected for writing using writemasking.

In CI mode the index is replicated into all streams.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs160

Internal Color Channel
Format Name R G B A

0 8:8:8:8 8@0 8@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4:4:4:4 4@0 4@4 4@8 4@12
3 4:4:4:4

Front
4@0
4@4

4@8
4@12

4@16
4@20

4@24
4@28

Color
Order:

4 4:4:4:4
Back

4@0
4@4

4@8
4@12

4@16
4@20

4@24
4@28

BGR 5 3:3:2
Front

3@0
3@8

3@3
3@11

2@6
2@14

--

6 3:3:2
Back

3@0
3@8

3@3
3@11

2@6
2@14

--

7 1:2:1
Front

1@0
1@4

2@1
2@5

1@3
1@7

--

8 1:2:1
Back

1@0
1@4

2@1
2@5

1@3
1@7

--

13 5:5:5
Back

5@0
5@16

5@5
5@21

5@10
5@26

--

0 8:8:8:8 8@16 8@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:4:4 4@8 4@4 4@0 4@12
3 4:4:4:4

Front
4@16
4@20

4@8
4@12

4@0
4@4

4@24
4@28

Color
Order:

4 4:4:4:4
Back

4@16
4@20

4@8
4@12

4@0
4@4

4@24
4@28

RGB 5 3:3:2
Front

3@5
3@13

3@2
3@10

2@0
2@8

--

6 3:3:2
Back

3@5
3@13

3@2
3@10

2@0
2@8

--

7 1:2:1
Front

1@3
1@7

2@1
2@5

1@0
1@4

--

8 1:2:1
Back

1@3
1@7

2@1
2@5

1@0
1@4

--

13 5:5:5
Back

5@10
5@26

5@5
5@21

5@0
5@16

--

CI 14 CI8 8@0 0 0 0
15 CI4 4@0 0 0 0

Table 0.28 GLINT Color Modes

5.17.2 Color Dithering

GLINT uses an ordered dither algorithm to implement color dithering. The

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 161

following table shows the exact type of dithering used when dither is enabled. The
type of dithering depends on the width of individual color components:

Component Width Type of Dithering
8 No Dithering
5 2x2 Ordered Dither
4 4x4 Ordered Dither
3 4x4 Ordered Dither
2 4x4 Ordered Dither
1 4x4 Ordered Dither

Table 0.29 Dither Methods

GLINT's ordered dither matrices are shown below:

0 8 2 10
12 4 14 6 0 2
3 11 1 9 3 1

15 7 13 5

Table 0.30 Ordered Dither Matrices, 4x4 and 2x2.

If the color formatting unit is disabled, the color components RGBA are not
modified and will be truncated, or rounded, under the control of the
RoundingMode bit in the DitherMode register, when placed in the framebuffer
(assuming that the framebuffer width is less than 8bits per component). In CI
mode the value is rounded to the nearest integer. In both cases the result is
clamped to a maximum value to prevent overflow.

In some situations only screen coordinates are available, but window relative
dithering is required. This can be implemented by adding an optional offset to the
coordinates before indexing the dither tables. The offset is a two bit number
which is supplied for each coordinate, X and Y. The XOffset, YOffset fields in
the DitherMode register control this operation, if window relative coordinates are
used they should be set to zero.

The alpha channel processing is qualified by the AlphaDither control bit. When
cleared the alpha channel is processed in the same way as the color channels, as
dictated by the DitherEnable bit. When the AlphaDither bit is set however, the
alpha channel is not dithered, but is processed according to the state of the
RoundingMode bit. The ability to disable dithering on the alpha channel is useful
when using the alpha buffer to hold coverage information during antialiasing. In
this situation dithering adds noise to the coverage value, leading to artifacts where
a pixel which should be fully covered is reported as not fully covered.

See The OpenGL Reference Manual and The OpenGL Programming Guide from Addison-
Wesley for more details on dithering.

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs162

5.17.3 Registers

One register controls the operation of this unit, DitherMode, and its layout is:

08162431

reserved

Unit enable

X Offset

Y Offset

Color format

Reserved

Alpha Dither

Color Order

Rounding Mode

Dither Enable

Figure 0.47 DitherMode Register

5.17.4 Dither Example

To set the framebuffer format to RGB 3:3:2 and enable dithering:

// 332 Dithering

ditherMode.UnitEnable = GLINT_TRUE
ditherMode.DitherEnable = GLINT_TRUE
ditherMode.ColorMode = GLINT_COLOR_FORMAT_RGB_332

DitherMode(ditherMode) // Load register

5.17.5 3:3:2 Color Format Example

To set the framebuffer format to RGB 3:3:2 and disable dithering:

// 332 No Dither

ditherMode.UnitEnable = GLINT_TRUE
ditherMode.DitherEnable = GLINT_FALSE
ditherMode.ColorMode = GLINT_COLOR_FORMAT_RGB_332

DitherMode(ditherMode) // Load register

5.17.6 8:8:8:8 Color Format Example

To set the framebuffer to RGBA 8:8:8:8 and not dithered:

// 8888 Dithered (No effect as 8 bit components are
// not dithered)

ditherMode.UnitEnable = GLINT_TRUE
ditherMode.DitherEnable = GLINT_FALSE
ditherMode.ColorMode = GLINT_COLOR_FORMAT_RGBA_8888

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 163

DitherMode(ditherMode) // Load register

The same can be achieved by disabling the color formatting unit as 8 bit
components are not dithered:

// 8888 No dither
ditherMode.UnitEnable = GLINT_FALSE

DitherMode(ditherMode) // Load register

5.17.7 Color Index Format Example

To set the framebuffer to 4 bit Color Index and enable dithering:

// 4 bit CI with dithering

ditherMode.UnitEnable = GLINT_TRUE
ditherMode.DitherEnable = GLINT_TRUE
ditherMode.ColorMode = GLINT_COLOR_FORMAT_CI_4

DitherMode(ditherMode) // Load register

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs164

5.18 Logical Op Unit
The logical op unit performs two functions; logic ops between the fragment color
(source color) and a value from the framebuffer (destination color), and,
optionally control of a special GLINT mode which allows high performance flat
shaded rendering.

5.18.1 High Speed Flat Shaded Rendering

On the GLINT 300SX a special rendering mode is available which allows high
speed rendering of unshaded images. This mode is still supported on the GLINT
500TX, and is detailed below for completeness, but span processing should be
used on the GLINT 500TX in preference to this technique.

To use the mode the following constraints must be satisfied:
• Flat shaded aliased primitive

• No dithering required or logical ops

• No stencil, depth or GID testing required

• No alpha blending

The following are available:
• Bit masking in the rasterizer

• Area and line stippling

• User and Screen Scissor test

If all the conditions are met then high speed rendering can be achieved by setting
the FBWriteData register to hold the framebuffer data (formatted appropriately
for the framebuffer in use) and setting the UseConstantFBWriteData bit in the
LogicalOpMode register. All unused units should be disabled.

This mode is most useful for 2D applications or for clearing the framebuffer when
the memory does not support block writes. Note that FBWriteData register
should be considered volatile when context switching.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 165

5.18.2 Logical Operations

The logical operations supported by GLINT are:

Mode Name Operation Mode Name Operation
0 Clear 0 8 Nor ~(S | D)
1 And S & D 9 Equivalent ~(S ^ D)
2 And Reverse S & ~D 10 Invert ~D
3 Copy S 11 Or Reverse S | ~D
4 And Inverted ~S & D 12 Copy Invert ~S
5 Noop D 13 Or Invert ~S | D
6 Xor S ^ D 14 Nand ~(S & D)
7 Or S | D 15 Set 1

Where: S = Source (fragment) color, D = Destination (framebuffer) color

Table 0.31 Logical Operations

For correct operation of this unit in a mode which takes the destination color,
GLINT must be configured to allow reads from the framebuffer using the
FBReadMode register. See section §0 for more details.

GLINT makes no distinction between RGBA and CI modes when performing
logical operations.

5.18.3 Registers

The operation of the unit is controlled by the LogicalOpMode register:

08162431

LogicalOp enable
0 = Disabled
1 = Enabled

LogicOp
UseConstantFBWriteData
0 = Variable
1 = Constant See Table 5.25

Figure 0.48 LogicalOpMode Register

5.18.4 XOR Example

To set the logical operation to XOR.

// Set framebuffer to allow reads
// Not shown

logicalOpMode.UnitEnable = GLINT_ENABLE

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs166

logicalOpMode.LogicalOp = GLINT_LOGICOP_XOR

LogicalOpMode(logicalOpMode) // Load register

5.18.5 Logical Op and Software Writemask Example

To set the logical operation to COPY, enable the software writemask, and write to
the green component in an 8 bit framebuffer configured in 3:3:2 RGB mode:

// Set framebuffer to allow reads
// Not shown

ditherMode.UnitEnable = GLINT_ENABLE
ditherMode.DitherEnable = GLINT_ENABLE
ditherMode.ColorMode = GLINT_COLOR_FORMAT_RGB_332
DitherMode(ditherMode) // Load register

logicalOpMode.UnitEnable = GLINT_ENABLE
logicalOpMode.LogicalOp = GLINT_LOGICOP_COPY
LogicalOpMode(logicalOpMode) // Load register

FBSoftwareWriteMask(0xFFFFFFE3)

5.19

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 167

Framebuffer Writemasks
Two types of framebuffer writemasking are supported by GLINT, software and
hardware. Software writemasking requires a read from the framebuffer to combine
the fragment color with the framebuffer color, before checking the bits in the
mask to see which planes are writeable. Hardware writemasking is implemented
using VRAM writemasks and no framebuffer read is required.

5.19.1 Software Writemasks

Software writemasking is controlled by the FBSoftwareWriteMask register. The
data field has one bit per framebuffer bit which when set, allows the
corresponding framebuffer bit to be updated. When reset it disables writing to
that bit. Software writemasking is applied to all fragments and is not controlled by
an enable/disable bit. However it may effectively be disabled by setting the mask
to all 1's. Note that the ReadDestination bit must be enabled in the FBReadMode
register when using software writemasks, in which some of the bits are zero.

See the Framebuffer Read/Write section for details of how to enable/disable
framebuffer reads.

5.19.2 Hardware Writemasks

Hardware writemasks, if present, are controlled using the
FBHardwareWriteMask register. If the framebuffer supports hardware
writemasks, and they are to be used, then software writemasking should be
disabled (by setting all the bits in the FBSoftwareWriteMask register). This will
result in fewer framebuffer reads when no logical operations or alpha blending is
needed.

If the framebuffer is used in 8 bit packed mode, then an 8 bit hardware writemask
must be replicated to all 4 bytes of the FBHardwareWriteMask register. If the
framebuffer is in 16 bit packed mode then the 16 bit hardware writemask must be
replicated to both halves of the FBHardwareWriteMask register.

See the GLINT Hardware Reference Manual for more details of framebuffer
hardware writemasks.

5.19.3 Registers

Both registers FBHardwareWriteMask and FBSoftwareWriteMask are 32 bit
registers in which each bit represents a bit in the framebuffer.

5.19.4 Software Writemask Example

Using software writemasks:
// Enable framebuffer reads (not shown)
// Set the writemask
FBSoftwareWriteMask(0x0F0F0F0F)

See §0 for another example

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs168

5.19.5 Hardware Writemask Example

Using hardware writemasks when neither logic ops, nor alpha blending are
enabled:

// Disable framebuffer reads (not shown)
// Set the writemasks

FBSoftwareWriteMask(0xFFFFFFFF) // 'Disable'
FBHardwareWriteMask(0xF0F0F0F0) // Actual writemask

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 169

5.20 Host Out Unit
The Host Out Unit controls which data is available at the output FIFO, and
gathers statistics about the rendering operations (picking and extent testing) and
the synchronization of GLINT via the Sync register.

5.20.1 Filtering

Filtering controls the data available at the output FIFO. There are a number of
categories:

• Depth, Stencil, Color: These are data values associated with a
fragment which has been read from the localbuffer or framebuffer,
or generated using the UpLoadData flag in the Framebuffer Write
Unit.

• Synchronization: A single register, Sync, which is used to
synchronize GLINT and flush the graphics pipeline.

• Statistics: The registers associated with extent and picking.

The filtering is controlled by the FilterMode register which is split into 2 bit fields
for each category. The 2 bit field selects whether the register tag and/or register
data, are passed to the output FIFO. The format of the FilterMode register is
shown in Table 0.32.

Register Category Tag
Control

Bit

Data
Control

Bit

Description

Diagnostic Use Only 0 1

Diagnostic Use Only 2 3

Depth 4 5 This is the data from image upload of the Depth
(Z) buffer.

Stencil 6 7 This is the data from image upload of the Stencil
buffer.

Color 8 9 This is the data from image upload of the
Framebuffer (FBColor).

Synchronization 10 11

Statistics 12 13 This is the data generated following a command
to read back the results of the statistic
measurements: PickResult, MaxHitRegion,
MinHitRegion.

Diagnostic Use Only 14 15

Table 0.32 Filter Modes

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs170

Note, the filter unit must be set appropriately before any synchronization can take
place, see §0.

5.20.2 Statistic Operations

There are two statistic collection modes of operation; picking and extent checking .
Picking is normally used to select drawn objects or regions of the screen. Typically,
extent checking is used to determine the bounds within which drawing has
occurred so that a smaller area of the framebuffer can subsequently be cleared.
Spans are handled by GLINT in a fully consistent way for picking and extent
checking.

Statistic collection is controlled using the StatisticMode register.

Picking

In picking mode, the active and/or passive fragments have their associated XY
coordinates compared against the coordinates specified in the MinRegion and
MaxRegion registers. If the result is true, then the PickResult flag is set,
otherwise it holds its previous state. The compare function can be either Inside or
Outside. Before picking can start, the ResetPickResult register must be loaded to
clear the PickResult flag.

The MinRegion and MaxRegion registers are loaded to select the region of
interest for picking . A coordinate is inside the region if:

Xmin ≤ X < Xmax

Ymin ≤ Y < Ymax

where X and Y are from the fragment and the min/max values are from
MinRegion and MaxRegion registers. This comparison is identical to the one
used in the scissor tests .

The following stages are required for picking :
1) load ResetPickResult, MinRegion and MaxRegion registers
2) Set up the FilterMode to allow statistic commands out of GLINT

3) Draw the primitives.

4) Send a PickResult command.

5) Poll the output FIFO waiting for the PickResult to have passed through
GLINT.

Extent Checking

In extent mode, active and/or passive fragments have their associated XY
coordinates compared to the MinRegion and MaxRegion registers and if found
to be outside the defined rectangular region, then the appropriate register is
updated with the new coordinate(s) to extend the region. The Inside/Outside bit
has no effect in this mode. Block fills are included in the extent checking if the
StatisticMode register is set to include spans.

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 171

The MinRegion and MaxRegion registers are loaded to select the maximum value
(MinRegion) and minimum value (MaxRegion) for extent checking. A coordinate
is inside the region if:

Xmin ≤ X < Xmax

Ymin ≤ Y < Ymax

where X and Y are from the fragment and the min/max values are from
MinRegion and MaxRegion registers. This comparison is identical to the one
used in the scissor tests .

Once all the necessary primitives have been rendered the results can be found
using the MinHitRegion and MaxHitRegion commands, which cause the
contents of the MinRegion and MaxRegion registers respectively to be written
into the output FIFO (under control of the FilterMode register).

5.20.3 Synchronization

The Sync register is filtered and written to the output FIFO in a similar fashion to
the other registers. If an interrupt is required to be generated then the most
significant bit of the Sync command register must be set, and the filtering must be
set up to write something into the FIFO. If nothing is written to the FIFO
(because of the FilterMode) then no interrupt will be generated. The actual
interrupt will not be generated until the Sync data or tag has passed through, and
is on the output of the FIFO, so as to allow low level resynchronization between
the core and PCI clock domains. The FIFO has an extra bit in width to
accommodate the interrupt signal. When both the data and tag are written into the
FIFO only the first entry in the FIFO will cause the interrupt (assuming an
interrupt was requested).

The remaining bits in the data field are free and can be used by the host to identify
the reason for the Sync.

5.20.4 Registers

Filtering is controlled by the FilterMode register:

08162431

Individual bits defined abovereserved

Figure 0.49 FilterMode Register

Graphics Programming PERMEDIA Programmers Reference Manual

Proprietary and Confidential 3Dlabs172

Statistic collection is controlled by the StatisticMode register:

08162431

reserved

Enable Stats

Stats Type
Monitor Pixels Written

Monitor Culled Fragments

Compare Function

Include Spans

Figure 0.50 StatisticMode Register

MinRegion, MaxRegion registers are used to load picking/extent regions, and
MaxHitRegion and MinHitRegion are used to read the registers back. The
format is 16 bit 2's complement numbers, X in the least significant end of the
word.

PickResult is used to read the results of picking, the pick flag is placed in the least
significant bit of the 32 bit register. ResetPickResult is used to clear the picking
flag, the data field is not used.

The Sync register is 32 bits with the most significant bit set to indicate an interrupt
is to be generated, bits 0-30 are available for the user.

5.20.5 Filter Mode Example
// Set up Filter mode to only permit read back of
// synchronization tag and data

FilterMode(0x0C00) // Set bits 10 & 11

PERMEDIA Programmers Reference Manual Graphics Programming

3Dlabs Proprietary and Confidential 173

5.20.6 Picking Example

Set the statistic mode to picking and detect any active fragments in the region 0x0
<= x < 0x100, 0x0 <= y < 0x100. Render some primitives then read back the
results.

// Set filter mode as above
FilterMode(0x0C00) // Set bits 10 & 11

// Set statistic mode
MinRegion(0)
MaxRegion(0x100 | 0x100 << 16)

// Clear the picking flag
ResetPickResult(0x0) // Data not used

// Now render primitives.... ...

Render (render) // All units set as
appropriate

// All rendering finished.

// Set the filter mode to allow read back of Syncs
// and statistic information (tag and data)
FilterMode(0x3C00) // Set bits 10 to 13

// Write to the PickResult register
PickResult(0x0) // Data not used

// Now read the PickResult from the output FIFO (not
shown)

5.20.7 Sync Interrupt Example

Generate a synchronization interrupt and encode some user defined data (0x34) in
the lower 31 bits of the Sync register.
// Set up Filter mode to only permit read back of
// synchronization tag and data
FilterMode(0x0C00) // Set bits 10 & 11

// Write to the Sync register with the top bit
// (bit 31) set and user data encoded into the
// lower bits (0-30)

sync = (0x1 << 31) | (0x34 & 0x7FFFFFFF)
Sync(sync)

// Now wait for the sync interrupt. Not shown.

6. Initialization GLINT

Proprietary and Confidential 3Dlabs174

6. Initialization

6.1 Initializing GLINT
This section illustrates how to initialize GLINT following reset, prior to carrying out
rendering operations.

Initialization falls broadly into three areas, though in different systems precise
responsibilities can vary:

• System initialization covers the PCI bus, memory set-up and video
output. This information typically is only initialized once following reset.

• Window initialization covers the base address of the current rendering
window and its color format. This must be initialized at reset, but will
need updating each time GLINT starts drawing to a new window.

• Application initialization covers state that is typically dynamic, enabling &
disabling depth testing for example. Again this state must be set at reset,
but is likely to be updated relatively frequently.

To make use of the full functionality of GLINT consult the relevant sections of the
Graphics Programming chapter. Examples are given which make use of the pseudocode
conventions given in Appendix B.

Note that in general the graphics registers (those listed in Appendix A, as opposed to
those documented in the Hardware Reference Manual) are not hardware initialized
to specific values at reset. In the examples below it is assumed that the data
structures used to load these registers are initialized to zero. Thus bit fields which
are not set explicitly, will default to zero.

6.2 System Initialization

6.2.1 PCI bus

There are a set of PCI related registers which can be interrogated for information about
the chip, for example its revision and device ID. Some of these PCI related registers will
need to be set up at reset, for instance to configure the base addresses of the different
memory regions of the chip. However, the subject of PCI bus initialization is beyond the
scope of this document. For more details refer to the GLINT 500TX Hardware
Reference Manual, and the PCI Local Bus Specification Rev2.1.

6.2.2 Memory Configuration

A part of the GLINT initialization is to specify some of the hardware parameters that
define the characteristics of the memory attached to GLINT. In most board designs,
these registers are initialized at reset by a set of resistors connected to the chip.

If the GLINT board design does not include these resistors, then these registers will
have to be set by software as outlined below.

GLINT 500TX Programmer’s Reference Manual 6. Initialization

3Dlabs Proprietary and Confidential 175

The content of these registers is dependent upon the board design, and the memory
chips that have been used. It is necessary to consult the GLINT Hardware Reference
Manual and the board design documentation, to find the correct values for any particular
system configuration.

The Reset register is initialized automatically at reset as detailed in the GLINT Hardware
Reference Manual.

The memory characteristics for the framebuffer and localbuffer are set through three
registers. These characteristics include details about the number of banks, page sizes and
address strobe requirements. For example, the following will initialize GLINT to operate
in a system where the localbuffer comprises 1 bank of memory, with a page size of 2k,
and the localbuffer and framebuffer have the RAS/CAS timing values indicated:

lbMemoryControl.NBanks = GLINT_LB_NBANKS_1
lbMemoryControl.PageSize = GLINT_LB_PAGE_SIZE_2048
lbMemoryControl.RASLow = GLINT_LB_RAS_LOW_3
lbMemoryControl.RASPrecharge =
 GLINT_LB_RAS_PRECHARGE_2
lbMemoryControl.CASLow = GLINT_LB_CAS_LOW_1
lbMemoryControl.PageModeEnable = GLINT_ENABLE
lbMemoryControl.RefreshCount = 0x20
LBMemoryControl(lbMemoryControl)

fbMemoryControl.RASLow = GLINT_FB_RAS_LOW_2
fbMemoryControl.RASPrecharge =
 GLINT_FB_RAS_PRECHARGE_2
fbMemoryControl.CASLow = GLINT_FB_CAS_LOW_1
fbMemoryControl.PageModeEnable = GLINT_ENABLE
fbMemoryControl.RefreshCount = 0x20
FBMemoryControl(fbMemoryControl)

The refresh count multiplied by 16 represents the number of MClk clock cycles between
the start of each refresh. Setting a RefreshCount of 0x20, will cause a refresh every 512
clock cycles.

The FBModeSel register contains details of the capabilities & characteristics of the
framebuffer and might typically be initialized as follows:

// We can use some of the fast VRAM modes
fbModeSel.FastModeEnable = GLINT_ENABLE

// Buffer is not shared.
fbModeSel.SharedMode = GLINT_FB_SHARED_DISABLED

// Enable VRAM transfer cycles
fbModeSel.XFerEnable = GLINT_ENABLE

// Select an external timing generator.
fbModeSel.ExtVTG = GLINT_FB_EXT_VTG
FBModeSel(fbModeSel)

6. Initialization GLINT

Proprietary and Confidential 3Dlabs176

6.2.3 Internal Video Timing Registers

If the board design uses the on chip video timing generator, then the video timing
registers must be initialized appropriately. For details refer to the GLINT Hardware
Reference Manual.

6.2.4 Framebuffer Depth

The size of each pixel to be written into the framebuffer needs to be set up using the
PixelSize register. To initialize the pixel size to 32 bits deep the PixelSize register would
be loaded as follows.

pixelsize = GLINT_FB_PACK_32
PixelSize(pixelsize)

6.2.5 Screen Width

The width of the screen is initialized by setting the three partial products fields in the
FBReadMode and LBReadMode registers. Note that the width is in pixels, not in bytes,
so the same values apply regardless of framebuffer depth, for a given screen resolution.
Some of the more common values are shown in the table below. A full list is given in
Appendix C.

Screen width PP0 PP1 PP2
640 5 3 0
1024 6 0 0
1152 6 3 0
1280 6 4 0
1600 6 5 2

To initialize the screen to be 1024 pixels wide the registers would be set as follows.
fbReadMode.PP0 = 6
fbReadMode.PP1 = 0
fbReadMode.PP2 = 0
FBReadMode(fbReadMode)

lbReadMode.PP0 = 6
lbReadMode.PP1 = 0
lbReadMode.PP2 = 0
LBReadMode(lbReadMode)

6.2.6 Screen Clipping Region

GLINT supports a screen scissor clip which should be set at system initialization, and a
user scissor clip which should initially be disabled. Assuming that the FBPixelOffset,
FBWindowBase and LBWindowBase registers are set appropriately, then setting the
screen clip prevents writing outside the framebuffer memory (and localbuffer), which
could have undesirable results. The following example would be appropriate for a
resolution of 1024 by 768 pixels:

screenSize.X = 1024
screenSize.Y = 768
ScreenSize(ScreenSize)

GLINT 500TX Programmer’s Reference Manual 6. Initialization

3Dlabs Proprietary and Confidential 177

scissorMode.ScreenScissorEnable = GLINT_ENABLE
scissorMode.UserScissorEnable = GLINT_DISABLE
ScissorMode(ScissorMode)

6.2.7 Localbuffer and Framebuffer Configuration

GLINT supports a range of localbuffer configurations. During initialization, fields in the
LBWriteFormat and LBReadFormat registers should be set to appropriate values which
reflect the depth of memory on the board design, and the initial manner in which it is to
be used. For example if the hardware is designed to support a 32 bit localbuffer, and
initially this is to be divided into a 24 bit Depth buffer, 4 bit stencil, no GID planes and
4 FrameCount planes, then the registers must be set as follows:

lbReadFormat.DepthWidth = 1 // 24 bit depth buffer
lbReadFormat.StencilPosition = 2 // Stencil @ 16
lbReadFormat.StencilWidth = 1 // 4 bit stencil
lbReadFormat.GIDWidth = 0 // No GID planes
lbReadFormat.GIDPosition = 1 // Does not matter
lbReadFormat.FrameCountPosition=3 // FrameCount @ 20
lbReadFormat.FrameCountWidth = 1

// 4 FrameCount plnes
LBReadFormat(lbReadFormat)

lbWriteFormat.DepthWidth = 1 // 24 bit depth buffer
lbWriteFormat.StencilPosition = 2 // Stencil @ 16
lbWriteFormat.StencilWidth = 1 // 4 bit stencil
lbWriteFormat.GIDWidth = 0 // No GID planes
lbWriteFormat.GIDPosition = 1 // Does not matter
lbWriteFormat.FrameCountPosition=3 // FrameCount @20
lbWriteFormat.FrameCountWidth = 1

// 4 FrameCount plnes
LBWriteMode(lbWriteFormat)

Note that within the limits of the memory depth that is physically available, it is possible
to dynamically change the allocation of the bits, for instance on a per window basis.

Set the framebuffer and localbuffer read units to their default data sources:
fbReadMode.DataType = GLINT_FBDATA
FBReadMode(fbReadMode)

lbReadMode.DataType = GLINT_LBDEFAULT
LBReadMode(lbReadMode)

The following registers are typically only needed for certain specialized operations.
Normally their offsets will be zero.

FBSourceOffset(0)
FBPixelOffset(0)
LBSourceOffset (0)

6. Initialization GLINT

Proprietary and Confidential 3Dlabs178

6.2.8 Host Out Unit

Under some circumstances it is necessary to synchronize with GLINT. This is controlled
through the Sync command which causes data to be written to the host out FIFO once
all processing has completed. The host out FIFO should normally be initialized so as to
pass these pieces of data (they can be filtered out).

In addition the host out unit should normally be set to filter out all other output data,
otherwise the host software must regularly poll the output FIFO to keep it drained and
prevent it freezing the pipeline. For example:

filterMode.Depth = GLINT_NULL
filterMode.Stencil = GLINT_NULL
filterMode.Color = GLINT_NULL
FilterMode.Synchronization = GLINT_FILTER_TAG_AND_DATA
 // Allow syncs through
filterMode.Statistics = GLINT_NULL
FilterMode(filterMode)

6.2.9 Disabling Specialized Modes

The Graphic ID, and FrameCount planes, should normally be initially disabled. Refer to
the Graphics Programming chapter for more details on their use.

window.DepthFCP = GLINT_DISABLE
window.StencilFCP = GLINT_DISABLE
window.FrameCount = 0xFF
window.GID = GLINT_NULL
window.LBUpdateSource = GLINT_GID_LBUPDATE_REGISTER
window.ForceLBUpdate = GLINT_FALSE
window.CompareMode = GLINT_GID_ALWAYS_PASS
window.UnitEnable = GLINT_DISABLE

Window(window)

6.3

GLINT 500TX Programmer’s Reference Manual 6. Initialization

3Dlabs Proprietary and Confidential 179

Window Initialization
GLINT supports the concept of a window origin, and makes it relatively simple to
implement systems which allow different color formats to coexist in different windows.

6.3.1 Color Format

The color formatting unit and the alpha blend unit should be initialized to an appropriate
color format at reset. The units support a variety of different formats, listed in Error!
Reference source not found. .

For example to render in 3:3:2, 8 bit color format, the following would be needed:
ditherMode.ColorFormat =

GLINT_COLOR_FORMAT_RGB_332_FRONT
DitherMode(ditherMode)

alphaBlendMode.ColorFormat =
GLINT_COLOR_FORMAT_RGB_332_FRONT

AlphaBlendMode(alphaBlendMode)

To enable dithering use the following:
ditherMode.XOffset = 0
ditherMode.YOffset = 0
ditherMode.DitherEnable = GLINT_ENABLE
ditherMode.UnitEnable = GLINT_ENABLE
DitherMode(ditherMode)

Note that the color formatting unit is normally always enabled even if dithering itself is
not. This is because the unit handles color formatting as well as the dithering operation.

6.3.2 Setting the Window Address and Origin.

GLINT supports the concept of a current window origin. The origin of the window can
be specified either as being in the Top Left or Bottom Left corner. This allows the user
to pick the most appropriate coordinate system to use; for OpenGL it would typically be
bottom left, whereas for an X windows implementation it would be Top Left. Thus for
OpenGL set:

fbReadMode.WindowOrigin =
GLINT_BOTTOM_LEFT_WINDOW_ORIGIN

FBReadMode(fbReadMode)

lbReadMode.WindowOrigin =
GLINT_BOTTOM_LEFT_WINDOW_ORIGIN

LBReadMode(lbReadMode)

The window origin for clipping is set in the scissor unit. This information usually is
provided by the window system. It will need updating if the window moves. As an
example if the position of the window is (200, 600) (using a bottom left coordinate
system), the origin is specified as follows:

windowOrigin.X = 200
windowOrigin.Y = 600

6. Initialization GLINT

Proprietary and Confidential 3Dlabs180

WindowOrigin(windowOrigin)

The base address of the window must also be established in the localbuffer read and
framebuffer read units. The base address is the physical address that represents the base
address of the window. Assuming the base address of the framebuffer represents the
pixel in the top left corner of the screen, then for the example above the actual physical
address of the bottom left pixel of the window will be set as follows:

fbWindowBase = fbBaseAddress +
 (fbWidth * (fbHeight-1-600) + 200)
FBWindowBase(fbWindowBase)

lbWindowBase = lbBaseAddress +
 (lbWidth * (lbHeight-1-600) + 200)
LBWindowBase(lbWindowBase)

Where fbBaseAddress, fbWidth and fbHeight are the physical base address, width and
height of the framebuffer (in pixels). As with the WindowOrigin data, if the window
moves, these registers must be updated.

6.3.3 Writemasks

Normally both the hardware (if present) and the software writemasks will initially be set
to make all bitplanes writeable:

FBSoftwareWriteMask(GLINT_ALL_WRITEMASKS_SET)
FBHardwareWriteMask(GLINT_ALL_WRITEMASKS_SET)

6.3.4 Enabling Writing

Which buffers are enabled at any given time is window specific and should be considered
for performance reasons. Performance will be improved if unnecessary reads from, and
writes to, buffers are disabled. For example if the current rendering does not use depth,
stencil, or pixel ownership testing, then reading and writing to the localbuffer may be
disabled. The following example initializes the buffers to allow Z buffering and alpha
blending:

fbWriteMode.UnitEnable = GLINT_ENABLE
FBWriteMode(fbWriteMode)
lbWriteMode.UnitEnable = GLINT_ENABLE
LBWriteMode(lbWriteMode)

lbReadMode.ReadSourceEnable = GLINT_DISABLE
lbReadMode.ReadDestinationEnable = GLINT_ENABLE
LBReadMode(lbReadMode)

fbReadMode.ReadSourceEnable = GLINT_DISABLE
fbReadMode.ReadDestinationEnable = GLINT_ENABLE
FBReadMode(fbReadMode)

Note that to use software writemasking, the FBReadMode register's
ReadDestinationEnable field needs to be set if the writemask is set to other than all 1's.

6.4

GLINT 500TX Programmer’s Reference Manual 6. Initialization

3Dlabs Proprietary and Confidential 181

Application Initialization
While an application is running it may dynamically use features of GLINT such as depth
buffering, alpha blending, logical operations, etc.. Initially, however, it is recommended
that the respective units are disabled, to ensure that they are in a known state:

areaStippleMode.UnitEnable = GLINT_DISABLE
AreaStippleMode(areaStippleMode)

lineStippleMode.UnitEnable = GLINT_DISABLE
LineStippleMode(lineStippleMode);

routerMode.UnitEnable = GLINT_DISABLE
RouterMode(routerMode)

window.UnitEnable = GLINT_DISABLE
Window(window)

stencilMode.UnitEnable = GLINT_DISABLE
StencilMode(stencilMode)

depthMode.UnitEnable = GLINT_DISABLE
DepthMode(depthMode)

colorDDAMode.UnitEnable = GLINT_DISABLE
ColorDDAMode(colorDDAMode)

textureAddressMode.UnitEnable = GLINT_DISABLE
TextureAddressMode(textureAddressMode)

textureReadMode.UnitEnable = GLINT_DISABLE
textureReadMode(textureReadMode)

textureColorMode.UnitEnable = GLINT_DISABLE
TextureColorMode(textureColorMode)

fogMode.UnitEnable = GLINT_DISABLE
FogMode(fogMode)

antialiasMode.AntialiasEnable = GLINT_DISABLE
AntialiasMode(antialiasMode)

alphaTestMode.UnitEnable = GLINT_DISABLE
AlphaTestMode(alphaTestMode)

alphaBlendMode.UnitEnable = GLINT_DISABLE
AlphaBlendMode(alphaBlendMode)

logicalOpMode.UnitEnable = GLINT_DISABLE
LogicalOpMode(logicalOpMode)

7. Multi-GLINT Systems GLINT

Proprietary and Confidential 3Dlabs182

7. Multi-GLINT Systems

7.1 Overview
This chapter will examine some of the issues and methods that a multi-GLINT 500TX
system can employ.

To gain benefit from running multiple GLINTs in parallel the system must be rendering
bound. If the system is host or geometry bound then adding in more GLINTs will not
improve the system performance.

There are many possible parallel paradigms which can be adopted. The major ones are
tabulated below, but this chapter will concentrate on the Scanline Interleaved method.
The table is not exhaustive and an interested reader is directed to the book by Whitman 1.

The Scanline Interleaved paradigm is a good all-round method, ideally suited to the
simulation market. Boards using this paradigm support all the normal GLINT rendering
operations, and operations such as antialiasing, line stipples, image download and
bitmasks which typically present problems in a parallel system are fully supported in the
GLINT hardware. The only limitation inherent in such architectures, is that Block copies
where source and destination are not a multiple of the Scanline Interleave factor apart,
are not directly hardware accelerated by GLINT. Such copies must be implemented
using a combination of bypass, image upload and image download operations. For the
simulation market this is not an issue as on screen copies are rare, however, for desktop
machines running in a windowing environment where copies are common a full solution
is provided in the dual-GLINT case, by using the shared framebuffer facility. See below
for further details.

1Multiprocessor Methods For Computer Graphics Rendering by Scott Whitman,
ISBN 0-86720-229-7

GLINT 500TX Programmer’s Reference Manual 7. Multi-GLINT

3Dlabs Proprietary and Confidential 183

Paradigm Description Advantage Disadvantage
Frame
Interleaving

Frame Interleaving is where a GLINT
works on frame n, the next GLINT works
on frame n+1, etc.. Each GLINT does
everything for its own frame and the video
is sourced from each GLINT's
framebuffer in turn.

Simple.
Good load balancing.
Can be implemented
with any GLINT
product .
Doesn't need a
broadcast mechanism.

Increase in transport
delay.
Complete system is
duplicated.

Frame Merging or
Primitive
Parallelism

Frame merging is a similar technique to
frame interleaving where each GLINT has
a full localbuffer and framebuffer. In this
case the primitives are distributed
amongst the GLINTs and the resultant
partial images composited using the depth
information to control which fragment
from the multiple buffers is displayed in
each pixel position.

Conceptually simple.
Average load
balancing.

Needs video rate
composition using the
depth value to select
which pixel to display.
The localbuffer
structure does not
readily support this
dual port access.
Alpha blending and
antialiasing are
problematical.
Block copies don't
work.

Screen subdivision
(regions)

Here the screen is divided up into large
contiguous regions and a GLINT looks
after each region. Primitives which
overlap between regions are sent to both
regions and scissor clipping used.
Primitives contained wholly in one region
are ideally just sent to the one GLINT.
The number of regions and the horizontal
and/or vertical division of the screen can
be chosen as appropriate, however
horizontal bands are usually easier for the
video hardware to cope with.

Conceptually simple.
Can be implemented
with any GLINT
product.

Poor load balancing
unless regions
allocated dynamically.
Block copies fail when
cross boundaries.
Broadcast can not be
used effectively.

Screen subdivision
(interleaved
scanlines)

The interleave factor is every other nth
scanline where n is the number of
GLINTs. Nearly all primitives will
overlap multiple scanlines so are ideally
broadcast to all GLINTs.
Each GLINT only needs enough
localbuffer and frame buffer to cover the
pixels in its own region, however texture
maps are replicated in full.

Load balancing is
excellent.
Entire Depth and
Color buffers not
duplicated for each
GLINT.

Block copies in Y do
not work unless the
displacement is a
multiple of interleave
factor. May be solved
using shared
framebuffer.

7.2 Setting up the Graphics Processor
In an Interleaved Scanline multi-GLINT system all GLINTs will receive the same
command and parameter data with the exception of the one parameter needed to specify
which scanline a particular GLINT is owning. This is important as it means that the
host does not have the additional burden of calculating different parameters for each
GLINT. Ideally the command and parameter data is broadcast to all GLINTs to

7. Multi-GLINT Systems GLINT

Proprietary and Confidential 3Dlabs184

economize on system bandwidth and this is trivially done using a GLINT Delta 1 chip.

The first step is to set the MultiGLINT bit in the RasterizerMode register. This causes
GLINT to operate in an interleaved scan line mode when rasterizing primitives.

Which scanlines a GLINT owns is defined by the ScanLineOwnership register and this
only has an effect when the MultiGLINT bit is set in the RasterizerMode register. The
format is as follows:

Bits Function
0, 1 Scanline Interval

This is set to the number of GLINTs and has the values:
0 = 1 GLINT
1 = 2 GLINTs
2 = 4 GLINTs
3 = 8 GLINTs

2, 3, 4 Scanline. This holds which scanline within a Scanline Interval this GLINT
owns. For example if the Scanline Interval and this field are both set to 2
then this GLINT owns scanlines 2, 6, 10, etc.

The Scanline Interval is decoded to select the number of least significant bits of Y
(generated during rasterization) to compare with the same number of bits in the Scanline
field. If these two value are the same then this GLINT owns the scanline.

The value of Y used is whatever the rasterizer has been given so it can be screen relative
or window relative. The hardware will naturally force scanlines to be associated to
screen relative coordinates. If window relative coordinates are used, the Scanline field
will need to be set up to reflect this mapping whenever the window moves.

In some systems it is desirable for each GLINT to have only the memory it needs to
hold the depth and color information for its scanlines. Setting the Scanline Interleave
factor in the LBReadMode and FBReadMode registers achieves this. This Scanline
Interleave value has the same meaning as in the ScanLineOwnership register, and is
sometimes useful for it to have different values. Note that the texture addresses are not
affected by the Scanline Interval as the texture maps are replicated in full.

After this set up the GLINTs all receive identical command and data streams.

To upload data from the localbuffer or framebuffer the standard upload command
sequence is sent to all GLINTs but then the returned data is read a scanline at a time
from the successive output FIFOs of the GLINTs.

To sync with the GLINTs the Sync command is broadcast to all GLINTs and then each
output FIFO is polled in turn waiting for the Sync command. Alternatively interrupts
could be used in which case the interrupt handler will collect an interrupt from each
GLINT.

1The GLINT Delta is a 3D geometry chip from 3DLabs for the GLINT processor range, which offloads the triangle
and line set-up calculations from the host and will also handle the broadcasting of commands and data to two GLINT
devices.

GLINT 500TX Programmer’s Reference Manual 7. Multi-GLINT

3Dlabs Proprietary and Confidential 185

7.3 The Host Connection
In an ideal system the host will be able to read and write to each GLINT individually and
broadcast write to all the GLINTs together. Furthermore, best performance is typically
achieved when DMA is used and it is less efficient if each GLINT is using DMA to
service itself, with the consequent competition on the PCI bus. A better solution is for
an external DMA controller to read the host memory and broadcast the data to the
GLINTs. Each GLINT provides a set of signals to show the status of the input FIFO
which the external DMA controller can monitor to determine when all GLINTs have
enough space in their FIFO to accept the broadcast data.

The GLINT Delta chip provides an economical solution when there are two GLINT
500TX devices in a system as it includes the 'external DMA controller' and can broadcast
or selectively write. As an added bonus the GLINTdelta will also do the triangle and line
set up calculations which further reduces the host's load.

7.4 The Video Connection
The video stream in a multi-GLINT system with separate framebuffers will need to cycle
amongst the framebuffers so each framebuffer provides the data for its own scanlines.
The internal video timing generator in GLINT does not have the flexibility to
accommodate this so an external video timing generator is needed. This can typically be
implemented economically in a few large pals.

7.5 Performance
The following comments assume the system is rendering bound, that each GLINT has
its own localbuffer and framebuffer, and that the primitives are large enough to have
sufficient pixels for each GLINT to have some to work on.

The pixel throughput of general polygon rendering should increase linearly by the
number of GLINTs in the system.

In the case of lines, image download and bitmasks the performance increase will be less
as each fragment in the primitive needs to be processed by each GLINT. Fragments on
owned scanlines will be processed at the rate appropriate to the rendering modes, while
other fragments will only take one cycle.

7.6 A General Purpose Dual GLINT System
The main issue in a scanline interleaved multi-GLINT system is the difficulty of doing a
fast arbitrary bit blit. This operation is important for windowing based GUI systems
such as Microsoft Windows, or the X Window System. To provide an optimal 3D
graphics on the 'desktop' system running in a GUI environment, a different approach
can be adopted in the dual-GLINT case.

GLINT has a shared framebuffer interface so it is possible for two GLINTs to share the
framebuffer but have separate localbuffers. The shared framebuffer protocol used to
arbitrate access is designed to ensure fairer access for both GLINTs than typical
master/slave protocols.

Many 3D operations (especially texture mapping) do not place a high burden on the
framebuffer bandwidth so the framebuffer can be shared with little impact on the 3D

7. Multi-GLINT Systems GLINT

Proprietary and Confidential 3Dlabs186

performance expected from a dual GLINT system.

GUI operations, which tend to be more framebuffer bound, can be implemented using
just one GLINT, so the performance will be as good as for a single GLINT system.
Note that when a 3D window is moved the localbuffer contents will also need to be
moved as well. This raises the same problem that blits are needed in a split localbuffer,
however the performance is less critical for 3D so the original blit method using image
upload and image download is typically acceptable. Further, in many cases when a 3D
window moves, it is acceptable for the application to be required to perform a redraw, or
to wait for the next animation frame to be drawn, whereupon the copy becomes
superfluous.

GLINT 500TX Programmer’s Reference Manual 8. Performance

3Dlabs Proprietary and Confidential 187

8. Performance Tips

The following is a list of software programming tips and techniques which can be
applied to maximize GLINT performance.

The list is not exhaustive, nor is this note intended to be a replacement for the
information to be found elsewhere in this manual and in the GLINT 500TX Hardware
Reference Manual (HRM). Rather it is intended to serve as an introduction to some of
the unique or unusual capabilities of the GLINT chip, and a pointer to where more
detailed documentation can be found.

The following is a list of the topics which are covered:

• Using VRAM Block Writes - e.g. for clears

• Fast double buffering in a window using 12bit colorspace double buffering

• Incrementing addresses when writing to the FIFO to enable PCI burst transfers

• Using PCI Disconnect under PIO

• Using bus mastership (i.e. DMA)

• Improving DMA bus bandwidth utilization using the indexed FIFO modes

• Disabling units that are not in use (e.g. Framebuffer re ads)

• Use of fast clear planes for clearing the localbuffer

• Clearing all bitplanes of the localbuffer when possible

• Use of the extent register to minimize the area in the localbuffer and framebuffer that
needs to be cleared

• Use of the GLINT graphics pipeline in preference to the framebuffer (and/or
localbuffer) bypass when possible

• Loading registers in unit order (i.e. Rasterizer first - Host Out last)

• Avoiding unnecessary register updates

• Miscellaneous generic graphics tips

8.1 VRAM Block Writes
Typically GLINT boards are equipped with VRAMs that support block writes. This
allows up to 32 pixels at a time to be filled with a constant color by a single framebuffer
write access. This can, lead to roughly a 32fold increase in the speed of, for instance,
clearing a large area of the framebuffer.

While this technique is most useful when clearing the framebuffer, it can be used to fill
any trapezoid.

8. Performance Tips GLINT

Proprietary and Confidential 3Dlabs188

8.2 Fast double buffering in a window
Double buffering is a technique used to achieve visually smooth animation, by rendering
a scene to an offscreen buffer, before quickly displaying it.

GLINT board designs can readily support a variety of double buffering mechanisms
depending on the memory configuration and LUT-DAC used, including:

• BLT

• Full Screen

• Bitplane

• Colorspace
For further details see section § 0, §0 and §0 of this manual.

Note that optimal functionality may be achieved by mixing two or more of the above
double buffering techniques.

8.3 Improving PCI bus bandwidth for Programmed I/O and
DMA
The simplest way to program GLINT is by writing data values into the memory mapped
registers. This is appropriate for primitives which require few set-up parameters such as
2D lines.

For more complex primitives such as Gouraud shaded triangles, where a significant
number of registers must be loaded for each primitive, it may be more optimal to write
directly to the GLINT FIFO input.

The advantage of this mechanism is that it is then possible to use DMA burst transfers.

The disadvantage of this method is that both the address of the register and the data
value to be loaded must be written, apparently doubling the amount of data to be loaded.

However, to improve DMA bus bandwidth utilization, the registers have been grouped,
into blocks which frequently all need to be updated together, and an indexed addressing
mode is supported which allows a single "address" to be loaded, followed by the data for
a whole set of registers.

An additional mode is supported which allows a large number of data values to be
loaded to the same register. This is useful for image downloads.

See section §0.

8.4 PCI burst transfers under Programmed I/O
PCI bus burst transfers typically allow up to four times the bandwidth of individual
transfers.

However burst transfers are only initiated on the PCI bus when successive addresses are
being written to (i.e. the byte address is incremented by 4). To facilitate the use of burst
transfers when using programmed I/O to load the GLINT FIFOs, GLINT multiply
maps the FIFO input register throughout the range:

0x00002000 to 0x00002FFF in region 0

GLINT 500TX Programmer’s Reference Manual 8. Performance

3Dlabs Proprietary and Confidential 189

Thus when data is being loaded into the FIFO a software loop should be written which
starts by writing the first data item at the lower extreme of this address range, and works
towards the upper.

8.5 Using PCI Disconnect under Programmed I/O
The PCI bus protocol incorporates a feature known as PCI Disconnect, which is
supported by GLINT. Once the GLINT is in this mode, if the host processor attempts
to write to the full FIFO then instead of the write being lost, the GLINT chip will assert
PCI Disconnect which will cause the host processor to keep retrying the write cycle until
it succeeds.

This feature allows faster download of data to GLINT, since the host need not poll the
InFIFOSpace register but should be used with care since whenever the PCI Disconnect is
asserted the bus is effectively hogged by the host processor until such time as the
GLINT frees up an entry in its FIFO.

8.6 Using bus mastership (DMA)
Most GLINT boards support PCI bus mastership, allowing the on-board DMA of
GLINT to be used to copy data from host memory into the GLINT FIFO.

If a board is DMA capable, then bit 25 of the FBMemoryCtl register will be set to 1,
otherwise this bit will be 0.

The use of PCI bus mastership has a number of benefits:

• PCI bus bandwidth utilization is generally much improved. GLINT has been measured
achieving transfer rates of up to 30-40MBytes/sec with a fast host slave (P90 Neptune
chipset).

• PCI bus bandwidth is further improved because the driver software no longer needs to
poll the FIFO flags to find how many entries are empty, before loading it.

• Overall system performance may benefit through increased parallelism between
GLINT and the host, as the host can often perform useful work preparing the next
DMA buffer once it has initiated one DMA transfer.

See section §0 for more details on using DMA.

8. Performance Tips GLINT

Proprietary and Confidential 3Dlabs190

8.7 Disabling units not in use
As a general rule any units within GLINT which are not actively in use for the current
rendering should be disabled. Each unit has a bit in a control register for this purpose.
This will maximize pixel throughput in the graphics core.

In particular it is important to check that unnecessary reads of the localbuffer are
not taking place. For instance it is perfectly possible to set up the localbuffer read
unit such that GLINT reads per pixel information (such as Z, stencil and fast clear
plane data) which is then discarded. The effect will be the same visually, but the cost
in performance of making the memory accesses will be very high.

Similar comments apply for the framebuffer read unit which again should only be
enabled to read pixel data when it is essential.

Note that GLINT boards typically support hardware writemasks and these should be
used in preference to the software writemasks.

8.8 Rapidly clearing the localbuffer - 1
GLINT supports a special technique for clearing down areas of the DRAM localbuffer,
16 or even 256 times faster than simply writing to every pixel.

When an application is generating animation images, it is normally necessary not only to
draw each picture into the framebuffer, but also to first clear down the framebuffer, and
to clear down auxiliary buffers such as depth (Z) buffers, stencil buffers, alpha buffer s
and others.

In most applications the value written when clearing any given buffer, is the same at
every pixel location, though different values may be used in different auxiliary buffers.
Thus the framebuffer is often cleared to the value which corresponds to black, while the
depth(Z) buffer is typically cleared to a value corresponding to infinity.

This unique capability is referred to as the fast clear mechanism.

Essentially the fast clear mechanism provides a method where the time taken to clear
buffers such as the depth(Z) and stencil buffers can be amortized over a number of clear
operations issued by the application.

8.9 Rapidly clearing the localbuffer - 2
When clearing the localbuffer it is faster to make accesses to all the bitplanes of the
localbuffer e.g. clear the fast clear planes, stencil & depth(Z) buffers simultaneously. This
is because just clearing the depth(Z) requires a read-modify-write, whereas clearing all the
bitplanes can be done with a write.

GLINT 500TX Programmer’s Reference Manual 8. Performance

3Dlabs Proprietary and Confidential 191

8.10 Rapid clear of the localbuffer & framebuffer
GLINT can be instructed to maintain a record of the minimum bounding box that has
been rendered to, in a given period. In some circumstances this may be used to limit the
area that must be cleared down.

Note that this technique is not appropriate for use in conjunction with the fast clear
mechanism for the localbuffer described above.

For further details see the description of the Host Out Unit in this manual.

8.11 Use of the framebuffer (or localbuffer) bypass
Whenever possible rendering should be done through the GLINT graphics pipeline.
This is because reading and writing the framebuffer (or localbuffer) using the bypass is
relatively slow. In some cases performance may even be improved if a small area of the
framebuffer (and/or localbuffer) is uploaded through the graphics pipeline into a
bitmap, rendered to, and then downloaded again through the graphics pipeline.

8.12 Loading registers in unit order
To maximize performance, the control registers for the next primitive should be loaded
into the GLINT FIFO in unit order. Thus the registers associated with the Rasterizer
unit should be loaded first, then Scissor unit, Stipple unit, Color DDA, and so on until
the last unit to be loaded is the Host Out unit (if necessary). Then finally the relevant
command register should be loaded.

For the order of the units refer to Figure 0.1.

8.13 Avoiding Unnecessary Register Updates
GLINT control registers retain their value between one primitive and the next. Thus it is
not necessary to reload registers that are unchanged between primitives. e.g. the dY
register usually is set to either +1 or -1 (except when antialiasing).

In addition calculations of register values can often be shared across primitives, for
instance between edges in adjacent polygons in meshes.

8. Performance Tips GLINT

Proprietary and Confidential 3Dlabs192

8.14 Miscellaneous Generic Graphics Tips
The following is a set of miscellaneous tips that are not GLINT specific, but well worth
using:

• Avoid polling for Vblank whenever possible, but if you have to poll, consider whether
your application is taking just longer than an integer number of Vblank intervals to
draw a frame - slightly simplifying the frame to make it just under an integer multiple
can dramatically improve performance.

• Another way of looking at the same problem is, if you remove your SwapBuffers()
calls, does your application render many more frames per second? If so, you might be
spending a lot of time waiting for buffer swaps, and you should tune your app so that
it draws just enough to fit in one less frame time.

• When using DMA it may be best to flush the DMA buffer to the chip after entering a
large primitive in the buffer (e.g. screen clear), so that the chip is doing useful work
while further primitives are being prepared on the host.

• Minimize the use of the Sync command.

• Does making your window smaller cause things to speed up? If so, you're probably
fill-limited (bottlenecked by filling the pixels in the window). Speed things up by
reducing the depth complexity of your scene or by using simpler drawing operations
wherever possible (e.g., avoiding depth-buffering for the background or ground
plane).

• Does making your window smaller have no effect on the time it takes to draw a
frame? If so, you're probably geometry-limited (bottlenecked by transformations,
clipping, or lighting) or host-limited.

• Measure the time it takes your application to draw a frame. Now comment out all
the drawing calls, and measure again. If most of the elapsed time per frame is spent
doing things other that drawing, your application is probably host-limited rather than
geometry-limited.

• If you're geometry-limited, you can speed things up by using simpler mod els with
fewer vertices, by reducing the amount of clipped geometry, by using fewer light
sources, etc. If you're host-limited you should use profiling tools to figure out where
your application is spending its time and then tune those areas.

1.

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 193

Appendix A. Graphics Register ReferenceAppendix A. Graphics Register Reference

This Appendix gives details of the format of each of the Graphics registers for GLINT.
The GLINT Hardware Reference Manual, details all other registers not given here.

The registers are listed alphabetically by name.

• Region: specifies the section of the GLINT memory map in which the
register appears. See the GLINT Hardware Reference Manual for more
details.

• Offset: specifies the address offset from the base address of the region
of this register.

• Tag: specifies the Tag value used in certain DMA modes. For more
details see the Programming Model chapter.

• Read/write indicates that the register can be both written and read at the
address given by Offset.

• Write indicates that the register can only be written. The value of any
read from this address is undefined.

• Reset Value specifies the value of the register following reset. In general
for the Graphics registers this is undefined.

In the diagrams:

• reserved indicates bits that may be used in future members of the
GLINT family. To ensure upwards compatibility, any software should
not assume a value for these bits when read, and should always write
them as zeros.

• not used indicates bits that are adjacent to numeric fields. These may be
used in future members of the GLINT family, but only to extend the
dynamic range of these fields. While reading from these bits is undefined,
a good convention to follow is to sign extend the numeric value, rather
than masking them to zero before writing the register. This will ensure
compatibility if the dynamic range is increased in future members of the
GLINT family.

• For enumeration fields which do not specify the full range of possible
values, only the specified values should be used. Future members of the
GLINT family may define a meaning for the unused values.

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs194

Name: Alpha Blend Mode

Unit: Alpha Blend

Region: 0 Offset: 0x0000.8810

Tag: 0x102

Read/write Reset Value: Undefined

08162431

reserved

Alpha blend
enable

Src blendDst blend

Color format

NoAlphaBuffer

Alpha Type

Color Order

Alpha Dst

Controls Alpha Blend ing.

Where the RGB format has an alpha component it may still not exist if those memory
planes are not populated. In this case the NoAlphaBuffer bit in the AlphaBlendMode
register should be set which causes the alpha component to be set to 255 (corresponding
to an alpha value of 1.0). The values in the tables below are treated as floating point.

Note that alpha blending is not defined for the Color Index (CI) mode color formats.

Bit0 Alpha Blend Enable:
0 = Disable
1 = Enable

Bit1-4 Source Blend Mode:
Mode Value R G B A

0 ZERO 0 0 0 0
1 ONE 1 1 1 1
2 DST_COLOR Rd Gd Bd Ad
3 ONE_MINUS_DST_COLOR 1 - Rd 1 - Gd 1 - Bd 1 - Ad
4 SRC_ALPHA As As As As
5 ONE_MINUS_SRC_ALPHA 1 - As 1 - As 1 - As 1 - As
6 DST_ALPHA Ad Ad Ad Ad
7 ONE_MINUS_DST_ALPHA 1 - Ad 1 - Ad 1 - Ad 1 - Ad
8 SRC_ALPHA_SATURATE min of

(As, 1 - Ad)
min of
(As, 1 - Ad)

min of
(As, 1 - Ad)

1

AlphaBlendMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 195

Bit5-7 Destination Blend Mode:
Mode Value R G B A

0 ZERO 0 0 0 0
1 ONE 1 1 1 1
2 SRC_COLOR Rs Gs Bs As
3 ONE_MINUS_SRC_COLOR 1 - Rs 1 - Gs 1 - Bs 1 - As
4 SRC_ALPHA As As As As
5 ONE_MINUS_SRC_ALPHA 1 - As 1 - As 1 - As 1 - As
6 DST_ALPHA Ad Ad Ad Ad
7 ONE_MINUS_DST_ALPHA 1 - Ad 1 - Ad 1 - Ad 1 - Ad

Bit8-11 Color Format:
Internal Color Channel

Format Name R G B A
0 8:8:8:8 8@0 8@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4:4:4:4 4@0 4@4 4@8 4@12

Color 3 4:4:4:4Front 4@0 4@8 4@16 4@24
Order: 4 4:4:4:4Back 4@4 4@12 4@20 4@28
BGR 5 3:3:2Front 3@0 3@3 2@6 255

6 3:3:2Back 3@8 3@11 2@14 255
7 1:2:1Front 1@0 2@1 1@3 255
8 1:2:1Back 1@4 2@5 1@7 255
13 5:5:5Back 5@16 5@21 5@26 255
0 8:8:8:8 8@16 8@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:4:4 4@8 4@4 4@0 4@12

Color 3 4:4:4:4Front 4@16 4@8 4@0 4@24
Order: 4 4:4:4:4Back 4@20 4@12 4@4 4@28
RGB 5 3:3:2Front 3@5 3@2 2@0 255

6 3:3:2Back 3@13 3@10 2@8 255
7 1:2:1Front 1@3 2@1 1@0 255
13 5:5:5Back 5@26 5@21 5@16 255

CI 14 CI8 8@0 0 0 0
15 CI4 4@0 0 0 0
1) n@m means n bits starting at bit m are read from the framebuffer and
scaled to fit the 8bit wide internal color channel.
2) Front and Back modes read the color value only from the corresponding
low or high bits, to assist with color space double buffering.
3) A numerical value (0 or 255) is the value substituted when that channel
does not exist in the framebuffer.

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs196

Bit12 No Alpha Buffer Present:
0 = Alpha Buffer present
1 = No Alpha Buffer present

Bit13 ColorOrder:
0 = BGR
1 = RGB

Bit14 Alpha Type:
0 = OpenGL
1 = QuickDraw3D

Bit15 Alpha Dst:
0 = FBData
1 = FBSourceData

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 197

Name: Alpha Test Mode

Unit: Alpha Test

Region: 0 Offset: 0x0000.8800

Tag: 0x100

Read/write Reset Value: Undefined

08162431

reference

Enable unit Unsigned compare
function

When the unit is enabled, the compare operation compares the fragment's alpha value,
against the reference alpha value in this register. If the comparison result is false, then
the fragment is culled, and will not be drawn.

If the alpha test is disabled then it is as if the alpha test always passes.

The compare operation is done unsigned. The sense of the test is such that if the
comparison is LESS and the reference value is 0x80, then fragments with alpha values
between 0x0 and 0x7F will pass the test.

Bit0 Alpha Test Enable:
0 = Disable
1 = Enable

Bit1-3 Unsigned Compare Function:
Mode Comparison Function

0 NEVER
1 LESS
2 EQUAL
3 LESS OR EQUAL
4 GREATER
5 NOT EQUAL
6 GREATER OR EQUAL
7 ALWAYS

Bit4-11 Reference value

AlphaTestMode

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs198

Name: Antialias Mode

Unit: Antialias Application

Region: 0 Offset: 0x0000.8808

Tag: 0x101

Read/write Reset Value: Undefined

08162431

Color mode

Antialias Enable

Controls the operation of antialiasing. When the unit is enabled:
• In Color Index (CI) mode the bottom 4 bits of the color index of a

fragment is replaced by the coverage value scaled by 15/256, where the
result is rounded to the nearest integer.

• In RGBA mode the alpha component of a fragment is multiplied by the
coverage value, but the RGB components are not changed.

Note that the CoverageEnable bit in the Render command must also be set to enable
antialiasing.

Bit0 Antialias Enable:
0 = Disable
1 = Enable

Bit0 Color Mode:
0 = RGBA
1 = CI

AntialiasMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 199

Name: Area Stipple Mode
Unit: Stipple

Region: 0 Offset: 0x0000.81A0

Tag: 0x34

Read/write Reset Value: Undefined

08162431

Enable unit

Y sel X sel

Address select

X OffsetY Offset

Mirror Y

Mirror X

Invert Stipple Pattern

reserved

Controls Area Stippling.
Both the AreaStippleEnable bit in the Render command and the enable in the
AreaStippleMode register must be set, to enable the area stipple test.
Bit0 Unit Enable:

0 = Disable
1 = Enable

Bit1-3 X address select:
0 = 1 bit
1 = 2 bit
2 = 3 bit
3 = 4 bit
4 = 5 bit

Bit4-6 Y address select:
0 = 1 bit
1 = 2 bit
2 = 3 bit
3 = 4 bit
4 = 5 bit

Bit7-11 XOffset
Bit12-16 YOffset
Bit17 Invert Stipple Pattern:

0 = No Invert
1 = Invert

Bit18 Mirror X:
0 = No Mirror
1 = Mirror

Bit19 Mirror Y:
0 = No Mirror
1 = Mirror

AreaStippleMode

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs200

Name: Area Stipple Pattern

Unit: Stipple

Region: 0 Offset: 0x0000.8200, ..., 0x0000.82F8

Tag: 0x40, ...,0x5F

Read/write Reset Value: Undefined

08162431

32 bit mask

These 32 registers provide the bitmask which enables and disables corresponding
fragments for drawing when rasterizing a primitive with area stippling.

Both the AreaStippleEnable in the Render command and enable in the
AreaStippleMode register must be set, to enable the area stipple test.

Name: Initial Color - Alpha

Unit: Color DDA

Region: 0 Offset: 0x0000.87C8

Tag: 0xF9

Read/write Reset Value: Undefined

08162431

integer fractionnot used

This register is used to set the initial value for the Alpha value for a vertex when in
Gouraud shading mode. The value is 2's complement 9.15 fixed point format.

AreaStipplePattern[0...31]

AStart

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 201

Name: Bit Mask Pattern

Unit: Rasterizer

Region: 0 Offset: 0x0000.8068

Tag: 0xD

Write Reset Value: Undefined

08162431

32 bit mask

Value used to control the bit mask stipple operation (if enabled). Fragments are accepted
or rejected based on the current BitMask test modes defined by the RasterizerMode
register. Note that the SyncOnBitmask bit in the Render command must also be
enabled.

Name: Texture Border Color

Unit: Texture

Region: 0 Offset: 0x0000.84A8

Tag: 0x95

Read/write Reset Value: Undefined

08162431

BlueAlpha Green Red

32bit color value to be used for texture borders.

BitMaskPattern

BorderColor

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs202

Name: Initial Color - Blue

Unit: Color DDA

Region: 0 Offset: 0x0000.87B0

Tag: 0xF6

Read/write Reset Value: Undefined

08162431

integer fractionnot used

This register is used to set the initial value for the Blue value for a vertex when in
Gouraud shading mode. The value is 2's complement 9.15 fixed point format.

Name: Color

Unit: Color DDA

Region: 0 Offset: 0x0000.87F0

Tag: 0xFE

Write Reset Value: Undefined

08162431

BlueAlpha Green Red

08162431

32 bit value

Used for downloading image data to the framebuffer. The format is either the standard
color format, or the raw framebuffer format if the color formatting unit is disabled.

In CI mode the color index is placed in bits 0-7. If the color index is less than 8bits then
it is left justified in the most significant end of bits 0-7, and the least significant bits
should be set to zero.

This register cannot be saved and restored as part of a task context switch.

When used this register should always be reloaded at start of every command, and the
Color DDA unit must be disabled prior to loading it.

It can result in higher performance than using the ConstantColor register when
rendering flat shaded, depth buffered primitives.

BStart

Color

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 203

Name: Color DDA Mode

Unit: Color DDA

Region: 0 Offset: 0x0x0000.87E0

Tag: 0xFC

Read/write Reset Value: Undefined

08162431

reserved

Shading Mode Unit Enable

The bit fields control the mode of operation of the Color DDA unit:

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1 Shading mode control:
0 = Flat
1 = Gouraud

ColorDDAMode

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs204

Name: Constant Color

Unit: Color DDA

Region: 0 Offset: 0x0000.87E8

Tag: 0xFD

Read/write Reset Value: Undefined

08162431

BlueAlpha Green Red

08162431

32 bit value

Set to either an encoded color RGBA, (or a raw framebuffer data value if the color
formatting unit is disabled) when in Flat shading mode (see the ColorDDAMode
register).

In CI mode the color index is placed in bits 0-7. If the color index is less than 8bits then
it is left justified in the most significant end of bits0-7, and the least significant bits
should be set to zero.

Name: Continue

Unit: Rasterizer

Region: 0 Offset: 0x0000.8058

Tag: 0xB

Write Reset Value: Undefined

reserved unsigned 16 bit integer

08162431

This command causes rasterization to continue after new delta value(s) have been
loaded, but does not cause either of the trapezoid's edge DDAs to be reloaded.

The data field holds the number of scanlines (or sub scanlines) to fill. Note this count
does not get loaded into the Count register.

ConstantColor

Continue

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 205

Name: Continue - New Dominant Edge

Unit: Rasterizer

Region: 0 Offset: 0x0000.8048

Tag: 0x9

Write Reset Value: Undefined

reserved unsigned 16 bit integer

08162431

This command causes rasterization to continue with a new dominant edge. The
dominant edge DDA in the rasterizer is reloaded with the new parameters. The
subordinate edge is carried on from the previous trapezoid. This allows any convex 2D
polygon to be broken down into a collection of trapezoids and continuity maintained
across boundaries.

Since this command only affects the rasterizer DDA (and not any of the other units), it
is not suitable for 3D operations.

The data field holds the number of scanlines (or sub scanlines) to fill. Note this count
does not get loaded into the Count register.

Name: Continue - New Line Segment

Unit: Rasterizer

Region: 0 Offset: 0x0000.8040

Tag: 0x8

Write Reset Value: Undefined

reserved unsigned 16 bit integer

08162431

This command causes rasterization to continue for the next segment in a polyline. The
XY position is carried on from the previous line, however the fraction bits in the DDAs
can be kept, set to zero, one half, or nearly one half, under control of the
RasterizerMode register.

The data field holds the number of pixels (or sub pixels) in a line. Note this count does
not get loaded into the Count register.

The use of ContinueNewLine is not recommended for OpenGL because the DDA
units will start with a slight error as compared with the value they would have been
loaded with for the second and subsequent segments.

ContinueNewDom

ContinueNewLine

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs206

Name: Continue - New Subordinate Edge

Unit: Rasterizer

Region: 0 Offset: 0x0000.8050

Tag: 0xA

Write Reset Value: Undefined

reserved unsigned 16 bit integer

08162431

This command causes rasterization to continue with a new subordinate edge. The
subordinate DDA is reloaded with the new parameters. The dominant edge is carried on
from the previous trapezoid. This is very useful when scan converting triangles with a
'knee' (i.e. two subordinate edges).

The data field holds the number of scanlines (or sub scanlines) to fill. Note this count
does not get loaded into the Count register.

Name: Count

Unit: Rasterizer

Region: 0 Offset: 0x0000.8030

Tag: 0x6

Read/write Reset Value: Undefined

reserved unsigned 16 bit integer

08162431

Contents is dependent on the mode set in the Render command:
Number of pixels in a line.

Number of scanlines in a trapezoid.

Number of sub scanlines in an antialiased trapezoid.

Diameter of an antialiased point in sub scanlines.

ContinueNewSub

Count

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 207

Name: X Derivative - Color

Unit: Color DDA

Region: 0 Offset: 0x0000.87D0, 0x0000.87B8,
0x0000.87A0, 0x0000.8788

Tag: 0xFA, 0xF7, 0xF4, 0xF1

Read/write Reset Value: Undefined

08162431

integer fractionnot used

These four registers are used to set the X derivative for the Alpha, Blue, Green, Red
values for the interior of a trapezoid when in Gouraud shading mode. The value is in 2's
complement 9.15 fixed point format.

dAdx

dBdx

dGdx

dRdx

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs208

Name: Y Derivative Dominant - Color

Unit: Color DDA

Region: 0 Offset: 0x0000.87D8, 0x0000.87C0,
0x0000.87A8, 0x0000.8790

Tag: 0xFB, 0xF8, 0xF5, 0xF2

Read/write Reset Value: Undefined

08162431

integer fractionnot used

These four registers are used to set the Y derivative dominant, for the Alpha, Blue,
Green, Red values along a line, or for the dominant edge of a trapezoid, when in
Gouraud shading mode. The value is in 2's complement 9.15 fixed point format.

Name: Depth

Unit: Depth

Region: 0 Offset: 0x0000.89A8

Tag: 0x135

Read/write Reset Value: Undefined

08162431

Right justified depth value

Holds an externally sourced 32 bit depth value. If the depth buffer holds less than 32bits
then the user supplied depth value is right justified to the least significant end. The
unused most significant bits should be set to zero.

This is used in the draw pixels function where the host supplies the depth values through
the Depth register.

Alternatively this is used when a constant depth value is needed, for example, when
clearing the depth buffer, or for 2D rendering where the depth is held constant.

dAdyDom
dBdyDom
dGdyDom
dRdyDom

Depth

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 209

Name: Depth Mode

Unit: Depth

Region: 0 Offset: 0x0000.89A0

Tag: 0x134

Read/write Reset Value: Undefined

08162431

New depth source

Write Mask Unit Enable

Compare mode

Controls the comparison of a fragment's depth value and updating of the depth buffer.
If the compare function is LESS and the result is true then the fragment value is less
than the source value.

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1 Writemask:
0 = Disable write to depth buffer
1 = Enable write to depth buffer

Bit2-3 Source of depth value for comparison:
0 = Fragment's depth value
1 = LBData -
 for copy pixels when destination depth planes are not
 updated.
2 = Depth register
3 = LBSourceData -
 for copy pixels when destination depth planes are
 updated.

DepthMode

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs210

Bit4-6 Comparison function:
Mode Comparison Function

0 NEVER
1 LESS
2 EQUAL
3 LESS OR EQUAL
4 GREATER
5 NOT EQUAL
6 GREATER OR EQUAL
7 ALWAYS

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 211

Name: X Derivative - Fog

Unit: Fog

Region: 0 Offset: 0x0000.86A8

Tag: 0xD5

Read/write Reset Value: Undefined

08162431

integer fraction

Fog coefficient derivative per unit X for use in rendering trapezoids. The value is in 2's
complement 10.22 fixed point format.

Name: Y Derivative Dominant - Fog

Unit: Fog

Region: 0 Offset: 0x0000.86B0

Tag: 0xD6

Read/write Reset Value: Undefined

08162431

integer fraction

Fog coefficient derivative per unit Y along a line, or for the dominant edge of a
trapezoid. The value is in 2's complement 10.22 fixed point format.

dFdx

dFdyDom

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs212

Name: Dither Mode

Unit: Color Formatting

Region: 0 Offset: 0x0000.8818

Tag: 0x103

Read/write Reset Value: Undefined

08162431

reserved

Unit enable

X Offset

Y Offset

Color format

Reserved

Alpha Dither

Color Order

Rounding Mode

Dither Enable

Controls the color formatting unit.

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1 Dither Enable:
0 = Disable
1 = Enable

Bit2-5 Color Format:

1) n@m means that the internal color channel is converted into an n bit
number and stored in the framebuffer at bit m. Bit zero is the least significant
bit position.
2) Front and Back modes replicate the color value into the low and high bits
to assist with color space double buffering. The modes are redundantly
duplicated to mirror the color format field of the AlphaBlendMode register.
Writemasks should be used to select only the high or low bits for each
channel.
3) CI values are replicated into each byte (CI8) or nibble (CI4) to assist with
color space double buffering.
4) A dash indicates that this channel does not occur in the framebuffer.

DitherMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 213

Internal Color Channel
Format Name R G B A

0 8:8:8:8 8@0 8@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4:4:4:4 4@0 4@4 4@8 4@12
3 4:4:4:4

Front
4@0
4@4

4@8
4@12

4@16
4@20

4@24
4@28

Color
Order:

4 4:4:4:4
Back

4@0
4@4

4@8
4@12

4@16
4@20

4@24
4@28

BGR 5 3:3:2
Front

3@0
3@8

3@3
3@11

2@6
2@14

--

6 3:3:2
Back

3@0
3@8

3@3
3@11

2@6
2@14

--

7 1:2:1
Front

1@0
1@4

2@1
2@5

1@3
1@7

--

8 1:2:1
Back

1@0
1@4

2@1
2@5

1@3
1@7

--

13 5:5:5
Back

5@0
5@16

5@5
5@21

5@10
5@26

--

0 8:8:8:8 8@16 8@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:4:4 4@8 4@4 4@0 4@12
3 4:4:4:4

Front
4@16
4@20

4@8
4@12

4@0
4@4

4@24
4@28

Color
Order:

4 4:4:4:4
Back

4@16
4@20

4@8
4@12

4@0
4@4

4@24
4@28

RGB 5 3:3:2
Front

3@5
3@13

3@2
3@10

2@0
2@8

--

6 3:3:2
Back

3@5
3@13

3@2
3@10

2@0
2@8

--

7 1:2:1
Front

1@3
1@7

2@1
2@5

1@0
1@4

--

8 1:2:1
Back

1@3
1@7

2@1
2@5

1@0
1@4

--

13 5:5:5
Back

5@10
5@26

5@5
5@21

5@0
5@16

--

CI 14 CI8 8@0 0 0 0
15 CI4 4@0 0 0 0

Bit6-7 XOffset to enable window relative dithering.

Bit8-9 YOffset to enable window relative dithering.

Bit10 Color Order:
0 = BGR

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs214

1 = RGB

Bit14 Alpha Dither:
0 = Default
1 = No Dither

Bit15 Rounding Mode:
0 = Truncate
1 = Round

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 215

Name: Ks and Kd Derivative unit X

Unit: Texture

Region: 0 Offset: 0x0000.86D0, 0x0000.86E8

Tag: 0xDA, 0xDD

Read/write Reset Value: Undefined

08162431

fraction

integer

not used

Derivative unit X for Ks and Kd. The value is 2.22, 2's complement fixed point format.

Name: Ks and Kd Derivative unit Y Dominant edge

Unit: Texture

Region: 0 Offset: 0x0000.86D8, 0x0000.86F0

Tag: 0xDB, 0xDE

Read/write Reset Value: Undefined

08162431

fraction

integer

not used

Derivative unit Y dominant edge, for Ks and Kd. The value is 2.22, 2's complement
fixed point format.

dKddxdKsdx

dKddyDom

dKsdyDom

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs216

Name: X Derivative - Texture

Unit: Texture

Region: 0 Offset: 0x0000.8390, 0x0000.83A8
0x0000.83C0

Tag: 0x72, 0x75, 0x78

Read/write Reset Value: Undefined

08162431

2’s complement fixed point number

Used to set the X derivative for the S, T and Q parameters for texture map
interpolation. The value is in 2's complement fixed point format. The binary point is at
an arbitrary location, but must be consistent for all S, T and Q values.

dQdx
dSdx
dTdx

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 217

Name: Y Derivative Dominant - Texture

Unit: Texture

Region: 0 Offset: 0x0000.8398, 0x0000.83B0
0x0000.83C8

Tag: 0x73, 0x76, 0x79

Read/write Reset Value: Undefined

08162431

2’s complement fixed point number

Used to set the Y derivative dominant for the S, T and Q parameters for texture map
interpolation. The value is in 2's complement fixed point format. The binary point is at
an arbitrary location, but must be consistent for all S, T and Q values.

Name: Delta X Dominant

Unit: Rasterizer

Region: 0 Offset: 0x0000.8008

Tag: 0x1

Read/write Reset Value: Undefined

Integer Fraction

08162431

Value added when moving from one scanline (or sub scanline) to the next for the
dominant edge in trapezoid filling. The value is in 2's complement 16.16 fixed point
format.

Also holds the change in X when plotting lines. For Y major lines this will be some
fraction (dx/dy), otherwise it is normally ± 1.0, depending on the required scanning
direction.

dQdyDom
dSdyDom
dTdyDom

dXDom

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs218

Name: Delta X Subordinate

Unit: Rasterizer

Region: 0 Offset: 0x0000.8018

Tag: 0x3

Read/write Reset Value: Undefined

Integer Fraction

08162431

Value added when moving from one scanline (or sub scanline) to the next for the
subordinate edge in trapezoid filling. The value is in 2’s complement 16.16 fixed point
format.

Name: Delta Y

Unit: Rasterizer

Region: 0 Offset: 0x0000.8028

Tag: 0x5

Read/write Reset Value: Undefined

Integer Fraction

08162431

Value added to Y to move from one scanline to the next.

For X major lines this will be some fraction (dy/dx), otherwise it is normally ± 1.0,
depending on the required scanning direction. The value is in 2's complement 16.16 fixed
point format.

For trapezoids the value will be:

±1.0 if non-antialiased, depending on the scanning direction.

±0.25 when using 4x4 quality antialiasing, depending on the scanning direction.

±0.125 when using 8x8 quality antialiasing, depending on the scanning direction.

dXSub

dY

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 219

Name: Depth Derivative X

Unit: Depth

Region: 0 Offset: 0x0000.89C8, 0x0000.89C0

Tag: 0x139, 0x138

Read/write Reset Value: Undefined

32 bits integer 16 bits fraction remaining bits 0

dZdxU dZdxL

This pair of registers set the depth derivative per unit in X used in rendering trapezoids.
dZdxU holds the most significant bits, and dZdxL the least significant bits. The value is
in 2's complement 32.16 fixed point format.

Name: Depth Derivative Y Dominant

Unit: Depth

Region: 0 Offset: 0x0000.89D8, 0x0000.89D0

Tag: 0x13B, 0x13A

Read/write Reset Value: Undefined

32 bits integer 16 bits fraction remaining bits 0

dZdyDomU dZdyDomL

This pair of registers set the depth derivative per unit in Y for the dominant edge, or
along a line. dZdyDomU holds the most significant bits, and dZdyDomL the least
significant bits. The value is in 2's complement 32.16 fixed point format.

dZdxLdZdxU

dZdyDomL

dZdyDomU

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs220

Name: Fast Clear Depth

Unit: Depth

Region: 0 Offset: 0x0000.89E0

Tag: 0x13C

Read/write Reset Value: Undefined

08162431

Right justified zero filled depth value

Depth value to be substituted when using the Frame Count Planes mechanism to
provide fast clear of the depth buffer.

Name: Framebuffer Block Color

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8AC8

Tag: 0x159

Read/write Reset Value: Undefined

08162431

32 bit value

Contains the color (and optionally alpha value) to be written to the framebuffer during
block writes. Note the format is the raw data format of the framebuffer.

If the framebuffer is used in 8 bit packed mode, then data should be replicated to all 4
bytes of the register.

If the framebuffer is in 16 bit packed mode then the data must be replicated to both
halves of the register.

Writing to this register will automatically update the upper and lower 32 bits of the
destination 64bit wide register in the VRAMs.

Reading from this register will return the lower 32 bits of the 64 bit wide register in the
VRAMs.

FastClearDepth

FBBlockColor

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 221

Name: Framebuffer Block Color Lower and Upper

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8C70, 0x0000.8C68

Tag: 0x18E, 18D

Read/write Reset Value: Undefined

03263

FBBlockColorU FBBlockColorL

Contains the lower and upper respectively, 32 bit words of color data (and optionally
alpha value) to be written to the framebuffer during block writes. Note the format is the
raw data format of the framebuffer.

Note the lower 32bits are at the higher address.

If the framebuffer is used in 8 bit packed mode, then data should be replicated to all 8
bytes of the register.

If the framebuffer is in 16 bit packed mode then the data must be replicated to all four
half words of the register.

The FBBlockColorL and FBBlockColorU registers are aliased with the FBBlockColor
register for backwards compatibility.

Name: Framebuffer Color Upload

Unit: Framebuffer R/W

Region: N/A Offset: N/A

Tag: 0x153

Read/Output Reset Value: Undefined

32bits framebuffer data

08162431

Internal register used in image upload. Note this register should not be written to. It is
documented here to give the format and tag value of the data returned through the Host
Out FIFO.

The format is dependent on the raw framebuffer organization and any reformatting
which takes place in the Color Format unit.

FBBlockColorLFBBlockColorU

FBColor

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs222

Name: Framebuffer Data

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8AA0

Tag: 0x0154

Reset Value: Undefined

Write

08162431

32 bit value

Supplies the data for situations such as image download where subsequent formatting is
required. The formatting can be achieved by means of the AlphaBlendMode register to
convert to the internal GLINT format, and then via the DitherMode register to convert
to the required format.

Name: Hardware Writemask

Unit: Framebuffer Writemask

Region: 0 Offset: 0x0000.8AC0

Tag: 0x158

Read/write Reset Value: Undefined

08162431

32 bit mask

Contains the hardware writemask for the framebuffer. If a bit is set to one then the
corresponding bit in the framebuffer is enabled for writing, otherwise it is disabled. Only
applicable to configurations where the framebuffer supports a hardware writemask.

In cases where it is NOT supported, this register should not be written to.

If hardware writemasks are used then all the bits in the software writemask must be set
to 1, so that software writemasking is disabled.

If the framebuffer is used in 8 bit packed mode, then an 8bit hardware writemask must
be replicated to all 4 bytes of the FBHardwareWriteMask register.

If the framebuffer is in 16 bit packed mode then the 16 bit hardware writemask must be
replicated to both halves of the FBHardwareWriteMask register.

FBData

FBHardwareWriteMask

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 223

Name: Framebuffer Pixel Offset

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8A90

Tag: 0x152

Read/write Reset Value: Undefined

08162431

24 bit 2's complement integernot used

Offset between buffers when operating on multiple buffers (left/right/front/back) in
the framebuffer at the same time.

FBPixelOffset

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs224

Name: Framebuffer Read Mode

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8A80

Tag: 0x150

Read/write Reset Value: Undefined

08162431

reserved

Partial product
selection

PP0PP1PP2reserved

Read Source enable
Read Destination enable

Data Type

Window OriginScanline Interval

reserved

Controls reading from framebuffer memory.

Bit0-2 Partial Product 0 - See Appendix C for a table of values.

Bit3-5 Partial Product 1 - See Appendix C for a table of values.

Bit6-8 Partial Product 2 - See Appendix C for a table of values.

Bit9 Read Source Enable:
0 = no read
1 = do read

Bit10 Read Destination Enable:
0 = no read
1 = do read

Bit15 Data Type:
0 = FBDefault - for data that may be written back to the framebuffer
1 = FBColor - for image upload

Bit16 Window Origin:
0 = Top left
1 = Bottom left

Bit17-22 Reserved:

Bit23-24 Scanline Interval:
0 = 1
1 = 2
2 = 4
3 = 8

FBReadMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 225

Name: S/w Writemask

Unit: Framebuffer Writemask

Region: 0 Offset: 0x0000.8820

Tag: 0x104

Read/write Reset Value: Undefined

08162431

32 bit mask

Contains the software writemask for the framebuffer. If a bit is set to one then the
corresponding bit in the framebuffer is enabled for writing, otherwise it is disabled. In
addition whenever the writemask is other than all 1s, framebuffer reads must be enabled
by setting the ReadDestinationEnable bit in the FBReadMode register.

If hardware writemasks are used then all the bits in the software writemask must be set
to 1, so that software writemasking is disabled.

Name: Framebuffer Source Data

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8AA8

Tag: 0x0155

Reset Value: Undefined

Write
08162431

32-bit value

Supplies the data for situations such as image download with logic ops, where the data is
treated as the source rather than the destination parameter. The data supplied should be
raw framebuffer format.

FBSoftwareWriteMask

FBSourceData

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs226

Name: Framebuffer Source Offset

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8A88

Tag: 0x151

Read/write Reset Value: Undefined

08162431

24 bit 2's complement integernot used

Sets the offset between the source and destination for a copy operation in the
framebuffer.

SourceOffset = SourceAddr - DestAddr

Name: Framebuffer Window Base

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8AB0

Tag: 0x156

Read/write Reset Value: Undefined

08162431

24bit unsigned integerreserved

Contains the current base address of the window in the framebuffer.

FBSourceOffset

FBWindowBase

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 227

Name: Framebuffer Write Data

Unit: Logic Op

Region: 0 Offset: 0x0000.8830

Tag: 0x106

Read/write Reset Value: Undefined

08162431

32 bit value

Contains the color value to be written to the framebuffer when the
UseConstantFBWriteData bit of the LogicalOpMode register is set to one. Note that
the following conditions must be met for this mode of rendering to be used:

• Flat shaded aliased primitive

• No dithering required

• No logical operation involving a destination factor

• No stencil, depth or GID testing

• No alpha blending

• No software writemasking

The data is in the raw format of the framebuffer.

Hardware writemasks can be used if available.

FBWriteData

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs228

Name: Framebuffer Write Mode

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8AB8

Tag: 0x157

Read/write Reset Value: Undefined

08162431

reserved

Write Enable
0 = Writes disabled
1 = Writes ensabled

UpLoadData
0 = Disabled
1 = Enabled

reserved

Controls writing to the framebuffer.

Bit0 Write Enable:
0 = Disable
1 = Enable

Bit1-2 Reserved:

Bit3 UpLoadData:
0 = No upload
1 = Upload color to host

FBWriteMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 229

Name: Filter Mode

Unit: Host Out

Region: 0 Offset: 0x0000.8C00

Tag: 0x180

Read/write Reset Value: Undefined

08162431

Individual bits defined belowreserved

Controls culling of information from the output FIFO. If both tag and data are specified
then the tag is always the first word in the FIFO.

Bit0-3 Diagnostic use only - set to zero.

Bit4 Depth Tag Filter: Used in Depth buffer image upload.
0 = Cull Depth Tags from being passed to output FIFO
1 = Pass Depth Tags to output FIFO

Bit5 Depth Data Filter: Used in Depth buffer image upload
0 = Cull Depth data values from being passed to output FIFO
1 = Pass Depth data values to outpu t FIFO

Bit6 Stencil Tag Filter: Used in Stencil buffer image upload
0 = Cull Stencil Tags from being passed to output FIFO
1 = Pass Stencil Tags to output FIFO

Bit7 Stencil Data Filter: Used in Stencil buffer image upload
0 = Cull Stencil data values from being passed to output
 FIFO
1 = Pass Stencil data values to output FIFO

Bit8 Color Tag Filter: Used in Framebuffer image upload
0 = Cull Color Tags from being passed to output FIFO
1 = Pass Color Tags to output FIFO

Bit9 Color Data Filter: Used in Framebuffer image upload
0 = Cull Color data values from being passed to output FIFO
1 = Pass Color data values to output FIFO

Bit10 Synchronization Tag Filter:
0 = Cull Synchronization Tags from being passed to output
 FIFO
1 = Pass Synchronization Tags to output FIFO

FilterMode

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs230

Bit11 Synchronization Data Filter:
0 = Cull Synchronization data values from being passed to
 output FIFO
1 = Pass Synchronization data values to output FIFO

Bit12 Statistics Tag Filter: Used in Picking and Extent read back
0 = Cull Statistics Tags from being passed to output FIFO
1 = Pass Statistics Tags to output FIFO

Bit13 Statistics Data Filter: Used in Picking and Extent read back
0 = Cull Statistics data values from being passed to output
 FIFO
1 = Pass Statistics data values to output FIFO

Bit14-15 Diagnostic use only - set to zero.

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 231

Name: Flush Span

Unit: Rasterizer

Region: 0 Offset: 0x0000.8060

Tag: 0xC

Write Reset Value: Undefined

reserved

08162431

Command used when antialiasing to force rasterization of any remaining sub-scanlines in
a primitive.

Name: Fog Color

Unit: Fog

Region: 0 Offset: 0x0000.8698

Tag: 0xD3

Read/write Reset Value: Undefined

08162431

BlueAlpha Green Red

Provides the color to be blended with the fragment's color when fogging is enabled.

In CI mode the color index is placed in bits 0-7. If the color index is less than 8bits then
it is left justified in the most significant end of bits0-7, and the least significant bits
should be set to zero.

FlushSpan

FogColor

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs232

Name: Fog Mode

Unit: Fog

Region: 0 Offset: 0x0000.8690

Tag: 0xD2

Read/write Reset Value: Undefined

08162431

Enable Fog

Color Mode

reserved

Controls operation of the Fog unit.

Note that the FogEnable bit in the Render command must be set for fogging to be
applied to a primitive.

Bit0 Enable Fog:
0 = Disable
1 = Enable

Bit1 Color Mode:
0 = RGBA
1 = CI

FogMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 233

Name: Fog Start Color

Unit: Fog

Region: 0 Offset: 0x0000.86A0

Tag: 0xD4

Read/write Reset Value: Undefined

08162431

integer fraction

Fog coefficient start value. Note the interpolation coefficient is used to blend the
fragments color with the color in the FogColor register. The value is in 2's complement
10.22 fixed point format.

Name: Initial Color - Green

Unit: Color DDA

Region: 0 Offset: 0x0000.8798

Tag: 0xF3

Read/write Reset Value: Undefined

08162431

integer fractionnot used

This register is used to set the initial value for the Green value for a vertex when in
Gouraud shading mode. The value is 2's complement 9.15 fixed point format.

FStart

GStart

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs234

Name: Interpolation Coefficients

Unit: Texture

Region: 0 Offset: 0x0000.8640, ..., 0x0000.8660

Tag: 0xC8, ..., 0xCC

Read/write Reset Value: Undefined

08162431

fractionreserved

positive integer component

Interpolation coefficients for texture mapping . The value is in 1.8 fixed point format.

These registers are only present for backwards compatibility with the GLINT 300SX.
They should not be used for the GLINT 500TX.

Name: Ks and Kd Start Value

Unit: Texture

Region: 0 Offset: 0x0000.86C8, 0x0000.86E0

Tag: 0xD9, 0xDC

Read/write Reset Value: Undefined

08162431

fraction

integer

Initial values for Ks and Kd. The value is 2.22, 2's complement fixed point format.

Interp[0...4]

KdStart

KsStart

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 235

Name: Localbuffer Depth Upload

Unit: Localbuffer R/W

Region: N/A Offset: N/A

Tag: 0x116

Read/Output Reset Value: Undefined

32bit depth(Z) value

08162431

Internal register used in image upload of the depth buffer. This register should not be
written to. It is documented here to give the tag value and format of the data which is
read from the Host Out FIFO. Where the depth(Z) buffer width is less than 32bits, the
depth value is right justified and zero extended.

LBDepth

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs236

Name: Localbuffer Read Format

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.8888

Tag: 0x111

Read/write Reset Value: Undefined

08162431

reserved

Depth Width

FrameCount Width
FrameCount Position

GID Width
GID Position

Compact32

Stencil Width

Stencil
Position

Specifies the format used when reading from localbuffer memory. The effect of creating
a format with overlapping fields is undefined.

Bit0-1 Depth Width:
0 = 16
1 = 24
2 = 32

Bit2-3 Stencil Width:
0 = 0
1 = 4
2 = 8

Bit4-6 Stencil Position:
0 = 16
1 = 20
2 = 24
3 = 28
4 = 32

Bit7-8 Frame Count Width:
0 = 0
1 = 4
2 = 8

LBReadFormat

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 237

Bit9-11 Frame Count Position:
0 = 16
1 = 20
2 = 24
3 = 28
4 = 32
5 = 36
6 = 40

Bit12 GID Width:
0 = 0
1 = 4

Bit13-16 GID Position:
0 = 16
1 = 20
2 = 24
3 = 28
4 = 32
5 = 36
6 = 40
7 = 44
8 = 48

Bit17 Compact32:
0 = No
1 = Yes

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs238

Name: Localbuffer Read Mode

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.8880

Tag: 0x110

Read/write Reset Value: Undefined

08162431

reserved

Partial product
selection

PP0PP1PP2reserved

Read Source enable

Read Destination enable

Data Type

Window OriginPatch
Scanline Interval
Patch Code

Controls reading from localbuffer memory.

Bit0-2 Partial Product 0

Bit3-5 Partial Product 1

Bit6-8 Partial Product 2

Bit9 Read Source Enable:
0 = no read
1 = do read

Bit10 Read Destination Enable:
0 = no read
1 = do read

Bit16-17 Data Type:
0 = Localbuffer Default
1 = Localbuffer Stencil
2 = Localbuffer Depth

Bit18 Window Origin:
0 = Top left
1 = Bottom left

Bit19 Patch:
0 = No
1 = Yes

Bit20-21 Scanline Interval:
0 = 1
1 = 2
2 = 4
3 = 8

Bit22-24 Patch Code: Controls texture download address generation

LBReadMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 239

Name: Localbuffer Source Offset

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.8890

Tag: 0x112

Read/write Reset Value: Undefined

08162431

24 bit 2's complement integernot used

Sets the offset between the source and destination for a copy operation in the
localbuffer, i.e.:

SourceOffset = SourceAddr - DestAddr

Name: Localbuffer Stencil Upload

Unit: Localbuffer R/W

Region: N/A Offset: N/A

Tag: 0x115

Read/Output Reset Value: Undefined

01631

GID FrameCount Stencilreserved

08162431

Internal register used in image upload of the stencil buffer. This register should not be
written to. It is documented here to give the tag value and format of the data which is
read from the Host Out FIFO.

Bit0-7 Stencil:

Bit8-15 FrameCount:

Bit16-19 GID:

LBSourceOffset

LBStencil

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs240

Name: Localbuffer Window Base

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.88B8

Tag: 0x117

Read/write Reset Value: Undefined

08162431

24bit unsigned integerreserved

Contains the current base address of the window in the localbuffer.

LBWindowBase

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 241

Name: Localbuffer Write Format

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.88C8

Tag: 0x119

Read/write Reset Value: Undefined

08162431

reserved

Depth Width

FrameCount Width
FrameCount Position

GID Width
GID Position

Compact32

Stencil Width

Stencil
Position

Specifies the format used when writing to localbuffer memory. The effect of setting a
configuration with overlapping fields is undefined.

Bit0-1 Depth Width:
0 = 16
1 = 24
2 = 32

Bit2-3 Stencil Width:
0 = 0
1 = 4
2 = 8

Bit4-6 Stencil Position:
0 = 16
1 = 20
2 = 24
3 = 28
4 = 32

Bit7-8 Frame Count Width:
0 = 0
1 = 4
2 = 8

LBWriteFormat

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs242

Bit9-11 Frame Count Position:
0 = 16
1 = 20
2 = 24
3 = 28
4 = 32
5 = 36
6 = 40

Bit12 GID Width:
0 = 0
1 = 4

Bit13-16 GID Position:
0 = 16
1 = 20
2 = 24
3 = 28
4 = 32
5 = 36
6 = 40
7 = 44
8 = 48

Bit17 Compact32:
0 = No
1 = Yes

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 243

Name: Localbuffer Write Mode

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.88C0

Tag: 0x118

Read/write Reset Value: Undefined

08162431

reserved

Write Enable
0 = Writes disabled
1 = Writes enabled

UpLoadData
0 = None
1 = LBDepth
2 = LBStencil

Controls writing to the localbuffer.

Bit0 Write Enable:
0 = Disable
1 = Enable

Bit1-2 UpLoadData:
0 = None
1 = LBDepth
2 = LBStencil

LBWriteMode

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs244

Name: Line Stipple Mode

Unit: Stipple

Region: 0 Offset: 0x0000.81A8

Tag: 0x35

Read/write Reset Value: Undefined

08162431

Enable unit

stipple mask repeat factor

Mirror Stipple Mask

Controls Line Stippling.

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1-9 Repeat Factor - set to one less than the required value

Bit10-25 Stipple Mask

Bit26 Mirror Stipple Mask:
0 = No mirror
1 = Mirror

LineStippleMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 245

Name: Load Line Stipple Counters

Unit: Stipple

Region: 0 Offset: 0x0000.81B0

Tag: 0x36

Read/write Reset Value: Undefined

08162431

repeat_counterrepeat_counter bit_counter bit_counter

Segment register 'Live' counters

Command register used to restore the line stipple counters and segment register after a
task switch. The counters are incremented during a line stipple so the value read from
them, via the read back path may not match the value loaded into them using this
register.

LoadLineStippleCounters

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs246

Name: Logic Op Mode

Unit: Logic Op

Region: 0 Offset: 0x0000.8828

Tag: 0x105

Read/write Reset Value: Undefined

08162431

LogicalOp enable

LogicOp

UseConstantFBWriteData

Controls Logical Operations on the framebuffer.

The UseConstantFBWriteData bit when set to one, causes the color value in the
FBWriteData register to be written to the framebuffer, rather than the fragment's color.
This can achieve higher bandwidth into the framebuffer for flat shaded primitives, but
may only be used when LogicalOps are disabled (Bit0 set to 0).

Bit0 Logic Op Enable:
0 = Disable
1 = Enable

Bit1-4 Logic Op:
Mode Name Operation Mode Name Operation

0 CLEAR 0 8 NOR ~(S | D)
1 AND S & D 9 EQUIV ~(S ^ D)
2 AND REVERSE S & ~D 10 INVERT ~D
3 COPY S 11 OR REVERSE S | ~D
4 AND INVERTED ~S & D 12 COPY INVERT ~S
5 NOOP D 13 OR INVERT ~S | D
6 XOR S ^ D 14 NAND ~(S & D)
7 OR S | D 15 SET 1

Where: S = Source (fragment) color, D = Destination (framebuffer) color.
Bit5 UseConstantFBWriteData:

0 = Variable
1 = Constant

LogicalOpMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 247

Name: Max Hit Region

Unit: Host Out

Region: 0 Offset: 0x0000.8C30

Tag: 0x186

Write Reset Value: Undefined

reserved

08162431

This command causes the maximum coordinates of the hit region to be passed to the
Host Out FIFO, unless culled by the statistics bits in the FilterMode register.

The format of the data output is:

08162431

16bit 2's complement maxY 16bit 2's complement maxX

The corresponding tag value output is: 0x186

MaxHitRegion

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs248

Name: Max Region

Unit: Host Out

Region: 0 Offset: 0x0000.8C18

Tag: 0x183

Read/write Reset Value: Undefined

08162431

16bit 2's complement maxY 16bit 2's complement maxX

This register has two uses:

1. During Picking it contains the maximum (X,Y) value for the pick region.

2. During Extent collection, it is set to the initial minimum (X,Y) extent, and thereafter
will be updated whenever an eligible fragment is generated which has a higher X or Y
value, with that higher value. Note eligible fragments can be either those that are
written as pixels OR those that were rasterized, but were culled from being drawn, as
controlled by the StatisticMode register.

This register is unusual in that its contents are updated by GLINT during rendering, and
so if read back, will not necessarily be the same as when originally stored.

MaxRegion

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 249

Name: Min Hit Region

Unit: Host Out

Region: 0 Offset: 0x0000.8C28

Tag: 0x185

Write Reset Value: Undefined

reserved

08162431

This command causes the minimum coordinates of the hit region to be passed to the
Host Out FIFO, unless culled by the statistics bits in the FilterMode register.

The format of the data output is:

08162431

16bit 2's complement minY 16bit 2's complement minX

The corresponding tag value output is: 0x185

MinHitRegion

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs250

Name: Min Region

Unit: Host Out

Region: 0 Offset: 0x0000.8C10

Tag: 0x182

Read/write Reset Value: Undefined

08162431

16bit 2's complement minY 16bit 2's complement minX

This register has two uses:

1. During Picking it contains the minimum (X,Y) value for the pick region.

2. During Extent collection, it is set to the initial maximum (X,Y) extent, and thereafter
will be updated whenever an eligible fragment is generated which has a lower X or Y
value, with that lower value. Note eligible fragments can be either those that are written
as pixels OR those that were rasterized, but were culled from being drawn, as controlled
by the StatisticMode register.

This register is unusual in that its contents are updated by GLINT during rendering, and
so if read back, will not necessarily be the same as when originally stored.

MinRegion

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 251

Name: Pattern RAM Mode

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8AF8

Tag: 0x15F

Read/Write Reset Value: Undefined

08162431

reserved

Pattern
Enable

YmaskYshiftXmask

Holds the mode information when the Pattern RAM is used as the source of data during
a span operation.

Bit0 PatternEnable:
0 = Disable
1 = Enable

Bit1-5 Y mask:

Bit6-8 Y shift:

Bit9-13 X mask:

Name: Pattern RAM Data

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8B00, ..., 0000.8BF8

Tag: 0x160, ..., 0x17F

Read/Write Reset Value: Undefined

08162431

32bit raw data value

Holds the Pattern RAM data used as the source of data during a span operation.

PatternRamMode

PatternRamData[0…31]

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs252

Name: Pick Result

Unit: Host Out

Region: 0 Offset: 0x0000.8C38

Tag: 0x187

Write Reset Value: Undefined

reserved

08162431

This command causes the current status of the picking result to be passed to the Host
Out FIFO, unless culled by the statistics bits in the FilterMode register.

The format of the data output is:

08162431

PickResult

reserved

The corresponding tag value output is: 0x187

Bit0 PickResult:
0 = No hit
1 = Hit has occurred

PickResult

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 253

Name: Pixel Size

Unit: Rasterizer

Region: 0 Offset: 0x0000.80C0

Tag: 0x18

Read/write Reset Value: Undefined

08162431

reserved

PixelSize

Configures the pixel depth to be used for rendering.

Bit0-1 PixelSize:
0 = 32bpp
1 = 16bpp
2 = 8bpp

PixelSize

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs254

Name: Point Table

Unit: Rasterizer

Region: 0 Offset: 0x0000.8080, ..., 0x0000.8098

Tag: 0x10, ..., 0x13

Read/write Reset Value: Undefined

08162431

P8

PointTable1

P9P10P11P12P13P14P15

08162431

P16

PointTable2

P17P18P19P20P21P22P23

08162431

P0

PointTable0

P1P2P3P4P5P6P7

08162431

P24

PointTable3

P25P26P27P28P29P30P31

Antialiased point data table. The delta values in the table are held as 1 bit integer and 3
bits fraction. From the host's view the table is organized as four 32 bit words so the
overhead of downloading when the point size changes is minimal. Only the parts of the
table needed for a particular point size need to be loaded.

PointTable[0...3]

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 255

Name: Q Start Value

Unit: Texture

Region: 0 Offset: 0x0000.83B8

Tag: 0x77

Read/write Reset Value: Undefined

08162431

2’s complement fixed point number

Initial Q value for texture map. The value is in 2's complement fixed point format. The
binary point is at an arbitrary location, but must be consistent for all S, T and Q values.

QStart

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs256

Name: Rasterizer Mode

Unit: Rasterizer

Region: 0 Offset: 0x0000.80A0

Tag: 0x14

Read/write Reset Value: Undefined

08162431

Bits defined belowreserved

Defines the long term mode of operation of the rasterizer.

Bit0 MirrorBitMask When this bit is set the bitmask bits are consumed from the
most significant end towards the least significant end. When this bit is reset
the bitmask bits are consumed from the least significant end towards the
most significant end.

Bit1 InvertBitMask When this bit is set the bitmask is inverted first before being
tested.

Bit2-3 FractionAdjust These bits are for the ContinueNewLine command and
specify how the fraction bits in the Y and XDom DDAs are adjusted.

0 = No adjustment is done,
1 = Set the fraction bits to zero,
2 = Set the fraction bits to half.
3 = Set the fraction to nearly half, i.e. 0x7FFF

Bit4-5 BiasCoordinates These bits control how much is added onto the
StartXDom, StartXSub and StartY values when they are loaded into the
DDA units. The original registers are not affected.

0 = Zero is added,
1 = Half is added
2 = Nearly half is added, i.e. 0x7FFF

Bit7-8 BitMaskByteSwapMode These bits control byte swapping of the BitMask
data. If the bytes are ABCD on input, then the swap will leave them as:

0 = ABCD (i.e. no byte swap)
1 = BADC
2 = CDAB
3 = DCBA

Bit9 BitMaskPacking This bit controls whether the BitMask data is packed, or if
new BitMask data is required on every scanline.

0 = BitMask data is packed
1 = BitMask data is provided for each scanline

RasterizerMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 257

Bit10-14 BitMaskOffset

Bit15-16 HostDataByteSwapMode These bits control byte swapping of the BitMask
data. If the bytes are ABCD on input, then the swap will leave them as:

0 = ABCD (i.e. no byte swap)
1 = BADC
2 = CDAB
3 = DCBA

Bit17 MultiGLINT Enables mode where GLINT only processes those scanlines
allocated to it in a scanline interleaved multi-GLINT system.

0 = Single GLINT mode
1 = Multi-GLINT mode

Bit18 YLimitsEnable This bit enables Ylimits testing as dictated by the Ylimits
register.

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs258

Name: Render

Unit: Rasterizer

Region: 0 Offset: 0x0000.8038

Tag: 0x7

Write Reset Value: Undefined

08162431

Bits defined belowreserved

Command to start the rendering process.

The data field defines the short term modes required by this primitive. For details see
Table 0.1 Command Register Descriptions .

Bit0 AreaStippleEnable. Note that area stipple in the Stipple Unit must be
enabled as well for stippling to occur.

0 = Disable
1 = Enable

Bit1 LineStippleEnable. Note that line stipple in the Stipple Unit must be
enabled as well for stippling to occur.

0 = Disable
1 = Enable

Bit2 ResetLineStipple. This action is also qualified by the LineStippleEnable bit
and also the stipple enable bits in the Stipple Unit.

0 = Disable
1 = Enable

Bit3 FastFillEnable The type of span filling is specified in the SpanOperation
field

0 = Disable
1 = Enable

Bit6-7 PrimitiveType These bits indicate the type of GLINT primitive to be drawn.
The primitives supported and the corresponding codes are:

0 = lines,
1 = trapezoids,
2 = points.

Bit8 AntialiasEnable
0 = Disable
1 = Enable

Bit9 AntialiasingQuality
0 = 4x4,

Render

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 259

1 = 8x8.

Bit10 UsePointTable
0 = Disable
1 = Enable

Bit11 SyncOnBitMask
0 = Disable
1 = Enable

Bit12 SyncOnHostData
0 = Disable
1 = Enable

Bit13 TextureEnable. Note that the Texture Units must be suitably enabled as well
for any texturing to occur.

0 = Disable
1 = Enable

Bit14 FogEnable. Note that the Fog Unit must be suitably enabled as well for any
fogging to occur.

0 = Disable
1 = Enable

Bit15 CoverageEnable. Note that the Antialiasing Unit must be suitably enabled as
well.

0 = Disable
1 = Enable

Bit16 SubPixelCorrectionEnable
0 = Disable
1 = Enable

Bit18 SpanOperation
0 = Use constant color from FBBlockColorU , FBBlockColorL

registers
1 = Use data from host (SynchOnHostData set) or from framebuffer

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs260

Name: Reset Pick Result

Unit: Host Out

Region: 0 Offset: 0x0000.8C20

Tag: 0x184

Write Reset Value: Undefined

reserved

08162431

This command causes the current value of the picking result to be reset to zero. The
data field is not used.

Name: Router Mode

Unit: Router

Region: 0 Offset: 0x0000.8840

Tag: 0x108

Read/write Reset Value: Undefined

08162431

reserved

Order

Switches the order of some units in the graphics hyperpipeline.

Bit0 Order:
0 = TextureDepth
1 = DepthTexture

ResetPickResult

RouterMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 261

Name: Initial Color - Red

Unit: Color DDA

Region: 0 Offset: 0x0000.8780

Tag: 0xF0

Read/write Reset Value: Undefined

08162431

integer fractionnot used

This register is used to set the initial value for the Red value for a vertex when in
Gouraud shading mode. The value is 2's complement 9.15 fixed point format.

Name: Save Line Stipple State

Unit: Stipple

Region: 0 Offset: 0x0000.81C0

Tag: 0x38

Write Reset Value: Undefined

reserved

08162431

Command Register. Copies the current counter values into an internal register for later
restoration using the UpdateLineStippleCounters command. Useful in drawing stippled
wide lines.

RStart

SaveLineStippleCounters

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs262

Name: Scanline Ownership

Unit: Rasterizer

Region: 0 Offset: 0x0000.80B0

Tag: 0x16

Read/write Reset Value: Undefined

08162431

reserved

ScanLine

ScanLineInterval

Controls which scanlines a GLINT owns in a multi-GLINT system. This register only
has an effect if the MultiGLINT bit is set in the RasterizerMode register.

Bit0-1 ScanLineInterval:
0 = 1
1 = 2
2 = 4
3 = 8

Bit2-4 Scanline: Determines which scanline is owned by this GLINT processor.

ScanLineOwnership

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 263

Name: Scissor Rectangle - Maximum XY

Unit: Scissor

Region: 0 Offset: 0x0000.8190

Tag: 0x32

Read/write Reset Value: Undefined

08162431

16 bit 2's complement X value16 bit 2's complement Y value

User scissor rectangle corner with the most positive coordinates relative to the screen
origin.

Name: Scissor Rectangle - Minimum XY

Unit: Scissor

Region: 0 Offset: 0x0000.8188

Tag: 0x31

Read/write Reset Value: Undefined

08162431

16 bit 2's complement X value16 bit 2's complement Y value

User scissor rectangle corner with the least positive coordinates relative to the screen
origin.

ScissorMaxXY

ScissorMinXY

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs264

Name: Scissor Mode

Unit: Scissor

Region: 0 Offset: 0x0000.8180

Tag: 0x30

Read/write Reset Value: Undefined

08162431

User scissor enable

Screen scissor enable

reserved

Controls enabling of the screen and user scissor tests.

Bit0 User Scissor Enable:
0 = Disable
1 = Enable

Bit1 Screen Scissor Enable:
0 = Disable
1 = Enable

ScissorMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 265

Name: Screen Size

Unit: Scissor

Region: 0 Offset: 0x0000.8198

Tag: 0x33

Read/write Reset Value: Undefined

08162431

Screen WidthScreen Height

Screen dimensions for screen scissor clip. The screen boundaries are (0, 0) to (width - 1,
height - 1) inclusive.

Name: S Start Value

Unit: Texture

Region: 0 Offset: 0x0000.8388

Tag: 0x71

Read/write Reset Value: Undefined

08162431

2’s complement fixed point number

Initial S value for texture map. The value is in 2's complement fixed point format. The
binary point is at an arbitrary location, but must be consistent for all S, T and Q values.

ScreenSize

SStart

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs266

Name: Start X Value - Dominant Edge

Unit: Rasterizer

Region: 0 Offset: 0x0000.8000

Tag: 0x0

Read/write Reset Value: Undefined

Integer Fraction

08162431

Initial X value for the dominant edge in trapezoid filling, or initial X value in line
drawing. The value is in 2's complement 16.16 fixed point format.

Name: Start X Value - Subordinate Edge

Unit: Rasterizer

Region: 0 Offset: 0x0000.8010

Tag: 0x2

Read/write Reset Value: Undefined

Integer Fraction

08162431

Initial X value for the subordinate edge in trapezoid filling. The value is in 2's
complement 16.16 fixed point format.

StartXDom

StartXSub

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 267

Name: Start Y Value

Unit: Rasterizer

Region: 0 Offset: 0x0000.8020

Tag: 0x4

Read/write Reset Value: Undefined

Integer Fraction

08162431

Initial scanline (or sub scanline) in trapezoid filling, or initial Y position for line drawing.
The value is in 2's complement 16.16 fixed point format.

StartY

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs268

Name: Statistic Mode

Unit: Host Out

Region: 0 Offset: 0x0000.8C08

Tag: 0x181

Read/write Reset Value: Undefined

08162431

reserved

Enable Stats

Stats Type
Monitor Pixels Written

Monitor Culled Fragments

Compare Function

Include Spans

Controls the mode of statistics collection.

Bit0 EnableStats:
0 = Disable Statistics collection
1 = Enable Statistics collection

Bit1 StatsType:
0 = Picking mode
1 = Extent collection

Bit2 MonitorPixelsWritten:
0 = Excludes Pixels that were drawn
1 = Includes Pixels that were drawn

Bit3 MonitorCulledFragments:
0 = Excludes fragments that were culled from being drawn
1 = Includes fragments that were culle d from being drawn

Bit4 CompareFunction:
0 = Inside region
1 = Outside region

Bit5 Include Spans:
0 = Exclude
1 = Include

StatisticMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 269

Name: Stencil

Unit: Stencil

Region: 0 Offset: 0x0000.8998

Tag: 0x133

Read/write Reset Value: Undefined

08162431

Stencil valuereserved

Set to the stencil value to be used in clearing down the stencil buffer, or in drawing a
primitive where the host supplies the stencil value.

Name: Stencil Data

Unit: Stencil

Region: 0 Offset: 0x0000.8990

Tag: 0x132

Read/write Reset Value: Undefined

08162431

stencil write mask reference stencilcompare maskFCStencil

Holds data used in the stencil test.

The stencil writemask controls which stencil planes are updated as a result of the test.

Bit0-7 Reference Stencil is the reference value for the stencil test.

Bit8-15 Compare Mask is the mask used to determine which bits are significant in
the comparison.

Bit16-23 Stencil Writemask is the mask used to determine which bits in the
localbuffer are updated.

Bit24-31 FCStencil is the value written to the localbuffer when using the FrameCount
plane clear mechanism.

If the stencil width is 4bits then the value is left justified.

Stencil

StencilData

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs270

Name: Stencil Mode

Unit: Stencil

Region: 0 Offset: 0x0000.8988

Tag: 0x131

Read/write Reset Value: Undefined

08162431

reserved

Unit
Enable

dpfail dppasssfail

Update Method

Unsigned Compare
Function

Stencil Source

Stencil Width

Controls the stencil test, which conditionally rejects fragments based on the outcome of
a comparison between the value in the stencil buffer and a reference value in the
StencilData register. If the test is LESS and the result is true then the fragment value is
less than the source value.

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1-3 Update Method if Depth test passes and Stencil test passes:
(see table below)

Bit4-6 Update Method if Depth test fails and Stencil test passes:
(see table below)

Bit7-9 Update Method if Stencil test fails:
Mode Method Result

0 Keep Source stencil
1 Zero 0
2 Replace Reference stencil
3 Increment Clamp (Source stencil + 1) to 2 stencil width - 1
4 Decrement Clamp (Source stencil -1) to 0
5 Invert ~Source stencil

StencilMode

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 271

Bit10-12 Unsigned Comparison Function:
Mode Comparison Function

0 NEVER
1 LESS
2 EQUAL
3 LESS OR EQUAL
4 GREATER
5 NOT EQUAL
6 GREATER OR EQUAL
7 ALWAYS

Bit13-14 Stencil Source:
0 = Test Logic
1 = Stencil Register
2 = LBData
3 = LBSourceData

Bit15 Stencil Width:
0 = 4 bits
1 = 8 bits
2 = 1 bit

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs272

Name: Suspend Until Frame Blank

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8C78

Tag: 0x18f

Write Reset Value: Undefined

08162431

reserved

VTGFrameRow - bits 9 to 0 OR ExtVideoData - bits 7 to 0

reservedExtVideoAddr

SyncMode

NOTE this command is not available in a multi-GLINT 500TX system.

This command causes all outstanding writes to be flushed to the framebuffer, and then
any succeeding reads or writes to be suspended until the next vertical frame blank has
occurred. The SyncMode data field indicates how the buffer swap is to be controlled.

a) ExtVideoWaitForFB - Wait for the next Vertical frameblank, then write the
ExtVideoData field to the address given in ExtVideoAddr.

b) ExtVideoImmediate - As a) but update the register at ExtVideoAddr immediately
without waiting for frameblank.

c) FrameRowWaitForFB - Wait for frameblank, then write the new FrameRow address
given in the VTGFrameRow field to the GLINT VTGFrameRowAddr register.

d) FrameRowImmediate - update the VTGFrameRowAddr register immediately without
waiting for frameblank.

Bit0-7 ExtVideoData: data value to be written to external video register.

OR

Bit0-9 VTGFrameRow: new frame row address to be written to the GLINT
VTGFrameRowAddr register.

Bit16-26 ExtVideoAddr: Address of external video register to be updated. Can be
derived from (PCI byte address - PCI byte address of the base register in
group)/8.

Bit30-31 SyncMode:
0 = Wait for Frameblank & update external video register
1 = Update external video register immediately
2 = Wait for Frameblank then update VTGFrameRowAddr register
3 = Update VTGFrameRowAddr register immediately

SuspendUntilFrameBlank

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 273

Name: Synchronization

Unit: Host Out

Region: 0 Offset: 0x0000.8C40

Tag: 0x188

Write Reset Value: Undefined

08162431

InterruptEnable

31 user defined bits

This command can be used to synchronize GLINT with the host. It is also used to flush
outstanding GLINT operations such as pending memory accesses. It also causes the
current status of the picking result to be passed to the Host Out FIFO unless culled by
the statistics bits in the FilterMode register.

Bit0-30 User Defined

Bit31 InterruptEnable:
0 = Disable Interrupt for this command
1 = Enable Interrupt for this command

The data output is the value written to the register by this command. If interrupts are
enabled, then the interrupt does not occur until the tag and/or data have been written to
the output FIFO.

The corresponding tag value output is: 0x188

Name: Texel Values

Unit: Texture

Region: 0 Offset: 0x0000.8600, ..., 0x0000.8638

Tag: 0xC0, ..., 0xC7

Read/write Reset Value: Undefined
08162431

BlueAlpha Green Red

Texel values for interpolation.

These registers are only present for backwards compatibility with the GLINT 300SX.
They should not be used for new code written for the GLINT 500TX.

Sync

Texel[0...7]

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs274

Name: Texel LUT Values

Unit: Texture

Region: 0 Offset: 0x0000.8E80, ..., 0x0000.8EF8

Tag: 0x1D0, ..., 0x1DF

Read/write Reset Value: Undefined

08162431

BlueAlpha Green Red

Texel LUT values for substitution in indexed textures.

TexelLUT[0…15]

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 275

Name: Texture Address Mode

Unit: Texture

Region: 0 Offset: 0x0000.8380

Tag: 0x70

Read/write Reset Value: Undefined

08162431

Enable
Address
Generation
0 = Disable
1 = Enable

Operation
0 = 2D mode
1 = 3D mode T Wrap

0 = Clamp
1 = Repeat
2 = Mirror

S Wrap
0 = Clamp
1 = Repeat
2 = Mirror

Reserved

Provides overall control of the generation of texel addresses.

Bit0 Texture Address Generation:
0 = Disable
1 = Enable

Bit1-2 S Wrap:
0 = Clamp
1 = Repeat
2 = Mirror

Bit3-4 T Wrap:
0 = Clamp
1 = Repeat
2 = Mirror

Bit5 Operation:
0 = 2D mode
1 = 3D mode

TextureAddressMode

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs276

Name: Texture Cache Control

Unit: Texture

Region: 0 Offset: 0x0000.8490

Tag: 0x92

Read/write Reset Value: Undefined

08162431

reserved

CacheEnable

Invalidate

Allows control of the texture cache operation.

Upon reset the cache is disabled and marked as invalid, however, reading back this
register immediately after reset will return undefined values.

The Invalidate bit will always return undefined data when read.

Bit0 Invalidate:
0 = No Invalidate
1 = Invalidate Cache

Bit1 CacheEnable:
0 = Disable Cache
1 = Enable Cache

TextureCacheControl

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 277

Name: Texture Color Mode

Unit: Texture

Region: 0 Offset: 0x0000.8680

Tag: 0xD0

Read/write Reset Value: Undefined

08162431

Enable Texture
0 = Disable
1 = Enable

TextureType
0 = OpenGL
1 = Apple

Application
Mode

KdDDA
0 = Disable
1 = Enable

KsDDA
0 = Disable
1 = Enable

Controls the application of texture.

Note that the TextureEnable bit in the Render command must also be set for a
primitive to be texture mapped.

Bit0 Texture Enable:
0 = Disable
1 = Enable

EITHER Where Texture Type is OpenGL:

Bit1-3 Application Mode:
0 = Modulate
1 = Decal
2 = Blend

OR Where Texture Type is QuickDraw3D:

Bit1 DecalEnable:
0 = Disable
1 = Enable

Bit2 ModulateEnable:
0 = Disable
1 = Enable

Bit3 HighlightEnable:
0 = Disable
1 = Enable

Bit4 Texture Type:
0 = OpenGL

TextureColorMode

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs278

1 = QuickDraw3D

Bit5 KdDDA:
0 = Disable
1 = Enable

Bit6 KsDDA:
0 = Disable
1 = Enable

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 279

Name: Texture Data

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.88E8

Tag: 0x11D

Write Reset Value: Undefined

08162431

32bit raw texture data

32bit raw texture value, formatted to match the format that will be used when the
texture is read back from the localbuffer. May include multiple texels (depending on the
texel depth), in which case the order of texels within the register will depend on factors
such as the byte swap mode, as defined in the TextureFormat register when the texture
is subsequently read.

Name: Texture Download Offset

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.88F0

Tag: 0x11E

Read/write Reset Value: Undefined

08162431

24bit unsigned integernot used

24bit unsigned integer address offset.

Note that when read, the value may have been incremented if any texture download has
occurred.

TextureData

TextureDownloadOffset

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs280

Name: Texture Environment Color

Unit: Texture

Region: 0 Offset: 0x0000.8688

Tag: 0xD1

Read/write Reset Value: Undefined

08162431

BlueAlpha Green Red

Constant color value used in blend texturing mode.

Name: Texture Filter

Unit: Texture

Region: 0 Offset: 0x0000.8668

Tag: 0xCD

Read/write Reset Value: Undefined

08162431

Texture Filter

reserved

Controls the texture filter mode.

Bit0-2 Texture Filter:
0 = Nearest
1 = Linear2
2 = Trilinear4
3 = Linear4
4 = Trilinear8

TextureEnvColor

TextureFilter

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 281

Name: Texture Data Format

Unit: Texture

Region: 0 Offset: 0x0000.8488

Tag: 0x91

Read/write Reset Value: Undefined

08162431

Order
0 = Little Endian
1 = Big Endian

Number Comps
0 = 1
1 = 2
2 = 3
3 = 4

Format

Color Order
0 = BGR
1 = RGB

Output Format
0 = Texel
1 = Color
2 = BitMask

Mirror BitMask
0 = No Mirror
1 = Mirror

Invert BitMask
0 = No Invert
1 = Invert

ByteSwap BitMask
0 = No Byte Swap
1 = Byte Swap

Reserved

Controls the reading of texture maps.

Bit0 Order:
0 = Little Endian
1 = Big Endian

Bit1 Format:
0 = 5:6:5 format at 16bpp
1 = 5:5:5 format at 16bpp

Bit2 Color Order:
0 = BGR
1 = RGB

Bit3-4 Number Of Components:
0 = 1
1 = 2
2 = 3
3 = 4

Bit5-6 Output Format:
0 = Texel
1 = Color
2 = BitMask

TextureFormat

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs282

Bit7 Mirror BitMask:
0 = No Mirror
1 = Mirror

Bit8 Invert BitMask:
0 = No Invert
1 = Invert

Bit9 Byte Swap BitMask:
0 = No Byte Swap
1 = Byte Swap

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 283

Name: Texture Read Mode

Unit: Texture

Region: 0 Offset: 0x0000.8480

Tag: 0x90

Read/write Reset Value: Undefined

Enable
Texture Read
0 = Disable
1 = Enable

Patch
0 = No
1 = Yes

Border
0 = No border
1 = Border present

WidthHeightDepth

Mag Filter
0 = Nearest
1 = Linear

Mip map Assist
0 = Disabled
1 = Enabled

Min Filter
0 = Nearest
1 = Linear
2 = NearestMipMapNearest
3 = NearestMipMapLinear
4 = LinearMipMapNearest
5 = LinearMipMapLinear

Texture map type
0 = 1D
1 = 2D

U Wrap
0 = Clamp
1 = Repeat
2 = Mirror

V Wrap
0 = Clamp
1 = Repeat
2 = Mirror

Reserved

Controls the reading of texture maps.

Bit0 Texture Read Enable:
0 = Disable
1 = Enable

Bit1-4 Width: As a power of 2

Bit5-8 Height: As a power of 2

Bit9-11 Depth: As a power of 2

Bit12 Border:
0 = No Border
1 = Border Present

Bit13 Patch:
0 = No
1 = Yes

Bit14 Mag Filter:
0 = Nearest
1 = Linear

TextureReadMode

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs284

Bit15-17 Min Filter:
0 = Nearest
1 = Linear

Bit18-19 U Wrap:
0 = Clamp
1 = Repeat
2 = Mirror

Bit20-21 V Wrap:
0 = Clamp
1 = Repeat
2 = Mirror

Bit22 Texture Map Type:
0 = 1D
1 = 2D

Bit23 Mip Map Assist:
0 = Disable
1 = Enable

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 285

Name: T Start Value

Unit: Texture

Region: 0 Offset: 0x0000.83A0

Tag: 0x74

Read/write Reset Value: Undefined

08162431

2’s complement fixed point number

Initial T value for texture map. The value is in 2's complement fixed point format. The
binary point is at an arbitrary location, but must be consistent for all S, T and Q values.

Name: Texture Base Address

Unit: Texture

Region: 0 Offset: 0x0000.8500

Tag: 0xA0

Read/write Reset Value: Undefined

08162431

Texture address SubWordNot used

29bit base address of the texture map. Lower 5bits specify address within a word.

TStart

TxBaseAddr

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs286

Name: Texture Base Address Low Resolution

Unit: Texture

Region: 0 Offset: 0x0000.8508

Tag: 0xA1

Read/write Reset Value: Undefined

08162431

Texture address SubWordNot used

29bit lower resolution address used for mipmap hardware assistance. Lower 5bits specify
address within a word.

Name: Update Line Stipple Counters

Unit: Stipple

Region: 0 Offset: 0x0000.81B8

Tag: 0x37

Write Reset Value: Undefined

08162431

Update control

reserved

Command Register. Restores the internally saved stipple counter values saved by the
SaveLineStippleState command. Useful in drawing stippled wide lines.

Bit0 Update counter control:
0 = Reset counters to zero.
1 = Load counters from segment register.

TxBaseAddrLR

UpdateLineStippleCounters

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 287

Name: Wait For Completion

Unit: Rasterizer

Region: 0 Offset: 0x0000.80B8

Tag: 0x17

Write Reset Value: Undefined

reserved

08162431

Command Register. Used to flush all reads and writes to the framebuffer prior to the
start of rendering for the next primitive. Useful to separate say a texture download from
the surrounding primitives.

WaitForCompletion

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs288

Name: Window

Unit: Pixel Ownership

Region: 0 Offset: 0x0000.8980

Tag: 0x130

Read/write Reset Value: Undefined

08162431

reserved

Unit Enable

LB Update
Source

FrameCount GID

Stencil FCPDepth FCP Compare Mode

Force
LB Update

Override
Write Filtering

1) Used to set the value and comparison mode for the pixel ownership
(GID) test. If the test fails then the fragment will be culled from being
drawn.

If the unit is disabled then it is as if the GID test always passes.

If the Force LB Update bit is set, this overrides all the tests done in the
GID, Stencil and Depth units, and the per unit enables, to force the
localbuffer to be updated. However, writes must still be enabled in the
LBWriteMode register. When this bit is clear any update is conditional
on the outcome of the GID, stencil and depth tests.

2) The FrameCount is an eight bit field which is compared with the
FrameCount read from the localbuffer. If these are not equal then the
fast clear mechanism can be used, however how this is used (if at all) is
determined by the Depth FCP and Stencil FCP bits. If these bit(s) are set
then the fast clear function is enabled for the corresponding field(s).

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1-2 Compare Mode:
0 = Always Pass
1 = Never Pass
2 = Pass if Equal
3 = Pass if Not Equal

Bit3 Force LB Update:
0 = Not Forced

Window

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 289

1 = Forced

Bit4 LB Update Source:
0 = LBSourceData
1 = Registers

Bit5-8 GID to be compared against

Bit9-16 FrameCount value for use in fast clears

Bit17 Stencil FCP:
0 = Disable
1 = Enable

Bit18 Depth FCP:
0 = Disable
1 = Enable

Bit19 Override Write Filtering:
0 = No
1 = Yes

Appendix A. Graphics Register Reference GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs290

Name: Window Origin

Unit: Scissor

Region: 0 Offset: 0x0000.81C8

Tag: 0x39

Read/write Reset Value: Undefined

08162431

16 bit 2's complement X value16 bit 2's complement Y value

As each fragment is generated by the unit, this origin is added to the coordinates of the
fragment to generate its screen coordinates, prior to doing the screen scissor test.

Name: Y Limits

Unit: Rasterizer

Region: 0 Offset: 0x0000.80A8

Tag: 0x15

Read/write Reset Value: Undefined

08162431

16bit 2’s complement Y max value 16bit 2’s complement Y min value

Defines the Y extent that the rasterizer should fill between.

WindowOrigin

YLimits

GLINT 500TX Programmer’s Reference Manual Appendix A. Graphics Register Reference

3Dlabs Proprietary and Confidential 291

Name: Depth Start Value

Unit: Depth

Region: 0 Offset: 0x0000.89B8, 0x0000.89B0

Tag: 0x137, 0x136

Read/write Reset Value: Undefined

32 bits integer 16 bits fraction remaining bits 0

ZstartU ZStartL

This pair of registers set the start value for depth interpolation. ZStartU holds the most
significant bits, and ZStartL the least significant bits. The value is in 2's complement
32.16 fixed point format.

1.

ZStartLZStartU

Appendix B. Pseudocode Definitions GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs292

Appendix B. Pseudocode DefinitionsAppendix B. Pseudocode Definitions

In many areas of the document fragments of pseudocode are given, to describe the
loading of registers. These are based on a C interface to GLINT in which each 32 bit
register is represented as a C structure, potentially split into a series of bit fields. Where
in an example only a subset of the bit fields in a register are set, it is assumed either that a
software copy of the register is being modified, or that the current contents of the
register has first been read back. This style has been chosen for clarity; there are often
more efficient strategies.

Warning: the order of loading control registers into the HyperPipeline has also been
chosen for clarity, rather than efficiency. The optimal order is documented in section ¶ 0

The constant definitions and register bit field definitions are based upon those used in
the 3Dlabs driver software. Sources including header files are available under source
license agreement.

Loading of a GLINT register is expressed as:
register-name(value)

When writing directly to the register file (i.e. to a FIFO) this would be implemented by
writing “value” to the mapped-in address of the register called “register-name”.

Fragmentary examples are not in strict C syntax, a typical example is:
// Sample code to rasterize a 10x10 rectangle at the
// framebuffer origin.

StartXDom(0) // Start dominant edge
StartXSub(1<<16) // Start of subordinate
dXDom(0x0)
dXSub(0x0)
Count(0xA)
YStart(0)
dY(1<<16)

// Set-up to render an aliased trapezoid.

render.AreaStippleEnable = GLINT_DISABLE
render.LineStippleEnable = GLINT_DISABLE
render.PrimitiveType = GLINT_TRAPEZOID
render.FastFillEnable = GLINT_DISABLE
render.FastFillIncrement = don't care
render.UsePointTable = GLINT_FALSE
render.AntialiasEnable = GLINT_DISABLE
render.AntialiasingQuality = don't care
render.ResetLineStipple = GLINT_FALSE
render.SyncOnBitMask = GLINT_FALSE

GLINT 500TX Programmer’s Reference Manual Appendix B. Pseudocode Definitions

3Dlabs Proprietary and Confidential 293

render.SyncOnHostData = GLINT_FALSE

Render(render) // Render the rectangle

Code is shown in courier and comments are C++ style ' //' indicating that the rest
of the line is a comment. Any statement which ends in parenthesis is a register update,
other statements will generally be variable assignments. A variable, say render, is of a
type associated with the register being modified. This will usually be clear by the context
and will not usually be declared as such. All the type definitions are in the header files.
The values assigned to a register will be either a variable as described above, a macro i.e.
GLINT_TRUE1 , as found in the headers, or an immediate constant in C style format
i.e. 0x45. In registers which have several fields, some of which are not relevant to a
particular example the field can be ignored completely or set to don't care. In
some registers, values for fields which need to be set are not readily available, these will
typically set as appropriate.

In some fragments, simply a list of register updates is given e.g.:
// Sample code to rasterize a rectangle

StartXDom() // Start dominant edge
StartXSub() // Start of subordinate
dXDom()
dXSub()
Count()
YStart()
dY()

// Set-up to render an aliased trapezoid.

Render() // Render the rectangle

This technique is used to simply give a feel for the registers involved in a particular
operation and where a detailed treatment is not warranted.

To take the address of a register, the name is used, thus this example stores the address
of the StartXDom register in the buffer pointed to by the variable buf and increments
the pointer:

*buf++ = StartXDom

To test the value of a register the register name is dereferenced using the C '*' operator
as for instance in this example which tests for the completion of a DMA operation:

while(*DMACount != 0) ;

1 In the C header files glintreg.h glintdef.h macros and types are generally prefixed by a double underbar, i.e.
__GLINT_TRUE and __GlintRenderFmat to avoid name space clashes with other code. In the pseudocode the __ is
omitted for clarity.

Appendix B. Pseudocode Definitions GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs294

1.

GLINT 500TX Programmer’s Reference Manual Appendix C. Screen Widths Table

3Dlabs Proprietary and Confidential 295

Appendix C. Screen Widths TableAppendix C. Screen Widths Table

The screen width is specified as the sum of selected partial products so a full multiply
operation is not needed. The partial products are selected by the fields PP0, PP1 and
PP2 in the LBReadMode register. The range of widths supported by this technique are
tabulated below, together with the values for each of the PP fields.

Width PP2 PP1 PP0
32 0 0 1
64 0 0 2
96 0 1 2
128 0 0 3
160 0 1 3
192 0 2 3
224 1 2 3
256 0 0 4
288 0 1 4
320 0 2 4
352 1 2 4
384 0 3 4
416 1 3 4
448 2 3 4
512 0 0 5
544 0 1 5
576 0 2 5
608 1 2 5
640 0 3 5
672 1 3 5
704 2 3 5
768 0 4 5
800 1 4 5
832 2 4 5
896 3 4 5
1024 0 0 6
1056 0 1 6
1088 0 2 6
1120 1 2 6
1152 0 3 6
1184 1 3 6
1216 2 3 6

Appendix C. Screen Widths Table GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs296

1280 0 4 6
1312 1 4 6
1344 2 4 6
1408 3 4 6
1536 0 5 6
1568 1 5 6
1600 2 5 6
1664 3 5 6
1792 4 5 6
2048 0 0 7
2112 0 2 7
2144 1 2 7
2176 0 3 7
2208 1 3 7
2240 2 3 7
2304 0 4 7
2336 1 4 7
2368 2 4 7
2432 3 4 7
2560 0 5 7
2592 1 5 7
2624 2 5 7
2688 3 5 7
2816 4 5 7
3072 0 6 7
3104 1 6 7
3136 2 6 7
3200 3 6 7
3328 4 6 7
3584 5 6 7
4096 0 7 7

Table C.1

1.

GLINT 500TX Programmer’s Reference Manual Appendix D. Register Table

3Dlabs Proprietary and Confidential 297

Appendix D. Register TableAppendix D. Register Table

The following table lists registers by group, giving their tag values and indicating their
type. The register groups may be used to improve data transfer rates to GLINT when
using DMA.

The following types of register are distinguished:

• Control: Set state and control bits ready to draw a primitive.

• Command: Initiates drawing of a primitive.

• Mixed: A control register which may also be used to supply successive
data values during image download.

• Output: An internal register that cannot be read or written, but whose
contents is passed to the Host Out FIFO under the control of certain
commands.

In addition the table indicates whether the register can be read back, and whether it is
new or has changed in the GLINT 500TX as compared to the GLINT 300SX.

Unit Register Major Group
(hex)

Offset
(hex)

Type Read/
Write

New (*)
Diff. (>)

Rasterizer StartXDom 00 0 Control R/W
dXDom 00 1 Control R/W
StartXSub 00 2 Control R/W
dXSub 00 3 Control R/W
StartY 00 4 Control R/W
dY 00 5 Control R/W
Count 00 6 Control R/W
Render 00 7 Command W >
ContinueNewLine 00 8 Command W
ContinueNewDom 00 9 Command W
ContinueNewSub 00 A Command W
Continue 00 B Command W
FlushSpan 00 C Command W
BitMaskPattern 00 D Mixed W

Rasterizer PointTable[0…3] 01 0…3 Control R/W
RasterizerMode 01 4 Control R/W >
YLimits 01 5 Control R/W *
ScanLineOwnership 01 6 Control R/W *
WaitForCompletion 01 7 Command W *
PixelSize 01 8 Control R/W *

Scissor Stipple ScissorMode 03 0 Control R/W
ScissorMinXY 03 1 Control R/W

Appendix D. Register Table GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs298

ScissorMaxXY 03 2 Control R/W
ScreenSize 03 3 Control R/W
AreaStippleMode 03 4 Control R/W
LineStippleMode 03 5 Control R/W
LoadLineStippleCounters 03 6 Control R/W
UpdateLineStippleCounters 03 7 Command W
SaveLineStippleState 03 8 Command W
WindowOrigin 03 9 Control R/W

Scissor Stipple AreaStipplePattern[0…31] 04
05

0…F
0…F

Control R/W

Router RouterMode 10 8 Control R/W *
Texture TextureAddressMode 07 0 Control R/W *

SStart 07 1 Control R/W *
dSdx 07 2 Control R/W *
dSdyDom 07 3 Control R/W *
TStart 07 4 Control R/W *
dTdx 07 5 Control R/W *
dTdyDom 07 6 Control R/W *
QStart 07 7 Control R/W *
dQdx 07 8 Control R/W *
dQdyDom 07 9 Control R/W *
TextureReadMode 09 0 Control R/W *
TextureFormat 09 1 Control R/W *
TextureCacheControl 09 2 Control R/W *
BorderColor 09 5 Control R/W *
TxBaseAddr 0A 0 Control R/W *
TxBaseAddrLR 0A 1 Control R/W *
TexelLUT[0…15] 1D 0…F Control R/W *

Texture Color/Fog Texel0 0C 0 Control R/W
Texel1 0C 1 Control R/W
Texel2 0C 2 Control R/W
Texel3 0C 3 Control R/W
Texel4 0C 4 Control R/W
Texel5 0C 5 Control R/W
Texel6 0C 6 Control R/W
Texel7 0C 7 Control R/W
Interp0 0C 8 Control R/W
Interp1 0C 9 Control R/W
Interp2 0C A Control R/W
Interp3 0C B Control R/W
Interp4 0C C Control R/W
TextureFilter 0C D Control R/W

Texture/Fog Color TextureColorMode 0D 0 Control R/W >
TextureEnvColor 0D 1 Control R/W
FogMode 0D 2 Control R/W
FogColor 0D 3 Control R/W
FStart 0D 4 Control R/W
dFdx 0D 5 Control R/W
dFdyDom 0D 6 Control R/W

GLINT 500TX Programmer’s Reference Manual Appendix D. Register Table

3Dlabs Proprietary and Confidential 299

KsStart 0D 9 Control R/W *
dKsdx 0D A Control R/W *
dKsdyDom 0D B Control R/W *
KdStart 0D C Control R/W *
dKdStart 0D D Control R/W *
dKddyDom 0D E Control R/W *

Color DDA RStart 0F 0 Control R/W
dRdx 0F 1 Control R/W
dRdyDom 0F 2 Control R/W
GStart 0F 3 Control R/W
dGdx 0F 4 Control R/W
dGdyDom 0F 5 Control R/W
BStart 0F 6 Control R/W
dBdx 0F 7 Control R/W
dBdyDom 0F 8 Control R/W
AStart 0F 9 Control R/W
dAdx 0F A Control R/W
dAdyDom 0F B Control R/W
ColorDDAMode 0F C Control R/W
ConstantColor 0F D Control R/W
Color 0F E Mixed R/W

Alpha Test AlphaTestMode 10 0 Control R/W
AntialiasMode 10 1 Control R/W

Alpha Blend AlphaBlendMode 10 2 Control R/W >
Dither DitherMode 10 3 Control R/W >
Logical Ops FBSoftwareWriteMask 10 4 Control R/W

LogicalOpMode 10 5 Control R/W
FBWriteData 10 6 Control R/W

LB Read LBReadMode 11 0 Control R/W >
LBReadFormat 11 1 Control R/W >
LBSourceOffset 11 2 Control R/W
LBStencil 11 5 Output W
LBDepth 11 6 Output W
LBWindowBase 11 7 Control R/W

LB Write LBWriteMode 11 8 Control R/W >
LBWriteFormat 11 9 Control R/W >
TextureData 11 D Control W *
TextureDownloadOffset 11 E Control R/W *

GID/Stencil/Depth Window 13 0 Control R/W >
StencilMode 13 1 Control R/W >
StencilData 13 2 Control R/W
Stencil 13 3 Mixed R/W
DepthMode 13 4 Control R/W
Depth 13 5 Mixed R/W
ZStartU 13 6 Control R/W
ZStartL 13 7 Control R/W
dZdxU 13 8 Control R/W
dZdxL 13 9 Control R/W
dZdyDomU 13 A Control R/W

Appendix D. Register Table GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs300

dZdyDomL 13 B Control R/W
FastClearDepth 13 C Control R/W

FB Read/Write FBReadMode 15 0 Control R/W >
FBSourceOffset 15 1 Control R/W
FBPixelOffset 15 2 Control R/W
FBColor 15 3 Output W
FBData 15 4 Mixed W
FBSourceData 15 5 Mixed W
FBWindowBase 15 6 Control R/W
FBWriteMode 15 7 Control R/W >
FBHardwareWriteMask 15 8 Control R/W
FBBlockColor 15 9 Control R/W
PatternRamMode 15 F Control R/W
PatternRamData[0…31] 16

17
0…F
0…F

Control R/W

FBBlockColorU 18 D Control R/W *
FBBlockColorL 18 E Control R/W *
SuspendUntilFrameBlank 18 F Command W *

Host Out FilterMode 18 0 Control R/W
StatisticMode 18 1 Control R/W >
MinRegion 18 2 Control R/W
MaxRegion 18 3 Control R/W
ResetPickResult 18 4 Command W
MinHitRegion 18 5 Command W
MaxHitRegion 18 6 Command W
PickResult 18 7 Command W
Sync 18 8 Command W

Table D.1

1.

GLINT 500TX Programmer’s Reference Manual Appendix E. Software Compatibility

3Dlabs Proprietary and Confidential 301

Appendix E. Software CompatibilityAppendix E. Software Compatibility

The GLINT 500TX is a superset of the GLINT 300SX, and will run most software
written for the GLINT 300SX unchanged. This appendix documents those areas where
100% compatibility has not been maintained, and the minimum changes that need to be
made to software written for the GLINT 300SX, so that it will also run on the GLINT
500TX.

E.1 GLINT 500TX Specific Registers

The GLINT 500TX has many new registers, most of which can be ignored by GLINT
300SX driver software, however the following registers must be initialized:

TextureAddressMode

TextureReadMode

RouterMode

These registers should be set to zero.

Writes to GLINT 500TX registers which do not exist on the GLINT 300SX may be
performed safely provided that the bits 14-15 of the FilterMode register are set to zero.

E.2 Pixel Size

One fundamental area where software compatibility has not been maintained between
the GLINT 300SX and GLINT 500TX concerns the setting of the pixel size.

In the GLINT 300SX a write to the register FBModeSel is performed to change the pixel
size and the new pixel size takes effect immediately, no matter the state of the graphics
core. As a result the host should synchronize with the GLINT 300SX before changing
the pixel size to ensure that the core is quiescent. Because the FBModeSel register only
affects the memory I/O interface and the Graphics Core has no need to know the pixel
size. The pixel size is typically initialized on reset from configuration resistors.

In the GLINT 500TX the Graphics Core does need to know the pixel size for the new
span filling modes and hence a new register, PixelSize, is used to control the pixel size.
This has also removed the need to synchronize with the GLINT 500TX before changing
the pixel size. Indeed in the GLINT 500TX the pixel size cannot be set by writing to
the FBModeSel register. Reading the pixel size from the FBModeSel register will return 3,
i.e. undefined, for the pixel size. The pixel size may only be read back from the
PixelSize register.

The software implications are:

• On the GLINT 500TX the PixelSize register must be initialized by
software before any framebuffer accesses are made from the Graphics
Core. Bypass accesses do not use the pixel size information and hence

Appendix E. Software Compatibility GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs302

these accesses may be performed before initializing the pixel size.

• If the same software must run on both devices, then the easiest solution
is for the software to first synchronize with the GLINT device, then
write to the FBModeSel register and finally write to the PixelSize register.
The GLINT 300SX will ignore the write to the PixelSize register
(assuming that bits 14-15 of the FilterMode register are set to zero) and
the GLINT 500TX will ignore the write to PixelSize field in the
FBModeSel register. The synchronize will be an unnecessary overhead in
the GLINT 500TX, so ideally the type of the chip should be autosensed
by the software.

• On the GLINT 300SX the pixel size is changed dynamically during some
fill and BitBlt operations on 8 bpp or 16 bpp framebuffers to improve
performance. This will still work in the GLINT 500TX, but the
requirement to change the pixel size for performance reasons in the
GLINT 500TX has disappeared as the span mechanism provides a much
better solution.

E.3 Block Fills

Block fills in the GLINT 500TX are implemented in a radically different way to provide
a significant increase in performance and functionality. GLINT 300SX style block fills
may be performed on the GLINT 500TX, however several additional registers must to
be set up to disable scissoring, area stipple and framebuffer reads. In the GLINT 300SX
the block fill bypasses most of the normal processing units and hence the mode of these
units is irrelevant during a block fill. In the GLINT 500TX the block fill (now renamed
span fill to be more descriptive) is processed by many more units to give additional
functionality. It is these units which need to be set up. The registers which need to be
written to are:

ScissorMode to disable user and screen scissor operations.

AreaStippleMode to disable area stipple operations. This may also be
controlled through the Render command.

FBReadMode to disable source and destination framebuffer reads.

StatisticMode to disable statistics collection so that the block fill
operation does not grow the extent region or cause picking to occur.

PatternRamMode to disable the Pattern RAM.

The block fill size in the Render command and FBWriteMode registers are ignored in
the GLINT 500TX.

E.4 Device Id

The device number returned by the CFGDeviceId register in the GLINT 500TX is 0002h
in bits 31-16.

GLINT 500TX Programmer’s Reference Manual Appendix E. Software Compatibility

3Dlabs Proprietary and Confidential 303

1.

Appendix F. Accurate Rendering GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs304

Appendix F. Accurate RenderingAppendix F. Accurate Rendering

This appendix describes how to calculate the various parameters needed to define a
Gouraud shaded triangle. This topic is covered in section 5.2, however in the interest of
simplicity some of the finer details were glossed over. The quality of the rasterization and
shading suffers where these fine details are not included and will give rise to 'stitch
marks' and 'bright edge' artifacts. The main area where simplifications were made earlier
relates to the fact that vertices are not, in general, coincident with pixel centers so sub
pixel corrections are necessary. The initial values being interpolated (RGB for example)
need to be adjusted to account for this. GLINT will do the necessary X corrections
when moving from scan line to scan line when the SubPixelCorrection bit is set, but the
initial Y correction must be done in software.

Consider a sample triangle, highly magnified to emphasize the sub pixel corrections
needed:

dXErr dPdx

Sample point at
pixel centre

dYErr

Vertex A

Vertex C

Vertex B

dPdyDom

The vertices are sorted into Y order and the dominant edge is AC. Scan conversion will
start at vertex A and proceed upwards. The origin is bottom left.

The usual parameters to interpolate (denoted P in the diagram) across the triangle would
include color (R, G, B and alpha), depth (Z), fog (F), and texture (S, T, Q, Ks and Kd).
The source code to set up GLINT to achieve the best quality rendering will only
calculate the parameters for RGBA and Z to keep the size of the code down.

GLINT 500TX Programmer’s Reference Manual Appendix F. Accurate Rendering

3Dlabs Proprietary and Confidential 305

#include <stdio.h>
#include <float.h>

// A simple macro which just prints out the register name and value.
// Replace this with some code to write to GLINT.

#define LD_GLINT_REG(name, value) \
 printf ("%s = %08x\n", #name, value)

// This software is part of the application note which describes
// how GLINT is set up to get the best quality rendering. Particular
// care is taken to avoid cracks, stitch marks and bright edge artifacts
// from occurring. The OpenGL rasterization rules are used.
// The software has not been written with maximum performance in mind,
// but as a clear, well documented example covering the nuances
// which are easily overlooked.

// Simple vertex structure used to interface parameters to the RenderTriangle
// function.

typedef struct { float x, y, z; // in device coords
 float r, g, b, a; // in the range 0.0 to 1.0
 } Vertex;

// Prototypes.

long IntToFixedPoint16 (long i);
long FloatToColor (float f);
long FloatToCoordinate (float f);
void FloatToDepth (float f, long *zi, long *zf);
void RenderTriangle (Vertex *v0, Vertex *v1, Vertex *v2);

// Defines some simple function to convert from floating point numbers
// to various fixed point formats. These can be inlined if necessary.

long IntToFixedPoint16 (long i)
{
 return i << 16;
}

// These functions perform the conversion from floating point numbers
// to the various fixed point format numbers required in GLINT. They
// are implemented as simple operations on the binary representation
// of IEEE single precision floating point number so the floating
// point rounding mode doesn't need to be set up first and in many
// cases they are faster than using the built in conversion functions,
// especially when the range checking and clamping is taken into account.

// Format of IEEE single-precision (32-bit) real number.

#define F_BIAS 127
#define F_SIGN_BIT 31
#define F_EXPONENT_BITS 23
#define F_FRACTION_BITS 0

// Convert 32-bit floating-point value to 9.15 fixed-point value used
// for the color parameters. The input range is assumed to be 0.0
// to 1.0. The algorithm is:
// If exponent < -15 then return (0x00000000), otherwise
// if exponent < 8 then return (-1**(s) * 1.f * 2**(e - 127)), otherwise
// return ((s == 1) ? 0xff800000 : 0x007fffff).

Appendix F. Accurate Rendering GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs306

long FloatToColor (float fi)
{
 long f = *((long *) &fi);
 long sign;
 unsigned char exponent;

 sign = (f >> F_SIGN_BIT);
 exponent = (unsigned char)(f >> F_EXPONENT_BITS);
 if (exponent < (F_BIAS-15))
 return (0);
 if (exponent < (F_BIAS+8))
 {
 f = ((unsigned long)((f | 0x00800000) << 8)
 >> ((F_BIAS+16) - exponent));
 if (sign < 0)
 f = -f;
 return (f);
 }
 return (0x007fffff ^ sign);
}

// Convert 32-bit floating-point value to 16.16 fixed-point value used
// for the rasterizer parameters.
// If exponent < 0 then return (0x00000000), otherwise
// if exponent < 31 then return (-1**(s) * 1.f * 2**(e - 127)), otherwise
// return ((s == 1) ? 0x80000000 : 0x7fffffff).

long FloatToCoordinate (float fi)
{
 long f = *((long *) &fi);
 long sign;
 unsigned char exponent;
 long res;

 sign = f >> F_SIGN_BIT;
 exponent = (unsigned char) (f >> F_EXPONENT_BITS);
 if (exponent < (F_BIAS-16))
 return (0);
 if (exponent < (F_BIAS+15))
 {
 res = ((unsigned long)((f | 0x00800000) << 8)
 >> ((F_BIAS+15) - exponent));
 if (sign < 0)
 res = -res;
 return (res);
 }
 return (0x7fffffff ^ sign);
}

// Convert 32-bit floating-point value to 24.16 fixed-point value as
// used by the Z values. Note that this assumes a 24 bit Z buffer.
// If exponent < -16 then return (0x0000000000000000), otherwise
// if CLAMP_24_16 is defined and is non-zero:
// if exponent < 23 then return (-1**(s) * 1.f * 2**(e - 127)), otherwise
// return ((s == 1) ? 0xff80000000000000 : 0x007fffffffff0000).
// otherwise:
// return (-1**(s) * 1.f * 2**(e - 127)).

void FloatToDepth (float fi, long *zi, long *zf)
{
 long f = *((long *) &fi);
 long sign;

GLINT 500TX Programmer’s Reference Manual Appendix F. Accurate Rendering

3Dlabs Proprietary and Confidential 307

 unsigned char exponent;
 long resh;
 unsigned long resl;

 sign = (f >> F_SIGN_BIT);
 exponent = (unsigned char)(f >> F_EXPONENT_BITS);
 if (exponent < (F_BIAS-16))
 {
 *zi = 0;
 *zf = 0;
 return;
 }
 if (exponent < (F_BIAS+23))
 {
 f = ((f | 0x00800000) << 8);
 if (exponent < (F_BIAS+0))
 {
 resh = 0;
 resl = ((unsigned long) f >> ((F_BIAS-1) - exponent));
 }
 else
 {
 unsigned char shift;

 shift = ((F_BIAS+31) - exponent); // 8 <= shift < 32
 resh = ((unsigned long) f >> shift);
 resl = (f << (31 - shift)); // shifts >= 32 undefined
 resl <<= 1; // so we must shift twice
 }
 if (sign < 0)
 {
 unsigned long old_resl;

 resl = ~resl;
 resh = ~resh;
 old_resl = resl;
 resl += 0x00010000;
 if (resl < old_resl) // overflow
 ++resh;
 }
 }
 else
 {
 resh = (0x007fffff ^ sign);
 resl = (0xffff0000 ^ sign);
 }
 resl &= 0xffff0000;
 *zi = resh;
 *zf = resl;
}

#define SAME 0
#define REVERSED ~SAME
#define ORDER(v0, v1, v2, order) {a = v0; b = v1; c = v2; windingOrder = order;}

void RenderTriangle (Vertex *v0, Vertex *v1, Vertex *v2)
{
 float dxAB, dyAB, dxBC, dyBC, dxAC, dyAC; // Diff in x,y for each edge.
 float drAC, dgAC, dbAC, daAC, dzAC; // Diff in rgbz for dominant edge
 float drBC, dgBC, dbBC, daBC, dzBC; // Diff in rgbz for the BC edge.
 float dxdyAC, dxdyAB, dxdyBC; // Edge gradients for unit
 // set in y

Appendix F. Accurate Rendering GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs308

 float drdxdy, dgdxdy, dbdxdy;
 float dadxdy, dzdxdy;
 float drdx, dgdx, dbdx, dadx, dzdx; // Gradients for unit step in x.
 float r0, g0, b0, a0, z0; // Start values
 float area, oneOverArea, t1, t2;
 float oneOverdyAC;
 Vertex *a, *b, *c; // Sorted vertices.
 long xDomFixed, xSubFixed;
 float dyErr, yBottom, yTop;
 long iyBottom, iyTop;
 int windingOrder; // Not used.
 long zi, zf;
 long temp;

 // Sort vertices into ascending Y order. *a points to the vertex with the
 // lowest y value. Compare winding order of the pre and post sorted vertices
 // and set winding order flag as appropriate (this is only needed if culling
 // based on the winding order is to be done).

 if (v0->y < v1->y)
 {
 if (v1->y < v2->y)
 ORDER (v0, v1, v2, SAME)
 else
 if (v0->y < v2->y)
 ORDER (v0, v2, v1, REVERSED)
 else
 ORDER (v2, v0, v1, SAME)
 }
 else
 {
 if (v1->y < v2->y)
 {
 if (v0->y < v2->y)
 ORDER (v1, v0, v2, REVERSED)
 else
 ORDER (v1, v2, v0, SAME)
 }
 else
 ORDER (v2, v1, v0, REVERSED)
 }

 // Compute signed area of the triangle.
 // Form vectors for two edges of the triangle.
 dxAC = a->x - c->x;
 dxBC = b->x - c->x;
 dyAC = a->y - c->y;
 dyBC = b->y - c->y;

 // Form the cross product of the two edges.
 area = dxAC * dyBC - dxBC * dyAC;

 if (area == 0.0)
 return; // Reject zero area triangles.

 // A negative area just means the order of the vertices, after sorting, was
 // clockwise. Note this may be different from original input order.
 if (area < 0.0)
 area = -area; // Make positive.

 // The dx/dy value (change in x for unit change in y) are needed for
 // each edge so the rasterizer can compute the new left and right hand
 // x coordinates as it steps from one scan line to the next. Horizontal
 // or near horizontal edges will have very large gradients but these will
 // be handled later. Values for AC and BC have already been calculated so
 // just do the remaining edge.

GLINT 500TX Programmer’s Reference Manual Appendix F. Accurate Rendering

3Dlabs Proprietary and Confidential 309

 dxAB = a->x - b->x;
 dyAB = a->y - b->y;

 // The dominant edge is always AC (i.e. the edge with the maximum Y extent).
 // Compute the change in rgbaz along this edge for unit change in y.
 oneOverdyAC = 1.0 / dyAC;

 // Differences along edge AC
 drAC = a->r - c->r;
 dgAC = a->g - c->g;
 dbAC = a->b - c->b;
 daAC = a->a - c->a;
 dzAC = a->z - c->z;

 // Gradient along edge AC for each parameter.
 drdxdy = drAC * oneOverdyAC;
 dgdxdy = dgAC * oneOverdyAC;
 dbdxdy = dbAC * oneOverdyAC;
 dadxdy = daAC * oneOverdyAC;
 dzdxdy = dzAC * oneOverdyAC;
 dxdyAC = dxAC * oneOverdyAC;

 // Difference along edge BC
 drBC = b->r - c->r;
 dgBC = b->g - c->g;
 dbBC = b->b - c->b;
 daBC = b->a - c->a;
 dzBC = b->z - c->z;

 // Compute the change in rgbaz when taking unit steps in x.
 oneOverArea = 1.0 / area;

 t1 = dyAC * oneOverArea;
 t2 = dyBC * oneOverArea;

 drdx = drAC * t2 - drBC * t1;
 dgdx = dgAC * t2 - dgBC * t1;
 dbdx = dbAC * t2 - dbBC * t1;
 dadx = daAC * t2 - daBC * t1;
 dzdx = dzAC * t2 - dzBC * t1;

 // A general triangle will need to be split into two trapezoids for
 // rendering. Either of these trapezoids may have a zero height in
 // which case the triangle has a flat top or bottom. The rasterizer
 // and DDAs are still set up, however the count may be zero.

 // Fill lower trapezoid.
 yBottom = a->y;
 yTop = b->y;

 // The y coordinates are converted to integer values, taking into
 // account the openGL rules which determine which pixels fall within
 // the boundary.

 temp = FloatToCoordinate (yBottom); // float to 16.16 fixed point
 temp += 0x00007fff; // add in nearly a half
 iyBottom = temp >> 16; // extract integer part

 temp = (int) FloatToCoordinate (yTop); // float to 16.16 fixed point
 temp += 0x00007fff; // add in nearly a half
 iyTop = temp >> 16; // extract integer part

 dyErr = iyBottom + 0.5 - yBottom;

 // Check for the case when AB is a true horizontal edge to prevent a divide

Appendix F. Accurate Rendering GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs310

 // by zero.
 if (dyAB == 0.0)
 dyAB = FLT_MIN; // set to a very small number.

 dxdyAB = dxAB / dyAB;

 // Move the rgbaz values at vertex a along the edge AC in proportion
 // to how far the vertex a is from the pixel center in the y direction
 // to do the sub pixel adjustment in Y. GLINT will do the sub pixel
 // adjustment in X automatically, if enabled.

 r0 = a->r + dyErr * drdxdy;
 g0 = a->g + dyErr * dgdxdy;
 b0 = a->b + dyErr * dbdxdy;
 a0 = a->a + dyErr * dadxdy;
 z0 = a->z + dyErr * dzdxdy;

 // Similarly for the start values for the left and right hand edges.
 xDomFixed = FloatToCoordinate (a->x + dyErr * dxdyAC);
 xSubFixed = FloatToCoordinate (a->x + dyErr * dxdyAB);

 // Load up GLINT with the parameters.

 // Rasterizer. Note that the RasterizerMode is set to add
 // __GLINT_START_BIAS_ALMOST_HALF to the XDom, XSub and
 // Y Start values to conform to the OpenGL rasterization rules.

 LD_GLINT_REG(StartXDom, xDomFixed);
 LD_GLINT_REG(dXDom, FloatToCoordinate (dxdyAC));
 LD_GLINT_REG(StartXSub, xSubFixed);
 LD_GLINT_REG(dXSub, FloatToCoordinate (dxdyAB));
 LD_GLINT_REG(StartY, IntToFixedPoint16 (iyBottom));
 LD_GLINT_REG(dy, IntToFixedPoint16 (1));
 LD_GLINT_REG(Count, (iyTop - iyBottom));

 // Color DDA.
 LD_GLINT_REG(RStart, FloatToColor (r0));
 LD_GLINT_REG(dRdx, FloatToColor (drdx));
 LD_GLINT_REG(dRdyDom, FloatToColor (drdxdy));
 LD_GLINT_REG(GStart, FloatToColor (g0));
 LD_GLINT_REG(dGdx, FloatToColor (dgdx));
 LD_GLINT_REG(dGdyDom, FloatToColor (dgdxdy));
 LD_GLINT_REG(BStart, FloatToColor (b0));
 LD_GLINT_REG(dBdx, FloatToColor (dbdx));
 LD_GLINT_REG(dBdyDom, FloatToColor (dbdxdy));
 LD_GLINT_REG(AStart, FloatToColor (a0));
 LD_GLINT_REG(dAdx, FloatToColor (dadx));
 LD_GLINT_REG(dAdyDom, FloatToColor (dadxdy));

 // Depth DDA.
 FloatToDepth (z0, &zi, &zf);
 LD_GLINT_REG(ZStartU, zi);
 LD_GLINT_REG(ZStartL, zf);

 FloatToDepth (dzdx, &zi, &zf);
 LD_GLINT_REG(dZdxU, zi);
 LD_GLINT_REG(dZdxL, zf);

 FloatToDepth (dzdxdy, &zi, &zf);
 LD_GLINT_REG(dZdyDomU, zi);
 LD_GLINT_REG(dZdyDomL, zf);

 // Render the trapezoid ...
 LD_GLINT_REG(Render, 0x00014041);

 // Fill upper trapezoid.

GLINT 500TX Programmer’s Reference Manual Appendix F. Accurate Rendering

3Dlabs Proprietary and Confidential 311

 yBottom = b->y;
 yTop = c->y;

 // The y coordinates are converted to integer values, taking into
 // account the openGL rules which determine which pixels fall within
 // the boundary.

 temp = FloatToCoordinate (yBottom); // float to 16.16 fixed point
 temp += 0x00007fff; // add in nearly a half
 iyBottom = temp >> 16; // extract integer part

 temp = FloatToCoordinate (yTop); // float to 16.16 fixed point
 temp += 0x00007fff; // add in nearly a half
 iyTop = temp >> 16; // extract integer part

 // Find the dyErr value for vertex B so that the start value for x can be
 // corrected.
 dyErr = iyBottom + 0.5 - yBottom;

 // Check for the case when BC is a true horizontal edge to prevent a divide
 // by zero.
 if (dyBC == 0.0)
 dyBC = FLT_MIN; // set to a very small number.

 dxdyBC = (dxBC / dyBC);

 // Set up the rasterizer for the upper trapezoid. All other DDA units
 // can carry on with their parameters as they are walking up the same
 // edge.
 xSubFixed = FloatToCoordinate (b->x + dyErr * dxdyBC);
 LD_GLINT_REG(StartXSub, xSubFixed);
 LD_GLINT_REG(dxSub, FloatToCoordinate (dxdyBC));
 LD_GLINT_REG(ContinueNewSub, (iyTop - iyBottom));
}

Glossary GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs312

GlossaryGlossary

accumulation buffer A color buffer of higher resolution than the displayed buffer (typically 16bits
per component for an 8bit per component display). Typically used to sum
the result of rendering several frames from slightly different viewpoints to
achieve motion blur effects or eliminate aliasing effects.

active fragment A fragment which passes all the various culling tests, such as scissor,
depth(Z), alpha, etc., is written to/combined with the corresponding pixel in
the framebuffer. See also "fragment" and "passive fragment".

aliasing A phenomena resulting from a rendering style which ignores the fact that a
pixel may not be wholly covered by a primitive, leading to jagged edges on
primitives.

alpha buffer A memory buffer containing the fourth component of a pixel's color in
addition to Red, Green and Blue. This component is not displayed, but may
be used for instance to control color blending and antialiasing.

alpha test A test used to cull selected fragments from being drawn, based on a
comparison of a fixed value with the alpha value of the fragment.

antialiasing A rendering style which weights the color of a pixel by the fraction of its area
that is covered by primitives, leading to reduction or elimination of jagged
edges.

bitblt Bit aligned block transfer. Copy of a rectangular array of pixels in a bitmap
from one location to another.

block write A feature provided in some VRAM devices which allows multiple pixels to be
set to a given value by a single write. See also fast fill which is an alternative
name for the same feature.

command register A register which when loaded triggers activity in GLINT. For instance the
Render command register when loaded will cause GLINT to start rendering
the specified primitive with the parameters currently set up in the control
registers.

context The state information associated with a particular task. Typically in a system
more than one task will be using GLINT to render primitives. Software on
the host must save away the current contents of the GLINT control registers
when suspending one task to allow another to run, and must restore the state
when that task is next scheduled to run.

control register A register which contains state that dictates how GLINT will execute a
command.

culling The process of eliminating a fragment, object face, or primitive, so that it is

GLINT 500TX Programmer’s Reference Manual Glossary

3Dlabs Proprietary and Confidential 313

not drawn.

DDA Digital Differential Analyzer. An algorithm for determining the pixels to
draw along a line or polygon edge. Also used to interpolate linearly varying
values such as color and depth.

depth (Z) buffer A memory buffer containing the depth component of a pixel. Used to, for
example, eliminate hidden surfaces.

depth-cueing A technique which determines the color of a pixel based on its depth. Used,
for instance, to fade far away objects into the background. See also fogging.

dithering A rendering style which increases the perceived range of displayed colors at
the cost of spatial resolution. The technique is similar to the use of stippled
patterns of black and white pixels, to achieve shades of grey on a black and
white display.

double-buffering A technique for achieving smooth animation, by rendering only to an
undisplayed back buffer, and then swapping the back buffer to the front
once drawing is complete.

fast fill A feature provided in some VRAM devices which allows multiple pixels to be
set to a given value by a single write. See also block write which is an
alternative name for the same feature.

fogging A technique which determines the color of a pixel based on its depth. Used,
for instance, to fade far away objects into the background. See also depth-
cueing.

Frame Count Planes(FCP) Used to allow higher animation rates by enabling DRAM localbuffer
pixel data, such as depth (Z), to be cleared down quickly.

fragment A fragment is an object generated as a result of the rasterization of a
primitive. It corresponds to and contains all the components of a single pixel.
If a fragment passes all the various culling tests, such as scissor, depth(Z),
alpha, etc., it will be written to/combined with the corresponding pixel in the
framebuffer.

framebuffer An area of memory containing the displayable color buffers (front, back, left,
right, overlay, underlay), their (optional) associated alpha components, and
any associated (optional) window control information. This memory is
typically separate from the localbuffer.

Graphic ID (GID) A component of a pixel containing information used for per pixel clipping.

host The processor which controls GLINT.

localbuffer An area of memory which may be used to store the following non-
displayable pixel information: depth(Z), stencil, Fast Clear Planes, Graphic
ID. This memory is typically separate from the framebuffer.

passive fragment A fragment which fails one or more of the various culling tests, such as
scissor, depth(Z), alpha, etc., is nor written to/combined with the
corresponding pixel in the framebuffer. See also "fragment" and "active

Glossary GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs314

fragment".

pixel Picture element. A pixel comprises the bits in all the buffers (whether stored
in the localbuffer or framebuffer), corresponding to a particular location in
the framebuffer.

primitive A geometric object to be rendered. The GLINT primitives are points, lines,
trapezoids (including triangles as a subset), and bitmaps.

rasterization The act of converting a point, line, polygon, or bitmap, in device coordinates,
into fragments.

rendering Conversion of primitives in object coordinates into an image.

scissor test A means of culling fragments which lie outside the defined scissor rectangle.
The scissor rectangle is defined in device coordinates.

stencil buffer A buffer used to store information about a pixel which controls how
subsequent stenciled fragments at the same location may be combined with
its current value. Typically used to mask complex two-dimensional shapes.

stipple A one or two dimensional binar y pattern which is used to cull fragments
from being drawn.

task A process, or thread on the host which uses the GLINT coprocessor.
Typically tasks assume that they have sole use of GLINT and rely on a device
driver to save and restore their GLINT context, when they are swapped out.

texel Texture element. An element of an image stored in texture memory which
represents the color of the texture to be applied (fully or in part) to a
corresponding fragment.

texture An image used to modify the col or of fragments during processing. Often
used for instance to achieve high realism in a scene, with relatively few
primitives.

texture mapping The process of applying a two dimensional image to a primitive. For instance
to apply a wood grain effect to a table.

window control buffer A buffer containing control bits used by display hardware to select
between multiple hardware LUTs or display buffers (such as overlay and
underlay) on a per pixel basis. Usually a given value in the buffer corresponds
to a single window on the screen.

writemask A bit pattern used to enable or inhibit the writing of the corresponding bits
of a fragment's color into the framebuffer.

1.

GLINT 500TX Programmer’s Reference Manual Index

3Dlabs Proprietary and Confidential 315

IndexIndex

A
Alpha Blend, 3, 23, 47, 118, 143, 153, 154, 193, 297
Alpha Blending, 3, 47, 153, 154, 193
alpha buffer, 34, 118, 154, 160, 189, 309
Alpha test, 3, 45, 120, 196, 297
Alpha Test, 120
AlphaBlendMode, 7, 23, 34, 36, 154, 155, 156, 157, 158, 178,

180, 193, 211, 297
AlphaTestMode, 120, 121, 180, 297
Antialias Application, 45, 118
Antialiasing, 3, 58, 118, 119, 258, 309
AntialiasMode, 60, 119
AreaStippleMode, 76, 85
AreaStipplePattern, 87
AStart, 91

B
Bitmaps, 65
BitMaskPattern, 65, 75
Block Write, 37, 64, 309
BStart, 91, 92, 96, 106

C
Color, 168
Color buffer, 4
Color DDA, 45, 89
Color Format, 178
Color Formatting, 47, 158
Color Interpolation, 50
ColorDDAMode, 91, 92
Command, 295
command register, 309
Command register., 5
Command Registers, 8
ConstantColor, 90, 92
context, 5, 309
Continue, 73
ContinueNewDom, 73
ContinueNewLine, 74
ContinueNewSub, 53, 73
Control, 295
Control register, 5, 309
Control Registers, 8
Count, 75

D
dAdx, 91

dAdyDom, 91
dBdx, 91, 92, 96
dBdyDom, 91, 92, 96
DDA, 91, 92
delta, 92
Depth, 24, 26, 51, 128, 136, 168
Depth (Z) buffer, 3, 4, 310
Depth Test, 46
Depth Test, 134
depth-cueing, 310
DepthMode, 136
dFdx, 117
dFdyDom, 117
dGdx, 91, 92, 96, 106
dGdyDom, 91, 92, 96, 106
Dithering, 3, 160, 310
DitherMode, 34, 161
DMA, 5, 9, 10, 12, 19, 295
DMA Example, 14
DMA Interrupts, 15
Dominant, 49
dRdx, 91, 92, 96, 106
dRdyDom, 91, 92, 96, 106
dXDom, 75
dXSub, 75
dY, 75
dZdxL, 136
dZdxU, 136
dZdyDomL, 136
dZdyDomU, 136

E
Efficiency, 8
extent checking, 169

F
Fast Clear Planes, 4
fast fill, 310
FastClearDepth, 136
FBBlockColor, 37
FBHardwareWriteMask, 34, 36, 166
FBPixelOffset, 30, 142, 147
FBReadMode, 138, 140, 146
FBSoftwareWriteMask, 34, 166
FBSourceOffset, 142, 147
FBWindowBase, 30
FBWriteData, 163
FBWriteMode, 147
FIFO control, 10
Filter Mode Example, 171
FilterMode, 168, 169, 170, 171, 172
flat shaded, 91
Flat Shading example, 91
FlushSpan, 58, 74
Fog, 3, 45, 114
FogColor, 117
fogging, 310

Index GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs316

FogMode, 76, 116
Frame Count Planes, 310
framebuffer, 3, 4, 5, 30, 176, 310
Framebuffer, 138
FrameCount, 24, 26
FStart, 117

G
GID, 24, 25
GLINT 300SX, 108
GLINT 300SX Hardware Reference Manual, 2
GLINT Architecture Overview, 2
Gouraud Shading, 89, 92
Gouraud Shading examples, 92
Graphic ID, 4, 310
GStart, 91, 92, 96, 106

H
Host, 168, 177
Host Out, 47

I
Internal Registers, 8

L
LBReadFormat, 25
LBReadFormat, 124
LBReadMode, 122
LBSourceOffset, 126
LBWindowBase, 126
LBWriteFormat, 25, 124
LBWriteMode, 124
Lines, 56
LineStippleMode, 76, 86
LoadLineStippleCounters, 87
localbuffer, 5, 24, 176, 310
localbuffer, 4
Logical Op, 163
Logical Operations, 3
LogicalOpMode, 163, 164

M
MaxHitRegion, 27, 170
MaxRegion, 27, 169, 170, 172
MinHitRegion, 27, 170
MinRegion, 27, 169, 170, 172
Mixed, 295

O
OpenGL Programming Guide, 2
OpenGL Reference Manual, 2
Origin, 178
Output, 295

Overlay, 4
Overlays, 36

P
partial products, 30, 33
PCI, 2
PCI Disconnect, 9
Picking Example, 172
PickResult, 169, 172
Pixel Ownership, 4, 46
Points, 58
PointTable0, 75
primitive, 311
primitives, 3
pseudocode, 291

R
Rasterizer, 45, 54
RasterizerMode, 71, 79
Register Read back, 21
Register Table, 295
Registers

AlphaBlendMode, 193
AlphaTestMode, 196
AntialiasMode, 197
AreaStippleMode, 198
AreaStipplePattern[0...31], 199
AStart, 199
BitMaskPattern, 200
BorderColor, 200
BStart, 201
Color, 201
ColorDDAMode, 202
ConstantColor, 203
Continue, 203
ContinueNewDom, 204
ContinueNewLine, 204
ContinueNewSub, 205
Count, 205
dAdx, 206
dAdyDom, 207
dBdx, 206
dBdyDom, 207
Depth, 207
DepthMode, 208
dFdx, 210
dFdyDom, 210
dGdx, 206
dGdyDom, 207
DitherMode, 211
dKddx, 214
dKddyDom, 214
dKsdx, 214
dKsdyDom, 214
dQdyDom, 216
dRdx, 206
dRdyDom, 207

GLINT 500TX Programmer’s Reference Manual Index

3Dlabs Proprietary and Confidential 317

dSdx, 215
dSdyDom, 216
dTdyDom, 216
dXDom, 216
dXSub, 217
dY, 217
dZdxL, 218
dZdxU, 218
dZdyDomL, 218
dZdyDomU, 218
FastClearDepth, 219
FBBlockColor, 219
FBBlockColorL, 220
FBBlockColorU, 220
FBColor, 220
FBData, 221
FBHardwareWriteMask, 221
FBPixelOffset, 222
FBReadMode, 223
FBSoftwareWriteMask, 224
FBSourceOffset, 225
FBWindowBase, 225
FBWriteData, 226
FBWriteMode, 227
FilterMode, 228
FlushSpan, 230
FogColor, 230
FogMode, 231
FStart, 232
GStart, 232
Interp[0...4], 233
KdStart, 233
KsStart, 233
LBDepth, 234
LBReadFormat, 235
LBReadMode, 237
LBSourceOffset, 238
LBStencil, 238
LBWindowBase, 239
LBWriteFormat, 240
LBWriteMode, 242
LineStippleMode, 243
LoadLineStippleCounters, 244
LogicalOpMode, 245
MaxHitRegion, 246
MaxRegion, 247
MinHitRegion, 248
MinRegion, 249
PatternRamData[0…31], 250
PatternRamMode, 250
PickResult, 251
PixelSize, 252
PointTable[0...3], 253
QStart, 254
RasterizerMode, 255
Render, 257
ResetPickResult, 259
RouterMode, 259
RStart, 260

SaveLineStippleCounters, 260
ScanLineOwnership, 261
ScissorMaxXY, 262
ScissorMinXY, 262
ScissorMode, 263
ScreenSize, 264
SStart, 264
StartXDom, 265
StartXSub, 265
StartY, 266
StatisticMode, 267
Stencil, 268
StencilData, 268
StencilMode, 269
SuspendUntilFrameBlank, 271
Sync, 272
Texel[0...7], 272
TexelLUT[0…15], 273
TextureAddressMode, 274
TextureCacheControl, 275
TextureColorMode, 276
TextureData, 278
TextureDownloadOffset, 278
TextureEnvColor, 279
TextureFilter, 279
TextureFormat, 280
TextureReadMode, 282
TStart, 284
TxBaseAddr, 284
TxBaseAddrLR, 285
UpdateLineStippleCounters, 285
WaitForCompletion, 286
Window, 287
WindowOrigin, 289
YLimits, 289
ZStartL, 290
ZStartU, 290

Render, 52, 73, 76
Reset, 174
ResetPickResult, 169, 172
RStart, 91, 92, 96, 106, 109

S
SaveStippleLineCounters, 85
Scissor, 3, 81
Scissor Test, 45, 169, 170
ScissorMaxXY, 82
ScissorMinXY, 82
ScissorMode, 82
Screen Width, 175
Screen Widths Table, 293
ScreenSize, 81
StartXDom, 52, 75
StartXSub, 52, 75
StartY, 75
StatisticMode, 169, 171
Stencil, 24, 26, 128, 132, 168
Stencil buffer, 4, 311

Index GLINT 500TX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs318

Stencil test, 3, 46
Stencil Test, 130
StencilData, 131
StencilMode, 130
Stipple, 3, 85, 311
Stipple Test, 45
Subordinate, 49
Sync, 170, 172, 177
Sync Interrupt Example, 172

T
Texture, 3, 45, 93, 97, 107, 311
texture mapping, 1, 5, 6, 27, 47, 93, 101, 125, 185, 233, 311
Trapezoids, 54

U
Underlay, 4
Underlays, 36
UpdateLineStippleCounters, 85
UseConstantFBWriteData, 163

V
Video Timing, 175

W
Window, 128, 132, 135
Window control, 4, 311
WindowOrigin, 81, 179
Write Masks, 166
writemask, 311
Writemasks, 3, 179

Z
ZStartL, 136
ZStartU, 136

