

SPC8100 Low Power LCD VGA Controller

SPC8100 TECHNICAL MANUAL

Document Number: X03A-Q-001-01

Copyright © 1999 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

COMPREHENSIVE SUPPORT TOOLS

EPSON provides the designer and manufacturer a complete set of resources and tools for the development of LCD Graphics Systems.

Documentation

- Technical manuals
- Evaluation/Demonstration board manual

Evaluation/Demonstration Board

- Assembled and fully tested Graphics Evaluation/Demonstration board
- Schematic of Evaluation/Demonstration board
- Parts List
- Installation Guide
- CPU Independent Software Utilities
- Evaluation Software

Application Engineering Support

EPSON offers the following services through their Sales and Marketing Network:

- Sales Technical Support
- Customer Training
- Design Assistance

Application Engineering Support

Engineering and Sales Support is provided by:

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110

Taiwan, R.O.C.

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan, R.O.C. Tel: 02-2717-7360 Fax: 02-2712-9164

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

THIS PAGE LEFT BLANK

Table of Contents

SPECIFICATION

SPC8100 Hardware Functional Specification

UTILITIES

CONFIG Configuration Utility PS Power Save Utility

RAMBIOS Utility

VCDISP Display Utility

VCMODE Display Utility

DRIVERS

SPC8100 Windows v3.0 Display Drivers

SPC8100 OS/2 Display Drivers

EVALUATION

SDU8100B0B Rev. 2.1 Evaluation Board User Manual

THIS PAGE LEFT BLANK

SPC8100 Low Power LCD VGA Controller

Hardware Functional Specification

Document Number: X03A-A-001-01

Copyright © 1999 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners. VGA, EGA, CGA, MDA, PC/XT/AT, MicroChannel, IBM are registered trademarks of IBM. Hercules is a registered trademark of Hercules Computer Technology.

THIS PAGE LEFT BLANK

Table of Contents

1	Introducti	on										
	1.1 Scope	e										
	1.2 Over	view Description										
2	Features											
	2.1 Tech	chnology										
	2.2 Displ	lay Memory Configuration										
	2.3 Syste	em										
	2.4 Displ	-										
3	Typical System Implementation											
	3.1 Block	k Diagram										
	3.2 Typic	cal System Implementation										
4	Internal D	escription										
	4.1 Func	tional Block Diagram										
	4.2 Func	tional Block Descriptions										
	4.2.1	Sequencer										
	4.2.2	CRT Controller										
	4.2.3	Address Generator										
	4.2.4	Attributes Controller										
	4.2.5	Graphics Controller										
	4.2.6	Memory Decoder										
	4.2.7	Port Decoder										
	4.2.8	Auxiliary Ports										
	4.2.9	CGA Ports										
	4.2.10	VGA/EGA Ports										
	4.2.11	Hercules/MDA Ports										
		Display Control Ports										
		Clock Generation										
		LCD Interface Logic										
		RAMDAC										
5												
		ut Diagram										
		Description										
	5.2.1	CPU Interface and BIOS EPROM Control										
	5.2.2	Video Memory Interface Pins 23										
	5.2.3	Video Interface										
	5.2.4	Clock Inputs										

	5.2.5 Miscellaneous	24								
	5.2.6 Power Supply	25								
	5.2.7 MCA & ISA Bus Mapping	25								
6	D.C CHARACTERISTICS	26								
7	A.C. Characteristics	29								
	7.1 XT/AT Bus Cycle Timing	29								
	7.2 MicroChannel Bus Cycle Timing	31								
	7.3 DRAM Read/Write Cycle Timing	33								
	7.4 DRAM Refresh Cycle Timing	35								
	7.5 FRM LCD Mode Timing	36								
8	SPC8100 Pin States In Power Down Modes	37								
	8.1 CPU Interface Pin States Affected in Power Down Modes	37								
	8.2 Video Interface Pin States in Power Down Modes	37								
	8.3 Miscellaneous Pin States in Power Down Modes	38								
9	DIP Switch And Configuration	39								
	9.1 MD0 BIOS ROM disable	39								
	9.2 MD1 Micro channel interface enable									
	MD3-2 Video enable port select 0-1									
	9.4 MD7-4 Panel configuration	MD7-4 Panel configuration								
	9.5 MD10 - 8 Auxiliary input register bits 0-2	40								
	9.6 MD11 EGA/VGA default configuration	40								
10	Registers	41								
	10.1 Register Set Overview	41								
	10.1.1 CRTC Register Set A	41								
	10.1.2 CRTC Register Set B									
	10.1.3 Hercules Registers									
	10.1.4 Attribute Controller Registers									
	10.1.5 Sequencer Registers									
	10.1.6 Graphics Controller Registers									
	10.1.7 CGA Registers									
	10.1.8 Auxiliary Registers									
	10.1.9 General Registers									
	0.2 CRT Controller (CRTC) Register Set A (Index 00 to 26h)									
	10.3 CRT Controller (CRTC) Register Set B (Index 00 to 16h) 60 10.4 MDA/Hercules Register Set 68									
	10.4 MDA/Hercules Register Set									
	10.5 Attribute Controller Register Set									
	10.0 Sequencer Register Set									
		11								

10.9 CGA Register Set	87
10.10 Auxiliary Register Set (Index 00 to DEh)	
	104
10.11 General Register Set	
10.12 Register Address Map	
11 Power Down Modes	
11.1 Software Power Down modes	
11.1.1 Power Save Mode 1	
11.1.2 Power Save Mode 2	
11.1.3 Power Save Mode 3	
11.1.4 Power Save Mode 4	117
11.2 Hardware Power Down modes	118
11.2.1 Sleep Mode	118
11.2.2 Suspend Mode	119
11.3 Essential Power Save Mode Register Bits	120
11.4 Power Save Mode Considerations	121
11.5 Software Controlled Power Save Modes	121
11.6 Hardware Controlled Power Save Modes:	123
11.6.1 Sleep Mode	123
11.6.2 Suspend Mode	
11.7 HARDWARE POWER DOWN MODE TIMING	
11.7.1 Power Down Display Timings	
11.7.2 CPU Interface Signal Timings	

12 Mechanical Data	-		-		-													. 1	27	7

THIS PAGE LEFT BLANK

Table 5-1:	CPU Interface and BIOS EPROM Control Pin Descriptions
Table 5-2:	Video Memory Interface Pin Descriptions
Table 5-3:	Video Interface Pin Descriptions
Table 5-4:	Clock Input Pin Descriptions
Table 5-5:	Miscellaneous Pin Descriptions
Table 5-6:	Power Supply Pin Descriptions
Table 5-7:	MCA & ISA Bus Mapping
Table 6-1:	Absolute Maximum Ratings
Table 6-2:	Digital Inputs
Table 6-3:	Digital Outputs
Table 6-4:	Current Reference
Table 6-5:	Digital Outputs Drive Capability
Table 6-6:	Oscillator Pins
Table 6-7:	D/A Outputs (R, G, B)
Table 7-1:	XT/AT Bus Cycle Timing
Table 7-2:	MicroChannel Bus Cycle Timing 32
Table 7-3:	DRAM Read/Write Cycle Timing
Table 7-4:	DRAM Refresh Cycle Timing
Table 7-5:	FRM LCD Mode Timing
Table 8-1:	CPU Interface Pin States
Table 8-2:	Video Interface Pin States
Table 8-3:	Miscellaneous Pin States
Table 9-1:	MA[15:0] Configuration Inputs
Table 9-2:	Video Enable Port Selection
Table 10-1	Horizontal Display Enable Skew Selection
Table 10-2	: Horizontal Retrace Skew Selection
Table 10-3	Byte Pan Selection
Table 10-4	: Cursor Skew Selection
Table 10-5	CRTC Register Protection
Table 10-6	: Vertical Interrupt Status Bit
Table 10-7	: Interupt Request Signal
Table 10-8	Horizontal Display Enable Skew B Selection
Table 10-9	Horizontal Retrace Skew B Selection
Table 10-1	0: Blink/Intensity Bit Selection
Table 10-1	1: Color Enable Plane Selection
Table 10-12	2: Horizontal Bit Pan Count
Table 10-12	3: Map A Selection

Table 10-14: Map B Selection 7	6
Table 10-15: Chain 4 Selection 7	'7
Table 10-16: Logic Function Selection	30
Table 10-17: Read Plane Selection 8	31
Table 10-18: 256-color mode data 8	31
Table 10-19: Graphics Shift Register Interleave Data 6	32
Table 10-20: Write Mode Selection. 8	3
Table 10-21: Display Memory Mapping 8	3
Table 10-22: MDA/CGA/EGA/VGA Selection 8	8
Table 10-23: Clock Divide Ratio)1
Table 10-24: Microchannel IRQ and Force IRQ-Tristate Disable)3
Table 10-25: VGA Enable Selection)4
Table 10-26: Clock Select A)6
Table 10-27: Clock Select A)7
Table 10-28: Register Address Map	0
Table 11-1: Power Save Modes.	5
Table 11-2: Power Save Mode Selection 12	21
Table 11-3: /SUSPEND Pin.	25
Table 11-4: /SLEEP Pin.	25
Table 11-5: CPU Interface Signal Timing 12	26

List of Figures

Figure 3-1:	SPC8108 Block Diagram
Figure 3-2:	Typical System Implementation Diagram
Figure 4-1:	Internal Functional Block Diagram
Figure 5-1:	Pinout Diagram (144-pin QFP17 surface mount package)
Figure 7-1:	XT/AT Bus Cycle Timing
Figure 7-2:	MicroChannel Bus Cycle Timing
Figure 7-3:	DRAM Read/Write Cycle Timing
Figure 7-4:	DRAM Refresh Cycle Timing
Figure 7-5:	FRM LCD Mode Timing
Figure 11-1:	Power Save Display Timings
Figure 11-2:	CPU Interface Signal Timings
Figure 12-1:	Package Dimensions 144 Pin QFP17

THIS PAGE LEFT BLANK

1 Introduction

1.1 Scope

This is the Hardware Functional Specification for the SPC8100 Low Power LCD VGA Controller Chip. Included in this document are timing diagrams, AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers.

This specification will be updated as appropriate. Please check the Epson Electronics America Website at http://www.eea.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at techpubs@erd.epson.com.

1.2 Overview Description

The SPC8100 is a single-chip multi-function LCD VGA Graphics Controller with an integrated RAMDAC and LCD Interface. The target market for this device is laptop computers where low power, low component count, and low cost are the major design considerations. It is hardware compatible with IBM VGA and EGA standards and supports PS/2 analog CRT monitors and monochrome LCD panels. The SPC8100 has four power down modes of operation for laptop computer applications, and has a 16 bit interface to video display memory that requires only two 64K x 16 DRAMs.

The SPC8100 has a set of hidden registers used to interface to any specific monitor. At system startup, the system-specific BIOS will configure these registers and then enable text Mode 3. After initial configuration is complete, the SPC8100 will be 100% IBM BIOS compatible.

2 Features

2.1 Technology

• Low Power CMOS.

2.2 Display Memory Configuration

• Two 64K x 16 100nsec DRAM devices (Toshiba TC511664-10, or equivalent) on a multiplexed row/column address bus, providing a 16 bit data path to 256K bytes of video display memory. 256 row/4 msec and 256 row/32 msec refresh modes supported.

2.3 System

- Fully Compatible with IBM VGA and EGA, on CRT and LCD displays at hardware, register and BIOS level once display setup is complete.
- Emulated support of CGA, Hercules and MDA modes on CRT and LCD displays. Emulation will be similar to the current SPC8000/SPC8000A chips to provide an easy migration of current emulation software.
- IBM VGA standard resolution support.
- VESA compatible 800 x 600 x 16.
- Support of extended resolutions at dotclock rates of 30 MHz with 100nsec DRAM, or 37.5 MHz with 80nsec DRAM.
- On-chip 8 or 16 bit IBM PC/XT/AT Bus interface.
- Single 144 pin Quad Flat Pack (QFP) surface mount package.
- 5 volt \pm 5% Supply.
- Five Power Save modes initiated by software or hardware.
- Two terminal crystal or oscillator package support.
- S-Bus Buffer disable, (/CSD), pin for motherboard implementation.
- MicroChannel bus interface support.
- Auxiliary Connector NOT supported.

2.4 Display Technologies Supported

CRT MONITORS

- Standard IBM VGA, EGA, CRT resolution.
- Multi-Frequency Analog Color / Monochrome monitors.
- PS/2 Analog CRT.

PANEL DISPLAYS

- Monochrome LCD panel support.
- Color LCD panel support.
- Plasma and Electro-Luminescent (EL) Displays.
- Internal LCD interface logic to drive monochrome LCD panels, providing 16 levels of gray by Frame Rate Modulation (FRM), or 64 shades of gray by a combination of FRM and Dithering.
- Maximum 87 Hz LCD Frame Rate with 28.322 MHz clock.
- 640 x 480, 720 x 480 panel display resolutions.
- Dual Panel / Dual Drive LCD.

ON-CHIP RAMDAC

- Internal CMOS color palette that contains 256 word x 18 bit RAM.
- Three separate 6 bit D/A converters.
- maximum 256 of 262,144 colors on analog RGB CRT display.

ON-CHIP LCD INTERFACE LOGIC

- On-chip gray-scale weighting function.
- 16 shades of gray by Frame Rate Modulation (FRM).
- 64 shades of gray by combination of FRM and Dithering (available in mode 13H).

3 Typical System Implementation

3.1 Block Diagram

The following figure shows a block diagram of a typical implementation of the SPC8100.

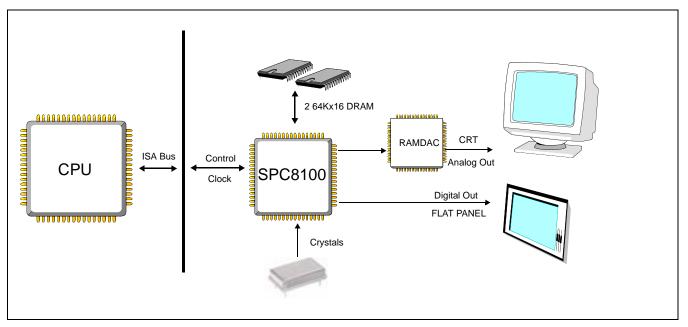


Figure 3-1: SPC8108 Block Diagram

3.2 Typical System Implementation

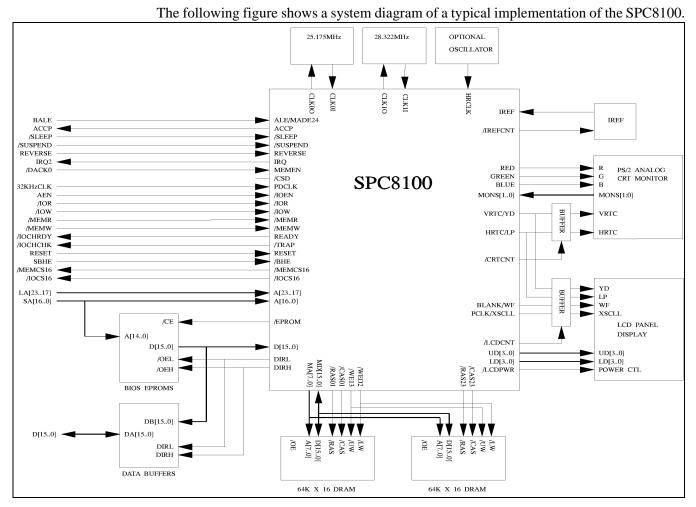


Figure 3-2: Typical System Implementation Diagram

4 Internal Description

4.1 Functional Block Diagram

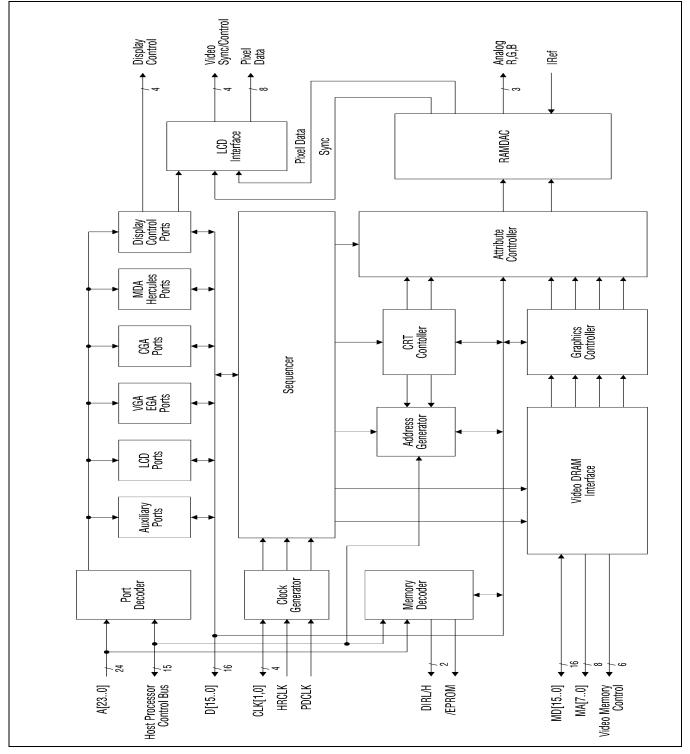


Figure 4-1: Internal Functional Block Diagram

4.2 Functional Block Descriptions

4.2.1 Sequencer

The Sequencer generates internal signals to synchronize the operation of the chip. It also generates signals to control the timing of the display memory DRAM. The Sequencer arbitrates between CPU and Video Display (CRT) accesses to the video display memory. The Sequencer contains registers that allow selection of the character font set, control the organization of video memory, and allow write masking of individual planes of memory. CAS-before-RAS DRAM refresh cycles are also controlled by the Sequencer.

4.2.2 CRT Controller

The CRT Controller generates the horizontal and vertical sync signals for the video display. It also generates character and or pixel addresses for the display data. It contains registers that allow all the video timing to be programmed. Logic to automatically support Dual Panel LCD displays is also contained in the CRT controller block.

4.2.3 Address Generator

The Address generator takes the display addresses from the CRT controller block and converts them into RAS and CAS addresses for the display DRAM, and multiplexes these display accesses with CPU memory accesses.

4.2.4 Attributes Controller

The Attributes Controller takes in pixel and attribute information from the graphics controller and display memory and formats the data into pixel information which is clocked out from the chip. This block controls display character attributes such as Blink, Underline, and Horizontal Scrolling.

4.2.5 Graphics Controller

The Graphics Controller supplies display memory data to the Attributes Controller during display time, and provides data translation between the CPU bus and the display memory during CPU read or write access cycles. As well, the graphics controller can do logical operations to the display data as it passes through to the attributes controller.

4.2.6 Memory Decoder

The Memory Decoder block monitors the CPU bus activity and decodes cycles for the display DRAM, and the external BIOS EPROM chip. It supplies memory access control signals to the Sequencer.

4.2.7 Port Decoder

The Port Decoder decodes CPU I/O cycles to provide enable and write strobes for the onchip I/O registers.

4.2.8 Auxiliary Ports

The Auxiliary Ports are a block of I/O registers used to control all functions of the chip beyond the basic VGA register set. Registers are included for controlling Traps (interrupts), LCD interface circuits, Emulation Modes, extended CRT resolutions, Extended Addressing modes for the chip. Power save control registers and logic are also provided to control the various power down and power save modes of operation.

4.2.9 CGA Ports

The CGA Ports are a block of I/O registers only used in CGA emulation.

4.2.10 VGA/EGA Ports

This block contains I/O registers used in VGA and EGA modes, such as the Miscellaneous Output Register, Input status register, etc.

4.2.11 Hercules/MDA Ports

The Hercules/MDA ports are a block of I/O registers used in Hercules/MDA emulation.

4.2.12 Display Control Ports

Several control bits are provided to control external logic to enable/disable CRT and LCD display devices.

4.2.13 Clock Generation

This block contains on-chip circuitry support of 25MHz and 28MHz crystals for standard VGA mode operation, and also allows selection of external clock oscillator sources and optional clocks for high resolution modes and power-down refresh generation.

4.2.14 LCD Interface Logic

The LCD Interface block converts the CRT display video data from the VGA core logic into LCD display data of up to 64 gray shades using Frame Rate Modulation and dithering. Additionally, this block generates control signals necessary to drive dual-panel or single-panel LCD displays.

4.2.15 RAMDAC

This block is a VGA-compatible color lookup table-D/A converter. The color lookup table (VGA palette) consists of a memory array of 256 locations of 18 bits each, allowing selection of 256 colors from a possible 256K. The D/A converter consists of 3 six-bit digital to analog converters (one 6 bit D/A for each of R, G and B) used to drive an analog CRT display monitor.

5 Pins

5.1 Pinout Diagram

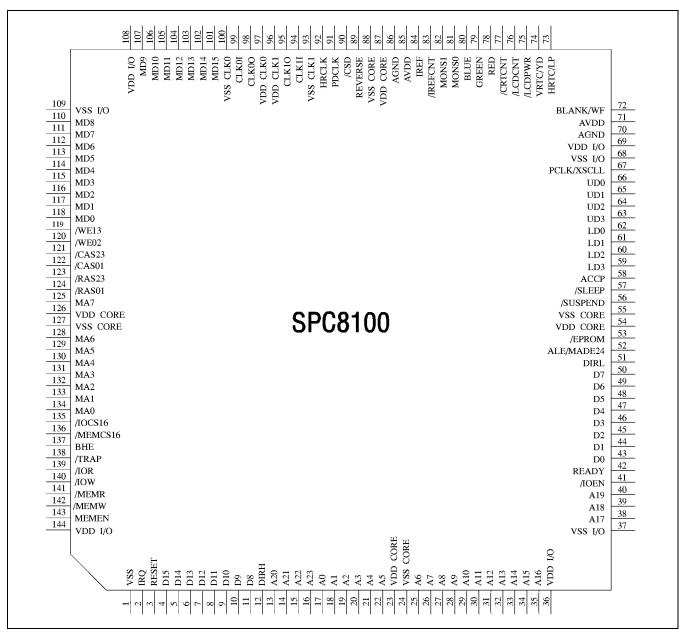


Figure 5-1: Pinout Diagram (144-pin QFP17 surface mount package)

Note

For pins which have a dual use, the default configuration is shown. See *Multiple Function Pin Descriptions* for details.

5.2 Pin Description

Key

CMOS	=	CMOS level
CMOU	=	CMOS level and pull-up resistor
TTL	=	TTL level
TS	=	Tri-state and TTL level
TSU	=	Tri-state and TTL level with pull-up resistor
OD	=	N-channel Open Drain
А	=	Analog

5.2.1 CPU Interface and BIOS EPROM Control

Compositor Norma	Turne	Dim #	D	rv	Description						
Connector Name	Туре	Pin #	MCA	ISA	Description						
A[23:0]	I	16-13, 40-38, 35-25, 22-17	TTL	TTL	CPU bus address inputs. AT bus mode: A17-A23 should be connected to the AT's unlatched LA bus.These address lines are latched internally on the falling edge of ALE signal. Micro channel mode: These address lines are latched internally on the falling edge of /CMD signal.						
D[15:0]	I/O	4-11, 50-43	TS	TS	Low and High order bytes of the 16-bit data bus. Each byte is driven only when data is being read on that byte; they are in a high impedance state at all other times. These are tristate bidirectional buffers capable of sinking 12 mA.						
DIRL	0	51	TTL	TTL	Low byte data buffer control. This pin is also used for low byte BIOS EPROM Output Enable.						
DIRH	0	12	TS	TS	High byte data buffer control. This pin is also used for high byte BIOS EPROM Output Enable. This pin can also be internally configured as a 0WS output when the chip is designed as an 8-bit sub-system in an AT.						
/EPROM	0	53	TTL	TTL	Chip Enable for both BIOS EPROMs.						
/IOR	Ι	139	TTL	TTL	AT bus mode: CPU I/O Read Strobe. Micro channel mode: M/IO control signal.						
/IOW	I	140	TTL	TTL	AT bus mode: CPU I/O Write Strobe. Micro channel mode: /CMD strobe for reads and writes to both display memory and registers.						
/MEMR	Ι	141	TTL	TTL	AT bus mode: CPU Memory Read Strobe. Micro channel mode: /S1 control signal.						
/MEMW	I	142	TTL	TTL	AT bus mode: CPU Memory Write Strobe. Micro channel mode: /S0 control signal.						
/IOEN	Ι	41	TTL	TTL	AT bus mode: I/O Enable. This signal should be connected to AEN of the PC bus. Micro channel mode: /Card Setup signal.						

Table 5-1: CPU Interface and BIOS EPROM Control Pin Descriptions

					Memory Enable.
MEMEN	I	143	TTL	TTL	AT bus mode: This signal should be connected to /DACK0.
					Micro channel mode: This signal should be connected to /REFRESH. This is also one of the clock sources for DRAM refresh during power down mode 4.
/BHE	I	137	TTL	TTL	Byte High Enable. This input is used to condition the data bus buffers.
ALE/MADE24	I	52	TTL	TTL	AT bus mode: Address latch enable. This pin is used to latch addresses LA[23:17] internally.
	1	52	112		Micro Channel mode: Memory address enable 24. When this signal is active high, the address is less than 16M.
READY	0	42	TTL	OD	This output is driven low to force the CPU to insert wait states during memory cycles. It is tied to the bus signal CHRDY. After a transfer is complete, READY is driven high for one sequencer cycle before being set to high impedance.
					AT bus mode: This output is driven low to indicate to the CPU that the current memory cycle is a 16-bit transfer.
				OD	
/MEMCS16	0	136	TTL		Micro channel mode: This output is driven low to indicate to the CPU that the current memory or I/O cycle is a 16-bit transfer.
					This is a tri-state buffer capable of sinking 6 mA.
				OD	AT bus mode: This output is driven low to indicate to the CPU that the current IO cycle is a 16-bit transfer.
/IOCS16	0	135	OD		Micro channel mode: Not used.
					This is a tri-state buffer capable of sinking 6 mA.
/TRAP	0	138	OD	OD	AT bus mode: Trap Interrupt Request. Tri-state buffer capable of sinking 6 mA.
					Micro channel mode: Not used.
RESET	I	3	TTL	TTL	Active high Reset signal from the CPU.
					Active low Chip Selected signal.
/CSD	О	90	TTL	OD	AT bus mode: This signal can be used to control the direction of the S-Bus data buffers when the SPC8100 is designed onto the X-Bus in a motherboard implementation.
					Micro channel mode: This is the chip selected feedback signal.
					AT bus mode: Interrupt Request output for EGA mode.
IRQ	0	2	OD	OD	Micro channel mode: Active low Interrupt Request signal.
					This is a tri-state buffer capable of sinking 12 mA.

Table 5-1: CPU Interface and BIOS EPROM Control Pin Descriptions (Continued)

5.2.2 Video Memory Interface Pins

Connector Name	Туре	Pin #	Drv	Description
MA[7:0]	0	125, 128-134	TTL	Address bits for all four logical planes of video memory.
MD[15:0]	I/O	101- 107, 110-118	TSU	Data bits for all four logical planes of video memory.
/RAS01	0	124	TTL	Row Address Strobe for planes 0, 1.
/RAS23	0	123	TTL	Row Address Strobe for planes 2, 3.
/CAS01	0	122	TTL	Column Address Strobe for planes 0, 1.
/CAS23	0	121	TTL	Column Address Strobe for planes 2, 3.
/WE02	0	120	TTL	Write Enable for planes 0, 2.
/WE13	0	119	TTL	Write Enable for planes 1, 3.

Table 5-2: Video Memory Interface Pin Descriptions

5.2.3 Video Interface

Table 5-3: Video Interface Pin Descriptions

Connector Name	Туре	Pin #	Drv	Description
RED	0	78	A	Red Analog output from Video DAC
GREEN	0	79	A	Green Analog output from Video DAC
BLUE	0	80	Α	Blue Analog output from Video DAC
IREF		84	A	Current Reference input for Video DAC
VRTC/YD	0	74	TS	In CRT mode, this pin is the Vertical Retrace output. In LCD mode, this pin is the Scanning Start Pulse output.
HRTC/LP	0	73	TS	In CRT mode, this pin is the Horizontal Retrace output. In LCD mode, this pin is the Latch Pulse output.
BLANK/WF	0	72	TS	In CRT mode, this pin is the Blanking Signal, used to interface to Plasma and EL panels. In LCD mode, this pin is the Backplane Bias Signal output.
PCLK/XSCLL	0	67	TS	In CRT mode, this is the pixel clock. In LCD mode, this pin is the shift clock for LCD data.
UD[3:0]	0	63-66	TS	Upper Panel Display Data
LD[3:0]	0	59-62	TS	Lower Panel Display Data
MONS[1:0]	I	82-81	CMOU	Monitor sense pin 1 and 0 respectively. Direct representation of these pins are located in Auxiliary register index 07 bits 7 and 6 respectively
/LCDPWR	0	75	CMOS	LCD power control. This signal is used to turn off the panel supply voltage and backlight.
/IREFCNT	0	83	CMOS	Current reference control. This signal is used to turn off the external current reference circuit.
/LCDCNT	0	76	CMOS	LCD panel interface control.
/CRTCNT	0	77	CMOS	CRT interface control.
REVERSE	I	89	СМОИ	Panel display status input. Normal data is displayed when this signal is logic low and reverse data is displayed when logic high.

5.2.4 Clock Inputs

Connector Name	Туре	Pin #	Drv	Description
CLK0I	I	99	CMOS	This pin, along with CLK0O is the interface to the 25.175MHz 2-terminal crystal.
CLK0O	0	98	CMOS	This pin, along with CLK0I is the interface to the 25.175MHz 2-terminal crystal.
CLK1I	I	94	CMOS	This pin, along with CLK1O is the interface to the 28.322MHz 2-terminal crystal. This clock is also divided by two to obtain the 14MHz BUSCLK.
CLK1O	0	95	CMOS	This pin, along with CLK1I is the interface to the 28.322MHz 2-terminal crystal. This clock is also divided by two to obtain the 14MHz BUSCLK.
PDCLK	I	91	CMOS	Power Down Clock. This input is connected to the system Real Time Clock oscillator output (32KHz) for use in power down mode 4 and 5. This is one of the two clock sources that are available for power down mode 4.
HRCLK	I	92	CMOS	High Resolution Clock. Optional dotclock input for high resolution CRT modes. 30MHz with 100nsec DRAM, or 37.5MHz with 80nsec DRAM.

Table 5-4: Clock Input Pin Descriptions

5.2.5 Miscellaneous

Connector Name	Туре	Pin #	Drv	Description
ACCP	0	58	TTL	This output is driven high to indicate a valid memory or I/O write.
/SLEEP	I	57	CMOU	Sleep mode. A logic low on this pin puts the chip into power down mode 1/2.
/SUSPEND	I	56	CMOU	Suspend mode. A logic low on this pin puts the chip into power down mode 5.

Table 5-5: Miscellaneous Pin Descriptions

5.2.6 Power Supply

Connector Name	Туре	Pin #	Description
VDD CORE	Р	23, 54, 87, 126	VDD supply for core logic.
VDD I/O	Ρ	36, 69, 108, 144	VDD supply for I/O pins.
VSS CORE	Р	24, 55, 88, 127	VSS supply for core logic.
VSS I/O	Р	1, 37, 68, 109	VSS supply for I/O pins.
AVDD	Р	71, 85	Analog Power Supply.
AGND	Р	70, 86	Analog Ground Pins.
VDD CLK0	Р	97	VDD supply for CLK0 oscillator.
VSS CLK0	Р	100	VSS supply for CLK0 oscillator.
VDD CLK1	Р	96	VDD supply for CLK1 oscillator.
VSS CLK1	Р	93	VSS supply for CLK1 oscillator.

Table 5-6: Power Supply Pin Descriptions

5.2.7 MCA & ISA Bus Mapping

Table 5-7: MCA & ISA Bus Mapping

Pin Name	MC Bus	AT-ISA Bus
A[23:0]	A[23;0]	A[23;0]
D[15:0]	D[15;0]	D[15;0]
/IOR	M/-IO	-IOR
/IOW	-CMD	-IOW
/MEMR	-S1	-MEMR
/MEMW	-S0	-MEMW
/IOEN	-CD SETUP	AEN
MEMEN	-REFRESH	-DACK0
/BHE	-SBHE	SBHE
ALE/MADE24	MADE24	BALE
READY	CD CHRDY	-I/O CH RDY
/MEMCS16	-CD DS 16	-MEM CS16
/IOCS16	NC	-I/O CS16
/TRAP	NC	-I/O CH CK
RESET	CH RESET	RESET DRV
/CSD	-CD SFDBK	NC
IRQ	-IRQ9	IRQ2

6 D.C CHARACTERISTICS

Measurement Conditions:

$$T_a = 0 \sim 70^\circ \text{ C}, \ V_{DD} = 4.75 \text{ V}, V_{OH} = V_{DD} - 0.4 \text{ V}$$

 $V_{OL} = V_{SS} + 0.4 \text{ V}$

$$*V_{OL} = V_{SS} + 0.5 V$$

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	V_{DD}	-0.3 ~ 7.0	Volts
Input Voltage	V _{IN}	-0.3 ~ V _{DD} + 0.3	Volts
Output Voltage	V _{OUT}	-0.3 ~ V _{DD} + 0.3	Volts
Storage Temperature	T _{STG}	-55 ~ +150	°C
Operating Temperature	T _{OPR}	0 ~ +70	°C

Table 6-1: Absolute Maximum Ratings

Digital Inputs

Table 6-2: Digital Inputs

Parameter	Symbol	Min	Тур	Max	Unit
Low Level Input Voltage	V _{IL}			0.8	V
High Level Input Voltage	V _{IH}	2.0			V
Input Leakage Current	I _I	-1		+1	μA
Input Pin Capacitance	CIP			10	pF

Digital Outputs

Table 6-3: Digital Outputs

Parameter	Symbol	Min	Тур	Max	Unit
Low Level Output Voltage	V _{OL}			V _{SS+0.} 5	V
High Level Output Voltage	V _{0H}	V _{DD-0.4}			V
Output Leakage Current	Ι _ο	-10		10	μA
Output Pin Capacitance	Сор			10	pF

Current Reference

Table 6-	-4: Current	Reference
----------	-------------	-----------

Parameter	Symbol	Min	Тур	Max	Unit
Current	I _{REF}	-0.5	-4.0	-6.0	mA
Voltage	V _{REF}	V _{DD} -3		V _{DD}	V

Digital Outputs Drive Capability

Pin Name(s)	I _{он} mA	I _{OL} mA
ACCP	-3	6
/CAS01	-3	6
/CAS23	-3	6
/CRTCNT	-3	6
/CSD	-3	6
DIRL	-3	6
/EPROM	-3	6
/IREFCNT	-3	6
LCDCNT	-3	6
MA[7;0]	-3	6
/RAS01	-3	6
/RAS23	-3	6
/WE02	-3	6
/WE13	-3	6
MD[15;00]	-3	6
BLANK/WF	-3	6
DIRH	-3	6
HRTC/LP	-3 -3	6
LD[3;0]	-3 -3	6
PCLK/XSCLL READY	-3 -3	6
KEAU I	-3	6
/TRAP	-3	6
UD[3;0]	-3	6
VRTC/YD	-3	6
IRQ	-6	12
D[15;00]	-12	24 *
/IOCS16	-12	24 *
/MEMCS16	-12	24 *

Table 6-5: 1	Divital Outr	uts Drive	Canability
<i>I u u u u u u u u u u</i>	\mathcal{I} guai \mathcal{O} aip	uis Drive	Cupubliliy

Oscillator Pins (CLK0I, CLK0O, CLK1I, CLK1O)

Table 6-6: Oscillator Pins

Parameter	Symbol	Min	Max	Unit	Notes
Low Level Input Voltage	V _{IL}		V _{SS} + 2	V	$V_{DD} = 5V$
High Level Input Voltage	V _{IH}	V _{DD} - 2		V	$V_{DD} = 5V$
Low Level Output Voltage	V _{OL}		V _{SS} + .6	V	$I_{OL} = 4mA$
High Level Output Voltage	V _{OH}	V _{DD} 6		V	I _{OH} = 4mA

D/A Outputs (R, G, B)

 $R_{\rm L}$ = 75Ω, $C_{\rm L}$ = 30pF, $~I_{\rm REF}\text{=}$ -2.53 mA , Vdd = 5 V, Ta = 25°C

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Maximum output current	Ι _ο	21			mA	$V_0 \le 1V$
Maximum output error		-6		+3	%	
DAC to DAC correlation		-2		+2	%	
Integral error	I _{LE}	-0.5		+0.5	LSB	
Differential error	I _{DE}	-0.5		+0.5	LSB	
Rise time	t _r		7	10	ns	(10% ~ 90%)
Full setup time	t _{fs}		30	50	ns	(2% ~ 98%)
Glitch Energy	E _G		200	400	pV _{sec}	

Table 6-7: D/A Outputs (R, G, B)

Page 29

7 A.C. Characteristics

7.1 XT/AT Bus Cycle Timing

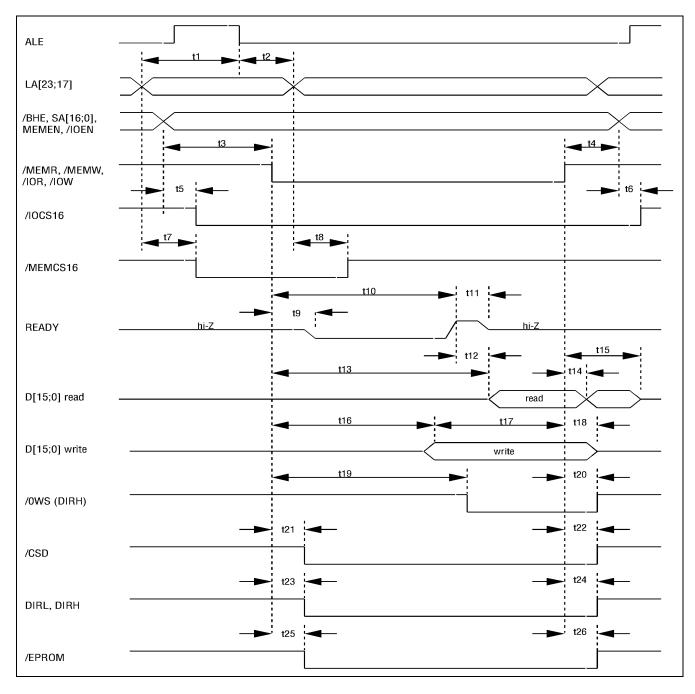


Figure 7-1: XT/AT Bus Cycle Timing

Parameter Instance		Description	Min (nSec)	Max (nSec)	
t1		LA[23:17] valid before ALE negated	20		
t2		LA[23;17] hold from ALE negated	0		
t3	а	SA[16;0] valid before /MEMR, /MEMW asserted	15		
t3	b	SA[16;0] valid before /IOR, /IOW asserted	30		
t4	а	SA[16;0] hold from /MEMR, /MEMW negated	0		
t4	b	SA[16;0] hold from /IOR, /IOW negated	0		
t5		SA[16;0] valid to /IOCS16 asserted delay		90	
t6		/IOCS16 hold from SA[16;0]		60	
t7		LA[23;17] to /MEMCS16 asserted delay		70	
t8		/MEMCS16 hold from LA[23;17]		40	
t9		/MEMR, /MEMW asserted to READY negated		50	
t10		/MEMR asserted to READY asserted (BIOS read)	8T _S + 30	10T _S +100	
t11		READY driven (high) pulse width	6	16	
t12		READY asserted to D[15;0] valid (read)		0	
t13	а	/IOR asserted to D[15;0] valid		85	
t13	b	/MEMR asserted to D[15;0] valid, 8 bit read	5T _S + 30	24T _S + 65	
t13	С	/MEMR asserted to D[15;0] valid, 16 bit read	13T _s + 30	48T _S + 65	
t14	а	D[15;0] hold from /IOR negated	15	-	
t14	b	D[15;0] hold from /MEMR negated	15		
t15	а	/IOR negated to D[15;0] hi-Z delay		25	
t15	b	/MEMR negated to D[15;0] hi-Z delay		25	
t16		/MEMW asserted to D[15;0] valid		4T _S - 10	
t17		D[15;0] setup to /IOW negated	20		
t18	а	D[15;0] hold from /IOW negated	0		
t18	b	D[15;0] hold from /MEMW negated	0		
t19		/IOR, /IOW asserted to /0WS asserted		60	
t20		/IOR, /IOW negated to /0WS negated		40	
t21		/IOR, /IOW, /MEMR, /MEMW asserted to /CSD asserted		50	
t22		/IOR, /IOW, /MEMR, /MEMW negated to /CSD negated		50	
t23	1	/IOR, /MEMR asserted to DIRL, DIRH negated		55	
t24	1	/IOR, /MEMR negated to DIRL, DIRH asserted		25	
t25		/MEMR asserted to /EPROM asserted delay		45	
t26		/MEMR negated to /EPROM negated delay		40	

<i>Table 7-1:</i>	XT/AT	Bus	Cvcle	Timing
100000 / 11		2000	0,000	1

 T_s = Sequencer clock period

7.2 MicroChannel Bus Cycle Timing

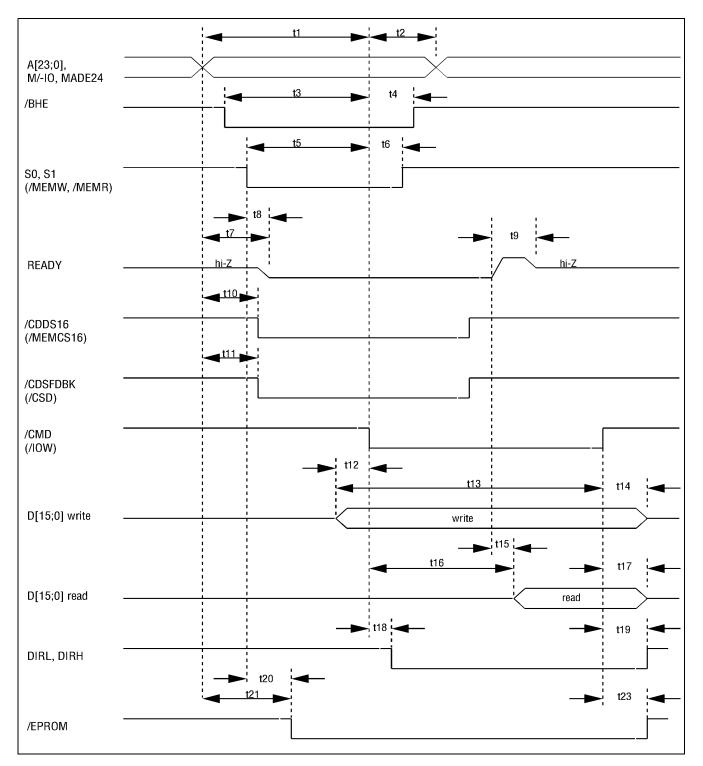


Figure 7-2: MicroChannel Bus Cycle Timing

Parameter	Instance	Description	Min (nSec)	Max (nSec)
t1	а	A[23;0] setup to /CMD asserted, memory cycle	10	
t1	b	A[23;0] setup to /CMD asserted, I/O cycle	20	
t2	а	A[23;0] hold from /CMD asserted, memory cycle	10	
t2	b	A[23;0] hold from /CMD asserted, I/O cycle	0	
t3		/BHE asserted to /CMD asserted	0	
t4		/BHE hold from /CMD asserted	20	
t5		S0, S1 setup to /CMD asserted	5	
t6		S0, S1 hold from /CMD asserted	15	
t7		A[23;0] valid to READY negated		50
t8		S0, S1 valid to READY negated		25
t9		READY driven (high) pulse width	6	16
t10	а	A[23;0] valid to /CDDS16 asserted, memory cycle		50
t10	b	A[23;0] valid to /CDDS16 asserted, I/O cycle		50
t11	а	A[23;0] valid to /CSD asserted, memory cycle		60
t11	b	A[23;0] valid to /CSD asserted, I/O cycle		60
t12		D[15;0] setup to /CMD asserted, memory write cycle	4T _S - 10	
t13		D[15;0] setup to /CMD negated, I/O write cycle	20	
t14		D[15;0] hold from /CMD negated, write cycle	0	
t15		READY asserted to D[15;0] valid, memory read cycle		0
t16	а	D[15;0] valid from /CMD asserted, I/O read cycle		60
t16	b	D[15;0] valid from /CMD asserted, 8-bit memory read	5T _S + 30	24T _S + 65
t16	С	D[15;0] valid from /CMD asserted, 16-bit memory read	13T _S + 30	48T _S + 65
t17		/CMD negated to D[15;0] hi-Z, read cycle		40
t18		/CMD asserted to DIRL, DIRH negated		35
t19		/CMD negated to DIRL, DIRH asserted		35
t20		A[23;0] valid to /EPROM asserted		50
t21		S0, S1 asserted to /EPROM asserted		30
t22		/CMD negated to /EPROM negated		40

7.3 DRAM Read/Write Cycle Timing

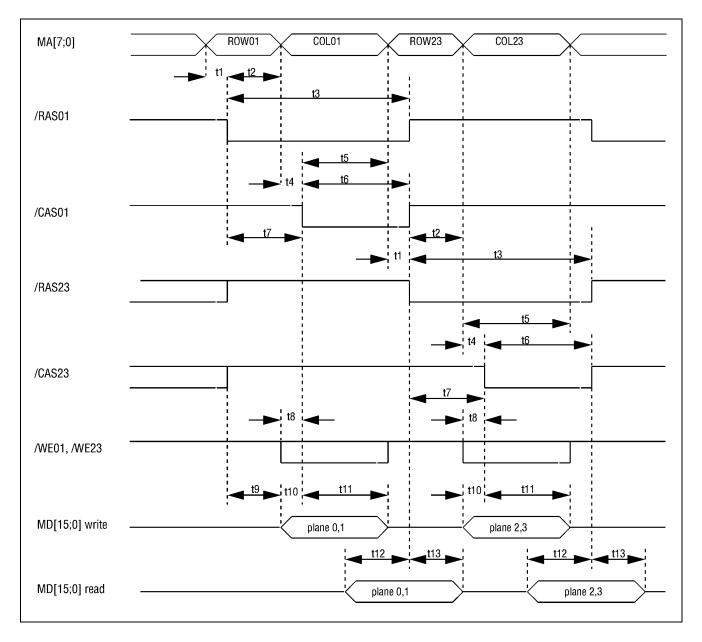
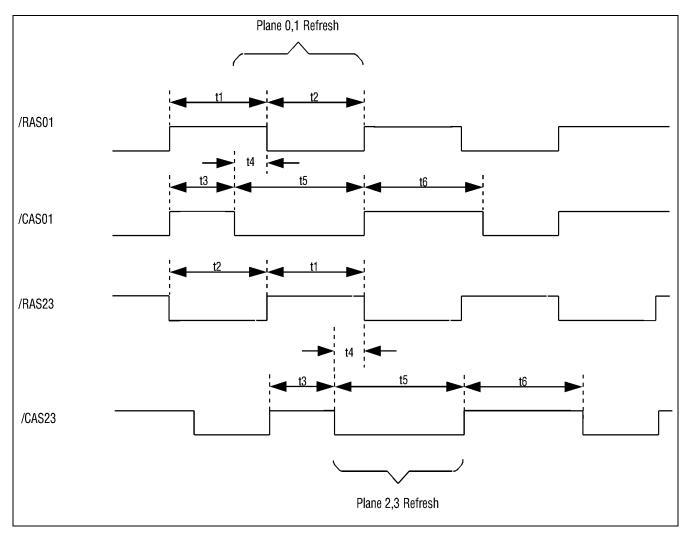



Figure 7-3: DRAM Read/Write Cycle Timing

Parameter	Instance	Description	Min (nSec)	Max (nSec)	
t1		MA[7;0] row address setup to /RAS01, /RAS23	0.4T _S - 10		
t2		MA[7;0] row address hold from /RAS01, /RAS23	0.4T _S +4		
t3		/RAS01, /RAS23 pulse width	3T _S	3T _S	
t4		MA[7;0] column address setup to /CAS01, /CAS23	0.4T _S - 10		
t5		MA[7;0] column address hold from /CAS01, /CAS23	0.4T _S +5		
t6		/CAS01, /CAS23 pulse width	2T _S	2T _S	
t7		/RAS01, /RAS23 asserted to /CAS01, /CAS23 asserted	Τ _S	Τ _S	
t8		/WE02, /WE13 setup to /CAS01, /CAS23	3		
t9		/CAS23 negated before MD[15;0] driven	T _S -2		
t10		write data setup to /CAS01, /CAS23 asserted	2		
t11		write data hold from /CAS01, /CAS23 asserted	T _S - 2		
t12		read data setup to /CAS01, /CAS23 negated	10		
t13		read data hold from /CAS01, /CAS23 negated	0		

Table 7-3: DRAM Read/Write Cycle Timing

7.4 DRAM Refresh Cycle Timing

Parameter	Description	Min (nSec)	Nom (nSec)	Max (nSec)
t1	/RAS01, /RAS23 precharge	3T _S		
t2	/RAS01, /RAS23 pulse low duration		3T _S	
t3	/CAS01, /CAS23 precharge before refresh cycle		2T _S	
t4	/CAS01, /CAS23 asserted to /RAS01, /RAS23 asserted, refresh cycle		Τ _S	
t5	/CAS01, /CAS23 pulse low duration		4T _S	
t6	/CAS01, /CAS23 precharge between refresh cycle and normal cycle	4T _S		

Table 7-4: DRAM Re	fresh Cycle Timing
--------------------	--------------------

7.5 FRM LCD Mode Timing

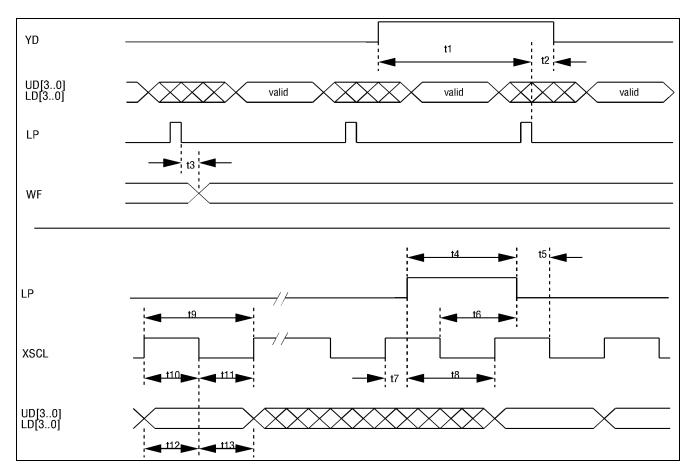


Figure 7-5: FRM LCD Mode Timing

Parameter	Description	Min (nSec)	Nom (nSec)	Max (nSec)
t1	YD setup to LP negated	640T _S - 24		
t2	YD hold from LP negated	8T _S - 24		
t3	WF delay from LP negated	-100		100
t4	LP pulse width	6T _S - 12		
t5	XSCL negated after LP negated	4T _S - 24		
t6	LP negated after XSCL negated	4T _S - 24		
t7	LP asserted after XSCL asserted	2T _S - 18		
t8	XSCL asserted after LP asserted	6T _S - 36		
t9	XSCL period	8T _S		
t10	XSCL high level pulse width	4T _S - 12		
t11	XSCL low level pulse width	4T _S - 12		
t12	D[11;0] setup to XSCL negated	4T _S - 12		
t13	D[11;0] hold from XSCL negated	4T _S - 12		

8 SPC8100 Pin States In Power Down Modes

Key

PDM = Power Down Mode

8.1 CPU Interface Pin States Affected in Power Down Modes

Connector Name	CRT			LCD		
Connector Name	PDM 1 - 4	PDM 5	Normal	PDM 1 - 4	PDM 5	Normal
/CSD	Active	Hi-Z	Active	Active	Hi-Z	Active
/IOR	Active	Masked	Active	Active	Masked	Active
/IOW	Active	Masked	Active	Active	Masked	Active
/MEMCS16	Active	Hi-Z	Active	Active	Hi-Z	Active
/MEMR	Active	Masked	Active	Active	Masked	Active
/MEMW	Active	Masked	Active	Active	Masked	Active
READY	Active	Hi-Z	Active	Active	Hi-Z	Active
RESET	Active	Masked	Active	Active	Masked	Active

Table 8-1: CPU Interface Pin States

8.2 Video Interface Pin States in Power Down Modes

		CRT		LCD			
Connector Name	PDM 1/2 PDM 3	PDM 4 PDM 5	Normal	PDM 1/2 PDM 3	PDM 4 PDM 5	Normal	
RED	Hi-Z	Hi-Z	Active	Hi-Z	Hi-Z	Hi-Z	
GREEN	Hi-Z	Hi-Z	Active	Hi-Z	Hi-Z	Hi-Z	
BLUE	Hi-Z	Hi-Z	Active	Hi-Z	Hi-Z	Hi-Z	
VRTC/YD (3)	62Hz*	PDCLK/512	Active	62Hz*	PDCLK/512	Active	
HRTC/LP (1) (2)	31.6KHz*	PDCLK	Active	31.6KHz*	PDCLK	Active	
BLANK/WF	Low	Low	Active	Low	Low	Active	
UD[3:0]	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Active	
LD[3:0]	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Active	
/LCDPWR	High	High	High	High	High	Low	
/IREFCNT	High	High	Low	High	High	High	
/LCDCNT	High	High	High	High	High	Low	
/CRTCNT	High	High	Low	High	High	High	

Table 8-2: Video Interface Pin States

Note

* May be forced to a constant level in PDM 3 by using Aux Reg 3DFH index 33H D5.

(1) Can be programmed to follow VRTC/YD by using Aux Reg 3DFH index 16H D4
(2) In PDM 4, instead of PDCLK, this pin may follow -REFRESH Ö 2 by using Aux Reg 3DFH index 16 D6.

(3) In PDM 4, instead of PDCLK, this pin may follow -REFRESH Ö 1024 by using Aux Reg 3DFH index 16 D6.

8.3 Miscellaneous Pin States in Power Down Modes.

		CRT			LCD	
Connector Name	PDM 1/2 PDM 3	PDM 4	Normal	PDM 1/2 PDM 3	PDM 4	Normal
ACCP	Enable	Enable	Enable	Enable	Enable	Enable

Table 8-3: Miscellaneous Pin States

9 DIP Switch And Configuration

The memory data lines MA[15:0] are used as the DIP switch and configuration inputs to reduce the pin count. During reset (RESET pin pulled high), these bidirectional pins are put into high impedance state. External resistors are used with the switches or jumpers to cause the memory data lines to settle at the desired configuration state. At the end of the reset pulse, this configuration data is latched into internal registers.

PIN	CONFIGURATION FUNCTION
MD0	BIOS ROM disable (low).
MD1	Micro channel interface enable (low).
MD2	Video enable port select 1.
MD3	Video enable port select 0.
MD4	Input Status Register 2 bit0 (see register description 3DF index 29 hex) (this bit is echoed in Auxiliary input register 0 bit4)
MD5	Input Status Register 2 bit1 (see register description 3DF index 29 hex)
MD6	Input Status Register 2 bit2 (see register description 3DF index 29 hex)
MD7	Input Status Register 2 bit3 (see register description 3DF index 29 hex)
MD8	Auxiliary input register 0 bit 0 (see register description 3DF index 07 hex).
MD9	Auxiliary input register 0 bit1 (see register description 3DF index 07 hex).
MD10	Auxiliary input register 0 bit2 (see register description 3DF index 07 hex).
MD11	EGA default mode (low)/VGA default mode (high) also readable as Auxiliary input register 0 bit 3 (see register description 3DF index 07 hex)
MD12-15	Reserved

Table 9-1: MA[15:0] Configuration Inputs

9.1 MD0 BIOS ROM disable

If MD0 is low during reset then BIOS ROM is disabled. The /EPROM output will always be high and the SPC8100 will not respond to CPU reads from the address range C0000-C7FFFh. If MD0 is high during reset, then accesses to the BIOS ROM are enabled.

9.2 MD1 Micro channel interface enable

The state of MD1 during reset determines the type of bus interface to be used. A PC-XT/AT compatible bus interface is used when MD1 is high during reset. Micro channel interface is selected when MD1 is low during reset.

9.3 MD3-2 Video enable port select 0-1

This select bits are used to configure the chip enable function for I/O port 3C3h or for port 46E8h.

MD2	MD3	PORT SELECT
0	0	Chip always disabled
0	1	Chip always enabled
1	0	Port 3C3H used as enable port
1	1	Port 46E8H used as enable port

Table 9-2: Video Enable Port Selection

9.4 MD7-4 Panel configuration

These bits are used to determine the panel configuration for the Seiko Epson BIOS.

9.5 MD10 - 8 Auxiliary input register bits 0-2

Status inputs which can be used by the BIOS to denote configuration information.

9.6 MD11 EGA/VGA default configuration

A low state defaults the SPC8100 to EGA hardware mode. A high state defaults the SPC8100 to VGA mode. This is also a status for the BIOS to determine if the hardware is set in VGA or EGA mode. The BIOS can override this by modifying Auxiliary register 0 bits 0 and 1.

10 Registers

The SPC8100 VGA controller provides an extensive set of internal registers for use by BIOS and emulation software to control display operation.

SPC8100 register can be used to configure the following types of displays.

- IBM EGA and VGA CRT monitors
- Multi-frequency analog monochrome and color CRT monitors
- IBM PS/2 analog CRT monitors
- Dual-panel dual-drive monochrome LCD flat panel displays
- Single panel dual drive color LCD flat panel displays (with an external color DAC)

The following sections summarize the functions provided by each register group

10.1 Register Set Overview

10.1.1 CRTC Register Set A

The 28 CRTC A registers provide CRT display support. They are identical to the standard IBM EGA/VGA register set, and control the synchronization and timing of horizontal and vertical retrace and blanking, and display enable signals. They are used to implement scrolling, panning, and image positioning, as well as the cursor and underline location.

The CRTC index register is located at I/O address 3B4/3D4 hex, and the CRTC base address is located at I/O address 3B5h/3D5h. 3BXh addresses are used in monochrome and 3DXh addresses are used in color display modes.

Each register is accessed for read and write operations by setting LCD support register 0 (3DF index 0B hex) bit1 to 0, and writing the index to the index register. The register has no effect, however, unless the corresponding bit in the A/B CRTC function select register is set to 0.

10.1.2 CRTC Register Set B

The 16 CRTC B registers provide dual flat panel display support. Additional internal hardware is provided for dual panel displays. These registers are used to implement display compatibility functions. They control the synchronization of the upper and lower panel scanning in order to eliminate any visible discrepancies at the panel boundary.

The CRTC index register is located at I/O address 3B4/3D4 hex, and the CRTC base address is located at I/O address 3B5h/3D5h. 3BXh addresses are used in monochrome and 3DXh addresses are used in color display modes.

Each register is accessed for read and write operations by setting LCD support register 0 (3DF index 0B hex) bit1 to 1, and writing the index to the index register. The register has no effect, however, unless the corresponding bit in the A/B CRTC function select register is set to 1.

10.1.3 Hercules Registers

The three Hercules registers provide compatibility with MDA and Hercules adapters. They are the same as the corresponding IBM standard registers. Functions that are not supported in internal hardware are supported by emulation software when the application attempts to write to these registers.

The Hercules registers are located at I/O addresses 3B8, 3BA and 3BF hex.

10.1.4 Attribute Controller Registers

The 22 attribute controller registers include a 16 register EGA color palette and six registers for display attribute mode control, color selection and horizontal bit panning. There are two horizontal bit panning registers, A and B. The B register is provided for flat panel support since most of the panels do not support 9-dot mode.

The attribute controller index register is located at I/O address 3C0h, which is also the attribute controller base read address. The index register is addressed by reading input status register 1 (3DA hex) before access. Any subsequent read to 3C0h which is not preceded by a 3DAh read, allows access to the addressed attribute controller register.

The palette enable bit in the attribute controller index register allows read/write access to the EGA palette registers or enables them for normal operation.

The attribute controller registers are functionally identical to the IBM attribute controller registers.

10.1.5 Sequencer Registers

The 7 sequencer registers control the sequencer reset operations, graphics shift and character clocks, as well as display memory mapping and plane selection.

Clocking mode register B is provided for compatibility with the flat panel displays for 9dot character display modes. It is accessed by setting the LCD support register 0 (3DF index 0B hex) bit1 to 1.

The sequencer index register is located at I/O address 3C4 hex and the sequencer register base address at 3C5 hex.

10.1.6 Graphics Controller Registers

The 10 graphics controller registers are identical to the corresponding standard IBM registers. They are used to control CGA, EGA and VGA graphics display effects by allowing rotation and Boolean arithmetic operations to be performed on host processor display data in relation to existing display memory data. Colors can be selected using the set/reset register and data writes to display memory can be masked by the graphics write mask register. This allows flexible manipulation of data written to the four display memory planes.

The display memory output data sequence through the four graphics shift registers can be changed to support 4-color CGA, 16-color EGA and 256-color VGA display modes.

The graphics controller index register is located at I/O address 3CE hex and the graphics controller register base address at 3CF hex.

10.1.7 CGA Registers

The 2 CGA registers provide compatibility with CGA. They are the same as the corresponding standard IBM CGA registers. Functions that are not supported in hardware are emulated in software when the application attempts to write to these registers.

The CGA registers are located at I/O addresses 3D8 and 3D9 hex.

10.1.8 Auxiliary Registers

The extensive set of auxiliary registers are used by the Seiko Epson BIOS to control and monitor the many expanded features of the device. The emulation and trap control CRTC FIFO registers provide the emulation software with a means of detecting unsupported application accesses and temporary storage to allow for the delay in software response. The auxiliary registers occupy two I/O address locations (3DE hex for index, 3DF hex for data), so an additional host processor cycle is needed for each trap interrupt response. The Trap Information Register is a mapped trap information register that can be programmed to respond to an unused I/O address, increasing system response to interrupt requests. The same register is available in the Auxiliary Port (3DF index 11 hex). The 64 bit CRTC FIFO allows temporary storage for up to four register data/index pairs. An override register allows interrupts, masks and traps to be disabled while software is responding to an interrupt to prevent unwanted cyclic interrupts. Six scratch pad registers are provided for temporary storage use by the Video BIOS. The A/B function select registers are used to enable either the A or B functions for CRT or flat panel displays. The panel configuration registers are used to configure the SPC1000 support for different types of displays. Four power save registers are provided to utilize the power save features of the SPC8100. The ROM configuration register is used to configure the SPC8100 for various Video BIOS ROM configurations including wait states, ROM size, and address decoding. An enable register can be used to protect the auxiliary registers from an accidental overwrite by application software.

The auxiliary index register is located at I/O address 3DE hex and the auxiliary register base address is located at 3DF hex.

10.1.9 General Registers

The general registers are the same as standard IBM registers. They are used to support SPC8100 operation for microchannel, XT/AT bus (ISA), motherboard and adapter implementations. The general registers are also used for other miscellaneous functions, including monitoring vertical interrupts, display enable, attribute color and monitor type inputs. Two miscellaneous output registers, A and B, are used for CRT and flat panel displays, respectively. They select internal clock frequency, retrace signal polarity, display memory protection and high page display memory in text mode.

The general registers are located at I/O addresses 102, 3C2, 3CC, 3C3, 3DA, and 46E8 hex.

10.2 CRT Controller (CRTC) Register Set A (Index 00 to 26h)

CRTC index 3B4/3D4h	•						RW
n/a	n/a						
		bit 5	bit 4	bit 3	bit 2	bit 1	bit 0

CRTC index 3B4/3D4h	c register	ister requires 3DF[0Bh] bit1 = 0 RW					
n/a	n/a		CRTC index address				
		bit 5	bit 5 bit 4 bit 3 bit 2 bit 1 bit 0				

bits 5-0

CRTC index bits [5:0]

CRTC index bits 0 to 5 specify one of the CRTC controller register addresses. The value stored in these bits represents the address offset from the from the CRTC register base address 3B5/3D5h. This value is used to select the CRTC A register to be accessed at I/O address 3B5/3D5h. The hexadecimal value of this offset can be referenced from either the Register Address Map or the CRTC Register Summary.

Horizontal total register A 3B5/3D5h[00]requires 3DF index [0Bh] bit1 = 0RW							
Horizontal total A							
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0						bit 0	

bits 7-0

Horizontal total A bits [7:0]

Horizontal total A bits 0 to 7 specify the total number of characters minus five in the horizontal scan interval, including the horizontal retrace time. The horizontal scan period tc(HS) is calculated using the following equation where R0 is the decimal horizontal total value and tc(CCK) is the character clock cycle time.

 $tc(HS) = (R0 + 5) \times tc(CCK)$

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, and either Emulation override register (3DF index 12 hex) bit1 is 1, or vertical retrace end register A (3B5/3D5 index 11 hex) bit7 is 0. However this register has no effect on internal hardware unless A/B CRTC function select register 0 (3DF index 1B hex) bit0 is 0.

	Horizontal display enable end register A										
3B5/3D5h[01] requires 3DF[0Bh] bit1 = 0 F						RW					
Horizontal display enable end A											
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0						bit 0					

bits 7-0

Horizontal display enable end A bits [7:0]

Horizontal display enable end A bits 0 to 7 specify the total number of characters minus one in the horizontal display period. The horizontal display period tw(HDE) is calculated using the following equation, where R1 is the decimal horizontal display end A value and tc(CCK) is the character clock cycle time.

tw(HDE) = (R1 + 1) x tc(CCK)

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, and either Emulation override register (3DF index 12 hex) bit1 is 1, or vertical retrace end register A (3B5/3D5 index 11 hex) bit7 is 0. However this register has no effect on internal hardware unless A/B CRTC function select register 0 (3DF index 1B hex) bit2 is 0.

	Horizontal blanking start register A3B5/3D5h[02]requires 3DF[0Bh] bit1 = 0RW								
Horizontal blanking start position A									
bit 7	bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0						bit 0		

bits 7-0

Horizontal blanking start position A bits [7:0]

Horizontal blanking start position A bits 0 to 7 specify the horizontal blanking signal starting edge, relative to the start of a horizontal scan cycle. The horizontal blanking start delay td(HBS) is calculated using the following equation, where R2 is the decimal horizontal blanking start value and tc(CCK) is the character clock cycle time.

td(HBS) = (R2 + 1) x tc(CCK)

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, and either Emulation override register (3DF index 12 hex) bit1 is 1, or vertical retrace end register A (3B5/3D5 index 11 hex) bit7 is 0. However this register has no effect on internal hardware unless A/B CRTC function select register 0 (3DF index 1B hex) bit3 is 0.

Horizontal blanking end register A3B5/3D5h[03]requires 3DF[0Bh] bit1 = 0							
n/a	Horizontal display enable skew		(1	5)			
n/a	bit 1	bit 0	bit 4	bit 3	bit 2	bit 1	bit 0

bits 6-5

Horizontal display enable skew A bits [1:0]

Horizontal display enable skew A bits 0 and 1 specify the number of character clock cycles tc(CCK) by which the horizontal display enable signal is delayed, as shown in the following table. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, and either Emulation override register (3DF index 12 hex) bit1 is 1, or vertical retrace end register A (3B5/3D5 index 11 hex) bit7 is 0. However these bits have no effect on internal hardware unless A/B CRTC function select register 0 (3DF index 1B hex) bit5 is 0.

Sk	ew	Delay (character clock cycles)
Bit1	Bit 0	Delay (character clock cycles)
0	0	None
0	1	One
1	0	Two
1	1	Three

bits 4-0 Horizontal blanking end position A bits [4:0] Horizontal blanking end position A bits 0 to 4 are the least significant bits of a six bit (VGA), 5bit (EGA) value which specifies the horizontal blanking signal ending edge, relative to the horizontal blanking start value. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, and either Emulation override register (3DF index 12 hex) bit1 is 1, or vertical retrace end register A (3B5/3D5 index 11 hex) bit7 is 0. However these bits have no effect on internal hardware unless A/B CRTC function select register 0 (3DF index 1B hex) bit4 is 0.

	Horizontal retrace start register A 3B5/3D5h[04] requires 3DF[0Bh] bit1 = 0 RW									
Horizontal retrace start position A										
	[
bit 7	7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0						bit 0			

bits 7-0

Horizontal retrace start position A bits [7:0]

Horizontal retrace start position A bits 0 to 7 specify the horizontal retrace signal starting edge, relative to the start of a horizontal scan cycle. The horizontal retrace start delay td(HRTC) is calculated using the following equation, where R4 is the decimal horizontal retrace start value and tc(CCK) is the character clock cycle time.

 $td(HRTC) = (R4 + 1) \times tc(CCK)$

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, and either Emulation override register (3DF index 12 hex) bit1 is 1, or vertical retrace end register A (3B5/3D5 index 11 hex) bit7 is 0. However this register has no effect on internal hardware unless A/B CRTC function select register 1 (3DF index 1C hex) bit0 is 0.

Horizontal retrace end register A3B5/3D5h[05]requires 3DF[0Bh] bit1 = 0							
Horizontal blanking end	Horizontal retrace skew A		Horizontal retrace end position A				
position	bit 1	bit 0	bit 4	bit 3	bit 2	bit 1	bit 0

bit 7

Horizontal blanking end position A bit 5

Horizontal blanking end position A bit 5 is the most significant bit of the horizontal blanking end register A index 03 in VGA and in EGA it is the odd/even memory select. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, and either Emulation override register (3DF index 12 hex) bit1 is 1, or vertical retrace end register A (3B5/3D5 index 11 hex) bit7 is 0. However this bit has no effect on internal hardware unless A/B CRTC function select register 0 (3DF index 1B hex) bit4 is 0. bits 6-5 Horizontal retrace skew A bits [1:0] Horizontal retrace skew A bits 0 and 1 specify the number of character clock cycles tc(CCK) by which the horizontal retrace signal is delayed, as shown in the following table. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, and either Emulation override register (3DF index 12 hex) bit1 is 1, or vertical retrace end register A (3B5/3D5 index 11 hex) bit7 is 0. However these bits have no effect unless A/B CRTC function select register 1 (3DF index 1C hex) bit2 is 0.

Sk	ew	Delay (character clock cycles)
Bit1	Bit 0	
0	0	None
0	1	One
1	0	Тwo
1	1	Three

Table 10-2: Horizontal Retrace Skew Selection

bits 4-0

Horizontal retrace end position A bits [4:0]

Horizontal retrace end position A bits 0 to 4 specify the horizontal retrace signal ending edge, relative to the horizontal retrace start value. The horizontal retrace pulse width is calculated using the following formula, where R4 is the hexadecimal horizontal retrace start value, R5 is the hexadecimal horizontal retrace end value, and tc(CCK) is the character clock cycle time.

tw(HRTC) = [(R5 AND 1Fh) - (R4 AND 1Fh)] x tc(CCK)

The above equation does not apply when the horizontal retrace compare occurs at or after the character counter reset point (double zero of the character counter). Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, and either Emulation override register (3DF index 12 hex) bit1 is 1, or vertical retrace end register A (3B5/3D5 index 11 hex) bit7 is 0. However these bits have no effect on internal hardware unless A/B CRTC function select register 1 (3DF index 1C hex) bit1 is 0.

Vertical to	Vertical total register A (10-bit)												
3B5/3D5h[06] requires 3DF[0Bh] bit1 = 0													
Vertical total A (bits 8 and 9 are in CRTC overflow register A index 07)													
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0						

bits 7-0

Vertical total A bits [7:0]

Vertical total A bits 0 to 7 are the least significant bits of a 10-bit value which specifies the total vertical scan period. This is the total number of horizontal scans including the vertical retrace period minus two. Bits 8 and 9 are stored in the CRTC overflow register A (index 07 hex) in bit positions 0 and 5 respectively. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, and either Emulation override register (3DF index 12 hex) bit1 is 1, or vertical retrace end register A (3B5/3D5 index 11 hex) bit7 is 0. However this register has no effect on internal hardware unless A/B CRTC function select register 1 (3DF index 1C hex) bit4 determines how this register value is applied to the line counter circuitry.

3B5/3D5h[07]		requires	3DF[0Bh] bit1	= 0			RW
Vertical retrace start A bit 9 (VGA)	Vertical display enable end position A bit 9 (VGA)	Vertical total A bit 9 (VGA)	Line compare bit 8	Vertical blanking start position A bit 8	Vertical retrace start position A bit 8	Vertical display enable end position A bit 8	Vertical total A bit 8
bit 7	Vert inde Rea 0, h	tical retrace sta ex 10 hex. d and write acc owever these b	rt position A b cess is enabled bits have no eff	when LCD su	bit of the vert pport register (CRTC functi	ical retrace sta 0 (3DF index 0 on select regist	0B hex) bit1 is
bit 6	Vert	· ·	able end posit	nd position A b ion A bit9 is th		he vertical dis	play enable
bit 5		tical total A bit tical total A bit		oit of the vertic	cal total registe	r A index 06 h	ex.
bit 4		e compare bit8 e compare bit8		t of the line co	mpare register	index 18 hex.	
bit 3	Vert	tical blanking s tical blanking s ndex 15 hex.			th bit of the ve	ertical blanking	g start register
bit 2	Vert	tical retrace (V tical retrace sta ex 10 hex.	· •		h bit of the ver	tical retrace sta	nrt register A
bit 1	Vert	· ·	able end posit	nd position A b ion A bit8 is th		the vertical dis	play enable
bit 0		tical total A bit tical total bit8		of the vertical	total register A	A index 06 hex	

Preset row 3B5/3D5h[08]	v scan regis	ter					RW
n/a	Byte pa	n (VGA)		Preset row sc	an (vertical row	scan position)	
n//a	bit 1	bit 0	bit 4	bit 3	bit 2	bit 1	bit 0

bits 6-5

Byte pan bits [1:0]

Byte pan bits 0 and 1 specify the number of pixel bytes the display shifts to the left, as shown in the following table. These bits are extensions to the horizontal bit panning registers A and B, index 13, in the attribute controller set, address 3C0 write/3C0 read. The byte size (8 or 9 dots) is specified by the clocking mode register A and B, index 01 in the sequencer register set address 3C5. The combined use of the byte and bit panning bits provides smooth horizontal panning for up to 31 bits in 8 dot mode or 35 bits in 9 dot mode.

Byt	e pan	Number of bytes to the left		
Bit1	Bit 0	Number of bytes to the left		
0	0	None		
0	1	One		
1	0	Тwo		
1	1	Three		

Table 10-3: Byte	Pan Selection
------------------	---------------

bits 4-0

Preset row scan bits [4:0]

Preset row scan bits 0 to 4 specify the row scan counter value to be used after vertical retrace. This value is loaded into the row scan counter during vertical retrace. It allows vertical scrolling in text mode. The display scrolls upward by one line for each increment in the preset row scan value, up to the value stored in the maximum scan line register (3B5/3D5 index 09 hex) bits 0 to 4.

Maximum	scan line re	egister A					
3B5/3D5h[09] requires 3DF[0Bh] bit1 = 0							RW
Line Doubling	Line compare	Vertical blanking start			laximum scan lin per character ro		
enable	bit 9	position A bit9	bit 4	bit 3	bit 2	bit 1	bit 0

bit 7

Line doubling enable bit (VGA)

The line doubling enable bit enables or disables double line scanning. When 0, the row scan counter is clocked every horizontal line, disabling double line scanning. When 1, the row scan counter is clocked on alternate horizontal lines, enabling double line scanning. This allows 200 scan line modes to be displayed as 400 scan lines.

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, however these bits have no effect unless A/B CRTC function select register bits which control their respective least significant bits are set correctly.

bit 6	Line compare bit9 Line compare bit9 is the tenth bit of the line compare register index 18 hex.
bit 5	Vertical blanking start position A bit9 (VGA) Vertical blanking start position A bit9 is the tenth bit of the vertical blanking start register A index 15 hex.
bits 4-0	Maximum scan line bits [4:0] Maximum scan line bits 0 to 4 specify the number of scan lines per character row minus one.

Cursor start 3B5/3D5h[0A]	ursor start register A 85/3D5h[0A] requires 3DF[0Bh] bit1 = 0							
CRTC test	n/a	Cursor enable/disable			Cursor start row in character line			
mode enable	11/d	(VGA)	bit 4	bit 3	bit 2	bit 1	bit 0	
bit 7	The logi Rea	TC test mode er c CRTC test mode ic when 1. d and write accord these bits have a	de enable bit	d when LCD su	C			
bit 5	041	rsor enable/disal cursor enable/d	010 010	ables the cursor	r when 0 and c	lisables the cur	sor when 1.	
bits 4-0	Cur The	rsor start row bit rsor start row bit e cursor is displa ater than the cur	s 0 to 4 species of the species of t	n row the curso	r start row. In '		•	

Cursor end	d register A							
3B5/3D5h[0B]	requires 3DF[0Bh] bit1 = 0						
n/a	Curso	r skew			Cursor end row in character line			
174	bit 1	bit 0	bit 4	bit 3	bit 2	bit 1	bit 0	

bits 6-5

Cursor skew bits [1:0]

Cursor skew bits 0 and 1 delay the cursor by 0 to 3 character clocks, as shown in the following table. Note that each character clock delay moves the cursor one position to the right.

Curso	r skew	Delay
Bit1	Bit 0	(character clock cycles)
0	0	None
0	1	One
1	0	Тwo
1	1	Three

Table 10-4: Cursor Skew Selection

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0. These bits have affect at all times.

bits 4-0

Cursor end row bits [4:0]

Cursor end row bits 0 to 4 specify the row within a character cell where the cursor ends. In VGA the lowest displayed cursor scan row is one more than this value. If this value is less than the cursor start value, no cursor is displayed.

Start addre 3B5/3D5h[0C	ess high reg	gister					RW
				ress high y start address)			
bit F	bit E	bit D	bit C	bit B	bit A	bit 9	bit 8

bits 7-0

Start address high bits [F:8]

Start address high bits 8 to F are the most significant bits of a 16-bit display buffer memory start address. The byte addressed is the first one displayed after a vertical retrace.

Start addre 3B5/3D5h[0D	-	ister					RW
			Start add (display memor	lress low y start address)			
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0

bits 7-0

Start address low bits [7:0]

Start address low bits 0 to 7 are the least significant bits of a 16-bit display buffer memory start address. The byte addressed is the first one displayed after a vertical retrace.

Cursor position high register									
3B5/3D5h[0E] requires 3DF[0Bh] bit1 = 0									
Cursor position high									
bit F bit E bit D bit C bit B bit A bit 9 bi							bit 8		

bits 7-0

Start address high bits [F:8]

Start address high bits 8 to F are the most significant bits of a 16-bit display cursor position address in a display buffer. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0.

Cursor position low register3B5/3D5h[0F]RW									
Cursor position low									
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		

bits 7-0

Cursor position low bits [7:0]

Cursor position low bits 0 to 7 are the least significant bits of a 16-bit display cursor position address in the display buffer.

3B5/3D5h[10]	/ertical retrace start register A (10-bit) B5/3D5h[10] requires 3DF[0Bh] bit1 = 0									
		(bits 8 an		e start position A erflow register A		-	-			
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
bits 7-0	Vert whic scan cal s whe	ical retrace sta ch specifies th a cycle. This is scan cycle to th n LCD support ct register 2 (3	e vertical retra the number of ne vertical retr t register 0 (3)	bits 0 to 7 are to ace signal start f horizontal sc ace signal star DF index 0B h	the least signifi- ing edge relativ an lines minus ting edge. Read hex) bit1 is 0, h determine how	ve to the start of one from the s d and write acc owever A/B C	of the vertical start of a vert ess is enable RTC function			

Vertical retrace end register A									
3B5/3D5h[11] requires 3DF[0Bh] bit1 = 0							RW		
CRTC		Vertical	Vertical		Vertical retrace	end position A			
registers 0 to 7 protect (VGA)	No effect (VGA)	Interrupt Disable	Interrupt Clear	bit 3	bit 2	bit 1	bit 0		

bit 7

CRTC register 0 to 7 write protect bit (VGA)

The CRTC register 0 to 7 write protect bit is used to disable writes to A CRTC registers index 0 to 7 as shown in the following table:

Emulation override register (3DF index 12h, bit1)	LCD support register (3DF index 0Bh, bit1)	Vertical retrace end register A (3D5/3D5 index 11h bit7)	A CRTC registers index 0 to 7h	A CRTC registers above index 8h	B CRTC registers
0	0	0	Read/write	Read/write	No access
0	0	1	Read only	Read/write	No access
x	1	x	No access	No access	Read/write
1	0	x	Read/write	Read/write	No access

Table 10-5: CRTC Register Protection

bit 6

This bit has no effect while in VGA mode.

bit 5

Vertical interrupt disable bit

Vertical interrupt disable bit enables CRTC vertical interrupt status bit (3C2 hex bit7) and the interrupt request signal (IRQ pin2) when 0, or disables them when 1. The functions of the CRTC vertical interrupt status bit (3C2 hex bit7) and IRQ (pin 2) are also affected by bits in various Auxiliary registers as shown in the following tables.

EGA	Vertical	Vertical	3C2 bi	t7 read
CRTC select bit 3DF index 00 hex bit 2	interrupt clear bit (3B5/3D5 index 11 hex bit4)	interrupt disable bit (3B5/3D5 index 11 hex bit5)	before vertical non- display period	after vertical non- display period
0	х	1	0	0
1	х	1	1	1
x	0	0	0	0
x	1	0	0	1

Table 10-6: Vertical Interrupt Status Bit

Vertical			Micro-	IRQ Sigr	nal State	
interrupt disable bit (3B5/3D5 index 11 hex - bit5)	IRQ disable bit (3DF index 0A hex - bit7)	Tristate IRQ bit (3DF index 19 hex - bit1)	channel IRQ bit (3DF index 19 hex - bit0)	before vertical non- display period	after vertical non- display period	System bus type
0	0	1	1	HIGH	LOW	Microchannel
0	0	1	0	Tristate	LOW	Microchannel
x	x	0	х	Tristate	Tristate	Microchannel or ISA bus
х	1	1	1	HIGH	HIGH	Microchannel
x	1	1	0	Tristate	Tristate	Microchannel
1	x	1	1	HIGH	HIGH	Microchannel
1	х	1	0	Tristate	Tristate	Microchannel
0	0	1	х	LOW	HIGH	ISA bus
1	х	1	х	HIGH	HIGH	ISA bus
х	1	1	Х	HIGH	HIGH	ISA bus

bit 5

Vertical interrupt clear bit

The vertical interrupt clear bit is used to clear and reset the vertical retrace status bit. If the host processor toggles this bit to 0 and then to 1, then the vertical retrace interrupt status bit (3C2 hex bit7) and IRQ (pin 2) will be cleared and reset to their previous state before the vertical non display period.

bits 3-0

Vertical retrace end position A bits [3:0]

Vertical retrace end position A bits 0 to 3 specify the vertical retrace signal ending edge relative to the vertical retrace start position. The vertical retrace pulse width (in horizontal scan lines) is calculated using the following equation where R10 is the hexadecimal vertical retrace start value and R11 is the hexadecimal vertical retrace end value.

tw(VRTC) = (R11 AND 0Fh) - (R10 AND 0Fh)

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, however A/B CRTC function select register 2 (3DF index 1D hex) bits 0 to 2 determine how this register effects vertical timing.

Vertical dis	Vertical display enable end register A (10-bit)									
3B5/3D5h[12] requires 3DF[0Bh] bit1 = 0 RW										
	Vertical display enable end position A (bits 8 and 9 in CRTC overflow register, index 07)									
bit 7	bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0									

bits 7-0

Vertical display enable end position A bits [7:0]

Vertical display enable end position A bits 0 to 7 are the least significant bits of a 10-bit value which specifies the vertical display enable end signal position relative to the start of a vertical scan cycle in CRT mode. This is the number of horizontal scan lines minus one from the start of a vertical scan cycle to the vertical display enable signal ending edge. In LCD modes this register is used for positioning the start of the displayed image, as well as defining the length of the displayed image. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, however A/B CRTC function select register 3 (3DF index 1E hex) bits 0 to 6 determine how this register effects vertical timing.

CRTC offs 3B5/3D5h[13]	CRTC offset register 3B5/3D5h[13] RW									
CRTC offset (characters per line divided by 2 or 4)										
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0										

bits 7-0

CRTC offset bits [7:0]

CRTC offset bits 0 to 7 specify the address offset from the start of one display line to the start of the next line, which is two times the register value for single word or four times for double word addressing. The CRTC offset is added to the memory address counter start value every line in single scan graphics modes, every second line in double scan graphics modes, or at the start of every character row in text modes.

Underline 3B5/3D5h[14	location reg	gister					RW
	Dauble mend	O sumt has 4		Underline locatior	n		
n/a	select (VGA)	Count by 4 (VGA)	bit 4	bit 3	bit 2	bit 1	bit 0
bit 6				le word addres	ssing when 0 or	double word	addressing
bit 5	The the s	•	selects the add the character	clock is divide	clock source. W ed by four. This bit3 is 1.		

bits 4-0 Underline location bits [4:0]

Underline location bits 0 to 4 specify the horizontal scan row within a character line on which the underline occurs minus one.

Vertical bla	Vertical blanking start register A (10-bit)									
3B5/3D5h[15]	3B5/3D5h[15] requires 3DF[0Bh] bit1 = 0									
	Vertical blanking start position A (bit8 in CRTC overflow register A, index 07; bit9 in maximum scan line register A index 09)									
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			

bits 7-0

Vertical blanking start position A bits [7:0]

Vertical blanking start position A bits 0 to 7 are the least significant bits of a 10-bit value which specifies the vertical blanking signal starting edge. This is the number of horizontal scan intervals minus one. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, however this register has no effect unless A/B CRTC function select register 4 (3DF index 1F hex) bit1 is 0.

Vertical blanking end register A (10-bit)							
3B5/3D5h[16] requires 3DF[0Bh] bit1 = 0 RW						RW	
Vertical blanking end position A							
VGA bit 7	VGA bit 6	VGA bit 5	bit 4	bit 3	bit 2	bit 1	bit 0

bits 7-0

Vertical blanking end position A bits [7:0]

Vertical blanking end position A bits 0 to 7 specify the vertical blanking signal ending edge relative to the vertical blanking start position. Bits 5 to 7 are used in VGA modes only. The vertical blanking period (in horizontal lines) is calculated using the following formula, where R15 is the vertical blanking start value, R16 is the vertical blanking end value.

VGA mode:

tw(VBLANK) = (R15 AND FFh) - (R16 AND FFh)

EGA mode:

tw(VBLANK) = [(R15 AND 1Fh) - (R16 AND 1Fh)]

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, however this register has no effect unless A/B CRTC function select register 4 (3DF index 1F hex) bit2 is 0.

CRTC mod 3B5/3D5h[17]	le control re	egister					RW
Horizontal and vertical retrace enable (VGA)	Word mode select (VGA)	Word mode MA0 select bit (VGA)	n/a	Count by 2	Vertical counter clocked by horizontal retrace divided by 2	Hercules or EGA/VGA (MA14)	Hercules and GCA or EGA/VGA (MA13)
bit 7	The	izontal and Ve horizontal and when 0, and e	l vertical retrae	ce enable bit d	A) isables horizor	ntal and vertica	al retrace sig-
bit 6	The addı bit1	ess counter bit 3 or bit15, as s	lect bit selects ts are shifted le elected by the	eft by one, and CRTC mode of	then 0 or byte memory addre control register memory addre	ess bit0 (MA0) bit5. In byte 1	is replaced by
bit 5	Wor mod	Word mode MA0 select bit (VGA) Word mode MA0 select bit selects the source of memory address bit0 (MA0) during word mode ($3B5/3D5$ index 17 bit6 = 0). When 0, address counter bit13 is the source, when 1, address counter bit15 is the source.				-	
bit 3	The the s	Count by 2 bit The count by 2 bit selects the address counter clock source. When 0, the character clock i the source, when 1, the character clock is divided by two. The count by 2 overrides the count by 4 bit (3B5/3D5 index 14 hex bit5)					
bit 2	The ing disp	vertical count clock source. V lay resolution	er clocked by 1 When 0, the ho of 512 lines, v	horizontal retra prizontal retrac when 1, it is the	divided by 2 bi ace divided by e signal is the e horizontal ret p of 512 doubl	2 bit selects the clock source for trace divided b	or a maximum
bit 1	The	tively doubling the resolution to 1024 (made up of 512 double lines). Hercules or EGA/VGA (MA14) bit The Hercules or EGA/VGA (MA14) bit selects the source of memory address bit14. When 0, row scan counter bit1 is the source, when 1, it is address counter bit14.					
bit 0	The	When 0, row scan counter bit1 is the source, when 1, it is address counter bit14. Hercules and CGA or EGA/VGA (MA13) bit The Hercules and CGA or EGA/VGA (MA13) bit selects the source of memory address bit13. When 0, row scan counter bit0 is the source, when 1, it is address counter bit13.				•	

Line compare register (10-bit)	
3B5/3D5h[18]	RW
Line compare	

	(bit8 in CRTC	coverflow regist	er A index 07;bit	19 in maximum s	can lines registe	er A index 09)	
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0

bits 7-0

Line compare bits [7:0]

Line compare bits 0 to 7 are the least significant bits of a 10-bit value which specifies the horizontal line where the display is split. The lower portion of the screen is not effected by horizontal panning if Attribute mode control register (3C0/3C1 index 10 hex) bit5 is 1. When the line counter reaches the line compare value, the display memory address is reset after two lines, the row counter is reset after one line.

•	Graphics controller read latch register 3B5/3D5h[22] RO						
Graphics controller data read (latches 1 of 4 memory plane data registers of the graphics controller)							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0

bits 7-0

Graphics controller data read bits [7:0]

Graphics controller data read bits 0 to 7 access the most recent display memory data byte read by the host processor. The byte is read from one of four graphics controller registers; for each respective memory planes selected by bits 0 and 1 of the read plane select register. 3CF hex index 04.

Attribute fl 3B5/3D5h[24]		us register					RO
Attribute address or data	n/a	n/a	n/a	n/a	n/a	n/a	n/a

bit 7

Attribute address or data bit

The attribute address or data bit indicates the attribute controller is ready to receive an index when 0 or data when 1. The attribute controller registers and index register share I/O port write address 3C0 hex.

Attribute c 3B5/3D5h[26]		dex status	register				RO
2/2	-	Attribute controller index status					
n/a	n/a	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
bits 5-0	Attr	ibute controlle	er index status	bits [5:0]	<u> </u>		

Attribute controller index status bits [5:0]

Attribute controller index status bits 0 to 5 store the most recent attribute controller index address.

10.3 CRT Controller (CRTC) Register Set B (Index 00 to 16h)

norizontal	total regis	ter B					
3B5/3D5[00h]		requires	3DF[0Bh] bit 1	l = 1			RW
			Horizonta	al total B			
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
bits 7-0	Ho zor tc(I B v app tc(I Rea	rizontal total B rizontal total B ttal scan interva HS) is calculate value and tc(CC blies in non-slow HS) = $(R0 + 5)$ ad and write acc	bits 0 to 7 spee al, including the d using the foll (K) is the chara w dot modes. x tc(CCK) cess is enabled	e horizontal re lowing equation acter clock cyc when LCD su	etrace time. The on where R0 is ele time. The fo	e horizontal sc the decimal ho ollowing equat	an period orizontal tota ion only 0B hex) bit1 i
		nowever this reg ex 1B hex) bit(-			C	ster 0 (3DF
	ind display en	ex 1B hex) bit() is 1.				
Horizontal 3B5/3D5[01h]	ind display en	ex 1B hex) bit(able end reg requires) is 1. gister B	l = 1			ster 0 (3DF

Horizontal display enable end B bits 0 to 7 specify the total number of characters minus one in the horizontal display period. The horizontal display period tw(HDE) is calculated using the following equation, where R1 is the decimal horizontal display end B value and tc(CCK) is the character clock cycle time. The following equation only applies in nonslow dot modes.

tw(HDE) = (R1 + 1) x tc(CCK)

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however this register has no effect unless A/B CRTC function select register 0 (3DF index 1B hex) bit1 is 1.

Horizonta	l blanking s	tart registe	r B				
3B5/3D5[02h] requires 3DF[0Bh] bit 1 = 1							RW
		F	lorizontal blanki	ing start position	В		
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
bits 7-0		rizontal blankii rizontal blankii	• •	on B bits [7:0] on B bits 0 to 7	specify the ho	rizontal blanki	ng signal start-

Horizontal blanking start position B bits 0 to 7 specify the horizontal blanking signal starting edge, relative to the start of a horizontal scan cycle. The horizontal blanking start delay B td(HBS) is calculated using the following equation, where R2 is the decimal horizontal blanking start B value and tc(CCK) is the character clock cycle time. The following equation only applies in non-slow dot modes.

 $td(HBS) = (R2 + 1) \times tc(CCK)$

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however this register has no effect unless A/B CRTC function select register 0 (3DF index 1B hex) bit3 is 1.

Horizontal blanking end register B							
3B5/3D5[03h]	[03h] requires 3DF[0Bh] bit 1 = 1				RW		
n/a	Horizontal di ske	1 2	Horizontal blanking end position B (bit5 in horizontal retra index 05)				end register B
	bit 1	bit 0	bit 4	bit 3	bit 2	bit 1	bit 0

bit 6-5

Horizontal display enable skew B bits [1:0]

Horizontal display enable skew B bits 0 and 1 specify the number of character clock cycles tc(CCK) by which the horizontal display enable signal is delayed, as shown in the following table. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however these bits have no effect unless A/B CRTC function select register 0 (3DF index 1B hex) bit5 is 1.

Sk	ew	Delay
Bit1	Bit0	(character clock cycles)
0	0	None
0	1	One
1	0	Two
1	1	Three

bits 4-0

Horizontal blanking end position B bits [4:0]

Horizontal blanking end position B bits 0 to 4 are the least significant bits of a six bit (VGA), 5bit (EGA) value which specifies the horizontal blanking signal ending edge, relative to the horizontal blanking start value. Bit5 is stored in position 7 of the horizontal retrace end register B index 05. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however these bits have no effect unless A/B CRTC function select register 0 (3DF index 1B hex) bit4 is 1.

Horizontal retrace start register B										
3B5/3D5[04h	3B5/3D5[04h] requires 3DF[0Bh] bit 1 = 1									
	Horizontal retrace start position B									
bit 7	bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0									
bits 7-0	Hor	rizontal retrace	start position	B bits [7:0]						

Horizontal retrace start position B bits 0 to 7 specify the horizontal retrace signal starting edge, relative to the start of a horizontal scan cycle. The horizontal retrace start delay td(HRTC) is calculated using the following equation, where R4 is the decimal horizontal retrace start B value and tc(CCK) is the character clock cycle time. This equation only applies for non-slow dot modes.

td(HRTC) = (R4 + 1) x tc(CCK)

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however this register has no effect unless A/B CRTC function select register 1 (3DF index 1C hex) bit0 is 1.

Horizontal 3B5/3D5[05h]	retrace end	-	3DF[0Bh] bit	1 _ 1			RW			
Horizontal blanking end	Horizontal re	Horizontal retrace skew B		Horizontal retrace end position B (bit5 in CRTC overflow register B1, index 09)						
position B bit5	bit 1	bit 0	bit 4	bit 3	bit 2	bit 1	bit 0			
bit 7	Hor ing 0 (3	Horizontal blanking end position B bit5 Horizontal blanking end position B bit5 is the most significant bit of the horizontal blank- ing end register B index 03. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however this bit has no effect unless A/B CRTC function select register 0 (3DF index 1B hex) bit4 is 1.								
oit 6-5	Horizontal retrace skew B bits [1:0] Horizontal retrace skew B bits 0 and 1 specify the number of character clock cycles tc(CCK) by which the horizontal retrace signal is delayed, as shown in the following table. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however these bits have no effect unless A/B CRTC function select register 1 (3DF index 1C hex) bit2 is 1.									
		Table 10-9	9: Horizontal	Retrace Skew E	8 Selection					
		Skev	V	[Delay					

S	kew	Delay
Bit1	Bit0	(character clock cycles)
0	0	None
0	1	One
1	0	Тwo
1	1	Three

bit 4-0 Horizontal retrace end position B bits [4:0] Horizontal retrace end position B bits 0 to 4 are the least significant bits of a 6 bit value that specifies the horizontal retrace signal ending edge, relative to the horizontal retrace start value. Bit5 is stored in CRTC overflow register B1 (index 09 hex) in position 4. The horizontal retrace pulse width is calculated using the following formula, where R4 is the hexadecimal horizontal retrace start B value, R5 is the hexadecimal horizontal retrace end B value, and tc(CCK) is the character clock cycle time.

tw(HRTC) = [(R5 AND 3Fh) - (R4 AND 3Fh)] x tc(CCK)

The above equation does not apply when the horizontal retrace compare occurs at or after the character counter reset point (double zero of the character counter). Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however these bits have no effect unless A/B CRTC function select register 1 (3DF index 1C hex) bit1 is 1.

Vertical total register B (10-bit)										
3B5/3D5[06h] requires 3DF[0Bh] bit 1 = 1										
Vertical total B (bits 8 and 9 are in CRTC overflow register B0, index 07)										
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
h:40 7 0	X 7	ti a al ta ta l D h	. [7.0]		•					

bits 7-0

Vertical total B bits [7:0]

Vertical total B bits 0 to 7 are the least significant bits of a 10-bit value which is compared to the auxiliary line counter value to generate an auxiliary line counter reset signal at the end of the vertical scan period. In dual panel display mode, the bottom and top half of the display are scanned simultaneously. One dual panel horizontal scan cycle is equal to two single panel horizontal scan cycles. The vertical total (in horizontal scan intervals) for dual panel displays is equal to one half the panel height plus the vertical non-display period minus one. Bits 8 and 9 are stored in the CRTC overflow register B0 (index 07 hex) in bit positions 0 and 5 respectively. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however A/B CRTC function select register 1 (3DF index 1C hex) bit4 must be set to 1, before the auxiliary line counter has any effect on the vertical circuitry.

CRTC Overflow register B0									
3B5/3D5[07h]		requires	3DF[0Bh] bit	1 = 1			RW		
External vertical retrace start position B bit9 (VGA)	Maximum vertical display enable end position B bit9 (VGA)	Vertical total B bit9 (VGA)	n/a	Vertical blanking start position B bit8	External vertical retrace start B bit8	Maximum vertical display enable end position B bit8	Vertical total B bit8		
bit 7	it 7External vertical retrace (VRTC) start position B bit9 (VGA) External vertical retrace start position B bit9 is the tenth bit of the external vertical retrace start register B index 10 hex.Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however these bits have no effect unless A/B CRTC function select register bits which control their respective least significant bits are set correctly.								
bit 6	Maximum vertical display enable (VDE) end position B bit9 (VGA) Maximum vertical display enable end position B bit9 is the tenth bit of the maximum ver- tical display enable end register B index 12 hex.								
bit 5		ical total B bit ical total B bit		oit of the vertic	al total registe	er B index 06 h	ex.		
bit 3	Vert	ical blanking s ical blanking s dex 15 hex.			th bit of the ve	ertical blanking	g start register		
bit 2	External vertical retrace (VRTC) start position B bit8 External vertical retrace start position B bit8 is the ninth bit of the external vertical retrace start register B index 10 hex.								
bit 1	Max	kimum vertical	display enabl	e (VDE) end p e end position B index 12 hex	B bit8 is the n	inth bit of the 1	naximum ver-		
bit 0		ical total B bit ical total B bit		oit of the vertic	al total registe	er B index 06 h	ex.		

CRTC Overflow register B1									
3B5/3D5[09h]		requires 3DF[0Bh] bit 1 = 1				RW			
n/a	n/a	Vertical blanking start position B	Horizontal retrace end	Display line count start B		Internal vertical retrace start position B			
		bit 9 position	position B bit 5	bit 9	bit 8	bit 9	bit 8		
1.14.5	X 7	·····		1:0		•	•		

bit 5

Vertical blanking start position B bit9

Vertical blanking start position B bit9 is the tenth bit of the vertical blanking start register B index 15 hex.

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however these bits have no effect unless A/B CRTC function select register bits which control their respective least significant bits are set correctly.

bit 4	Horizontal retrace end position B bit5 Horizontal retrace end position B bit5 is the most significant bit of the 6-bit horizontal retrace end register B, index 05.
bits 3-2	Display line count start B bits [9:8] Display line count start B bits 8 and 9 are the most significant bits of the 10-bit display line count start register B, index 0E.
bits 1-0	Internal vertical retrace start position B bits [9:8] Internal vertical retrace start position B bits 8 and 9 are the most significant bits of the 10 bit internal vertical retrace start register B, index 0A.

		ce start reg	•	,					
3B5/3D5[0Ah] requires 3DF[0Bh] bit 1 = 1									
				race start positio verflow register I					
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		

Internal vertical retrace start position B bits [7:0] Internal vertical retrace start position B bits 0 to 7 are the least significant bits of a 10-bit value which specifies the internal vertical retrace start position relative to the start of a vertical frame. This value is compared to the auxiliary line counter to reference all internal vertical timing signals for the panel. The external VRTC signal at VRTC/YD (pin 68) is not affected by this register. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however A/B CRTC function select register 2 (3DF index 1D hex) bits 1 and 2 determine how the internal vertical retrace signal effects internal vertical timing.

Internal vert 3B5/3D5[0Bh]	ical retrac		gister B s 3DF[0Bh] bit	1 = 1			RW	
2/2	n/a n/	2/2	n/a	Internal vertical retrace skew B				
n/a		n/a		bit 3	bit 2	bit 1	bit 0	
bits 3-0	Inte	rnal vertical r	etrace skew B		bit 2	bit 1	bi	
	Inte	rnal vertical r	etrace skew B	bits 0 to 3 spe	cify the internal	vertical retrac	ce signal end	
				-	osition. The exte		-	
	-			-	ston Dood and w	-	-	

VRTC/YD (pin 68) is not affected by this register. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however A/B CRTC function select register 2 (3DF index 1D hex) bits 1 and 2 determine how the internal vertical retrace signal affects the internal vertical timing.

Display lin	Display line count start register B (10-bit)										
3B5/3D5[0Eh] requires 3DF[0Bh] bit 1 = 1											
Display line count start B (bits 8 and 9 are in CRTC overflow register B1, index 09)											
bit 7	bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0										

bits 7-0

Display line count start B bits [7:0]

Display line count start B bits 0 to 7 are the least significant bits of a 10-bit value which is combined arithmetically with the vertical display enable end value (register set A), and compared to the auxiliary line counter value to generate the display line counter start signal for display auto-centering. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however A/B CRTC function select register 1 (3DF index 1C hex) bit4 must be set to 1 before the compare generated is used to start the display line counter. A/B CRTC function select register 3 (3DF index 1E hex) bits 5 and 6 select the logic function used to generate the compare pulse.

External vertical retrace start register B (10-bit)										
3B5/3D5[10h	ו]	require	s 3DF[0Bh] bit		RW					
	External retrace start position B (bits 8 and 9 in CRTC overflow register B0 index 07)									
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
bits 7-0			retrace start po retrace start po	-	-	ust significant b	oits of a 10-bit			

External vertical retrace start position B bits 0 to 7 are the least significant bits of a 10-bit value which is compared to the auxiliary line counter value to generate the external vertical retrace signal starting edge at VRTC/YD (pin 68). This register is programmed according to the display panel specifications and does not affect any internal VRTC signals such as those use to latch byte pan. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however this register has no effect unless A/B CRTC function select register 2 (3DF index 1D hex) bit0 is 1.

External vertical retrace end register B									
3B5/3D5[11h] requires 3DF[0Bh] bit 1 = 1 RW									
n/a	n/a n/a	2/2	n/a	External vertical retrace end position B					
		n/a	bit 3	bit 2	bit 1	bit 0			

bits 3-0

External vertical retrace end position B bits [3:0]

External vertical retrace end position B bits 0 to 3 are compared to the auxiliary line counter value to generate the external vertical retrace ending edge at VRTC/YD (pin 68). This register is programmed according to panel specifications and does not affect any internal VRTC signals such as those used to latch byte pan. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however this register has no effect unless A/B CRTC function select register 2 (3DF index 1D hex) bit0 is 1.

Maximum	vertical dis	play enable	end regis	ter B (10-bit)		
3B5/3D5[12h] requires 3DF[0Bh] bit 1 = 1							
				ay enable end perflow register B0			
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
oits 7-0	Max	kimum vertical	display enab	le end position	B bits [7:0]		

Maximum vertical display enable end position B bits 0 to 7 are the least significant bits of a 10-bit value which is compared to the auxiliary line counter value to force an upper and lower panel vertical display enable end signal, regardless of the value programmed into the vertical display enable end register A. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 0, however this register has no effect on the upper panel display enable signal unless A/B CRTC function select register 3 (3DF index 1E hex) bit1 is 1, and has no effect on the bottom panel vertical display enable unless A/B CRTC function select register 3 (3DF index 1E hex) bit 4 is also 1. This register is used to support applications that program a Vertical display enable end position A larger than the

Vertical blar 3B5/3D5[15h]	ining star	•	3DF[0Bh] bit	1 = 1			RW
	(bit8 in CRT0			g start position E , bit9 in CRTC o	3 verflow register	B1, index 09)	
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
bits 7-0	Vert	ical blanking	•	B bits 0 to 7 are	e the least signi r value to gener		

which is compared to the auxiliary line counter value to generate the vertical blanking signal starting edge. Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however this register has no effect unless A/B CRTC function select register 4 (3DF index 1F hex) bit1 is 1.

Vertical bla	anking end	register B (10-bit)					
3B5/3D5[16h]	3B5/3D5[16h] requires 3DF[0Bh] bit 1 = 0 RW							
			Vertical blanking	g end position B				
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

bits 7-0

Vertical blanking end position B bits [7:0]

number of physical scan lines of the panel.

Vertical blanking end position B bits 0 to 7 are compared to the auxiliary line counter value to generate the vertical blanking signal ending edge. The vertical blanking period (in horizontal scan lines) is calculated using the following formula, where R15 si the vertical blanking start value, and R16 is the vertical blanking end value.

tw(VBLANK) = (R15 AND FFh) - (R16 AND FFh)

Read and write access is enabled when LCD support register 0 (3DF index 0B hex) bit1 is 1, however this register has no effect unless A/B CRTC function select register 4 (3DF index 1F hex) bit2 is 1.

10.4 MDA/Hercules Register Set

Hercules mo 3B8		n register					RW
Display page 1	n/a	Text blink enable	n/a	Display enable	n/a	Graphics mode select	n/a
	mod adap hard	les. It has the soters. Some He	ame bit alloca ercules/MDA o this register	ster is used to c ations as the sta display functio generate non-r oftware.	ndard IBM M ns are directly	DA and Hercul supported by t	les display he internal
		•		ernal hardware (ex) bit0 is 0 (He		•	
			•	er (3DF index (it2 is 0.	00 hex) bits 1 a	and 0 are 1, or	trap control
bit 7	The	page 1 (B8000	bit displays to BFFFF he	memory page () x) when 1. Thi 1 (memory pag	s bit cannot be		
bit 5	The Whe Whe	en 0, bit7 of th	ble bit selects e character at	the functionali tribute byte sele e byte bit7 set t	ects backgrour	nd intensity in t	ext mode.
bit 3	The has	· ·	e bit disables (s emulation c	blanks) the disponential ontrol register	•		
bit 1	The bit c		e select bit sel	ects text mode cules configura			

Hercules sta 3BA	atus regis	ster					RO
Vertical retrace status	n/a	n/a	n/a	Video output data	Reserved 1	Reserved 0	Display enable status
			÷	used to monitor s/MDA modes.	display enable	e, video output	and vertical
			•	ter (3DF index (pit2 is 0.	00 hex) bits 1 a	and 0 are 1, or	trap control
bit 7	The	rtical retrace sta e vertical retrac en 1.		dicates a valid v	vertical retrace	interval when	0, and invalid
bit 3	Th	leo output data e video output o /hen 1.		ates that the vide	o output intens	sity bit, bit3 is	0 when 0, and
bit 2		served. is bit always re	ads a 1.				
bit 1		served. is bit always re	ads a 0.				
bit 0	Th	splay enable sta e display enable tical blanking i	e status bit in	dicates a valid d	lisplay interval	when 0, and 1	horizontal or

Hercules c	onfiguratio	n register					
3BF							RW
n/a	n/a	n/a	n/a	n/a	n/a	Memory page enable	Graphics mode enable

The Hercules configuration register is used to enable and disable the graphics mode and display page 1 select bits in the Hercules mode control register (3B8 hex). This register has the same bit allocation as the standard IBM MDA and Hercules display adapters. Writes to this register generate non-maskable interrupts (trap interrupts) which are serviced by the emulation software.

This register has no effect unless emulation control register (3DF index 02 hex) bit0 is 0 (emulation disable register bit).

Note

Auxiliary mode control register (3DF index 00 hex) bits 1 and 0 are 1, or trap control register (3DF index 03 hex) bit2 is 0.

bit 1	Memory page enable The memory page enable bit controls writes to Hercules mode control register (3B8 hex) bit7. When 0 it prevents Hercules mode control register (3B8 hex) bit7 from being set to 1. When 1 it allows Hercules mode control register (3B8 hex) bit7 to be set to 1. This dis- ables/enables host processor access to display memory page 1. Display memory page 0 ((B0000 to B7FFF hex) is used in text mode, however only 4K Bytes is used. Display memory page 0 and 1 (B0000 to BFFFF hex) are used in graphics mode.
bit 0	Graphics mode enable The graphics mode enable bit controls writes to Hercules mode control register (3B8 hex) bit1. When 0 it prevents Hercules mode control register (3B8 hex) bit from being set to 1. When 1 it allows Hercules mode control register (3B8 hex) bit1 to be set to 1.

10.5 Attribute Controller Register Set

Attribute c 3C0	ontroller in	roller index register requires Read 3DA before write						
n/a	n/a	Palette enable		Attribute	controller index	address		
n/a	n/a		bit 4	bit 3	bit 2	bit 1	bit 0	
bit 5	Pale writ			les writing of the overscan color	-	•		
bits 4-0	Attr addr cont regi can	resses. The val troller base add ster to be acce	er index bits 0 lue stored in t dress 3C0/3C ssed at I/O ad	4:0] to 4 specify on hese bits represe 1 hex. This valu dress 3C0/3C1 he Register Addu	ents the addres the is used to sel hex. The hexad	s offset from t lect the attribu decimal value	the Attribute the controller of this offset	

EGA palet 3C0 write/3C	t e registers 1 read[00h]	0 to F					RW
n/a	n/a		Secondary			Primary	
n/a	n/a	Red bit 5	Green bit 4	Blue bit 3	Red bit 2	Green bit 1	Blue bit 0

There are 16 EGA palette registers. each register represents 1 of 16 color lookup values.

Note

Attribute controller index register 3C0 bit5 = 0 for write, do not read 3DA before write

bits 5-0Primary and secondary bits [5:0]
The primary and secondary bits 0 to 5 specify the color to be displayed and allow for
dynamic mapping of the text attribute or graphic color input values to the displayed color.

3C0 write/3C1	node contro I read[10h]	-	ead 3DA befo	re write			RW		
Palette bit4 and bit5 control (VGA)	Pixel width (VGA)	Pixel pan compatibility (VGA)	n/a	Blink/intensity	Line graphics select	Monochrome select	Graphics Mode Select		
bit 7	The Wh EG2	Palette bit 4 and 5 control bit (VGA) The palette bit 4 and 5 control bit selects the source of EGA palette bit4 and bit5 outputs. When 0, the outputs of EGA palette bits 4 and 5 are unaffected. When 1, the outputs of EGA palette bits 4 and 5 are replaced with bits 1 and 0 respectively, of the color select reg- ister (3C0/3C1 index 14 hex)							
bit 6	The	-	he video data	to be sampled nodes this bit s	-		n 256-color		
bit 5	The CR ister succ to 0 put	ΓC byte pan va rs A and B (inc cessful line cor until a vertica then returns to	patibility bit c lue (3B5/3D5 lex 13 hex) af npare in the C l synchronizat its programm	A) controls the hor index 08 hex b fect horizontal TRC forces the ion becomes ac ed value. This ng = bit pan ar	bits 5 and 6) and panning for the e output of the ctive. The hori bit allows pan	nd the horizont le entire displa horizontal par zontal panning ning of only th	al bit pan reg- y. When 1, a uning registers g registers out-		
bit 3	The whe sity.	en 0, it selects l When 1, it sel	y bit functions bit7 of the cha ects bit7 of the	differently for racter attribute e character attr and the mono	byte to be use ibute byte to b	ed for the backs e used for blin	ground inten- king. In graph		

Monochrome select bit	Blink/intensity bit	Pixel data bit3
0	0	Not toggling
0	1	Toggling if 1, force to 1 if 0
1	0	Not toggling
1	1	Toggling

control pixel data bit3 as shown in the following table.

Table 10-10: Blink/Intensity Bit Selection

bit 2

bit 1

bit 0

The line graphics select bit selects the configuration for the ninth horizontal bit position of a displayed character cell. When 0, the ninth horizontal bit position is set to be the same color as the background. When 1, the ninth horizontal bit position is set to be the same as the eighth bit position, for special line-graphics character codes 0C0 to 0DF hex.

Monochrome select bit The monochrome select bit selects the display attributes type. When 0 it selects color display attributes, when 1 it selects monochrome display attributes. Graphics mode select bit

The graphics mode select bit selects the mode type. When 0 it selects alphanumeric mode, when 1 it selects graphics mode

Overscan 3C0 write/3C			read 3DA befo	ore write			RW
		Ove	rscan color (bor	der color CRT di	splay)		
bit 7 (VGA)	bit 6 (VGA)	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
oits 7-0)verscan color b 'he overscan col		pecify the borde	er color of the	CRT display	
Color ena 3C0 write/3C		register					RW
n/a	n/a	Color Tes	t (Diagnostic)		Color Ena	able Plane	
n/a	n/a	bit 1	bit 0	bit (plane) 3	bit (plane) 2	bit (plane) 1	bit (plane) 0
		ne attributes con esponding plane <i>Table</i>	s are enabled.), the correspon Enable Plane So		e disabled. Wł	nen 1, the cor
	Г	Color test (c	liagnostic)	Attribut	e color MUX		
		bit 1	bit 0	bit 1	bit 0		
		0	0	PD2	PD0		
		0	1	PD5	PD4		
			0				
	_	1		PD3	PD1		
		1 1	1	PD3 PD7	PD1 PD6		
Horizonta 3C0 write/3C		1 ing register A	1	PD7			RW
		1 ing register A	1 A	PD7	PD6	bit pan count	RW

bits 3-0

Horizontal bit pan count bits [3:0]

Horizontal bit pan count bits 0 to 3 specify the number of pixels the displayed image is shifted to the left, as shown in the following table. Note that when A/B function select register (3DF index 1A hex) bit3 is 0, that the bit3 value is read from the horizontal bit pan register A bit3. When A/B function select register (3DF index 1A hex) bit3 is 1 that the bit3 value is read from the horizontal bit pan register B bit3.

bit 2

bit 1

bit 0

bit 3

8 Dot	Mode	9 Do	t Mode
Horizontal Bit Pan Count bits 3 to 0	Shift Left by n Pixels n =	Horizontal Bit Pan Count bits 3 to 0	Shift Left by n Pixels n =
0	0	8	0
1	1	0	1
2	2	1	2
3	3	2	3
4	4	3	4
5	5	4	5
6	6	5	6
7	7	6	7
		7	8

Table 10-12: Horizontal Bit Pan Count

Horizontal bit panning register B 3C0 write/3C1 read[14h] Do not read 3DA before write RW								
3C0 write/3C	3C0 write/3C1 read[14h] Do not read 3DA before write							
n/a	n/a	n/a	n/a	Horizontal bit pan count bit 3	n/a	n/a	n/a	

bit 3

Horizontal bit pan count bit 3

Horizontal bit pan count bit 3 is the secondary value for the most significant bit of the 4bit horizontal bit pan count. When A/B function select register (3DF index 1A hex) bit3 is 0, this bit has no effect. When A/B function select register (3DF index 1A hex) bit3 is 1 this bit is the most significant bit of the 4-bit horizontal bit pan count.

Color sele 3C0 write/3C	-	Do not r	ead 3DA befo	re write			RW
n/a n/a	(n/a n/a	Color Select (VGA)				
	n/a		bit 3	bit 2	bit 1	bit 0	
bits 3-0	Cole	or select bits [3	3:01 (VGA)	1	1		1

Color select bits [3:0] (VGA)

The value of color select bits 0 and 1 replace the bits 4 and 5 of the EGA palette output value when the attribute mode control register (3C0/3C1 index 10 hex) bit7 is 1. These bits have no effect in 256-color graphics mode. Color select register bits 2 and 3 are the most significant bit (bits 6 and 7) of the 8-bit color value presented to the VGA palette inputs in all modes except 256-color graphics mode.

10.6 Sequencer Register Set

Sequencer 3C4h	register in	dex					RW	
n/a	2/2 2/2	n/a	Sequencer index address					
n/a	n/a	n/a	bit 4	bit 3	bit 2	bit 1	bit 0	

bits 4-0

Sequencer index bits [4:0]

The sequencer index bits 0 to 4 specify one of the sequencer register addresses. The value stored in these bits represents the address offset from the sequencer base address 3C5 hex. This value is used to select the sequencer register to be accessed at I/O address 3C5 hex The hexadecimal value of this offset can be referenced from either the Register Address Map or the Sequencer Register Summary.

Sequencer 3C5h[00h]	r register in	dex					RW
n/a	n/a	n/a	n/a	2/2	n/a	Sequen	cer reset
n/a	n/a	11/a	11/a	n/a	11/a	bit 1	bit 0
bits 1-0	Seq sele the swit 03 h	ct register (3C configuration (tch-latch disab nex) to 0. When	ts 0 and 1 halt 5 index 03 hea (DIP) switch la le bit (bit5) is n bit1 is set to 0	and reset the s x). When 0, bit atch when disa 0, and resets th 0 it generates a g bit0 or bit1 to	0 generates a s ble function re le character m sequencer res	sequencer rese egister (3DF in ap select regist et. Bits 0 and 1	t, and enables dex 19 hex) ter (3C5 index l are set to one

before changing any of the following:

• Miscellaneous output register A or B (3C2 hex write) clock select bits 0 and 1 (bits 2 and 3).

current memory cycle, however both bits should be set to 0 for normal sequencer resets

- Power save register 0 (3DF index 16 hex) clock divide ratio bits 0 and 1 (bits 0 and 1).
- A/B function select register (3DF index 1A hex) clock MUX bit source select bit (bit1) and 8-dot bit source select bit (bit2).
- LCD support register 1 (3DF index 24 hex) dual panel function select bit (bit2), dual panel clock select bit (bit3), and LCD fixed clock select bit (bit4).

Clocking m 3C5h[01h]	node regist		3DF[0Bh] bit	1 = 0			RW			
n/a	n/a	Display inhibit (screen off, VGA)	32-bit graphics shift (shift 4, VGA)	Dot clock divided by 1 or 2	2-bit graphics shift (shift/load)	No effect (read/write)	8-dot character clock			
bit 5	The it tu	Display inhibit (screen off, VGA) bit The display inhibit (screen off, VGA) bit selects normal video operation when 0. When 1 it turns off video display and assigns maximum memory bandwidth to the system. Note that the display is blanked and all sync pulses are maintained.								
bit 4	The regi Whe latte	32-bit graphics shift (shift 4, VGA) bit The 32-bit graphics shift (shift 4, VGA) bit controls loading of the graphics controller shift register. When 0, it loads the graphics controller shift registers every character clock. When 1, it loads the graphics controller shift registers every fourth character clock. The latter is useful when 32-bits are fetched per cycle and chained together in the shift regis- ters.								
bit 3	The to b the	e the same as t	ded by 1 or 2 b he sequencer o k rate. Note th	clock rate. Whe	clock rate. Whe en 1, it sets the er clock and sh is set to1	dot clock rate	to be the half			
bit 2	The regi Whe	16-bit graphics shift (shift/load) bit The 16-bit graphics shift (shift/load) bit controls loading of the graphics controller shift registers. When 0, it loads the graphics controller shift registers every character clock. When 1, it loads the graphics controller shift registers every other character clock. The l ter is useful when 16-bits are fetched per cycle and chained together in the shift register								
bit 0	The	e a 9-dot chara	er clock bit sets		clock. When 0 e sequencer to					

Clocking n	Clocking mode register B											
3C5h[01h]	_	requires	3DF[1Ah] bit	1 = 0			RW					
n/a	n/a	n/a	n/a	n/a	n/a	n/a	8-dot character clock					
bit 0	8-de	ot character clo	ock hit									

b1t 0

8-dot character clock bit

The 8-dot character clock bit sets character dot clock. When 0, it sets the sequencer to generate an 8-dot character clock. When 1, it sets the sequencer to generate a 9-dot character clock.

Memory pl 3C5h[02h]	ane enable	register					RW	
n/a	n/a n/a	n/a	n/a	Memory plane enable (64 Kbyte each)				
n/a	Π/a	11/a 11/a	n/a	bit (plane) 3	bit (plane) 2	bit (plane) 1	bit (plane) 0	
bits 3-0	Mer	nory plane ena	able (64 Kbyte	e each) bits (pla	nnes) [3:0]			

Memory plane enable (64 Kbyte each) bits (planes) [3:0] Memory plane enable (64 Kbyte each) planes 0 to 3 enables/disables the system writes to the corresponding video memory planes. When any plane bit is 1 it enables system writes the corresponding video memory plane. Simultaneous writes occur when more than one plane bit is 1.

Character 3C5h[03h]	map select	register					RW
		Map A select	Map B select	Map A select (8 Kbyte)		Map B select (8 Kbyte)	
n/a	n/a	(8 Kbyte) bit2 (VGA)	(8 Kbyte) bit2 (VGA)	bit 1	bit 0	bit 1	bit 0

bits 5,3-2

Map A select (8 Kbyte) bits [5].[3:2]

The map A select (8 Kbyte) bits 0 to 2 are used for alpha character generation, as shown in the following table.

M	Map A select Ma		Мар	Map Location			
bit2	bit1	bit0	selected				
0	0	0	0	1st 8 Kbytes of plane 2			
0	0	1	1	3rd 8 Kbytes of plane 2			
0	1	0	2	5th 8 Kbytes of plane 2			
0	1	1	3	7th 8 Kbytes of plane 2			
1	0	0	4	2nd 8 Kbytes of plane 2			
1	0	1	5	4th 8 Kbytes of plane 2			
1	1	0	6	6th 8 Kbytes of plane 2			
1	1	1	7	8th 8 Kbytes of plane 2			

Table 10-13: Map A Selection

bits 4,1-0

Map B select (8 Kbyte) bits [4],[1:0]

The map B select (8 Kbyte) bits 0 to 2 are used for alpha character generation, as shown in the following table.

Ma	ap B sele	ect	Мар	Map Location
bit2	bit1	bit0	selected	Map Location
0	0	0	0	1st 8 Kbytes of plane 2
0	0	1	1	3rd 8 Kbytes of plane 2
0	1	0	2	5th 8 Kbytes of plane 2
0	1	1	3	7th 8 Kbytes of plane 2
1	0	0	4	2nd 8 Kbytes of plane 2
1	0	1	5	4th 8 Kbytes of plane 2
1	1	0	6 6th 8 Kbytes of plane 2	
1	1	1	7	8th 8 Kbytes of plane 2

Table 10-14: Map B Selection

Memory m 3C5h[04h]	ode registe	r						RW		
n/a	n/a	n/a	n/a	Chain (VGA		Odd, even mode	256 Kbyte memory (EGA)	Text mode (EGA)		
bit 3	The 0, it enal	allows the sysples the sysples the system	A) bit selects the stem to access	data sequ 0 and 1 t	entiall	y within a	display memory memory plane. V ory plane to be ac	When 1, it		
		Table 10-15: Chain 4 Selection								
		Line1 (0 (A0)	Map s	elected				
		0		0		0				
		0		1		1				
		1		0		2 3				
	and	The odd/even mode bit enables the system to only write plane 0 and 2 at even addresses and planes 1 and 3 at odd addresses when 0. When 1, it enables the system to write to any plane enabled by the memory plane enable register (3C5 index 02).								
bit 1	256 0, it are 1	indicates that forced to 0. W	y (EGA) bit in 256 Kbyte of	video me tes that 25	mory i 56 Kby	s not instal	Kbyte of video m led and address b memory is insta	oits 14 and 1		
bit 0	Text men 14 a alph	nory planes ad nd 15 will be	and15. Wi ose of the bits 14 ar	hen 0, i A vide	it selects g eo memory	des and configur raphics mode and planes. When 1 eo memory plane	l address bits , it selects			

10.7 DAC Palette Register Set

DAC Pixel 3C6h	Mask Regis	ster					RW
			Pixel D	ata Mask			
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
bits 7-0	The ette.	-	nask register is		off pixel data bi ole display. The		

DAC Status Register 3C7h RC								
n/a	n/a	n/a	n/a	n/a	n/a	DAC read or write mode status		
						bit 1	bit 0	

bits 1-0

DAC read or write mode status bits [1:0]

The DAC status register is used to monitor palette read and write operations. DAC palette color values are read or written to each palette register (1 of 256) in three successive sixbit bytes (red, green and blue). DAC read or write mode status bits 0 and 1 are set to 1 directly after a read operation, or cleared to 0 directly after a write operation.

DAC VGA 3C7h	Palette Rea	d Address	Register				WO
		V	GA Palette Regi	ster Read Addre	SS		
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
bits 7-0		U	ster Read Add	ress bits [7:0]	1. 1.	1. 62561404	1

The DAC VGA palette read address register is used to select 1 of 256 VGA palette registers to be read. Each register is read in three successive six-bit bytes (red, green and blue). DAC status register (3C7 hex read) DAC read or write bits 0 and 1 are set to 1 directly after a read operation.

DAC VGA	DAC VGA Palette Write Address Register									
3C8h RW										
	VGA Palette Register Write Address									
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0										
		Dit 5	511 4	Dit 3	Dit Z	DILT	bit 0			

bits 7-0

VGA Palette Register Read Address bits [7:0]

The DAC VGA palette write address register is used to select 1 of 256 VGA palette registers to be written to. Each register is written in three successive six-bit bytes (red, green and blue). DAC status register (3C7 hex read) DAC read or write bits 0 and 1 are cleared to 0 directly after a write operation.

DAC Palet 3C9h	te Data Reg	ister					RW			
2/2	2/2		Palette Data							
n/a	n/a	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
bits 5-0	The	•	data register is	used to read an read or writter						

green and blue). The DAC status register (3C7 hex read) is set to 11 binary after a read or 00 binary after a write operation.

10.8 Graphics Controller Register Set

Graphics i 3CEh	ndex regist	er					RW
n/a	n/a	n/a	Graphics index address				
n/a	n/a	Π/a	n/a	bit 3	bit 2	bit 1	bit 0

bits 3-0

Graphics index bits [3:0]

Graphics index bits 0 to 3 specify one of the graphics controller register addresses. The value stored in these bits represents the address offset from the Graphics base address of 3CF hex. This value is used to select the graphics controller register to be accessed at I/O address 3CF hex. The hexadecimal value can be referenced from either the Register Address Map or the Graphics Register Summary.

Set/reset re 3CF[00h]	egister						RW
n/a	n/a	n/a	n/a		Set/reset dis	play memory	
11/a	n/a	n/a	Π/a	bit (plane) 3	bit (plane) 2	bit (plane) 1	bit (plane) 0

The set/reset register selects the state of each byte in each plane enabled by the enable set/reset register (index 01). Each bit in the byte addressed by the host processor is set or reset to the state selected by its corresponding plane bit. The graphics write mask register (3CF index 08 hex) can be used to select the bits effected by the set/reset register. This is used in 16 color mode to change the colors of the selected patterns.

bits 3-0 Set/reset bits (planes) [3:0] Set/reset planes 0 to 3 bits set or reset the byte values of the corresponding memory planes. When 0 the byte value of the corresponding memory plane is reset, when 1 the byte value of the corresponding memory plane is set. This register is active when the corresponding bits in the enable set/reset register (3CF index 01 hex) are set to 1.

Enable set 3CF[01h]	/reset regis	ter					RW
n/a	n/a	n/a	2/2		Enables	set/reset	
Ti/a	n/a	n/a	n/a	bit (plane) 3	bit (plane) 2	bit (plane) 1	bit (plane) 0

The enable set/reset register is used to select the planes to be effected by the set/reset register (3CF index 00 hex) in write mode 0. This can be used to set the color value written to display memory. The set/reset register (3CF index 00 hex) selects the state of each enabled plane, and the graphics write mask register (3CF index 08 hex) selects the bits effected.

bits 3-0 Set/reset bits [3:0] Enable set/reset bits 0 to 3 disable/enable the corresponding bits in the set/reset register (index 00). When any bit is set to 0 the corresponding bit in the set/reset register is disabled, when 1 the corresponding bit in the set/reset register is enabled.

Color com 3CF[02h]	pare registe	er					RW
n/a	n/a	n/a	n/a		Referen	ce color	
11/a	11/a	n/a	n/a	bit 3	bit 2	bit 1	bit 0

bits 3-0

Reference color bits [3:0]

Reference color bits 0 to 3 represent a 4-bit color value for comparison when the graphics mode control read mode select bit (3CF index 05 hex bit3) is 1. In this mode (read mode 1), each bit in each byte read from the four display memory planes is compared to the corresponding reference color bit. Each byte read returns a 1 in the positions which match the reference color. Only the planes enabled by the color compare enable register (3CF index 07 hex) are tested.

Data rotate 3CF[03h]	e register						RW
n/a	n/a n/a n/a	Logic function select		Data rotate count			
n/a	n/a	n/a	bit 1	bit 0	bit 2	bit 1	bit 0

bits 4-3

Logic function select bits [1:0]

Logic function select bits 0 and 1 select hardware Boolean arithmetic operation to be applied to the latched data. The available Boolean arithmetic operations are selected as shown in the following table.

Table 10-16: Logic Function Selection

Operati	on select	Boolean arithmetic operation				
bit1	bit0					
0	0	Data unmodified				
0	1	Logic AND with latched data				
1	0	Logic OR with latched data				
1	1	Logic XOR with latched data				

bits 2-0

Data rotate bits [2:0]

Data rotate bits 0 to 2 specify the number of bit positions the system data is rotated to the right during writes to video memory in write mode 0. Write mode is specified by the graphics mode control register (3CF index 05 hex) bits 1 and 0. When these bits are set to 0 no rotate occurs.

Read plane 3CF[04h]	e select reg	ister					RW
n/a	n/a	, ,	n/a	n/a		Read pla	ine select
n/a	n/a	n/a	n/a	bit 1	bit 0		
bits 1-0	Rea the plan plan	system. In 8-bi ne. In 16-bit sy	bits 0 and 1 se it system data stem data bus	bus mode the a mode the addr	e four display n addressed locat ressed location on plus one is r	tion is read from is read from the	m the selected ne selected

Read pla	ne select	Video memory				
bit1	bit0	video memory				
0	0	plane 0				
0	1	plane 1				
1	0	plane 2				
1	1	plane 3				

Graphics mode control register 30E[05b]

3CF[05h]		- J					RW	
	256-color	Graphics shift	Odd/even	Read mode select		Write mode select		
n/a	mode (VGA)	register interleave	plane select		n/a	bit 1	bit 0	

bit 6

256-color mode bit (VGA)

The 256-color mode bit (VGA) selects the shift register output sequence. When 0 it selects CGA 4-color and EGA 16-color modes. When 1 it selects 256-color mode. Each one of the four memory planes has a data output latch/shift register which receives the addressed data byte. Data is output as shown in the following table.

256-		Shift register															Serial
color bit		bit7 bit6		bit5 bit		bit4 bit3		bit2		bit1		bit0		output			
mode bit	Plane	Bit	Plane	Bit	Plane	Bit	Plane	Bit	Plane	Bit	Plane	Bit	Plane	Bit	Plane	Bit	data bit
	0	4	0	0	1	4	1	0	2	4	2	0	3	4	3	0	0
1	0	5	0	1	1	5	1	1	2	5	2	1	3	5	3	1	1
	0	6	0	2	1	6	1	2	2	6	2	2	3	6	3	2	2
	0	7	0	3	1	7	1	3	2	7	2	3	3	7	3	3	3

Table 10-18: 256-color mode data

bit 5

Graphics shift register interleave bit

The graphics shift register interleave bit selects the shift register output sequence. When 0 it enables EGA 16-color graphics, when 1 it enables 4-color graphics. This bit has no effect unless the 256-color mode bit (bit6) is set to 0. Each one of the four memory planes has a data output latch/shift register which receives the addressed data byte. Data is output as shown in the following table.

Graphics								Shift re	egisteı	•							
shift register interleave bit	bi	t7	bi	bit6		bit5 bit		t4	t4 bit3		bit2		bit1		bit0		Serial
	Pla ne	Bit	Pla ne	Bit	Pla ne	Bit	Pla ne	Bit	Pla ne	Bit	Pla ne	Bit	Pla ne	Bit	Pla ne	Bit	output data bit
	0	7	0	6	0	5	0	4	0	3	0	2	0	1	0	0	0
0	1	7	1	6	1	5	1	4	1	3	1	2	1	1	1	0	1
0	2	7	2	6	2	5	2	4	2	3	2	2	2	1	2	0	2
	3	7	3	6	3	5	3	4	3	3	3	2	3	1	3	0	3
	0	6	0	4	0	2	0	0	1	6	1	4	1	2	1	0	0
1	0	7	0	5	0	3	0	1	1	7	1	5	1	3	1	1	1
I	2	6	2	4	2	2	2	0	3	6	3	4	3	2	3	0	2
	2	7	2	5	2	3	2	1	3	7	3	5	3	3	3	1	3

Table 10-19:	Graphics	Shift	Register	Interleave	Data
10010 10 17.	Graphies	Singe	negisier	111101100110	Dunn

bit 4

Odd/even plane select bit

The odd/even plane select bit selects the read plane select register (3CF index 04 hex) to control which plane the system will read data from when 0. When 1 it replaces bit0 of the read plane select register (3CF index 04 hex) with the system address line 0, allowing it to determine odd or even plane selection.

bit 3 Read mode select bit

Read mode select bit

The read mode select bit selects the system to read data from the active video memory plane when 0 and enables the color compare register (3CF index 02 hex) when 1.

Write mo	ode select	Write	Write mode exercise
bit 1	bit 0	mode	Write mode operation
			When one of four set/reset register (3CF index 00 hex) bits are enabled each bit in the byte to be written to its corresponding plane is set to the set/reset display memory plane bit color. This is then ANDed with the graphics mask
0	0	0	register (3CF index 08 hex) and the resulting byte is written to the enabled plane. The host processor writes pattern data bytes to each plane not effected by the set/reset register (3CF index 00 hex). Each byte is rotated the number of times selected in the data rotate register (3CF index 03 hex) bits 0 to 2 then applied to the Boolean arithmetic operation selected by the logic function select bits with the data in the read latch. This value is ANDed with the graphics write mask register (3CF index 08 hex) and the resulting byte is written to the enabled plane.
0	1	1	Latched 32-bit display data is written to the addressed memory locations
			(planes 0 to 3)
1	0	2	The least significant bits of the system data bus represent a color value written to the addressed display memory location. This value is written to all eight bits in memory planes 0 to 3 after it is ANDed with the graphics write mask register (3CF index 08 hex). Data rotate and Boolean arithmetic operations can be applied to the color value in the data latch. This data is written to each bit (planes 0 to 3) when the corresponding bit in the graphics write mask register (3CF index 08 hex) is 0. The color value on the data bus is written to each bit (in planes 0 to 3) when the corresponding bit in the graphics write mask register (3CF index 08 hex) is 1.
1	1	3	The value stored in the set/reset register (3CF index 00 hex) represents a color written to the addressed location. The system data byte is ANDed with the graphics write mask register (3CF index 08 hex) value and used as the mask byte. The color value stored in the data read latch is written to each bit (in plane 0 to 3) when the corresponding bit in the graphics write mask register (3CF index 08 hex) is 0. The color value stored in the set/reset register 3CF index 00 hex) is written to each bit (planes 0 to 3) when the corresponding bit in the graphics write mask register (3CF index 08 hex) is 0. The color value stored in the set/reset register 3CF index 00 hex) is written to each bit (planes 0 to 3) when the corresponding bit in the graphics write mask register (3CF index 08 hex) is 1. The enable set/reset register(3CF index 01 hex) has no effect. In EGA mode, write mode 3 is the same as write mode 1.

Table 10-20: Write Mode Selection

Miscellane 3CF[06h]	ous graphi	cs register					RW
n/a	n/a	n/a	2/2	Display me	emory map	Odd/even	Graphics mode
n/a	n/a	n/a	n/a	bit 1	bit 0	chain select	select

bits 3-2

Display memory map bits [1:0]

The display memory map bits 0 and 1 select the mapping of the video memory, as shown in the following table.

Display m	emory map	Address
bit1	bit0	(hex)
0	0	A0000 - BFFFF
0	1	A0000 - AFFFF
1	0	B0000 - B7FFF
1	1	B0000 - BFFFF

Table 10-21: Display Memory Mapping

bit 1	Odd/even chain select bit The odd/even chain select bit selects A0 of the memory address bus to be used during sys- tem memory addressing when 0. When 1, it selects either A16 of the system address, if the display memory map bits 0 and 1 are 0, or the low/high 64 Kbyte page select bit of the miscellaneous output register A (3C2 write/3CC read bit5 hex).
bit 0	Graphics mode select bit The graphics mode select bit selects the video mode type. When 0 it selects alphanumeric mode and activates character generator addressing. When 1 it selects graphics mode with no character generator addressing.

Color compare enable register 3CF[07h] RW									
n/a	n/a	n/a	n/a	Color compare memory plane select					
Π/ά	Π/a	Π/a	17/4	bit (plane) 3	bit (plane) 2	bit (plane) 1	bit (plane) 0		

bits 3-0

Color compare memory plane select bits [3:0]

The color compare memory plane select bits 0 to 3 select the corresponding plane to be included in the color compare read cycle for each bit that is set to 1.

Graphics V 3CF[08h]	write mask i	register					RW			
Graphics data write mask										
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			

bits 7-0

Graphics data write mask select bits [7:0]

The graphics data write mask bits 0 to 7 select the corresponding bits in all planes that cannot be changed when 0, and selects the corresponding bits in all planes that can be changed by the selected write mode and system data when 1.

10.9 CGA Register Set

CGA mode	e control reg	gister					
3D8h		see note	9				RW
n/a	n/a	Text blink enable	High-res graphics	Display enable	Monochrome select	Graphics Mode Select	High-res text

The CGA mode control register is used to configure the SPC8100 for CGA display mode. It has the same bit allocation as the standard IBM CGA mode control register. Some CGA display functions are directly supported by the internal hardware. Writes to this register generate non-maskable interrupts (trap interrupts), which are serviced by the emulation software.

This register has no effect on internal hardware (supported functions only) unless emulation control register (3DF index 02 hex) bit2 is 0 (CGA hardware emulation register disable bit).

	Note Auxiliary mode control register (3DF index 00 hex) bit0 is 1 and bit1 is 1, or trap control register (3DF index 03 hex) bit1 is 1.
bit 5	Text blink bit The text blink enable bit selects the functionality of bit7 of the character attribute byte. When 0, bit7 of the attribute byte selects background intensity in text mode. When 1 char- acters with attribute byte bit7 set to 1, blink, and all characters have low background inten- sity. This bit has no effect in graphics modes.
bit 4	High resolution graphics bit The high resolution graphics bit select the graphics resolution. When 0, it selects 320x200 dot mode. When 1, it selects 640x200 dot mode. This bit is only valid when graphics mode is selected.
bit 3	Display enable bit The display enable bit enables and disables (blanks) the display. When 0, the display is disabled. When 1, the display is enabled. This bit has no effect unless emulation control register (3DF index 02) bit5 is 1.
bit 2	Monochrome select bit The monochrome select bit selects the type of foreground used. When 0, it select color foreground, and when 1, it selects monochrome foreground. This bit effects the fore- ground color palette in 320x200 dot graphics mode when emulation control register (3DF index 02 hex) bit4 is 0. When the monochrome select bit is 0, the blue output (foreground color) is taken from CGA color select register (3D9) bit5. When the monochrome select bit is 1, the blue output (foreground color) is taken from pixel data bit0.
bit 1	Graphics mode select bit The graphics mode select bit selects the mode type. When 0, text mode is selected. When 1, graphics mode is selected.
bit 0	High resolution text bit The high resolution text bit selects the resolution in text modes. When 0, 40x25 character resolution is selected. When 1, 80x25 character resolution is selected. This bit has no effect on internal hardware, it is used only by BIOS routines to flag low or high resolution text. This bit has no effect unless the graphics mode select bit (bit1) is set to 0 (text mode).

3D9h	select regi	ster see note	e				RW
n/a	n/a	Alternate palette	Intensified palette	Intensity select	Red select	Green select	Blue select
	inter colo hard are s This	nsity in CGA or or select registed lware. Writes the serviced by en- stregister has no	display modes. er. Some CGA to this register nulation softwa	rnal hardware (e bit allocation ons are directly naskable inter	n as the standar y supported by rupts (trap inte	rd IBM CGA internal rrupts) which
		uxiliary mode	control registe dex 03 hex) bi	r (3DF index 0 t1 is 1.	0 hex) bit0 is 1	and bit1 is 1,	or trap control
bit 5	Alternate palette bit The alternate palette bit selects the blue foreground color output in 320x200 dot graphics mode When 0, the blue output is cleared to 0. When 1, the blue output is set to 1. This allows the red a green bits to select the remaining four color combinations. This bit has no effect unless emulation control register (3DF index 02 hex) bit4 is 0.					ows the red and	
bit 4	Intensified palette bit The intensified palette bit selects the foreground intensity. When 0, it selects low inte foreground colors in 320x200 dot graphics mode. When 1, it selects high intensity fo ground colors in 320x200 dot graphics mode. This bit has no effect unless emulation trol register (3DF index 02 hex) bit4 is 0.					tensity fore-	
bit 3-0	The mod grou trol cont	Red, Green, E les, the backgr and color in 64 register (3DF troller oversca	Blue and Intension ound and over 0x400 graphic index 02 hex)	elect bits [3:0] sity select bits a scan colors in cs mode. These bit4 is 0. Over) write/3C1 rea is 1.	select the over 320x200 dot g bits have no e scan color is se	raphics modes effect unless er elected by the a	, or the fore- nulation con- attribute

Auxiliary I	Index Regist	er					
3DEh	_	see not	е				RW
			Auxiliary in	dex address			
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
	Note						

Write access is always enabled, read access is enabled after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Read access is disabled after any write to the auxiliary enable register, or after a power on, or system reset.

bits 7-0 Auxiliary Index Register bits [7:0] Auxiliary index address bits 0 to 7 specify one of the Auxiliary register addresses. The value stored in these bits represents the address offset from the auxiliary register base address 3DF hex. This value is used to select the auxiliary register to be accessed at I/O address 3DF hex. The hexadecimal value of this offset can be referenced from either the Register Address Map or the Auxiliary Register Summary

Auxiliary N	Node Control	ol Register					
3DFh[00h]		see note	e				RW
			6845			MDA/CGA/EG	A/VGA select
n/a	n/a	n/a	emulation (14-bit address)	n/a	EGA CRTC select	bit 1	bit 0

Note

bit 4	6845 Emulation (14-bit address) bit The 6845 emulation bit selects 16-bit start and cursor addresses and address counter when 0 or 14-bit when 1. 14-bit addressing is used for 6845 emulation.
bit 2	EGA CRTC select bit The EGA CRTC bit selects EGA/VGA CRTC signal timing. When 0 it selects VGA CRTC signal timing, when 1 it selects EGA CRTC signal timing.

bit 1-0MDA/CGA/EGA/VGA select bits [1:0]MDA/CGA/EGA/VGA bits 0 and 1 select the display adapter mode as follows:

bit1	bit0	Display adapter mode
0	0	VGA
0	1	EGA
1	0	CGA emulation
1	1	MDA/Hercules Emulation

Note

These bits control register access and hardware for each of the preceding modes. The sequencer should be halted before these bits are changed.

Extended F	unction Re	egister					
3DFh[01h]		see not	е				RW
Test Mode Enable	n/a	n/a	Multi-font Enable	n/a	CPU A16 Select	n/a	Multiple page enable
	ab	nabled for acc ble register (3I		x). Disabled			he auxiliary en- the auxiliary en-
bit 7	Test mode enable bit The test mode enable bit disables test mode when 0 or enables test mode when 1. Th must be set to 0 for normal operation.					when 1. This bit	
bit 4	Multi-font enable bit The Multi-font bit enables normal text mode font selection when 0. When 1, it allows bits 4 to 6 of the attribute byte to select one of eight simultaneously displayable fonts. In this case attribute byte color bits (normally bits 4 to 6) are forced to 0, font selection bit (bit3) is not used and the blink/intensity bit (bit7) functions normally.						
bit 2	CPU A16 select bit The CPU A16 select bit selects addressing of 128K successively, without page switching. When 0, in display mode 13 hex memory access is restricted to one 64K page. When 1, and the Chain 4 Bit (3C5 index 4 hex bit3) is 1, the Display Page Select Bit0 (3DF index 9 hex bit0) is replaced by the Host Processor address bit A16. In VGA 256 color modes this enables the use of a 128K memory map (A0000-BFFFF hex), allowing the Host Processo to access 2 pages (128K) of display memory without page switching. When the Chain 4 Bit (3C5 index 4 hex bit3) is 0 this bit has no effect.						

bit 0

Multiple page enable bit

The multiple page enable bit controls the amount of display buffer memory that is accessed. When 0, in display mode 13 hex display memory access is restricted to one quarter of the installed memory to maintain full IBM VGA compatibility. Memory address lines 0 and 1 select one of four 64K memory planes. Although display memory appears as 64K sequentially, only every fourth byte in each plane is used. When the multiple page enable bit is 1 all display memory locations in each 64K page are addressable. Display page register (index 09) bits 0 and 1 select one of four successive locations in each plane when the memory mode register (3C5 index 04) chain 4 bit (bit3) is 1 and the 256 color VGA select bit (bit2) is 0. When underline location register (3B5/3D5 index 14 hex) double word select bit (bit6) is 1 and the multiple page enable bit is 0, CRTC memory address lines A0 and A1 are 0. When underline location register (3B5/3D5 index 14 hex) double word select bit (bit6) is 1 and the multiple page enable bit is 1, CRTC memory address lines A0 and A1 are replaced by memory address counter A14 and A15 respectively.

Emulation Control Register							
3DFh[02h]		see note	9				RW
EGA, VGA CRTC register mask	6845 emulation (LSB enable)	CGA, Hercules blanking enable	CGA hardware palette disable	CGA overscan (border) disable	CGA hardware emulation disable	Hercules page 1 enable	Hercules hardware emulation disable

Note

bit 7	EGA, VGA CRTC register mask bit
	The EGA, VGA CRTC register mask bit controls access to CRTC registers for which trap
	bits have been set. When 0, all EGA, VGA CRTC registers can be accessed. When 1, only
	CRTC registers for which trap interrupts have not been set by CRTC emulation and CRTC
	extended trap enable bits (bit4 and 5) in the trap control register (index 03), can be
	accessed.
bit 6	6845 emulation (LSB enable) bit
	The 6845 emulation bit controls the CRTC offset register least significant bit. When 0, the
	CRTC offset register is not effected. When 1, odd CRTC offset values are generated for
	6845 emulation. Both CGA and Hercules adapters use 6845 register sets.
bit 5	CGA, Hercules blanking enable bit
	The CGA, Hercules blanking enable bit disables the CGA and Hercules display enable
	bits (bit3) in the CGA and Hercules mode control registers (3B8 and 3D8 hex) when 0,
	and enables them when 1. Disabling the display enable hits prevents flickering during
	scrolling. This bit has no effect unless hardware emulation is enabled (bit2=0).

Page 9	90
--------	----

bit 4	CGA hardware palette disable bit The CGA hardware palette disable bit enables the CGA color select and intensity bits (bits 0 to 3) in CGA color select register (3D9 hex) when 0, and disables them when 1. The EGA palette registers act as a secondary color palette regardless of the logic state of this bit. When the CGA hardware palette is disabled, additional trap conditions are enabled so that hardware palette action can be emulated. This bit has no effect unless CGA hardware emulation is enabled (bit =0).
bit 3	CGA overscan (border) disable bit The CGA overscan disable bit enables overscan color select and intensity to be taken from the CGA color select register (3D9 hex) when 0, and disables it when 1, allowing overscan color to be taken from the attribute controller overscan register (3C0 index 11 hex). Over- scan should be black for monitors which are not blanked during retrace. This bit has no effect unless CGA hardware emulation is enabled (bit2=0).
bit 2	CGA hardware emulation disable bit The CGA hardware emulation disable bit enables CGA mode control and color select reg- isters when 0, and disables them when 1, allowing pixel data to pass directly to the EGA palette registers.
bit 1	Hercules page 1 enable bit The Hercules page 1 enable bit allows Hercules configuration register (index 3BF) control of host processor access to display memory when 0, and direct host process access when 1 for software control of Hercules emulation.
bit 0	Hercules hardware emulation disable bit The Hercules hardware emulation disable bit enables the Hercules mode control and con- figuration registers (index 3B8 and 3BF) when 0, and disables them when 1. Trap condi- tions are enables to allow software emulation.

Trap Control Register							
3DFh[03h]		see note	e				RW
VGA register unmask	n/a	CRTC extended trap enable	CRTC emulation trap enable	CRTC mode switch trap enable	Hercules trap enable	CGA trap enable	EGA, VGA trap enable

Enabled for access after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Disabled for access after any write to the auxiliary enable register, or after a power on, or system reset.

bit 7 VGA register unmask bit

The VGA register unmask bit masks VGA registers in the address range 3C0 to 3CF hex from host processor access in Hercules or CGA mode when 0, or unmasks them when 1. Emulation software uses the VGA register unmask bit to change VGA registers.

bit 5 CRTC extended trap enable bit The CRTC extended trap enable bit disables trap interrupts for writes to CRTC controller data registers in the address range 3B1 to 3B7 hex or 3D1 to 3D7 hex (3C2 hex D0=1 or 0) index 0C to 0F hex when 0, or enables them when 1. The CRTC FIFO register can be accessed when CRTC extended trap interrupts are enabled.

bit 4	CRTC emulation trap enable bit The CRTC emulation trap enable bit disables trap interrupts for writes to CRTC data regis- ters in the address range 3B1 to 3B7 hex or 3D1 to 3D7 hex (3C2 hex D0=1 or 0) index 00 to 0B or 10 to 18 hex (and 0C to 0F hex if the CRTC extended trap interrupt bit is 1) when 0, or enables them when 1. The CRTC FIFO register can be accessed when CRTC emula- tion trap interrupts are enabled, for Hercules, CGA, EGA or VGA CRTC emulation.
bit 3	CRTC mode switch trap enable bit The CRTC mode switch trap enable bit disables trap interrupts for writes to CRTC regis- ters which indicate that automatic mode switching is required when 0, or enables them when 1. Automatic mode switching is required for writes to registers in the address range 3B0 to 3B7 hex, in CGA mode or EGA, VGA mode with CGA registers enabled. Auto- matic mode switching is also required for writes to registers in the address range 3D0 to 3D7 hex, in Hercules mode or EGA, VGA mode with Hercules registers enabled.
bit 2	Hercules trap enable bit The Hercules trap enable bit disables trap interrupts for writes to Hercules mode control register (3B8 hex) and configuration register (3BF hex) when 0, or enables them when 1. Hercules mode control, status and configuration registers (3B8, 3BA and 3BF hex) can be accessed by the host processor when Hercules trap interrupts are enabled. Any of these register bits accessed, that do not have direct hardware support, generate a non-maskable interrupt. Note that the light-pen is not supported.
bit 1	CGA trap enable bit The CGA trap enable bit disables trap interrupts for writes to CGA registers in the address range 3D8 to 3D9 hex when 0, or enables them when 1. CGA mode control and color select registers (3D8 and 3D9 hex) can be accessed by the host processor when CGA trap interrupts are enabled. Any of these register bits accessed that do not have hardware sup- port generate a non-maskable interrupt. Note that the light-pen is not supported.
bit 0	EGA, VGA trap enable bit The EGA, VGA trap enable bit disables trap interrupts for writes to VGA registers in the address range 3C0 to 3C9, 3CE and 3CF hex when 0, or enables them when 1. EGA or VGA mode must be enabled, or the VGA register unmask bit (bit7) must be 1, for host processor access to these registers.

	Mode Regis					
-	see note	ŧ				RW
General storage (8-bit, not used)/Test mode						
est input 2	Test input 1	Test input 0	Test output 3	Test output 2	Test output 1	Test output 0
(st input 2	Genera	3 (General storage (8-bit, not used)/Test	General storage (8-bit, not used)/Test mode	General storage (8-bit, not used)/Test mode

Enabled for access after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Disabled for access after any write to the auxiliary enable register, or after a power on, or system reset.

bits 7-0General storage bits [7:0]General storage bits 0 to 7 have no effect on internal hardware. They are available for
BIOS flag storage when extended function register (3DF index 01) bit7 is 0.

bits 7-4	Test input bits [3:0] Test input bits 0 to 3 can be selected to drive internal test functions when extended func- tions register (3DF index 01) bit7 is 1.
bits 3-0	Test output bits [3:0] Test output bits 0 to 3 can be selected to monitor internal test functions when extended function register (3DF index 01) bit7 is 1.

Trap Flag Register								
3DFh[05h]		see note	9				RO	
Display RAM	Hercules register		CGA register		EGA,VGA	CRTC register		
write status	3BFh write	3B8h write	3D9h write	3D8h write	register 3CX write	3DXh write	3BXh write	

	Note Enabled for access after 1A hex is written to, and then read back from the auxiliary en- able register (3DF index DE hex). Disabled for access after any write to the auxiliary en- able register, or after a power on, or system reset.
bit 7	Display RAM write status The display RAM write status bit does not generate a trap interrupt. Each time the host processor writes to display memory, it is set to 1. It is cleared to 0 when the host processor reads the trap flag register (index 05 hex).
bit 6	Hercules register 3B8 write bit The Hercules register 3B8 write bit is set to 1 when a trap interrupt occurs at the Hercules mode control register (3B8 hex). It is cleared to 0 when the host processor reads the trap flag register (index 05 hex) or the duplicate trap information register (index 11 hex).
bit 5	Hercules register 3BF write bit The Hercules register 3BF write bit is set to 1 when a trap interrupt occurs at the Hercules configuration register (3BF hex) when not in Hercules mode or in any mode with Hercules hardware emulation disabled. It is cleared to 0 when the host processor reads the trap flag register (index 05 hex) or the duplicate trap information register (index 11 hex).
bit 4	CGA register 3D9 write bit The CGA register 3D9 write bit is set to 1 when a trap interrupt occurs at the EGA color select register when not in CGA mode, or in any mode if any bit is changed when the emu- lation control register (index 02 hex) palette disable bit (bit4) is set to 1. It is cleared to 0 when the host processor reads the trap flag register (index 05 hex).
bit 3	CGA register 3D8 write bit The CGA register 3D8 write bit is set to 1 when a trap interrupt occurs at the CGA mode control register (3D8 hex). It is cleared to 0 when the host processor reads the trap flag register (index 05 hex) or duplicate trap information register (index 11 hex).
bit 2	EGA, VGA register 3CX write bit The EGA, VGA register 3CX write bit is set to 1 when an EGA or VGA trap interrupt occurs in the address range 3C0 to 3CF hex. It is cleared to 0 when the host processor reads the trap flag register (index 05 hex) or duplicate trap information register (index 11 hex).

bit 1	CRTC register 3DX write bit The CRTC register 3DX write bit is set to 1 when a CRTC mode switch or CRTC emula- tion trap interrupt occurs in the address range between 3D0 to 3D7 hex. It is cleared to 0 when the host processor reads the trap flag register (index 05 hex).
bit 0	CRTC register 3BX write bit The CRTC register 3BX write bit is set to 1 when a CRTC mode switch or CRTC emula- tion trap interrupt occurs in the address range between 3B0 to 3B7 hex. It is cleared to 0 when the host processor reads the trap flag register (index 05 hex).

CRTC FIFC	Read Reg	ister							
3DFh[06h] see note RO									
	CRTC FIFO read (alternates between data and index)								
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		

Enabled for access after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Disabled for access after any write to the auxiliary enable register, or after a power on, or system reset.

bits 7-0

CRTC FIFO read bits [7:0]

CRTC FIFO read bits 0 to 7 return up to four sequential CRTC data/index address pairs from the 64-bit CRTC FIFO. The first read gives data, the second read gives index, the third read gives data, etc... until the FIFO is empty. The CRTC FIFO acts as a pipeline buffer for writes to registers which do not have hardware support. This allows application software to write to unsupported registers, trap interrupts call emulation software which fetches CRTC data, manipulates it as necessary, and stores it in the correct CRTC registers. The CRTC FIFO overflow and status/reset bits (bit5 and 6) in the floating and duplicate trap information registers (mapped and index 11) are used to monitor the CRTC FIFO.

3DFh[07h]	nput Regist		e (default value	e is undefined)			RO
MONSN1 pin sense	MONSN0 pin sense	Plasma sense	Auxiliary Register 29h bit0 inverted image	MD11 pin sense	MD10 pin sense	MD9 pin sense	MD8 pin sense
	at at Aux 7 m rout	nabled for acce ole register (3D ole register, or filiary input regonitor a correspines scan this r	PF index DE he after a power o gister 0 does no ponding input p egister to estab	ex). Disabled for on, or system r ot have any eff pin. Bits 4 and olish preset ope	and then read or access after eset. Tect on internal 5 monitor othe erating parame ns. For details	any write to th hardware. Bit r internal regis ters. Each BIC	e auxiliary er s 0 to 3, 6 and ter bits. BIOS S version car
bits 7-6	sequ to 7	iencer reset cy	cle and their lo nmediately afte	gic states are s er correspondi	ntation. MD8 to stored in corres ng signals char	ponding bit po	
uns 7-0	The	MONSN0 and	1 MONSN1 se	nse bits conne	ct to correspon ter bit immedi		logic state
bit 5	The disp	•	t senses a LCI	D panel when (figuration regis), or a plasma o l immediately.		· •
bit4	Aux (3D	• •	29 bit0 image) bit0. Any cha	bit is an inver anges of state o	ted image of A of this bit in Au his register.	• •	•
bits 3-0	MD the i	inverse value o	se bits connect f the logic state	e at each pin is	ing external pi latched into th witch latch res	e correspondin	ng register bit

3DFh[08h]	nput Regist		e (default value	e is F8h)			RO
Pri	mary revision co	ode	Memory co	onfiguration	32-level gray	Auxiliary	Auxiliary
bit 2	bit 1	bit 0	bit 1	bit 0	scale	Register 31h bit1 image	Register 31h bit0 image
	ab	nabled for acce ble register (3D		x). Disabled	o, and then read for access after reset.		•
	mor this	itor other inter	nal register bit	s. Bits 3 to 7 a	ffect on international free permanently ters. Bits 0 and	v set to 1. BIOS	routines scar
bits 7-5	The desi	gn is above re- ondary revisior	ion code bits 0 vision 7. The c	urrent revisio	nanently set to 1 on code is the co y revision code	ombination of	primary and
bits 4-3	The	•			rmanently set to supported.	o 1 indicating	hat 256K dis
bit 2	The 32-1 gray	evel gray scale scale when 1.	scale bit conne bit (bit2). It ir	ndicates 64-le of state of bit	nel configuratio vel gray scale o 2 in Panel conf register.	peration when	0, or 32-leve
bits 1-0	Aux ister	iliary Register 1 (3DF index	31 hex) bits 0	1 image bits a and 1. Any c	ad only) are direct image hanges of state cted immediate	of Panel confi	guration regi

Display Page Select Register										
3DFh[09h] see note RW										
n/a	n/a	n/a	n/a n/a	n/a	n/a	Display page select				
iva	i i a	i va			11/a	bit 1	bit 0			

bits 1-0Display page select bits [1:0]Display page select bits 0 and 1 select one of four 64K memory pages when graphics
mode control register (3CF index 05 hex) 256 color mode bit (bit6) is 1 (mode 13 hex).
These two bits control memory address lines 0 and 1 respectively. This arrangement
allows of display memory to be addressed using 64K address space.

CRTC Extension Register										
3DFh[0Ah] see note										
IRQ disable	n/a									

Note

Enabled for access after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Disabled for access after any write to the auxiliary enable register, or after a power on, or system reset.

bit 7

IRQ disable bit

The IRQ disable bit enables the interrupt request (IRQ) signal when 0, or disables it when 1. Disable function register 0 (index 19 hex) microchannel IRQ bit (bit0), tristate IRQ (bit1) and vertical retrace end register (3B5/3D5 index 11) vertical interrupt enable bit (bit5) also apply certain restrictions to the interrupt request signal.

LCD Support Register 0									
3DFh[0Bh]		see note	9				RW		
n/a	n/a	Auxiliary Register 31h bit5 image	Auxiliary Register 31h bit4 image	n/a	n/a	B register set select (read/write)	n/a		

Note

bit 5-4	Auxiliary Register 31 bits [5:4] image bits (read only) Auxiliary Register 31 bits 4 and 5 image bits are direct images of bits 4 and 5 of Panel configuration register 1 (3DF index 31 hex) bits 0 and 1. Any changes of state of the bits in Panel configuration register 1 (3DF index 31 hex) bits 4 and 5 are reflected immediately in this register.
bit 1	B register set select bit The B register set select bit allows access to the two CRTC register sets. When 0 it allows access to register set A, when 1 it allows access to hidden register set B.

Secondary Revision Code Register										
3DFh[0Fh] see note (no default value) RV										
Secondary Revision Code										
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0							bit 0			

Enabled for access after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Disabled for access after any write to the auxiliary enable register, or after a power on, or system reset.

bits 7-0Secondary revision code bits [7:0]
The secondary revision code bits 0 to 7 are permanently fixed to the current revision code.
Note that the primary revision code bits 0 to 2 in auxiliary input register 1 (index 08 hex)
bits 5 to 7 are fully utilized and are always set to 1.

Trap Information Mapping Register									
3DFh[10h] see note RW									
Trap Information Register Address									
A7	A6	A5	A4	A3	A2	A1	A8 & A9		

Note

Enabled for access after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Disabled for access after any write to the auxiliary enable register, or after a power on, or system reset.

bits 7-0 Trap information register address A[1:9]

The trap information register address bits 0 to 7 select an address for the trap information register (mapped address). When emulation modes are selected, the trap information register is accessed each time a trap occurs. A directly addressed trap information register improves emulation performance. The trap information register is mapped into an available I/O address. This address can be re-allocated in case there is a contention with another I/O device. Address line A0 is always 0, A8 and A9 are always the same as bit0. This restricts the possible address to 002 to 0FE hex or 300 to 3FE hex even addresses only. Note that if the trap information mapping register is set to 00 hex, the duplicate trap information register is used.

Duplicate Trap Information Register											
3DFh[11h] see note											
	CRTC FIFO		Miscellaneous	Hercules	Hercules	CGA register	Register 3CX				
Trap flip-flop	status reset (R/W)	Overflow	trap flag	register 3BF write	register 3B8 write	3D8 write	write				

Note

	The duplicate trap information register has the same bit allocations as the trap information register. It is provided in case there is no available I/O address space for the trap information register (this is indicated by 00 hex in the trap information mapping register 9 index 10 hex). When selected, the duplicate trap information register is read by the host processor after each trap interrupt to find out if the trap interrupt originated from the SPC8100 and if so, where it originated from.
bit 7	Trap flip-flop bit The Trap flip-flop bit indicates that a trap interrupt originated from the SPC8100 when 1. It is cleared to 0 when the host processor reads the duplicate trap information register (index 11 hex).
bits 6	 CRTC FIFO status bits (*read/reset (*write) The CRTC FIFO status/reset bit indicates that the CRTC FIFO contains one to four data/index pairs when 1 is read. The CRTC FIFO is cleared when a 1 is written, after which a 0 is written to enable the CRTC FIFO for subsequent storage. Alternatively, reading all CRTC FIFO data/index pairs clears the CRTC status bit to 0, enabling the CRTC FIFO for subsequent storage. Note that the CRTC FIFO is used as a temporary storage for CRTC registers which do not have direct hardware support. When application software addresses one or more of these registers, their contents and CRTC index address are transferred to the CRTC FIFO where they remain until emulation software can process and store the appropriate values in other registers to perform the emulation function.
bit 5	CRTC FIFO Overflow The CRTC overflow bit indicates that more than four data/index byte pairs have been writ- ten to the CRTC FIFO when 1. It is cleared to 0 when the host processor reads the dupli- cate trap information register (index 11 hex).
bit 4	Miscellaneous Trap Flag The miscellaneous trap flag bit indicates that a trap interrupt was generated by other than a CRTC FIFO trap interrupt. It is cleared to 0 when the host processor reads the duplicate trap information register (index 11 hex), or the trap flag register (index 05 hex).
bit 3	Hercules register 3BF write bit The Hercules register 3BF write bit indicates that a trap interrupt was generated by a write to the Hercules configuration register 93BF hex) when 1. It is cleared to 0 when the host processor reads the duplicate trap information register (index 11 hex), or the trap flag reg- ister (index 05 hex).
bit 2	Hercules register 3B8 write bit The Hercules register 3B8 write bit indicates that a trap interrupt was generated by a write to the Hercules mode control register (3B8 hex) when 1. It is cleared to 0 when the host processor reads the duplicate trap information register (index 11 hex), or the trap flag reg- ister (index 05 hex).
bit 1	CGA register 3D8 write bit The CGA register write bit indicates that a trap interrupt was generated by a write to the CGA mode control register (3D8 hex) when 1. It is cleared to 0 when the host processor reads the duplicate trap information register (index 11 hex), or the trap flag register (index 05 hex).

bit 0 Register 3CX write bit The register 3CX write bit indicates that a trap interrupt was generated by a write to a register in the address range 3C0 to 3CF hex (EGA/VGA registers) when 1. It is cleared to 0 when the host processor reads the duplicate trap information register (index 11 hex), or the trap flag register (index 05 hex).

3DFh[12h]		see not	te				RW			
n/a	n/a	n/a	n/a	n/a	NMI Enable	Mask Disable	Trap Disable			
	ab ab	le register (3) le register, or	DF index DE h after a power	ex is written to nex). Disabled f on, or system i allows emulatio	for access after reset.	any write to th	e auxiliary er			
	unmask all maskable register bits and prevent non-maskable interrupts. After responding a trap interrupt, emulation software determines which register values need to be chang It then uses the emulation override register to prevent traps from occurring while it is changing register values. This is to prevent cyclic self-induced trap interrupts. After regi- values have been changed, the emulation override register is returned to its normal stat- allowing subsequent trap interrupts to be processed.									
bit 2	The		-	on-maskable int ffect on the traj	•	eing generated	when 0, or			
bit 1	The allow hex)	ving bits to b	e changed whe	ister mask bits en 1. This bit ef x 03 hex) and v	ffects emulatio	n control regist	ter (index 02			
bit 0	The	-	-) flag register (i s are not effect						

Scratch Pad Register 0										
3DFh[13h] see note R										
Scratch Pad 0										
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0										

Note

Scratch pad register 0 is provided for general purpose BIOS usage, it has no effect on internal hardware. This register was originally provided to allow power save routines to monitor host processor timer and status.

Scratch Pad Register 1										
3DFh[14h]		see note	9				RW			
n/a	n/a	n/a	n/a	Scratch Pad 1						
n/a	n/a	n/a	n/a	bit 3	bit 2	bit 1	bit 0			

Note

Enabled for access after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Disabled for access after any write to the auxiliary enable register, or after a power on, or system reset.

Scratch pad register 1 is provided for general purpose BIOS usage, it has no effect on internal hardware. This register was originally provided to allow power save routines to monitor host processor timer and status.

Scratch Pad Register 2										
3DFh[15h]		see note	9				RW			
n/a	n/a	n/a	n/a	Scratch Pad 2						
n/a	n/a	n/a	n/a	bit 3	bit 2	bit 1	bit 0			

Note

Enabled for access after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Disabled for access after any write to the auxiliary enable register, or after a power on, or system reset.

Scratch pad register 2 is provided for general purpose BIOS usage, it has no effect on internal hardware. This register was originally provided to allow power save routines to monitor host processor timer and status.

Power Save Register 0							
3DFh[16h]		see note	e				RW
	Power Save		RTC=			Clock Div	vide Ratio
n/a	mode 4 clock select	n/a	VRTC= 62Hz	n/a	n/a	bit 1	bit 0

Note

Enabled for access after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Disabled for access after any write to the auxiliary enable register, or after a power on, or system reset.

Power save register 0 is used to select the sequencer clock divisor for power save mode 2, 62 Hz horizontal and vertical retrace frequency and internal or external clock source for power save mode 4. The clocking rates are reduced to minimize power dissipation.

bit 6	Power save mode 4 clock select bit The power save mode 4 clock bit selects system bus signal MEMEN (64 KHz) when 0, or externally generated clock signal STDBCK (32 KHz) when 1. The clock selected drives the display memory refresh circuitry while in power save mode 4. It can also be used for retrace signal generation.
bit 4	HRTC = VRTC = 62Hz bit The HRTC=VRTC=62Hz bit enables normal retrace frequencies when 0, or causes both horizontal and vertical retrace signals to be set to 62 Hz when 1. The display panel can be damaged if retrace signals are removed while power is applied. When set to 1, power dis- sipation is reduced while retrace signals are maintained, preventing panel damage.
bits 1-0	Clock divide ratio bits [1:0] Clock divided ratio bits 0 and 1 select the sequencer clock divisor as follows

Block di	vide ratio	Sequencer clock divisor		
bit1	bit0			
0	0	112		
0	1	224		
1	0	448		
1	1	896		

Table 10-23: Clock Divide Ratio

The sequencer clock is divided by the value selected to reduce dissipation in power save mode 2. The greatest power saving is achieved when the sequencer clock frequency is slowest by selecting the highest possible divisor (896).

Power Save Register 1							
3DFh[17h]		see note	e				RW
mode 13 circuits disable	bottom panel circuits disable	n/a	Test/graphics power save	Blank Display	n/a	n/a	n/a

Note

Enabled for access after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Disabled for access after any write to the auxiliary enable register, or after a power on, or system reset.

Power save register 1 is used to blank the display before entering a power save mode, to enable automatic shutdown of unused graphics and attribute controller logic in text and graphics modes, automatic shutdown of unused graphics and attribute controller panel support logic in CRT display mode, and disabling of attribute controller mode 13 logic while not in mode 13.

Mode 13 circuits disable bit

The mode 13 circuits disable bit enables mode 13 attribute controller logic when 0, or disables it when 1. When using graphics and text modes other than mode 13 (256 color graphics), mode 13 attribute controller logic can be shut down to reduce power dissipation.

bit 7

bit 6	Bottom panel circuits disable bit The bottom panel circuits disable bit enables panel and CRT sections of graphics and attribute controller logic when 0, or disables unused sections (bottom panel logic) when 1. While using a CRT display, bottom panel logic (only dual-panel displays are supported) can be shut down to reduce power dissipation.
bit 4	Text/graphics power save bit The text/graphics power save bit enables all graphics and attribute controller logic when 0, or allows automatic shutdown of unused text or graphics sections of the graphics and attribute controller when 1. This allows unused sections of graphic logic to be shutdown while using text modes or unused sections of text logic to be shutdown while in graphics modes, to reduce power dissipation.
bit 3	Blank display bit The blank display bit does not effect output pixel data to DAC palette circuitry when 0, and forces all output data to display blank pixels when 1. This blanks the display before entering a power save mode.

Disable Function Register 0							
3DFh[19h]	-	see note	9				RW
Hercules underline select	SFDBK latch reset disable	Switch latch reset disable	n/a	Hardware dithering disable	DAC write disable	Force IRQ- Tristate Disable	Microchannel IRQ

Enabled for access after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Disabled for access after any write to the auxiliary enable register, or after a power on, or system reset.

Disable function register 0 is used to select either Microchannel or AT bus interrupt requests, to disable external DAC writes, display mode 13 output signal and switch latch reset. It is also used to enable host processor data input and underline compatibility in Hercules emulation mode.

bit 7	Hercules underline select bit The Hercules underline select bit selects MDA underline attribute compatibility when 1. There are undefined bits in the MDA attribute byte which invokes the underline function. In Hercules mode there are only four combinations in the attribute byte which invoke the underline attribute. This bit should be set or cleared according to the mode selected (MDA or Hercules).
bit 6	SFDBK data gating disable bit The SFDBK data gating disable bit enables data transfer from host processor at any time when 0, or only allows transfer when there is a valid I/O or memory write, when 1. This also reduces power dissipation by preventing unnecessary toggling of internal data bus.
bit 5	Switch latch reset disable bit The switch latch reset disable bit enables latching of configuration switch logic states dur- ing a sequencer reset when 0, or disables latching when 1. It should be set after initial switch latch to protect latched data against spurious overwrites when sequencer is reset. When this bit is a 1 auxiliary port registers 30-32 are read only.

bit 3	Hardware dithering disable bit The hardware dithering disable bit enables the hardware dithering in mode 13h when 0, or disables it when 1, limiting the gray shading to 16 levels, however this bit can not enable dithering unless Graphics mode control register (3CF index 5 hex) bit6 is set to 1.
bit 2	DAC write disable bit The DAC write disable bit enables writes to the DAC data register (3C9 hex) when 0, or disables them when 1. When disabled, applications are prevented from changing VGA palette register values but not prevented from reading them.
bit 1-0	Microchannel IRQ and Force IRQ-Tristate Disable bits The microchannel IRQ and Force IRQ-Tristate Disable bits, and CRTC extension register (index 0A hex) IRQ disable (bit7) and vertical retrace end register A (3B5/3D5 index 11 hex) vertical interrupt disable (bit5) bits, control the operation of the interrupt request (IRQ) signal as follows:

Vertical		Force	Micro-	IRQ Sigr	nal State	
interrupt disable bit (3B5/3D5 index 11 hex - bit5)	IRQ disable bit (3DF index 0A hex - bit7)	IRQ- Tristate Disable bit (3DF index 19 hex - bit1)	channel IRQ bit (3DF index 19 hex - bit0)	before vertical non- display period	after vertical non- display period	System bus type
0	0	1	1	HIGH	LOW	Microchannel
0	0	1	0	Tristate	LOW	Microchannel
х	x	0	х	Tristate	Tristate	Microchannel or ISA bus
х	1	1	1	HIGH	HIGH	Microchannel
х	1	1	0	Tristate	Tristate	Microchannel
1	x	1	1	HIGH	HIGH	Microchannel
1	x	1	0	Tristate	Tristate	Microchannel
0	0	1	х	LOW	HIGH	ISA bus
1	x	1	х	HIGH	HIGH	ISA bus
х	1	1	х	HIGH	HIGH	ISA bus

Table 10-24: Microchannel IRQ and Force IRQ-Tristate Disable

A/B Function Select Register								
3DFh[1Ah]		see note	e				RW	
n/a	n/a	n/a	n/a	Horizontal pixel pan bit3 source select	8-dot bit source select	Clock MUX bit source select	Retrace polarity register B select	

Note

Enabled for access after 1A hex is written to, and then read back from the auxiliary enable register (3DF index DE hex). Disabled for access after any write to the auxiliary enable register, or after a power on, or system reset.

The A/B function select register is used to select either IBM standard register set A or flat panel display register set B values. BIOS routines use these bits to provide compatibility between standard display functions and single or dual flat panel displays. This register selects retrace polarity, clock multiplexer bit, 8-dot bit and horizontal pixel pan source.

10.11 General Register Set

VGA enable register							
102h		see note	e				RW
n/a	n/a	n/a	n/a	n/a	n/a	n/a	Primary enable/ disable

Note

This address is not fully decoded.

The VGA enable register, video subsystem register, and the adapter enable register are used to enable the SPC8100 for Microchannel or ISA bus systems in mother board, or adapter card implementations.

The SPC8100 pins MD1,2 and 3 logic states are latched during a reset cycle. They are used to enable/disable the SPC8100 directly, and/or select the system and implementation as shown in the following table.

	Pins		Enable Requirement	Bus mode	Implementation
MD1	MD2	MD3		Bus mode	implementation
Х	0	0	Disable SPC8100	Microchannel and ISA bus	Not specified
х	0	1	Enable SPC8100	Microchannel and ISA bus	Not specified
0	1	0	SETUP pin goes low and VGA enable register (102 hex) primary enable bit (bit0) is set to 1, then video subsystem enable register (3C3 hex) video subsystem enable bit (bit0) is set to 1.	Microchannel	Motherboard
0	1	1	SETUP pin goes low and VGA enable register (102 hex) primary enable bit (bit0) is set to 1, then adapter display enable register (46E8 hex) I/O and display memory enable bit (bit3) is set to 1.	Microchannel	Adapter
1	1	0	Video subsystem enable register (3C3 hex) video subsystem enable bit (bit0) is set to 1.	ISA bus	Motherboard
1	1	1	Adapter display enable register (46E8 hex) 102 register enable bit 4 is set to 1, then VGA enable register (102 hex) primary enable bit (bit0) is set to 1, then 102 register enable bit (46E8 hex bit4) is set to 0 and I/O and display memory enable bit (46E8 hex bit3) is set to 1.	ISA bus	Adapter

Table	10-25.	VGA	Enable	Selection
I avic	10 25.	, 011	Linuoic	Scicciion

Input statu 3C2h	ıs register (RW
CRTC vertical interrupt status	n/a	n/a	VGA monitor/ EGA switch sense	n/a	n/a	n/a	n/a

Input status register 0 is used to determine whether a monochrome or color monitor is connected in VGA mode, or to pseudo-switch in EGA mode. It also monitors the CRTC vertical interrupt status bit.

bit 7	CRTC vertical timing status bit CRTC vertical timing status bit indicates that a vertical scan is in progress when 0. When 1 it indicates that a vertical interrupt has occurred at the end of a vertical scan. This bit connects to the vertical retrace end register (3B5/3D5 index 11 hex) vertical interrupt enable bit (bit5).
bit 4	VGA monitor/EGA switch sense bit VGA monitor/EGA switch sense bit senses the MONSN0 pin in VGA mode or a pseudo- switch in EGA mode. In VGA mode it indicates a monochrome or color monitor if exter- nal logic is provided to sense the voltages on the R, G, B, pins. In EGA mode it indicates the state of a pseudo-switch, which is provided to maintain compatibility with previous versions of this device. BIOS routines can set this bit to 0 by indicating the pseudo-switch is closed, by setting miscellaneous register A (3C2 write/3CC read hex) clock select bits 0 and 1 (bits 2 and 3 respectively) with different states (0,1 or 1,0). The pseudo-switch can be opened by setting both clock select bits to 1 or by setting both clock select bits to 0.

Miscellane	ous output	status regi	ster A				
3CCh read/30	C2 write	requires	3DFh[0Bh] bit	1 = 0			RW
Negative	Negative	High page		Clock s	elect A	Display	CRTC
vertical retrace	horizontal retrace	select	n/a	bit 1	bit 0	memory enable	registers 3DX select
	addi odd syst inde	resses, disable or even memo ems. Read w ex 0B hex) bit1	put register A i the memory di ry pages and p rite access of th is 0, however x 1B hex) is se	splay address ositive or nega his register is e this register ha	decoder, select tive retrace sig enabled when I as no effect un	t sequencer clo nal polarity fo LCD support ro less A/B funct	ock frequency, r CRT display egister 0 (3DF tion select
bit 7	The it se pola unle	Negative vertical polarity bit The negative vertical polarity bit selects the polarity of the vertical retrace signal. When 0, it selects positive vertical retrace polarity. When 1, it selects negative vertical retrace polarity. Positive polarity implies that the active retrace signal is positive going. Negative polarity implies that the active retrace signal is negative going. This bit has no effect unless A/B function select register (3DF index 1A hex) retrace polarity register B select bit (bit0) is 0.					
bit 6	The Who tal r Neg effe	Negative horizontal polarity bit The negative horizontal polarity bit selects the polarity of the horizontal retrace signal. When 0, it selects positive horizontal retrace polarity. When 1, it selects negative horizon- tal retrace polarity. Positive polarity implies that the active retrace signal is positive going. Negative polarity implies that the active retrace signal is negative going. This bit has no effect unless A/B function select register (3DF index 1A hex) retrace polarity register B select bit (bit0) is 0.					
bit 5	The whe regi	en 0. When 1, i ster (3CF inde:	it select the low t selects the hi x 05 hex) odd/o cts memory pla	gh 64 Kbyte m even plane sele	nemory page. V ect bit (bit4) is	When graphics 1 (odd/even m	mode control ode selected),

bits 3-2

Clock select A bits [1:0]

The clock select A bits 0 and 1 select the sequencer clock frequency for normal operating modes as shown in the following table:

Clock	select	Sequencer clock frequency			
bit1	bit0	Sequencer clock frequency			
0	0	25.175MHz			
0	1	28.322MHz			
1	0	High resolution (37.5MHz max.)			
1	1	Not valid			

Table 10-26: Clock Select A

Two external crystals connect to CLK0I, CLK0O and CLK1I, CLK1O to set the 25.175MHz and 28.322MHz clock frequencies. The high resolution clock frequency is determined by an external clock oscillator which is connected to the HRCLK pin. Clock select bits a have no effect unless A/B function select register (3DF index 1A hex) clock MUX bit source bit (bit1) is 0.

bit 1 Display memory enable bit

The display memory enable bit enables/disables the memory address decoder. When 0, it disables the memory address decoder. When 1, it enables the memory address decoder. This can be used to protect display memory from accidental overwrites.

bit 0 CRTC register 3DX select bit

CRTC register 3DX select bit assigns address 3BX hex to the CRTC registers and 3BA hex to the output status register when 0. When 1, it assigns address 3DX hex to the CRTC registers and 3DA hex to the output status register. 3BX addresses are used in monochrome and 3DX addresses are used in color display mode.

	C2 write	requires	3DFh[0Bh] bit	1			RW
Negative vertical retrace	Negative horizontal retrace	n/a	n/a	bit 1	select A bit 0	n/a	n/a
	nega regi regi	ative retrace signative ster is enabled	gnal polarity fo when LCD sup ect unless A/B	or flat panel d oport register (function selec	ct sequencer cl isplay systems.) (3DF index 01 ct register (3DF	Read write ac B hex) bit1 is 1	ccess of this , however th
pit 7	The it se pola pola unle	elects positive v arity. Positive p arity implies th	cal polarity bit vertical retrace polarity implies at the active re	polarity. When s that the active strace signal is	larity of the ver en 1, it selects r ve retrace signa negative going 1A hex) retrac	negative vertic l is positive go g. This bit has	al retrace bing. Negativ no effect
pit 6	Negative horizontal polarity bit The negative horizontal polarity bit selects the polarity of the horizontal retrace signal. When 0, it selects positive horizontal retrace polarity. When 1, it selects negative horizon- tal retrace polarity. Positive polarity implies that the active retrace signal is positive going. Negative polarity implies that the active retrace signal is negative going. This bit has no effect unless A/B function select register (3DF index 1A hex) retrace polarity register B						
		ct bit (bit0) is (Tegister (3DF	muex IA nex)	retrace polari	ty register B

Clock	select	Sequencer clock frequency
bit1	bit0	bequences clock frequency
0	0	25.175MHz
0	1	28.322MHz
1	0	High resolution (37.5MHz max.)
1	1	Not valid

Two external crystals connect to CLK0I, CLK0O and CLK1I, CLK1O to set the 25.175MHz and 28.322MHz clock frequencies. The high resolution clock frequency is determined by an external clock oscillator which is connected to the HRCLK pin. Clock select bits a have no effect unless A/B function select register (3DF index 1A hex) clock MUX bit source bit (bit1) is 0.

Video subs 3C3h	Video subsystem enable register 3C3h RW						
n/a	n/a	n/a	n/a	n/a	n/a	n/a	Video subsystem enable

bit 0

Video subsystem enable bit

The VGA enable register, video subsystem register, and the adapter enable register are used to enable the SPC8100 for Microchannel or ISA bus systems in mother board, or adapter card implementations. The SPC8100 pins MD1,2 and 3 logic states are latched during a reset cycle. They are used to enable/disable the SPC8100 directly, and /or select the system and implementation. See the table in the VGA enable register description.

Input statu 3DAh	s register '	1					RO
n/a	n/a	Attribut	e color	Vertical	Reserved	Reserved	Display
n/a	Π/a	bit 1	bit 0	retrace status	(reads 1)	(reads 0)	enable status
	attri	Input status register 1 is used to monitor the display enable and vertical retrace signals, the attribute color bits and provide compatibility with the previous versions of video controllers which supported light pens.					
bits 5-4	The	Attribute color bits [1:0] The attribute color bits 0 and 1 indicate two of eight colors selected by the color plane enable register (3C0 write/3C1 read index 12hex controller test bits 0 and 1 (bits 4 and 5) respectively.					
bit 3	The 0, it cal	Vertical retrace status bit The vertical retrace status bit indicates the current status the vertical retrace signal. When 0, it indicates that the vertical retrace signal is inactive. When 1, it indicates that the verti- cal retrace signal is active. This bit remains set to 1 for the duration of an active vertical retrace signal.					
bit 2		Reserved. This bit always reads 1.					
bit 1		Reserved. This bit always reads 0.					
bit 0	The ena inac this acti inte	Display enable status bit The display enable status bit indicates the current status the horizontal or vertical display enable signals. When 0, it indicates that the horizontal or vertical display enable signal is inactive. When 1, it indicates that the horizontal or vertical display enable signal is active this bit is used by BIOS routines to prevent changes to the display memory during an active scan interval. Changes are made during the horizontal and vertical non-display intervals to eliminate screen flicker. The horizontal display enable signal has no effect of this bit during vertical retrace intervals.					hable signal is ignal is active. during an on-display

Feature control register							
3BAh read/3D	3BAh read/3DAh write RW						
n/a	n/a	n/a	n/a	Reserved	n/a	Reserved	Reserved

The feature control register is has no effect on internal hardware. Bits 0,1 and 3 can be written to and read. These bits are provided for compatibility with previous hardware revisions.

Adapter enable register							
46E8h		see note	e				RW
n/a	n/a	n/a	Register 102 enable	l/0 and display memory enable	n/a	n/a	n/a

Note

This address is not fully decoded. This register can be decoded at 46E8, 56E8, 66E8 or 76E8 hex

The VGA enable register, video subsystem register, and the adapter enable register are used to enable the SPC8100 for Microchannel or ISA bus systems in mother board, or adapter card implementations.

The SPC8100 pins MD1,2 and 3 logic states are latched during a reset cycle. They are used to enable/disable the SPC8100 directly, and/or select the system and implementation. See the table in the VGA enable register description.

10.12 Register Address Map

Address	Index	Access	
(hex)	(hex)	Requirement(hex)	Register Name
. ,	,		ral Registers.
102 see	1		VCA anable Degister
note 1	-	-	VGA enable Register
		CRT Con	troller Registers.
3B4/3D4	-	-	CRTC index register
		CRT Contro	ller Register Set A.
	00		Horizontal Total Register A
	01		Horizontal Display Enable End Register A
	02		Horizontal Blanking Start Register A
	03	3DF index 0B bit1=0	Horizontal Blanking End Register A
	04	3B5/3D5 index 11	Horizontal Retrace Start Register A
	05	bit 7=0 for writes to	Horizontal Retrace End Register A
	06	register index 0-7	Vertical Total Register A
	07		CRTC Overflow Register A
	08	-	Preset Row Scan Register
	09		Maximum Scan Lines Register A
3B5/3D5	0A	3DF index 0B bit1=0	Cursor Start Register A
	0B		Cursor End Register A
	0C	_	Start Address High Register
	0D		Start Address Low Register
	0E	3DF index 0B bit1=0	Cursor Position High Register A
	0F	-	Cursor Position Low Register
	10		Vertical Retrace Start Register A
	11	3DF index 0B bit1=0	Vertical Retrace End Register A
	12		Vertical Display Enable End Register A
	13	_	CRTC Offset Register
	14		Underline Location Register
	15	3DF index 0B bit1=0	Vertical Blanking Start Register A
	16	3DF index 0B bit1=0	Vertical Blanking End Register A
	17	_	CRTC Mode Control Register
3B5/3D5	18		Line Compare Register
	22		Graphics Controller Read Latch Register
	24	Read only	Attribute Controller Flip-flop Status Register
	26		Attribute Controller Index Status Register
	1	CRT Contro	ller Register Set B.
	00		Horizontal Total Register B
	01		Horizontal Display Enable End Register B
	02		Horizontal Blanking Start Register B
	03		Horizontal Blanking End Register B
	04		Horizontal Retrace Start Register B
	05		Horizontal Retrace End Register B
	06		Vertical Total Register B
005/005	07		CRTC Overflow Register B0
3B5/3D5	09	3DF index 0B bit1=1	CRTC Overflow Register B1

Table 10-28: Register Address Map

		Tuble 10-28. Registe	er Address Map (Continued)		
	0A		Internal Vertical Retrace Start Register B		
	0B		Internal Vertical Retrace Skew Register B		
	0E		Display Line Count Start Register B		
	10		External Vertical Retrace Start Register		
	11		External Vertical Retrace End Register		
	12		Maximum Vertical Display Enable End Register B		
	15		Vertical Blanking Start Register B		
	16		Vertical Blanking End Register B		
		Hercu	lles Registers.		
3B8		3DF index 00 bit0,1=1	Hercules Mode Control Register		
3BA	-	or 3DF index 03 bit2=0	Hercules Status Register		
3BF			Hercules Configuration Register		
			ontroller Registers.		
3C0	-	Read 3DA before write	Attribute Controller Index Register		
	00		EGA Palette Register 0		
	01		EGA Palette Register 1		
	02		EGA Palette Register 2		
	03		EGA Palette Register 3		
	04		EGA Palette Register 4		
	05		EGA Palette Register 5		
	06		EGA Palette Register 6		
	07	Do not read	EGA Palette Register 7		
	08	3DA before write	EGA Palette Register 8		
	09		EGA Palette Register 9		
	0A		EGA Palette Register A		
3C0 write/	0B		EGA Palette Register B		
3C1 read	0C		EGA Palette Register C		
	0D		EGA Palette Register D		
	0E		EGA Palette Register E		
	0F		EGA Palette Register F		
	10		Attribute Mode Control Register		
	11		Overscan Color Register		
	12	-	Color Plane Enable Register		
	13	3DF index 0B bit1=0, do not read 3DA before write	Horizontal Bit Panning Register A		
	13	3DF index 0B bit1=1, do not read 3DA before write	Horizontal Bit Panning Register B		
	14	Do not read 3DA before write	Color Select Register		
			ral Registers.		
3C2		Read Only	Input Status Register 0		
3C2 write/		3DF index 0B bit1=0	Miscellaneous Output Register A		
3CC read		3DF index 0b bit1=1	Miscellaneous Output Register B		

Table	10-28:	Register	Address	Man	(Continued))
1 0000	10 20.	negibier	11001000	map		· .

202	1	14010 10 20. Register 1	Nide Orthoustern Freshla Desister
3C3		-	Video Subsystem Enable Register
	1	Sequence	r Registers.
3C4	-	-	Sequencer Index Register
	00	-	Reset Register
	01	3DF index 0B bit1=0	Clocking Mode Register A
3C5		3DF index 0B bit0=1	Clocking Mode Register B
	02	-	Memory Plane Enable Register
	03	-	Character Map Select Register
	04	-	Memory Mode Register
		DAC Palet	te Registers.
3C6		-	DAC pixel mask register
3C7		Read only	DAC status register
	-	Write only	DAC VGA palette read address register
3C8		_	DAC VGA palette write address register
3C9			DAC palette data register
		Graphics Cont	roller Registers.
3CE	-		Graphics Controller Index Register
	00		Set/Reset Register
	01		Enable Set/Reset Register
	02		Color Compare Register
	03		Data Rotate Register
3CF	04	-	Read Plane Select Register
-	05		Graphics Mode Control Register
-	06		Miscellaneous Graphics Register
-	07		Color Compare Plane Register
	08		Graphics Bit Mask Register
		CGA R	egisters
3D8		3DF index 0	CGA Mode Control Register
300	-	bit1,0=10	CGA Mode Control Register
3D9		or 3DF index 03 bit1=1	CGA Color Select Register
		General	Registers.
3DA	-	-	Input Status Register 1
3BA/3DA w 3CA read	-	-	Feature Control Register
		Auxiliary	Registers.
3DE	-		Auxiliary Index Register
	00		Auxiliary Mode Control Register
	01	see note 2	Extended Function Register
	02		Emulation Control Register
	03		Trap Control Register
	04		General Storage/Test Mode Register
	05		Trap Flag Register
	06	see note 2	CRTC FIFO Read Register
	07	read only	Auxiliary Input Register 0
	08		Auxiliary Input Register 1
	00	see note 2	Display Page Select Register
	09	366 11016 2	Display 1 age Deleter register

		5	T Address Map (Continued)
	0B	see note 2, read only, bit0 read/write	LCD Support Register 0
	0F	see note 2, read only	Secondary Revision Code Register
	10	see note 2	Trap Information Mapping Register
	11	see note 2, read only, bit6 is read/write	Duplicate Trap Information Mapping Register
	12		Emulation Override Register
	13		Scratch Pad Register 0
	14	see note 2	Scratch Pad Register 1
	15		Scratch Pad Register 2
	16		Power Save Register 0
	17		Power Save Register 1
	19		Disable Function Register 0
	1A	A/B Function Select Register	
	1B		A/B CRTC Function Select Register 0
	1C		A/B CRTC Function Select Register 1
	1D		A/B CRTC Function Select Register 2
	1E		A/B CRTC Function Select Register 3
3DF	1F	see note 2	A/B CRTC Function Select Register 4
	20		A/B CRTC Function Select Register 5
	24		LCD Support Register 1
	26		Scratch Pad Register 3
	27		Scratch Pad Register 4
	28		Scratch Pad Register 5
	29		Auxiliary Input Register 2
	30		Panel Configuration Register 0
	31		Panel Configuration Register 1
	32		ROM Configuration Register
	33		Power Save Register 2
	34		Power Save Register 3
	DE	-	Auxiliary Enable Register
Determined	by Trap		
information mapping Register 3DF index 10		Read Only, bit 6 is read/write	Trap Information Register
		Gene	ral Registers.
46E8,56E8,			
66E8, 76E8	_	_	Adapter Enable Register

Table 10-28.	Register Address	Man	(Continued)
<i>Tuble</i> 10-20.	Register Autress	map	(Commuted)

Note

¹ To maintain compatibility with IBM VGA, only address lines 0,1 and 2 are decoded. This port will respond, when enabled, to any address ending in 2 or A hex. See Register Description for more details.

 2 Auxiliary Ports are enabled for access after 1A hex is written to and then read back from the auxiliary enable register (3DF index DE hex). The Auxiliary Ports are disabled for access after

any write to the auxiliary enable register. When the auxiliary ports are in the disabled state, the Auxiliary Index Register (3DE) is write only and all auxiliary ports except the Auxiliary Enable Register (3DF index DE) are inaccessible.

11 Power Down Modes

In order to accommodate the growing need for power reduction in laptop and palm-top computers, four software-controlled and two hardware controlled power down modes have been incorporated into the SPC8100. Additional power save options for each of the following power down modes can be enabled by setting bits in various Auxiliary registers.

11.1 Software Power Down modes

The Power Save Mode bits in Power Save Register 2 (3DF index 33 hex) select one of the four power save modes, as show in the table below:

Power	Power Save Mode Select		Mode Activated	
bit2	bit1	bit0	woue Activated	
0	0	0	Normal Operation	
0	0	1	Power save mode 1 enable	
0	1	0	Power save mode 2 enable (toggle between states 1 & 2)	
0	1	1	Power save mode 3 enable	
1	х	х	Power save mode 4 enable	

Table 11-1: Power Save Modes

11.1.1 Power Save Mode 1

- No CRTC display access.
- Sequencer is dedicated to CPU to display memory accesses.
- display memory refresh maintained.
- I/O read/write allowed.
- Horizontal and vertical retrace signals maintained.
- DAC portion of RAMDAC is disabled.
- Options:
 - Disable either the 28MHz or 25 MHz oscillator cell.
 - Force Horizontal Sync = Vertical Sync.
 - Set /LCDPWR, /LCDCNT, /CRTCNT, /IREFCNT output pins to high state.

11.1.2 Power Save Mode 2

State 1

- No CRTC display access.
- Sequencer is dedicated to CPU to display memory accesses.
- display memory refresh maintained.
- I/O read/write allowed.
- Horizontal and vertical retrace signals maintained.
- DAC portion of RAMDAC is disabled.
- Options:
 - Disable either the 28MHz or 25 MHz oscillator cell.
 - Force Horizontal Sync = Vertical Sync.
 - Set /LCDPWR, /LCDCNT, /CRTCNT, /IREFCNT output pins to high state.

State 2

- Power save logic is driven by a divided down clock (28/N MHz, where N = 112, 224, 448 or 896).
- No CRT display accesses to display memory.
- Sequencer is halted.
- display memory refresh maintained.
- No CPU accesses to/from display memory.
- I/O read/write allowed.
- Horizontal and vertical retrace signals maintained.
- DAC portion of RAMDAC is disabled.
- Options:
 - Disable either the 28MHz or 25 MHz oscillator cell.
 - Force Horizontal Sync = Vertical Sync.
 - Set /LCDPWR, /LCDCNT, /CRTCNT, /IREFCNT output pins to high state.

11.1.3 Power Save Mode 3

- No CRT display accesses to display memory.
- No CPU accesses to/from display memory.
- No display memory refresh.
- I/O read allowed

With retrace:

- Options:
 - Disable either the 28MHz or 25 MHz oscillator cell.
 - Force Horizontal Sync = Vertical Sync.
 - I/O read/write to Auxiliary Registers only (for wake up).
 - Set /LCDPWR, /LCDCNT, /CRTCNT, /IREFCNT output pins to high state.
 - Maintain RAMDAC data with DAC and LCD interface portions disabled.

Without retrace: (both 28 MHz and 25 MHz oscillator cells disabled)

- No CPU read from BIOS requiring wait states (wait state generation circuitry needs clock source)
- I/O read/write to Auxiliary Registers only (for wake up).
- No Vertical and Horizontal Sync.
- No access to CRTC FIFO.
- Options:
 - Set /LCDPWR, /LCDCNT, /CRTCNT, /IREFCNT output pins to high state.
 - Maintain RAMDAC data with DAC and LCD interface portions disabled.

11.1.4 Power Save Mode 4

- The chip is driven by the PDCLK or MEMEN input only.
- No CRT display accesses to display memory.
- No CPU accesses to/from display memory.
- display memory refresh maintained.
- I/O read allowed.
- Horizontal and vertical retrace signals maintained.
- Options:
 - Disable either one or both 28MHz and 25 MHz oscillator cells.
 - No CPU read from BIOS requiring wait states.

- No access to CRTC FIFO.
- Force Horizontal Sync = Vertical Sync.
- I/O read/write to Auxiliary Registers only (for wake up).
- Set /LCDPWR, /LCDCNT, /CRTCNT, /IREFCNT output pins to high state.
- Maintain RAMDAC data with DAC and LCD interface portions disabled.

11.2 Hardware Power Down modes

11.2.1 Sleep Mode

State 1

- No CRTC display access.
- Sequencer is dedicated to CPU to display memory accesses.
- Display memory refresh maintained.
- I/O read/write allowed.
- Horizontal and vertical retrace signals maintained.
- /LCDPWR, /LCDCNT, /CRTCNT, /IREFCNT output pins set to high state.
- DAC portion of RAMDAC is disabled.
- Option:
 - Force Horizontal Sync = Vertical Sync.

State 2

- Power save logic is driven by a divided down clock (28/N MHz, where N = 112, 224, 448 or 896).
- No CRT display accesses to display memory.
- Sequencer is halted.
- Display memory refresh maintained.
- No CPU accesses to/from display memory.
- I/O read/write allowed.
- Horizontal and vertical retrace signals maintained.
- /IOR/IOW/MEMR/MEMN input pins set to high state.
- READY/MEMCS16/IOCS16/TRAP/CSD/IRQ output pins set to high impedance state.
- /LCDPWR, /LCDCNT, /CRTCNT, /IREFCNT output pins set to high state.
- DAC portion of RAMDAC is disabled.
- Option:
 - Force Horizontal Sync = Vertical Sync.

11.2.2 Suspend Mode

- The SPC8100 is driven by the PDCLK or MEMEN input only.
- Both 28MHz and 25 MHz oscillator cells disabled.
- Display memory refresh maintained.
- Horizontal and vertical retrace signals maintained.
- /IOR,/IOW,/MEMR,/MEMN input pins set to high state.
- READY,/MEMCS16,/IOCS16,/TRAP,/CSD, IRQ output pins set to high impedance state.
- /LCDPWR, /LCDCNT, /CRTCNT, /IREFCNT output pins set to high state.
- The SPC8100 will not generate CPU interface feedback signals.
- Maintain RAMDAC data with DAC and LCD interface portions disabled.
- Access to internal SPC8100 circuitry disabled.
 - No CRT display accesses to display memory.
 - No CPU accesses to/from display memory.
 - No CPU reads from BIOS.
 - No I/O or memory access allowed.

- No access to CRTC FIFO.
- - Option:
 - Force Horizontal Sync = Vertical Sync.

11.3 Essential Power Save Mode Register Bits

Below is a brief description of the Power Save registers and the usage of the corresponding bits in these registers. For a more detailed description of the functionality of these registers please refer to the SPC8100 register descriptions.

Power Save Register 0 (3DF index 16H)

- bits 0-1 Clock divide ratio bits
- bit4 Force HRTC = VRTC = 62Hz
- bit6 Power save mode 4 source clock select

Power Save Register 1 (3DF index 17H)

bit3 Blank display

Power Save Register 2 (3DF index 33H)

- bits0-2 Power save mode select bits (PSMB)
- bit3 /SLEEP pin input status (STDBYA)
- bit4 /SUSPEND pin input status (STDBYB)
- bit5 clock divide down logic synchronous stop (Retrace signal disable bit).

Power Save Register 3 (3DF index 34H)

- bit0 Panel power disable
- bit1 Panel logic supply and output disable
- bit2 CRT retraces disable
- bit3 IREF disable
- bit5 Address decoder disable
- bit6 28 MHz oscillator cell disable
- bit7 25 MHz oscillator cell disable

ROM Configuration Register 3 (3DF index 32H)

bit6 Internal DAC/Palette and LCD interface disable

11.4 Power Save Mode Considerations

The SPC8100 has been designed with the flexibility of both software and hardware power saving features. The software power down modes will override the hardware power down modes, therefore it is not recommended that both hardware and software modes be integrated in an implementation of the SPC8100. As a safe guard against software power down implementations from overriding hardware power down modes, Sleep and Suspend mode status bits have been provided in Power Save Register 2.

11.5 Software Controlled Power Save Modes

The three power save mode bits (PSMB) located in Power Save Register 2 (3DF index 33H) are used to enter or exit from power save modes. Power save modes are selected by writing 001 - 100 binary value to Power Save Register 2 (3DF index 33H) bits 2 to 0 respectively. In order for the SPC8100 to exit from power save modes, 000 binary is written to Power Save Register 2 (3DF index 33H) bits 2 to 0 respectively.

Power save mode bits 0 to 3 select one of four power saving standby modes, as follows:

Power	Power Save Mode Select		Mode Activated
bit2	bit1	bit0	Mode Activated
0	0	0	Normal Operation
0	0	1	Power save mode 1 enable
0	1	0	Power save mode 2 enable (toggles between states 1 & 2 - see below)
0	1	1	Power save mode 3 enable
1	Х	Х	Power save mode 4 enable

Table 11-2: Power Save Mode Selection

Note

Power Down Mode 2 is divided into two separate states, if no valid memory access is detected (/MEMW or /MEMR) after two horizontal retrace cycles (~63.5 us), the SPC8100 will automatically switch from state 1 to 2. If a valid memory access is detected (/MEMW or /MEMR) while in state 2, then the SPC8100 will switch back into state 1 immediately, allowing memory access. Note that memory access is disabled in state 2, but display memory contents are not affected.

The amount of clock divide used for power save mode 2 is selected using Power Save Register 0 (3DF index 16H) bits 0 and 1.

Power Save Register 1 (3DF index 17h) bit3 can be used to blank the display before entering any power save mode. In all power save modes, all the unused clocks are synchronously forced to high. This does not mean that the internal oscillator cells are disabled. To further reduce power consumption, the internal oscillator cells may be asynchronously disabled (turned off) via Power Save Register 3 (3DF index 34h) bits 6 and 7. The unused oscillator cells should be disabled after entering a Power Save mode, and enabled before waking up to the active mode. Before disabling the 28 MHz oscillator via Power Save Register 3 (3DF index 34h) bit6, the clock divide logic should be first synchronously stopped using Power Save Register 2 (3DF index 33h) bit5. The Power Save Register 2 (3DF index 33h) bit5 affects only power save modes 3 and 4 and should be set to 1 unless horizontal and vertical retrace signals are desired in power save mode 3 (see below). In the power down modes where one of the oscillator cells must remain active (Power down modes 1 and 2) power down software must first determine which oscillator is not currently in use before proceeding to disable an oscillator cell. Determining the inactive oscillator can be accomplished by reading Miscellaneous Output register (3CC hex read) bits 2 and 3. It is possible for a video mode switch to occur while the SPC8100 is in either power save mode 1 or 2, therefore if the SPC8100 is driving a CRT when entering one of the above power save modes, both oscillators should be left enabled.

To maintain the retrace signals in power save mode 3, Power Save Register 2 (3DF index 33h) bit5 should be set to 0 allowing the clock divide logic to continue operating and generate the retrace signals. In order to insure retrace is generated an oscillator cell must be active, therefore either bit6 or bit7 of Power Save Register 3 (3DF index 34h) should also be set to 0.

In power save mode 4, both oscillator cells should be turned off since all the essential circuitry in this mode (i.e., display memory refresh, retrace generation) is driven by the external clock from either the input pin PDCLK or MEMEN. Power Save Register 0 (3DF index 16h) bit6 selects between PDCLK or MEMEN. The recommended PDCLK source should be a 64 KHz clock, as this clock frequency will give the correct HRTC and VRTC rates. PDCLK could be set to a frequency other than 64 KHz, but retrace and refresh signals may not be within the required specifications for the display and video memory. If the PDCLK is to be set to a frequency other than 64 KHz, the duty cycle should be very small with the logic high period > 110 nSec. A extended duration logic high period will increase the display memory power consumption. The MEMEN source should be a 64 KHz active-low clock pulse with a pulse width > 110 nSec. This clock frequency will meet 4 msec DRAM specification and generate 32 KHz HRTC and 62 Hz VRTC.

Power Save Register 3 (3DF index 34H) bit5 should be set to 1 only for power save modes 3 and 4 since this disables CPU access to display memory, video ROM, and all I/O ports except the auxiliary port.

Note

If the BIOS is located in an EPROM external from the System ROM and is located at segment C000H, the code to set/reset this bit should not reside in the video BIOS; once this bit is set the CPU cannot access the EPROM.

Once the oscillator cells are disabled, it may take several microseconds to re-enable them. This fact should be taken into consideration when writing code for the power save modes routines.

Power Save Register 3 (3DF index 34H) bits 3 to 0 allow register control of the output pins /LCDPWR, /LCDCNT, /CRTCNT, and /IREFCNT. These pins can be used to control external circuitry to disable panel supply voltages and retraces and other output signals that go to the panel or the CRT in power save mode. Normally /LCDPWR disables the LCD panel voltage and back-light voltage supplies; /LCDCNT tri-states the LCD panel's retrace inputs and to disable the panel's 5V supply, /CRTCNT tri-states the CRT's retrace inputs,

/IREFCNT disables the IREF source to the DAC. It is safer setting /LCDPWR to high (disable) before setting /LCDCNT to high (disable) and clearing /LCDPWR to low (enable) after clearing /LCDCNT to low. The delay between the two signals should be on the order of several milliseconds or more. No delay is necessary between /CRTCNT and /IREFCNT.

11.6 Hardware Controlled Power Save Modes:

11.6.1 Sleep Mode

Sleep mode is the hardware controlled equivalent to setting software power down mode 2; it is activated by pulling the /SLEEP pin of the SPC8100 (pin 57) from logic high to logic low. Sleep mode is divided into two separate states, if no valid memory access is detected (/MEMW or /MEMR) after two horizontal retrace cycles (~63.5 us), the SPC8100 will automatically switch from state 1 to 2. If a valid memory access is detected (/MEMR) while in state 2, then the SPC8100 will switch back into state 1 immediately, allowing memory access. The host system can monitor the ACCP pin (pin 58) of the SPC8100 to detect any display memory or I/O writes to the SPC8100. When Sleep mode is activated /LCDPWR, /CRTCNT, /IREFCNT will be force to logic high state. After approximately 2 vertical refresh cycles /LCDCNT will be forced to the logic high state. When Sleep mode is deactivated (by pulling the /SLEEP pin from low to high) /LCDCNT, /CRTCNT, /IREFCNT will be returned to their pre-Sleep mode state. After approximately 2 vertical refresh cycles /LCDPWR will be returned to its pre-Sleep mode state.

Sleep mode does not affect the contents of any of the SPC8100 registers, therefore when the SPC8100 exits Sleep mode it will return to its pre-Sleep video mode. The Power down mode select bits are not affected when Sleep mode is enabled, these bits should not be altered when the SPC8100 is in Sleep mode.

Note

Display memory access is disabled in state 2, but display memory contents are not affected.

11.6.2 Suspend Mode

The Suspend mode was implemented in the SPC8100 for total system shut down, therefore there should be no host processor access to the SPC8100 when it is in Suspend mode. The SPC8100 will not respond to any I/O access in this mode nor will it generate any CPU feedback interface signals (i.e. /READY, /MEM16, /IO16,). Suspend mode is the hardware controlled equivalent to setting software power down mode 4; it is activated by pulling the /SUSPEND pin of the SPC8100 (pin 56) from logic high to logic low. When Suspend mode is activated /LCDPWR, /CRTCNT, /IREFCNT will be force to logic high state. After approximately 2 vertical refresh cycles /LCDCNT will be forced to the logic high) /LCDCNT, /CRTCNT, /IREFCNT will be returned to their pre-Suspend mode state. After approximately 2 vertical refresh cycles /LCDPWR will be returned to its pre-Suspend

mode state. Access to display memory and ROM should not be allowed to occur for approximately 50 msec after Suspend mode is deactivated, this delay period is necessary for the SPC8100 to return to normal operating mode.

Note

Suspend mode should only be used when the complete system is to be halted (shut down), including the host processor. The RESET pin of the SPC8100 (pin 3) is also disabled during Suspend mode therefore a system reset will not deactivate Suspend mode.

11.7 HARDWARE POWER DOWN MODE TIMING

11.7.1 Power Down Display Timings

The power down display timings show the relationship between /SUSPEND or /SLEEP and the display control signals. The timings are based on a 60Hz vertical refresh generated by divide down of the 28.322MHz or 25.175MHz clock signals.

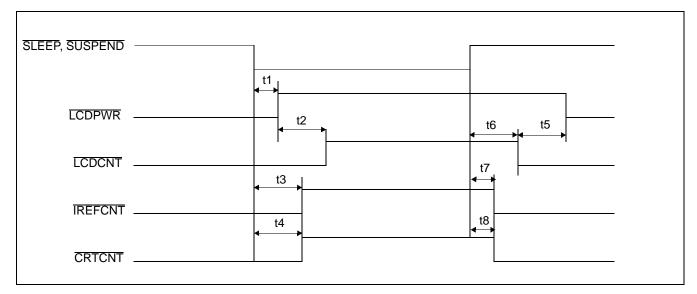


Figure 11-1: Power Save Display Timings

Timing	Description	Minimum	Maximum
t1	/LCDPWR inactive (high) from /SUSPEND active (low)	$2T_A^m = 54nS$	$1T_V = 17mS$
t2	/LCDCNT inactive (high) from /LCDPWR inactive (high)	$2T_V = 34mS$	$2T_V = 34mS$
t3	/IREFCNT inactive (high) from /SUSPEND active (low)	$2T_A^m = 54nS$	$4T_A{}^M = 160nS$
t4	/CRTCNT inactive (high) from /SUSPEND active (low)	$2T_A^m = 54nS$	$4T_A^M = 160nS$
t5	/LCDPWR active (low) from /LCDCNT active (low)	$2T_V = 34mS$	$2T_V = 34mS$
t6	/LCDCNT active (low) from /SUSPEND inactive (high)	$1T_V = 17mS$	$3T_V = 51mS$
t7	/IREFCNT active (low) from /SUSPEND inactive (high)	$1T_v = 17mS$	$2T_V = 34mS$
t8	/CRTCNT active (low) from /SUSPEND inactive (high)	$1T_v = 17mS$	$2T_V = 34mS$

Table 11-3: /SUSPEND Pin

Table 11-4: /SLEEP Pin

Timing	Description	Minimum	Maximum				
t1	/LCDPWR inactive (high) from /SLEEP active (low)	$2T_A{}^m = 54nS$	$1T_V = 17mS$				
t2	/LCDCNT inactive (high) from /LCDPWR inactive (high)	$2T_v = 34mS$	$2T_v = 34mS$				
t3	/IREFCNT inactive (high) from /SLEEP active (low)	$2T_A^m = 54nS$	$4T_A{}^M = 160nS$				
t4	/CRTCNT inactive (high) from /SLEEP active (low)	$2T_A^m = 54nS$	$4T_A{}^M = 160nS$				
t5	/LCDPWR active (low) from /LCDCNT active (low)	$2T_V = 34mS$	$2T_V = 34mS$				
t6	/LCDCNT active (low) from /SLEEP inactive (high)	0	$1T_v = 17mS$				
t7	/IREFCNT active (low) from /SLEEP inactive (high)	0	$4T_A{}^M = 160nS$				
t8	/CRTCNT active (low) from /SLEEP inactive (high)	0	$4T_A{}^M = 160nS$				
m	=minimum active clock period $=1/37.5$ MHz (approximately 27nS)						

T_A

T_A^M

 $T_{\rm V}$

=maximum active clock period

=1/25.175MHz (approximately 40nS) =vertical retrace clock period =1/60Hz (approximately 17mS)

Note

t6, t7, t8 timings for /SUSPEND mode are longer than for /SLEEP mode because the oscillators must be re-enabled and stabilized before exiting /SUSPEND mode.

11.7.2 CPU Interface Signal Timings

The CPU interface signal timings show the relationship between /SUSPEND and the display control signals. The timings are based on a 60Hz vertical refresh generated by divide down of the 28.322MHz or 25.175MHz clock signals.

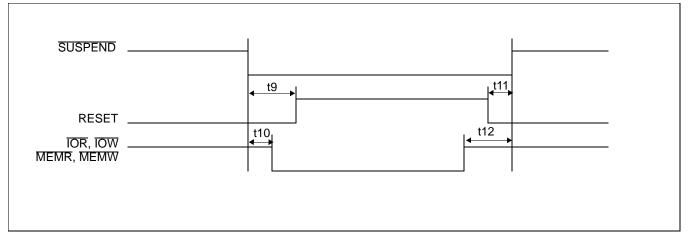


Figure 11-2: CPU Interface Signal Timings

Timing	Description	Minimum	Typical	Maximum	Units
t9	RESET masked from /SUSPEND active (low)	20	-	-	nS
t10	/COMMAND masked from /SUSPEND active (low)	10	-	-	nS
t11	RESET unmasked from /SUSPEND inactive (high)	10	-	-	nS
t12	/COMMAND unmasked from /SUSPEND inactive (high)	20	-	-	nS

Table 11-5: CPU Interface Signal Timing

12 Mechanical Data

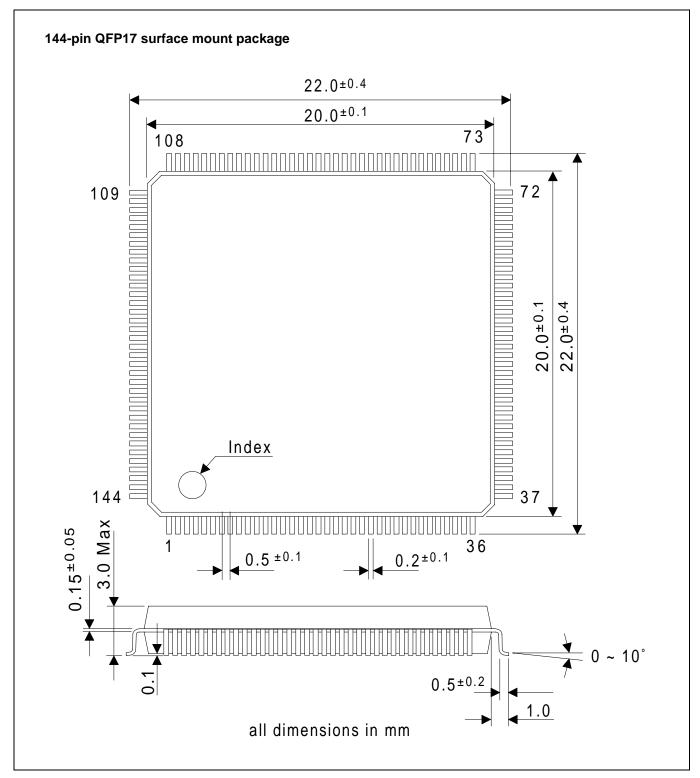


Figure 12-1: Package Dimensions 144 Pin QFP17

THIS PAGE LEFT BLANK

SPC8100 Low Power LCD VGA Controller

CONFIG Configuration Utility

Document Number: X03A-B-001-01

Copyright © 1993, 1999 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

CONFIG Configuration Utility											•		-							•	. 5
Program Requirements	•			•	•		•		•	•	•	•			•		•		•		. 5
Installation	•		•		•	•	•	•	•	•				•	•				•		. 5
Operation	•		•			•	•	•	•		•			•	•				•		.5
Usage		•				•	•				•								•		.6
Error Conditions				•	•		•	•	•	•	•	•	•			•			•		.9
General Warning Conditions					•	•	•	•	•	•	•			•	•						10
Data Validation Warning Conditions			•				•	•	•		•				•					•	11

THIS PAGE LEFT BLANK

CONFIG Configuration Utility

CONFIG is a utility program for configuring the SPC8100 Video BIOS and Extensions. Config is intended for OEM use only and is to be used with the SPC8100 Video BIOS and Extensions binary file before creating EPROMS.

Program Requirements

Video Controller	:	SPC8100
Display Type	:	LCD
BIOS	:	Seiko Epson VGA BIOS
DOS Program	:	Yes
DOS Version	:	3.0 or greater
Windows Program	:	No
Windows DOS Box	:	Windows 95 only
Windows DOS Full Screen	:	Yes, Windows v3.1x and Windows 95
OS/2 DOS Full Screen	:	Yes

Installation

Copy the file **config.exe** to a directory that is in the DOS path on your hard drive.

Operation

Config operates on a binary file which contains the SPC8100 Video BIOS and Extensions. Config allows the OEM to modify and view the optional configuration settings within the SPC8100 Video BIOS and Extensions in order to customize the operation of them. Config is operated from the DOS prompt by entering the program name followed by the desired commands. The following is an example of using Config to view the current settings.

A>CONFIG VIEW

Each time Config is used, a log file is created to maintain a history of configuration options. This log file can be viewed by an ASCII text editor, word processor or by entering the following command at the DOS prompt:

A>TYPE CONFIG.LOG

Usage

When no commands or options are listed on the command line after the program name, Config will then display a list of the commands supported. The screen will appear similar to the following:

```
CONFIG DEBUG Version 1.00 INTERNAL TESTING ONLY-NOT FOR RELEASE
Copyright (c) Seiko Epson Corp... 1991. All rights reserved.
Utility to Configure SPC8100 Video BIOS and Extensions.
Usage is: CONFIG [[command][=filename]...]
Valid Commands are:
Comment=filename Comment from text file to be written to log file
HiRes=filename
                  Overrides high res. tables to tables in text file
In=filename
                  Overrides EPROM.BIN as input file to specified file
Log=filename
                  Overrides CONFIG.LOG as log file to specified file
Menu
                  Utility programs operate with menus
Out=filename
                  Overrides EPROM.BIN as output file to specified file
SignOn=filename
                  Overrides default signon message in text file
Terse
                  Utility programs operate with minimum messages
Verbose
                  Utility programs operate with maximum messages
View
                  Displays current configuration settings
```

Figure 1: Usage Message

Where:

Comment	The Comment option allows the user to insert comments into the log file. To use the Comment option, at the DOS prompt enter the following:
	A>CONFIG COMMENT=COMMENT.TXT
	where <i>COMMENT.TXT</i> is the name of the file that contains the comment text. This file can be of any length.
HiRes	The HiRes options allows the user to change all of the high resolution parameters associated with the SPC8100 Video BIOS and Extensions VESA support. To use the HiRes option, at the DOS prompt enter the following:
	A>CONFIG HIRES=CONFIG.MOD
	Where <i>CONFIG.MOD</i> is the name of the text file which contains all of the desired changes. A sample file of the default high resolution values is included with Config and is

named CONFIG.MOD. This text file is written in Assembly-like style and defines all the values involved in establishing a high resolution mode using the SPC8100 Video BIOS and Extensions.

Note

In

Log

CAUTION: Changing the values will drastically effect the operation of the VESA video modes, caution should be used before changing any value.

The format of CONFIG.MOD is as follows:

A list of **Constants**.

i i not of comptanto.	
Video Parameter tables: These	e are 64-byte entries which
relate to specific VESA mod	les:
640x400 x 256 colors	VESA Mode 100
640x480 x 256 colors	VESA Mode 101
800x680 x 16 colors	VESA Mode 102
1056x400 x 16 colors	VESA Mode 109/10B
LoadReg Tables: These are to s	support Sollex Function 5
(See Sollex Specification fo	r more information).
Normally these tables are or	nly required to set high
resolution 256 color modes.	
ResMode Tables: These tables	describe resolutions for
VESA and internal use. If the	e OEM adds any new
resolution tables, then a Res	Mode entry and a Video
Parameter entry will be requ	iired. See Sollex
Specification for more infor	mation.
Error Check: These are offsets	to identify the start of each
of the above tables.	
See CONFIG.MOD to view the	format.
The In option allows the user to	
than the default input file name	
use the In option, at the DOS pro-	ompt enter:
A>CONFIG IN=OTHER.BIN	
Config expects this to be a valid	•
SPC8100 Video BIOS and will	verify its size, header and
identification strings.	
The Log option allows the user to	
other than the default input file i	
CONFIG.LOG. To use the Log	option, at the DOS prompt
enter:	

A>CONFIG LOG=OTHER.LOG

Menu	(no current SPC8100 utilities support this option). The Menu options allows the user to notify SPC8100 utility programs to operate using Menus if the utility program supports menus. If menus are not supported, then the utility will operate in the Verbose mode.
Out	The Out option allows the user to identify an output file other than the default output file name which is EPROM.BIN. To use the Out option, at the DOS prompt enter:
	A>CONFIG OUT=OTHER.BIN
Signon	The SignOn option allows the user to change the default Power Up message (also known as the SignOn message) to the message contained in a text file created by the user. To use the SignOn option, at the DOS prompt enter:
	A>CONFIG SIGNON=NEW.TXT
	Where new.txt is a text file containing the new SignOn message. The SignOn message should be no longer than 150 characters (including line feeds). The following is an example of the contents of new.txt:
	VGA/LCD Video BIOS Version 2.20
Terse	(no current SPC8100 utilities support this option). The Terse options allows the user to notify SPC8100 utility programs to operate using Terse messages. This will cause menus not to be used and all messages will minimized.
Verbose	The Verbose option allows the user to notify SPC8100 utility programs to operate using Verbose messages. This will cause menus not to be used and all messages will be maximized.
View	The View option allows the user to view the settings in the current Video BIOS binary image. This information reflects any modifications made. The View option does not in itself change any setting.

Error Conditions

ERROR: Cannot open filename!

This error condition occurs when the program cannot open the input or output file for one of the following reasons:

-the specified file is not present -the specified file is present but the program cannot gain write access -the specified drive is not accessible

ERROR: Cannot read filename!

This error condition occurs when the program cannot read the input file for one of the following reasons:

-the specified file does not exist -the disk where the specified file exists is not accessible

ERROR: Cannot write filename!

This error condition occurs when the program cannot write the output file for one of the following reasons:

-the specified file already exists and cannot be overwritten -the disk where data is being written to is not accessible

ERROR: Not enough memory!

This error condition occurs when there is not enough system memory available to perform all of the necessary functions (the request and/or requests specified require more memory than available from the system).

ERROR: Cannot compile filename!

This error conditions occurs when the program cannot successfully compile the specified input file with the HiRes option (normally warning messages describing the nature of previous problems will also be displayed).

ERROR: Output too large!

This error condition occurs when the data compiled by the HiRes option is too large for the space allocated for HiRes data in the ROM file.

ERROR: Sign on string maximum length is maximum!

This error condition occurs when the signon string specified for signon option is too long for the space allocated in the ROM. This error message also specifies the maximum allowed for this particular BIOS version.

ERROR: No input from standard input!

This error condition occurs when the user selects an option which requires a specific input or output file but non was specified.

ERROR: Filename is not a valid ROM file!

This error condition occurs when the input file specified as the ROM input file does not contain a valid header of 0AA55h required at the beginning of all ROM files.

ERROR: Filename is not a SPC8100 VGA/LCD BIOS!

This error condition occurs when the input file specified as the ROM input file does not contain a valid SPC8100 header as required for all valid SPC8100 video BIOS files.

ERROR: Filename does not contain valid video BIOS Extensions!

This error condition occurs when the input file specified as the ROM input file does not contain a valid secondary header for the Video BIOS Extensions of 0AA55h.

General Warning Conditions

WARNING: Do not recognize command.

This warning occurs when the input begins with a statement that is not recognized by the program. The program accepts the following Assembler statements:

varname	DB	data,data,data
varname	DW	data
varname	DD	data
varnamel	DW	varname2
constant	EQU	value
varname	LABEL	BYTE
varname	LABEL	WORD
varname	LABEL	DWORD

WARNING: Cannot have byte offset.

This warning occurs when a pointer is defined with a DB statement rather than with a DW or DD.

WARNING: + and - only used for signed decimal digits (Math not supported).

This warning occurs when a definition includes a math statement (such 10 + 15 or *constant* * 3)

WARNING: Not valid decimal digits.

This warning occurs when data is specified in an invalid format. Valid formats are:

Decimal - nn (where nn is a digit from 0 to 9) Hex- nnH (where nn is a digit from 0 to 9 or a character from A to F) Binary - nnB (where nn is a digit from 0 or 1)

WARNING: Not valid hex digits.

This warning occurs when data is defined to be hex but is not in valid hex format (see above for formats available)

Data Validation Warning Conditions

The following warning messages make reference to members of a structure defined in the SOLLEX specification. To understand the meaning and purpose of these structure references, refer to the SOLLEX specification.

WARNING: Mode Info table must end with a word defined as -1!

This warning occurs when the input file compiled with the HiRes option does not end its list of available VESA modes with a word of -1.

WARNING: Video Parameter Table must be paragraph aligned!

This warning occurs when the Video Parameter Tables compiled with the HiRes option are not paragraph aligned. This usually occurs because the Video Parameter Tables are not the first defined data in the compiled file.

WARNING: lpVParm for Vesa Mode ModeNumber must be offset only!

This warning occurs when a lpVParm (in the ResMode structures) has a segment reference. lpVParm members should only be defined as offsets from a segment of 0 (so that the Video Extensions can resolve this references at run-time -- See the SOLLEX specification for more information).

WARNING: lpLoadReg for Vesa Mode ModeNumber must be offset only!

This warning occurs when a lpLoadReg (in the ResMode structures) has a segment reference. lpVParm members should be defined as offsets only a segment of 0 (so that the Video Extensions can resolve this references at run-time -- See the SOLLEX specification for more information).

WARNING: bVPEntry for Vesa Mode ModeNumber must be 28 or less!

This warning occurs when a bVPEntry (in ResMode structures) is greater than 28. Valid bVPEntry are values from 0 to 28.

WARNING: bVideoMode for Vesa Mode ModeNumber must 0..7 or 0D..13h!

This warning occurs when a bVideoMode (in the ResMode structures) is not between 0..7 or 0Dh..13h.

WARNING: WinFuncPtr for Vesa Mode ModeNumber will be overwritten!

This warning occurs when a WinFuncPtr (in the ResMode structures) is other than zero. Although this has no adverse effect on the data generated, this warning advises the user that data defined will be later overwritten (and therefore ignored).

WARNING: WinASegment for Vesa Mode *ModeNumber* **must be 0, A000h, B000h or B800h!** This warning occurs when a WinASegment (in the ResMode structures) is other than 0, 0A000h, 0B000h or 0B800h.

WARNING: WinBSegment for Vesa Mode *ModeNumber* **must be 0, A000h, B000h or B800h!** This warning occurs when a WinBSegment (in the ResMode structures) is other than 0, 0A000h, 0B000h or 0B800h.

SPC8100 Low Power LCD VGA Controller

PS Power Save Utility

Document Number: X03A-B-002-01

Copyright © 1993, 1999 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

Table of Contents

PS Power Save Utility .				 	 	 -	 	 							. 5
Program Requirements	s.			 •					•			•	•		.5
Installation		• •				 •	 •	 •	•			•	•	•	.5
Operation			•			 •	 •	 •		•		•	•	•	.5
Usage			•			 •	 •			•		•	•		. 5
PS Flowchart						 •		 •	•			•	•		.6
Limitations			•			 •	 •	 •				•	•		.7
Error Conditions									•			•	•		.8

PS Power Save Utility

PS is a utility program designed to demonstrate an implementation of automatic power down on the SPC8100. This utility program is not for distribution. PS uses the Sollex Video BIOS interface to manage the SPC8100 power down and power up.

Program Requirements

Video Controller	: SPC8100
Display Type	: LCD
BIOS	: Seiko Epson VGA BIOS
DOS Program	: Yes
DOS Version	: 3.0 or greater
Windows Program	: No
Windows DOS Box	: No
Windows DOS Full Screen	: No
OS/2 DOS Full Screen	: No

Installation

Copy the file **ps.exe** to a directory that is in the DOS path on your hard drive.

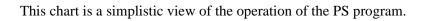
Operation

PS is a terminate and stay resident (TSR) program which manages the operation of automatic power control for the SPC8100. PS operates as follows:

PS checks every 55 milliseconds to see if there has been a keystroke. If there has been a keystroke, then PS checks if the SPC8100 is currently powered down. If the SPC8100 is currently powered down, the PS uses the Sollex Video BIOS to power the SPC8100 up.

If 56 seconds (1024 * 55 milliseconds) elapses without a keystroke then PS checks to see if the SPC8100 is powered up. If the SPC8100 is powered up then PS uses the Sollex Video BIOS to power the SPC8100 down.

Usage


To install PS at the DOS prompt enter:

A:>PS

Note

PS is a memory resident program that installs in memory and stays resident until the system is reset.

PS Flowchart

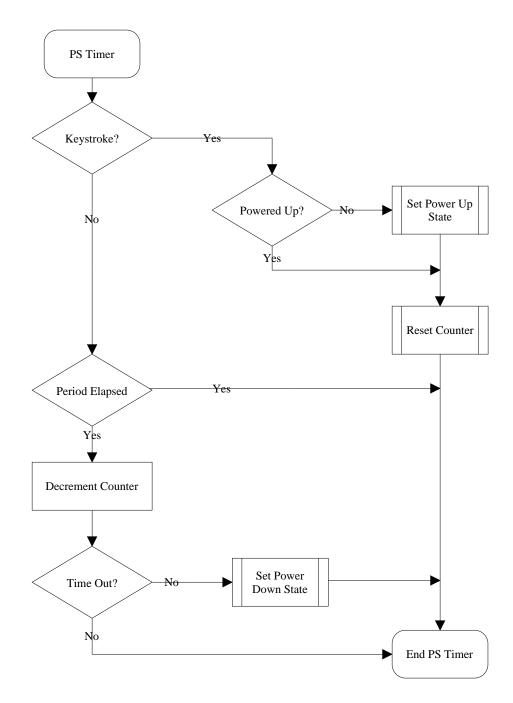


Figure 1: PS Flowchart

Limitations

Multi-tasking operating environments may not operate properly in a video environment that is currently powered down. To prevent this, PS will not install:

- within a Shell under MS-Windows 3.0
- within a DOS session in OS/2
- in DOS versions greater than 4.xx

However, PS will operate properly in MS-Windows 3.0 if installed prior to running Windows.

The PS demonstration program is a TSR, therefore the rules for installing a TSR should be applied when installing this program. Installing TSRs from within a DOS shell (that is, a DOS program that allows the user access to the DOS command line while the program is still loaded and returns to the program via the EXIT command) is considered invalid for any DOS program and may cause adverse effects to the system. Since there is no way for an application such as PS to reliably know that it has been loaded from within a shell environment, it is the user's responsibility to avoid installing TSR programs from within the DOS shell.

PS does not detect if it has been previously installed and therefore can be installed multiple times. Although this should have no adverse effect on the operation of PS, it is not recommended.

PS uses the SPC8100 hardware to maintain its dynamic information regarding when and how to change power states. If other utility programs such as VCMode, VCDisp or RamBios are used, they will disable the operation of PS.

PS assumes that no other software has intercepted Interrupt 1Ch. Other software can intercept Interrupt 1Ch after PS has been installed. If software (such as device drivers or other TSRs) intercept Interrupt 1Ch before PS is installed, then they may not function properly.

Note

PS DOES NOT RECOGNIZE MOUSE ACTIVITY (mouse movement, button press or release) as an event to initiate power up.

Error Conditions

ERROR: Requires Seiko Epson Video BIOS Extensions!

This error condition occurs when the Seiko Epson Video BIOS Extensions are not installed as part of the video system which means the Extensions are not present or available in the video BIOS.

ERROR: Requires DOS Version 4.xx or earlier!

This error condition occurs when using a DOS version greater than 4.xx (such as DOS version 5.xx or a DOS session in the OS2 compatibility box).

ERROR: Cannot operate while in Windows session!

This error condition occurs when the program is being installed (or de-installed) as a shell of Windows 3.xx (that is, while Windows 3.xx is loaded in memory).

SPC8100 Low Power LCD VGA Controller

RAMBIOS Utility

Document Number: X03A-B-003-01

Copyright © 1993, 1999 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

Table of Contents

RAMBIOS Utility					•					• •		•				•											. 5
Program Requi	irement	s		•	•	•	•				•									•	•			•			.5
Installation .			•	•		•		•	•			•		•	•		•	•	•	•	•	•		•	•		. 5
Operation .			•	•				•	•			•		•	•	•	•		•	•	•	•		•			.5
Limitations .			•			•		•				•		•				•	•			•		•			.6
Error Condition	ns		•	•	•	•		•				•		•	•		•	•		•	•	•	•	•	•	•	.6

RAMBIOS Utility

RAMBIOS is a utility program for the SPC8100 video controller which allows the user to move the VGA Video BIOS and Extensions between Video ROM and system memory.

Program Requirements

Video Controller	: SPC8100
Display Type	: LCD
BIOS	: Seiko Epson VGA BIOS
DOS Program	: Yes
DOS Version	: 3.0 or greater
Windows Program	: No
Windows DOS Box	: No
Windows DOS Full Screen	: No
OS/2 DOS Full Screen	: No

Installation

Copy the file **rambios.exe** to a directory that is in the DOS path on your hard drive.

Operation

Loading Video BIOS into System memory

With the SPC8100 Video BIOS operating from ROM, at the DOS prompt enter:

A:>RAMBIOS

This will cause the Video BIOS to be loaded into system memory (RamBios will be memory resident).

Restoring to Video BIOS to ROM

With the SPC8100 Video BIOS operating from system memory, at the DOS prompt enter:

A:>RAMBIOS

This will cause the pointer for the Video BIOS to be restored to the original ROM location and the system memory previously allocated to RamBios will be released to the system.

Limitations

Multi-tasking operating environments may not operate properly in a video environment that is moving BIOS code from Video ROM to system memory (and vice versa). To prevent this, RamBios will not install:

- within a Shell under MS-Windows 3.0
- within a DOS session in OS/2
- in DOS versions greater than 4.xx

However, RamBios will operate properly in MS-Windows 3.0 if installed prior to running Windows.

The RamBios program is a TSR, therefore the rules for installing a TSR should be applied when installing this program. Installing TSRs from within a DOS shell (that is, a DOS program that allows the user access to the DOS command line while the program is still loaded and returns to the program via the EXIT command) is considered invalid for any DOS program and may cause adverse effects to the system. Since there is no way for an application such as RamBios to reliably know that it has been loaded from within a shell environment, it is the user's responsibility to avoid installing TSR programs from within the DOS shell.

Error Conditions

ERROR: Requires Seiko Epson Video BIOS Extensions!

This error condition occurs when the Seiko Epson Video BIOS Extensions are not installed as part of the video system which means the Extensions are not present or available in the video BIOS.

ERROR: VGA must be active display!

This error condition occurs when the SPC8100 is not the active video adapter/display in a 2 adapter/display system (since the secondary adapter is the currently active adapter/display).

ERROR: Requires DOS Version 4.xx or earlier!

This error condition occurs when using a DOS version greater than 4.xx (such as DOS version 5.xx or a DOS session in the OS/2 compatibility box).

ERROR: Cannot operate while in Windows session!

This error condition occurs when the program is being installed (or de-installed) as a shell (that is a child program) of Windows 3.xx (that is, while Windows 3.xx is loaded in memory).

ERROR: RamBios not available!

If the program is not able to successfully install the video BIOS in system memory, then the program will display the above error message and abort:

SPC8100 Low Power LCD VGA Controller

VCDISP Display Utility

Document Number: X03A-B-004-01

Copyright © 1993, 1999 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

Table of Contents

VCDISP Display Utility .	 	 		 						•											. 5
Program Requirements					•		•	•	•		•	•					•	•		•	.5
Installation		•	•		•		•		•	•	•	•	•				•	•			.5
Operation			•							•	•		•			•					.5
Usage			•							•	•		•			•					.6
Limitations			•		•		•		•	•	•		•			•					.6
Error Conditions			•		•	•		•	•		•	•		•	•		•				.7

VCDISP Display Utility

VCDISP is a utility program for the SPC8100 video controller which allows the user to switch displays on the SPC8100 from LCD to CRT or CRT to LCD. By default the SPC8100 operates on the CRT when both displays are available, however by using VCDisp the user can switch displays. Please note that VCDisp will not perform any options if neither a CRT display nor a LCD display cannot be detected.

Program Requirements

Video Controller	:	SPC8100
Display Type	:	LCD
BIOS	:	Seiko Epson VGA BIOS
DOS Program	:	Yes
DOS Version	:	3.0 or greater
Windows Program	:	No
Windows DOS Box	:	No
Windows DOS Full Screen	:	No
OS/2 DOS Full Screen	:	No

Installation

Copy the file **vcdisp.exe** to a directory that is in the DOS path on your hard drive.

Operation

To set LCD mode

To set the SPC8100 on the LCD display, at the DOS prompt enter:

A:>VCDISP LCD

To set CRT mode

To set the SPC8100 on the CRT display, at the DOS prompt enter:

A:>VCDISP CRT

Usage

To view the current available options and other relevant program information, at the DOS prompt enter:

A:>VCDISP

VCDisp will display a usage screen similar to the following:

```
VCDisp Version 1.xx
Utility to switch displays.
* means option is currently NOT available.
Usage is: VCDisp option
  LCD switch to LCD display
  CRT switch to CRT display
```

Figure 1: VCDISP Usage Screen

Limitations

Multi-tasking operating environments may not operate properly in a video environment that is switching displays. To prevent this, VCDisp will not install:

- within a Shell under MS-Windows 3.0
- within a DOS session in OS/2
- in DOS versions greater than 4.xx

Error Conditions

ERROR: Requires Seiko Epson Video BIOS Extensions!

This error condition occurs when the Seiko Epson Video BIOS Extensions are not installed as part of the video system which means the Extensions are not present or available in the video BIOS.

ERROR: VGA must be active display!

This error condition occurs when the SPC8100 is not the active video adapter/display in a 2 adapter/display system (since the secondary adapter is the currently active adapter/display).

ERROR: Requires DOS Version 4.xx or earlier!

This error condition occurs when using a DOS version greater than 4.xx (such as DOS version 5.xx or a DOS session in the OS/2 compatibility box).

ERROR: Cannot operate while in Windows session!

This error condition occurs when the program is being installed (or de-installed) as a shell (that is a child program) of Windows 3.xx (that is, while Windows 3.xx is loaded in memory).

ERROR: Requires Analog monitor or LCD panel!

This error condition occurs when an analog monitor or LCD panel cannot be detected as attached to the SPC8100.

ERROR: Unable to set VGA mode!

This error condition occurs when the program cannot successfully establish VGA mode.

ERROR: Switching to CRT display!

This error condition occurs when the program cannot successfully switch to the CRT display.

ERROR: Switching to LCD display!

This error condition occurs when the program cannot successfully switch to the LCD display.

SPC8100 Low Power LCD VGA Controller

VCMODE Display Utility

Document Number: X03A-B-005-01

Copyright © 1993, 1999 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

Table of Contents

VCMODE Display Utility	 		-						•		•					• •		 	. 5
Program Requirements		•		•	•	•		•	•		•	•					•		.5
Installation		•		•				•	•				•				•		.5
Operation				•															.5
Usage			•	•															.6
Limitations		•	•	•					•				•	•					.7
Error Conditions		•				•		•	•				•				•		.8

VCMODE Display Utility

VCMode is a utility program for the SPC8100 video controller which allows the user to switch the hardware adapter mode operation of the SPC8100. By default, the SPC8100 operates as a VGA adapter, however by using VCMode the user can also operate in EGA, CGA, MDA or HERC providing the correct display is available.

Program Requirements

Video Controller	: SPC8100
Display Type	: LCD
BIOS	: Seiko Epson VGA BIOS
DOS Program	: Yes
DOS Version	: 3.0 or greater
Windows Program	: No
Windows DOS Box	: No
Windows DOS Full Screen	: No
OS/2 DOS Full Screen	: No

Installation

Copy the file vcmode.exe to a directory that is in the DOS path on your hard drive.

Operation

To set VGA mode

To set the SPC8100 in VGA mode, at the DOS prompt enter:

A:>VCMODE VGA

To set EGA mode

To set the SPC8100 in EGA mode, at the DOS prompt enter:

A:>VCMODE EGA

To set CGA mode

To set the SPC8100 in CGA mode, at the DOS prompt enter:

A:>VCMODE CGA

To set MDA mode

To set the SPC8100 in MDA mode, at the DOS prompt enter:

A:>VCMODE MDA

To view the entire screen while in graphics mode, use CTRL-Alt-Left Shift to shift left and CTRL-ALT-Right Shift to Shift right.

To set HERC mode

To set the SPC8100 in HERC mode, at the DOS prompt enter:

A:>VCMODE HERC

To view the entire screen while in graphics mode, use CTRL-Alt-Left Shift to shift left and CTRL-ALT-Right Shift to Shift right.

Usage

To view the current available options and other relevant program information, at the DOS prompt enter:

A:>VCMODE

VCMode will display a usage screen similar to the following:

```
VCMode Version 1.xx
Utility to switch adapter modes.
* means option is NOT currently available.
Usage is: VCMode option
VGA sets VGA mode
EGA sets EGA mode
CGA sets CGA mode
*MDA sets MDA mode
*HERC sets HERC mode
VGA mode is active.
```

Limitations

VCMode dynamically is 100% compatible when it changes the video environment. However, some operating environments will not operate properly in a video environment that is changing. To prevent this, VCMode will not operate:

- within a Shell under MS-Windows 3.0
- within a DOS session in OS/2
- in DOS versions greater than 4.xx

In EGA, CGA, MDA and HERC modes, VCMode will install as a TSR the first time VCMode is run within a DOS session. Installing TSRs from within a DOS shell (that is, a DOS program that allows the user access to the DOS command line while the program is still loaded and returns to the program via the EXIT command) is considered invalid for any DOS program and may cause adverse effects to the system. Since there is no way for an application such as VCMode to reliably know that it has been loaded from within a shell environment, it is the user's responsibility to avoid installing TSR programs from within the DOS shell.

If VCMode has been previously installed as a TSR and the user shells to DOS from an application, the user should restore VCMode to the adapter mode that was active when the shell was first started. If the user does not do this, the application that was shelled from may not operate correctly.

Error Conditions

ERROR: Requires Seiko Epson Video BIOS Extensions!

This error condition occurs when the Seiko Epson Video BIOS Extensions are not installed as part of the video system which means the Extensions are not present or available in the video BIOS.

ERROR: VGA must be active display!

This error condition occurs when the SPC8100 is not the active video adapter/display in a 2 adapter/display system (since the secondary adapter is the currently active adapter/display).

ERROR: Requires DOS Version 4.xx or earlier!

This error condition occurs when using a DOS version greater than 4.xx (such as DOS version 5.xx or a DOS session in the OS/2 compatibility box).

ERROR: Cannot operate while in Windows session!

This error condition occurs when the program is being installed (or de-installed) as a shell of Windows 3.xx (that is, while Windows 3.xx is loaded in memory).

ERROR: Requires Analog monitor or LCD panel!

This error condition occurs when an analog monitor or LCD panel cannot be detected as attached to the SPC8100.

ERROR: Unable to set VGA mode!

This error condition occurs when the program cannot successfully establish VGA mode.

ERROR: Requires Multi-frequency Analog monitor!

This error condition occurs when the EGA option is selected and a Multi-frequency analog monitor cannot be detected.

ERROR: Requires Analog monitor or LCD panel and no CGA card present!

This error condition occurs when the CGA option is selected and an Analog display or LCD panel cannot be detected or a true CGA card is present in a 2 adapter/display system.

ERROR: Requires Analog monitor or LCD panel and no MDA/Herc card present!'

This error condition occurs when the MDA or HERC option is selected and an Analog display or LCD panel cannot be detected or a true MDA or Herc card is present in a 2 adapter/display system.

ERROR: Not able to install as TSR!

This error condition occurs when the program is attempting to install as a TSR and is unable to due to system memory limitations.

SPC8100 Low Power LCD VGA Controller

Windows® v3.0 Display Drivers

Document Number: X03A-E-001-01

Copyright © 1999 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

Windows v3.0 800x600x16 and Virtual Driver

This device driver is for use with the SPC8100 LCD VGA controller. It will provide a significant increase in functionality over the standard Windows 3.0 VGA driver delivered with Windows.

This driver operates with a screen resolution of 800x600 pixels. If the driver determines that a multi-frequency monitor is attached to the analog connector, the display driver will show 800x600 directly. On a system using the LCD display, or one not using a multi-frequency monitor, the driver will create a physical display of 640x480, but will draw on a virtual display of 800x600. Hardware panning and scrolling techniques are used to keep the mouse pointer visible on the screen.

Program Requirements

Video Controller	: SPC8100
Display Type	: LCD
Windows Version	: Version 3.0

Installation

On systems where Windows is being installed for the first time.

1. Install Windows selecting the standard VGA driver as supplied with Windows. Then follow the instructions below.

On systems with Windows already installed.

At the DOS prompt:

- 1. Change directories to your Windows SYSTEM Sub-directory (usually C:\Windows\System)
- 2. Copy VGA.DRV to VGA.OLD
- 3. Place driver diskette in floppy drive, and Copy W30V8X6.DRV to your Windows Sub-directory
- 4. Rename W30V8X6.DRV to VGA.DRV
- 5. You can now start Windows.

Operation

In Virtual 800x600x16 mode on a 640x480 screen.

The virtual window will follow the mouse.As the mouse pointer approaches the right side of the screen, the screen will shift left, exposing the right hand side. As the mouse pointer moves down the screen, the screen will shift upwards, exposing the bottom.

In 800x600x16 full screen mode on a multi-frequency monitor.

If the SPC8100 has been configured to allow operation with a multi-frequency monitor attached as determined by the state of pin MD10 (pin 106) of the SPC8100 (switch3 of DIP Switch S2 of the SPC8100 evaluation card) the display will show 800x600 directly.

Error Conditions

There are no error conditions reported.

Limitations

Expanded "Full Screen" windows in programs like "Word for Windows" from Microsoft, will expand to the full 800x600 size even if you are in virtual 800x600 mode with a physical screen of 640x480. The application does not have the ability to discern the physical size of the screen, therefore buttons and slider bars may not show up in the expected positions on the physical screen.

These installation instructions assume a good working knowledge of DOS, and a standard text editor. If necessary, Notepad.Exe as shipped with Windows will suffice.

OEM Notes

- 1. The driver determines the physical screen size by the state of pin MD10 (pin 106) of the SPC8100. The state of MD10 is latched into an internal register of the SPC8100 during a sequencer reset cycle.
- 2. MD10 of the SPC8100 is connected to switch3 of DIP Switch S2 on the SDU8100B0B evaluation board and on other boards is usually silkscreened MFM.

SPC8100 Low Power LCD VGA Controller

OS/2 Display Drivers

Document Number: X03A-E-002-01

Copyright © 1999 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. IBM and OS/2 are registered trademarks of International Business Machines. All other trademarks are the property of their respective owners.

OS/2 800x600x16 and Virtual Driver

This device driver is for use with the SPC8100 LCD VGA. It will provide a significant increase in functionality over the standard Presentation Manager VGA driver delivered with OS/2 1.2 and OS/2 1.3.

This driver operates with a screen resolution of 800x600 pixels. If the driver determines that a multifrequency monitor is attached to the analog connector, the display driver will show 800x600 directly. On a system using the LCD display, or one not using a multi-frequency monitor, the driver will create a physical display of 640x480, but will draw on a virtual display of 800x600. Hardware panning and scrolling techniques are used to keep the mouse pointer visible on the screen.

Program Requirements

Video Controller Display Type OS/2 Version : SPC8100 : LCD : Version 1.2 and 1.3

Installation

During the install process, an attempt will be made to overwrite the current Presentation Manager driver, since this file is held open and locked during normal operation an error condition will occur. The device driver install process will successfully handle this error condition by asking the user to insert the original OS/2 operating system install disk into drive a:, and restart the system. There is no interaction required from the user except to restart the system when asked to do so.

On systems with OS/2 already installed.

- 1. Place driver diskette in floppy drive. Type: A:>INSTALME
- 2. Follow the directions on screen.

On systems where OS/2 is being installed for the first time.

- 1. Proceed normally and install OS/2 as a standard VGA.
- 2. Place driver diskette in floppy drive. Type: A:>INSTALME
- 3. Follow the directions on screen.

Operation

In Virtual 800x600x16 mode on a 640x480 screen.

The virtual window will follow the mouse. As the mouse pointer approaches the right side of the screen, the screen will shift left, exposing the right hand side. As the mouse pointer moves down the screen, the screen will shift upwards, exposing the bottom.

In 800x600x16 full screen mode on a multi-frequency monitor.

If the SPC8100 has been configured to allow operation with a multi-frequency monitor attached as determined by the state of pin MD10 (pin 106) of the SPC8100 (switch3 of DIP Switch S2 of the SPC8100 evaluation card) the display will show 800x600 directly.

Error Conditions

There are no error conditions reported.

Limitations

Expanded "Full Screen" sessions in programs like "Word for PM" from Microsoft, will expand to the full 800x600 size even if you are in virtual 800x600 mode with a physical screen of 640x480. The application does not have the ability to discern the physical size of the screen, therefore buttons and slider bars may not show up in the expected positions on the physical screen.

OEM Notes

- 1. The driver determines the physical screen size by the state of pin MD10 (pin 106) of the SPC8100. The state of MD10 is latched into an internal register of the SPC8100 during a sequencer reset cycle.
- 2. MD10 of the SPC8100 is connected to switch3 of DIP Switch S2 on the SDU8100B0B evaluation board and on other boards is usually silkscreened MFM.

SPC8100 Low Power LCD VGA Controller

SDU8100B0B Rev. 2.1 Evaluation Board User Manual

Document Number: X03A-G-001-01

Copyright © 1999 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other Trademarks are the property of their respective owners.

Table of Contents

1	Intro	duction
2	Feat	ures
3	Insta	Illation and Configuration
	3.1	DIP Switch & Jumper Settings
	3.2	8030 Control
	3.3	Jumper Settings
4	Tech	nical Description
	4.1	256K DRAM support
	4.2	Generic LCD Connector
	4.3	Multiple Panel / Power Supply Daughter Card
	4.4	Configuration Dip Switches
	4.5	Micro Channel support
	4.6	Power Measurement Capabilities
	4.7	16 bit BIOS Support
	4.8	SPC8030 Support
	4.9	Dual clock support
5	TEST	TPINS
6	Sche	ematics
7	РСВ	Fabrication
	7.1	Specifications

List of Tables

Table 3-1:	DIP Switch 1 Settings
Table 3-2:	Video Table
Table 3-3:	DIP Switch 2 Settings
Table 3-4:	8030 Control
Table 3-5:	Sel Table
Table 3-6:	Jumper Settings

1 Introduction

This manual provides configuration and operation details for the SDU8100B0B Rev. 2.1 Evaluation Board. The SDU8100B0B is designed as an evaluation platform for the SPC8100 LCD VGA Controller. The SDU8107B0B will operate as a stand-alone video adapter card with on-board video BIOS support.

For further information on the SPC8100, refer to the *SPC8100 Hardware Functional Specification*, document number X03A-A-001-xx.

2 Features

The SDU8100B0B features the following:

- SPC8100 VGA Controller.
- SPC8030 Interface Chip support.
- Dual clock support (2 terminal crystals, and oscillator packs, 25.175Mhz, 28.322Mhz).
- High Resolution Support (37.5Mhz oscillator (HRCLK)).
- 256K DRAM support only.
- Discrete Mounted Components (all components will be socketed or thru-hole mounted).
- Generic LCD Connector (see description below).
- Multiple panel / Power Supply Daughter board support.
- Configuration Dip Switches.
- Analog CRT, monochrome, and color panel support. (NO TTL support).
- No Feature connector support.
- Micro Channel support (via daughter card).
- 4 Low Power Modes (software and hardware programmable).
- Power Measurement Capability.
- 16 bit AT bus interface.
- 16 bit BIOS Support.
- XT Bus Support.

X03A-G-001-01

3 Installation and Configuration

3.1 DIP Switch & Jumper Settings

	1	2	3	4	5	6	7	8
S1	BIOS Disable	MCA	VPS1	VPS0	Panel Sense	External DAC	Reserved	Reserved
On	Disable	MCA	See Video Table	See Video Table	CRT Only	External DAC	n/a	n/a
Off	Enable	PC-XT/AT	See Video Table	See Video Table	Panel Present	Internal DAC	n/a	n/a

Table 3-1: DIP Switch 1 Settings

= default settings

Table 3-2: Video Table

Video Port select	VPS1	VPS0
Chip always disabled	On	On
Chip always enabled	On	Off
Port 3C3H used as enable port	Off	On
Port 46E8H used as enable port	Off	Off

Table 3-3: DIP Switch 2 Settings

	1	2	3	4	5	6	7	8	
S2	Clr. Modes GS	Mode 7/F on:	MFM	EGA Default Down		Power down	Inverse Video	N/C	
On	IBM Standard	Mono Only	Single Freq	Default Ega	Suspend Mode	Sleep Mode	Normal	n/a	
Off	Clr. Modes on GS	Mono & Color	MFM	Default Vga	Normal	Normal	Reverse Video	n/a	

= default settings

3.2 8030 Control

Table 3-4: 8030 Control

S 3	1	2	3	4	5	6	7	8
00	PL0	PL1	N/C	SEL0	SEL1	SEL2	SEL3	N/C
On	Inverted Input	"+'ve" Edge	n/a	See Sel table	See Sel table	See Sel table	See Sel table	n/a
Off	Normal Input	"-'ve"Edge	n/a	See Sel table	See Sel table	See Sel table	See Sel table	n/a

= default settings

Function	Sel 3	Sel 2	Sel 1	Sel 0
Undefined	On	On	On	On
512 color single panel	On	On	On	Off
64 color single panel	On	On	Off	On
8 color single panel	On	On	Off	Off
Undefined	On	Off	On	On
512 color Dual panel	On	Off	On	Off
64 color Dual panel	On	Off	Off	On
8 color Dual panel	On	Off	Off	Off
Undefined	Off	On	On	On
Undefined	Off	On	On	Off
Undefined	Off	On	Off	On
Undefined	Off	On	Off	Off
Undefined	Off	Off	On	On
Undefined	Off	Off	On	Off
Undefined	Off	Off	Off	On
Undefined	Off	Off	Off	Off

Table 3-5: Sel Table

lumnar	Function	Sett	ing	
Jumper	Function	1&2	2&3	
JP1	MCA use only (Note: on schematics this is a single position jumper)	ACCP		
JP2	A19 routing	AT	XT	
JP3	A18 routing	AT	XT	
JP4	A17 routing	AT	XT	
JP5	/MEMR Memory cycle decoding	Decode all	Decode > 1M	
JP6	/MEMW Memory cycle decoding	Decode all	Decode > 1M	
JP7	/IOCS16 routing	Normal	MCA	
JP8	Optional PDCLK Source	Open	GND	
JP9	A20 routing	AT	XT	
JP10	A21 routing	AT	XT	
JP11	A22 routing	AT	XT	
JP12	A23 routing	AT	XT	
JP13	MONS2 Detect via MONS0	MONS0	NC	

Table 3-6: Jumper Settings

= default settings

Note

JP8 is very close to TP91 & TP 92 DO NOT SHORT THESE TOGETHER

4 Technical Description

4.1 256K DRAM support

This board will provide a two chip 256K solution using Toshiba 64k x 16 DRAM. These DRAM will come in a ZIP package.

4.2 Generic LCD Connector

The board will have a generic LCD connector (dual row header) which will contain all the necessary signals needed to support many different panels. This connector will interface to a Multiple Panel / Power Supply daughter card which the various panels will connect to for data and power. There will be two identical LCD connectors, this feature is described under SPC8030 Support below (8).

4.3 Multiple Panel / Power Supply Daughter Card

There will be two or three versions of this card, supporting the most popular monochrome panels, color panels, and other (TFT etc.). Each board will have an appropriate power supply affiliated with it to support the panels. The number of panels each one will support has not yet been determined.

4.4 Configuration Dip Switches

All configuration bits will have a dip switch affiliated with it rather than jumpers. These dip switches will have a detailed silkscreen depicting the function of each switch.

4.5 Micro Channel support

There will be an MCA Adapter Card designed which will provide microchannel support. There will be investigation from both Product Engineering. as well as ASIC's as to its specification. /IOCS16 is not used in microchannel, therefore /CSD will be jumperable to this pin on the AT bus for use with the Adapter card. There will be a separate specification produced for this board at a later time.

4.6 Power Measurement Capabilities

Due to the many power save modes of the SPC8100, it is necessary to have power measurement capabilities. Therefore, all power pins will have an associated power resistor. These resistors can be replaced with straight jumpers when not being used to measure power.

4.7 16 bit BIOS Support

There will be two BIOS Eproms on board providing a 16 bit interface. NOTE: the Eproms are not identical, they are true high byte/low byte eproms.

4.8 SPC8030 Support

The SPC8100 has the ability to bypass the internal 8040 logic. In this mode, the necessary signals (PD0..7, HRTC, VRTC, /BLANK, and PCLK) will be output via unused signals. This will then support an external interface chip (8030). The 8030 has an ENABLE pin to control the LCD output signals. ENABLE will be controlled via a dipswitch. This dipswitch setting will also become one of the configuration bits (MD12) needed for the necessary BIOS support. Dual support would cause many input and output signals having to be buffered to avoid bus contention. It was decided that an additional (identical) LCD Connector be added to the board for the 8030. This provides a no buffer solution. A detailed silkscreen will define each connector clearly (Color, Mono)

4.9 Dual clock support

The evaluation board will support a variety of packages for the two terminal crystals as well as oscillator packs. Even though supporting 4 different clock sources, there will only be one installed at any one time.

XT Bus Support

This board will also support an 8 bit XT Bus. This prohibits some of the features of the SPC8100; 16 bit support, memory mapping above 1MB. Certain signals will have to be jumperable to their counter-parts when using one bus or the other (i.e.: LA17..18..19 jumperable to SA17..18..19, MEMW/MEMR jumperable to SMEMW/SMEMR respectively.

5 TESTPINS

All test pins map directly to the corresponding pin on the SPC8100

Example 1: TP1 = SPC8100 Pin #1, TP144 = SPC8100 Pin #144

6 Schematics

Schematic entry will be done in ORCAD format. Netlist and Parts list will be provided to the PCB layout person. The PCB layout package will be required to input a schematic netlist for layout verification purposes. Gerber files generated from the layout package will be provided to the PCB fabrication house.

7 PCB Fabrication

All PCB specifications will be supplied by SMOS VDC. Any substitutions to this list must be verified and approved by SMOS VDC before fabrication completion.

7.1 Specifications

- gold plating material 30-50 micro inch plating
- tin / copper plating tolerances -2oz min copper
- PCB material spec GR-10 1/16" thickness Double-sided, 2oz copper
- Reflow Tin / Lead (60/40) over etched copper
- VIA tolerances .04 o.d., .026 i.d.
- Soldermask type SR1000 (matte green) both sides
- thru-hole plating loz min tin / lead finish
- number of layers 4
- trace widths and spacing mil track, 8mil clearance