

Version 2.1

AB

Book 2—Cookbook

Part A:

Developing TriMedia Applications

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part

A

iii

Book 2—Cookbook
Part A: Developing TriMedia Applications

Table of Contents

Chapter 1 Compiling TriMedia Applications

Introduction... 6

Build and Execution Hosts... 8

Build Hosts ..8

Execution Hosts ..8

Using tmcc to Compile TriMedia Applications .. 10

Invoking tmcc ... 10

Using tmcc Options .. 11

Specifying Execution Hosts ... 11

Compiling Multiple Files ... 12

Specifying Endianness... 13

Predefined Macros .. 13

Creating Makefiles .. 14

Creating pSOS Makefiles ... 15

Simple pSOS Application Makefile ... 15

Porting This Makefile to nmake .. 16

Linking With Other pSOS Libraries ... 17

Using the pSOS Monitor ... 18

Running TriMedia Applications.. 19

Running TriMedia Applications with tmgmon ... 19

Dumping the Trace Buffer .. 19

Example .. 20

Running TriMedia Applications with tmrun .. 21

Running TriMedia Applications with tmmon .. 21

Running TriMedia Applications with tmdbg ... 21

Running TriMedia Applications with tmmprun .. 22

Chapter 2 Programming With pSOS

Introduction... 24

A pSOS Beginning ... 24

The Root Function ... 24

Communication Using Semaphores .. 25

Table of Contents

iv

Book 2—Cookbook, Part

A ©1999 Philips Semiconductors 10/08/99

Communication Using Asynchronous Signals ... 26

A pSOS Ending ... 26

A pSOS+™ Based Multiprocessor Example.. 27

Starting Development ... 27

Number of Executables to Build .. 27

The Root Function ... 28

Buffer and Packet Management, Caching Issues ... 29

DMA Transfer ... 30

Chapter 3 Using the Dynamic Loader on TriMedia

Introduction... 34

Dynamic Loading Basics.. 34

Dynamic Loader Example.. 35

Starting Development ... 35

The Root Function ... 35

The Application Shell ... 36

Running dynamic_loader_shell ... 37

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part A

5

1

Chapter 1

Compiling TriMedia Applications

Topic Page

Introduction 6

Build and Execution Hosts 8

Using tmcc to Compile TriMedia Applications 10

Creating Makefiles 14

Creating pSOS Makefiles 15

Running TriMedia Applications 19

Chapter 1: Compiling TriMedia Applications

6

Book 2—Cookbook, Part A

©1999 Philips Semiconductors 10/08/99

Introduction

Traditionally, real-time Digital Signal Processor (DSP) and multimedia applications have

been primarily implemented in assembly language. The TriMedia hardware architecture

enables you to implement applications not only in assembly language, but also in high-

level languages such as C and C++.

The TriMedia Compilation System (TCS) translates C and C++ programs and generates

code for a machine in the TriMedia architecture family. This cookbook addresses issues

related to developing applications for TriMedia in C or C++.

The TCS translates C and C++ programs and generates machine code for the TriMedia

architecture family. The TriMedia

tmcc

 (

tmCC

for C++) compiler driver controls pro-

gram compilation and linking for the TriMedia processor. Figure 1 shows the stages in

the TriMedia compilation and simulation system, as well as the information flow during

the stages.

The

tmcc

 compiler driver provides a natural command-line interface that makes it

unnecessary for most users to understand the details of the TriMedia compiler. Some fea-

tures of the

tmcc

 compiler driver are useful for system software developers who must

test drop-in replacements for TCS tools, while other features are useful for application

developers and system architects.

Chapter 1: Compiling TriMedia Applications

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part A

7

1

Figure 1

TriMedia Compilation and Simulation System

C/C++ Front End
(tmcfe)

Core Compiler
(tmccom)

Scheduler
(tmsched)

Assembler
(tmas)

Linker
(tmld)

a.t

Machine
Description File

Machine
Simulator
(tmsim)

Dynamic
Loader
a.out

running
on target

a.C

Inter-Procedural Analysis
(tmipa)

(optional)

a.c a.cc

a.s

a.o

lib.dlla.out

Chapter 1: Compiling TriMedia Applications

8

Book 2—Cookbook, Part A

©1999 Philips Semiconductors 10/08/99

Build and Execution Hosts

The following two types of platforms use TriMedia applications:

■

Build hosts

■

Execution hosts

Build Hosts

You use build hosts to develop and compile TriMedia applications. (You must install the

TCS first.) Following is a list of the build hosts:

■

Solaris

■

SunOS

■

HP-UX

■

Mac OS

■

Windows 95

■

Windows NT

Because the TCS works in the same way on each build host, selecting a host is a matter of

personal preference. For example, some developers prefer using a UNIX-based host

(Solaris, SunOS, and HP-UX) because of the following:

■

Availability

■

Higher performance

■

Extensive experience using UNIX-based hosts

On the other hand, other developers prefer using personal computers (PCs) for building

and running TriMedia applications. The choice of host is completely up to you.

Execution Hosts

You use execution (host) hosts to run TriMedia applications. Following is a list of the

execution hosts:

■

Mac OS

■

Windows 95

■

Windows NT

■

Windows CE

Chapter 1: Compiling TriMedia Applications

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part A

9

1

Note

Although you can use the Windows 95 host for both building and running
TriMedia applications, it is sometimes useful to use different machines for
building and running. For example, you might build on Windows NT and run
on Windows 95. This helps you avoid problems with the building
environment if the TriMedia application you are trying to build crashes.

Chapter 1: Compiling TriMedia Applications

10

Book 2—Cookbook, Part A

©1999 Philips Semiconductors 10/08/99

Using tmcc to Compile TriMedia Applications

This section describes how to use the TriMedia

tmcc

 compiler driver.

Invoking tmcc

You can invoke the

tmcc

 (

tmCC

for C++) compiler driver using either

or

The command line can specify options that affect the operation of

tmcc

 and must spec-

ify at least one file that

tmcc

 processes. Each file

argument must have one of the known

extensions listed below. In keeping with standard C usage,

tmcc

 passes each unrecog-

nized argument to the

tmld

loader

directly. Refer to the following table.

The only difference between

tmcc

 and

tmCC

 is that

tmCC

 assumes that compilation

involves objects generated from C++ sources. Thus,

tmCC

 always links with the standard

C++ (libC++.a) library.

The

tmcc

compiler driver also enables you to pass command-line arguments to specified

compilation stages, as described in the next section.

tmcc [<option> ...] <file> ...

tmCC [<option> ...] <file> ...

 Extension Description

.c C source file.

.C, .cc, or .cpp C++ source file (Windows 95 does not have case distinction. The extension
.cc or .cpp indicates a C++ program.)

.i Preprocessed C source file. Output of the C

cpp

 preprocessor.

.t Intermediate representation (decision trees.) Output of the

tmccom

 core
compiler.

.s Assembly code. Output of the

tmsched

 instruction scheduler.

.o Unlinked object module. Output of the

tmas

 assembler.

.out Linked executable. Output of the

tmld

linker.

a.dyn A linked executable designed to be loaded dynamically by a general shell.
Created by tmld.

.a Library file. Output of the

tmar

 librarian.

.dll A library linked to be loaded dynamically. Created by tmld.

Chapter 1: Compiling TriMedia Applications

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part A

11

1

Using tmcc Options

The

tmcc

compiler driver enables you to pass extra arguments to compilation stages

directly by specifying the name of the desired stage, followed by the desired arguments

with the special terminator “

--

”. For example, the command

compiles the

foo.c

 program and adds the

-xunvdl=0

 argument to the options that

tmcc

normally passes to

tmccom

. Similarly, you can pass arguments to other compilation and

linkage phases using the

-tmcfe

,

-tmccom

,

-tmsched

,

-tmas

, or

 -tmld

 options.

For more information about the

tmcc

 options, see the

tmcc

 man page.

Specifying Execution Hosts

In almost all circumstances, if you have a TriMedia board, you define the run time host

as the host computer of your board. However, you can get information out of the simu-

lator that you can’t get out of the chip (for example, detailed analysis performance that

enables you to observe cache behavior), so you may sometimes want to specify the simu-

lator

tmsim

as execution host.

The configuration file defines a

HOST_DEFAULT

 default host. It also contains host-specific

sections, each starting with

HOST=

host

 and ending with

HOST_END

. You can specify an

execution host with the

-host

 option to

tmcc

, which allows host-specific compilation.

The syntax is as follows:

This builds an executable suitable for the specified

host

 (for example, Win95 or

tmsim

)

by using the

host

-specific parts of the

tmconfig configuration file.

Compiling TriMedia Applications to Run on the Simulator

To compile the sample program hello.c (it prints the message “hello, TriMedia world” on

the screen), type the following:

When the file compiles successfully, use the tmsim command to run the resulting pro-

gram using the TriMedia simulator (tmsim) as follows:

The following message appears:

You can also compile C++ applications for the simulator in the same way.

When the file compiles successfully, run the resulting executable file with tmsim.

tmcc Ðtmccom Ðxunvdl=0 ÐÐ foo.c

tmcc -host host foo.c

tmcc -o hello hello.c

tmsim hello

hello, TriMedia world

tmcc -o hello2 hello2.cc

tmsim hello2

Chapter 1: Compiling TriMedia Applications

12 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

The following message appears:

Compiling TriMedia Applications to Run on the Chip

To compile for the chip, you must specify the execution host that contains the TriMedia

chip. You do this using the -host option (Win95 for a Windows 95 PC as shown in the

following example:

To run the resulting executable file, refer to “Running TriMedia Applications” on page

19 for more information.

When you specify Win95 as the execution host, tmcc selects various options from the

tmconfig file. The tmconfig file sets the default endianness to -el (little endian), and

adds a number of libraries that are Windows 95-specific.

Compiling Multiple Files

The following command compiles two files (ave1.c and ave2.c) and produces an execut-

able ave, assuming no errors occur in any of the compilation stages:

The tmcc compiler driver expects filenames to have one of the extensions listed on page

10. Its actions depend on the extension and the driver options specified in the command

line. For example, the command

causes tmcc to

■ Preprocess, compile, schedule, and assemble ave1.c to produce ave1.o

■ Compile, schedule, and assemble ave2.i to produce ave2.o

■ Schedule and assemble ave3.t to produce ave3.o

■ Assemble ave4.s to produce ave4.o

■ Link the five object files (ave1.o, ave2.o, ave3.o, ave4.o, and ave5.o) to produce the

executable ave.

The -D option defines preprocessor macros as follows:

In the following example, the first command line compiles a program with profiling

code inserted (using the -p option). The second line simulates the resulting program

a.out using tmsim, which generates an execution profile in the file dtprof.out. The

third recompiles the program using the profile information (using the -r option).

Hello, TriMedia C++ World!

tmcc -o hello -host Win95 hello.c

tmcc -o ave ave1.c ave2.c

tmcc -o ave ave1.c ave2.i ave3.t ave4.s ave5.o

tmcc -DMAX_LEN=1024 -DFOO -o ave ave1.c ave2.c

tmcc -p ave1.c ave2.c
tmsim a.out
tmcc -r -o ave ave1.c ave2.c

Chapter 1: Compiling TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 13

1

The following example is identical to the previous example, except that the second com-

pilation uses the profile information to perform grafting (using the -G option):

Specifying Endianness

The TriMedia processor supports either big endian or little endian byte ordering, depend-

ing on the BSX bit in the PCSW. (See the appropriate TriMedia data book for details.) The

default is big endian. You can change the default by editing the configuration file; you

can override the default with the -eb or -el command-line option. In addition, you can

override the default endianness with tmcc’s -host option (-host Win95 uses -el by default

and -host MacOS uses -eb by default).

Predefined Macros

The tmcc compiler driver automatically defines several macros when it invokes tmcfe

(C/C++ programs). The following macros are always defined:

Note
You can specify additional predefined macros for C source compilation on
the CPP_ARGS line of the tmconfig configuration file. You can specify
additional predefined macros for C++ source compilation on the
TMCFE_ARGS line.

tmcc -p ave1.c ave2.c
tmsim a.out
tmcc -G -o ave ave1.c ave2.c

Macro Description

 __TCS__ Defined during source file conditionalization to indicate source
code specific to the TCS.

__STDC__ Defined to indicate compliance with the ANSI/ISO C Standard.

__BIG_ENDIAN__ Defined when compiling in big endian mode .

__LITTLE_ENDIAN__ Defined when compiling in little endian mode.

__TCS__host__ Defined to indicate compilation for the given host host.

__TCS__target__ Defined to indicate compilation for the given host target.

__cplusplus Defined to indicate C++ compilation.

__TMSCHED__ Defined by tmcc with the -x option when preprocessing a “.t” source
file.

__TMAS__ Defined by tmcc with the -x option when preprocessing a “.s” source
file.

Chapter 1: Compiling TriMedia Applications

14 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

Creating Makefiles

A makefile is a useful way to organize information about programs, especially if you have

complicated programs. It enables you to include device libraries and define options that

you use frequently in your program without having to remember this information every

time you recompile your programs. Following is an example of a standard UNIX make-

file for compiling the hello.c sample program:

Note
The $@ symbols represent the program that you are trying to build (in this
case, hello.out or hello.o). This makefile runs transparently on a Windows 95
platform using Microsoft’s NMAKE.

To run this file, type make and press Enter.

IMPORTANT
Makefiles might not necessarily be portable across different build hosts. For
example, UNIX makefiles use forward slashes in path information, while
makefile utilities on the Windows platform, such as nmake and gnumake,
use back slashes (in addition to other differences). In the case of simple
makefiles, you might be able to easily modify makefiles to work on one
platform or the other. However, when dealing with long and complicated
makefiles, Philips highly recommends that you use utilities such as the
Mortice Kern Systems (MKS) toolkit. This third-party utility adds UNIX-
compatible commands (including the make command) to the PC’s
command line and recognizes forward slashes and backward slashes
equally. This enables you to run UNIX-based makefiles on the PC.

CC=tmcc or CC=$(TCS)/bin/tmcc
CFLAGS=-host Win95

hello.out: hello.o
 $(CC) $(CFLAGS) -o $@ hello.o

hello.o: hello.c
 $(CC) $(CFLAGS) -c -o $@ hello.c

make
tmcc -host Win95 -c -o hello.o hello.c
tmcc -host Win95 -o hello hello.o

#
NMAKE compatible makefile for myecho
#
TCS = c:\tcs1.1
CC = $(TCS)\bin\tmcc
CFLAGS = -host Win95

myecho.out : myecho.o
 $(CC) $(CFLAGS) -o $@ myecho.o
myecho.o : myecho.c
 $(CC) $(CFLAGS) -c -o $@ myecho.c
clean :
 del myecho.o
 del myecho.out

Chapter 1: Compiling TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 15

1

Creating pSOS Makefiles

Simple pSOS Application Makefile

The following is an example of a simple pSOS application makefile for use in the Unix-

like make environment, including the MKS toolkit on Windows. Minor changes can be

made to use it with Microsoft’s NMAKE.

The macros that should be customized for a specified build environment are TCS, HOST,

ENDIAN, APPLICATION, and OBJECTS. CINCS, CFLAGS, and LDFLAGS can also be custom-

ized, but it is not necessary.

This makefile assumes the TCS compiler tools are located at “/usr/local/tcs.” When using

MKS, it should be like “C:/TriMedia/bin”, with forward slashes (/). The makefile compiles

local objects, like root.c. Then it builds a pSOS board support package as a library and

this is linked together with the appropriate version of the standard pSOS library to create

Fill in these appropriately for your application and host configuration
HOST: Win95, WinNT, MacOS, tmsim, nohost
ENDIAN: el, eb

TCS = /usr/local/tcs
HOST = Win95
ENDIAN = el
APPLICATION = a.out
OBJECTS = root.o drv_conf.o
target: $(APPLICATION)

You normally should not need to change the following

PSOS_SYSTEM = $(TCS)/OS/pSOS/pSOSystem
PSOS_DEFS = ÐDSC_PSOS=YES ÐDSC_PSOSM=NO ÐDSC_PNA=NO ÐDSC_PPP=NO
CC = $(TCS)/bin/tmcc Ðhost $(HOST) Ð$(ENDIAN) $(PSOS_DEFS)
LD = $(TCS)/bin/tmld
AR = $(TCS)/bin/tmar
CINCS = ÐI. ÐI$(PSOS_SYSTEM)/include
CFLAGS =
LDFLAGS = Ðbremoveunusedcode Ðbcompact Ðbfoldcode

$(APPLICATION): bsp.a $(OBJECTS) Makefile
 @ echo "Linking $(APPLICATION)"
 @ $(CC) \
 $(OBJECTS) $(PSOS_SYSTEM)/sys/os/psos_tm_$(ENDIAN).o bsp.a \
 $(LDFLAGS) $(CFLAGS) Ðo $(APPLICATION)

bsp.a:
 @ make Ðf $(PSOS_SYSTEM)/configs/Makefile \
 PSOS_SYSTEM="$(PSOS_SYSTEM)" \
 AR="$(AR)" CC="$(CC)" CFLAGS="$(CFLAGS)"

%o: %c
 @ echo "Compiling $(*)c"
 @ $(CC) $(CFLAGS) $(CINCS) Ðc $(*)c Ðo $@

clean:
 rm Ðfr $(APPLICATION) *.o bsp.a

Chapter 1: Compiling TriMedia Applications

16 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

the executable program. At least two components of the pSOS BSP might be overridden

with application-specific versions. These are sys_conf.h, and drv_conf.c. Its resulting

executable is called “a.out” in the local directory.

Porting This Makefile to nmake

To use this makefile with Microsoft’s nmake, follow the step listed below (also found in

$(TCS)/examples/psos/psos_demo1/Makefile.simple).

1. Copy this file to Makefile.win

2. In $(PSOS_SYSTEM)/config, copy Makefile to Makefile.win

3. Replace all forward slashes (/) with back slashes (\) in both files

4. Change the default rule to

Change make command for target bsp.a below to

5. Change object file rule to

6. Make sure you take out all back slashes (\) for line separation.

7. Invoke this makefile by typing at a MS-DOS prompt:

The resulting version of the above makefile is listed below.

{$(SRC)\}.c.o:
 @ echo "Compiling $<"
 $(ECHO_OPTION) $(CC) Ðc $(CFLAGS) $(CINCS) Ðo $@ $<

@ nmake /f $(PSOS_SYSTEM)\configs\Makefile.win
PSOS_SYSTEM="$(PSOS_SYSTEM)" APPDIR="." AR="$(AR)" CC="$(CC)"
CFLAGS="$(CFLAGS)"

.c.o:
 @ echo "Compiling $*.c"
 @ $(CC) $(CFLAGS) $(CINCS) Ðc $*.c Ðo $@

nmake /f Makefile.win

Fill in these appropriately for your application and host configuration
HOST: Win95, WinNT, MacOS, tmsim, nohost
ENDIAN: el, eb

TCS = C:\TriMedia\bin
HOST = Win95
ENDIAN = el
APPLICATION = a.out
OBJECTS = root.o drv_conf.o
target: $(APPLICATION)

You normally should not need to change the following

PSOS_SYSTEM = $(TCS)\OS\pSOS\pSOSystem
PSOS_DEFS = ÐDSC_PSOS=YES ÐDSC_PSOSM=NO ÐDSC_PNA=NO ÐDSC_PPP=NO
CC = $(TCS)\bin\tmcc Ðhost $(HOST) Ð$(ENDIAN) $(PSOS_DEFS)
LD = $(TCS)\bin\tmld
AR = $(TCS)\bin\tmar
CINCS = ÐI. ÐI$(PSOS_SYSTEM)\include

Chapter 1: Compiling TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 17

1

Notice that Steps 2, 3, 4, and 7 are also to be applied to the Makefile in $(PSOS_SYSTEM)/

config. The resulting makefile there should also be called Makefile.win (see step 2.

above).

Linking With Other pSOS Libraries

Note that only with care can this makefile be made to link with special pSOS libraries,

such as pSOS+m, dynamic linking, and pSOS networking modules (pNA, PPP). For such

advanced compilation, the comprehensive makefile in $(TCS)/examples/psos/

psos_demo1/Makefile should be used. Instructions to use that makefile are found in it.

Below are a few instructions on how to change this makefile to link with pSOS+m,

dynamic linking, and pSOS networking libraries.

To use pSOS+m, switch on pSOS+m and switch off pSOS in the definition of PSOS_DEFS

(-DSC_PSOS=NO -DSC_PSOSM=YES). Then change psos_tm_$(ENDIAN).o to

psosm_tm_$(ENDIAN).o, under the rule for $(APPLICATION).

To use the pSOS library compiled for dynamic linking, replace

$(PSOS_SYSTEM)/sys/os/psos_tm_$(ENDIAN).o with

-bimmediate $(PSOS_SYSTEM)/sys/os/psos_tm_$(ENDIAN).dll. To use pSOS+m with

dynamic linking, follow the steps above for pSOS+m after applying the steps for

dynamic linking.

To use pNA, switch on the PNA flag with -DSC_PNA=YES in the definition of PSOS_DEFS,

and add $(PSOS_SYSTEM)/sys/os/pna_tm_$(ENDIAN).o after $(PSOS_SYSTEM)/sys/os/

psos_tm_$(ENDIAN).o. To use pNA with dynamic linking, instead of above, add -bimme-

diate $(PSOS_SYSTEM)/sys/os/pna_tm_$(ENDIAN).dll.

CFLAGS =
LDFLAGS = Ðbremoveunusedcode Ðbcompact Ðbfoldcode

$(APPLICATION): bsp.a $(OBJECTS) Makefile
 @ echo "Linking $(APPLICATION)"
 @ $(CC) $(OBJECTS) $(PSOS_SYSTEM)\sys\os\psos_tm_$(ENDIAN).o bsp.a
$(LDFLAGS) $(CFLAGS) Ðo $(APPLICATION)

bsp.a:
 @ nmake /f $(PSOS_SYSTEM)\configs\Makefile.win
PSOS_SYSTEM="$(PSOS_SYSTEM)" APPDIR="." AR="$(AR)" CC="$(CC)"
CFLAGS="$(CFLAGS)"

.c.o:
 @ echo "Compiling $*.c"
 @ $(CC) $(CFLAGS) $(CINCS) Ðc $*.c Ðo $@

clean:
 rm Ðfr $(APPLICATION) *.o bsp.a

Chapter 1: Compiling TriMedia Applications

18 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

Apply the same steps for PPP as for pNA.

Using the pSOS Monitor

To use compile this makefile with the pSOS monitor for debugging in tmdbg, follow the

steps below.

1. Add -g to CFLAGS.

2. Add $(TCS)/lib/$(ENDIAN)/psosmon.o to the link line of your application:

3. Remove linker optimizations in LDFLAGS.

Table 1 The Usage of pSOS in the Sample Makefile

PSOS_DEFS $(APPLICATION)

pSOS -DSC_PSOS=YES -DSC_PSOSM=NO $(PSOS_SYSTEM)/sys/os/
psos_tm_$(ENDIAN).o

pSOS+m -DSC_PSOS=NO -DSC_PSOSM=YES $(PSOS_SYSTEM)/sys/os/
psosm_tm_$(ENDIAN).o

dll, pSOS -DSC_PSOS=YES -DSC_PSOSM=NO -bimmediate$(PSOS_SYSTEM)/sys/os/
psos_tm_$(ENDIAN).dll

dll,pSOS+m -DSC_PSOS=NO -DSC_PSOSM=YES -bimmediate$(PSOS_SYSTEM)/sys/os/
psosm_tm_$(ENDIAN).dll

pNA add -DSC_PNA=YES add $(PSOS_SYSTEM)/sys/os/
pna_tm_$(ENDIAN).o

PPP add -DSC_PPP=YES add $(PSOS_SYSTEM)/sys/os/
ppp_tm_$(ENDIAN).o

pNA, dll add -DSC_PNA=YES add -bimmediate $(PSOS_SYSTEM)/sys/
os/pna_tm_$(ENDIAN).dll

PPP, dll add -DSC_PPP=YES add -bimmediate $(PSOS_SYSTEM)/sys/
os/ppp_tm_$(ENDIAN).dll

 @ $(CC) \
 $(OBJECTS) $(PSOS_SYSTEM)/sys/os/psos_tm_$(ENDIAN).o bsp.a \
 $(TCS)/lib/$(ENDIAN)/psosmon.o $(LDFLAGS) $(CFLAGS) -o
$(APPLICATION)

Chapter 1: Compiling TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 19

1

Running TriMedia Applications

You can run TriMedia applications on PC hosts (running Windows 95 or Windows NT)

with any of the following tools:

■ tmgmon

■ tmrun

■ tmmon

■ tmdbg

■ tmmprun

Running TriMedia Applications with tmgmon

The tmgmon tool is a GUI-based Win32 application (built on top of tmmon) that uses

the TriMedia Manager Host Application Programming Interface (API). It provides an

interactive user interface for downloading and running TriMedia executables on the Tri-

Media processor. You can access all options by selecting the appropriate option from the

window. Scrollable views are provided for the trace and memory window to aid in

debugging.

Note
By default, tmgmon will switch to the directory of the program you are
trying to run. So if your program accesses any data files, they are relative to
the program’s executable directory. However, you can disable this option
and can specify a different working directory.

Dumping the Trace Buffer

The Win95 execution host provides the DP function to be used for real-time debugging.

This is described in Part C of Book 4, Software Tools. The tmgmon tool enables you to

dump the DP buffer. The Tracep button at the lower left of the tmgmon TriMedia Mon-

itor window initiates a dump.

If the DP buffer is small, you can dump the DP buffer to the scrollable buffer on screen. If

the DP buffer is large (greater than 64K), the on-screen buffer is too small and Philips rec-

ommends dumping the DP buffer to a file. You can select file output by typing a filename

in the Trace File field of the TriMedia Monitor window and checking the box to its right.

Chapter 1: Compiling TriMedia Applications

20 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

Example

The following steps show you how to use tmgmon to run TriMedia programs and dump

the DP buffer:

1. Compile the program to run on Windows 95.

2. Enter the name of the program in the Filename field.

3. Enter arguments in the Arguments field.

4. Click Go.

5. Click Tracep.

The “Hello, goodbye from myecho” message appears on the screen.

#include <stdio.h>
#include <tmlib\dprintf.h>
main(int argc, char **argv){
 int i;

 DP_START(64000, Null);
 DP(("Debug Printf from myecho\n"));
 printf("\nhello / goodbye from myecho: \n");
 for(i=1; i<argc; i++)
 printf("%s ", argv[i]);
 return (0x47);
}
$ tmcc -o myecho -host Win95 myecho.c

Chapter 1: Compiling TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 21

1

You can also use tmgmon to pass arguments. For example, to run the sample program

“myecho,” type myecho in the Filename field, enter the arguments in the Arguments

field, and specify the standard output file (optional) in the Stdout field.

Running TriMedia Applications with tmrun

Use tmrun to download programs and run them on the TriMedia processor. This is a

Win32 console application that enables you to run programs in batch mode.

For example, to run the hello program, type the following:

Running TriMedia Applications with tmmon

The tmmon tool is a Win32 console mode application that provides a command-based

interface for executing programs on the TriMedia processor. It performs its functions

through calls to the documented TriMedia Manager interface.

When the program “myecho” compiles successfully, launch tmmon and load the pro-

gram using the ld command (type the arguments to pass after the program name).

Running TriMedia Applications with tmdbg

You can run TriMedia applications using the tmdbg TriMedia debugger. Refer to Part C

of Book 4, Software Tools for more information about using tmdbg.

tmrun Ðb hello

Chapter 1: Compiling TriMedia Applications

22 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

Running TriMedia Applications with tmmprun

The tmmprun application allows a multiprocessor application to be downloaded to a

set of IREF boards. This is a Win32 console application that enables you to run programs

in batch mode.

For example, to run the vivot demo application on the first processor and fplay on a sec-

ond one, type the following:

tmmprun -exec vivot -exec fplay

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 23

2
Chapter 2

Programming With pSOS

Topic Page

Introduction 24

A pSOS+™ Based Multiprocessor Example 27

Chapter 2: Programming With pSOS

24 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

This section describes an example of a simple pSOS application that creates pSOS tasks

then uses semaphores and asynchronous signals for communication between the tasks.

The example can be found in the TCS release, in the following directory:

 $TCS/examples/psos/psos_demo1

A pSOS Beginning

This example demonstrates the communication between the root task and two other

tasks via semaphores and asynchronous signals.

Note
The pSOS system timer must be started with a call to de_init in order to use
timed events, timeslicing, or the system clock. The root task will then print
“Hello, world.”

The Root Function

The root task creates two tasks, task1 and task2, and two semaphores, sem_enter and

sem_exit. In this file, sem_enter and sem_exit are stored as global variables, so that the

other functions can use them without first having to do sm_ident to get the semaphore

IDs. The two semaphores are initially set to 1 and decremented to 0 immediately by the

root task. Then task1 and task2 are started, which will produce the outputs “aaaaaaa”

from task1 and “catcher active” from task2.

void root(void){
 void *dummy;
 UInt32 rc, ioretval, iopb[4];
 int i;
 UInt32 task1, task2;

/* Start the pSOS system timer. This is almost always necessary, since
 * otherwise it is not possible to use timed events and timeslicing,
 * or the system clock */
 de_init(DEV_TIMER, 0, &ioretval, &dummy);

 printf("Hello, world\n");
 t_create("aaaa",
 4,
 10000,
 10000,
 0,
 &task1
);
 t_create("catc",
 100,
 10000,
 10000,
 0,
 &task2
);

Chapter 2: Programming With pSOS

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 25

2

Communication Using Semaphores

The root task and task1 (“aaaa”) will toggle back and forth ten times, as task1 increments

sem_enter and decrements sem_exit, and as the root task decrements sem_enter and

increments sem_exit. task1 prints “TOKEN SENT” and the root task prints “TOKEN

RECEIVED” in each iteration.

 sm_create("semp",
 1,
 SM_PRIOR,
 &sem_enter
);
 sm_create("semv",
 1,
 SM_PRIOR,
 &sem_exit
);
 sm_p(sem_exit, SM_WAIT, 0);
 sm_p(sem_enter, SM_WAIT, 0);

 t_start(task1, T_PREEMPT | T_TSLICE | T_ASR | T_ISR, aaaa, 0);
 t_start(task2, T_PREEMPT | T_TSLICE | T_ASR | T_ISR, catc, 0);

 for(i=1; i<10; i++){
 sm_p(sem_enter, SM_WAIT, 0);
 sm_v(sem_exit);
 printf("TOKEN RECEIVED\n");
 as_send(task1, 1);
 as_send(task2, 1);
 }

 sm_delete(sem_enter);
 sm_delete(sem_exit);

 printf("Goodbye, world\n");

 t_suspend(0L);
}

void aaaa(){
 int err;

 printf("aaaaaaa\n");
 as_catch(handler, T_PREEMPT | T_TSLICE | T_ASR | T_ISR);

 do{
 err = sm_v(sem_enter);
 err |= sm_p(sem_exit, SM_WAIT, 0);
 printf("TOKEN SENT\n");
 } while(!err);

 printf("bbbbbbb\n");
 _psos_exit(0);
}

Chapter 2: Programming With pSOS

26 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

Communication Using Asynchronous Signals

At the same time, the root task communicates with both tasks, “aaaa” and “catch” via

asynchronous signals. At each iteration of the above loop, the root task sends an asyn-

chronous signal to each task, which is caught by handler. The handler prints “BOEM”

and exits via as_return.

A pSOS Ending

This demo ends when the root tasks comes out of the for loop and deletes the two sema-

phores. task1 (“aaaa”) then get errors accessing sem_enter and sem_exit, and also exits

its do-while loop, indicated by its output “bbbbbbb”. After printing “Goodbye, world,”

the root task suspends itself, and task1 finishes the demo by calling _psos_exit, so that

pSOS will kill all tasks and exit.

void handler(){
 fprintf(stderr, "******************BOEM\n");
 as_return();
}
void catc(){
 printf("catcher active\n");
 as_catch(handler, T_PREEMPT | T_TSLICE | T_ASR | T_ISR);
 t_suspend(0L);
}

Chapter 2: Programming With pSOS

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 27

2

A pSOS+™ Based Multiprocessor Example

This section will describe an example of a pSOS+™ based multiprocessor application that

uses pSOS queues and DMA for passing data streams between nodes. The example can be

found in the TCS release, in the following directory:

$TCS/examples/multiprocessing/data_streamer

The global structure of the application will be as follows. One of the nodes (number 0)

will serve as a producer of a stream of fixed size packets. All other nodes will consume

the packets that they can get from this stream. Hence, the application can be run with

two or more processors. Figure 2 shows an n-node configuration.

Figure 2 N-Node Configuration

Starting Development

To start development, you must first set up a pSOS+™ application. This is started by

copying directory $(TCS)/examples/psos/psos_demo1 into a new development directory.

First, the Makefile is adapted to point to the used TCS installation by changing the TCS

macro: TCS = /t/qasoft/build/SunOS.

Next, the desired application name and multiprocessor pSOS are selected by setting:

Finally, a DMA transfer function is placed into a separate C file called transfer.c. Hence,

the corresponding object name is added to the OBJECTS macro so that it can be compiled

and linked in building the application.

Number of Executables to Build

Although the multiprocessor data streamer application can be run with an arbitrary

number of processors, it is not necessary to create more than two executables. We need

one executable defining the producer and one generic executable defining all of the con-

APPLICATION = data_streamer.out
PSOS = psosm

 OBJECTS= \
 $(OBJDIR)/root.o \
 $(OBJDIR)/drv_conf.o \
 $(OBJDIR)/transfer.o

Producer at 0

Producer at 1

Producer at n–1

Producer at i

Chapter 2: Programming With pSOS

28 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

sumers. In this two-executable configuration, we would be able to start execution by

loading the producer at node 0 and copies of the consumer at all other nodes.

The following example shows the tmmprun command that starts a 3-node system with

two such executables. This command allocates three TriMedia processors (defined by the

number of -exec options numbers them 0, 1 and 2), and starts them with the specified

executables:

Note
The node numbering provided by tmmprun is only a logical numbering:
producer.out runs at node 0 only because it was named in the first exec
option. Similarly, the two consumers run at nodes 1 and 2.

In this example, however, only one executable will be developed. This executable will

make use of the global variable _node_number, which is set by tmmprun in the down-

loaded executable for each of the nodes, in order to hold its own logical node number.

Based on the node number, the executable will configure itself as the producer, or as one

of the consumers. Note that the advantage of this decision is that only one executable

need be maintained, but at the cost of some redundant code on each node (producer

nodes will have unused consumer code loaded, and vice versa). The tmmprun com-

mand for one generic executable will be as follows:

The Root Function

The decisions in the previous section will shape the root function as listed below. Only

one task is needed per node, so the root function does not create tasks. Instead, the root

task itself will do the producing/consuming work (note that one copy of pSOS including

the root task will be started for each of the nodes).

For communication and synchronization, two pSOS queues are needed. One queue is

filled with produced packets by node 0; all other nodes obtain their packets by reading

from this queue. The second queue returns the emptied packets to node 0. During ini-

tialization, the empty queue is pre-filled with a fixed number of packets.

Node 0 will create the two queues, each as a Q_GLOBAL, because they need to be accessed

from other nodes. Specifying Q_GLOBAL in q_create will register the queue names in the

pSOS global name table, so that other nodes can look them up using q_ident. Note that

the producer nodes start with polling until the queues have been created by node 0.

tmmprun -exec producer.out -exec consumer.out -exec consumer.out

tmmprun Ðexec data_streamer.out Ðexec data_streamer.out
 Ðexec data_streamer.out

extern Int _node_number;
static UInt32 full_packets;
static UInt32 empty_packets;
void root(){
 void *dummy;
 UInt32 ioretval;

Chapter 2: Programming With pSOS

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 29

2

Buffer and Packet Management, Caching Issues

Although pSOS queues can be used for data transfer, they are not recommended for high

volume data streams. For this reason, only pointers to packet buffers are passed in this

example. Packet buffers are allocated in the SDRAM of node 0, and it is the responsibility

of the consuming nodes to copy the packet buffer in their own efficient way after they

have read a buffer address from the global queue. As will be described in the next sec-

tion, they will use the tmDMA device library for this.

Because the packet buffers will be read over the PCI bus from node 0's SDRAM by the

consuming nodes, node 0 must take care to flush its data cache each time after having

“filled” a buffer. In case it would forget to do so, part of the data written to the buffer

might remain pending in node 0’s data cache, resulting in stale data being read by the

consumer who gets the buffer.

Conversely, because the consumers are going to use DMA for transferring the packet data

to their local copy buffers, these local buffers must be cache-invalidated. The TriMedia

DMA engine transfers to SDRAM without informing the data cache. Failing to invalidate

the cache of the local buffers might result in stale data cache contents being read instead

of the new SDRAM contents.

Flushing and invalidating the data cache contents that correspond to a memory range

can be performed using TCS library functions _cache_copyback and _cache_invalidate.

These functions are only allowed for memory ranges that do not share data cache pages

with system data, or data from other pSOS tasks.

A safe way to obtain such memory ranges is by function _cache_malloc. Therefore, the

producer node uses _cache_malloc for creating the packet buffers, and for similar rea-

sons, the consumer nodes use this function for allocating their local copy buffers.

This gives rise to the following implementation of the packet create function, and of the

producer-and-consumer loop. The producer continuously gets an empty packet from the

empty packet queue, “fills” it, flushes the data cache, and puts the packet address on to

the full packet queue. Each consumer continuously gets the address of a next full packet

 de_init(DEV_TIMER, 0, &ioretval, &dummy);

 if(_node_number == 0){
 /* Create queues named "EMPT" and "FULL" on node #0 */
 q_create("EMPT", 0, Q_GLOBAL|Q_NOLIMIT|Q_FIFO, &empty_packets);
 q_create("FULL", 0, Q_GLOBAL|Q_NOLIMIT|Q_FIFO, &full_packets);

 create_empty_packets();
 produce();
 } else { /* On all other nodes */
 /* wait until the send/receive queues have been received */
 while(q_ident("EMPT",0,&empty_packets)
 || q_ident("FULL",0,&full_packets)
){}
 consume();
 }
} /* never terminates */

Chapter 2: Programming With pSOS

30 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

on node 0, “transfers” its contents to its local copy buffer, and “uses” it. The next section

describes how quick, DMA-based “transfer” can be accomplished. Functions “fill” and

“use” are not described any further in this document (the example program “fills” with

dummy data, while “use”checks whether the proper data has been received).

Further note that q_send actually sends a 4-word message. Since this example only sends

pointers, only the first word of the message is used.

DMA Transfer

This section concludes with a specialized DMA transfer function for this multiprocessing

example. It is specialized, because it makes the following assumptions:

1. The parameter local is an address in the SDRAM of the processor calling this function.

2. The parameter remote is an address in the PCI space of the processor calling this func-

tion.

static void create_empty_packets(){
 Int i;

 for (i=1; i<=NROF_PACKETS; i++) {
 UInt32 message[4];
 message[0]= (UInt32)_cache_malloc(PACKET_SIZE);
 q_send(empty_packets, message);
 }
}
static void produce(){
 while (True) {
 UInt32 message[4];
 Char *packet_ptr;

 q_receive (empty_packets, Q_WAIT, 0, message);
 packet_ptr= (Char*)message[0];
 fill (packet_ptr);
 _cache_copyback (packet_ptr, PACKET_SIZE);

 q_send (full_packets, message);
 }
}
static void consume(){
 Char *local_buffer;

 local_buffer= (Char*)_cache_malloc(PACKET_SIZE);
 _cache_invalidate(local_buffer,PACKET_SIZE);

 while (True) {
 UInt32 message[4];
 Char *packet_ptr;

 q_receive (full_packets, Q_WAIT, 0, message);
 packet_ptr = (Char*)message[0];
 transfer(local_buffer, packet_ptr, PACKET_SIZE);
 use (local_buffer);
 q_send (empty_packets, message);
 }
}

Chapter 2: Programming With pSOS

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 31

2

3. The memory range defined by parameters local and size does not have a pending

write in the data cache.

4. The memory range defined by parameters local and size can be invalidated by this

function (e.g, it has been obtained by _cache_malloc).

Note
The example uses this function according to these assumptions. Particularly,
assumption 3 is fulfilled because the local copy buffer is invalidated
immediately after allocation, and is never written to afterwards.

If the memory range defined by parameters local and size does not have a pending write

in the data cache cannot be guaranteed, a cache invalidation is necessary also before the

DMA dispatch, because otherwise a data cache page replacement could cause memory

contents which was just placed into SDRAM by the DMA engine to be overwritten by

stale memory updates.

static Int dma_instance;
static Bool dma_opened = False;

void transfer(Char *local, Char *remote, Int size){
 dmaRequest_t request;

 if (!dma_opened) {
 dmaOpen(&dma_instance);
 dma_opened= True;
 }
 request.slack_function = Null;
 request.completion_function = Null;
 request.nr_of_descriptions = 1;
 request.mode = dmaSynchronous;
 request.done = False;

 request.descriptions->direction = dmaPCI_TO_SDRAM;
 request.descriptions->source = remote;
 request.descriptions->destination = local;
 request.descriptions->length = size;
 request.descriptions->nr_of_transfers = 1;

 dmaDispatch(dma_instance, &request);
 _cache_invalidate(local,size);
}

Chapter 2: Programming With pSOS

32 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 33

3

Chapter 3

Using the Dynamic Loader on TriMedia

Topic Page

Introduction 34

Dynamic Loading Basics 34

Dynamic Loader Example 35

Chapter 3: Using the Dynamic Loader on TriMedia

34 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

This section describes an example of an application using dynamic loading, in the form

of a simple pSOS-based command dispatcher. The example can be found in the TCS

release, in the following directory:

$ (TCS) /examples/dynamic_loading/dynamic_loader_shell

Dynamic Loading Basics

A dynamic loading code segment is specified by passing -btype dynboot to tmld. When -

btype is not specified, tmld produces a boot code segment by default. All TriMedia pro-

grams that do not use dynamic loading are boot code segments.

To use dynamic loading, specify -btype dynboot as an option to tmcc when you compile

a TriMedia executable. When you use dynamic loading with pSOS, first set the macro

DYNAMIC in the pSOS application makefile to dynamic. This will add an option

 Ðbembed $ (PSOS_SYSTEM) /sys/os/ $ (PSOS) _tm_$ (ENDIAN).dll

to tmcc when linking the executable, which will automatically specify -btype dynboot.

(Refer to $ (TCS) /examples/dynamic_loading/dynamic_loader_shell/Makefile).

A dynboot code segment has the ability to load app and dll code segments, whereas a

boot code segment cannot. The difference between an app and a dll is that an app must

be explicitly loaded, while a dll is implicitly loaded when its exported symbols are

accessed from another code segment (dynboot, app, or dll).

A dynboot code segment can load app code segments explicitly by a call to

DynLoad_load from the DownLoader API specified in tmlib/DownLoader.h. Similarly, a

call to DynLoad_unload will unload the app code segment. (Refer to $ (TCS) /examples/

dynamic_loading/dynamic_loader_shell/root.c).

Note
Code segments for dynamic loading (dynboot, app, dll) cannot be compiled
with -g for debugging because tmdbg does not currently support dynamic
loading.

Chapter 3: Using the Dynamic Loader on TriMedia

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 35

3

Dynamic Loader Example

This demo contains a simple pSOS based command dispatcher (root.c), in addition to

three sample demo commands (latency.c, task_demo.c and print_args.c).

Root.c will be compiled and linked with pSOS into a code segment of type dynboot, and

is able to load, run, and unload code segments of type app. The app programs have an

entry point similar to main (argc,argv), and are not self-contained; they must be loaded

by a tm1 program (a dynboot code segment) that is currently running. (Refer to the

implementation of latency, task_demo, and print_args.) The app programs cannot be

loaded and run directly using tmsim or tmmon. Note that apps lack all of the system

libraries (libraries for I/O using printf, or the pSOS library). For example, tmsize on

print_args will reveal that its text segment contains only 512 bytes, which is consider-

ably smaller than normal executables of type boot or dynboot. System libraries are con-

tained by the command dispatcher, and will be connected during dynamic loading.

After they are connected, they can be used normally by the application.

Starting Development

Since dynamic_loader_shell is a pSOS application, dynamic loading can be set up by set-

ting the macro DYNAMIC to dynamic in the Makefile (as shown below).

The macro value dynamic links in the dynamic loader, allowing the command dis-

patcher to dynamically load the application files.

The app code segments to be dynamically loaded are print_args, task_demo, and latency.

They are compiled with -btype app as options to tmcc, which will pass it directly to

tmld.

The Root Function

In the root function, the command dispatcher repeatedly accepts a command string, and

interprets the first word in this string as the name of an object file ending with a .app

extension. A task is created for running the command, and the command string is passed

in argc/argv format to this task.

DYNAMIC = dynamic

print_args.app: $ (OBJDIR) /print_args.o Makefile
 @ echo ÒLinking print_args.appÓ
 $ (CC) $ (CINCS) -btype app
 $ (OBJDIR) /print_args.o \
 $ (LDFLAGS) $ (CFLAGS) -o print_args.app

void
root(void){
 void *dummy;
 UInt32 rc, ioretval, iopb[4];
 Int i;
 UInt32 task1, task2;

Chapter 3: Using the Dynamic Loader on TriMedia

36 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

The Application Shell

The task started by root for each command entered is application_shell. After it starts, it

will attempt to load the code from argv[0], and when it succeeds, it will call its main

function with argc/argv. When application_shell terminates, the exit status is printed,

and the corresponding code is unloaded. In case pSOS tasks are created by the loaded

/* Start the pSOS system timer. This is almost always necessary, because
 * otherwise it is not possible to use timed events and timeslicing, or the
 * system clock: */

 de_init(DEV_TIMER, 0, &ioretval, &dummy);

 while (1) {
 UInt32 task;
 UInt32 arguments[4];
 Char buffer[200];
 Int argc;
 String *argv;

 /* Retrieve next command */
 printf(Ò> Ò);
 fflush(stdout);
 gets(buffer);
 strcpy(&buffer[strlen(buffer)],Ò Ò);

 /* Count number of arguments on command line */
 argc = count_words(buffer);

 if(argc > 0){
 /* Allocate space for argv plus a copy of the command string; this
 * will be passed to the application shell task and can be deallocated
 * as one unit */
 argv = (Pointer)malloc(argc*sizeof(Pointer)+strlen(buffer));
 strcpy((Pointer)(argv+argc), buffer);
 get_words((Pointer)(argv+argc), argv);

 /* After that, create a new task for the command to run on, and pass
 * it the argc/argv pair; Give it a priority of 231, which is higher
 * than this root task, otherwise the task will never run in tmsim
 * with its blocking input. The 10000's are the required sizes for
 * user- and system stack: */
 arguments[0] = (UInt32) argc;
 arguments[1] = (UInt32) argv;

 t_create(Òaaaa Ò, 231, 10000, 10000, 0, &task);
 t_start(task, T_PREEMPT | T_TSLICE | T_ASR | T_ISR,
 application_shell, arguments);
 }
 }
 _psos_exit(0);
}

Chapter 3: Using the Dynamic Loader on TriMedia

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part A 37

3

command, it is the responsibility of the command itself to make sure that all tasks have

been deleted (and certainly are not still executing) before root terminates.

Running dynamic_loader_shell

In addition to the three .app programs provided in this example, (print_args.app,

task_demo.app, and latency.app), any .app file in the other examples can be started

using the command dispatcher; the .app file will run in parallel with applications that

have previously started (but have not yet terminated), and will be scheduled by pSOS.

When running one or more applications, the interrupt latencies can be sampled by run-

ning the provided latency.app for a specified number of seconds (default duration is 10

seconds):

> latency.app 100

will check the interrupt latency for 100 seconds.

The following are more examples on how to run .app files in this command dispatcher:

> vivot.app

and

> patest.app

Also refer to other examples in the $ (TCS) /examples/dynamic_loading directory.

void
application_shell(Int argc, String * argv){
 Int run_status;
 DynLoad_Status load_status;
 DynLoad_Code_Segment_Handle module;

 load_status = DynLoad_load(argv[0], &module);

 if (load_status != DynLoad_OK) {
 printf(Ò** loading of `%s` failed with status %d\n Ò,
 argv[0], load_status);
 }else{
 run_status = ((Main_Function) module->start) (argc, argv);
 printf(Ò** `%s` done with status %d\n Ò, argv[0], run_status);
 DynLoad_unload(module->name);
 }
 free(argv);
 t_delete(0);
}

Chapter 3: Using the Dynamic Loader on TriMedia

38 Book 2—Cookbook, Part A ©1999 Philips Semiconductors 10/08/99

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 2—Cookbook
	Developing TriMedia Applications
	1: Compiling TriMedia Applications
	Introduction
	Build and Execution Hosts
	Build Hosts
	Execution Hosts

	Using tmcc to Compile TriMedia Applications
	Invoking tmcc
	Using tmcc Options
	Specifying Execution Hosts
	Compiling Multiple Files
	Specifying Endianness

	Predefined Macros

	Creating Makefiles
	Creating pSOS Makefiles
	Simple pSOS Application Makefile
	Porting This Makefile to nmake
	Linking With Other pSOS Libraries
	Using the pSOS Monitor

	Running TriMedia Applications
	Running TriMedia Applications with tmgmon
	Dumping the Trace Buffer
	Example

	Running TriMedia Applications with tmrun
	Running TriMedia Applications with tmmon
	Running TriMedia Applications with tmdbg
	Running TriMedia Applications with tmmprun

	2: Programming with pSOS
	Introduction
	A pSOS Beginning
	The Root Function
	Communication Using Semaphores
	Communication Using Asynchronous Signals
	A pSOS Ending

	A pSOS+™ Based Multiprocessor Example
	Starting Development
	Number of Executables to Build
	The Root Function
	Buffer and Packet Management, Caching Issues
	DMA Transfer

	3: Using the Dynamic Loader on TriMedia
	Introduction
	Dynamic Loading Basics
	Dynamic Loader Example
	Starting Development
	The Root Function
	The Application Shell
	Running dynamic_loader_shell

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

