

Version 2.1

AB

Book 2—Cookbook

Part D:

Optimizing TriMedia Applications

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part D

iii

Book 2—Cookbook
Part D: Optimizing TriMedia Applications

Table of Contents

Chapter 10 Porting and Optimizing Programs

Introduction... 8

Porting Considerations .. 8

Library and System-Calls Support ..8

Floating-Point Computations ..9

File I/O ...9

Performance Tuning ... 9

Profile-Driven Compilation .. 11

Grafting Based on Profile Information ... 12

Loop Optimization .. 15

Remove If Statements and Conditional Expressions.. 15

Parallel Reduction Loops .. 17

Use MUX on Variable Length Loops ... 18

Apply Strength Reduction ... 19

Move Externals and Reference Parameters to Locals... 22

Remove Function Calls .. 23

Pay Attention to Compile Time .. 25

Use #pragma TCS_break_dtree.. 26

Loop Fusion ... 28

Replace || by | .. 28

Replace && by & or IZERO... 29

Using Software Pipelining.. 29

Use TriMedia Style Booleans in Critical Parts of the Code 30

Manual Loop Unrolling ... 30

Manual Loop Unrolling Versus Grafting .. 31

Using Restricted Pointers ... 33

Using Custom Operators .. 36

Graft-Tuning Parameters .. 37

Using Profiling and Grafting .. 38

Using Unsafe Alias Analysis ... 40

Using a Dirty Float ... 43

Using Cache Optimization ... 44

Vary the Right-Most Array Index in the Inner Loop .. 44

Pack Data as Tightly as Possible ... 46

Table of Contents

iv

Book 2—Cookbook, Part D

©1999 Philips Semiconductors 10/08/99

Trade CPU Cycles for Cache Cycles.. 47

Watch for Cache Set Hotspots .. 48

Blocking .. 49

Two-Level Blocking... 50

Watch for Data Cache Bank Conflicts ... 51

Summary .. 53

Chapter 11 System Programming Support

Programming Support... 56

Interrupt Service Routines and Exception Handlers .. 56

User View .. 56

Saving/Restoring Behavior .. 58

Declaring Interrupt Service Routines ... 59

Usage Notes .. 59

Interrupt-Latency Support ... 60

Supporting Cache Control ... 61

Using MMIO Locations ... 63

Chapter 12 Case Studies

Introduction... 66

Special-Purpose Block Filter ... 66

Fixed-Point Arithmetic ... 68

IFIR16 Custom Operations .. 69

Dual-Phase Loop ... 70

Critical Path .. 71

Algebraic Transformation.. 73

Balancing the Critical Path .. 74

More Unrolling .. 75

Matrix Transpose... 77

Divide and Conquer.. 78

Using Custom Operations ... 79

Inlining and Shrink-Wrapping.. 80

Cache Alignment... 82

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part D

v

Discrete Cosine Transform (DCT) ... 83

What is a Transform? .. 83

How the DCT Works .. 85

Computation of a 1D DCT and Its Inverse .. 86

Computation of a 2D DCT .. 87

Computation of the 2D IDCT ... 88

Separability .. 89

Fast Computation of an Eight Point DCT .. 89

TriMedia Implementation of an 8 x 8 DCT.. 92

Coefficients and Rounding .. 93

Horizontal DCT ... 95

Vertical DCT ... 96

Packing .. 97

Computation of the Inverse DCT ... 97

Coefficients .. 99

Constants .. 99

Endianness ...100

Horizontal Inverse DCT ..100

Calculation of the Vertical DCT ...102

I Frames and P Frames ...102

Results ...103

 IIR Filter ..103

Introduction ..103

Includes and Macros ..104

Optimization for Floating Point(Second Order, One Channel)105

Optimization for Fixed Point Integer (Second Order, One Channel)111

Further Optimization (4th Order, One Channel and Two Channels)115

Performance Summary ...120

Chapter 13 Interrupt Latency Support

Overview...124

Terminology...124

Reasons for Long Interrupt Latencies ...126

Clearing the IEN...128

Changing the Global Interrupt Priority ..128

Individual Disabling ...128

Preventing Task Preemption...129

Table of Contents

vi

Book 2—Cookbook, Part D

©1999 Philips Semiconductors 10/08/99

Interrupt Latency Sampling..129

Using the Sampler ..130

Detection of Latency Violators ...130

Breaking Decision Trees: #pragma TCS_break_dtree ..131

Latency Sampler Code ...131

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part D

7

10

Chapter 10

Porting and Optimizing Programs

Note

The examples contained in this chapter at time of publishing are obsolete.
Check release notes for additional information.

Topic Page

Introduction 8

Porting Considerations 8

Performance Tuning 9

Summary 53

Chapter 10: Porting and Optimizing Programs

8

Book 2—Cookbook, Part D

©1999 Philips Semiconductors 10/08/99

Introduction

This chapter provides guidelines for porting and optimizing performance tuning. It

describes various optimization methods supported by the TriMedia Compilation System

as well as techniques for exploiting the fine-grain parallelism of the TriMedia architec-

ture. This version of the cookbook differs from previous versions because of the new ver-

sion 2.0 compilation tools. The new compiler is capable of doing optimizations

automatically, while in the previous version they had to be done by the programmer.

These changes are summarized at the end of this chapter.

Porting Considerations

You should use ANSI Standard C when developing applications for TriMedia processors.

The implementation of the TriMedia C compiler is based on the following standards:

■

American National Standard for Programming Languages—C

, ANS X3.159-1989 and

ISO/IEC 9899:1990

■

Technical Corrigendum 1 (1994) to

 ISO/IEC 9899:1990

Additionally, the compiler supports the concept of

restricted pointers

, as proposed by the

Numerical C Extensions Group

 in X3J11/95-049, WG 14/N448

This document is available from ftp: //ftp.dmk.com.DMK/sc22wg14/c9x/aliasing. Book

4, Part A, of

Software Tools

 discusses compatibility issues, C language extensions, and

implementation-dependent features.

Library and System-Calls Support

The language implementation supports the standard C library, as defined in the ANSI/

ISO C Standard. No other libraries are supported. For example, programs using X11

libraries or Sun-specific libraries do not compile with the TriMedia Compilation System.

The following library and system calls are implemented as traps by simulator

tmsim

;

that is,

tmsim

 uses the corresponding library and system call routine on the host proces-

sor to simulate the routine.

 _close _fstat _isatty _link _lseek _mktemp,
 _open _read _unlink _write getenv time

The system call names all begin with “

_

” because of ANSI C Standard name space

requirements. Because many traditional C programs use system call names without a

leading “

_

” (for example,

read

 rather than

_read

), the C library includes stubs that per-

form the desired renaming (for example, defining

read

, which simply executes

_read

).

You should always include the appropriate header file (<fcntl.h> for

open

, <sys/stat.h>

for

 fstat

, and <unistd.h> for the remaining system calls) when compiling a program that

uses system calls directly.

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part D

9

10

Floating-Point Computations

All floating-point data types (

float,

double,

 and

long double

) are single precision and

have the same range of values in the current compiler and TriMedia processor. Therefore,

you should use

float

 instead of

double

 or

long double

.

You should be aware that the results of floating-point computations performed on a

Sparc or other workstation can differ from the results of computations performed on a

TriMedia processor or simulator. Many compilers automatically convert

float

 to

double

during expression evaluations and function calls, especially when the compiler cannot

find the function prototype.

File I/O

Applications should employ batch processing and use only file-based input. Output can

be sent to the standard output stream, to the standard error stream, or to files.

Performance Tuning

Use the following techniques and tools to improve program execution times:

The measure used to determine the performance of the following examples is the num-

ber of clock cycles required to perform a certain function. A general optimization goal is

to minimize this number. This can be achieved by increasing the so-called instruction

level parallelism of the code (later on referred to as ILP). The TriMedia processor is capa-

ble of executing up to five operations concurrently. The ILP tells how many useful oper-

ations are executed on average. If the profiling tool

tmprof

 is used with the

-detail

option, the ILP is reported in the last column of the profiling result.

Some optimization techniques may result in an increased code size, which means that

the overhead of a function increases, because the code needs to be loaded into the

instruction cache before its execution. Several optimization trade-offs are discussed in

the following examples.

The function in Figure 1 computes the convolution of two character arrays. The four

drawings in the comment shows what is happening.

The

a

 array has 400 and the

b

 array has eight elements (first drawing). The a and b arrays

are scanned in reverse order (second drawing). Conceptually, the

b

 array is slid past the

a

array multiplying element by element (third drawing). As shown in the fourth drawing,

it is necessary to pad the array on the left side of the

a

 array to implement sliding. The

a

• Profile-driven compilation • Decision-tree grafting • Custom operators

• Loop unrolling • Restricted pointers • Unsafe alias analysis

• Fine tuning of grafting • Cache optimization • Cache instructions

• Dirty float option • Loop optimization

Chapter 10: Porting and Optimizing Programs

10

Book 2—Cookbook, Part D

©1999 Philips Semiconductors 10/08/99

array is indexed from –7 to 399. The right padding shown is needed for the optimiza-

tions that will be explained subsequently.

Although faster algorithms for computing the convolution exist, the code demonstrates

the utility of profiling, grafting, loop unrolling, and custom operators. A number of dif-

ferent transformations of this convolution function using the listed techniques for

improving the performance are presented throughout this chapter. The full program,

including the different versions of the convolution function, is included in the software

release directory

examples

.

We start by making optimal use of the processor’s computing resources. In particular, we

increase the level of parallelism by enlarging the number of operations in decision trees

and by removing irrelevant dependencies between these operations. The required tech-

niques are grafting, loop unrolling, and improving the compiler’s alias analysis with

restricted pointers.

When you use these techniques, you might reach the stage at which the processor is sat-

urated. The processor’s computing resources—the number and configuration of the

available functional units—limit application performance.

This performance limit applies to the application only as it is formulated by you and

compiled by the compiler. To further improve performance, you must either find

another implementation (change the formulation of the algorithm) or invoke the global

optimizer (change the way the application is compiled).

/* fir1.c ÐÐ (part)
 *
 * convolution of 2 8Ðbit integer arrays (a & b) of length 400 & 8, resp.
 * Rough pictorial description of the process.
 *
 * |ÐÐÐÐÐÐÐÐ|ÐÐÐÐÐÐÐÐ|ÐÐÐÐÐÐÐÐ|ÐÐÐÐÐÐÐÐ| a[400]
 *
 * |ÐÐÐÐÐÐÐÐ| b[8]
 *
 * |ÐÐÐÐÐÐÐÐ|ÐÐÐÐÐÐÐÐ|ÐÐÐÐÐÐÐÐ|ÐÐÐÐÐÐÐÐ| a
 *
 * |ÐÐÐÐÐÐÐÐ| time reversed b
 *
 * |ÐÐÐÐÐÐÐÐ|ÐÐÐÐÐÐÐÐ|ÐÐÐÐÐÐÐÐ|ÐÐÐÐÐÐÐÐ| a
 *
 * |ÐÐÐÐÐÐÐÐ| time reversed
 * and sliding b
 *
 * Increase the length of array a so that vector of length 8 could be
 * prepended and appended. With this additional zeros, separate handling
 * of beginning and end of data is avoided.
 *
 * |00000000|ÐÐÐÐÐÐÐÐÐ|ÐÐÐÐÐÐÐÐÐ|ÐÐÐÐÐÐÐÐÐ|ÐÐÐÐÐÐÐÐÐ|00000000|
 *
 * |<ÑÑ Original length 400 array a ÑÑÑ>|
 *
 * These arrays hold the result of convolutions. Actual required output
 * array length = 400 + 8 Ð 1 = 407, but our modified algorithm calculates
 * one unnecessary element. To handle this, output array length has been
 * increased by 1 */

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part D

11

10

Figure 1

Convolution Example (Part of Example firl.c)

Profile-Driven Compilation

The TriMedia Compilation and Simulation system facilitates the

compile-profile-recompile

cycle of performance tuning. First, you compile the program using the compiler driver

tmcc

 with the

-p

 option (write profiling information to file dtprof.out). Next, you simu-

late program execution using the machine-level simulator

tmsim

. Then, you recompile

the program with

tmcc

, using either the

-r

 option (profile-driven compilation) or the

-G

option (profile-driven compilation with grafting).

Note

Profiling also works on the hardware.

The first optimization step is to obtain profile information about the program and iden-

tify the most frequently executed parts of the program. After the most frequently exe-

cuted parts of the program are identified, you can perform grafting and loop unrolling

and can use restricted pointers to remove spurious dependencies. (Function inlining is

not currently supported.)

The following procedure illustrates both how to perform profiling, and how to use

tmprof

 to summarize execution statistics:

1. Compile the source modules using

tmcc

 with the

-p

 option. Do not use the

-G

 and

-r

options at this stage. (With the

-p

 option, the compiler instruments the user program

with code to determine decision-tree execution counts and branch probabilities.)

2. Use

tmsim

 to simulate the instrumented program, which generates the profile infor-

mation in file dtprof.out

.

 Use the option

-nomm

 to switch off the simulation of the

memory model and save execution time.

3. Recompile the source modules

with

 the

-r

 option and

without

 the

-p

 option. This

causes the generated decision trees to be free of profiling code. Assuming the input

was representative, recompilation based on profiling adds branch probabilities in the

new decision-trees file. It is important not to change the source code because the pro-

filing information is based on the control-flowgraph of the program. When the

source code changes during the generate-profile and read-profile compilations, the

profiles do not match and the profile is ignored.

#define NROF_SAMPLES 400

void
direct_convolution(char *a, char *b, int *c){
 int k, j;

 for(k = 0; k < NROF_SAMPLES; k++){
 c[k] = 0;
 for(j = 0; j < 8; j++)
 c[k] += b[j] * a[k Ð j]; /* a is shifted 8 in the call*/
 }
}

Chapter 10: Porting and Optimizing Programs

12

Book 2—Cookbook, Part D

©1999 Philips Semiconductors 10/08/99

4. Run

tmsim

 with the

-statfile

 option to save the execution statistics and since -nomm

is not used, memory mode is simulated.

5. Run

tmprof

 with the

-func

 option to generate a report for each function in the pro-

gram. The

-scale 1

 option tells

tmprof

 to report the cycle count without scaling.

The following commands generate a summary report for the program fir1.c:

The report produced by this sequence of commands is as follows. Note that the values

printed differ depending on the version of the TCS:

The report shows only the functions that belong to the program code shown. The real

tmprof output contains several more functions including the startup and library func-

tions. Their contribution is about 14000 clock cycles in this case. They are omitted for

because they are not subject to optimization. The tmprof output shows the total number

of cycles executed for each function, and the stall cycle contribution of both the instruc-

tion-cache and data-cache.

Because the function

direct_convolution

 in the source module fir1.c takes about 68% of

the total cycles, it is the one to be optimized. The next sections show how to get a fur-

ther performance gain.

If one compares this simulation result with the corresponding one from the version 1.1

compiler, it can be seen that the function direct_convolution is 14% faster now. The rea-

son for this is that the new compiler performs automated loop unrolling. The resulting

code consists of larger basic blocks and imposes less overhead due to jumps.

Grafting Based on Profile Information

Grafting increases parallelism within decision trees. This technique replaces any jump

with a copy of the destination tree and thus “grows” larger decision trees. As a result, the

program size increases.

The core compiler

tmccom

generates an intermediate representation of a program

known as a decision-tree representation

1

. Decision trees are derived from basic blocks. A

basic block is a sequence of instructions with no jumps into it, except to the first instruc-

tmcc Ðp fir1.c Ðo fir1 /* Generate program with profiling on.*/
tmsim Ðnomm fir1 /* Simulate interm code & gen. dtprof.out.*/
tmcc Ðr fir1.c Ðo fir1 /* Recompile using profile information.*/
tmsim Ðstatfile fir1.stat fir1 /* Simulate & collect accurate cycle info.*/
tmprof Ðscale 1 Ðfunc fir1.stat /* Output is sent to stdout.*/

Function Executions Total Cycles MIPS I-Cycles D-Cycles
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ
_direct_convolution 1 29322 67.89 58 460
_main 1 102 0.24 87 0
ÑÑÑ
total/average 226 43188 100.00 10112 1483

1. You can generate an example decision tree by compiling a program using

tmcc

 with the -t option.

tmcc

 -t
foo.c produces a file foo.t with machine-like operations, see Chapter 4,

Using the Instruction Scheduler

, of

Software Tools

.

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 13

10

tion and no jumps out except at the last instruction. Basic blocks are connected to one

another by conditional or unconditional jumps. It is well known that basic blocks

derived from typical C code are small and not much parallelism within basic blocks

exists to be exploited. Furthermore, frequent branching behavior would result in

underutilization of processor resources.

A decision tree is similar to a basic block in that the decision tree can be entered only at

the beginning. However, a decision tree can have multiple exits. (Chapter 4, Using the

Instruction Scheduler, of Software Tools defines the syntax and semantics of decision trees.)

Decision trees are larger than basic blocks and potentially have more fine-grain parallel-

ism that can be exploited during optimization.

Figure 2 shows a decision tree ending in a branch. The actual operations in the tree are

not important for this example. The decision tree __ip_DT_1 has two exits, one leading

back to itself (gotree {__ip_DT_1}) and the other leading to another decision tree (gotree

{__ip_DT_2}).

Figure 2 Example of a Decision Tree Ending in a Branch

Notice the back edge from __ip_DT_1 to itself has a probability of 0.98. This statistic is

derived from a profiling run. The compiler can do a better job of grafting if it has infor-

mation about decision-tree execution counts and branch probabilities. In this case, the

decision tree __ip_DT_1 has an execution count of 50 (the first number after the label). If

grafting is enabled, the compiler replaces the instruction “gotree {__ip_DT_1}” with a

copy of the tree __ip_DT_1, doubling the size of the decision tree __ip_DT_1.

 shows a schematic of the same tree after it is grafted. The scheduler can decide where to

place code and when to use guarded execution if it has information about branch proba-

{__ip_DT_1:}
tree (50)
 2 rdreg (12);
 1 ld32 2;
 4 rdreg (11);
 6 rdreg (10);
 7 ld32x 6 4;
 9 rdreg (9);
 10 ld32x 9 4;
 11 imul 7 10;
 12 iaddi(1) 11
 13 st32 2 12
 after 10 7 1;
 14 iaddi (1) 4;
 15 wrreg (11) 14
 after 4;
 16 ilesi (50) 14;
 if 16 (0.980000) then
 gotree {__ip_DT_1}
 else (16)
 gotree {__ip_DT_2}
 end (16)
endtree (*__ip_DT_1*)

Chapter 10: Porting and Optimizing Programs

14 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

bilities. You can also guide the compiler in its grafting decisions, discussed later in the

section.

Figure 3 Decision Tree After it is Grafted

It is important to note that grafting is a code-replication technique that eliminates

branches but increases the code size. It is a technique similar to loop unrolling, but does

not reduce the overhead of the loop as manual loop unrolling can. This is shown later

on.

You can improve performance of program fir1.c by grafting after profiling. The following

procedure performs the compile-profile-recompile cycle with grafting enabled after pro-

filing.

The report produced is as follows:

tmcc Ðp fir1.c Ðo fir1 /* Generate program with profiling on */
tmsim Ðnomm fir1 /* Simulate interm code and produce dtprof.out */
tmcc ÐG fir1.c Ðo fir1 /* Recompile using profile & perform grafting */
tmsim Ðstatfile fir1.stat fir1 /* Simulate & collect cycle accurate info */
tmprof Ðscale 1 Ðfunc fir1.stat /* Output is sent to stdout */

Function Executions Total Cycles MIPS I-Cycles D-Cycles
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ
_direct_convolution 1 28028 66.52 377 447
_main 1 102 0.24 87 0
ÑÑÑ
total/average 226 42133 100.00 10605 1498

IP_DT_0

IP_DT_0

F
T

F
T

F

T

Probability of
execution 0.02

Probability of
execution 0.92

Copy of the
original tree

Original Decision Tree

Grafted Decision Tree

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 15

10

We discover that the execution time of the grafted version of direct_convolution

improved by 4.5% over the ungrafted version. However, the number of stall cycles in the

instruction cache increased, which is due to the increase in code size. We discover this

when we list the size information of fir1.o with tmsize the text size increased from 712

bytes to 1855 bytes. It appears that grafting is a valuable tool for easy performance incre-

ments, but that a trade-off has to be made between performance gain and code size

increase. Graft-Tuning Parameters on page 37 describes how grafting can be customized

with a grafting parameter file. Note that in the previous versions of the documentation a

performance gain of 18% was achieved by applying grafting. The version 2.0 compiler

performs so called automated loop unrolling which compensates the advantages of graft-

ing. In many cases it makes grafting unnecessary.

Loop Optimization

You perform loop optimization by moving critical code off the control flow path so that

the inner loops of the program can be reduced to a single decision tree. This section

describes several techniques to achieve loop optimization, such as loop nesting, using

gotos, and dtree breaks. Most of the techniques described here are automatically per-

formed by the compiler. This section gives you the information you need to give you

control over the number of decision trees when required.

Remove If Statements and Conditional Expressions

Frequently, you can transform code to eliminate if statements. For example

can be replaced by

There is a conditional expression in the following preprocessor macro:

You can eliminate it by using a TriMedia custom operation as follows:

The following preprocessor macro clips a floating point value between 10–38 and 1038:

if(pÐ>data < v) cnt = cnt + 1;

cnt = cnt + (pÐ>data < v);

#define abs(v) ((v) < 0 ? Ð(v) : (v))

#include <ops/custom_defs.h>
...
#define abs(v) IABS(v)

#define THRESHLO 1e-38
#define THRESHHI 1e38
#define MINFLOAT(x, y) ((x) < (y) ? (x) : (y))
#define MAXFLOAT(x, y) ((x) > (y) ? (x) : (y))
#define CLIP(x) MAXFLOAT(MINFLOAT(x, THRESHI), THRESHLO)

Chapter 10: Porting and Optimizing Programs

16 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Assuming the values are positive, you can eliminate the conditional expressions as fol-

lows:

Table 1 provides a list of such transformations. Most transformations are applied auto-

matically by the compiler. See notes 9 and 10.

Notes:

1. e2 should not contain side effects.

2. v must contain no side effects. If it is an indirection, the address must be valid.

3. float e1, e2. Values must be non-negative.

4. idem –=, *=, &=, |=, <<=, >>=, ...

5. idem –=, *=, <<=, >>=, ++, --.

6. idem >, >=, <=, ==, !=, &&, ||.

#include <ops/custom_defs.h>
...
#define MINFLOAT(x, y) FMIN(x, y)
#define MAXFLOAT(x, y) FMAX(x, y)
#define CLIP(x) MAXFLOAT(MINFLOAT(x, THRESHI), THRESHLO)

Table 1 Code Transformation

Original Code Transformed code Notes

if (e1) v += e2 v += INONZERO(e1, e2) 1,2,4,9

if (e1 < e2) v += 1 v += e1 < e2 1,2,5,6,9

if (e1) v = 0; v = INONZERO(e1, v) 1,2,9

(e1 ? e2 : 0) INONZERO(e1, e2) 9

if (e1) v = e2 v = INONZERO(e1, v–(e2)) + (e2) 1,2,9

(e1 ? e2 : e3) (e2 + INONZERO(e1, (e3)–(e2))) 1,2,9

if (e1) v = –v v = IFLIP(e1,v) 9

(e1 != 0 ? –e2 : e2) IFLIP(e1, e2) 9

if (v < 0) v = –v v = IABS(v)
v = FABS(v)

10

(e1<0 ? –e1 : e1) IABS(e1)
FABS(e1)

10

(e1<e2 ? e1 : e2) IMIN(e1, e2)
FMIN(e1, e2)

FMIN values
must be positive

(e1>e2 ? e1 : e2) IMAX(e1, e2)
FMAX(e1, e2)

FMAX values
must be positive

UMAX(e1, e2) 7

max(min(e1,e2), ~e2) ICLIPI(e1, e2) 8

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 17

10

7. unsigned e1, e2.

8. Clips to ~e2 .. e2.

9. This transformation is performed automatically by the compiler’s if-conversion algo-

rithm.

10.The compiler performs this automatically except when the argument types are float-

ing point.

Parallel Reduction Loops

The loop of Figure 4 is called a reduction because it reduces the dimension of a vector.

Many loops in multimedia and DSP applications are reductions. Operations such as com-

puting a vector sum or product are reductions. Scalar product computations are reduc-

tions also.

Figure 4 Maximum with FMUX

The program is using the floating point pseudo operation fmux which returns either the

second or third argument, depending on whether the first argument is true. Its function-

ality can be compared to the C language A ? B : C operator. Use mux(A, B, C) for non

floating point types.

Unrolling is of limited effectiveness on reduction loops because of the loop-carried

dependence on the scalar variable (for example, max). Unrolling the loop of Figure 4

four times produces less improvement in performance than using grafting (384 versus

338 cycles). You can optimize reductions by using the mathematical laws of commuta-

tivity and associativity to reorganize the order of computation.

In the program of Figure 5, four copies have been introduced for the reduction variable.

Four independent maximums are computed on four slices of the vector. You can reduce

the four results to a single operation using three FMUX operations. Table 2 compares the

performance of the two loops.

#include <stdio.h>
#include <ops/custom_defs.h>
float vecmax(float *a, int size) {
 float max = a[0];
 int i;
 for (i=1; i<size; i++) {
 max = fmux(a[i] > max, a[i], max);
 }
 return max;
}

#include <ops/custom_defs.h>
float vecmax(float *a, int size) {
 float max0 = a[0], max1 = a[1], max2 = a[2], max3 = a[3];
 int i;
 for (i=4; i<size; i+=4) {
 max0 = fmux(a[i] > max0, a[i], max0);
 max1 = fmux(a[i+1] > max1, a[i+1], max1);
 max2 = fmux(a[i+2] > max2, a[i+2], max2);

Chapter 10: Porting and Optimizing Programs

18 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Figure 5 Reduction Variable Copying

If you know the vector values to be non-negative use FMIN, FMAX and IMIN, IMAX

instead of FMUX and MUX; this saves instructions. Calculate integer minimum and maxi-

mum using IMIN and IMAX.

Floating point addition is not associative. You should not optimize reductions using

floating point addition if the result of the transformation must be bit exact.

Another interesting information that can be obtained from Table 2 is the influence of

the instruction cache. If a 100-element vector is used more cycles per element are

required than for a larger vector because the relative contribution of the initial load of

the code into the cache is higher.

Use MUX on Variable Length Loops

The program of Figure 5 was unrolled four times. If the vector length n is not a multiple

of the loop step m, the program does not work. There are a number of variable elements

equal to the remainder, n mod m.

You can deal with the variable elements by exploiting the mathematical properties of a

group. The identity i of a group is such that x op i = x for all elements. The intent is to

round up the number of elements to the loop step by appending values equal to the

identity element. For example, if a vector sum is being computed we round up by

appending trailing zeroes (x + 0 = x). If a vector product is being computed, we round up

by appending trailing ones (x × 1 = x). To round up the vector, (n mod m) elements need

to be added.

 max3 = fmux(a[i+3] > max3, a[i+3], max3);
 }
 max0 = fmux(max0 > max1, max0, max1);
 max2 = fmux(max2 > max3, max2, max3);
 return fmux(max0 > max2, max0, max2);
}

Table 2 Time to Calculate Maximum of 100 (1000) Element Vector

Total Cycles I$ Cycles Per Element

Reduction Using one FMUX 469 (2733) 203 (203) 4.69 (2.73)

Reduction Using four FMUX 313 (2338) 87 (87) 3.13 (2.34)

#include <ops/custom_defs.h>
#include <float.h>
#define STEP 4
float vecmax(float *a, int size) {
 int i, adj;
 float max0, max1, max2, max3;
 adj = size & (STEPÐ1);
 size &= ~ (STEPÐ1);
 max0 = fmux(adj>0, a[size], ÐFLT_MAX);
 max1 = fmux(adj>1, a[size+1], ÐFLT_MAX);
 max2 = fmux(adj>2, a[size+2], ÐFLT_MAX);

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 19

10Figure 6 Unrolling Variable-Length Loops

For a loop step of four, this corresponds to one to four elements. Figure 6 shows code for

calculating the maximum of a vector of arbitrary length. For each of the reduction vari-

ables (max0, max1, max2, max3), you need to make a selection between an element at

the end of the vector and the identity element. You can do this with an FMUX. The ini-

tialization code before the for does this. The identity for the operation being calculated

(the maximum) is negative infinity (max(x,–∞) = x). The identity for the minimum is

(+∞).

In Figure 6, the loop step must be a power of two. This allows a bitwise and (&) to replace

a modulus operation. The & has a single cycle latency. The number of iterations needs to

be rounded down to a multiple of the loop step. You can do this with an & also. Integer

division and modulus are 50 times slower.

Many DSP kernels are sum reductions for which the identity is zero. In such cases, you

should use the TriMedia custom operation IZERO to initialize the reduction variables

(max0, max1, max2, max3) instead of MUX and FMUX. It selects between zero and a value

in one instruction. Use FZERO for floating point types.

Table 3 compares performances of a 100-element (1000-element) vector maximum for a

four-way unrolled loop. Thirty-one cycles of overhead are necessary to deal with the

remaining elements.

Apply Strength Reduction

Figure 7 following shows two procedures to normalize a vector. In the program to the

left, the individual elements are divided by the sum of values. For 100-vector elements,

2964 instruction cycles are necessary for the program with global optimization. Floating

 max3 = ÐFLT_MAX;
 for (i=0; i<size; i+=STEP) {
 max0 = fmux(a[i] > max0, a[i], max0);
 max1 = fmux(a[i+1] > max1, a[i+1], max1);
 max2 = fmux(a[i+2] > max2, a[i+2], max2);
 max3 = fmux(a[i+3] > max3, a[i+3], max3);
 }
 max0 = fmux(max0 > max1, max0, max1);
 max2 = fmux(max2 > max3, max2, max3);
 return fmux(max0 > max2, max0, max2);
}

Table 3 Time to calculate Maximum of 100 (1000) Element Vector

Total Cycles I-Cache Cycles Per Element

Length a Multiple of Four 313 (2338) 87 (87) 3.13 (2.34)

Arbitrary Length 344 (2369) 116 (116) 3.44 (2.37)

Chapter 10: Porting and Optimizing Programs

20 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

point division requires 17 cycles on TriMedia. The divisions correspond to 1700 of the

cycles.

Figure 7 Vector Normalization Procedures

Floating point multiplication instead requires only three cycles and a new multiplication

can be started in every clock cycle. In the program to the right, the division is replaced

by a multiplication by the reciprocal. Doing so saves 14 cycles (17–3) per division. You

can calculate the reciprocal using a single division outside the loop. 99 of the 100 divi-

sions can be replaced by a multiplication. This corresponds to a reduction in the total

execution time of 1386 cycles (99×14). An optimization such as this, which replaces a

costly operator by a less expensive one, is called strength reduction. The result of the recip-

rocal followed by the multiplication can vary from the division in the low order bit.

Table 4 compares the performance of vector normalization with division and with multi-

plication. It reflects the overhead of the code loading into the instruction cache by com-

paring the numbers of cycles required to normalize a 100 and a 1000 elements vector.

Table 4 Time to Normalize 100 (1000) Elements (Floating Point)

Total Cycles Per Element

Normalization Using Division 2964 (24981) 29.6 (25.0)

Normalization by Multiplication by the Reciprocal 1489 (10906) 14.9 (10.9)

norm(float *a, int size){
 int i;
 float sum = 0.0;
 for(i=0; i<size; i++)
 sum = sum + a[i];
 for(i=0; i<size; i++)
 a[i] = a[i] / sum;
}

norm(float *a, int size){
 int i;
 float sum = 0.0, invsum;
 for(i=0; i<size; i++)
 sum = sum + a[i];
 invsum = 1.0 / sum;
 for(i=0; i<size; i++)
 a[i] = a[i] * invsum;
}

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 21

10

Figure 8 shows two programs to calculate the greatest common divisor (g.c.d.). The pro-

gram on the left calculates the g.c.d. using integer arithmetic.

Figure 8 Two programs to calculate greatest common divisor

There are 791 cycles necessary to calculate the g.c.d. Most of the time is spent in the sub-

routine _rt_imod. This subroutine calculates the remainder for signed integers. 605

cycles are spent for 10 executions of rt_imod, including 145 instruction cache cycles. The

rt_umod subroutine calculates the remainder for unsigned integers.

The program to the right uses floating point arithmetic. Calculating the remainder in

floating point requires 24 cycles. Seventeen cycles are required for the division, three are

required for the floating-point-to integer conversion, three are required for the multipli-

cation, and one is required for the subtraction. You need 385 cycles (including 58

instruction cache cycles) to calculate the g.c.d. There is a saving of 406 (406=791-385)

cycles for ten remainders (40.6 cycles per remainder) using floating point.

The g.c.d. of 12,381,203 and 41,231,207 is one. Both algorithms give the correct value.

The g.c.d. of 268,435,454 and 268,435,582 is two. The algorithm to the right of Figure 8

calculates a g.c.d. of 128. The value is incorrect because the values are outside the range

[–224, 224] (floating-point numbers have a precision of 24 bits).

Figure 9 shows two ways to subsample a vector with a 3:4 ratio. In the program to the

left, the array index is calculated uses an integer division and multiplication. The tmprof

output for subsampling a 100-element vector using the program on the left is shown

below.

Function Executions Total Cycles MIPS I-Cycles D-Cycles
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ
__rt_idiv 100 4445 24.06 145 0
_subsample 1 954 5.16 435 0
(...)

int gcd(int u, int v){
 unsigned t;
 if(u > v){
 t = u; u = v; v = t;
 }
 while(u > 0){
 t = u;
 u = v % u;
 v = t;
 }
 return v;
}
main(){
 (void)gcd(12381203,41231207);
}

int gcd(int u, int v){
 int t;
 if(u > v){
 t = u; u = v; v = t;
 }
 while(u > 0){
 t = u;
 u = vÐ(int)((float)v/u)*u;
 v = t;
 }
 return v;
}
main(){
 (void)gcd(12381203,41231207);
}

Chapter 10: Porting and Optimizing Programs

22 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Figure 9 Two ways to subsample a vector with a 3:4 ratio

Most of the time is spent in the subroutine rt_idiv. This subroutine implements division

for signed integers. 43 cycles are needed per call, not including call overhead. rt_udiv

implements division for unsigned integers. Note that for the algorithm to the right side

-tmccom -dirty_float 1 --

has to be used for the compilation to replace the quotient (4.0/3) by a constant.

Using the algorithm to the right, 449 cycles are necessary to subsample a 100-element

vector and 2922 for a 1000-element vector. The two algorithms compute the same value

for n < 224.

In both cases, the use of grafting was recommended in earlier versions of the cookbook.

With the version 2.0 compiler, this has changed. The automated loop unrolling makes

the grafting superfluous.

For a variable of signed type, replacing a division by 2n by a shift (>>) eliminates three

operations from the program and saves three cycles. The result differs by one from that

of the division operator (/) if it is negative and there is a remainder. Replacing x % 2n by

(x & (2n – 1)) eliminates three instructions and saves three cycles. The result is positive or

zero. Integer remainder produces a negative or zero result if the result of the division is

negative. If the variable is known to be non-negative, changing the type to unsigned

obtains the same effect automatically. The results of >> and & correspond to the mathe-

matical definitions of division and remainder.

Move Externals and Reference Parameters to Locals

You cannot allocate external variables to registers and require memory references.

Accesses have a latency of three cycles. Copying an external variable to a local variable

can improve performance substantially in time-critical parts of the code. Figure 10 shows

two ways of writing a program to push an array onto a stack. The stack pointer is con-

Table 5 Time to Subsample 100-Element (1000-Element) Vector

Total Cycles Per Element

Subsampling with Integer Divide and Multiply 5399 (48677) 54.0 (48.7)

Subsampling Using Floating Point 449 (2922) 4.5 (2.9)

subsample(char *a, char *b, int n){
 int i;
 for (i=0; i<n; i++)
 a[i] = b[i*4/3];
}

subsample(char *a, char *b, int n){
 int i;
 for (i=0; i<n; i++)
 a[i] = b[(int)(i*(4.0/3))];
}

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 23

10

tained in the external variable stackp. 1534 instruction cycles are necessary to push 100

words. Only 753 cycles are necessary if stackp is copied to a local variable.

Figure 10 Pushing an Array Onto a Stack

Table 6 summarizes the performances of both programs shown in Figure 10.

Remove Function Calls

Figure 11 shows two programs that calculate the square of the distance from the origin

for a collection of points, (xi, yi). For the program to the left, 1928 cycles are necessary

with global optimization alone (-O3). 1911 instruction cycles are necessary with global

optimization and grafting. The execution time is reduced only by 1 percent with graft-

ing. This is because of the function call. Grafting does not cross function call boundaries.

Each invocation of a function also adds a decision tree. In the program on the right, the

function call has been inlined using the C front end processor, tmcfe. Automated func-

tion inlining can be performance by using -O5 as an argument for the compilation. If

just a particular function is to be inlined, this can be achieved with the following line in

the code

#pragma TCS_inline=functionName

or

–Xinline=functionName

on the compiler command line. 1199 cycles are necessary without grafting and 1600 are

necessary with grafting (an increase of 33%). This example shows that one must be care-

ful with using grafting in combination with function inlining.

Table 6 Effect of Copying Externals to Locals

Total Cycles

External Variable in Loop 1534

Local Copy in Loop 755

int *pusha(int nargs, int *p){
 int *oldstkp;
 extern int *stackp,stack[NSTACK];

/* save the old stack pointer */
 oldstkp = stackp;

/* save each node pointer */
 while (nargs--) {
 if (stackp <= stack)
 abort("stack overflow");
 *--stackp = *p++;
 }
 return oldstkp;
}

int *pusha(int nargs, int *p){
 int *newstkp, *oldstkp;
 extern int *stackp,stack[NSTACK];

/* save the old stack pointer */
 oldstkp = stackp;
 newstkp = stackp;
/* save each node pointer */
 while (nargs--){
 if (newstkp <= stack)
 abort("stack overflow");
 *--newstkp = *p++;
 }
 stackp = newstkp;
 return oldstkp;
}

Chapter 10: Porting and Optimizing Programs

24 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

An even better result can be obtained by the hand-inlining of the function hypot, as

shown in Figure 11. Without grafting, it takes 695 cycles to calculate the distance vector

and with grafting 669 which is a reduction of 4%. The main reason for the difference

between the automated function inlining and the hand-inlining is that the compiler

performs automated loop unrolling before the function inlining. Therefore, automated

loop unrolling is done when a macro is used, but it is not done if the loop unrolling

algorithm detects a function call within the loop.

In the program of Figure 10, the function call to abort corresponds to an error (stack

overflow). This occurs very rarely. Although the function does not return, the compiler

does not know this. In Figure 12 the function call has been moved outside the loop. This

removes a join node, allowing the loop to be represented by one decision tree. 700

instruction cycles are necessary with global optimization and without grafting, com-

pared to 755 previously. The 968 instruction cycles are necessary with grafting. Using

grafting makes the code more efficient, but also longer.

The ILP is still limited because of the stores through pointers. Adding the restrict quali-

fier to the definitions of newstkp and p reduces the execution time to 618 cycles with

grafting. This corresponds to a reduction of 12%. The performances are summarized in

Table 7.

Table 7 shows that grafting can result in performance decreases if the code size increase

is not compensated by the number of cycles saved due to the better IPL of the code.

Figure 11 Program to Calculate Distance Vector

Table 7 Performance Summaries

Operation Without Grafting
(I-Cache Cycles)

With Grafting
(I-Cache Cycles)

Call + Local Copy in Loop (Table 6) 755 (162) 694 (232)

Local Copy in Loop + Call Outside (Figure 10) 700 (120) 653 (147)

Local Copy in Loop + Call Outside + Restrict 700 (120) 618 (157)

Call in Loop (Figure 11, Left) 1928 1911

Automated Function Inlining (-O5 or #pragma ...) 1199 1500

Inlining with define (Figure 11, Right) 695 669

float hypot(float x, float y){
 return x*x + y*y;
}
main() {
 float x[100], y[100], rad[100];
 int i;
 for (i=0; i<20; i++)
 rad[i] = hypot(x[i],y[i]);
}

#define hypot(x,y) (x)*(x)+(y)*(y)

main() {
 float x[100], y[100], rad[100];
 int i;
 for(i=0; i<20; i++)
 rad[i] = hypot(x[i],y[i]);
}

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 25

10

Figure 12 Program to Push Arguments on the Stack

Pay Attention to Compile Time

Figure 13 shows a program that multiples a 40 x 10 matrix by a 10 x 20 matrix, giving a

40 x 20 result (c = a*b). The source program is 29 lines long. Six minutes, ten seconds are

necessary to compile the program.

Figure 13 Matrix Multiply Program matmul_1.c

The -vtimes option of tmcc reports on the execution times of the individual phases. The

-K option tells tmcc to keep intermediate output files around (that is, matmul_1.t,

matmul_1.s, and matmul_1.o). In this case, almost all the time can be observed to be

spent in the TriMedia scheduler tmsched. On WindowsNT and Windows 95, the pro-

gram running is shown in the menu bar.

$ tmcc -vtimes -K matmul_1.c
cpp: 0.033
tmccom: 0.967
tmsched:360.719
 ...
total: 363.035

int *pusha(int nargs, int *p){
 int *newstkp, *oldstkp;
 extern int *stackp, stack[NSTACK];

/* save the old stack pointer */
 oldstkp = stackp;
 newstkp = stackp;

/* save each node pointer */
 while (nargs-- && newstkp>stack){
 *--newstkp = *p++;
 }
 if (newstkp <= stack) abort("evaluation stack overflow");
 stackp = newstkp;
 return oldstkp;
}

int a[40][10], b[10][20], c[40][20];
main() {
 int i;
 for(i=0; i<40; i++){
 c[i][0] = a[i][0]*b[0][0] + a[i][1]*b[1][0] + ... + a[i][9]*b[9][0];
 c[i][1] = a[i][0]*b[0][1] + a[i][1]*b[1][1] + ... + a[i][9]*b[9][1];
 c[i][2] = a[i][0]*b[0][2] + a[i][1]*b[1][2] + ... + a[i][9]*b[9][2];
 c[i][3] = a[i][0]*b[0][3] + a[i][1]*b[1][3] + ... + a[i][9]*b[9][3];
 (...)
 c[i][18] = a[i][0]*b[0][18] + a[i][1]*b[1][18] + ... + a[i][9]*b[9][18];
 c[i][19] = a[i][0]*b[0][19] + a[i][1]*b[1][19] + ... + a[i][9]*b[9][19];
 }
}

Chapter 10: Porting and Optimizing Programs

26 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Almost all the execution time in the program is spent in the decision tree corresponding

to the for-loop, main1. You can determine the number of operations in the decision tree

by examining the trees output file tmsim.t produced by the tmcc command. Scheduling

time is nonlinear with respect to the number of operations. There are 1018 operations in

main1.

Unusually long scheduling times are typically the consequence of feeding tmsched a

decision tree with too many operations. In the program below, the two inner loops of

the multiplication have been completely unrolled. Decision trees that are too long result

in reduced performance due to scheduler spilling. Spilling means that the scheduler runs

out of temporary registers and it leads to extra loads and stores. Compile time is a perfor-

mance indicator.

In the program, each iteration reads a row of matrix a (10 accesses). The matrix b is read

entirely (10 x 20 accesses) and a single element ci,j is computed for each column (20

accesses). There are 40 (200 + 10) reads and 20 writes for each of the 40 iterations. The

9200 memory accesses are necessary in total (8400 reads and 800 writes). You can deter-

mine the actual number of memory accesses by using tmsim with the -v option.

There are 12746 (21946–9200) more operations than expected. Almost all the accesses

are 32-bit accesses in the decision tree corresponding to the for. You can differentiate

spills from nonspills as follows:

The number of nonspill accesses is given by subtracting the spill accesses from the num-

ber of total accesses. There are 210 (324–114) nonspill loads, and 20 (224–204) nonspill

stores per iteration. This corresponds to 9200 accesses in total, as expected. Spilling is

responsible for 318 (114+204) memory accesses per iteration. 12720 (318 ×40) accesses

correspond to scheduler spills.

Use #pragma TCS_break_dtree

The interrupt mechanism of TriMedia is discussed in the TriMedia data books. Interrupts

only occur when control passes from one decision tree to another. Decision-tree breaks

(#pragma TCS_break_dtree) limit the length of a decision tree, allowing control over

interrupt latency.

They can also be used to improve the performance of a program. Spilling in case of pro-

gram in Figure 13 is a result of excessive register pressure due to the high degree of

$ tmsim -v a.out
 (...)
data cache statistics: size 16 kB, blocksize 64 b, associativity 8
nr of accesses: 21946

$ grep ld32 matmul_1.s | wc -l
 324
$ grep st32 matmul_1.s | wc -l
 224
$ grep "ld32.*-- SPILL" matmul_1.s | wc -l
 114
$ grep "st32.*-- SPILL" matmul_1.s | wc -l
 204

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 27

10

unrolling. In Figure 14, the compiler pragma TCS_break_dtree is used to remove spilling.

The loop is split into two decision trees.

The performances are summarized in Table 8. Introducing a decision tree break com-

pletely removes the spills. The extra nonspill loads are because a row (ten elements)

needs to be reread.

Figure 14 Matrix Multiply Program mtmul_1.c Compiler Pragma TCS_break_dtree added

You can also use decision tree breaks to prune infrequently executed branches from a

decision tree. In the program of Figure 15, the trailing return statement is included in

the decision-tree for the loop. The computations for the return increase the length of the

critical path. Inserting a decision-tree break at the end of the loop reduces the execution

time per iteration from 7.7 to 6.7 cycles. If grafting is applied, the execution time drops

to 5 cycles per iteration regardless if the pragma is used or not.

Figure 15 Loop Pruning

int a[40][10], b[10][20], c[40][20];
main() {
 int i;
 for (i=0; i<40; i++) {
 c[i][0] = a[i][0]*b[0][0] + a[i][1]*b[1][0] + ... + a[i][9]*b[9][0];
 c[i][1] = a[i][0]*b[0][1] + a[i][1]*b[1][1] + ... + a[i][9]*b[9][1];
 ...
 c[i][8] = a[i][0]*b[0][8] + a[i][1]*b[1][8] + ... + a[i][9]*b[9][8];
 #pragma TCS_break_dtree
 c[i][9] = a[i][0]*b[0][9] + a[i][1]*b[1][9] + ... + a[i][9]*b[9][9];
 (...)
 c[i][18] = a[i][0]*b[0][18] + a[i][1]*b[1][18] + ... + a[i][9]*b[9][18];
 c[i][19] = a[i][0]*b[0][19] + a[i][1]*b[1][19] + ... + a[i][9]*b[9][19];
 }
}

Table 8 Effect of Decision Tree Break on Unrolled Matrix Multiply (per iteration)

Non-Spill Loads Non-Spill Stores Spill Loads Spill Stores

without TCS_break_dtree 210 20 114 204

with TCS_break_dtree 220 20 0 0

void compare(int *a, int *b, int size, int *pcount){
 int i;
 int count;
 count = 0;
 i = 1;
 do {
 count = count + (a[i]==b[i]);
 }while (i++ < size);
#pragma TCS_break_dtree
 *pcount = count;
}

Chapter 10: Porting and Optimizing Programs

28 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Loop Fusion

The program of Figure 16 calculates the mean and variance for an array of n elements.

The mean is equal to the sum of array values divided by the array size. The variance is

equal to the sum of squares divided by the array size minus the square of the mean. The

first loop calculates the sum of values. The second loop calculates the sum of squares.

Loop fusion merges two loops that are executed the same number of times into a single

loop. Loop fusion eliminates half the overhead. The program on the right illustrates the

application of fusion. Table 9 compares performances for an array of 100 elements.

Again, grafting does not improve the performance of the function because the compiler

generates better code with its automated loop unrolling algorithm.

Figure 16 Loop Fusion

Replace || by |

C has a number of constructs, including the &&, ||, and ?: operators, that were designed

for efficient execution on a sequential processor. Their operands cannot be evaluated in

parallel. Use of these operators can increase the number of decision trees.

You can replace the expression (E1 || E2) by (E1 | E2) if two conditions are satisfied. It must

be evaluated for its effects on control flow. E1 and E2 must have no side effects. If the

expression is being evaluated for its value, it can be replaced by (E1 | E2) != 0. Boolean or

(||) operators add a decision tree to the program both when used in a control statement

(if, while, for, or do while) and inside a ?: expression.

Table 9 Effect of Loop Fusion on Calculation of Mean and Variance (Instructions/
Element)

Without Grafting With Grafting

Separate Loops to Calculate Mean and Variance 11.62 11.82

Fusion of Two Loops 6.00 6.80

float meanvar(
 float *a,
 int n,
 float *var
){
 float sum = 0, sumsq = 0;
 float mean, ninv;
 int i;
 ninv = 1.0/n;
 for(i=0; i<n; i++)
 sum = sum + a[i];
 for(i=0; i<n; i++)
 sumsq = sumsq + a[i]*a[i];
 mean = sum * ninv;
 *var = sumsq*ninv Ð mean*mean;
 return mean;
}

float meanvar(
 float *a,
 int n,
 float *var
){
 float sum = 0, sumsq = 0;
 float mean, ninv;
 int i;
 ninv = 1.0/n;
 for(i=0; i<n; i++){
 sum = sum + a[i]
 sumsq = sumsq + a[i]*a[i];
 }
 mean = sum * ninv;
 *var = sumsq*ninv Ð mean*mean;
 return mean;
}

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 29

10

Replace && by & or IZERO

The IZERO custom operation has a value 0 if its first operand is zero; otherwise, it has the

value of its second operand. You can replace a boolean and operator (&&) by IZERO if the

expression has no side effects and it is being evaluated for its effect on control flow.

Boolean and operators add a decision tree when used in a ?: expression or a two-sided if

statement but not inside an else less if statement or as the condition of a for or while.

If the value of the expression is needed, it can be replaced by IZERO(E1, E2 != 0) or

IZERO(E1, E2) != 0, depending on which has the better critical path.

The program of Figure 17 counts the number of alphabetic characters and underscores in

a string. If the operands of a && operation are constrained to a boolean (0/1) value, you

can use a bitwise “and” (&) operator. The operands in the figure are relationals with a

boolean value. Replacing the && and || operators by & and | reduces the execution time

from 1347 to 556 cycles.

Figure 17 Character Count

Using Software Pipelining

Typically, the three instructions after a jump operation are mostly unused. Data that is

needed in the next iteration can be preloaded in these slots. This is called software pipe-

lining. Figure 18 shows the C string comparison routine strcmp, before and after soft-

ware pipelining. Eight cycles are needed for the loop for the program on the left with

global optimization. Software pipelining allows the loop to execute in six cycles. You can

also schedule long-latency operations (for example, floating point) in these slots.

A simple form of software pipelining is implemented by the global optimizer if grafting

is not enabled.

Table 10 Effect of Eliminating && and || Operators (Instruction Cycles)

Without grafting With grafting

Program of Figure 17 with && and || Operators 1003 783

Program with & and | Operators 635 486

#define alpha(c) (((c) >= 'a' && c<='z') || (c>='A' && c<='Z') || c=='_')
int alphacount(char *s){
 int c, count;
 count = 0;

 while(c = *s++) count = count + alpha(c);
 return count;
}
main(){
 alphacount("The quick brown fox jumps over the lazy dog");
}

Chapter 10: Porting and Optimizing Programs

30 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Figure 18 Example of Software Pipelining

Use TriMedia Style Booleans in Critical Parts of the Code

In C, true and false are represented by nonzero and zero, respectively. TriMedia uses the

low-order (guard) bit of a register to determine whether a condition is true or false. Even

if the expression being tested is compared against zero, a comparison operator is

required. Typically, five cycles are required for a conditional jump.

If the value of the expression is known to depend only on the low order bit, the compar-

ison is not necessary. The TriMedia C compiler recognizes expressions of the form (E1 &1)

or ! (E1 &1). Using these instead of (E1 != 0) or (E1 == 0) generates better code. Expressions

such as (E1 & 2n) and ! (E1 & 2n) are optimized also.

You can use TriMedia style booleans with MUX and FMUX. If the guard is known to

depend on the first order bit, you can use the machine level pseudo operations mux and

fmux instead. For example, if the variable v is constrained to a 0/1 value, you can replace

MUX(v != 0, E1, E2) by mux(v, E1, E2), saving a cycle.

Manual Loop Unrolling

You can perform loop unrolling manually. The loop in Figure 1 is shown unrolled in

Figure 19, where the inner for loop is completely unrolled—that is, replaced with eight

assignment statements. The outer for loop is unrolled four times. Replacing the convolu-

tion function with unrolled_direct_convolution gives us the new program fir2.c.

Note that loop unrolling is a specialized version of grafting. In loop unrolling, a condi-

tional jump from a decision tree exit back to itself is replaced with the code for the deci-

sion tree. The main difference is that grafting replaces the jump part of the conditional

jump with the destination decision tree but leaves the condition in place, which causes

control dependence between one iteration of the loop to the next.

For example, the grafting shown in is essentially loop unrolling, and it can be seen that

the grafted code is still governed by a condition. Without data-flow analysis, such condi-

strcmp(char *p, char *q){
 int c;

 while((c=*p++) == *q++ && c){}

 return c Ð q[Ð1];
}

strcmp(char *p, char *q){
 int c, c1, cont;
 c = *p++;
 c1 = *q++;
 cont = (c == c1) & (c != 0);
loop:
 if(cont){
 c = *p++;
 c1 = *q++;
 cont = (c == c1) & (c != 0);
 goto loop;
 }
 return c Ð c1;
}

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 31

10

tions cannot be removed and thus result in a lower performance, compared to manual

unrolling.

Figure 19 Convolution Example – Loop Unrolled (Example fir2.c)

The following commands compile fir2.c with profiling but without grafting.

The performance of the unrolled loops is as shown in the following tmprof report

below. The size of text section of fir2.o is 1223 bytes, which is somewhat more than the

ungrafted, unrolled program fir1.c. The execution time of unrolled_direct_convolution is

about 3.9 times faster than that of direct_convolution (in fir1.c) and about 3.7 times

faster than the grafted version of direct_convolution. From this we can see that grafting

is not the solution to all performance problems. It helps on large parts of the code that

are not very critical but still interesting, but the most critical parts can better be opti-

mized by hand.

Manual Loop Unrolling Versus Grafting

You should apply grafting at the last stage of optimization because it is impossible to

understand what is happening after grafting. You should apply manual loop unrolling

only if it produces better performance then grafting. Consider, for example, the program

in Figure 20, which initializes a symbol table with the list of C keywords. When com-

piled and run using the global optimizer (-O3), 1367 instruction cycles are necessary for

void
unrolled_direct_convolution(char *a, char *b, int *c){
 int k, j;

 for(k = 0; k < NROF_SAMPLES; k += 4) {
 c[0] = b[0]*a[0] + b[1]*a[Ð1] + b[2]*a[Ð2] + b[3]*a[Ð3]
 + b[4]*a[Ð4] + b[5]*a[Ð5] + b[6]*a[Ð6] + b[7]*a[Ð7];
 c[1] = b[0]*a[1] + b[1]*a[0] + b[2]*a[Ð1] + b[3]*a[Ð2]
 + b[4]*a[Ð3] + b[5]*a[Ð4] + b[6]*a[Ð5] + b[7]*a[Ð6];
 c[2] = b[0]*a[2] + b[1]*a[1] + b[2]*a[0] + b[3]*a[Ð1]
 + b[4]*a[Ð2] + b[5]*a[Ð3] + b[6]*a[Ð4] + b[7]*a[Ð5];
 c[3] = b[0]*a[3] + b[1]*a[2] + b[2]*a[1] + b[3]*a[0]
 + b[4]*a[Ð1] + b[5]*a[Ð2] + b[6]*a[Ð3] + b[7]*a[Ð4];
 a += 4;
 c += 4;
 }
}

tmcc Ðp fir2.c Ðo fir2 /* Generate program with profiling on */
tmsim Ðnomm fir2 /* Simulate interm code and produce dtprof.out. */
tmcc Ðr fir2.c Ðo fir2 /* Recompile using profile information. */
tmsim Ðstatfile fir2.stat fir2 /* Simulate & collect cycle-accurate info */
tmprof Ðscale 1 Ðfunc fir2 /* stat Output is sent to stdout. */

Function Executions Total Cycles MIPS I-Cycles D-Cycles
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ
_unrolled_direct_convolut 1 7509 35.13 261 444
_main 1 102 0.48 87 0
ÑÑÑ
total/average 226 21375 100.00 10315 1467

Chapter 10: Porting and Optimizing Programs

32 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

30 calls to definesym (45 cycles per call). 40 cycles per call are spent in the character copy

loop. This corresponds to five cycles per copied byte.

Figure 20 Symbol Table Initialization

The number of times the for loop in definesym is executed is known in advance. Graft-

ing replicates the condition (i<8). For this reason, it is better to use loop unrolling.

#define NSYM 8
#define NFREE 100
struct symbol {
 struct symbol *next;
 char name[NSYM];
 int value;
} *avail, *symlist;

#define freesym(sym) {struct symbol *t = (sym); tÐ>next = avail; avail = t;}

char *keywords[] = {
"void", "char", "short", "int", "long", "float", "double", "struct",
"union", "enum", "unsigned", "auto", "extern", "static", "register",
"goto", "switch", "case", "default", "return", "if", "else", "while",
"do", "break", "continue", "for", "typedef", "sizeof" "const","volatile", 0};

struct symbol *definesym(char *str, int value){
 int i;
 struct symbol *res = avail;
 avail = availÐ>next;
 for(i=0; i<NSYM; i++) resÐ>name[i] = str[i];
 resÐ>value = value;
 resÐ>next = symlist;
 symlist = res;
 return res;
}
main() {
 int i;
 for(i=0; i<NFREE; i++)
 freesym((struct symbol*)malloc(sizeof(struct symbol)));
 for(i=0; keywords[i]; i++)
 definesym(keywords[i], i);
}

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 33

10

Figure 21 shows code for the unrolled loop. Five cycles are necessary per byte using a

loop. You can estimate the time corresponding to the unrolled loop as 3.25 cycles.

Figure 21 Unrolled Loop

Using Restricted Pointers

C programs make heavy use of loads and stores through pointers. The C language does

not allow the compiler to make any assumptions about pointers. Consider the following

two assignment statements in the for loop of program fir2.c:

Since a, b, and c are pointer parameters to the function unrolled_direct_convolution, in

the absence of inter-procedural analysis the compiler assumes that they might refer to

the same or overlapping memory locations; that is, be aliased to each other. In other

words, the second assignment statement might be data dependent on the first state-

ment. This implies that the operations of the two statements cannot be executed in par-

allel. However, you know that a, b, and c always are distinct arrays and thus never alias.

You can convey this information to the compiler by declaring these pointers to be

restricted.

Declaring pointers as restricted is a hint to the compiler that these pointers point to sep-

arate objects in memory that do not overlap with any known variable in the current

context or with such an object related to any other restricted pointer. Based on this

information, the compiler decides that different variables and/or restricted pointers do

not alias. Note that it is your responsibility to verify that the assertion is true: proper use

of restricted pointers reduces the amount of dependencies and, therefore, increases

potential parallelism. However, declaring pointers to overlapping memory regions as

struct symbol *definesym(char *str, int value){
 struct symbol *res = avail;
 avail = availÐ>next;

 resÐ>name[0] = str[0]; resÐ>name[1] = str[1];
 resÐ>name[2] = str[2]; resÐ>name[3] = str[3];
 resÐ>name[4] = str[4]; resÐ>name[5] = str[5];
 resÐ>name[6] = str[6]; resÐ>name[7] = str[7];

 resÐ>value = value;
 resÐ>next = symlist;
 symlist = res;
 return res;
}

c[0] = b[0]*a[0] + b[1]*a[Ð1] + b[2]*a[Ð2] + b[3]*a[Ð3] + b[4]*a[Ð4] +
 b[5]*a[Ð5] + b[6]*a[Ð6] + b[7]*a[Ð7];
c[1] = b[0]*a[1] + b[1]*a[0] + b[2]*a[Ð1] + b[3]*a[Ð2] + b[4]*a[Ð3] +
 b[5]*a[Ð4] + b[6]*a[Ð5] + b[7]*a[Ð6];

Chapter 10: Porting and Optimizing Programs

34 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

restricted results in an incorrect program. In our running example, we assign the type

qualifier restrict to the declarations of a, b, and c, as shown in Figure 22.

Figure 22 Convolution Example - Restricted Pointers (example fir3.c)

The following sequence of commands compiles, profiles, and recompiles the program,

and then produces a report.

The output of tmprof is as follows:

Notice that the execution speed of the unrolled loop improves by about 64% when

restricted pointers are used, compared to program fir2.c. This latest version of the loop

executes about 10.8 times faster than the original version in program fir1.c.

As one more improvement, we use grafting along with unrolling and restricted pointers.

The following commands are used for compiling program fir3.c.

restrict_direct_convolution(
 char * restrict a,
 char * restrict b,
 int * restrict c
){
 int k, j;

 for(k = 0; k < NROF_SAMPLES; k += 4) {
 c[0] = b[0]*a[0] + b[1]*a[Ð1] + b[2]*a[Ð2] + b[3]*a[Ð3]
 + b[4]*a[Ð4] + b[5]*a[Ð5] + b[6]*a[Ð6] + b[7]*a[Ð7];
 c[1] = b[0]*a[1] + b[1]*a[0] + b[2]*a[Ð1] + b[3]*a[Ð2]
 + b[4]*a[Ð3] + b[5]*a[Ð4] + b[6]*a[Ð5] + b[7]*a[Ð6];
 c[2] = b[0]*a[2] + b[1]*a[1] + b[2]*a[0] + b[3]*a[Ð1]
 + b[4]*a[Ð2] + b[5]*a[Ð3] + b[6]*a[Ð4] + b[7]*a[Ð5];
 c[3] = b[0]*a[3] + b[1]*a[2] + b[2]*a[1] + b[3]*a[0]
 + b[4]*a[Ð1] + b[5]*a[Ð2] + b[6]*a[Ð3] + b[7]*a[Ð4];
 a += 4;
 c += 4;
 }
}

tmcc -p fir3.c -o fir3 /* Generate program with profiling on.*/
tmsim -nomm fir3 /* Simulate interm code and produce dtprof.out.*/
tmcc -r fir3.c -o fir3 /* Recompile using profile information. */
tmsim -statfile fir3.stat fir3 /* Simulate & collect cycle-accurate info */
tmprof -scale 1 -func fir3.stat /* Output is sent to stdout.*/

Function Executions Total Cycles MIPS I-Cycles D-Cycles
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ
_restrict_direct_convolut 1 2711 16.35 145 60
_main 1 102 0.62 87 0
ÑÑÑ
total/average 226 16577 100.00 10199 1083

tmcc Ðp fir3.c Ðo fir3 /* Generate program with profiling on.*/
tmsim Ðnomm fir3 /* Simulate interm code & produce dtprof.out.*/
tmcc ÐG fir3.c Ðo fir3 /* Recompile using profile infor, perform grafting.*/
tmsim Ðstatfile fir3.stat fir3 /* Simulate & collect cycle-accurate info */
tmprof Ðscale 1 Ðfunc fir3.stat /* Output is sent to stdout.*/

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 35

10

Grafting again gains performance, mainly due to the effect on other functions. The text

section of the object code fir3.o has a size of 2736 bytes, which is about 3.8 times the

original code size.

The pointers str, avail, and symlist in Figure 21 could have identical values or differing

values. They could even overlap. Because of this, the compiler must order stores through

pointers with respect to other loads and it stores in strict program order. There are 11

loads and 13 stores in the procedure definesym. Issuing these operations in strict pro-

gram order limits the ILP.

The str points to an array of characters and avail points to a symbol table entry. It seems

clear they differ given the types. avail points to a list of available nodes and symlist

points to a list of nodes on the symbol table. These two sets should be independent. All

but two (the uses of symlist) of the 24 memory references can be shown to differ. The

other accesses can be performed in parallel.

Figure 23 shows how to modify the program to use restricted pointers. 516 instruction

cycles are needed for definesym, as compared to 1367 before and 1096 after unrolling.

This corresponds to 12 instructions per call to the function. Table 11 summarizes the

performances with restricted pointers and loop unrolling and before optimization.

Figure 23 Using Restricted Pointers

Be aware that unwarranted use of restricted pointers can introduce subtle bugs.

Function Executions Total Cycles MIPS I-Cycles D-Cycles
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ
_restrict_direct_convolut 1 2574 15.41 724 60
_main 1 102 0.61 87 0
ÑÑÑ
total/average 226 16708 100.00 10981 1111

struct symbol *definesym(char * restrict str, int value){
 struct symbol * restrict res = avail;
 avail = availÐ>next;
 resÐ>name[0] = str[0]; resÐ>name[1] = str[1];
 resÐ>name[2] = str[2]; resÐ>name[3] = str[3];
 resÐ>name[4] = str[4]; resÐ>name[5] = str[5];
 resÐ>name[6] = str[6]; resÐ>name[7] = str[7];
 resÐ>value = value;
 resÐ>next = symlist;
 symlist = res;
 return res;
}

Table 11 Instruction Cycles Per Procedure Call

Call To definesym

No Optimization 45.6

Loop Unrolling 36.5

Loop Unrolling + Restricted Pointers 17.2

Chapter 10: Porting and Optimizing Programs

36 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

The implementation of the restrict keyword is based on the paper Restricted Pointers in C

by the Numerical C Extensions Group of ANSI X3J11. This paper (X3J11/94-019, Draft 2)

can be found at http://www.lysator.liu.se/c/restrict.html. To the best of our knowledge,

restricted pointers will be in the future ANSI C standard.

Using Custom Operators

The TriMedia hardware architecture provides special operations for DSP applications.

They are made available through the custom_op declaration. In fact, all machine opera-

tions are available through the custom_op mechanism, but not all of them are of use to

you. The most important ones are defined in the include file custom_defs.h1. We recom-

mend that you use only the custom operators defined in custom_defs.h. By using only

these, you can develop and execute on the host platform because a special library with

the implementation of the custom operators is provided.

Figure 24 Convolution Example - Custom Operators

1. The real declaration of the custom operators is done in include file custom_ops.h. The file custom_defs.h is
an abstraction from the custom operators to enable you to develop and execute on the host platform with
use of the TriMedia custom_ops.

void custom_ops_direct_convolution(
 char * restrict a, char * restrict b, int * restrict c
){
 int i, ib0, ib1, i0, i1, i2;
 int * restrict ia;

 ia = (int *) a;

/* Copy b, in a new array called rev_b in time reversed order. ib points to
 * this array as an integer pointer. Let A = |abcd| and B = |pqrs| where
 * a,b,c,d,p,q,r, and s are all 8 bit integers. Then PACKBYTES(A,B) = |ds|
 * and PACK16LSB(A,B) = |cdrs| */
 ib0 = PACK16LSB(PACKBYTES(b[7], b[6]), PACKBYTES(b[5], b[4]));
 ib1 = PACK16LSB(PACKBYTES(b[3], b[2]), PACKBYTES(b[1], b[0]));

 for(i = 0; i < NROF_SAMPLES/4; i++){
 /* Let A = |abcd| and B = |pqrs| where a,b,c,d,p,q,r, and s are all 8-bit
 * integers. Then
 * FUNSHIFT1(A,B) = |bcdp|
 * FUNSHIFT2(A,B) = |cdpq|
 * FUNSHIFT3(A,B) = |dpqr|
 * IFIR8II(A,B) = a*p + b*q + c*r + d*s */

 i0 = ia[i Ð 2];
 i1 = ia[i Ð 1];
 i2 = ia[i];

 c[0] = IFIR8II(ib0,FUNSHIFT1(i0,i1)) + IFIR8II(ib1,FUNSHIFT1(i1,i2));

 c[3] = IFIR8II(ib0, i1) + IFIR8II(ib1, i2);
 c += 4;
 }
}

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 37

10

Of special interest for the example are the custom_ops FUNSHIFT and IFIR8II. Let A =

|abcd| and B = |pqrs| where a, b, c, d, p, q, r, s, are all 8-bit integers. Then,

Four multiplications and three additions in the inner loop of program fir3.c are replaced

by one FUNSHIFT and one IFIR8II operation. Other usage of custom operators in the fir

program are selecting bytes or half words and merging them into one word (PACKBYTES

and PACK16LSB). To use these custom operators, the program must include the header

file custom_defs.h. You can find this include file in the directory $TCS/include/ops. This

directory is in the default include path for the compiler driver. Most custom operators

directly map to hardware operations. Access via the include file custom_defs.h ensures

that your program can still run on the host system, because a library of custom operator

implementation for the host system is provided.

Figure 24 shows the modified function, still using restricted pointers. Compiling the pro-

gram fir4.c while grafting using the following commands and running tmprof shows the

performance gain due to custom operators:

The output of tmprof shows

The unrolled version of the loop now is already 21.9 times as fast as the original version,

because of the use of custom operators, grafting, and restricted pointers.

Graft-Tuning Parameters

You can guide the grafting decision of the compiler through a grafting parameters file.

The graft-tuning file allows specifying a number of conditions on decision tree grafting

on a function by function basis. You can specify graft parameters for some functions and

use a default applicable to all functions that were not explicitly listed in the graft param-

eters file. The parameters that govern grafting decisions are as follows.

■ Graft Enable. This boolean flag enables or disables grafting for a particular function.

■ Maximum Code Replication Factor. This limits the factor by which the code size for a

function can be expanded due to grafting. Although grafting might initially increase

code size, many optimizations are performed after grafting that reduce code size.

FUNSHIFT1(A,B) = |bcdp|
FUNSHIFT2(A,B) = |cdpq|
FUNSHIFT3(A,B) = |dpqr|
IFIR8II(A,B) = a*p + b*q + c*r + d*s

tmcc Ðp fir4.c Ðo fir4 /* Generate program with profiling on. */
tmsim Ðnomm fir4 /* Simulate interm code and produce dtprof.out. */
tmcc ÐG fir4.c Ðo fir4 /* Recompile using profile info, perform grafting */
tmsim Ðstatfile fir4.stat fir4 /* Simulate & collect cycle-accurate info.*/
tmprof Ðscale 1 Ðfunc fir4.stat /* Output is sent to stdout.*/

Function Executions Total Cycles MIPS I-Cycles D-Cycles
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ
_custom_ops_direct_convol 1 1340 8.68 673 82
_main 1 102 0.66 87 0
ÑÑÑ
total/average 226 15445 100.00 10901 1133

Chapter 10: Porting and Optimizing Programs

38 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

■ Maximum Graft Depth. This limits how many times grafting is performed along a par-

ticular execution path in the current decision tree, restricting how much grafting is

allowed on a tree.

■ Minimum Probability Threshold. This specifies the minimum probability of execution

of a branch to allow grafting for that branch.

■ Minimum Execution Count Threshold. A decision tree is not a candidate for grafting if

its execution count is below this threshold.

A graft-tuning file can contain different parameters for different functions and at most

one default set of parameters for all functions that are not listed explicitly in the file. The

default values for the graft tuning parameters are as follows:

The tmprof output shows that the stall cycles from the cache misses increased during

the optimization stages. First loop unrolling was done, followed by grafting. These are

similar techniques, and possibly the code expansion of the two was too much for the

default grafting parameters. When limiting the grafting for the already unrolled func-

tion, a better cache characteristic can be obtained. The graftfile with the following

parameters is used on the example:

The performance improvement by tuning the graft file is mainly due to the reduction in

the instruction cache stall cycles.

Tuning the graftfile should be applied only to applications of a significant size. The per-

formance improvement is due to a reduction in code size. This produces a reduction in

instruction cache cycles.

Using Profiling and Grafting

As explained in “Grafting Based on Profile Information” starting on 12, the TriMedia

compiler can generate more parallel code by being trained about the behavior of the pro-

gram. First, it is necessary to compile the program with the -p (profile option):

This tells the compiler to add code to generate statistics to the program. Running it using

tmsim produces a file dtprof.out containing more decision tree information. It can be

read using tmdtprof:

Function Enabled Codesize Depth Prob. Threshold Exec. Count Threshold

<default> 1 20.0 20 0.4 10.0

Function Enabled Codesize Depth Prob. Threshold Exec. Count Threshold

<default> 1 4.0 2 0.4 10.0

$ tmcc -p insertion_sort.c

$ tmdtprof dtprof.out
insertion_sort.c:main() calls = 1 operations = 1241
insertion_sort.c:insertion() calls = 1 operations = 76345
Function count = 2

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 39

10
The underlined information gives the correspondence between a decision tree and the

file and line in the source program. For example, the procedure insertion starts at column

six of line four of “insertion_sort.c.” The insertion3 function begins at line nine, column

six. The –> lines are the exit paths (jumps) out of the decision tree. For example, on path

zero, insertion3 loops to itself 4,851 times. On the second path, it goes 99 times to

insertion4, and path one is never taken.

You can compile with the -G option which tells the compiler to use grafting. The pro-

gram can be compiled and run with grafting as follows:

Table 12 compares the inner loop behavior at -O3 with and without grafting. 78% of the

branches (1128 versus 4950) are eliminated due to grafting (the loop is grafted four

path: insertion_sort.c main() 16/1 (dtree count = 5)
 (...)
path: insertion_sort.c insertion() 4/6 (dtree count = 7)
 dt(0)4/1 ops(11) exits(2)
 0 Ð> dt(1) exec count(1)
 1 Ð> dt(1) exec count(0)
 (...)
 dt(3)11/17 ops(15) exits(3)
 0 Ð> dt(3) exec count(4851)
 1 Ð> dt(4) exec count(0)
 2 Ð> dt(4) exec count(99)
...

$ tmcc ÐG ÐO3 ÐO ins.O3.graft insertion_sort.c
$ tmsim Ðv Ðstatfile ins.O3.graft.stat ins.O3.graft
 ...
nr of cycles: 20866
nr of executed instructions: 19142
CPI: 1.090

instruction cache statistics: size 32 kB, blocksize 64 b, associativity 8
nr of accesses: 19143
nr of hits: 19091
hitrate: 100 %
CPI: 0.083
data cache statistics: size 16 kB, blocksize 64 b, associativity 8
nr of accesses: 10388
nr of hits: 10373
 ...
$ select insertion_DT_2 ins.O3.graft.stat
tree name execs instc istallc dstall cpback cnflct isoper exoper
ÐÐÐ
__insertion_DT_2 1128 16638 87 0 0 0 56068 55718
__clearregs_DT_1 32 192 58 16 0 6 512 511
__clearregs_DT_1 32 928 58 24 0 1 832 831

Chapter 10: Porting and Optimizing Programs

40 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

times). The ILP increases from 1.60 to 3.36. The issued and executed operations corre-

spond to the isopers and exopers fields of the statfile (see above).

Table 13 compares the overall behavior. The number of memory accesses is about the

same with and without global optimization. However, there is a reduction of one third

when using both global optimization and grafting.

Using Unsafe Alias Analysis

The earlier section Using Restricted Pointers on page 33 describes how you can use

restricted pointers to help the compiler in alias analysis1. Good alias analysis is one of

the key techniques for obtaining parallelism and the best optimization. The alias ana-

lyzer weakens the ordering of memory operations (all assignments and uses of values in

C terms). A weaker ordering allows more operations to go in parallel. In C, it is impor-

tant not to use pointers unless it is necessary because an unknown pointer aliases with

all nonlocal nonexposed variables2. Also, the use of global variables limits the abilities of

the alias analyzer to disambiguate two memory locations.

The compiler currently has three levels of alias analysis. Level zero is perfectly safe, that

is, no assumptions are made on any use of the ANSI C language. The two higher levels

do make assumptions on the use of the language and are safe in most programs. However,

when using unsafe alias analysis, it is very important to understand the details of the program

and the use of all memory references.

You can specify unsafe alias analysis with the option -A[012] to the compiler. The default

level is 1. You can use the pragmas to change the alias level function per function.

Table 12 Inner Loop Behavior at -O3 with and without Grafting

Executions of
Decision Tree 2

Instruction
Cycles

Issued
Operations

Executed
Operations

Ops/Instr
(ILP)

No Grafting 4950 49104 79002 79002 1.60

Grafting 1128 16638 56068 55718 3.36

Table 13 Overall Behavior At Different Levels of Optimization

Optimizations Instructions Memory Accesses Total Cycles

Local Optimization 71237 15180 72534

Global Optimization 51332 15279 52573

Grafting and Global Optimization 19142 10373 20855

1. Alias analysis is the technique used in the compiler to determine whether two memory locations are the
same or whether they overlap.

2. Local variables are variables declared within a function scope. Nonexposed variables are variables of which
the address is never taken. The compiler knows that if the address is never taken that it cannot be stored to
any pointer variable and, thus, does not alias with any pointer indirection. In the absence of inter-proce-
dural analysis, the nonexposed property can only be determined for local variables.

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 41

10

Level 1 makes the following two assumptions:

1. The memory object referred to by a certain pointer does not contain the same

pointer. This means that when p points to a struct, it is assumed that there is no field

f in the struct such that p–>f==p. Also, when p points to an array of pointers, it is

assumed that there is no index i such that p[i]==p. Similar assumptions are made for

arbitrary nesting of arrays and structs within the memory objects that p refers to. See

Figure 25, for example.

2. It is assumed that it is senseless to address outside any variable, and that it is impossi-

ble to ‘reach’ a variable through a pointer that does not already ‘point’ somewhere in

the same variable. This means that no assumptions are made on the relative positions

at which the variables are mapped in memory, and that no attempt is made during

execution to determine these relative positions.

These assumptions are used by the alias analyzer when trying to determine possible

aliasing in case of a memory reference through a pointer (with a certain offset) and to a

variable: if, given that the pointer points ‘somewhere’ in the variable, the memory refer-

ence via the pointer and with the given offset would result in addressing (partially) out-

side that variable, no aliasing is assumed. In mathematical terms: if p is a pointer and a is

a variable the memory region [*p + sizeof(a), *p + sizeof(*p)] does not alias with a. See

Figure 26.

Level 2 assumes everything from level 1. Globals are modified only by accessing the glo-

bal itself; that is, the address of a global is never taken. See Figure 27 for an example.

Note
Level two is only implemented with global optimizations on, that is,
optimization level three (-O3).

Figure 25 Example of Point One for Unsafe Alias Analysis Level One

Figure 26 Example of Point Two for Unsafe Alias Level One

At any program point, p–>c and p–>s will alias with a (for instance when we initialize

p = (struct some_type)&a, but p–>i will not alias with any load or store to a at unsafe alias

-A1. This is because a can not be packed into a larger object (like *p). However, due to the

int *p, *q;
program fragment:
 *p = 3;
 q = p;
/* At unsafe alias analysis level ÐA1, we assume that *p != p, so the value
 of p does not have to be reloaded after the assignment *p = 3.*/

typedef struct some_type{
 char c;
 short s;
 int i;
};
int a;
struct some_type *p;

Chapter 10: Porting and Optimizing Programs

42 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

casting possibility in C, the compiler still lets both objects alias at the start (or at the

address) of the object.

Note that the assumption that p->i and a do not alias is not valid when we initialize

p = (some_type *)(&a–1). But then a store to *b would arbitrarily overwrite something in

memory. Program constructs like this do occur, but rarely.

Figure 27 Example of Point Three for Unsafe Alias Level Two

a and *p will not alias at unsafe alias level -A2 (in -O3) because the compiler assumes that

the address of a is never taken and can thus never have been assigned to p.

Figure 28 shows a program that initializes four arrays. Decision tree statistics for the loop

at -O3 are shown.

Figure 28 Initializing Four Arrays

The loop is executed 32 times and there are four stores per iteration. This corresponds to

128 memory accesses. The compiler does not know whether the addresses of the external

variables (max_qty, qty_first_reg, qty_last_reg, qty_const, qty_const_insn) have been

assigned to a pointer. For example, the loop is executed 32 times. However, qty_first_reg

could point to max_qty at the start of the loop. If this is true, the loop should only be

executed once. Five load accesses are necessary per loop iteration because of the pointer

aliasing. 160 memory accesses are added to the program.

int *p;
int a;

tree name execs instc istallc dstallc cpbacks cnflctc isopers exopers

__clearregs_DT_2 32 896 58 12 0 0 640 606

#define NREG 32
typedef struct rtl *rtx;
int *qty_first_reg, *qty_last_reg, max_qty = NREG;
rtx *qty_const, *qty_const_insn;

main(){
 qty_first_reg = (int *)malloc(NREG * sizeof(int));
 qty_last_reg = (int *)malloc(NREG * sizeof(int));
 qty_const = (rtx *)malloc(NREG * sizeof(rtx));
 qty_const_insn = (rtx *)malloc(NREG * sizeof(rtx));
 clearregs();
}
clearregs(){
 int i;
 for(i = 0; i < max_qty; i++){
 qty_first_reg [i] = i;
 qty_last_reg [i] = i;
 qty_const [i] = 0;
 qty_const_insn [i] = 0;
 }
}

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 43

10

The -A2 option of tmcc relaxes the rules for alias analysis. The compiler can assume that

the accesses to extern and static variables do not alias with stores through pointers. The

option -O3 must be specified if the -A2 option is to have effect. The decision tree statis-

tics with -A2 are shown below:

Table 14 compares the performance with and without relaxed aliasing. Six instruction

cycles (192/32) are necessary per loop iteration with the -A2 option. 28 instruction cycles

(896/32) are necessary without the -A2 option. There are five variables and a load of each

requires two operations. This corresponds to the ten (5×2) fewer operations in the loop

using relaxed aliasing. Only 279 cycles, as opposed to 1004 including cache overhead,

are necessary with relaxed aliasing.

Take care when using relaxed aliasing. Do not use it if a global variable’s address is taken.

Figure 29 shows how to use relaxed alias analysis for an individual procedure or func-

tion.

Figure 29 Locally Relaxed Aliasing

Using a Dirty Float

Usually compiler optimizations on floating point expressions are illegal. This is because

all commutative and associative properties that hold for integer operations like addition

and multiply do not hold for floating point operations. You can give the compiler more

freedom in expression optimizations and program transformations by using the

dirty_float option.

tree name execs instc istallc dstallc cpbacks cnflctc isopers exopers

__clearregs_DT_2 32 193 29 19 0 0 480 446

Table 14 Performance With And Without Relaxed Aliasing

Instruction
Cycles per Loop

Operations Memory
Accesses

ILP Total
Cycles

Without Relaxed Aliasing
(no -A2 option)

28 20 288 0.73 1004

With Relaxed Aliasing
(-A2 option)

6 14 128 2.29 279

clearregs(){
 int i;
#pragma TCS_A2
 for(i = 0; i < max_qty; i++){
 qty_first_reg [i] = i;
 qty_last_reg [i] = i;
 qty_const [i] = 0;
 qty_const_insn [i] = 0;
 }
}

Chapter 10: Porting and Optimizing Programs

44 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

You can give the option on the command line with dirty_float <nn> or with pragma’s

TCS_dirty_float0, ..., TCS_dirty_float2. There are three levels with the following meaning:

■ At level zero there are no optimizations performed on floating point expressions.

■ At level one the compiler folds constant floating point expressions and introduces

conversions for if statements containing floating point expressions. Expressions

remain ordered against read and write to PCSW

■ At level two, besides the operations performed at level one, the compiler performs

tree height reduction and reordering of floating point expressions to increase parallel-

ism. Also, otherwise illegal optimizations like rewriting the expression d != d (check

for NaN) to false are performed.

Note
This option only has an effect at optimization level three, and might cause
incorrect results.

Using Cache Optimization

Several of the techniques discussed in the preceding sections, including the use of graft-

ing, loop unrolling, and inlining, result in an increase in the size of the program code,

which in turn, increases the number of instruction cache stalls. You must pay attention

to the code size because the I-cache stalls can become an important factor. This section

addresses techniques to enhance data cache utilization, thereby improving the overall

program performance.

Vary the Right-Most Array Index in the Inner Loop

The program on the left of Figure 30 zeroes a byte array. tmprof output from running it

is shown below:

Most of the execution time (670399 out of 697725 cycles) is lost in data cache stalls.

Almost all the stall cycles are in the decision tree __main_DT_2. This corresponds to the

inner for loop. It is executed 1280 (64×20) times. The inner loop is unrolled 15 times by

the compiler.

The stalls in the program of Figure 30 are data cache write miss stalls. Figure 31 shows

code that you can use to instrument the program. The list of events is in the TriMedia

Treename Executions Total Cycles MIPS I-Cycles D-Cycles
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑ ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑ
__main_DT_2 1280 669877 96.01 58 658169
__memset_DT_1 621 6053 0.87 29 3540
___cache_copyback_DT_1 103 4698 0.67 48 4032
__main_DT_1 64 3833 0.55 29 3548
ÑÑÑ
total/average 2453 697725 100.00 10041 670399

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 45

10

data book. You must add two lines before the first for to generate and count data cache

write missed events:

You must also add instrumentation code after execution of the relevant section of the

program:

The instrumentation reports 19199 data cache write misses. There is a cache miss for

every access. In C, the rightmost subscript of a multidimensional array varies fastest as

elements are accessed in storage order. Each execution of the inner loop clears a single

byte. Consecutive accesses by the program of Figure 30 are spaced by 64 bytes. This is the

size of a cache line. Each cache miss corresponds to 64 bytes, only one of which is used.

The program on the right is equivalent to the program on the left, with the order of the

for loops interchanged. 132702 cycles are necessary to execute the program on the right.

Only 5271 cycles are lost in data cache stalls. Instrumentation allows the number of data

cache stalls in the program on the right to be measured also. Measurement shows 300

data cache stalls. 300 data cache lines correspond to 19200 (300×64) bytes of data. This

corresponds to all the data in the array. Each miss costs 17.57 (5271/300) cycles, com-

pared to 34.92 cycles previously. This is because the misses can be overlapped with the

execution of the program. The program on the left of Figure 30 generates too many

stalls, so no overlap is possible after the first miss. Table 15 summarizes the effects of

interchanging the loops.

Figure 30 Loop Interchange

Int timer;
UInt32 events;
monitor(&timer);

timGetTimerValue(timer, &events);
printf("cache misses = %d\n", events());

#include <tm1/mmio.h>
#include <tm1/tmTimers.h>

void monitor(Int *timer) {
 timInstanceSetup_t setup;
 MMIO(MEM_EVENTS)= 5;
 setup.source = timCACHE1;
 setup.prescale = 1;
 setup.modulus = 0;
 setup.handler = Null;
 setup.priority = intPRIO_4;

#include <stdio.h>
#include <tm1/mmio.h>

char a[300][64];
main(){
 int k, l;
 for(l=0; l<64; l++)
 for(k=0; k<300; k++)
 a[k][l] = 0;
}

#include <stdio.h>
#include <tm1/mmio.h>

char a[300][64];
main(){
 int k, l;
 for(k=0; k<300; k++)
 for(l=0; l<64; l++)
 a[k][l] = 0;
}

Chapter 10: Porting and Optimizing Programs

46 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Figure 31 Instrumentation Code

Pack Data as Tightly as Possible

Figure 32 shows a procedure to look up the name of the city closest to a point. A city is

represented by a data structure containing the x and y coordinates (2×4 bytes) and the

name of the city (64 bytes).

Figure 32 Linear Search

The distance needs to be computed from each city. The key fields (x, y) of the data struc-

ture are referenced 256 times for each call. The name of the city is consecutive with

those in memory. The cache brings both into memory. However, the name is referenced

only once at the end of the procedure. Each access during the search accesses 64 bytes,

only eight (2×4) of which are used. 4082 cycles are necessary in the procedure, of which

1179 correspond to data cache miss stalls.

In Figure 33, the data structure has been modified so that the fields not accessed during

the search are stored apart. The key fields (x,y) have also been packed into shorts (2×2

 setup.running = True;
 timOpen(timer);
 timInstanceSetup(*timer, &setup);
 timSetTimerValue(*timer,0);
}

Table 15 Data Cache Write Misses Clearing a 64 x 300 Array of Characters

Write Misses Write Miss Stall Cycles

First Index Varies in Inner Loop 19199 658169

Second Index Varies in Inner Loop 300 4142

#define distance(x1, y1, x2, y2) ((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1))
#define NCITY 256
typedef struct city { int x; int y; char name[64]; } CITY;
CITY cities[NCITY];

char * closest(int x, int y){
 int max, dist, here = 0, i; CITY *ap;

 max = distance(x, y, cities->x, cities->y);
 for (i = 1, ap = &cities[1]; ap<&cities[NCITY]; ap++, i++) {
 dist = distance(x, y, ap->x, ap->y);
 if (max > dist) { max = dist; here = i; }
 }
 return cities[here].name;
}

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 47

10

bytes). The 3350 cycles are necessary after data restructuring. The 448 cycles are data

cache stalls. Table 16 summarizes the effect.

Figure 33 Modified Data Structure

Trade CPU Cycles for Cache Cycles

Figure 34 shows two programs to calculate the sieve of Eratosthenes. The program on the

left represents the sieve by an array of bytes. The program on the right represents the

sieve by a bit vector. Using a bit vector saves space but requires more operations to set

and test an element.

Table 17 compares performance for calculating the 6542 primes between one and 65536.

The figures shown correspond to the number of instruction cycles and cache stall cycles

for the inner loop. Even though the program on the right is more complex, the number

of instructions is identical. This is because there is spare processing power available. The

store to sieve in the program on the right is more complex, but it can be executed par-

tially in parallel. At the end of most decision trees there are available slots. Part of the

store also executes in these slots.

Only 8K bytes are necessary to represent 65536 primes using a bit vector. Represented

this way, the sieve fits in the cache. Represented as an array of bytes, it does not fit in the

cache. This explains the difference in performance. Five opportunities are lost to issue

operations for every stall cycle. It is worth increasing the number of instructions if the

working set fits in the cache as a result.

Table 16 Data Cache Performance for a 256-Element Linear Search

Data Cache Stall Cycles

Key and Value Stored Together (8 Bytes of Key) 1179

Key and Value Stored Separately (4 Bytes of Key) 448

struct city { short x; short y; } CITY;
CITY cities[NCITY];
char city_names[NCITY][64];

Table 17 Sieve of Eratosthenes (Primes from one to 65536)

Instruction Cycles Data Cache Cycles

Sieve Represented as a Byte Vector 884931 1966538

Sieve Represented as a Bit Vector 1330858 1792

Chapter 10: Porting and Optimizing Programs

48 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Figure 34 Sieve of Eratosthenes

Watch for Cache Set Hotspots

Figure 35 shows a procedure that sums up a column of an n ×128-element matrix. Perfor-

mance figures for different values of n are given in Table 18. They correspond to 16 con-

secutive columns.

Figure 35 Column of n×128-Element Matrix

int colsum(int col, int step) {
 int i, sum = 0;
 int *pcol;

 pcol = &matrix[0][col];
 for (i=0; i<128; i++) {
 sum += *pcol;
 pcol += step;
 }
 return sum;
}

Table 18 Performance Figure for Values of N

Matrix Dimensions Stride Data Cache Stall Cycles % Total Cycles

128 x 64 256 2051 89

128 x 65 260 1309 83

128 x 80 320 1441 85

128 x 512 2048 1975 89

128 x 513 2052 1988 89

128 x 1040 4160 1897 88

#define MAXPRIME 1000000
char sieve[MAXPRIME+1];
main(int argc, char *argv[]){
 int i, j, maxprime;

 maxprime = atoi(argv[1]);
 for(i=2; i<=maxprime; i++)
 sieve[i] = 1;
 sieve[0] = sieve[1] = 0;
 for(i=2; i <= maxprime>>1; i++){
 if (sieve[i]) {
 for(j=2*i;j<=maxprime;j+=i){
 sieve[j] = 0;
 }
 }
 }
}

#define MAXPRIME 1000000
char sieve[(MAXPRIME+7)/8];
main(int argc, char *argv[]){
 int i, j, maxprime;

 maxprime = atoi(argv[1]);
 for(i=0; i<=(maxprime+7)/8; i++)
 sieve[i] = Ð1;
/* 0 and 1 arenÕt prime */
 sieve[0] &= ~3;
 for(i=2; i <= maxprime>>1; i++){
 if((sieve[i>>3] >> (i&7)) & 1){
 for(j=2*i; j<=maxprime; j+=i){
 sieve[j>>3] &= ~(1<<(j&7));
 }
 }
 }
}

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 49

10

The percentage of data cache stall cycles varies depending on the row dimension in a

ratio from one to fifteen. Accesses to an array in row order, address consecutive bytes. In

column order the accesses are separated by a stride equal to the size of the element multi-

plied by the row length. For example, for a 256 ×1040 array of integers, column accesses

are separated by 4160 bytes.

There are 256 lines in the cache of 64 bytes each. These are organized into 32 sets capa-

ble of holding eight elements each. The set number is given by address bits six through

eleven. The byte offset inside a line is given by bits zero to five.

The accesses in Table 18 are separated by a stride of more than 64 bytes. Each references

a different line. The contents are reused only after an entire column has been traversed.

Satisfactory performance for this program requires that 128 lines be held in the cache.

For a 256×64 matrix, imagine that the first access hits a particular set (say 29). The stride

is an exact multiple of the line size (256 = 4×64). The next access hits the set number + 4

modulo 32 (say 1). After referencing eight elements the accesses wrap around to set 29.

The 128 accesses only use 64 (8×8) of the 256 lines of the cache. The working set of the

program is 128 lines. This explains the poor performance. The performance is the same

regardless of the starting set.

For a 256 x 1040 matrix, imagine that the first access also hits set 29. The stride is also an

exact multiple of the line size. (4160 = 65 x 64). The next access hits set 30 (94 modulo

32). The next access hits set 31. The 128 accesses can fully use the cache. Again, the per-

formance does not depend on the number of the first set.

For a 256 x 65 matrix, the stride (260) is not an exact multiple of 64 bytes. Accesses are

made to set numbers separated by four (260/64). However, every 16 accesses (64 / (260

mod 64)), the set number is also incremented. This allows the 128 accesses to be distrib-

uted among all the sets.

For a 256 x 513 matrix, every 16 accesses the set number is also incremented by one (260

mod 64 = 2052 mod 64). However, accesses are made to set numbers separated by 32

(2052/64), so the 16 accesses all hit the same set. The 128 accesses are distributed among

only eight of the 256 lines of the cache.

Figure 36 Dot Product Matrix Multiply

Blocking

Figure 36 and Figure 37 show different algorithms to multiply two 96×96 square matri-

ces. ai,j is used as shorthand for a[i][j] in the figures. The algorithm of Figure 36 uses an

float a[96][96], b[96][96], c[96][96];
main(){
 int i, j;

 for (i=0; i<96; i++)
 for (j=0; j<96; j++)
 ci,j = ai,0*b0,j + ai,1*b1,j + ai,2*b2,j + ... + ai,94*b94,j+ ai,95*b95,j;
}

Chapter 10: Porting and Optimizing Programs

50 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

unrolled dot product. This gives a high degree of parallelism. However, the blocked algo-

rithm has better register and cache reuse.

A 96-element row of the array a is brought into memory to be multiplied with a column

of the array b. The values cannot be reused until the entire dot product has been calcu-

lated. The blocked algorithm works using 6×6 pieces of the two matrices. 72 (2×6×6)

values need to be brought in from memory.

There are 216 (63) product terms with a total of 432 (2×216) operands. Each input value

can be reused six (432/72) times. Blocking allows 5/6 of the load instructions to be elim-

inated.

This also gives better cache locality. This is because the dot product reads 96 elements of

b in column order. The effect of this is limited here because the elements can fit in the

cache.

Figure 37 Matrix Multiply with Blocking

Table 19 compares the performance of the blocking and the dot product algorithms.

Two-Level Blocking

The blocking algorithm of Figure 37 brings in 144 bytes (6×6×4) of the a and b arrays

into memory. Blocks of the b array are read in column order. By adding a second level of

void
block(float(*restrict a)[96],float(*restrict b)[96],(float(*restrict c)[95]){
 float (*restrict d)[96];

 d = c;
 c0,0 = c0,0+a0,0*b0,0+a0,1*b1,0+a0,2*b2,0+a0,3*b3,0+a0,4*b4,0+a0,5*b5,0;
 d0,1 = d0,1+a0,0*b0,1+a0,1*b1,1+a0,2*b2,1+a0,3*b3,1+a0,4*b4,1+a0,5*b5,1;
 ...
 d0,5 = d0,5+a0,0*b0,5+a0,1*b1,5+a0,2*b2,5+a0,3*b3,5+a0,4*b4,5+a0,5*b5,5;
 c1,0 = c1,0+a1,0*b0,0+a1,1*b1,0+a1,2*b2,0+a1,3*b3,0+a1,4*b4,0+a1,5*b5,0;
 ...
 d5,5 = d5,5+a5,0*b0,5+a5,1*b1,5+a5,2*b2,5+a5,3*b3,5+a5,4*b4,5+a5,5*b5,5;
}
float a[96][96], b[96][96], c[96][96];
main(){
 int i, j, k;
 memset(c, 0, sizeof(c));
 for(i=0; i<96; i+=6)
 for(j=0; j<96; j+=6)
 for(k=0; k<96; k+=6)
 block(&a[i][k], &b[k][j], &c[i][j]);
}

Table 19 Performance of Blocking and Dot Product Algorithms

Instruction
Cycles

Memory
Accesses

 Misses
(Data Cache)

Miss Cycles
(Data Cache)

ILP (Inner
Loop)

Dot Product 966710 1778714 56549 10024263 4.74

Blocking 613710 589878 19053 306674 4.63

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 51

10

blocking, you can improve the cache locality. Figure 38 gives the algorithm. You can use

the block procedure of Figure 37 (just change the dimension).

Three levels of loops, corresponding to the iteration variables (i, j, k) have been added

inside the loop. The innermost (k) loop has been unrolled to reduce overhead. The three

outer loops process 30×30 square blocks. The inner loops process 6×6 subsquares. The

order (i, j, k) of the inner loops should be the same as the outer loops so that the c result

is accumulated in the same order. Floating point addition is not associative. Comparative

performance for single-and two-level blocking is given in Table 20. Although the extra

loop levels increase the number of instructions, the overall performance is nearly dou-

bled.

Figure 38 Blocking Matrix Multiplication

Watch for Data Cache Bank Conflicts

The parameters to the program in Figure 39 are sets represented as bit vectors. The pro-

gram tests whether one vector is included in another. 5027 cycles are necessary to test

Table 20 Performance for Single and Two-Level Blocking

Instruction
Cycles

Memory
Accesses

 Misses
(Data Cache)

Miss Cycles
(Data Cache)

ILP CPI

One Level Blocking 9555784 9216056 635049 9576916 4.39 2.002

Two Level Blocking 11029758 11061102 54423 1095367 4.52 1.099

void block
 (float(*restrict a)[262],float(*restrict b)[262],(float(*restrict c)[262);
float a[262][262], b[262][262], c[262][262];

main(){
 int i, j, k,, ii, jj;

 memset(0, c, sizeof(c));
 for(i=0; i<240; i+=30)
 for(j=0; j<240; j+=30)
 for(k=0; k<240; k+=30)
 for(ii=i; ii<i+30; ii+=6)
 for(jj=j; jj<j+30; jj+=6){
 block(&a[ii][k], &b[k][jj], &c[ii][jj], &c[ii][jj]);
 block(&a[ii][k+1], &b[k+1][jj], &c[ii][jj], &c[ii][jj]);
 block(&a[ii][k+2], &b[k+2][jj], &c[ii][jj], &c[ii][jj]);
 block(&a[ii][k+3], &b[k+3][jj], &c[ii][jj], &c[ii][jj]);
 block(&a[ii][k+4], &b[k+4][jj], &c[ii][jj], &c[ii][jj]);
 block(&a[ii][k+5], &b[k+5][jj], &c[ii][jj], &c[ii][jj]);
 }
}

Chapter 10: Porting and Optimizing Programs

52 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

for inclusion of a 1024-word vector in another. 1024 of these are data cache stalls. The

tmsim statfile line corresponding to the loop is given below:

The cnflctc column of the statfile is for data cache bank conflicts. All the stalls are bank

conflicts.

There is a bank conflict whenever two memory accesses are made in the same cycle and

bits two to four of the address are identical. This is the case in the program of Figure 39.

The procedure malloc returns a pointer whose value is 4 mod 2n, 2n being the power of

two immediately greater than or equal to the size. The pointers are, therefore, equal,

mod 212. The same index is used inside subset to reference both arrays. The two loads are

scheduled in the same instruction because of scheduling latency constraints. A cycle is

added for every access to the two arrays as a result. Adjusting the addresses by allocating

an extra word and incrementing one of them so that bits two to four differ eliminates

the conflicts.

Figure 39 Set Inclusion

tree name execs instc istallc dstallc cpbacks cnflctc isopers exopers

__subset_DT_1 128 2176 64 275 0 896 5632 5374

int subset(int *b, int *a, int size){
 int i, result = 1;

 for (i=0; i<size; i+=8, a+=8, b+=8)
 result &= !(b[0] & ~a[0]) & !(b[1] & ~a[1])
 & !(b[2] & ~a[2]) & !(b[3] & ~a[3])
 & !(b[4] & ~a[4]) & !(b[5] & ~a[5])
 & !(b[6] & ~a[6]) & !(b[7] & ~a[7]);
 return result;
}
main(){
 (void)subset((int*)malloc(1024*sizeof(int)),
 (int*)malloc(1024*sizeof(int)),
 1024);
}

Chapter 10: Porting and Optimizing Programs

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 53

10

Summary

The TriMedia Compilation System is geared toward profile-based program optimization

methods. Some methods, such as grafting, are done automatically by the compiler while

taking into account user directives in the form of grafting parameters.

The version 2.0 compiler also performs improved if-conversion, function inlining, and

automated loop unrolling. The automated loop unrolling can interfere with grafting, so

it should be checked if grafting offers any advantages on top of the automated loop

unrolling. As the case studies have shown, in some cases it does and in other cases it

does not.

Other techniques, such as manual loop unrolling, the use of restricted pointers, and cus-

tom operators, currently need user intervention. It is expected that future versions of the

compiler will include interprocedural optimization, source-to-source transformations,

and better alias analysis. However, mechanisms like restricted pointers to pass specific

user knowledge to the compiler, and the use of custom operators to exploit the TriMedia

architecture to the maximum extent are likely to remain in the application program-

mer’s domain.

To get started in optimization, you should first compile the program and run it with the

-O3 and -p (profile) option to make the decision tree frequencies and probabilities appear

in the tree code. It is a good idea to look at the assembly code and, because cache misses

are a significant performance factor, in most applications. You can then find the hot

spots using tmprof. The C source and the tree file (.t) and assembler (.s) output corre-

sponding to the hotspots should be examined together.

An important number of after keywords in the tree code for loads and stores usually

indicates a need to use restricted pointers. The shape of the decision trees (number of

leaves, branch structure, probabilities) provides important information about program

restructuring. Frequently executed decision trees containing only a few operations indi-

cate a control flow problem.

You must also pay attention to the memory behavior of the program. Unfortunately,

memory statistics are only provided on a global basis by the current version of the SDE.

You can recognize problems in the critical path, including aliasing, from sequences of

nops in the assembler code.

You should restructure the C code, compile it with profiling, run it again with tmprof,

and recompile and analyze it as many times as necessary. You need to apply grafting last

because it is impossible to understand what is happening after grafting. You should

apply loop unrolling only if it produces better performance than grafting. To determine

this, measurement is necessary. It is a good idea to prepare a sample input smaller than

the full set so as not to lose time running tmsim. On a Sparcstation 20, the ratio of real

time to simulated time is about 36000 to 1. Understanding the instruction set helps in

optimization. The ILP factors reported in the statfile and by tmprof can include opera-

tions that become redundant after optimization. These figures should be taken as esti-

mates.

Chapter 10: Porting and Optimizing Programs

54 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

There are tools for performance analysis not mentioned in this chapter. For instance,

there are tools to investigate produced schedules in detail by report options to tmsched

and use of the tool tmcritpath to investigate the critical path of a schedule.

Besides the support for optimizing programs, the TriMedia Compilation System offers

support for system level programming. Interrupt service routines can be programmed in

C and support is added for using the most interesting cache instructions.

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 55

11

Chapter 11

System Programming Support

Topic Page

Programming Support 56

Interrupt Service Routines and Exception Handlers 56

Using MMIO Locations 63

Chapter 11: System Programming Support

56 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Programming Support

The TriMedia Compilation System offers system level programming at the C level. For

instance, interrupt service routines and fine control of the data cache are supported. The

toolset comprises interrupt latency inspection and offers support for interrupt latency

control. This section describes what the toolset offers to programmers needing one of

these features.

Interrupt Service Routines and Exception Handlers

The TriMedia C compiler allows you to create interrupt service routines (handlers, for

short) and exception handlers entirely in C. The distinction between interrupt handlers

and exception handlers is made clear in the next section, User View. First we discuss the

general mechanism and do not distinguish between the two types of handlers.

The compiler allows maximal flexibility in handlers, and transparently generates code

that uses the appropriate return address and does the additional register saving that is

required for certain types of handlers. As for normal functions, the compiler attempts to

minimize the calling overhead of handlers. Because handlers are nonstandard, this sec-

tion contains some implementation detail to explain what you can expect from them.

User View

For your purpose, the only difference between handlers and functions is the way in

which they are activated. You must explicitly call functions, whereas you must activate

handlers upon an interrupt. Note that the compiler checks the type and parameter list of

a handler but does not check erroneous calling of interrupt handlers. Normal functions

which attempt to mimic a handler cause failures under certain conditions, because han-

dlers have different register saving requirements.

Except from the fact that handlers are not allowed to return a result, there are no further

differences between functions and handlers. Any legal resultless function with the speci-

fied number of parameters can be declared as a handler and therefore, the handler’s body

can range from simple updates to some flag in shared memory to complex control flow

using conditionals, loops, and calls to other functions. However, as is the case for any C

function, the calling overhead is strongly dependent on the complexity of the handler.

See also the description of the calling sequences generated by the compiler for functions

and handlers in Declaring Interrupt Service Routines on page 59.

Handlers come in three varieties: interruptible, non-interruptible, and exception. The first

two are interrupt handlers that you can use for any of the vectored interrupts specified

for the TriMedia processor. You can use an exception handler for any type of exception,

such as misaligned store exception, floating point exceptions, and so on. The interrupt

handlers have no parameters and come in a noninterruptible and an interruptible form.

The difference is that interruptible handlers allow service of new interrupts of any kind

Chapter 11: System Programming Support

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 57

11

during their invocation (that is, nested interrupts), while noninterruptible handlers clear

the interrupt enable bit (IEN) in the processor status word during their invocation and,

therefore, can only be interrupted by nonmaskable interrupts (NMIs). This simple distinc-

tion between interrupt handlers is useful in many cases. However, sometimes you might

require a finer level of interrupt masking. You must explicitly code such finer level mask-

ing using saving, modifying and restoring of the IMASK. For details on this, see the

appropriate TriMedia data book.

Exception handlers are interruptible and get one parameter, the value of spc (saved pro-

gram counter). You should install exception handlers with care because they might

interfere with the exception handler installed by the debugger. The debugger uses an

exception handler to single-step (dtree steps) through a program. So any user program

should be certain not to destroy the debugger’s handler.

When pSOS is not running, handlers make use of the stack of the process that was active

at the moment of the interrupt. As of the 2.0f release, pSOS provides a system stack and

interrupts can be written to run on the system stack. This leads to a more efficient and

predictable use of the various stacks. The size of the pSOS system stack is set in the

sys_conf.h file using the macro KC_SYSSTK. Interrupt service routines must switch

explictly to the system stack using the call AppModel_run_on_sstack(func,param), where

func is a pointer to a normal function, and param is a void pointer that will be passed to

that parameter.

For example:

Here, ISR is the actual handler called by the hardware, and isrFunc is called on the system

stack. You can see that the use of this mechanism is optional.

As of July 1999, the TSSA renderers and digitizers use the system stack.

static void isrFunc(param){
 /* not declared as handler */
}
static void ISR(void){
#pragma TCS_handler
 AppModel_suspend_scheduling(); /* OS-independent version of ienter */
 AppModel_run_on_sstack((AppModel_Fun)isrFunc, (Pointer)¶m);
/* param pointer is dereferenced before passing to isrFunc */
 AppModel_resume_scheduling(); /* OS-independent version of ireturn */
}

Chapter 11: System Programming Support

58 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Figure 40 Sample Interrupt Handler

Saving/Restoring Behavior

Similar to functions, handlers save and restore all the callee-saved registers that they use

(including the frame pointer). Contrary to functions, handlers obtain their return

address from the processor’s destination program counter (DPC). In case a nested inter-

rupt is possible during the execution of the handler, the DPC is also saved at entry.

Unlike normal functions, caller-saved registers that might be modified by executing the

handler are also saved and restored at the handler’s entry and exit. For handlers that call

other functions, this means that the entire set of caller-saved registers is saved and

restored. For handlers that do not call other functions, this means that caller- saved reg-

isters are treated as callee-saved registers, that is, only saved and restored when used by

#include <tm1/MMIO.h>

volatile int s;

void handler1(void){
 #pragma TCS_handler
 s++;
}

void handler2(void){
 #pragma TCS_handler
 int i;

 for (i=0; i<100; i++)
 s += i;
 }

void handler3 (void){
 #pragma TCS_interruptible_handler
 do_the_work_while_allowing_interrupts();
}

/* --- */

void install_handler(
 int nr,
 handler_type handler
){
 base_of_mmio[INT_VECS + nr] = handler;
}

/* --- */

main(){
 install_handler(1,handler1);
 install_handler(2,handler2);
 install_handler(3,handler3);
}

{_handler1:}
{__handler1_DT_0:}
 3 uimm (_s);
 2 ld32 3;
 4 iaddi (1) 2;
 5 st32 3 4
 after 2;
 6 readdpc;
 cgoto 6;
endtree (*__handler1_DT_0*)

Chapter 11: System Programming Support

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 59

11

the handler itself. Note that argument registers and the return pointer register are special

cases of caller-saved registers.

Additionally, the code generated for noninterruptible handlers can save and restore the

interrupt enable bit (IEN) in the processor status word. Any other change to the processor

state during the handler’s invocation remains visible after termination of the handler.

This especially holds for the source program counter (SPC), which is used during exception

processing to determine the decision tree in which the exception occurred.

Declaring Interrupt Service Routines

Interrupt handlers must be defined as parameterless, resultless functions, with either

pragma #pragma TCS_handler, or #pragma TCS_interruptible_handler (as appropriate) in

the beginning of the function body. By default (that is, declared as TCS_handler), han-

dlers are noninterruptible.

You must define exception handlers as a resultless function with a single void * parame-

ter, using the pragma #pragma TCS_exception_handler. Remember the warning that any

explicit installation of an exception handler might cause the debugger to malfunction.

Figure 40 shows some examples of handlers, and of a simple generic function that is

used to install them in the interrupt vector region of the MMIO space. See the data book

and Using MMIO Locations on page 63.

Included in the figure is a sample translation to decision-tree intermediate code of a very

simple handler.

Figure 41 Use Volatile Shared Variables

Usage Notes

You must be aware that interruptible handlers, allowing nested interrupts, require some

additional care. First, you must make reentrant, a nested invocation of a same handler

does not corrupt the invocation state of the interrupted one. Second, with the possibility

of nested interrupts, it has become essential to guarantee that the occurrence rate of

interrupts does not exceed the system’s capacity to service them for any longer amount

int s;

void raise_s(void){
 #pragma TCS_handler
 s = 1;
}

main(){
 s = 0;

 while(!s){}

 printf("terminated \n");
}

DOES NOT WORK!

Chapter 11: System Programming Support

60 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

of time. Where such a situation only results in slow response or the loss of events in sys-

tems that do not allow nesting of interrupts, it might cause a crash in systems that do.

Any data that is shared between handlers and the mainstream program, or between han-

dlers and other handlers, must be declared volatile to prevent surprising effects caused

by optimizations. The optimizer might decide to replace loads from nonvolatile variables

by earlier results, which might not be desired for shared data. An example is shown in

Figure 41, which shows an illegal way for synchronization on an event: because the

shared variable s is nonvolatile, the optimizer propagates the earlier assigned value 0 to

the loop test condition. This results in a never ending loop, even when the handler is

triggered.

Interrupt-Latency Support

Real-time system programmers have to be sure that the interrupts that occur during exe-

cution are handled within a certain number of cycles. Because on TriMedia decision trees

are executed as large chunks of critical sections (noninterruptible code), special care is

taken in the hardware as well as in the toolset. This section discusses how you can find

out interrupt latencies for your particular program. No automatic support to guarantee a

certain interrupt latency is given1.

This section also addresses how you can find out whether the interrupt latency is more

than a given threshold and how you can modify the code to reduce the interrupt

latency. The support offered is threefold. First, there is a means to inspect violations of a

certain threshold of cycles executed between interruptible jumps. Second, there are sta-

tistics from the simulator that produce a raw data histogram describing how many dtrees

are executed with a certain number of cycles between interruptible jump. Also, the last

dtree that executed that many cycles is shown. Third, there is a pragma,

TCS_break_dtree, honored by the compiler, with which you can force the compiler to

create smaller critical sections.

1. The rationale for this is that automatic support has to be based on worst-case assumptions for all instruc-
tions executed. This is a very unrealistic situation, especially when assuming each load/store leads to cache
miss, on top of losing the maximum number cycles for arbitration and the maximum number of requests
serviced before getting the bus. Our experiments with a major application like MPEG-1 + RTOS showed
that the number of cycles executed between two interruptible jumps was worst case 30µs, while the TriMe-
dia hardware survives 300 µs. The TriMedia DMA-based peripherals have no short-term real-time con-
straints (order of several milliseconds) and the most critical peripheral is the synchronous serial interface
SSI.

tmsim Ðil Ðmm a.out
interrupt latency distribution
000004 002644 __vfprintf_DT_16 + 1c
000005 002592 ____sinit_DT_0 + 1b84
000006 000799 ____swrite_DT_2 + 28
000007 000173 __fflush_DT_3 + 26
000008 002584 __vfprintf_DT_10 + 39
000009 000462 __vfprintf_DT_34 + 5c
*** several lines deleted
000223 000001 ___fwalk_DT_0 + 106
000289 000001 __latency_isr_DT_0 + 10b

Chapter 11: System Programming Support

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 61

11

The first column in the report is the number of cycles between two interruptible jumps.

The second column is the number of times a dtree was executed with that number of

cycles. The last column names the dtree and address of the exit from the dtree last exe-

cuted for the given number of cycles between interruptible jumps. For example, the last

line means that the execution of the tree __foo_DT_0 required 758 cycles and the num-

ber of cycles between two interruptible jumps of 758 was seen only once during the exe-

cution of the program. Similarly, during the execution of the entire program there were

462 instances where the number of cycles between two interruptible jumps was equal to

9. Among these, the last time this happened was while executing the dtree at

__vfprintf_DT_34.

Supporting Cache Control

You can use the cache operations as specified in the data book (dcb, dinvalid, iclr, rdsta-

tus, and rdtag) through the custom_op mechanism discussed in Using Custom Operators

on page 36. But when you use these instructions directly (through a custom_op declara-

tion), the ordering of memory accesses and the cache custom operations does not work.

The TriMedia C library has two entry points cache_copyback and cache_invalidate that

allow you to maintain software coherency between the SDRAM and the data cache.

However, the TriMedia C library supports a more ‘user view’ model for using the most

interesting custom operations at the C level, for example, copying back, allocating, or

invalidating a piece of memory using functions declared in tmlib/tmlibc.h.

As an example, take the entry point _cache_invalidate. The semantics are: invalidate the

piece of memory [address, address + size1). The entire contents of the cache blocks in the

range will disappear. Any dirty data will be lost. Calls to _cache_invalidate are translated to

issues of the appropriate number of dinvalids. The object referenced by the pointer

should be cache aligned with respect to its upper and lower bounds.

The _cache_copyback entry point flushes dirty data back to the cache. This can be used

prior to starting DMA or before a cache_invalidate if required. Unlike invalidates, copy-

backs are not destructive and the range does not need to be aligned. The _cache_allocate

entry point resets the dirty bit in all data in the range. The memory range should be

cache aligned.

In addition to the functions _cache_allocate, _cache_copyback and _cache_invalidate,

the user can perform cache allocation, cache copyback and cache invalidation directly,

using the custom operators ALLOCATE, COPYBACK and INVALIDATE defined in ops/

000411 000001 ___fwalk_DT_4 + 17b
000419 000001 __memchr_DT_2 + 304
000758 000001 __foo_DT_0 + 457

void _cache_invalidate(void *address, int size);
void _cache_copyback (void *address, int size);
void _cache_allocate (void *address, int size);

1. Currently, the cache block size is 64 bytes.

Chapter 11: System Programming Support

62 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

custom_defs.h. As noted above, the user should not use the underlying hardware cache

operations directly as custom_ops in a program, because the resulting ordering of opera-

tions in the generated program may be incorrect. The C compiler translates the ALLO-

CATE, COPYBACK and INVALIDATE custom operators into the required series of hardware

cache operations as specified in the data book, and assures the appropriate ordering of all

memory operations which alias with the specified memory region. In general, these cus-

tom operators should be used only for extremely time-critical code; in most situations,

the user should call the corresponding function instead.

The example from Figure 42 compiled with tmcc -O3 -t example.c translates into the

trees code in Figure 43. In the example, note that *c = 3; aliases with all other memory

locations because the address of c is unknown. The INVALIDATE call at the C level is

translated into two dinvalid operations, which are ordered among all aliasing memory

operations. The store to value a[1] is ordered only against the first dinvalid operation,

because the compiler assumes1 it overlaps only with the first cache line. In general, the

input ordering of all cache operations is maintained. Note that the assignment b[10] = 3;

is free to move across the dinvalid operations.

Figure 42 Example of Use of Cache custom_ops

The other cache operations are completely analogous to the invalidate custom_op and

are not discussed any further.

1. Note that the assumption might not be true when the address (the first parameter to the invalidate call) is
not cache-block aligned, as in this case!

#include <custom_defs.h>
char a[1000];
char b[1000];
char *c;

foo(){
 *c = 3; b[10] = 4;
 INVALIDATE(a, 2);
 a[1] = 1;
 return a[1];
}

{_foo:}
{__foo_DT_0:}
entree (0)
 2 uimm (_c);
 1 ld32 2;
 4 iimm (0x3);
 3 st8 1 4 (* *c = 3; *)
 after 1;
 6 uimm (_b);
 8 iimm (0x4);
 7 st8d (10) 6 8 (* b[10] = 4; *)
 after 3;
 10 uimm (_a);
 11 uimm (0x40);
 9 dinvalid(0) 10 (* invalidate [a, a+64) *)
 after 3;
 12 uimm (64 + _a);

Chapter 11: System Programming Support

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 63

11

Figure 43 Intermediate Representation for Cache custom_op Example

Using MMIO Locations

Writes to MMIO locations do not take effect immediately. For example, if there is a write

to the IPENDING location in cycle i that generates an interrupt, the interrupt is not trig-

gered if an ijmpi operation is executed in cycle i+1. The interrupt is taken if the ijmpi

operation was executed in cycle i+2. The amount of delay required for a write to an

MMIO location is dependent on the location. Fore more information, refer to the

databook.

 13 dinvalid(0) 12 (* invalidate [a+64, a+128) *)
 after 9 3;
 16 rdreg (1);
 15 st8d (1) 10 16 (* a[1] = 1; *)
 after 9;
 18 wrreg (5) 16;
 19 rdreg (2);
 cgoto 19
endtree (*__foo_DT_0*)

Chapter 11: System Programming Support

64 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 65

12

Chapter 12

Case Studies

Topic Page

Introduction 66

Special-Purpose Block Filter 66

Fixed-Point Arithmetic 68

IFIR16 Custom Operations 69

Dual-Phase Loop 70

Critical Path 71

Algebraic Transformation 73

Balancing the Critical Path 74

More Unrolling 75

Matrix Transpose 77

Divide and Conquer 78

Using Custom Operations 79

Inlining and Shrink-Wrapping 80

Cache Alignment 82

Discrete Cosine Transform (DCT) 83

IIR Filter 103

Chapter 12: Case Studies

66 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Introduction

Figure 44 shows the source code for a block FIR filter with floating-point arithmetic. The

filter has been structured as a general-purpose library routine. The array of filter coeffi-

cients are supplied in an argument. The filter components are computed element by ele-

ment. A separate function dotap is used to compute an element.

Figure 44 General-Purpose Block Filter

Special-Purpose Block Filter

Speed is critical when writing a routine that is specialized for a particular purpose. Imple-

mentation of a filter requires memorization of state information. You must use an array

to represent the state if the size is arbitrary. Fixing the length allows it to be stored in sca-

lars. These can be allocated to one of TriMedia’s 128 general-purpose registers. If the

length is variable, a loop is needed to evaluate the output value. This adds a control

dependence that limits ILP. By fixing the state length beforehand, you can use a closed

form expression. This has more ILP. In the example of Figure 44, the program is divided

into two functions. This interferes with the optimizing ability of the compiler.

In the program of Figure 44, the array coeff is provided as a parameter. Only two accesses

to memory can be made per instruction on TriMedia. If the routine is specialized for a

particular set of coefficients, these can be placed as constants in the instruction stream.

This reduces memory accesses and eliminates latency.

void blkfir(float *input, float *state, float *coeff,
 float *output, int npoints, int ntaps
){
 int i;

 for(i=0; i<npoints; i++){
 output[i] = dotap(input[i], state, coeff, ntaps);
 }
}
float dotap(float input, float *state, float *coeff, ntaps){
 int i;
 float sum = 0.0;

 state[0] = input;
 for(i = ntaps; i>0; iÐÐ){
 state[i] = state[iÐ1]; /* slide window */
 sum = sum + state[i] * coeff[i];
 }
 return sum;
}

void blkfir(float *input, float *output, npoints){
 int i, j;
 float state1, state2, state3, state4, state5, state6, state7, state8;

 state2 = state3 = state4 = state5 = state6 = state7 = state8 = 0.0;
 for(i=0; i < npoints; i++){

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 67

12

Figure 45 Specialized Filter

Figure 45 shows a specialized version of the routine for a state length of eight and a fixed

set of coefficients. Eight scalar variables are used to represent the state. The two func-

tions have been collapsed into one. Table 21 compares the performance of the two pro-

grams. After elimination of the loop and the arrays for coeff and state, only 1129

instruction cycles are necessary, compared to 5611 previously.

Figure 46 Filter with Fractional Arithmetic

 state1 = input[i];
 output[i] = state1*0.5 + state2*0.25 + state3*0.125 + state4*0.0625 +
 state5*0.03125 + state6*0.015625 + state7*0.0078125 + state8*0.00390625;
 state8 = state7; state7 = state6; state6 = state5; state5 = state4;
 state4 = state3; state3 = state2; state2 = state1;
 }
}

void blkfir(int *input, int *output, npoints){
 int state1 = 0, state2 = 0, state3 = 0, state4 = 0;
 int state5 = 0, state6 = 0, state7 = 0, state8 = 0;

 for(i=0; i<npoints; i++){
 state1 = input[i];
 output[i] = IMULM(state1, 0x10000000) + IMULM(state2, 0x08000000)
 + IMULM(state3, 0x04000000) + IMULM(state4, 0x02000000)
 + IMULM(state5, 0x01000000) + IMULM(state6, 0x00800000)
 + IMULM(state7, 0x00400000) + IMULM(state8, 0x00200000);
 state8 = state7; state7 = state6; state6 = state5; state5 = state4;
 state4 = state3; state3 = state2; state2 = state1;
 }
}

Table 21 Special-Purpose Versus General-Purpose Filter

ILP Instruction Cycles

Per Tap Per Input Total

General Purpose Filter 1.06 17.5 140 5611

Special Purpose Filter 1.42 3.52 28.2 1129

Chapter 12: Case Studies

68 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Fixed-Point Arithmetic

Seven additions are necessary for each iteration of the loop of Figure 45. These have a

latency of three cycles. Floating-point addition is commutative but not associative, for

example, 108 + (–108 + 1) is not the same as (108 + –108) + 1. The C language requires

that, in the absence of parentheses, floating-point arithmetic be executed in strict left to

right order. In the program of Figure 45, this means that the additions must be executed

in sequential order. A total of 21 cycles (7×3) is necessary to sum the seven products in

sequential order using floating point.

Integer addition is both commutative and associative, so the compiler can balance the

chain of additions in a tree, reducing dependences and increasing parallelism. Seven

addition operations can be represented in a binary tree of height three. Integer addition

has a latency of only one cycle. Three cycles (3×1) are necessary to sum the seven prod-

ucts in parallel. You can use integer arithmetic by changing to a fixed point representa-

tion.

You can represent fixed point numbers in what is called Q.n representation. The binary

point is after the nth least significant bit. The bits to the right of the binary point corre-

spond to the fractional part of the number. The most significant bit corresponds to the

sign. The number of bits available for the integer part depends on the word length (16,

32, or 64 bits).

For this filter, the inputs are specified to be between –1 and +1. You can represent them

in Q.31 form. The coefficients are between 0 and 1. The output of the filter is a sum of

eight products between –1 and +1. It is between –8 and +8. Three bits are sufficient to

represent the integer part (Q.28 form). The product of two numbers in Q.n and Q.m form

is in Q.n+m form. If we represent the coefficient in Q.29 form and the input in Q.31

form, the 64-bit product is in Q.60 form. The high order 32 bits are given by the TriMe-

dia IMULM instruction. This gives us a result in Q.28 form (60–32), as desired.

Figure 46 shows the source program after recoding to use fractional arithmetic. Table 22

shows the improvement due to the introduction of fixed-point arithmetic. Execution

time is more than doubled, and the ILP is more than doubled, also.

Table 22 Fixed Versus Floating Point Arithmetic

ILP (Inner Loop) Instruction Cycles

Special Purpose + Floating Point 1.42 1129

Special Purpose + Fixed Point 3.33 489

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 69

12

IFIR16 Custom Operations

Changing to a fixed-point representation permits use of data-parallel custom operations.

You can compute the sum of two products in a single IFIR16 instruction. Recoding the

algorithm to use IFIR16 involves changing the representation from 32 to 16 bits. You

must represent the inputs in Q.15 form, the outputs in Q.12 form, and the coefficients in

Q.13 form. The smallest coefficient is 2–8, which fits in 13 bits. The state and coefficients

are represented in halfword pairs. The high order halfword corresponds to the first ele-

ment and the low order halfword corresponds to the second element of the pair.

Representing elements in halfwords complicates the handling of the state. When there is

a variable per-state element, shifting the state corresponds to seven register moves and

one load. Up to five register moves can execute in parallel on TriMedia. When each regis-

ter has two elements, shifting the state requires matching up the second element of each

pair with the first element of the next. This corresponds to extracting the middle 32 bits

of the 64-bit concatenation of the two pairs. This is possible with the TriMedia

FUNSHIFT2 instruction.

Figure 47 shows the source program after recoding to use IFIR16 and FUNSHIFT2. To

increase efficiency, the coefficient constants have been moved to registers. Table 23

shows the comparative performance with and without IFIR16. The number of instruction

cycles is reduced by 40%.

Figure 47 Filter with Custom Operations

Table 23 Comparative Performance

ILP (Inner Loop) Instruction Cycles

Special Purpose + Fixed Point 3.33 489

Special Purpose + Fixed Point + Ifir16 3.28 289

void blkfir(short *input, int *output, int npoints){
 int i;
 int state01 = 0, state23 = 0, state45 = 0, state67 = 0;
 int coeff01 = 0x10000800, coeff23 = 0x04000200, coeff45 = 0x01000080,
 coeff67 = 0x00400020;

 for(i=0; i<npoints; i++){
 state01 = FUNSHIFT2(input[i],state01); /* state1 = state0 */
 /* state0 = inputi */
 output[i] = IFIR16(state01, coeff01) + IFIR16(state23, coeff23)
 + IFIR16(state45, coeff45) + IFIR16(state67, coeff67);
 state67 = FUNSHIFT2(state45,state67); /* state67 = state56 */
 state45 = FUNSHIFT2(state23,state45); /* state45 = state34 */
 state23 = FUNSHIFT2(state01,state23); /* state23 = state12 */
 }
}

Chapter 12: Case Studies

70 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Dual-Phase Loop

Several factors still limit the performance of the inner loop. The key factor is the 16-bit

alignment of the state because of IFIR16. Shifting the state using FUNSHIFT2 is cumber-

some and slow. Only a halfword of data is read per cycle. A minimum of five cycles is

necessary per output element because of the loop. You cannot reduce the overhead by

unrolling because there is a dependence on the state.

Figure 48 Two-Phase Loop

You can sidestep all these restrictions by separating the execution of the loop into two

phases. The x phase corresponds to the even-numbered outputs (output0, output2,

output4). The second phase corresponds to the odd-numbered outputs (output1, output3,

output5). Each has its own state. The state of the y phase corresponds to the state of the x

phase shifted one input element. Two elements are processed per loop iteration. This

allows register copies to be used instead of FUNSHIFT2 for the state. Doubling the num-

ber of elements divides jump overhead by two. One half as many memory accesses

(1×32 bits instead of 2×16) are made in the dual phase loop. Figure 48 shows the source

program after recoding. Table 24 compares performances of the single and dual-phase

loops.

void blkfir(int *input, int *output, npoints){
 int state1 = 0, state2 = 0, state3 = 0, state4 = 0;
 int state5 = 0, state6 = 0, state7 = 0, state8 = 0;

 for(i=0; i<npoints; i++){
 state1 = input[i];
 output[i] = IMULM(state1, 0x10000000) + IMULM(state2, 0x08000000)
 + IMULM(state3, 0x04000000) + IMULM(state4, 0x02000000)
 + IMULM(state5, 0x01000000) + IMULM(state6, 0x00800000)
 + IMULM(state7, 0x00400000) + IMULM(state8, 0x00200000);
 state8 = state7; state7 = state6; state6 = state5; state5 = state4;
 state4 = state3; state3 = state2; state2 = state1;
 }
}

Table 24 Single- and Dual-Phase Loop Comparison

ILP (Inner Loop) Instruction Cycles

Special Purpose + Fixed Point + Ifir16 3.28 289

Special Purpose + Fixed Point + Ifir16 +
Dual-Phase Loop

4.61 173

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 71

12

Table 25 summarizes the improvements in performance due to successive refinements of

the program. There is a reduction by a factor of 32 in the execution time. The final pro-

gram has more than 90% issue-slot utilization.

Critical Path

Horner’s algorithm for evaluating a polynomial is shown in Figure 49. The array P gives

the coefficients. P(x) = (x+1) 20. Thus, P(–1) = 0, P(0) = 1, and P(1) = 220.

Figure 49 Polynomial Evaluation Using Horner’s Algorithm

You can estimate the degree of ILP in the program by running tmsim with the -statfile

option and examining the resulting file. Table 26 gives the line of the file corresponding

to the while loop of the function poly_eval. Without grafting, the issue-slot utilization of

1.49 (188/126) is very low.

With grafting, the issue slot utilization is 1.61 (208/129), so it seems there is more ILP.

However, more instructions are necessary to do the same task (129 versus 126).

Table 25 Performance Improvements by Program Refinement

ILP Instruction Cycles

Per Tap Per Input Total

General Purpose + Floating Point 1.06 17.5 140.2 5611

Special Purpose + Floating Point 1.42 3.5 28.2 1129

Special Purpose + Fixed Point 3.33 1.52 12.2 489

Special Purpose + Fixed Point + Ifir16 3.28 0.90 7.2 289

Special Purpose + Fixed Point + Ifir16 +
Dual-Phase Loop

4.61 0.54 4.3 173

#include <stdio.h>
#define DEGREE 20
float P[DEGREE+1] = {
 1, 20, 190, 1140, 4845, 15504, 38760, 77520, 125970, 167960, 184756,
 167960, 125970, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
};
float poly_eval(float *a, int size, float x){
 float result = 0;
 while (size >= 0) {
 result = result * x + a[size];
 ÐÐsize;
 }
 return result;
}
main(){
 printf("y = %f\n", poly_eval(P, DEGREE, 1.0));
}

Chapter 12: Case Studies

72 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

The ILP is limited here by the length of the critical path. In the loop, the critical path

corresponds to the calculation of a new value for the variable result. Each calculation

requires a floating point multiplication, a floating point addition, and a coefficient load.

The multiplication and the load both have a latency of three cycles. However, they can

proceed in parallel. The addition has a latency of three cycles and depends on the other

two operations. It is the sum of latencies (3 + 3 = 6) that determines the execution time.

126 cycles are necessary to execute 21 iterations of the loop.

Grafting reduces execution time when the ILP is limited by control flow. In this case, the

three extra cycles with grafting are due to speculative evaluation during the final itera-

tion. There are 21 values per result and two are evaluated per iteration.

Table 26 Line of the File Corresponding to the while Loop of the Function poly_eval

execs instc istallc dstallc cpbacks cnflctc isopers exopers

No Grafting 21 126 29 24 0 0 189 188

Grafting 6 129 88 31 0 0 211 208

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 73

12

Algebraic Transformation

Horner’s algorithm is optimal in terms of the number of operations, but it is inherently

sequential. By means of an algebraic transformation, you can multiply the parallelism by

two. You can decompose polynomial P(x) into the sum of two polynomials, Q(x) and

Q′(x), corresponding to the even and odd powers of x, respectively. It is then possible to

substitute x ×R(x) for Q′(x), where R(x) is a polynomial having only even powers of x also.

At this point, we can substitute y = x2 in Q(x) and R(x), because both polynomials con-

tain only even powers of x. For example:

P(x) = a0 × x0 + a1× x1 + a2 × x2 + a3 × x3 + a4 × x4 + a5 × x5

Q(y) = a0 × y0 + a2× y1+ a4 × y2

R(y) = a1× y0 + a3× y1 + a5 × y2

You can evaluate the polynomials Q(x) and R(x) in parallel using Horner’s rule, doubling

the parallelism. Figure 50 shows source for a parallel version of poly_eval. An adjustment

is necessary for the case where there is an odd number of coefficients (in this case, Q and

Q’ have differing degrees). This corresponds to a problem that occurs frequently when

programming an unrolled loop with a variable size input in TriMedia. There is a reduc-

tion in the number of cycles from 129 to 101 for the parallel version. This is somewhat

disappointing.

Figure 50 Parallel Polynomial Evaluation

float poly_eval(float *a, int size, float x){
 float result1, result2, y;
 int adj;

 y = x * x;
 adj = (size+1) & 1;
 size Ð= adj;
 result1 = IZERO(adj, a[size+1]);
 result2 = 0;
 while (size > 0) {
 result1 = result1 * y + a[sizeÐ1];
 result2 = result2 * y + a[size];
 size Ð= 2;
 }
 return result1 + result2 * x;
}

Chapter 12: Case Studies

74 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Balancing the Critical Path

Looking at Figure 50, note that result1 and result2 are calculated from a[size] and

a[size–1]. The reference to a[size] corresponds to the scaled index addressing mode on

TriMedia. Calculating a[size–1] requires one more cycle for the subtraction. The critical

path is unbalanced as a result. There are several ways to balance the critical path. You

can use pairs of index variables (a[size], a[size1]), for example. In this case, the best solu-

tion is to adapt the algorithm to use pointers instead of indices for the arrays. The modi-

fied source code is shown in Figure 51. The references to ap[0] and ap[–1] correspond to

the displacement addressing mode on TriMedia. Using pointers, only 81 cycles (com-

pared to 101) are necessary.

Figure 51 Balanced Critical Path

float poly_eval(float *a, int size, float x){
 float result1, result2, y, *ap;
 int adj;

 y = x * x;
 adj = (size+1) & 1;
 size Ð= adj;
 ap = &a[size];
 result1 = IZERO(adj, ap[1]);
 result2 = 0;
 while(ap > a){
 result1 = result1 * y + ap[0];
 result2 = result2 * y + ap[Ð1];
 ap Ð= 2;
 }
 return result1 + result2*x;
}

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 75

12

More Unrolling

Figure 52 shows the source for poly_eval when the loop has been unrolled to evaluate

four polynomials in parallel. With unrolling, only 61, as compared to 81 cycles, are nec-

essary to evaluate the polynomial. If the coefficients and degree of a polynomial are

fixed in advance, more reduction in execution time is possible. Only 31 cycles are neces-

sary to evaluate a polynomial of degree 20 on TriMedia. Source is given in Figure 53.

Table 27 summarizes the time required to evaluate (x+1)20, depending on the algorithm.

Figure 52 Balanced Critical Path

Table 27 Time Required to Evaluate (x+1)20

Calculation Of 21-Point Polynomial Instruction Cycles

Horner’s Algorithm (Figure 49) 126

Two-Way Parallel (Figure 50) 101

Two-Way Parallel with Pointers (Figure 51) 81

Four-Way Parallel with Pointers (Figure 52) 61

Fixed (x+1)20 Algorithm (Figure 53) 31

float poly_eval(float *a, int size, float x){
 float result1, result2, y, *ap;
 int adj;

 y = x * x;
 adj = (size+1) & 1;
 size -= adj;
 ap = &a[size];
 result1 = IZERO(adj, ap[1]);
 result2 = 0;
 while (ap > a) {
 result1 = result1 * y + ap[0];
 result2 = result2 * y + ap[-1];
 ap -= 2;
 }
 return result1 + result2*x;
}

Chapter 12: Case Studies

76 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Figure 53 Source

float poly_eval(float x){
 float result1, result2, result3, result4;
 float x2 = x*x, x3 = x2*x, x4 = x2*x2, x8 = x4*x4;

 result1 = 1 + x4* 4845 + x8*125970 + x4*x8*125970 + x8*(x8*4845+x8*x4);
 result2 = 20 + x4*15504 + x8*167960 + x8*x4* 77520 + x8*x8*1140;
 result3 = 190 + x4*38760 + x8*184756 + x8*x4* 38760 + x8*x8* 190;
 result4 = 1140 + x4*77520 + x8*167960 + x8*x4* 15504 + x8*x8* 20;
 return (result1 + result2*x) + (result3*x2 + result4*x3);
}

Table 28 Instruction Cycles by Calculation

Calculation of 21-point polynomial Instruction Cycles

fixed (x+1)20 Algorithm (Figure 52) 31

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 77

12

Matrix Transpose

Computing the transpose of a matrix is useful in image processing. If the row and hori-

zontal indices correspond to the x and y axis, transposition corresponds to a reflection

about the x-y diagonal. Figure 54 shows a program. The dimension is coded as a power of

two. The routine is used as follows:

Table 29 indicates performance figures for different sizes. They were obtained with

tmprof and tmsim.

The total execution time is the sum of the instruction cycles, the data cache miss cycles,

and the instruction cache overhead (about 1000 cycles). The number of instructions and

the number of memory accesses grows with the square of the image size. This is as

expected. However, there is an explosion in the data cache overhead for a matrix of size

256×256. This is because the inner loop accesses the array in both row and column

order. Each access to a byte in a row of the array brings in 63 other bytes. For the column

order accesses, the data is used only after a full iteration of the outer loop. For n=256, an

iteration of the outer loop overflows the 16K data cache. Also, each access only fetches a

byte, even though 32 bits are available. This means that 75% of the memory bandwidth

is wasted. Memory bandwidth is the critical limiting factor of this application. Accesses

have a latency of three cycles. Cache misses have a latency of about 11 cycles for the crit-

ical word and about 30 cycles for the whole line.

Figure 54 Iterative Matrix Transposition

#define SIZE 4 /* for a 16 by 16 matrix */
char matrix[1<<SIZE][1<<SIZE];
...
transpose(matrix);.

void transpose(char *in){
 int i, j, t;

 for(i=0; i < (1<<SIZE); i++)
 for(j=0; j<i; j++) {
 t = in[(i<<SIZE) + j];
 in[(i<<SIZE) + j] = in[(j<<SIZE) + i];
 in[(j<<SIZE) + i] = t;
 }
}

Table 29 Performance Figures by Size

Memory Accesses Instruction Cycles D-Cache Miss Cycles

16 x 16 574 1271 205

32 x 32 2142 4191 476

64 x 64 8350 15408 1420

128 x 128 33054 59344 5929

256 x 256 131614 233232 983218

Chapter 12: Case Studies

78 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Divide and Conquer

Two problems have to be dealt with. In a case where both the number of cache misses

and the number of instructions need to be reduced, you should address the cache issues

first because reducing cache overhead requires rethinking the algorithm. Figure 55 shows

a solution to the matrix transposition problem, using the divide and conquer approach.

Figure 55 Recursive Matrix Transposition

The matrix is divided into four equal-sized squares. The two squares along the diagonal

are transposed in place. The two other squares are interchanged and transposed. On the

initial call, the entire matrix is transposed in place:

For the recursive step, the two squares along the x-y diagonal are transposed in place.

The two squares along the other diagonal are interchanged and transposed.

The parameter step indicates the array dimensions as a power of two. This is a naive

algorithm that simply recurses until a 1×1 matrix is found. Table 31 indicates perfor-

mance figures for different image sizes. For a 16×16 matrix, there are about five times as

many memory accesses and 2.5 times as memory instruction accesses, compared to the

iterative algorithm. However, the execution time is better for a 256×256 matrix because

of better locality.

Table 30 Performance Figures by Size

Memory Accesses Instruction Cycles D-Cache Miss Cycles

16 x 16 2534 2830 382

32 x 32 9654 10406 889

64 x 64 37718 40150 3380

128 x 128 149142 158006 11113

256 x 256 592045 627155 57520

void transpose(char * in, char * out, int step){
 if (step == 0) {
 int t = in[0];
 in[0] = out[0];
 out[0] = t;
 }else{
 transpose(in, out, --step);
 transpose(&in[(SIZE + 1) << step], &out[(SIZE + 1) << step], step);
 transpose(&in[1<<step], &out[SIZE<<step], step);
 if(in != out)
 transpose(&in[SIZE<<step], &out[1<<step], step);
 }
}

transpose(matrix, matrix, SIZE);

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 79

12

Using Custom Operations

The TriMedia has instructions that merge and pack bytes in registers in parallel. You can

apply one of these instructions in this case to speed up the manipulation of bytes that

are packed into words. Imagine that our task is to transpose a 4×4 matrix.

Figure 56 4×4 Transpose

Figure 56 shows how you can use custom operations. Figure 57 extends the solution to a

2n×2n matrix. The elementary step is on four machine words. Table 32 shows the perfor-

mance of the routine. For a 256×256 array, the overall execution time is ten times less

than the iterative algorithm. For a 16×16 matrix, the execution time is two times less.

Table 31 Performance Figures by Size

Memory Accesses Instruction Cycles D-Cache Miss Cycles

16 x 16 362 448 237

32 x 32 1218 1252 949

64 x 64 4466 4268 3028

128 x 128 17106 16274 9292

256 x 256 65871 65948 43819

#include <ops/custom_defs.h>
#define WSZ (SIZE/sizeof(int))

void transpose(int * in, int * out, int step){
 if(step == 0){
 int im0 = MERGEMSB(in[0*WSZ],in[1*WSZ]),
 im1 = MERGEMSB(in[2*WSZ],in[3*WSZ]),
 im2 = MERGELSB(in[0*WSZ],in[1*WSZ]),
 im3 = MERGELSB(in[2*WSZ],in[3*WSZ]);
 int om0 = MERGEMSB(out[0*WSZ],out[1*WSZ]),
 om1 = MERGEMSB(out[2*WSZ],out[3*WSZ]),
 om2 = MERGELSB(out[0*WSZ],out[1*WSZ]),
 om3 = MERGELSB(out[2*WSZ],out[3*WSZ]);
 out[0*WSZ] = PACK16MSB(im0,im1); out[1*WSZ] = PACK16LSB(im0,im1);
 out[2*WSZ] = PACK16MSB(im2,im3); out[3*WSZ] = PACK16LSB(im2,im3);
 in [0*WSZ] = PACK16MSB(om0,om1); in [1*WSZ] = PACK16LSB(om0,om1);
 in [2*WSZ] = PACK16MSB(om2,om3); in [3*WSZ] = PACK16LSB(om2,om3);
 }else{
 transpose(in, out, ÐÐstep);
 transpose(&in[(SIZE + 1) << step], &out[(SIZE + 1) << step], step);

a e b f

i m j n

c g d h

k o l p

mergemsb

mergemsb

mergemsb

mergemsb

pack16msb

pack16msb

pack16msb

pack16msb“Row Major”

a b c d

e f g h

i j k l

m n o p

“Column Major”

a e i m

b f j n

c g k 0

d h l p

Chapter 12: Case Studies

80 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Figure 57 2n × 2n Matrix

Inlining and Shrink-Wrapping

The algorithm reads and writes the entire matrix once. For a 256×256 byte matrix, there

are 16,384 word accesses for reads and 16,384 word accesses for writes (256 ×256/4). A

total of 32,768 memory accesses are necessary. The 65,871 memory accesses are neces-

sary running the program. Most of the other 33,103 accesses are spills of registers to the

stack. These are generated by tmccom, the TriMedia core compiler.

You can use two techniques to reduce the number of stack spills. Inlining one level of

recursion reduces the function call overhead by a factor of about three. You can remove

the spills for applications of the elementary step using a technique known as shrink-

wrapping.

Shrink-wrapping works by splitting a function into two parts. The first part contains the

part of the function that calls other functions or itself (the nonleaf part). The second part

contains the part of the function that corresponds to a leaf. This code is placed in a sepa-

rate function. The compiler can use caller-saved registers instead of callee-saved registers

here because it is a leaf. Overhead is also reduced in the nonleaf part because only its

variables need to be spilled. The function call overhead in the leaf part is minimal.

You can use different techniques to inline a function, including using a preprocessor

such as KAP, using the C preprocessor, and hand inlining. Both using the C preprocessor

and hand inlining were tried with this example. Naively using the C preprocessor gave

poor code.

The elementary step in transpose calls transpose_leaf. It operates on an 8×8 matrix. The

code in transpose is as follows:

Figure 58 shows source for transpose_leaf. Figure 59 shows the C preprocessor macros

used to operate on 4×4 submatrices. READ4 reads a submatrix into four temporary vari-

ables. WRITE4 writes out the transposed result. MERGE4 corresponds to the intermediary

step.

Table 32 shows the performance of the routine after inlining and shrink-wrapping have

been applied. For a 256×256 array, 8194 out of 40962 memory accesses can be attributed

 transpose(&in[1<<step], &out[SIZE<<step], step);
 if(in != out)
 transpose(&in[SIZE<<step], &out[1<<step], step);
 }
}

if(step==1)
 transpose_leaf(in, out);
else ...

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 81

12

to spills. This corresponds to an overhead of 25%, which is acceptable. Eliminating spills

divides the number of instructions by almost a factor of two.

Figure 58 Source for transpose_leaf

Table 33 compares the performances of the original and final versions of the program, in

cycles. An instruction cache overhead of 1000 cycles in both cases is assumed. Depend-

ing on the size of the input, the improvement in performance varies between 1.6 and 16.

Table 32 Performance After Inlining and Shrink-Wrapping

Memory Accesses Instruction Cycles D-Cache Miss Cycles

16 x 16 262 294 207

32 x 32 768 684 1084

64 x 64 2834 2320 2757

128 x 128 10594 8864 9363

256 x 256 40962 36464 45202

void transpose_leaf(int *in, int *out){
 int i0, i1, i2, i3;
 int im0, im1, im2, im3, im4, im5, im6, im7;
 int im8, im9, im10, im11, im12, im13, im14, im15;

 READ4(&in[0]); MERGE4(im0, im1, im2, im3);
 READ4(&in[1]); MERGE4(im4, im5, im6, im7);
 READ4(&in[4*WSZ]); MERGE4(im8, im9, im10, im11);
 READ4(&in[4*WSZ+1]); MERGE4(im12, im13, im14, im15);

 READ4 (&out[0]);
 WRITE4(&out[0], im0, im1, im2, im3);
 MERGE4(im0, im1, im2, im3);
 WRITE4(&in[0], im0, im1, im2, im3);

 READ4 (&out[1]);
 WRITE4(&out[1], im8, im9, im10, im11);
 MERGE4(im8, im9, im10, im11);
 READ4 (&out[4*WSZ]);
 WRITE4(&out[4*WSZ], im4, im5, im6, im7);
 MERGE4(im4, im5, im6, im7);
 WRITE4(&in[1], im4, im5, im6, im7);

 WRITE4(&in[4*WSZ], im8, im9, im10, im11);

 READ4 (&out[4*WSZ+1]);
 WRITE4(&out[4*WSZ+1], im12, im13, im14, im15);
 MERGE4(im12, im13, im14, im15);
 WRITE4(&in[4*WSZ+1], im12, im13, im14, im15);
}

#define READ4(x) i0 = (x)[0*WSZ]; i1 = (x)[1*WSZ]; \
 i2 = (x)[2*WSZ]; i3 = (x)[3*WSZ];

#define MERGE4(i,j) v0 = MERGEMSB(i0,i1); v1 = MERGEMSB(i2,i3); \
 v2 = MERGELSB(i0,i1); v3 = MERGELSB(i2,i3);

Chapter 12: Case Studies

82 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Figure 59 C Preprocessor Macros Used To Operate On 4×4 Submatrices

Cache Alignment

Cache accesses have a granularity of 64 bytes and are aligned at 64-byte boundaries in

memory. Fetching a structure of 64 bytes aligned at 64-byte boundary requires a single

cache access compared to two for an unaligned access. Fetching an unaligned 32-byte

structure requires one and one half cache accesses on average, compared to one for an

aligned access. If the matrix is allocated on the heap, it can be aligned to a cache bound-

ary. The number of memory accesses increases from 44041 to 68162 for a 256 ×256

matrix if it is not cache-aligned. The TriMedia C library routine _cache_malloc can be

used for this. Code for the transposition routine to align the matrix is shown below. The

second argument is the set number (0–31 where –1 means any cache set).

#define WRITE4(x,i,j,k,l) (x)[0*WSZ] = PACK16MSB(i,j); \
 (x)[1*WSZ] = PACK16LSB(i,j); \
 (x)[2*WSZ] = PACK16MSB(k,l) \
 (x)[3*WSZ] = PACK16MSB(k,l);

Table 33 Performance of Original and Final Versions

Original Program Final Program

16 x 16 2476 1504

32 x 32 5667 2675

64 x 64 16828 5419

128 x 128 65634 17410

256 x 256 1226450 74336

#define LINESIZE 64
a = (char*)_cache_malloc(SIZE*SIZE, Ð1);
... initialize matrix ...
transpose((int*)a, (int*)a, STEP);

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 83

12

Discrete Cosine Transform (DCT)

The purpose of this article is to explain the implementation of the Discrete Cosine Trans-

form (DCT) on the TriMedia architecture and its inverse. The DCT is a key transform for

multimedia encoding (video and audio) and has been adopted by the JPEG standards.

The article begins with a brief discussion of transform theory and an explanation of the

DCT. Reference implementations are provided for those not already familiar with the

DCT.

The 8×8 DCT used in TriMedia uses a separable algorithm based on the 8-point 1D DCT

described in 1989 by Loeffler, Ligtenberg and Moschytz. The TriMedia-specific optimiza-

tions are described for both the 8×8 DCT and its inverse. Besides being of interest in

itself, the DCT implementation provides an excellent in depth case study of optimiza-

tion for TriMedia.

The following publications were referenced in the drafting of this section:

Practical Fast 1-D DCT Algorithms with II Multiplicators, Christoph Loeffler, Adrian Ligten-

berg, George S. Moschytz, IEEE Proceedings, 1989.

Discrete Cosine Transform Algorithms, Advantages, Applications, K. R. Rao, P. Yip, Academic

Press, 1990

Presentation to IEEE G.2.1.6 Video Compression Measurements Subcommittee on IEEE 1180-

1990 Standard Discrete Cosine Transform Accuracy Test, Ken Vollmar, January 1998.

What is a Transform?

A transform changes the representation of a function or signal while maintaining its

essential properties.

The Discrete Cosine Transform is based on the Fourier Cosine Transform (FCT). The FCT

is a just a special case of the Fourier Transform applied to a function symmetric around

the y axis. Like the Laplace Transform, the Fourier Transform is one of the key transfor-

mations in applied mathematics. It changes from a time to a frequency representation

by applying an integral. The Inverse Fourier Transform changes the function back. The

Fourier Transform uses basis functions that are complex exponentials. The Fourier

Cosine Transform uses basis functions which are cosines. The Fourier Cosine Transform

is easier to compute than the Fourier Transform because it is real valued.

The discrete equivalents of these transforms (Discrete Cosine Transform, Discrete Fourier

Transform) operate on the function values sampled at a limited number of points (i.e.,

an array).

The basis function for a 1D function corresponds to a vector of values that is applied and

summated (an operation called convolution). To have some intuition of how the DCT

Chapter 12: Case Studies

84 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

works, an example is very helpful. The following are taken from running a program

called the Transform Calculator (tc). We will first study a 2D 2×2 DCT.

The scale operation indicates that on output 3 digits of precision are to be retained. The

row operation organizes the 4 data values into a 2×2 matrix. The result is a matrix of

having a non zero in the upper left hand corner. For a 2×2 DCT, this corresponds to a

single basis function. This is the (0, 0) or so-called DC component.

This shows the transform matrix for the DC component. The DC component is propor-

tional to the average of all of the input elements. Actually, it is twice the average. This

corresponds to the average background intensity or grey level for the 2×2 image.

The 4 (2×2) basis functions are completely independent. In mathematical language this

is called orthogonal. Orthogonality means that the contribution from a basis function

can be taken away from the image independently of the others. Applying this to the DC

component corresponds to removing the background from the image.

The second or (1, 0) basis function corresponds to vertical lines. Subtracting the value of

the basis function from the image removes these.

The third and fourth basis functions ((0,1) and (1,1)) corresponds to horizontal lines and

diagonals, respectively. The orthogonality property of the discrete cosine transform

means that an arbitrary image can be encoded using a maximum of four basis function

values.

$ tc
scale 3
{ 1 0 0 0 } rows 2
e1 = 1.000 0.000
 0.000 0.000

inv dct e1
e2 = 0.500 0.500
 0.500 0.500

{ 0 1 0 0 } rows 2
e4 = 0.000 1.000
 0.000 0.000
inv dct e1
e5 = 0.500 Ð0.500
 0.500 Ð0.500

{ 0 0 1 0 } rows 2
e6 = 0.000 1.000
 0.000 0.000
inv dct e1
e7 = Ð0.500 Ð0.500
 0.500 0.500
{ 0 0 0 1 } rows 2
e8 = 0.500 Ð0.500
 Ð0.500 0.500

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 85

12

How the DCT Works

There were four basis functions for the 2×2 DCT, hence there are up to 4 coefficients.

However, there are potentially much more zeroes in the DCT representation than in the

original image data.

For example, for a fixed background there is only the DC component. The DCT takes

advantage of the locality structure of an image. In mathematical language, the image

data is said to be correlated. This just means that the colors on a particular point of a

checkered T-shirt, for example, are much more likely to be close to that of a neighboring

point than an arbitrary point.

The DCT concentrates correlated values corresponding to patterns in the image in one

component. The 64 basis function coefficients for an 8×8 DCT correspond to 64 alter-

nating 2D patterns. The rate of alternation or frequency corresponds to the (x,y) position

in the coefficient matrix. It turns out that only a few basis functions are necessary to

encode an 8×8 image in practise.

The DCT is applied to an 8×8 block rather than to the entire image to limit the number

of calculations. n4 calculations are required to calculate a n×n 2D DCT. The number of

calculations can be reduced to n3 using the separability property of the DCT (this will be

explained later). Still, this is still too much to apply to an entire image.

The DCT in MPEG can be applied in combination with a technique called quantization

to advantageously exploit properties of the human visual system. This allows the com-

pression ratio to be reduced.

The last paragraph just means that the human eye is much more sensitive to simple than

to complex patterns. In other words, the threshold of visibility of a background or thick

1D lines is greater than for a finally alternating 2D image.

In the DCT, the complex patterns correspond to high frequency components. Quantiza-

tion divides the output of the DCT by a factor proportional to the complexity. Complex-

ity is measured as a function of the distance from the (0, 0) point (the DC component) in

the matrix. When decoding, an identical factor is multiplied in inverse (this is called

dequantization).

The matrix after quantization has a large number of zeroes. A technique called run

length encoding is used to eliminate these. Essentially, the matrix is made sparse.

After the DCT and quantization, there are typically only a few coefficients. MPEG and

JPEG use Huffman encoding to encode these. Motion JPEG allows the quantization ratio

to be dynamically adjusted. A coarser grain of quantization reduces the bit rate and a

finer grain improves video quality.

In theory, any inversible transform could be used to encode the image and other trans-

forms have been successfully used (e.g. wavelets).

The advantages of the DCT are fourfold.

1. It has been extensively studied since its discovery by Ahmed et. al. in 1974.

Chapter 12: Case Studies

86 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

2. It can be very efficiently implemented as will be explained in this article.

3. It has been adapted by international standards (MPEG, JPEG).

4. Finally, the compression ratio obtainable with the DCT can be shown to be close to

the theoretic maximum obtained with the Karhunen Loeve transform (this cannot be

computed). The difference between wavelets and the DCT is in the choice of the basis

functions (the wavelet basis functions are unevenly spaced).

Computation of a 1D DCT and Its Inverse

Formula 1 defines the one dimensional Discrete Cosine Transform. The DCT is just the

discrete counterpart of the Fourier Cosine Transform as explained previously. The inte-

gral of the continuous transform is replaced by summation, where xi represents the data

to be encoded, and Xv is the encoded result. Note the similarity in form between the

transform and its inverse.

and (≈ 0.707) for i = 0, and 1, otherwise. Formula 2 defines the inverse trans-

form:

Code to calculate a 1D DCT (forward transform or inverse) is shown, in sections. The

arguments to the procedure dct1d are:

■ A pointer to the input value.

■ A pointer to the transformed result.

■ The stepping factor between consecutive elements (1 if contiguous).

■ The number of samples.

■ A flag indicating whether the DCT (fwd = 1) or its inverse are to be calculated.

#include <math.h>
void
dct1d(double *tabval, double *ptres, int step, int dim, int fwd){
 register v, i;
 double sum, *ptval, coef;
 double facmul[2] ;
 facmul[0] = sqrt(2./dim) * M_SQRT1_2;
 facmul[1] = sqrt(2./dim);
 ...

(2i + 1) π v

2N
cosxicv∑

i = 0

N–1
2
N

Xv = [1]

1
2

cv =

(2i + 1) π v

2N
cosXvcv∑

v = 0

N–1
2
N

xi = [2]

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 87

12

These two values correspond to the scaling factors (for element 0 and for all others). The

factor (M_SQRT1_2) corresponds to the cu term for the zeroth element in formulas 1

and 2 above.

Depending on the implementation, a denormalized DCT can be used. For example, the

result of the 8-point 1D fast DCT introduced later is scaled by from this.

The body of the function is a loop that computes the convolution in formulas 1 and 2

and element by element. For the inverse case, the formula varies because the loop order

needs to be reversed.

Computation of the DCT is equivalent to multiplying the input values, represented as a

vector by an n×n matrix representing the coefficients. The inverse DCT can be com-

puted similarly. n2 multiplications and n2 – n additions are necessary for this. The code

above can be used to verify whether an particular implementation is correct or not, how-

ever, it is too slow to use in practise.

Computation of a 2D DCT

Data volume explodes with the number of dimensions (2D, 3D, etc.) in the uncom-

pressed image. The DCT is remarkable in its ability to detect patterns in multidimen-

sional data and remove wasted space. The formula below defines the two dimensional

DCT.

An 8×8 DCT is used in the international JPEG and MPEG standards. The following for-

mula is taken from the work by Rao and Yip, referenced on page 83,

where gij is the data to be encoded (i = 0 to 7, j = 0 to 7), Guv is the encoded result, and

M=N=8.

 ...
 for(v=0; v<dim; v++){
 ptval = tabval;
 sum = 0;
 for(i=0; i<dim; i++){
 if(fwd)
 coef = cos(((2*i+1)*v*M_PI)/(2*dim)) * facmul[v!=0];
 else
 coef = cos(((2*v+1)*i*M_PI)/(2*dim)) * facmul[i!=0];
 sum += *ptval * coef;
 ptval += step;
 }
 *ptres = sum;
 ptres += step;
 }
}

1 ⁄2

2

cv
(2i + 1) π u

2M
cos∑

i = 1

M–1
2
N

Guv =
(2j + 1) π v

2N
cosgijcu∑

i = 1

N–1
2
M

[3]

Chapter 12: Case Studies

88 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Code shown to calculate a 2D DCT is shown below. The arguments are the same as for in

the 1D case except there are two dimensions and no stepping factor.

These correspond to the cu and cv factors in the formula 3.

The inner pair of loops compute the convolution for a single element.

The outer pair of loops correspond to the rows and columns of the input and output.

An m×n transform requires a total of (mn)2 multiplications and (mn)(mn–1) additions.

For the 2D transform, the elements of the transform matrix are themselves matrices.

Computation of the 2D IDCT

Formula 4 defines the 2D Inverse Discrete Cosine Transform (IDCT).

Code to compute the 2D IDCT is shown in segments, following:

void
fdct2d(double *tabval, double *ptres, int dim1, int dim2, int fwd){
 int u,v,i,j ;
 double facu[2] , facv[2], sum, value, coef;

 facu[0] = sqrt(2./dim1) * M_SQRT1_2;
 facu[1] = sqrt(2./dim1);
 facv[0] = sqrt(2./dim2) * M_SQRT1_2;
 facv[1] = sqrt(2./dim2);

 for(u=0; u<dim1; u++){
 for(v=0; v<dim2; v++){
 sum = 0;
 for(i=0; i<dim1; i++)
 for(j=0; j<dim2; j++){
 value = tabval[(i*dim1) + j];
 coef = cos(((2*i+1)*u*M_PI)/(2*dim1)) *
 cos(((2*j+1)*v*M_PI)/(2*dim2)) *
 facu[u!=0]*facu[v!=0];
 sum += value * coef;
 }

 ptres[(u*dim1)+v] = sum ;
 }
 }
 }
}

void
idct2d(double *tabval, double *ptres, int dim1, int dim2, int fwd){
 int u,v,i,j ;
 double facu[2] , facv[2], sum, value, coef;

 facu[0] = sqrt(2./dim1); facu[1] = sqrt(2./dim1) * M_SQRT1_2;
 facv[0] = sqrt(2./dim2); facv[1] = sqrt(2./dim2) * M_SQRT1_2;

cv
(2i + 1) π u

2M
cos∑

u = 1

M–1
2
N

gij =
(2j + 1) π v

2N
cosGuvcu∑

v = 1

N–1
2
M

[4]

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 89

12

The code is very similar to the forward transform and requires the same number of oper-

ations. Like the 2D forward DCT, this algorithm is to slow to be used in practice.

Separability

Direct computation of the 2D DCT requires an excessive number of operations. The sep-

arability property can be exploited to reduce the number of computations. This means

that 1D DCTs can be applied in all the dimensions.

To exploit separability, compute n 1D DCTs on the rows of the input followed by n 1D

DCTs on the columns of the resulting matrix.

Using the formula for the 1D DCT computed previously, this corresponds to n(m2) multi-

plications and n(m2 – m) additions for an n×m DCT. The number of operations for the

second pass is m(n2) and m(n2 – m).

An algorithm to compute a 2D DCT based on a 1D DCT using separability is shown.

Fast Computation of an Eight Point DCT

The basic idea behind a fast DCT algorithm is to take advantage of the highly regular

structure of formulas 1 and 2 to reduce the number of multiplications. The cosine func-

tion is periodic modulo 2 × π. Consider, for example the case of a 1D four point DCT.

The transform matrix below was computed by calculating the basis functions using the

 for(i=0;i<dim1;i++) {
 for (j=0;j<dim2;j++) {
 sum = 0;
 for (u=0;u<dim1;u++) {
 for (v=0;v<dim2;v++) {
 value = tabval[(u*dim1) + v];
 coef = cos(((2*i+1)*u*M_PI)/(2*dim1))*
 cos(((2*j+1)*v*M_PI)/(2*dim2)) *
 facu[!u]*facu[!v];
 sum += value * coef;
 }
 }
 ptres[(i*dim1)+j] = sum ;
 }
 }
}

void
dct2dsep(double *tabval, double *ptres, int dim1, int dim2, int fwd){
 int u,v;
 double tabtemp[MAXVAL];

 for(u=0; u<dim1; u++)
 dct1d(&tabval[dim2*u], &tabtemp[dim2*u], 1, dim2, fwd);
 for(v=0; v<dim2; v++)
 dct1d(&tabtemp[v], &ptres[v], dim2, dim1, fwd);
}

Chapter 12: Case Studies

90 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

inverse DCT as explained previously. Note that there are only two distinct values, not

counting sign differences and shifts.

An eight point DCT can be efficiently computed using the algorithm cited by Loeffler,

Ligtenberg and Moschytz on page 83. The algorithm calculates a denormalized result

with a scaling factor C = .

The same factor is used for the inverse algorithm. This factor replaces the factor in

formulas 1 and 2.

Since N=8, this corresponds to an upscaling by a factor of 2 . The factor was chosen so

that C × cv = 0 for v = 0, which allows the y0 output to be computed without any multipli-

cation.

A paper gives an algorithm to compute the DCT using 11 multiplications and 29 addi-

tions. This corresponds to the theoretical lower bound. However, multiplications are cas-

caded. It describes a variant requiring just 12 multiplications and 15 additions in which

all the multiplications are in parallel. Code to compute an 8-point DCT according to this

algorithm is shown below.

DCT algorithms have a rotation step where π/16 corresponds to the stepping angle for

an 8-point DCT:

These are the matrix coefficients for the even coefficients of the output. These are more

straightforward to compute.

These correspond to the matrix coefficients for the odd coefficients of the output. These

are more difficult to compute. The scaling factor of corresponds to the value

explained previously.

 0.5000 0.5000 0.5000 0.5000
 0.6533 0.2706 Ð0.2706 Ð0.6533
 0.5000 Ð0.5000 Ð0.5000 0.5000
 0.2706 Ð0.6533 0.6533 Ð0.2706

#define THETA (M_PI/16) /* 11.25 degrees */
#define SIN_THETA (sqrt(2)*sin(2*THETA))
#define COS_THETA (sqrt(2)*cos(2*THETA))

#define COEFF_a \
 sqrt(2.)*(Ðcos(1*THETA)+cos(3*THETA)+cos(5*THETA)Ðcos(7*THETA))
#define COEFF_b \
 sqrt(2.)*(cos(1*THETA)+cos(3*THETA)Ðcos(5*THETA)+cos(7*THETA))
#define COEFF_c \
 sqrt(2.)*(cos(1*THETA)+cos(3*THETA)+cos(5*THETA)Ðcos(7*THETA))
#define COEFF_d \
 sqrt(2.)*(cos(1*THETA)+cos(3*THETA)Ðcos(5*THETA)Ðcos(7*THETA))

#define COEFF_e sqrt(2.)*(Ðcos(3*THETA)+cos(7*THETA))
#define COEFF_f sqrt(2.)*(Ðcos(1*THETA)Ðcos(3*THETA))
#define COEFF_g sqrt(2.)*(Ðcos(3*THETA)Ðcos(5*THETA))
#define COEFF_h sqrt(2.)*(Ðcos(3*THETA)+cos(5*THETA))
#define COEFF_i sqrt(2.)*(cos(3*THETA))

void
dct8(double *tab, double *res, int step, int dim, int fwd){
 double x0, x1, x2, x3, x4, x5, x6, x7;

2

2 ⁄N

2

2

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 91

12

The first stage is a “butterfly stage” that crosses the output. Eight additions are required

(4 are subtractions of these).

After the first stage, the algorithm separates for the even (0, 2, 4, 6) and odd (1, 3, 5, 7)

numbered outputs.

The terms o2 and o6 correspond to a rotation (by θ) of y2 and y3.

Factorization is used to divide the odd part into three stages (2, 3, 4). x4+x6 and x5+x7

are common subexpressions (the parentheses are necessary for this).

The figure shows the matrix used for stage 3 (the odd part) of the algorithm. The non-

zero entries correspond to constants defined previously (COEFF_a, COEFF_b, ...). These are

all along the diagonal, corresponding to 9 parallel multiplications.

The final factorization step requires 10 additions, where (h+i) and (g+i) are common sub-

expressions). The parentheses are for common subexpressions and to balance the addi-

tion trees (+ is left associative).

The final stage generates the outputs. This algorithm can be unrolled. However, the long

latency of the addition steps in stages 2 and 4 impacts the performance. The authors

reduce the number of operations at the expense of available parallelism. This is not opti-

mal for TriMedia. For example, using this algorithm, an 8×8 floating point DCT requires

270 cycles as compared to 230 cycles with a more parallel version.

 double y0, y1, y2, y3;
 double z1, z2, z3, z4, z5;
 double a, b, c, d, e, f, g, h, i;
 double o0, o1, o2, o3, o4, o5, o6, o7;
/* stage 1 */
 x0 = tab[0] + tab[7]; x1 = tab[1] + tab[6];
 x2 = tab[2] + tab[5]; x3 = tab[3] + tab[4];
 x4 = tab[3] Ð tab[4]; x5 = tab[2] Ð tab[5];
 x6 = tab[1] Ð tab[6]; x7 = tab[0] Ð tab[7];

/* stages 2 and 3, even part */
 y0 = x0 + x3; y1 = x1 + x2;
 y2 = x1 Ð x2; y3 = x0 Ð x3;

o0 = y0 + y1;
o2 = o2 = COS_THETA * y2 + SIN_THETA * y3;
o4 = y0 Ð y1;
o6 = o6 = (ÐCOS_THETA) * y2 + SIN_THETA * y3;

/* stages 2 and 3, odd part */
 z1 = x4 + x7; z2 = x5 + x6; z3 = x4 + x6;
 z4 = x5 + x7; z5 = (x4 + x6) + (x5 + x7);

 a = x4*COEFF_a; b = x5*COEFF_b; c = x6*COEFF_c;
 d = x7*COEFF_d; e = z1*COEFF_e; f = z2*COEFF_f;
 g = z3*COEFF_g; h = z4*COEFF_h; i = z5*COEFF_i;

 o1 = (d + e) + (h + i); o3 = (c + f) + (g + i);
 o5 = (b + f) + (h + i); o7 = (a + e) + (g + i);

 res[0*step] = o0; res[2*step] = o2;
 res[1*step] = o1; res[3*step] = o3;
 res[4*step] = o4; res[6*step] = o6;
 res[5*step] = o5; res[7*step] = o7;

Chapter 12: Case Studies

92 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

TriMedia Implementation of an 8 x 8 DCT

An 8×8 DCT can be derived from the 8-point 1D DCT explained previously. Code to

compute the DCT is shown.

For efficiency, the TriMedia algorithm produces a result that is in transposed and shuf-

fled order as shown in Figure 60.

Figure 60 DCT Reordering Matrix

A temporary copy of the matrix is necessary because the algorithm is separable. The Tri-

Media architecture allows this to be stored in registers.

The DCT is 16-bit. TriMedia stores two values per register.

These variables are temporaries for the 1D DCT.

This ensures that only callee-saved registers (r9 to r32) are used. Caller-saved registers

(r33 to r63) must be saved and restored on function entry and exit, increasing the num-

ber instruction cycles.

These two arrays hold two row from the horizontal DCT calculation (horiz_dct).

The DCT of rows 0 and 1 is computed in s0–7 and t0–7, respectively.

void
dct8x8fix(long * restrict tab, long * restrict res){
 int r00, r02, r04, r06, r10, r12, r14, r16;
 int r20, r22, r24, r26, r30, r32, r34, r36;
 int r40, r42, r44, r46, r50, r52, r54, r56;
 int r60, r62, r64, r66, r70, r72, r74, r76;

int tmp0, tmp1, tmp2, tmp3, tmp101, tmp132, tmp176, tmp145, tmp201, tmp232;

#pragma TCS_no_caller_save

 int s0, s1, s2, s3, s4, s5, s6, s7;
 int t0, t1, t2, t3, t4, t5, t6, t7;

 horiz_dct(&tab[0], s0, s1, s2, s3, s4, s5, s6, s7);
 horiz_dct(&tab[4], t0, t1, t2, t3, t4, t5, t6, t7);

 packltor(r00, r02, r04, r06, r10, r12, r14, r16);

0 32 8 40 16 48 24 56

1 33 9 41 17 49 25 57

2 34 10 42 18 50 26 58

3 35 11 43 19 51 27 59

4 36 12 44 20 52 28 60

5 37 13 45 21 53 29 61

6 38 14 46 22 54 30 62

7 39 15 47 23 55 31 63

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 93

12

The DCT for row 0 is packed into the upper sixteen bits of r00 through r16. Row 1 is

packed into the lower 16 bits. The results must be packed so that values can be computed

in parallel in the upcoming vertical pass.

The order of packing for rows (2, 3) is reversed. Doing this saves a reversal step in the ver-

tical stage.

The computations for rows 4-7 follows the same pattern.

The vertical DCT macro calculates the result for a single row of the output. Note that the

output is transposed.

Coefficients and Rounding

The table below shows the coefficients used in the DCT. These are for a big-endian imple-

mentation. For a little-endian implementation, the coefficients need to be swapped. The

hex values are coded as 16-bit pairs.

 horiz_dct(&tab[8], t0, t1, t2, t3, t4, t5, t6, t7);
 horiz_dct(&tab[12], s0, s1, s2, s3, s4, s5, s6, s7);
 packltor(r20, r22, r24, r26, r30, r32, r34, r36);

 horiz_dct(&tab[16], t0, t1, t2, t3, t4, t5, t6, t7);
 horiz_dct(&tab[20], s0, s1, s2, s3, s4, s5, s6, s7);
 packltor(r40, r42, r44, r46, r50, r52, r54, r56);

 horiz_dct(&tab[24], t0, t1, t2, t3, t4, t5, t6, t7);
 horiz_dct(&tab[28], s0, s1, s2, s3, s4, s5, s6, s7);
 packltor(r60, r62, r64, r66, r70, r72, r74, r76);

 vertical_dct(&res[0], r00, r20, r40, r60);
 vertical_dct(&res[4], r02, r22, r42, r62);
 vertical_dct(&res[8], r04, r24, r44, r64);
 vertical_dct(&res[12], r06, r26, r46, r66);
 vertical_dct(&res[16], r10, r30, r50, r70);
 vertical_dct(&res[20], r12, r32, r52, r72);
 vertical_dct(&res[24], r14, r34, r54, r74);
 vertical_dct(&res[28], r16, r36, r56, r76);
}

Value (hex) Upper 16 bits Lower 16 bits

C0 0xA73B4B42 –cos(3π/16) – sin(5π/16) cos(π/16) + sin(π/16)

C1 0x11A8CDB7 cos(3π/16) – sin(3π/16) sin(π/16) – cos(π/16)

C2 0xCDB7A73B – sin(3π/16.) – cos(π/16)

C3 0x4B42EE58 cos(3π/16) – sin(π/16)

C4 0x4B4211A8 cos(3π/16) sin(π/16)

C5 0x3249A73B sin(3π/16) – cos(π/16)

C6 0x11A83249 cos(3π/16) – sin(3π/16) cos(π/16) – sin(π/16)

C7 0x58C54B42 cos(3π/16) + sin(3π/16) cos(π/16) + sin(π/16)

2 2

2 2

2 2

2 2

Chapter 12: Case Studies

94 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

These values correspond to the odd part of the 1D DCT computation above. By applica-

tion of the identity sin(θ) = cos (π/4 – θ), the sines can be replaced by cosines.

These values correspond to the odd part. Note that the constants for C8 and C9 corre-

spond to addition and subtraction of the upper and lower halves of a word, respectively.

This is a fixed point DCT so rounding macros are necessary. For a floating point DCT, the

IEEE rounding mode must be set.

For packing purposes, the result need to be in the upper 16 bits. For the horizontal calcu-

lation, this corresponds to shifting the result left 1 bit and adding one half (0.5). Addi-

tion is used instead of a shift because there are more functional units (5 versus 2).

For the vertical calculation, the result is directly available in the upper 16 bits.

Value (hex) Upper 16 bits Lower 16 bits

C8 0x40004000 1 1

C9 0x4000C000 1 –1

C10 0x539E22A3 cos(π/8) cos(3π/8)

C11 0x22A3AC62 cos(3π/8) – cos(π/8)

#define HROUND(x) ((x) + (x) + 0x8000)

#define VROUND(x) ((x) + 0x8000)

2 2

2 2

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 95

12

Horizontal DCT

A flow diagram of the algorithm used to compute the 1D DCT is shown in Figure 61.

Figure 61 ID DCT Data Flow Diagram

Note that the input is in normal order and the output is in shuffled order. The input and

output data are coded in 16 bits.

First the values are read from memory in pairs. Note that (x3, x2) and (x7, x6) are read in

reverse order.

#define horiz_dct(tab, o0, o1, o2, o3, o4, o5, o6, o7) \
 tmp0 = (tab)[0]; \
 tmp1 = ROLI(16, (tab)[1]); \
 tmp2 = (tab)[2]; \
 tmp3 = ROLI(16, (tab)[3]); \

 tmp101 = DSPIDUALADD(tmp0,tmp3); \
 tmp132 = DSPIDUALADD(tmp1,tmp2); \
 tmp176 = DSPIDUALSUB(tmp0,tmp3); \
 tmp145 = DSPIDUALSUB(tmp1,tmp2); \

(x0, x1)

Stage 1 Stage 2 Stage 3

(x3, x2)

(x4, x5)

(x7, x6)

2

0

4

6

1

3

5

7

9

 10

11

8

C

D

A

B

C = DSPIDUALADD (A,B)

D = DSPIDUALSUB (A,B)

C

A

B

C = A + B

i

B = IFIR16(A, Ci) where Ci is a word
containing two 16-bit constants

A B

(xi, xj) = Pair of input values packed
into a 32-bit word

xi = Output DCT value (i = 0–7)

x0

x4

x2

x6

x7

x3

x5

x1

Chapter 12: Case Studies

96 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

The 2 DSPIDUALADDs correspond to the 4 additions of stage 1 of the algorithm

explained previously. The DSPIDUALSUB corresponds to the subtractions.

The above correspond to the two additions and two subtractions of stage 2 (even part).

The above correspond to the four additions and four multiplications of stage 3 (even

part).

The above correspond to the odd part of the DCT.

The long latency of the trees of additions in stages 2 and 4 has been eliminated by intro-

ducing common sub expressions. However, the coefficient values are only represented in

16 bits.

One bit is used to represent the sign, one bit to represent the integer part, and 14 bits to

represent the fractional part of the coefficient. This representation is called Q.14 format.

The algorithm upscales the data by a factor of 8.

Vertical DCT

Code for the horizontal DCT computation is shown below.

This corresponds to the first stage as explained previously. Reversal is not necessary in

the vertical stage.

 tmp201 = DSPIDUALADD(tmp101,tmp132); \
 tmp232 = DSPIDUALSUB(tmp101,tmp132); \

 o0 = IFIR16(tmp201,C8); \
 o4 = IFIR16(tmp201,C9); \
 o2 = IFIR16(tmp232,C10); \
 o6 = IFIR16(tmp232,C11); \

 o7 = IFIR16(tmp145,C0) + IFIR16(tmp176,C1); \
 o3 = IFIR16(tmp145,C2) + IFIR16(tmp176,C3); \
 o5 = IFIR16(tmp145,C4) + IFIR16(tmp176,C5); \
 o1 = IFIR16(tmp145,C6) + IFIR16(tmp176,C7);

#define vertical_dct(res, tmp0, tmp1, tmp2, tmp3) \
 \
 tmp101 = DSPIDUALADD(tmp0,tmp3); \
 tmp132 = DSPIDUALADD(tmp1,tmp2); \
 tmp176 = DSPIDUALSUB(tmp0,tmp3); \
 tmp145 = DSPIDUALSUB(tmp1,tmp2); \

 tmp201 = DSPIDUALADD(tmp101,tmp132); \
 tmp232 = DSPIDUALSUB(tmp101,tmp132); \
 \
 s0 = IFIR16(tmp201,C8); \
 s4 = IFIR16(tmp201,C9); \
 s2 = IFIR16(tmp232,C10); \
 s6 = IFIR16(tmp232,C11); \
 \
 s7 = IFIR16(tmp145,C0) + IFIR16(tmp176,C1); \
 s3 = IFIR16(tmp145,C2) + IFIR16(tmp176,C3); \
 s5 = IFIR16(tmp145,C4) + IFIR16(tmp176,C5); \
 s1 = IFIR16(tmp145,C6) + IFIR16(tmp176,C7); \

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 97

12

The rest of the computation is similar to the vertical DCT explained previously.

Note that rounding is different for the horizontal step. The result of the algorithm is the

transpose of the actual DCT.

Packing

Code to pack two output lines between the horizontal and vertical calculations is shown.

The same macro is used to pack in reverse order by reversing the order of computation of

the sn and tn arrays in the code above.

Computation of the Inverse DCT

Figure 62 shows the algorithm to calculate the inverse DCT.

Figure 62 Inverse DCT Algorithm

The structure is similar except that rounding is applied to the input instead of the output

(data flow is reversed).

 (res)[0] = PACK16MSB(VROUND(s0), VROUND(s1)); \
 (res)[1] = PACK16MSB(VROUND(s2), VROUND(s3)); \
 (res)[2] = PACK16MSB(VROUND(s4), VROUND(s5)); \
 (res)[3] = PACK16MSB(VROUND(s6), VROUND(s7));

#define packltor(o0, o1, o2, o3, o4, o5, o6, o7) \
 o0 = PACK16MSB(HROUND(s0), HROUND(t0)); \
 o1 = PACK16MSB(HROUND(s1), HROUND(t1)); \
 ... \
 o7 = PACK16MSB(HROUND(s7), HROUND(t7));

(x0, x4)

(x2, x6)

(x3, x7)

(x1, x5)

x0

x4

x2

x6

x7

x3

x5

x1

Chapter 12: Case Studies

98 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Code that calculates an 8×8 DCT is shown below.

These variables hold the results of pass 1 (an 8×8 matrix).

These temporaries are for computation of the DCT of one half of the input (rows 0, 1, 2,

3).

These are for computation of the other half (rows 4, 5, 6, 7).

These are intermediate temporaries.

The first parameter points to the input. The second gives the offset into the input (row 0

in this case). The macro calculates the result for two rows offset by 4 in number. The

rows of the input are required to be in shuffled order (0, 4, 2, 6, 3, 7, 1, 5). The last

parameter corresponds to a 0.5 rounding factor.

This calculates the IDCT for rows 1 (offset 4) and 5, respectively. For the IDCT, the

rounding factor only needs to be added in once. Here the result is being computed into

r10..13 and r50..53. The upper and lower 16 bits alternate.

These instructions calculate 1D IDCTs for row pairs (2, 6) and (5, 7). An input of the sec-

ond pass is a column of the output of the first pass.

This calculates the inverse DCT into dataout0..3. Note that the result is transposed.

void do_idct(long *datain, long *dataout){
 int r00, r01, r02, r03;
 int r10, r11, r12, r13;
 int r20, r21, r22, r23;
 int r30, r31, r32, r33;
 int r40, r41, r42, r43;
 int r50, r51, r52, r53;
 int r60, r61, r62, r63;
 int r70, r71, r72, r73;

 int tmp0, tmp1, tmp2, tmp3;
 int tmp10, tmp11, tmp12, tmp13;
 int tmp20, tmp21, tmp22, tmp23;

 int temp0, temp1, temp2, temp3;
 int temp10, temp11, temp12, temp13;
 int temp20, temp21, temp22, temp23;

 int z0, z1, z2, z3, z4, z5, z6, z7;
 int zz0, zz1, zz2, zz3, zz4, zz5;

 #pragma TCS_no_caller_save.
 horiz_idct(datain, 0, r00, r01, r02, r03, r40, r41, r42, r43, H_ROUNDING);

 horiz_idct(datain, 4, r10, r11, r12, r13, r50, r51, r52, r53, 0);

 horiz_idct(datain, 8, r20, r21, r22, r23, r60, r61, r62, r63, 0);
 horiz_idct(datain, 12, r30, r31, r32, r33, r70, r71, r72, r73, 0);

 vertical_idct(r00, r10, r20, r30, dataout[0], dataout[1],
 dataout[2], dataout[3]);

 vertical_idct(r01, r11, r21, r31, dataout[4], dataout[5],
 dataout[6], dataout[7]);
 ...

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 99

12

This calculates the inverse DCT for columns 1 to 7. Note that the algorithm is com-

pletely unrolled so there are no branches. For the IDCT, the input data is assumed to be

transposed and shuffled as defined by Figure 62 on page 97. It is also assumed to be

upscaled by eight.

Coefficients

The table below shows the coefficient values for the inverse DCT. Values for a big-endian

implementation are given. For a little-endian implementation, the coefficients need to

be swapped.

Note that MASK1–4 in the inverse DCT correspond to the C8–11 coefficients in the DCT

algorithm.

To maximize the precision of the result, the values shown have been scaled by .

Constants

Constant values used in the algorithm are shown below.

SCALED_COEFFS corresponds to the scaling of the coefficients by . Two DCTs are

applied so this corresponds to shifting the result left one bit. PASS1_BITS is the output

 vertical_idct(r43, r53, r63, r73, dataout[28], dataout[29],
 dataout[30], dataout[31]);
}

Value (hex) Upper 16 bits Lower 16 bits

D0 0x18f96A6E cos(3π/16) + cos(5π/16) cos(π/16) + cos(7π/16)

D1 0xB8E38276 cos(7π/16) – cos(π/16) cos(3π/16) + cos(5π/16)

D2 0x471D18F9 cos(7π/16) – cos(π/16) cos(3π/16) – cos(5π/16)

D3 0x82766A6E cos(3π/16) + cos(5π/16) cos(π/16) + cos(7π/16)

D4 0x6A6E8276 cos(π/16) + cos(7π/16) cos(3π/16) + cos(5π/16)

D5 0xE707B8E3 cos(3π/16) – cos(5π/16) cos(7π/16) – cos(π/16)

D6 0x7D8A471D cos(3π/16) + cos(5π/16) cos(7π/16) – cos(π/16)

D7 0x6A6E18F9 cos(π/16) + cos(7π/16) cos(3π/16) – cos(5π/16)

MASK1 0x30FC89BE cos(2π/16) – cos(6π/16) cos(6π/16) + cos(2π/16)

MASK2 0x764230FC cos(6π/16) + cos(2π/16) cos(2π/16) – cos(6π/16)

MASK3 0x5A835A82 1 1

MASK4 0x5A82A57E 1 –1

#define SCALED_COEFFS 1
#define PASS1_BITS 1
#define CONST_BITS2 14

2

2

Chapter 12: Case Studies

100 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

position of the binary point after the computation of the first pass. CONST_BITS2 equals

the precision of the coefficients.

The down shift factor for the result is the sum of these values. The value of 3 compen-

sates for the fact that the output is 8 times greater than that of the DCT algorithm. This

corresponds to the scaling by in Loeffler’s algorithm as explained previously.

DCT_SHIFT_1100_INTER is the factor needed to obtain a result in the upper 16 bits.

TMP_201_H_BIAS is the rounding factor for the vertical DCT (result in the upper 16 bits).

H_ROUNDING is for the horizontal DCT. 32/64 is 0.5. The denominator in the above cor-

responds to an 8 x 8 matrix. This needs to be added to the first sample. This is either the

upper or the lower 16 bits, depending on the endianness.

Endianness

This macro is used to pack the results. For a little-endian computation, the following

macro should be used.

Horizontal Inverse DCT

The macro horiz_idct computes two rows of a horizontal DCT. The definition is shown.

This reads the first row (rows 0, 1, 2, 3). The rounding factor is added to the first input.

The second row is offset by 4 from the first. This corresponds to the shuffled order (0, 4,

1, 5, 2, 6, 3, 7).

#define B2 CONST_BITS+PASS1_BITS+3+SCALED_COEFFS
#define DCT_SHIFT_1100_INTER ((B2) Ð 16)

#define TMP_20_21_H_BIAS 0x8000
#define H_ROUNDING (32 << (16*!LITTLE_ENDIAN))

#define PACK16_MSB(a, b) PACK16MSB(a, b)

#define PACK16_MSB(a, b) PACK16MSB(b, a)

#define horiz_idct(data, offset, r0, r1, r2, r3, r4, r5, r6, r7, comp) \
 z2 = data[offset + 1]; \
 z3 = data[offset + 3]; \
 z5 = data[offset + 2]; \
 z0 = data[offset] + comp; \

 zz5 = data[offset + 18]; \
 zz2 = data[offset + 17]; \
 zz3 = data[offset + 19]; \
 zz0 = data[offset + 16]; \

 tmp22 = IFIR16(z5, MASK1); \
 tmp23 = IFIR16(z5, MASK2); \
 tmp20 = IFIR16(z0, MASK3) + TMP_20_21_H_BIAS; \
 tmp21 = IFIR16(z0, MASK4) + TMP_20_21_H_BIAS; \

N

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 101

12

This calculates the even part of the DCT. The result is rounded for input to the second

pass.

This corresponds to the odd part.

The code is the same for the second row (rows 4, 5, 6, 7).

This corresponds to the butterfly computation in stage 1 of figure 2. The even numbered

row is packed in the upper 16 bits. The odd numbered row is packed in the lower 16 bits.

The horiz_idct_clear macro zeroes two rows of the input prior to the next pass. Only

non-zero coefficients are stored. The clear operation and computation can be overlapped

can be overlapped.

 tmp10 = tmp20 + tmp23; \
 tmp13 = tmp20 - tmp23; \
 tmp11 = tmp21 + tmp22; \
 tmp12 = tmp21 - tmp22; \

 tmp0 = IFIR16(z2, D0) + IFIR16(z3, D1); \
 tmp1 = IFIR16(z2, D2) + IFIR16(z3, D3); \
 tmp2 = IFIR16(z2, D4) + IFIR16(z3, D5); \
 tmp3 = IFIR16(z2, D6) + IFIR16(z3, D7); \

 temp22 = IFIR16(zz5, MASK1); \
 temp23 = IFIR16(zz5, MASK2); \
 temp20 = IFIR16(zz0, MASK3) + TMP_20_21_H_BIAS; \
 temp21 = IFIR16(zz0, MASK4) + TMP_20_21_H_BIAS; \
 temp10 = temp20 + temp23; \
 temp13 = temp20 - temp23; \
 temp11 = temp21 + temp22; \
 temp12 = temp21 - temp22; \
 temp0 = IFIR16(zz2, D0) + IFIR16(zz3, D1); \
 temp1 = IFIR16(zz2, D2) + IFIR16(zz3, D3); \
 temp2 = IFIR16(zz2, D4) + IFIR16(zz3, D5); \
 temp3 = IFIR16(zz2, D6) + IFIR16(zz3, D7); \

 r0 = PACK16_MSB(tmp10 + tmp3, temp10 + temp3); \
 r1 = PACK16_MSB(tmp11 + tmp2, temp11 + temp2); \
 r2 = PACK16_MSB(tmp12 + tmp1, temp12 + temp1); \
 r3 = PACK16_MSB(tmp13 + tmp0, temp13 + temp0); \
 r4 = PACK16_MSB(tmp13 - tmp0, temp13 - temp0); \
 r5 = PACK16_MSB(tmp12 - tmp1, temp12 - temp1); \
 r6 = PACK16_MSB(tmp11 - tmp2, temp11 - temp2); \
 r7 = PACK16_MSB(tmp10 - tmp3, temp10 - temp3); \
 horiz_idct_clear(data, offset);

#define horiz_idct_clear(data, offset) \
 data[offset+ 0] = 0; data[offset+18] = 0; \
 data[offset+ 2] = 0; data[offset+16] = 0; \
 data[offset+ 1] = 0; data[offset+ 3] = 0; \
 data[offset+17] = 0; data[offset+19] = 0;

Chapter 12: Case Studies

102 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Calculation of the Vertical DCT

Code to calculate a single column of the vertical DCT is shown below.

Rounding has been precomputed. The combinePred macro stores the result.

I Frames and P Frames

For the second and subsequent frames in a sequence (I frame, inter frame), the value

transmitted is the DCT of the difference. A saturating add needs to be applied between

the inverse DCT and the result.

The implementation of the combinePred macro for inter frames is shown.

The big-endian implementation of combinePred for an intra-frame is shown below.

TM1100 instructions need to be used since IEEE-1180 conformance requires a calcula-

tion in 16 bits.

#define vertical_idct(r0, r1, r2, r3, dest1, dest2, dest3, dest4) \
 tmp22 = IFIR16(r2, MASK1); \
 tmp23 = IFIR16(r2, MASK2); \
 tmp20 = IFIR16(r0, MASK3); \
 tmp21 = IFIR16(r0, MASK4); \
 \
 tmp10 = tmp20 + tmp23; \
 tmp13 = tmp20 Ð tmp23; \
 tmp11 = tmp21 + tmp22; \
 tmp12 = tmp21 Ð tmp22; \
 \
 tmp0 = IFIR16(r1, D0) + IFIR16(r3, D1); \
 tmp1 = IFIR16(r1, D2) + IFIR16(r3, D3); \
 tmp2 = IFIR16(r1, D4) + IFIR16(r3, D5); \
 tmp3 = IFIR16(r1, D6) + IFIR16(r3, D7); \
 \
 combinePred(tmp10 + tmp3, tmp11 + tmp2, tmp12 + tmp1, \
 tmp13 + tmp0, dest1, dest2) \
 combinePred(tmp13 Ð tmp0, tmp12 Ð tmp1, tmp11 Ð tmp2, \
 tmp10 Ð tmp3, dest3, dest4)

#define combinePred(dct3, dct2, dct1, dct0, pred1, pred2) \
 \
pred1 = mergedual16lsb(\
 dualuclipi(\
 dspidualadd(\
 dualiclipi(dualasr(pack16msb(dct0, dct1), DCT_SHIFT_INTER), 255), \
 mergemsb(0, pred1) \
), \
 255), \
 dualuclipi(\
 dspidualadd(\
 dualiclipi(dualasr(pack16msb(dct2, dct3), DCT_SHIFT_INTER), 255), \
 mergelsb(0, pred1) \
), \
 255) \
) ; \
pred2 = mergedual16lsb(\
 dualuclipi(\
 dspidualadd(\
 dualiclipi(dualasr(pack16msb(dct0, dct1), DCT_SHIFT_INTER), 255), \

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 103

12

The big-endian implementation of combinePred for inter frames stores into the result.

For P frames, the computation is simpler because the result just needs to be stored.

For a little-endian implementations, the order of the arguments dct0–3 must be reversed.

Results

An 8×8 DCT can be calculated in 165 instruction cycles. Between 160 and 170 instruc-

tion cycles are necessary to compute an 8×8 inverse DCT (compute, store, clear).

The algorithm has been tested to conform to the IEEE 1180 standard. Using a variant, a

floating point DCT can be calculated in between 220 and 230 instruction cycles.

 IIR Filter

Introduction

This section will first discuss the implementation and optimization of a second order IIR

filter for one channel with floating point arithmetic. Then it shows how to gain a higher

performance by using integer arithmetic, and introduces a fourth order IIR filter consist-

ing of two equal cascaded second order sections. Finally it briefly points out that the per-

formance can be enhanced by processing two channels in parallel in a single function.

The example refers to the canonical form of an IIR filter as shown in Figure 63. The pro-

cessed data is discrete; it is a sampled time continuous signal, generated by an A/D con-

verter. For further details on this specific topic, refer to Oppenheim/Schaefer Digital Signal

 mergemsb(0, pred2) \
), \
 255), \
 dualuclipi(\
 dspidualadd(\
 dualiclipi(dualasr(pack16msb(dct2, dct3), DCT_SHIFT_INTER), 255), \
 mergelsb(0, pred2)
), \
 255) \
) ;

#define combinePred(dct0, dct1, dct2, dct3, pred1, pred2) \
 pred1 = dualiclipi(dualasr(pack16msb(dct0, dct1), \
 DCT_SHIFT_1100_INTER), 255); \
 pred2 = dualiclipi(dualasr(pack16msb(dct2, dct3), \
 DCT_SHIFT_1100_INTER), 255);

Chapter 12: Case Studies

104 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Processing (Prentice-Hall). This reference also contains introductory material on IIR fil-

ters.

Figure 63 Canonical Structure of an IIR Filter

The filter can be described in the time domain with the following second order differ-

ence equation:

 b0 × y(n) + b1 × y(n – 1) + b2 × y(n – 2) = a0 × x(n) + a1 × x(n – 1) + a2 × x(n – 2)

It is common to assume b0 equal to 1. If not, just divide the whole equation by b0. This

leads to the following:

 y(n) = a0 × x(n) + a1 × x(n – 1) + a2 × x(n – 2) – b1 × y(n – 1) – b2 × y(n – 2)

Where x(n) is the input and y(n) the output. A straightforward implementation using

floating point arithmetic is shown in the function iirFilter_1.

IMPORTANT
The algorithms and implementations presented here assume that b0 = 1. If
you use an array for the coefficients including b0, you should multiply the
output with b0 before feedback or at least check if it is 1 and if not generate
an error message. It is also possible to use strong typing with the struct-
construct.

Includes and Macros

For filters utilizing floating point arithmetic, the following header files need to be

included (no macros have been defined):

For filters utilizing fixed point integer arithmetic the following header files need to be

included:

a_0 = coeff[0], a_1 = coeff[1], a_2 = coeff[2],
b_1 = coeff[3], b_2 = coeff[4]

#include <stdlib.h>
#include <math.h>

#include <stdlib.h>
#include <math.h>
#include <ops/custom_defs.h>

x(n)

x(n–1)

x(n–2)

a0

a1

a2

y(n)

y(n–1)

y(n–2)

b0

b1

b2

–
–

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 105

12

One macro is defined. It will be explained in depth later, but it is important to be in the

iirFilter_X.c file when calculating with integer arithmetic.

Optimization for Floating Point(Second Order, One Channel)

It is significantly more efficient to use local variables because the coefficients and states

will be stored in registers. This ensures that fewer loads and stores are necessary in the

loop. Furthermore, we can use the restrict keyword to declare that the pointers on the

input and output data are pointing to disjointed sections of the memory. It is the respon-

sibility of the programmer to ensure that this condition is true.

#define SHIFT 3 /* see case study on IIR filter in Cookbook */

int iirFilter_1(float *inputData, *float outputData,
 float *coeff, float *state, int sampleNumber){
 int i;

 for(i=0; i < sampleNumber; i++){
 outputData[i] = coeff[0]*inputData[i]
 + coeff[1]*state[0]
 + coeff[2]*state[1]
 Ð coeff[3]*state[2]
 Ð coeff[4]*state[3];

 state[1] = state[0]; state[0] = inputData [i];
 state[3] = state[2]; state[2] = outputData[i];
 }
 return 0;
}

int iirFilter_2(float *inputData, float *outputData,
 float *coeff, float *state, int sampleNumber){
 int i;
 float * restrict input, * restrict output;
 float coeff_a0, coeff_a1, coeff_a2, coeff_b1, coeff_b2;
 float state_0, state_1, state_2, state_3

 input = inputData; output = outputData;
 coeff_a0 = coeff[0]; coeff_a1 = coeff[1]; coeff_a2 = coeff[2];
 coeff_b1 = coeff[3]; coeff_b2 = coeff[4];
 state_0 = state[0]; state_1 = state[1];
 state_2 = state[2]; state_3 = state[3];
 for(i=0; i < sampleNumber; i++){
 output[i] = coeff_a0*input[i]
 + coeff_a1*state_0
 + coeff_a2*state_1
 Ð coeff_b1*state_2
 Ð coeff_b2*state_3;

 state_1 = state_0; state_0 = input [i];
 state_3 = state_2; state_2 = output[i];
 }
 state[0] = state_0; state[1] = state_1;
 state[2] = state_2; state[3] = state_3;

 return 0;
}

Chapter 12: Case Studies

106 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

The functions have been compiled with

With the -K option, the compiler keeps all intermediate code levels. For further details

about compiling, refer to Chapter 1 of this book or Chapter 2 of Software Tools. The gen-

erated *.t and *.s files will be used to explain the performance improvement.

After compiling, a statfile is produced with the simulator:

Finally, a performance report was generated with

The file noiseMono.pcm contains 36864 samples and all the functions run twice on this

input. In other words, a total of 73728 samples (for each channel) has been processed at

a sampling frequency of 44100 Hertz.

To compare performance, a number for cycles per sample for the second order section is

used. This is obtained by taking the cycle number from the tmprof report and dividing

by the number of channels, the number of biquads and the number of samples.

#(cycl./sample) = #(totalCycl.) / (#channel × # sample × #biquad).

The number of channels is 2 for iirFilter_10.c, otherwise it is 1. The number of biquads is

1, except for iirFilter_9.c and iirFilter_10.c, where it is 2.

Furthermore, the MIPS are given.

x (MIPS in %) = 44100 × #totalCycles / (#channel × #sample × 106)

The total number of cycles is the sum of the instruction cycles, the instruction cache

stall cycles, and the data cache stall cycles.

Looking at the *.t files for the filters, you can see that the decision tree 2 refers to an

unrolled version of the main loop while decision tree 5 contains the loop only once.

tmcc -el -O3 -o testMain.out.

tmsim -el -statfile testMain.stat testMain.out noiseMono.pcm

tmprof -func -detail -scale 1.0 -threshold 0.0001
 testMain.stat > testMain.prf

Table 34 Performance Table for IIR Filters 1 and 2

Treename _iirFilter_1 _iirFilter_2

Total Cycles (Instructions + Stall) 2370888 1127256

MIPS (%) 1.418 0.674

Cycles per Sample 32.16 15.29

Instruction Cycles 2361312 1126944

I-Cache Stall Cycles 223 290

D-Cache Stall Cycles 9353 22

D-Conflict Cycles 9216 0

(Useful) Operations per Instruction. Maximum is 5 0.94(0.92) 0.97(0.92)

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 107

12

This is similar for both, with the slight difference that the main loop for iirFilter_1.c is

unrolled two times and for the iirFilter_2.c four times. This is due to more parallelism in

the second implementation because the coefficients and states do not need to be loaded

in the loop. They are already assigned to local variables, which correspond to registers.

This increase in parallelism can easily be seen in the *.t files when you compare the num-

ber of after-constraints. The file iirFilter_1.t has much more than iirFilter_2.t.

After-constraints are specified by the keyword after and a list of operation names. These

constraints impose absolute ordering between pairs of operations. Refer to Chapter 4,

Using the Instruction Scheduler, of Software Tools for more information about decision trees

and decision tree features.

It can be seen that function iirFilter_1.c has 14 loads and 5 stores per loop while

iirFilter_2.c has only 2 loads and 1 store. This is due to the use of local variables for the

states and the coefficients - 4 variables for state, 5 for the coefficients, and 1 for the input

sample. This means 12 variables have to be loaded, and 4 states plus 1 output sample

need to be stored. In the second case only the input and output samples need to be

loaded and stored.

Since a floating point addition is commutative but not associative, the compiler executes

this in a strict left to right order. The latency of a floating point addition is three cycles.

Hence, for four additions, four times three cycles are necessary. It is possible to reduce

this number by introducing local variables for the intermediate results to do the adds in

parallel. Now only three times three cycles are required. In other words we save three

cycles per sample. It is important to note that the results produced with iirFilter_2.c and

iirFilter_3.c may differ slightly. This depends upon the coefficients and/or the stability of

the designed IIR filter and must be tested. In most of the cases it should not matter.

int iirFilter_3(float *inputData, float *outputData,
 float *coeff, float *state, int sampleNumber){
 int i;
 float * restrict input, * restrict output;
 float temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8;
 float coeff_a0, coeff_a1, coeff_a2, coeff_b1, coeff_b2;
 float state_0, state_1, state_2, state_3;

 input = inputData; output = outputData;
 coeff_a0 = coeff[0]; coeff_a1 = coeff[1]; coeff_a2 = coeff[2];
 coeff_b1 = coeff[3]; coeff_b2 = coeff[4];
 state_0 = state[0]; state_1 = state[1];
 state_2 = state[2]; state_3 = state[3];

 for(i=0; i < sampleNumber; i++){
 temp1 = coeff_a0*input[i];
 temp2 = coeff_a1*state_0;
 temp3 = coeff_a2*state_1;
 temp4 = coeff_b1*state_2;
 temp5 = coeff_b2*state_3;

 temp6 = temp1 + temp2; temp7 = temp3 Ð temp4;
 temp8 = temp6 Ð temp5;
 output[i] = temp7 + temp8;

 state_1 = state_0; state_0 = input [i];

Chapter 12: Case Studies

108 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

At the end of a decision tree, there is always a jump operation either to another tree or to

the tree itself. The jump occurs three cycles later. This means that after a jump instruc-

tion only operations which require less than two cycles can be issued. However, delay

slot cycles are often unused. Regarding the loop in the IIR filter, we can load the input

data once outside the loop, store it in a register and then load the next data at the end of

the loop using the branch delay slots. This technique is also referred to as software pipe-

lining.

This effect would be much more visible if we would load more variables in one loop.

This means for example processing two channels at a time, as discussed later.

 state_3 = state_2; state_2 = output[i];
 }
 state[0] = state_0; state[1] = state_1;
 state[2] = state_2; state[3] = state_3;

 return 0;
}

Table 35 Performance Table for IIR Filter 3

Treename _iirFilter_3

Total Cycles (Instructions + Stall) 1071960

MIPS (%) 0.641

Cycles per Sample 14.54

Instruction Cycles 1071648

I-Cache Stall Cycles 319

D-Cache Stall Cycles 22

D-Conflict Cycles 0

(Useful) Operations per Instruction. Maximum is 5 1.08(1.06)

int iirFilter_4(float *inputData, float *outputData,
 float *coeff, float *state, int sampleNumber){
 int i;
 float * restrict input, * restrict output;
 float temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8;
 float coeff_a0, coeff_a1, coeff_a2, coeff_b1, coeff_b2;
 float state_0, state_1, state_2, state_3;
 float inSample1, outSample1;

 input = inputData; output = outputData;
 coeff_a0 = coeff[0]; coeff_a1 = coeff[1]; coeff_a2 = coeff[2];
 coeff_b1 = coeff[3]; coeff_b2 = coeff[4];
 state_0 = state[0]; state_1 = state[1];
 state_2 = state[2]; state_3 = state[3];

 inSample1 = input[0];

 for(i=0; i < sampleNumber; i++){
 temp1 = coeff_a0*inSample1;
 temp2 = coeff_a1*state_0;
 temp3 = coeff_a2*state_1;

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 109

12

As mentioned previously, the compiler performs loop unrolling automatically. There are

several methods to tune this with flags for the compiler. Note that this will affect all the

loops in the application. You can also use pragmas to tune unrolling for each function.

However, it can be shown that loop unrolling by hand sometimes generates slightly

more efficient code.

Considering a continuous data stream, we can assume that there are always enough sam-

ples to fill a buffer. Suppose the user of the processing function knows about the n-times

loop unrolling. It is easy for the user to provide a buffer length that is a multiple of n.

Hence, no testing for the loop counter is necessary. This means also that loop unrolling

by hand causes a decrease in code size compared to the loop unrolling generated by the

compiler, because there is no extra decision tree for the not-unrolled loop.

It is important to switch off loop unrolling for those loops, because sometimes the com-

piler tries to unroll them and this might result in inefficient code. This can be easily

done by using the following pragma right before the loop as shown in iirFilter_5.c.

 temp4 = coeff_b1*state_2;
 temp5 = coeff_b2*state_3;

 temp6 = temp1 + temp2; temp7 = temp3 Ð temp4;
 temp8 = temp6 Ð temp5;
 outSample1 = temp7 + temp8;
 output[i] = outSample1;

 state_1 = state_0; state_0 = inSample1;
 state_3 = state_2; state_2 = output[i];

 inSample1 = input[i+1];
 }
 state[0] = state_0; state[1] = state_1;
 state[2] = state_2; state[3] = state_3;

 return 0;
}

Table 36 Performance Table for IIR Filter 4

Treename _iirFilter_4

Total Cycles (Instructions + Stall) 1016693

MIPS (%) 0.608

Cycles per Sample 13.79

Instruction Cycles 1016352

I-Cache Stall Cycles 319

D-Cache Stall Cycles 22

D-Conflict Cycles 0

(Useful) Operations per Instruction. Maximum is 5 1.08(1.06)

#pragma TCS_unroll=0

Chapter 12: Case Studies

110 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

This can be used to separately tune loop unrolling for each loop in the whole applica-

tion. Refer to Chapter 2 of Software Tools for details.

int iirFilter_5(float *inputData, float *outputData,
 float *coeff, float *state, int sampleNumber){
 #pragma TCS_unroll=0

 int i;
 float * restrict input, * restrict output;
 float temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8;
 float coeff_a0, coeff_a1, coeff_a2, coeff_b1, coeff_b2;
 float state_0, state_1, state_2, state_3;
 float inSample1, inSample2, inSample3, inSample4;
 float outSample1, outSample2, outSample3, outSample4;

 input = inputData; output = outputData;
 coeff_a0 = coeff[0]; coeff_a1 = coeff[1]; coeff_a2 = coeff[2];
 coeff_b1 = coeff[3]; coeff_b2 = coeff[4];
 state_0 = state[0]; state_1 = state[1];
 state_2 = state[2]; state_3 = state[3];

 inSample1 = input[0]; inSample2 = input[1];
 inSample3 = input[0]; inSample4 = input[1];

 for(i=0; i < sampleNumber; i+=4){
 temp1 = coeff_a0*inSample1;
 temp2 = coeff_a1*state_0; temp3 = coeff_a2*state_1;
 temp4 = coeff_b1*state_2; temp5 = coeff_b2*state_3;

 temp6 = temp1 + temp2; temp7 = temp3 Ð temp4;
 temp8 = temp6 Ð temp5;
 outSample1 = temp7 + temp8;
 output[i] = outSample1;

 temp1 = coeff_a0*inSample2;
 temp2 = coeff_a1*inSample1; temp3 = coeff_a2*state_0;
 temp4 = coeff_b1*outSample1; temp5 = coeff_b2*state_2;

 temp6 = temp1 + temp2; temp7 = temp3 Ð temp4;
 temp8 = temp6 Ð temp5;
 outSample2 = temp7 + temp8;
 output[i+1] = outSample2;

 temp1 = coeff_a0*inSample3;
 temp2 = coeff_a1*inSample2; temp3 = coeff_a2*inSample1;
 temp4 = coeff_b1*outSample2; temp5 = coeff_b2*outSample1;

 temp6 = temp1 + temp2; temp7 = temp3 Ð temp4;
 temp8 = temp6 Ð temp5;
 outSample3 = temp7 + temp8;
 output[i+2] = outSample3;

 temp1 = coeff_a0*inSample4;
 temp2 = coeff_a1*inSample3; temp3 = coeff_a2*inSample2;
 temp4 = coeff_b1*outSample3; temp5 = coeff_b2*outSample2;

 temp6 = temp1 + temp2; temp7 = temp3 Ð temp4;
 temp8 = temp6 Ð temp5;
 outSample4 = temp7 + temp8;
 output[i+3] = outSample4;

 state_0 = inSample4; state_1 = inSample3;

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 111

12

This improvement would also be more visible, if we had a longer loop body, especially

when calculating more than one channel at a time.

Looking in detail, there are 25 local variables plus the pointer for the input and output

data. Even if they are assigned to one register each for the whole loop, we would not run

into the problem of register spills, because there are more registers available. If we had

more local variables than registers at a certain time, loads and stores would be intro-

duced by the scheduler. This would decrease the performance. Since the compiler uses

the registers dynamically (which means that it frees registers in the loop which are no

longer required), we could also use more local variables. However, when running into

register spills the compiler generates a warning.

When you look at the number for operations per issue slots (maximum is five out of five)

you recognize that it has been increased. But it is important to realize that a high num-

ber does not necessarily mean that the code is efficient. Otherwise, assuming a high per-

formance, a number close to 5 indicates that there is not much more parallelism to gain.

Optimization for Fixed Point Integer (Second Order, One Channel)

Using fixed point integer arithmetic in the first unoptimized version (iirFilter_1.c) leads

to iirFilter_6.c. It has slightly better performance than iirFilte_1.c.

 state_2 = outSample4; state_3 = outSample3;

 inSample1 = input[i+4]; inSample2 = input[i+5];
 inSample3 = input[i+6]; inSample4 = input[i+7];
 }
 state[0] = state_0; state[1] = state_1;
 state[2] = state_2; state[3] = state_3;

 return 0;
}

Table 37 Performance Table for IIR Filter 5

Treename _iirFilter_5

Total Cycles (Instructions + Stall) 739291

MIPS (%) 0.442

Cycles per Sample 10.03

Instruction Cycles 739008

I-Cache Stall Cycles 261

D-Cache Stall Cycles 22

D-Conflict Cycles 0

(Useful) Operations per Instruction. Maximum is 5 1.40(1.38)

int iirFilter_6(int *inputData, int *outputData,
 int *coeff, int *state, int sampleNumber){
 int i;

Chapter 12: Case Studies

112 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

The values for data, states, and coefficients are represented in a fixed point notation. For

example, 1.31 refers to a floating point signal in the range of –1 to 1–2–31,which means

that the size of one quantization step is 2–31. Refer to Fixed-Point Arithmetic on page 68 for

more information.

The input in this case is assumed to be 2.30. For converting the coefficients from floating

to fixed point, a function convertCoeff() in convertCoeff.c is used. It assumes that the

coefficients are in a range of –2 to 2–2–30 and multiplies them by 229. Hence, the maxi-

mum values of the coefficients are still in the range of a 32-bit signed integer. The coeffi-

cients used here refer to a Linkwitz-Riley Crossover Filter consisting of two cascaded

second order IIR filters(Butterworth).

The consideration of the number representation for the input data and the coefficients

depends on the designed filter. You will need some headroom, if the filter applies a gain.

In addition, intermediate values may cause overflow since there are additions and sub-

tractions. These are things that need to be investigated, or at least tested. In this case we

use input data in a 2.30 format and coefficients in a 3.29 format, as mentioned before.

Another point is that these filters are often used in audio signal processing. Since com-

mon data formats are below 1.31 or 2.30 (maximum is 1.23), it becomes necessary to

shift the data up and down. This is not a bottleneck, because the TriMedia has two

shifters which can operate in parallel and require only one cycle. It is worth considering

integrating this shift into the filter and passing it as a parameter when the function is

called. This could provide an almost zero overhead shift.

Furthermore, because of the feedback in the loop it becomes necessary to left-shift the

output data to get the same representation as the input data. This shift depends only on

the representation of the coefficients. Assume the input data is Q.n and the coefficients

are P.m, then the intern result is 64 bits in Q+P.n+m representation. The IMULM custom

operator gives us the upper 32 bits. Hence, the output data has a Q+P.n-P representation,

and we have to do a left shift of P to get the initial representation of Q.n again. In the

examples this shift is 3, because the representation of the coefficient is 3.29, P equals 3.

This shift causes the last 3 bits to be zero. To prevent artifacts with low level signals,

dither techniques can be used. A very simple solution for this could be copying the last

three bits of the unshifted value to the ones that are zero after shifting.

 for(i=0; i < sampleNumber; i++){
 outputData[i] = (IMULM(coeff[0], inputData[i])
 + IMULM(coeff[1], state[0])
 + IMULM(coeff[2], state[1])
 Ð IMULM(coeff[3], state[2])
 Ð IMULM(coeff[4], state[3])) << SHIFT;

 state[1] = state[0]; state[0] = inputData [i];
 state[3] = state[2]; state[2] = outputData[i];
 }

 return 0;
}

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 113

12

It might for example look like this, but further discussion and optimization is beyond

the scope of this case study.

When using local variables for the states and coefficients in the integer version, the per-

formance is better than the best that was obtained using floating point. This is due to the

fact that there are five integer ALUs but only two for floating point. Also an addition or

subtraction in integer has a latency of only one cycle, while for floating point this is 3

cycles. This also causes the shift overhead to be virtually non-existent.

As integer addition is both commutative and associative, we would not need to intro-

duce more local variables for performance reasons. Nevertheless, it is introduced here for

better readability of the code.

#define DITHERMASK 7 /* 0x00000007 */
temp = temp1 + temp2 + temp3 Ð temp4 Ð temp5;
outSample = (temp << (WORDLENGTH Ð COEFFSHIFT)) | (temp & DITHERMASK);

int iirFilter_7(int *inputData, int *outputData,
 int *coeff, int *state, int sampleNumber){
 int i;
 int * restrict input, * restrict output;
 int temp1, temp2, temp3, temp4, temp5;
 int coeff_a0, coeff_a1, coeff_a2, coeff_b1, coeff_b2;
 int state_0, state_1, state_2, state_3;

 input = inputData; output = outputData;
 coeff_a0 = coeff[0]; coeff_a1 = coeff[1]; coeff_a2 = coeff[2];
 coeff_b1 = coeff[3]; coeff_b2 = coeff[4];
 state_0 = state[0]; state_1 = state[1];
 state_2 = state[2]; state_3 = state[3];

 for(i=0; i < sampleNumber; i++){
 temp1 = IMULM(coeff_a0, input[i]);
 temp2 = IMULM(coeff_a1, state_0);
 temp3 = IMULM(coeff_a2, state_1);
 temp4 = IMULM(coeff_b1, state_2);
 temp5 = IMULM(coeff_b2, state_3);

 output[i] = (temp1 + temp2 + temp3 - temp4 - temp5) << SHIFT;

 state_1 = state_0; state_0 = input[i];
 state_3 = state_2; state_2 = output[i];
 }
 state[0] = state_0; state[1] = state_1;
 state[2] = state_2; state[3] = state_3;

 return 0;
}

Table 38 Performance Table for IIR Filters 6 and 7

Treename _iirFilter_6 _iirFilter_7

Total Cycles (Instructions + Stall) 1854857 813864

MIPS (%) 1.109 0.487

Cycles per Sample 25.16 11.04

Instruction Cycles 1845216 813600

Chapter 12: Case Studies

114 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

For performance comparison, iirFilter_8.c gives an unrolled version of the integer IIR fil-

ter. The input data is loaded once before the loop and then at the end, as discussed previ-

ously.

I-Cache Stall Cycles 203 232

D-Cache Stall Cycles 9438 32

D-Conflict Cycles 9234 2

(Useful) Operations per Instruction. Maximum is 5 1.24(1.22) 1.59(1.55)

int iirFilter_8(int *inputData, int *outputData,
 int *coeff, int *state, int sampleNumber){
 #pragma TCS_unroll=0

 int i;
 int * restrict input, * restrict output;
 int temp6, temp7, temp8, temp9, temp10;
 int temp11, temp12, temp13, temp14, temp15;
 int temp16, temp17, temp18, temp19, temp20;
 int coeff_a0, coeff_a1, coeff_a2, coeff_b1, coeff_b2;
 int state_0, state_1, state_2, state_3;
 int inSample1, inSample2, inSample3, inSample4;
 int outSample1, outSample2, outSample3, outSample4;

 input = inputData; output = outputData;
 coeff_a0 = coeff[0]; coeff_a1 = coeff[1]; coeff_a2 = coeff[2];
 coeff_b1 = coeff[3]; coeff_b2 = coeff[4];
 state_0 = state[0]; state_1 = state[1];
 state_2 = state[2]; state_3 = state[3];

 inSample1 = input[0]; inSample2 = input[1];
 inSample3 = input[2]; inSample4 = input[3];

 for(i=0; i < sampleNumber; i+=4){
 temp1 = IMULM(coeff_a0, inSample1);
 temp2 = IMULM(coeff_a1, state_0);
 temp3 = IMULM(coeff_a2, state_1);
 temp4 = IMULM(coeff_b1, state_2);
 temp5 = IMULM(coeff_b2, state_3);

 outSample1 = (temp1 + temp2 + temp3 Ð temp4 Ð temp5) <<SHIFT;
 output[i] = outSample1;

 temp6 = IMULM(coeff_a0, inSample2);
 temp7 = IMULM(coeff_a1, inSample1);
 temp8 = IMULM(coeff_a2, state_0);
 temp9 = IMULM(coeff_b1, outSample1);
 temp10 = IMULM(coeff_b2, state_2);

 outSample2 = (temp1 + temp2 + temp3 Ð temp4 Ð temp5) <<SHIFT;
 output[i+1] = outSample2;

 temp11 = IMULM(coeff_a0, inSample3);
 temp12 = IMULM(coeff_a1, inSample2);
 temp13 = IMULM(coeff_a2, inSample1);

Table 38 Performance Table for IIR Filters 6 and 7

Treename _iirFilter_6 _iirFilter_7

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 115

12

Further Optimization (4th Order, One Channel and Two Channels)

In audio signal processing, a cascade of two of the same second order IIR filters is often

used. In this case the performance is much better when it is implemented in one func-

tion. This is shown in iirFilter_9.c. The number of local variables does not necessarily

mean that they will all be assigned to registers for the whole loop; in this case we could

have to deal with register spills. This can easily be proved, when looking in the

iirFilter_9.s file. Decision tree 2 refers to the loop and it contains two loads and two

 temp14 = IMULM(coeff_b1, outSample2);
 temp15 = IMULM(coeff_b2, outSample1);

 outSample3 = (temp1 + temp2 + temp3 Ð temp4 Ð temp5) <<SHIFT;
 output[i+2] = outSample3;

 temp16 = IMULM(coeff_a0, inSample4);
 temp17 = IMULM(coeff_a1, inSample3);
 temp18 = IMULM(coeff_a2, inSample2);
 temp19 = IMULM(coeff_b1, outSample3);
 temp20 = IMULM(coeff_b2, outSample2);

 outSample4 = (temp1 + temp2 + temp3 Ð temp4 Ð temp5) <<SHIFT;
 output[i+3] = outSample4;

 state_0 = inSample4; state_1 = inSample3;
 state_2 = outSample4; state_3 = outSample3;

 inSample1 = input[i+4]; inSample2 = input[i+5];
 inSample3 = input[i+6]; inSample4 = input[i+7];
 }
 state[0] = state_0; state[1] = state_1;
 state[2] = state_2; state[3] = state_3;

 return 0;
}

Table 39 Performance Table for IIR Filter 8

Treename _iirFilter_8

Total Cycles (Instructions + Stall) 444472

MIPS (%) 0.266

Cycles per Sample 6.03

Instruction Cycles 444240

I-Cache Stall Cycles 203

D-Cache Stall Cycles 29

D-Conflict Cycles 0

(Useful) Operations per Instruction. Maximum is 5 2.50(2.46)

Chapter 12: Case Studies

116 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

stores. This is due to the loop unrolling being performed twice. There is not more unroll-

ing, because we used a pragma to switch it off.

int iirFilter_9(int *inputData, int *outputData,
 int *coeff, int *state, int sampleNumber){
 #pragma TCS_unroll=0

 int i;
 int * restrict input, * restrict output;
 int temp1A, temp2A, temp3A, temp4A, temp5A;
 int temp6A, temp7A, temp8A, temp9A, temp10A;
 int temp1B, temp2B, temp3B, temp4B, temp5B;
 int temp6B, temp7B, temp8B, temp9B, temp10B;
 int coeff_a0, coeff_a1, coeff_a2, coeff_b1, coeff_b2;
 int state_0, state_1, state_2, state_3, state_4, state_5;
 int inSample1A, inSample1B;
 int outSample1A, outSample1B, outSample2A, outSample2B;

 input = inputData; output = outputData;
 coeff_a0 = coeff[0]; coeff_a1 = coeff[1]; coeff_a2 = coeff[2];
 coeff_b1 = coeff[3]; coeff_b2 = coeff[4];
 state_0 = state[0]; state_1 = state[1]; state_2 = state[2];
 state_3 = state[3]; state_4 = state[4]; state_5 = state[5];

 inSample1A = input[0]; inSample1B = input[1];

 for(i=0; i < sampleNumber; i+=2){
 temp1A = IMULM(coeff_a0, inSample1A);
 temp2A = IMULM(coeff_a1, state_0);
 temp3A = IMULM(coeff_a2, state_1);
 temp4A = IMULM(coeff_b1, state_2);
 temp5A = IMULM(coeff_b2, state_3);
 temp1B = IMULM(coeff_a0, inSample1B);
 temp2B = IMULM(coeff_a1, inSample1A);
 temp3B = IMULM(coeff_a2, state_0);
 temp5B = IMULM(coeff_b2, state_2);

 outSample1A = (temp1A + temp2A + temp3A - temp4A - temp5A) << SHIFT;
 temp4B = IMULM(coeff_b1, outSample1A);
 outSample1B = (temp1B + temp2B + temp3B - temp4B - temp5B) << SHIFT;

 temp6A = IMULM(coeff_a0, outSample1A);
 temp7A = IMULM(coeff_a1, state_2);
 temp8A = IMULM(coeff_a2, state_3);
 temp9A = IMULM(coeff_b1, state_4);
 temp10A = IMULM(coeff_b2, state_5);
 temp6B = IMULM(coeff_a0, outSample1B);
 temp7B = IMULM(coeff_a1, outSample1A);
 temp8B = IMULM(coeff_a2, state_2);
 temp10B = IMULM(coeff_b2, state_4);

 outSample2A = (temp6A + temp7A + temp8A - temp9A - temp10A)<< SHIFT;
 temp9B = IMULM(coeff_b1, outSample2A);
 output[i] = outSample2A;

 outSample2B = (temp6B + temp7B + temp8B - temp9B - temp10B)<< SHIFT;
 output[i+1] = outSample2B;

 state_0 = inSample1B; state_1 = inSample1A;
 state_2 = outSample1B; state_3 = outSample1A;
 state_4 = outSample2B; state_5 = outSample2A;

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 117

12

Furthermore it is seldom necessary to process only one channel. So it is a good practice

to implement two and three channel versions of the filter. iirFilter_10.c shows a two

channel fourth order IIR filter, constructed from two cascaded second order IIR filters.

 inSample1A = input[i+2]; inSample1B = input[i+3];
 }
 state[0] = state_0; state[1] = state_1; state[2] = state_2;
 state[3] = state_3; state[4] = state_4; state[5] = state_5;

 return 0;
}

int iirFilter_10(int *inputDataA, int *inputDataB,
 int *outputDataA, int *outputDataB,
 int *coeffA, int *coeffB, int *stateA, int *stateB,
 int sampleNumber){
 int i;
 int * restrict inputA, * restrict inputB;
 int * restrict outputA, * restrict outputB;
 int temp1A, temp2A, temp3A, temp4A, temp5A;
 int temp6A, temp7A, temp8A, temp9A, temp10A;
 int temp1B, temp2B, temp3B, temp4B, temp5B;
 int temp6B, temp7B, temp8B, temp9B, temp10B;
 int coeffA_a0, coeffA_a1, coeffA_a2, coeffA_b1, coeffA_b2;
 int coeffB_a0, coeffB_a1, coeffB_a2, coeffB_b1, coeffB_b2;
 int stateA_0, stateA_1, stateA_2, stateA_3, stateA_4, stateA_5;
 int stateB_0, stateB_1, stateB_2, stateB_3, stateB_4, stateB_5;
 int inSampleA, inSampleB;
 int outSample1A, outSample1B, outSample2A, outSample2B;

 inputA = inputDataA; outputA = outputDataA;
 inputB = inputDataB; outputB = outputDataB;
 coeffA_a0 = coeffA[0]; coeffA_a1 = coeffA[1]; coeffA_a2 = coeffA[2];
 coeffA_b1 = coeffA[3]; coeffA_b2 = coeffA[4];
 coeffB_a0 = coeffB[0]; coeffB_a1 = coeffB[1]; coeffB_a2 = coeffB[2];
 coeffB_b1 = coeffB[3]; coeffB_b2 = coeffB[4];
 stateA_0 = stateA[0]; stateA_1 = stateA[1]; stateA_2 = stateA[2];
 stateA_3 = stateA[3]; stateA_4 = stateA[4]; stateA_5 = stateA[5];
 stateB_0 = stateB[0]; stateB_1 = stateB[1]; stateB_2 = stateB[2];
 stateB_3 = stateB[3]; stateB_4 = stateB[4]; stateB_5 = stateB[5];

 inSampleA = inputA[0]; inSampleB = inputB[0];

 for(i=0; i < sampleNumber; i++){
 temp1A = IMULM(coeffA_a0, inSampleA);
 temp2A = IMULM(coeffA_a1, stateA_0);
 temp3A = IMULM(coeffA_a2, stateA_1);
 temp4A = IMULM(coeffA_b1, stateA_2);
 temp5A = IMULM(coeffA_b2, stateA_3);
 temp1B = IMULM(coeffB_a0, inSampleB);
 temp2B = IMULM(coeffB_a1, stateB_0);
 temp3B = IMULM(coeffB_a2, stateB_1);
 temp4B = IMULM(coeffB_b1, stateB_2);
 temp5B = IMULM(coeffB_b2, stateB_3);

 outSample1A = (temp1A + temp2A + temp3A - temp4A - temp5A) << SHIFT;
 outSample1B = (temp1B + temp2B + temp3B - temp4B - temp5B) << SHIFT;

 temp6A = IMULM(coeffA_a0, outSample1A);
 temp7A = IMULM(coeffA_a1, stateA_2);
 temp8A = IMULM(coeffA_a2, stateA_3);

Chapter 12: Case Studies

118 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

In function iirFilter_10 we also see a significant increase in the data cache stall cycles,

most of which are conflicts. This is due to the ordering of data in the cache.

The data cache on TriMedia is 16 KB in size with a 64-Byte block size. To allow two

accesses to proceed in parallel, the data cache is quasi-dual ported. The cache is imple-

mented as eight banks of single-ported memory, but the hardware allows each bank to

operate independently. Thus, when the addresses of two simultaneous accesses select

two different banks, both accesses can complete simultaneously; trying to access the

same bank simultaneously results in a data conflict.

 temp9A = IMULM(coeffA_b1, stateA_4);
 temp10A = IMULM(coeffA_b2, stateA_5);
 temp6B = IMULM(coeffB_a0, outSample1B);
 temp7B = IMULM(coeffB_a1, stateB_2);
 temp8B = IMULM(coeffB_a2, stateB_3);
 temp9B = IMULM(coeffB_b1, stateB_4);
 temp10B = IMULM(coeffB_b2, stateB_5);

 outSample2A = (temp6A + temp7A + temp8A - temp9A - temp10A) << SHIFT;
 outputA[i] = outSample2A;

 outSample2B = (temp6B + temp7B + temp8B - temp9B - temp10B) << SHIFT;
 outputB[i] = outSample2B;

 stateA_1 = stateA_0; stateA_0 = inSampleA; stateA_3 = stateA_2;
 stateA_2 = outSample1A; stateA_5 = stateA_4; stateA_4 = outSample2A;
 stateB_1 = stateB_0; stateB_0 = inSampleB; stateB_3 = stateB_2;
 stateB_2 = outSample1B; stateB_5 = stateB_4; stateB_4 = outSample2B;

 inSampleA = inputA[i+1]; inSampleB = inputB[i+1];
 }
 stateA[0] = stateA_0; stateA[1] = stateA_1; stateA[2] = stateA_2;
 stateA[3] = stateA_3; stateA[4] = stateA_4; stateA[5] = stateA_5;
 stateB[0] = stateB_0; stateB[1] = stateB_1; stateB[2] = stateB_2;
 stateB[3] = stateB_3; stateB[4] = stateB_4; stateB[5] = stateB_5;

 return 0;
}

Table 40 Performance Table for IIR Filters 9 and 10

Treename _iirFilter_9 _iirFilter_10

Total Cycles (Instructions + Stall) 739387 1080589

MIPS (%) 0.442 0.323

Cycles per Sample 5.01 3.66

Instruction Cycles 739152 1000368

I-Cache Stall Cycles 203 406

D-Cache Stall Cycles 32 79815

D-Conflict Cycles 4 74275

(Useful) Operations per Instruction. Maximum is 5 2.70(2.65) 3.70(3.66)

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 119

12

A sample with the physical address &inputBufferA[i] is stored in one bank; the sample

with the next address &inputBufferA[i+1] is in the next bank and so on. This means sam-

ples with addresses which are multiples of eight are stored in the same bank. This is use-

ful when reading one array in ascending order. However, it leads to problems in the case

discussed here. The distances between the physical addresses &inputBufferA[i], &input-

BufferB[i], &outputBufferA[i] and &outputBufferB[i] are all multiples of eight and there-

fore in the same bank. In the end of the loop in iirFilter_10() 2 loads and 2 stores are

issued. They are scheduled in the same instruction because of scheduling latency con-

straints. As a result this causes the data cache conflicts.

Hence, there are more than 74000 data conflict cycles when allocating memory for the

data in a naive way:

To avoid this problem we can either choose SAMPLENUMBER being 513 or 515, or rear-

range the data as shown below. In both cases we allocate slightly more memory than

necessary as a price for an increase in performance. For details refer to the appropriate

TriMedia data book.

It can be seen that this saves more than 76000 cycles. Unfortunately this is not in the

responsibility of the programmer of the processing function. This must be done in the

context where the filter is used and the memory for the data allocated.

For completeness, another method of generating compact code shall be briefly men-

tioned. The compiler supports a technique called grafting. It increases parallelism in

decision trees. This technique replaces any jump with a copy of a decision tree based on

the probability a certain branch is taken. As a result the program size increases. Grafting

can be considered similar to loop unrolling, but it does not reduce the loop overhead.

#define SAMPLENUMBER 512

int inputBufferA[SAMPLENUMBER], outputBufferA[SAMPLENUMBER];
int inputBufferB[SAMPLENUMBER], outputBufferB[SAMPLENUMBER];

int intInputBufferA[SAMPLENUMBER+1], intOutputBufferA[SAMPLENUMBER+3];
int intInputBufferB[SAMPLENUMBER+5], intOutputBufferB[SAMPLENUMBER];

Table 41 Performance Table for IIR Filter 10 (Data-Cache Optimization)

Treename _iirFilter_10

Total Cycles (Instructions + Stall) 1008143

MIPS (%) 0.302

Cycles per Sample 3.42

Instruction Cycles 1000368

I-Cache Stall Cycles 441

D-Cache Stall Cycles 7334

D-Conflict Cycles 63

(Useful) Operations per Instruction. Maximum is 5 3.70(3.66)

Chapter 12: Case Studies

120 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

The advantage is mainly due to the use of the branch delay slots. There are several meth-

ods to tune the grafting performed by the compiler.

Results for the function iirFilter_10 are given below:

Performance Summary

The methods described in this chapter were:

■ Extensive use of local variables. Register spills should not be a problem in most cases.

Best is always a before-and-after performance comparison.

■ Using restricted pointers.

■ Loads in the end of a loop (software pipelining).

■ Loop unrolling by hand. Sometimes it can gain performance, but note that this can

also be done by the compiler. There are several ways to tune this.

■ Implementing more functionality in one function 2nd order to 4th order, multi-

channel processing.

■ Data cache optimization.

■ Grafting (briefly).

Table 43 summarizes the results.

Table 42 Performance Table for IIR Filter 10 (Grafting)

Treename _iirFilter_10

Total Cycles (Instructions + Stall) 839742

MIPS (%) 0.251

Cycles per Sample 2.85

Instruction Cycles 823968

I-Cache Stall Cycles 1042

D-Cache Stall Cycles 14732

D-Conflict Cycles 9345

(Useful) Operations per Instruction. Maximum is 5 4.81(4.80)

Table 43 Summary of Results

Cycles per SampleA MIPS (%)B

floating point arithmetic, 2nd order IIR, 1 channel

iirFilter_1 32.16 1.418

iirFilter_2 11.54 0.509

iirFilter_3 10.79 0.476

Chapter 12: Case Studies

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 121

12

Using all these optimizations extensively for a 4th order IIR filter for three channels, the

performance measured in cycles per sample for a second order IIR filter can be even less

than 2.85 with a usage of almost 5 out of 5 issue slots.

However, if only a second order filter for one channel is to be used, it is probably difficult

to get lower than 5 cycles per sample with a usage of less than 3 out of 5 issue slots.

Therefore the first consideration for developing a signal processing system is to exploit

parallelism and create blocks including loops with a reasonable amount of operations in

the loop body. This also avoids unnecessary function calls.

Two techniques have been used. First, processing two channels in parallel in one loop

results in completely independent operations that can be calculated in parallel. These are

considerations a designer must examine.

iirFilter_4 10.04 0.443

iirFilter_5 10.03 0.442

fixed point integer arithmetic, 2nd order IIR, 1 channel

iirFilter_6 25.16 1.110

iirFilter_7 7.04 0.310

iirFilter_8 6.03 0.266

fixed point integer arithmetic, 4th order IIR, 1 channel

iirFilter_9 5.02 0.442

fixed point integer arithmetic, 4th order IIR, 2 channel

iirFilter_10 3.67 0.324

 -> data cache optimization 3.42 0.302

 -> grafting 2.85 0.251

A. Number of cycles that is necessary to calculate one biquad for one sample.
B. The MIPS stated belong to the calculation of one channel, regardless whether a second or fourth

order IIR filter is applied.

Table 43 Summary of Results

Cycles per SampleA MIPS (%)B

Chapter 12: Case Studies

122 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Second, merging two equal second order IIR filters into one loop avoids loads and stores.

Figure 64 shows how one load and one store can be saved per sample.

Figure 64 Merging Two Equal Second Order IIR Filters

Note that if the loop body is too long the compiler might break the resulting decision

tree, and this will definitely affect the performance. In other words there is a trade-off

that has to be investigated while optimizing.

IIR 1 IIR 2

Load Coefficients
State Variables

Input Data

Store
State Variables

Output Data

Load Coefficients
State Variables

Input Data

Store
State Variables

Output Data

Global Variables
(Memory)

IIR 1 IIR 2

Load Coefficients
State Variables

Input Data

Store
State Variables

Output Data

All Variables are Local (In Registers)

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 123

13

Chapter 13

Interrupt Latency Support

Topic Page

Overview 124

Terminology 124

Reasons for Long Interrupt Latencies 126

Clearing the IEN 128

Changing the Global Interrupt Priority 128

Individual Disabling 128

Preventing Task Preemption 129

Interrupt Latency Sampling 129

Using the Sampler 130

Detection of Latency Violators 130

Breaking Decision Trees: #pragma TCS_break_dtree 131

Latency Sampler Code 131

Chapter 13: Interrupt Latency Support

124 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Overview

Like in any other real time system, TriMedia-based multimedia applications are mostly

driven by time-critical events. Such events are passed between the application and its

environment by means of interrupts, which often also announce or request data. For

instance, an MPEG-2 decoder is continuously reacting on interrupts announcing new

MPEG data to decode, on interrupts requesting new frames to display, on interrupts noti-

fying that a VLD- or ICP operation or a DMA transfer has completed, or on interrupts

providing real time synchronization.

For many interrupts it is extremely important that they are handled and acknowledged

in time. There are a number of reasons for this: first, contrary to software, which can

implement various buffering schemes to overcome transient timing problems (jitter),

hardware is relatively simple in nature. When an interrupt is not served in time, input

data might get lost or a device might go into error because it did not get instructions on

what to do next. As second reason for timely handling interrupts, especially in high fre-

quency systems: any delay in handling the interrupt reduces the time available for pro-

cessing the related event, thereby increasing the probability of real time problems

‘higher up’ the chain.

The meaning of the term ‘in time’, and the severity of the ‘real time problems’ is strongly

dependent on the application and the devices which it uses. For example, in video cap-

turing, all timings are related to the input frame rate so that ‘in time’ will probably be in

the order of magnitude of several milliseconds, which is in contrast, for example, to an

ssi interrupt, which must be served strictly within a few hundred microseconds. Simi-

larly, the penalty of occasional timing problems in displaying video might only be some

short, hardly noticeable reduction in video quality, while an occasional timing problem

in an audio renderer might enrage the listener.

This chapter deals with interrupt latencies, as being an important concept in application

timing. It describes a mechanism to measure interrupt latencies, giving insight in the

timing aspects of applications. It also describes how to find the cause of long latencies,

and concludes with latency information of a number of TriMedia applications and librar-

ies.

Terminology

The following terminology is related to interrupt handling and application timing:

■ An interrupt handler is a parameterless C function that is triggered by an interrupt. It

must be compiled with a #pragma TCS_handler or #pragma TCS_interruptible_handler,

and installed as corresponding to a specific interrupt using the tmInterrupts func-

tions in the TriMedia device library. The difference between these two pragmas is that

the TCS_handler causes the interrupt enable bit to be cleared for the duration of the

handler, thereby disabling nested interrupts, while a TCS_interruptible_handler runs

with interrupts on.

Chapter 13: Interrupt Latency Support

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 125

13

■ Decision trees (dtrees) are TriMedia instruction sequences generated by the compiler

which terminate in jump instructions (to the beginning of other dtrees). Interrupts

will never take control during execution of a dtree. Instead, pending interrupts may

take control only during jumps to other dtrees.

■ More precisely, interrupts may take control only during the interruptible jump

instructions generated by default by the TriMedia C compiler. Interrupt handling can

be prevented even while jumping to other dtrees by using noninterruptible jump

instructions. This special class of jump instructions is sometimes used in hand-coded

assembly, e.g. to allow loop pipelining. (See the appropriate TriMedia data book for

more information).

■ Grafting is a technique, exploited by the TriMedia C compiler, to enlarge dtrees by

merging it with copies of jump targets. It increases instruction level parallelism at the

cost of (moderately) longer dtrees.

■ The interrupt enable bit (IEN) in the TriMedia processor status word (PCSW) deter-

mines whether asserted interrupts are kept pending, or lead to invocation of their

interrupt handler at the next jump instruction. The IEN controls all interrupts of

interrupt priority 6 and lower (see further). It has no effect on interrupts of priority 7.

■ An interrupt priority is a number in the range 0..7 (on TriMedia) assigned to each

interrupt, and which controls the relative importance of the interrupt as follows.

First, the hardware guarantees that, when multiple interrupts are pending at a partic-

ular jump instruction, an interrupt with highest priority value is selected for taking

control. Second, the tmInterrupts functions of the TriMedia device library imple-

ments a scheme on top of the IMASK (see further) by which all interrupts of a specific

priority or lower can be disabled “en masse” while leaving the higher priority inter-

rupts enabled, by setting a global interrupt priority level.

■ The IMASK is a bitvector on TriMedia by which interrupts can be specifically enabled

or disabled. It should be accessed only via the tmInterrupts functions of the TriMedia

device library. Contrary to the IEN bit, also interrupts of priority 7 can be disabled

using the IMASK.

■ Anon maskable interrupt (NMI) is an interrupt of priority 7. It is called this way

because it cannot be disabled via the IEN. Because it is common practice to ‘disable

all interrupts’ using the IEN, nonmaskable interrupts should only be used with

extreme care.

■ Disabling an interrupt is defined as any measure by which the interrupt’s handler is

prevented from taking control. Taking control is then postponed, and the interrupt

remains pending. A particular interrupt is disabled (or masked, or blocked) during

any of the following:

— During execution of a dtree.

— During a noninterruptible jump.

— When the IEN is cleared and when the interrupt’s priority is lower than 7.

Chapter 13: Interrupt Latency Support

126 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

— When the corresponding bit in the IMASK is cleared. In terms of the tmInterrupts
library, this is the case when the interrupt is not yet opened, or otherwise when
the interrupt has been individually disabled or when the global interrupt priority
level is larger than the interrupt’s own priority.

■ A latency of an interrupt is the difference in time between the moment at which the

interrupt is asserted and the moment at which its handler starts executing. In other

words, it is the time after asserting at which the interrupt handler is started. Any

(noticeable) latency is caused by the application, by having disabled the particular

interrupt.

■ An overrun is a condition in which input data of a particular device (typically

announced via an interrupt) is not timely consumed, and overwritten by subsequent

data. Overruns are generally caused by interrupt latency problems.

■ An underrun is a condition in which output data has not been given in time to a par-

ticular output device, causing the device to halt, or to continue with old, stale, or

undefined data. Similar to overruns, underruns are generally caused by interrupt

latency problems, for instance because response to a previous data request interrupt

from the device was too late.

Summarized, using above terminology, longer latencies in an application may be harm-

ful, since they reduce real time response. This may result in overrun errors of input

devices, in which captured data is lost because the processor was notified to late to

timely read it away and process it; or it may result in output device underrun errors in

which no new output data has been made available in time because the processor has

been too slow in reacting on a previous device notification.

Reasons for Long Interrupt Latencies

Interrupt latencies in the order of magnitude of about 10 microseconds and higher may

theoretically be caused by long dtrees, especially in grafted code generated by the com-

piler.

However, it appears that such latencies very often are caused just by the application

itself, by carelessly disabling and enabling interrupts.

Disabling all interrupts, or disabling one or several particular interrupts specifically, is

generally applied to create critical sections for accessing global data structures which

might also be accessed by interrupt handlers or by other tasks. This is best illustrated by

means of a toy example:

volatile int g_count;

#pragma TCS_handler
g_count = g_count+1;

Int ien = intClearIEN();
g_count = g_count+1;

Int ien = intClearIEN();
g_count = g_count+1;

Task 1 Task 2Handler

Chapter 13: Interrupt Latency Support

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 127

13

In this example, several tasks and an interrupt handler each modify a ‘global data struc-

ture’, g_count. The classical problem is that this modification involves a read of the old

value, followed by a write of a new (incremented) value, and that a race condition results

when this sequence is interrupted by one of the others between the read and the write.

The following interruptions are possible:

■ Task1 by Task 2, due to a pSOS timer interrupt which ends Task 1’s time slice in favor

of Task 2.

■ Task 2 by Task 1 in a similar way.

■ Task 1, or Task 2, by Handler due to occurrence of its interrupt.

Both tasks and the handler prevent such interruptions from happening during g_count’s

update by simply disabling ‘all’ interrupts; the tasks by calling the functions intended for

this in the tmInterrupts library, and the handler by making use of compiler support via

the TCS_handler pragma. This interrupt disabling is very effective, since it prevents time

slicing because the pSOS timer interrupt is disabled, and it prevents the handler from

interrupting the tasks and from interrupting itself (via a nested interrupt) because the

handler interrupt is disabled.

Note that it is good practice to not simply enable the interrupts again at the end of a crit-

ical section which is started with a intClearIEN; rather, the old IEN should be restored

because one can not always be sure that the interrupts were not already disabled. Also

note that also handlers can create critical sections using intClearIEN and intRestoreIEN:

use of these functions, in combination with pragma TCS_interruptible_handler, allow

finer grain interrupt disabling in longer interrupt handlers. Especially note the follow-

ing:

WARNING
it is not disallowed to call other functions when interrupts are disabled, but
never call a function which might deschedule the current task when
running under a multitasking operating system like pSOS.

Although interrupt disabling as described above is extremely effective for creating criti-

cal sections, it is also a very course method which should be avoided for critical sections

longer than a few microseconds. The reason of this is that it might also lock out

unknown interrupts with possible stringent latency requirements. Such an interrupt

probably will not interfere at all with the critical section, and disabling it might unneces-

sarily increase its latency. The following sections go over the different mechanisms by

which interrupts can be disabled. Some of these are more selective, and should be con-

sidered as an alternative.

Chapter 13: Interrupt Latency Support

128 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

Clearing the IEN

As mentioned above, disabling of an interrupt may be achieved by clearing the IE bit in

the PCSW. Massively disabling all interrupts in this way, and later enabling them again is

the usual way to achieve without much overhead a critical section in which a device, or

global data structure can be accessed without the danger of a task context switch or a

new intervening interrupt. Manipulating the IEN can be explicitly performed using the

functions intClearIEN, intSetIEN and intRestoreIEN exported by the tmInterrupts device

library. Two compiler- sup-ported mechanisms provide an effect similar to clearing the

IEN:

■ Defining an interrupt handler as using a pragma TCS_handler (in contrast to a

TCS_interruptible_handler). The generated code for such a handler clears the IEN at

the start, to be enabled at the end of the handler.

■ Defining a function or handler as a TCS_atomic. For these functions, the compiler

will generate non-interruptible jumps.

Note
Explicit use of non-interruptible jumps in handcoded assembly also locks
out interrupts in an similar way.

Changing the Global Interrupt Priority

Interrupt disabling can also be achieved by raising the global interrupt priority to a

higher value. This mechanism is generally used in interrupt handlers, to let serving not

be disturbed by “less urgent” interrupts, while still allowing “more urgent” ones. So

while the IEN is generally used to achieve atomicity, disabling based on interrupt priority

is used to (temporarily) allocate processor cycles only to a certain minimal urgency.

Although similar to clearing the IEN, raising the interrupt priority might also lock out

unknown interrupts, it selects on a notion of urgency and for this reason it is less likely

that interrupts with stringent latency requirements will be involuntarily locked out.

The global interrupt priority can be modified by means of a call to intSetPriority from

the tmInterrupts library.

Individual Disabling

Interrupts can also be individually disabled. For instance, using a call to intInstanceS-

etup from the tmInterrupts library, interrupt intVIDEOIN can be individually disabled;

regardless of its priority, and it has no effect on other interrupts.

Chapter 13: Interrupt Latency Support

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 129

13

Preventing Task Preemption

Individual disabling, and raising the global interrupt priority level may be used to lock

out all interrupts which might interfere with a particular critical section. However, it pro-

vides no control over task preemption. In other words, even with all “nasty” interrupts

locked out, the current task might still be preempted by pSOS in favor of another which

might enter the same critical section. Note that the actual problem here is that the iden-

tity of the pSOS timer interrupt and its priority are hidden.

Task preemption can be (temporarily) prevented by means of the pSOS function t_mode.

This function does not disable any interrupt at all, but just prevents scheduling. In

libraries or applications which may run either under pSOS or in stand-alone mode, it is

better to use the AppModel functions, which can be used to abstract from the currently

running operating system, as follows:

Interrupt Latency Sampling

Applications might encounter interrupt latency- related problems, even in case inter-

rupts have been disabled with extreme care. Libraries might have to be certified on

“decent” interrupt latency behavior. And both applications and libraries might be inves-

tigated on the (timing) effects of running them together with other applications or

libraries. This section describes a sampling method which can be used for all these situa-

tions for gaining interrupt latency information. This chapter refers to an example pro-

gram in which latency is measured. This example is reproduced at the end of this

chapter, and it is also available among the examples included with the TriMedia SDE. See

TCS/examples/misc/latency_sampler.

The latency sampling method records the interrupt latencies encountered by a periodic

timer interrupt over a specified duration of time while the sampled application is run-

ning. Using a timer-based interrupt has the pleasant property that the times at which it

is raised are known exactly (up to a few cycles), so that the latency can be easily obtained

by subtracting this time from the actual time of handler invocation. The obtained timer

interrupt latencies are recorded in a bucket array, where each bucket represents the num-

ber of timer interrupt latencies encountered during sampling. After termination of sam-

pling, a latency histogram can be obtained by printing the values in the bucket array.

Although the latencies are measured for the timer interrupt only, they can be interpreted

more generally: each measured latency would have been the latency of any interrupt

#include <tmlib/AppModel.h>;
...
AppModel_suspend_scheduling();
g_count= g_count+1;
AppModel_resume_scheduling()

Task 1

#include <tmlib/AppModel.h>;
...
AppModel_suspend_scheduling();
g_count= g_count+1;
AppModel_resume_scheduling()

Task 2

Chapter 13: Interrupt Latency Support

130 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

which was also enabled at the moment at which the timer interrupt occurred. The sam-

pler as shown installs the timer interrupt at (lowest) priority 0, and hence, for any inter-

rupt i which is not individually disabled: i is enabled whenever the timer interrupt is

enabled, and this means that at any moment, i’s latency is smaller than the timer inter-

rupt latency. In other words, the measured interrupt latencies form a lowerbound, or

worst case information, on the interrupt latency of any interrupt which is not individu-

ally disabled. This lowerbound could be tightened by running the timer interrupt at a

higher interrupt level, thereby disregarding interrupt latencies encountered by non time

critical interrupts.

In an application with one time critical, high priority interrupt, the sampled latencies

are lowerbounds also in another sense: a measured latency could be caused by the high

priority interrupt handler itself, because it was invoked at elapse of the sample timer. In

this case the latency which was encountered by the timer interrupt would obviously not

have been encountered by the high priority interrupt itself.

By the above, the described sampling method can be used to obtain information on

interrupt latencies encountered by interrupts which have not been individually disabled.

Using the Sampler

Sampling can be performed simply by compiling and linking the listed C code to the

application, and by calling function init_latency when sampling should start. This func-

tion clears the bucket array, allocates a timer, and sets it up to start sampling. After

“some” time, sampling can be stopped by term_latency, which deallocates the timer and

prints the histogram on the standard output.

Note that, being sampling based, the reliability of the obtained information is depen-

dent on the sample frequency, the sample duration, and the code coverage of the appli-

cation during sampling. For instance, no guarantee is given that the largest measured

latency indeed is the theoretical worst case latency.

No analysis is made in this document on this reliability.

Detection of Latency Violators

The listed sampler can also be used to detect the causes of long latencies, as follows:

upon any sampled latency larger than NROF_BUCKETS * 2 LOGS, the function

LATENCY_VIOLATOR_DETECTED is called. This can be used to detect the part of the appli-

cation which was responsible for this long latency, by placing a breakpoint in this func-

tion using the TriMedia debugger tmdbg. When hitting this breakpoint, the application

completely stops with all interrupts disabled. A stack traversal will reveal the function

which ended the violating critical section.

Chapter 13: Interrupt Latency Support

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part D 131

13

Breaking Decision Trees: #pragma TCS_break_dtree

When you find the interrupt latency is too high, you can control the latency by chang-

ing the way the program gets compiled. A high interrupt latency implies a large decision

tree. The reason for the presence of a large decision tree could be too much grafting, or it

could be a large decision tree even without grafting, where you might have hand

unrolled loops to gain performance, something that is not too uncommon in DSP pro-

gramming.

If grafting is the cause of large interrupt latency, you can use grafting parameters to

reduce the amount of grafting performed. Because this might have a performance

impact, you should exercise care in achieving a balance between performance and inter-

rupt latency.

If the code has large decision trees even without grafting, you can use the pragma

TCS_break_dtree to break the dtree at appropriate places. This also might have a perfor-

mance impact. You must take special care to minimize the number of values living across

the break of the dtree. These values now have to be stored in the global register set of the

compiler with the accompanying save and restore code.

Latency Sampler Code

/*----------------------------- includes ----------------------------*/
#include <tm1/tmTimers.h>
#include <tm1/tmTimersmmio.h>
#include <tm1/mmio.h>
/*------------------------- local definitions -----------------------*/
#define NROF_BUCKETS 1000 /* number of sample buckets */
#define LOGS 4 /* binary logarithm of sample bucket size */
#define SAMPLE_PERIOD 1000 /* cycles */
static Int buckets[NROF_BUCKETS];
static Int sample_timer;
static Int last_tick;
custom_op Int cycles(void);
/*------------------------- utility functions -----------------------*/
LATENCY_VIOLATOR_DETECTED(){
intClearIEN();
 /* Place a breakpoint here */
 intSetIEN();
}
static void
sampler(void){
 #pragma TCS_handler
 Int now = cycles();
 Int sample_timer_value = timGetVALUE(sample_timer);
 Int this_tick = now - sample_timer_value;
 Int latency = now - last_tick - SAMPLE_PERIOD;
 Int bucket_nr = latency >> LOGS;
 last_tick = this_tick;
 if(bucket_nr >= NROF_BUCKETS){
 buckets[NROF_BUCKETS - 1]++;
 LATENCY_VIOLATOR_DETECTED();
 }else if(bucket_nr < 0){

Chapter 13: Interrupt Latency Support

132 Book 2—Cookbook, Part D ©1999 Philips Semiconductors 10/08/99

 buckets[0]++;
 }else{
 buckets[bucket_nr]++;
 }
}
Bool
init_latency(){
 timInstanceSetup_t setup;
 if (timOpen(&sample_timer) != TMLIBDEV_OK) {
 return False;
 }else{
 memset((Pointer) buckets, 0, sizeof (buckets));
 last_tick = cycles();
 setup.source = timCLOCK;
 setup.prescale = 1;
 setup.modulus = SAMPLE_PERIOD;
 setup.running = True;
 setup.handler = sampler;
 setup.priority = intPRIO_0;
 timInstanceSetup(sample_timer, &setup);
 return True;
 }
}
void
term_latency(){
 Int i;
 timClose(sample_timer);
 for(i = 0; i < NROF_BUCKETS; i++){
 if(buckets[i]){
 printf(Ò %7d : %7d\nÓ, i << LOGS, buckets[i]);
 }
 }
}

/*----------------------------- includes ----------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
/*------------------------------ functions --------------------------*/
main(){
 int i;
 init_latency();
 for(i = 1; i < 1000; i++){
 printf(Òcos(%d)= %e\nÓ, i, cos(i));
 }
 term_latency();
 exit(0);
}

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 2—Cookbook
	Optimizing TriMedia Applications
	10: Porting and Optimizing Programs
	Introduction
	Porting Considerations
	Library and System-Calls Support
	Floating-Point Computations
	File I/O

	Performance Tuning
	Profile-Driven Compilation
	Grafting Based on Profile Information
	Loop Optimization
	Remove If Statements and Conditional Expressions
	Parallel Reduction Loops
	Use MUX on Variable Length Loops
	Apply Strength Reduction
	Move Externals and Reference Parameters to Locals
	Remove Function Calls
	Pay Attention to Compile Time
	Use #pragma TCS_break_dtree
	Loop Fusion
	Replace || by |
	Replace && by & or IZERO
	Using Software Pipelining
	Use TriMedia Style Booleans in Critical Parts of the Code

	Manual Loop Unrolling
	Manual Loop Unrolling Versus Grafting
	Using Restricted Pointers
	Using Custom Operators
	Graft-Tuning Parameters
	Using Profiling and Grafting
	Using Unsafe Alias Analysis
	Using a Dirty Float
	Using Cache Optimization
	Vary the Right-Most Array Index in the Inner Loop
	Pack Data as Tightly as Possible
	Trade CPU Cycles for Cache Cycles
	Watch for Cache Set Hotspots
	Blocking
	Two-Level Blocking
	Watch for Data Cache Bank Conflicts

	Summary

	11: System Programming Support
	Programming Support
	Interrupt Service Routines and Exception Handlers
	User View
	Saving/Restoring Behavior
	Declaring Interrupt Service Routines
	Usage Notes
	Interrupt-Latency Support
	Supporting Cache Control

	Using MMIO Locations

	12: Case Studies
	Introduction
	Special-Purpose Block Filter
	Fixed-Point Arithmetic
	IFIR16 Custom Operations
	Dual-Phase Loop
	Critical Path
	Algebraic Transformation
	Balancing the Critical Path
	More Unrolling
	Matrix Transpose
	Divide and Conquer
	Using Custom Operations
	Inlining and Shrink-Wrapping
	Cache Alignment
	Discrete Cosine Transform (DCT)
	What is a Transform?
	How the DCT Works
	Computation of a 1D DCT and Its Inverse
	Computation of a 2D DCT
	Computation of the 2D IDCT
	Separability
	Fast Computation of an Eight Point DCT
	TriMedia Implementation of an 8 x 8 DCT
	Coefficients and Rounding
	Horizontal DCT

	Vertical DCT
	Packing
	Computation of the Inverse DCT
	Coefficients
	Constants
	Endianness
	Horizontal Inverse DCT
	Calculation of the Vertical DCT
	I Frames and P Frames
	Results

	IIR Filter
	Introduction
	Includes and Macros
	Optimization for Floating Point(Second Order, One Channel)
	Optimization for Fixed Point Integer (Second Order, One Channel)
	Further Optimization (4th Order, One Channel and Two Channels)
	Performance Summary

	13: Interupt Latency Support
	Overview
	Terminology
	Reasons for Long Interrupt Latencies
	Clearing the IEN
	Changing the Global Interrupt Priority
	Individual Disabling
	Preventing Task Preemption
	Interrupt Latency Sampling
	Using the Sampler
	Detection of Latency Violators
	Breaking Decision Trees: #pragma TCS_break_dtree
	Latency Sampler Code

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

