

Version 2.1

AB

Book 4—Software Tools

Part A:

C Language Users Guide

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part A

iii

Book 4—Software Tools
Part A: C Language Users Guide

Table of Contents

Chapter 1 Introduction to C Language Users Guide

Introduction... 12

What This Guide Provides ... 12

What This Guide Does Not Provide ... 12

Overall Structure... 13

C Compiler Overview.. 14

Standards ... 14

C Language.. 14

C++ Language.. 15

Run-Time Support ... 15

Output Files ... 15

Stabs Format ... 15

Object Format ... 15

Compiler Interface .. 15

Implementation ... 16

Optimization ... 16

Environments and Compatibility ... 16

Compiler Architecture ... 17

Quality Assurance ... 17

A Three-Minute Guide to the TriMedia Compiler.. 17

Chapter 2 Using the C Compiler

Introduction... 20

Invoking the Compiler Driver for C.. 20

Invoking the Compiler Driver for C++... 21

Using the Compiler ... 22

Compiler Driver Options.. 22

Options That Help Understand Compiler Operation ... 22

Options That Stop Compilation After a Particular Phase .. 24

Options That Produce More (or Less) Information .. 25

Options That Control Preprocessor Operation ... 26

Table of Contents

iv

Book 4—Software Tools, Part A

©1999 Philips Semiconductors 10/08/99

Options That Control Optimization .. 27

Options That Control the Link Editor .. 28

Options That Define the Compilation Target .. 29

Options That Determine the C Language Dialect ... 29

Options That Determine C++ Language Dialect ... 31

Options That Control Template Instantiation .. 32

Options That Control Floating Point Operations ... 33

Predefined Macros.. 33

TCS Specifics .. 34

C Language Pragmas.. 34

Chapter 3 Using the Optimizer

Introduction... 40

Controlling the Overall Level of Optimization .. 40

Optimizations at Level 3 ... 41

Additional Optimizations at Level 4 ... 41

Additional Optimizations at Level 5 ... 41

Optimization Pros .. 42

Optimization Cons .. 42

Global Optimization Issues .. 42

Caveat Regarding Global Optimizations... 42

Machine-Dependent Options... 42

Loop Optimization.. 43

Automatic Loop Unrolling ... 43

Manual Loop Unrolling ... 44

Exact Unrolling ... 45

Profile-Driven Compilation .. 45

Grafting ... 46

Manual Grafting ... 47

Graft Tuning File... 48

Other Optimizations ... 49

Cross Iteration Hoisting... 49

Forward Code Motion.. 49

Induction Variable Replacement ... 49

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part A

v

Function Inlining... 49

Automatic Inlining .. 49

Automatic Inlining with the -p Option .. 50

Automatic Explicit Inlining... 50

Using the Inline Keyword ... 50

Pragma-Controlled Inlining ... 51

Command-Line Controlled Inlining .. 51

Pros of Inlining .. 52

Cons of Inlining .. 52

Automatic vs. Definition-Controlled Inlining .. 52

Alias Analysis ... 52

Alias Analysis Algorithm ... 53

Unsafe Alias Analysis .. 53

Default Behavior .. 53

Unsafe Behavior ... 54

Pros of the -Xalias option.. 55

Pros of the -A option .. 55

Restricted Pointers.. 55

Semantics of Keyword Restrict ... 55

Scope of Restricted Pointers ... 56

Restricted Pointers of File Scope.. 56

Restricted Pointers as Function Parameters .. 56

Restricted Pointers of Block and Structure Scope ... 57

Converting If Statements .. 58

Mapping from Optimization Level to Optimizations... 59

Summary of individual optimizations ... 60

Chapter 4 Using the Instruction Scheduler

Introduction... 64

Instruction Scheduler Options ... 64

Main Options .. 64

Control Options .. 65

The -bc (Avoid Bank Conflicts) Option ... 66

Speculative Execution Options .. 66

Debugging and Exception Support Options .. 67

Instruction Scheduler Reports ... 68

Report 1—Issue Slots ... 69

Report 4—Operations ... 71

Table of Contents

vi

Book 4—Software Tools, Part A

©1999 Philips Semiconductors 10/08/99

Report 16—Statistics ... 72

treestat Reports ... 73

Reading Scheduler Reports ... 73

Decision Tree Syntax .. 74

What is a Decision Tree? .. 74

Control Flow .. 75

Operations ... 76

Operation Syntax...77

Pseudo-Operations ... 78

After Constraints .. 79

Guarded Execution ... 80

Debug Information ... 80

Embedded Assembler Directives .. 81

Segments ... 82

Labels/Symbols .. 82

Chapter 5 Performance Analysis Overview

Introduction... 84

Important Guidelines for Making Measurements .. 84

Command Syntax.. 85

tmprof Options ... 85

Formatting Options .. 85

Scaling Options (-scale and -threshold) .. 87

Grouping Options (-func and -fcs) .. 87

Run-Time Options (-ptm).. 87

Miscellaneous Options .. 88

MCS Factor ... 89

Using tmprof with the Simulator ... 89

Caveats .. 90

Using tmprof with a Host Processor.. 90

Standalone Programming Using the tmprof API.. 91

Explicit Activation and Deactivation of Profiling ... 91

Defining Profiling Parameters... 91

Source Code Changes.. 92

Command Line Processing .. 94

Task-Based Profiling.. 94

Summary .. 95

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part A

vii

Caveats Regarding Profiling ... 95

Chapter 6 Systems Programming

Introduction... 98

Systems Program Debugging... 98

Assertions... 99

Interrupt Handlers .. 99

Writing an Interrupt Handler ... 99

Initializing an Interrupt Vector ..100

Generating a Software Interrupt ...101

Reducing Interrupt Overhead ...101

Interruptible Handlers ...102

Exception Handlers ...102

Critical Sections ..103

Using an Atomic Function ..104

Atomic Functions and Procedure Calls ..104

Decision Tree Breaks ...105

Caller Save Registers ...105

Software Cache Support..106

Cache Copyback ..106

Cache Invalidate ...107

Miscellaneous Issues ..108

Code Checksumming ...108

Uninitialized Variables ...108

Race Conditions ...109

Chapter 7 Using Custom Operations

Introduction...112

Syntax ..112

Classes of Custom Operations ..113

Operations on Vectors of Four Elements ..113

Operations on Vectors of Two Elements ...114

Vector-to-Scalar Computation ..115

Multiple Precision Arithmetic ...115

Clipped Computation ..116

Floating Point ..116

Vector Data Packing and Rearrangement ..117

Table of Contents

viii

Book 4—Software Tools, Part A

©1999 Philips Semiconductors 10/08/99

Minimum, Maximum, and Absolute Value ...118

Shift and Rotate ...119

Processor Control ..119

Cache Control ...120

Conditional Computation ..120

Chapter 8 TriMedia C/C++ Languages

Introduction...124

Standards and Compatibility..124

Relevant Standards ...124

Compatibility Considerations ...124

Additional Reading ...125

Language Extensions ...126

Alternate Extended Reserved Words ...126

Custom Operators ...126

The Pragma Statement ..128

The asm Statement ...128

Restrict ...128

Long Float ..130

Constants ..130

Bitfields ..130

Implementation ..131

Data Representation ..131

Alignment Requirements ...132

Naming Conventions ...133

Memory Layout ..133

Statically Allocated Memory..134

Dynamically Allocated Memory...134

Register Usage Conventions ...135

Callee vs. Caller Saved Registers ...135

Calling Conventions ...136

Argument Passing...136

Function Call ...137

At Entry..138

At Exit...138

After Return ...138

Atomic Functions ..138

Function and Handler Entry/Exit Optimizations..139

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part A

ix

Stack Conventions ...140

Stack Calculation ...140

Incoming Arguments ...140

Register Save Area...141

Outgoing Argument Area ..141

Implementation-Defined Behavior ...142

Environment (G.3.2) ..142

Identifiers (G.3.3) ..143

Characters (G.3.4) ..143

Integers (G.3.5) ...145

Floating Point (G.3.6) ...146

Arrays and Pointers (G.3.7) ...148

Registers (G.3.8) ...148

Structures, Unions, Enumerations, and Bit-Fields (G.3.9) ...148

Qualifiers (G.3.10) ..149

Declarators (G.3.11) ..149

Statements (G.3.12) ..149

Preprocessing Directives (G.3.13) ..150

Library Functions (G.3.14) ..151

C++ Language Definition ..155

Dialect ..155

Boolean Type (bool) ..155

Wide Characters (wchar_t) ...155

Special Pragmas ...157

Exception Handling ..157

Ongoing Standardization Issues ..158

Other restrictions with the current C++ implementation................................161

Using Templates ...161

Using <iostream> and <string> ..162

Implementation Specifics..163

Error Message Compiling with -p ..163

Variable Addressing ..163

Compiler Messages ...163

Performance Impact of -compact Option ..163

Run-Time Exit Code ..163

Chapter 9 Library Functions

Introduction...166

Headers...166

Table of Contents

x

Book 4—Software Tools, Part A

©1999 Philips Semiconductors 10/08/99

Macros...167

Functions ..171

Long Double Library Functions..179

Types ...180

System Calls ...181

©1999 Philips Semiconductors 10/08/99

 Book 4—Software Tools, Part A

11

1

Chapter 1

Introduction to C Language Users Guide

Topic Page

Introduction 12

Overall Structure 13

C Compiler Overview 14

A Three-Minute Guide to the TriMedia Compiler 17

Chapter 1: Introduction to C Language Users Guide

12

Book 4—Software Tools, Part A

©1999 Philips Semiconductors 10/08/99

Introduction

The

C Language Users Guide

 provides information on how to use the TriMedia C and C++

compilers running under the UNIX (Solaris or HP-UX) and Windows operating systems.

What This Guide Provides

The following material is provided in the

C Language Users Guide

.

■

How to compile and link programs.

■

How to control the behavior of the compiler during compilation.

■

How the C and C++ languages accepted by the compiler compare with several indus-

try standard definitions of C and C++.

■

Which programming restrictions apply when the TriMedia compiler is used and how

to deal with programs that violate these restrictions.

What This Guide Does Not Provide

The following material is not provided in the

C Language Users Guide

.

■

How to write C/C++ programs in general. For that purpose, a C or C++ language refer-

ence manual should be consulted.

■

Specifics of using the assembler and the link editor. For these, refer to the appropriate

documentation.

■

How to use the various aspects of UNIX indirectly associated with compiling and exe-

cuting programs, such as:

— Preparing programs to be input to the compiler.

— Using the make program.

For any of these topics, a suitable UNIX manual should be consulted

■

Methodologies for developing in a Windows environment (for example, use of an

IDE versus makefiles). For these topics, third-party software documentation should be

used.

■

How to execute the program at run time, including

— How to download the program on to the host processor.

— How to use the debugger.

— How to access facilities of the real time operating system (RTOS).

— Manipulating file output from program execution.

Many of the issues and optimizations discussed here have pros and cons. These are indi-

cated when applicable.

Chapter 1: Introduction to C Language Users Guide

©1999 Philips Semiconductors 10/08/99

 Book 4—Software Tools, Part A

13

1

Overall Structure

Figure 1 shows the TriMedia software development flow. The most common use of the

tools follows the spine of the flowchart. Other elements reflect peripheral functions.

Figure 1

TriMedia Software Development Flow

C/C++ Front End
(tmcfe)

Core Compiler
(tmccom)

Scheduler
(tmsched)

Assembler
(tmas)

Linker
(tmld)

Machine
Description File

Machine
Simulator
(tmsim)

Dynamic
Loader
a.out

running
on target

Inter-Procedural Analysis
(tmipa)

(optional)

xyz.c xyz.C xyz.cc

···.ipa
···.jpa

···.irb
···.dta

xyz.t

xyz.s

xyz.o

a.out lib.dll

Chapter 1: Introduction to C Language Users Guide

14

Book 4—Software Tools, Part A

©1999 Philips Semiconductors 10/08/99

The tools shown in Figure 1 operate as described below.

The compiler driver (

tmcc

) enables you to compile, assemble, and link modules in one

step. See Chapter 2,

Using the C Compiler

, for more information.

The C compiler accepts C and C++ source code and produces trees code. The compiler is

separated into a front end (

tmcfe

) and a core compiler back end (

tmccom

). The front

end performs machine-independent processing and local optimization. The back end

performs machine-dependent processing and global optimization. Between

tmcfe

 and

tmccom

, there is an optional inter-procedural analysis phase

tmipa

. See Chapter 2,

Using the C Compiler

, for more information.

The Instruction Scheduler (

tmsched

) takes trees code as input. This code is unscheduled

and temporary registers are not yet specified. The scheduler assigns registers and turns

the code into parallel VLIW assembly. See Chapter 4,

Using the Instruction Scheduler

, for

more information.

The Assembler (

tmas

) translates assembly programs and generates an object program in

TriMedia’s generic object format.

The Linker (

tmld

) combines object programs to create an executable file or an object

program suitable for relinking. It performs link-time optimizations to improve the pro-

gram. It supports both static and dynamic linking.

The Archiving Utility allows the user to build and manipulate libraries. Libraries are in

UNIX library format (“ar” format).

The Downloader Library provides final downloading and patching for interfacing with

the TriMedia host environment. It can be executed on either the host or TriMedia.

C Compiler Overview

Standards

C Language

The implementation of the C programming language is based on the ANSI standard for

C as described in the ANSI and ISO C standards and by the IEEE standard for floating

point.

The C compiler supports the concept of restricted pointers as proposed by the ANSI

Numerical C Extensions group.

Chapter 1: Introduction to C Language Users Guide

©1999 Philips Semiconductors 10/08/99

 Book 4—Software Tools, Part A

15

1

C++ Language

The parser of the TriMedia compiler is the EDG (Edison Design Group) front end, which

tracks the evolving C++ standard. Use of the EDG front end guarantees TriMedia users

that the definition of the C and C++ languages is as standard as possible.

Run-Time Support

All library functions conform to the ANSI C library standard. The C++ run-time support

is based on the Modena library which tracks the evolving ANSI run-time library standard

for C++.

Output Files

The following features pertain to output files created by the compiler assembly source

output.

■

The C compiler generates trees code.

■

The instruction scheduler transforms this into VLIW assembly code.

■

Both formats are user-readable.

Stabs Format

The assembly representation and the object file format use UNIX debugging representa-

tion stabs. Stabs allow source-level access from the debugger.

Object Format

The object format is generic across supported platforms and is endianness-independent.

It is supported by the downloader library of the TriMedia run-time environment.

Compiler Interface

The following features pertain to interfacing with the compiler.

■

The compiler tools include a driver that can be used to compile, schedule, assemble

and link programs in a single step.

■

UNIX tradition is followed for command-line options.

■

TriMedia calling conventions are documented and straightforward for interfacing

with assembler.

■

Machine operations can be programmed using a mechanism called

 custom-ops

. These

permit efficient programming of multimedia algorithms in C.

■

Exception and interrupt handlers can be programmed in C.

Chapter 1: Introduction to C Language Users Guide

16

Book 4—Software Tools, Part A

©1999 Philips Semiconductors 10/08/99

Implementation

The following features pertain to the implementation of the compiler.

■

The C and C++ front ends are integrated with the preprocessor and parser.

■

Stand-alone preprocessing is possible.

■

Preprocessed input is accepted.

For more information, see

Options That Control Preprocessor Operation

 in Chapter 2.

Optimization

The following features pertain to the optimizations of the compiler.

■

Performance can be significantly improved by function inlining, loop unrolling, and

grafting.

■

The compiler integrates a full global optimizer, including alias analysis.

■ Compiler optimizations are intelligently applied using information from profiling.

■ The compiler and scheduler use advanced algorithms for granularity partitioning that

are unique to TriMedia.

■ Near optimal schedules are obtained for code segments of hundreds or thousands of

instructions.

■ Register allocation and scheduling are integrated in the compiler and scheduler.

For more information about the TriMedia compiler’s optimization techniques, see

Chapter 3, Using the Optimizer.

Environments and Compatibility

The following features pertain to supported environments and compatibility.

■ On SPARC, the TriMedia compiler supports both Solaris 1 (SunOS 4.1.x) and Solaris

2.x.

■ On HP-UX, version 10 of the operating system is supported.

■ The Microsoft Windows version supports Windows 95 and Windows NT.

■ The calling convention is compatible with version 1.1Z of the TriMedia SDE, except

when the -g option is used.

■ Assembler syntax and object format is compatible with version 1.1Z.

■ The intermediate representation is compatible with extensions.

Chapter 1: Introduction to C Language Users Guide

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 17

1

Compiler Architecture

The following features pertain to the architecture of the compiler.

■ The compiler breaks up each procedure.

■ The scheduler operates on individual decision trees.

■ The compiler-scheduler concentrates on the global behavior and tries to obtain a

breakup into decision trees that is as good as possible.

■ The interface is a language called trees code.

■ Object files and libraries (.o and .a files) compiled using -g are unique to the TCS

release.

■ Mixing other object files and libraries is not recommended.

■ Both make use of the large register set.

■ Trees code has run-time information for optimization.

■ For speed, trees code can be programmed by the user.

■ Trees code is as efficient as assembler, but easier to program and maintain.

Quality Assurance

The following features pertain to quality assurance.

■ An extensive quality analysis (QA) process is applied to the compiler as part of prod-

uct qualification process.

■ QA includes functionality, performance, compatibility, and regression tests.

■ The product is validated on the Windows, Solaris, and HP-UX platforms.

A Three-Minute Guide to the TriMedia Compiler

This section offers a quick introduction to the TriMedia compiler.

The compiler supports cross compilation. The compiler can be used on SPARC, for exam-

ple, to produce an executable that is downloaded using the SDE on Windows. Program

source, compiled assembly, and object code can safely be transported from one operating

system to another. The object format is common across platforms and is independent of

host endianness.

 The TriMedia C compiler strongly follows UNIX tradition for compiler options and can

accept -c, -g, -o, -E, -I, -D, -L, -On, -S, and -U. For areas where there is not an established

UNIX tradition, options unique to the TriMedia compiler are used.

The program must be compiled with the -g option to use the debugger. The debugger has

a Graphic User Interface (GUI), as well as everything necessary to control downloading

Chapter 1: Introduction to C Language Users Guide

18 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

and execution. It allows access to the source program and machine resources. Using the

debugger, the optimization level is limited to -O1.

The -p option can be used to produce a dtprof.out file on execution. This file can be used

to improve loop unrolling, inlining, and grafting.

The -ptm option links the program with a library to produce a “mon.out” file. The

tmprof utility reports on where the program spends its time. The -g and -ptm options

cannot be used together.

For information on using the compiler, see the man pages for tmcc, tmar, as well as

Chapters 2 and 3 of this manual.

The compiler driver tmcc can be used to compile assembly programs (.s files) and pro-

grams in trees format (.t files).

Overall control of optimization is done with the -On option, where n can range from 0 to

5. The -O3 level is the default and is a very useful level of optimization. Levels -O4 and

-O5 invoke inter-procedural optimization and require extra care in managing recompila-

tion. If -g is specified, the optimization level is forced to -O1. Performance is often signif-

icantly better at -O5 but code size typically increases.

To optimize a given program, we recommend compiling it initially with “typical” com-

piler optimization enabled. Specifically, build your program with -O3. Use the profiling

options of the compiler (-p, -g -r) to get a first idea of the effectiveness of grafting and

experiment with inlining. Loop unrolling is applied automatically. Use the -ptm option

to find out where your program spends its time. The tmsize command will tell you the

code size (tmsize name.o).

The startup code and I/O depend on the host; the -host option to tmcc specifies the

host (-host serial, -host Win95, -host WinNT, -host tmsim, -host nohost). The -target

option specifies the TriMedia processor being used (-target tm1, -target tm2).

The default TriMedia C mode is ANSI-compatible with some relaxed requirements. Tri-

Media C++ offers several modes for dealing with the differences between cfront-like C++

and ARM or ANSI C++. The default mode is ANSI-compatible with a number of exten-

sions.

 The TriMedia compiler requires that certain restrictions on programming usage (as spec-

ified in the ANSI C and C++ standards) be met to apply full optimization. Some pro-

grams contain latent violations of these ANSI restrictions and may fail when high

degrees of optimization are applied. A systematic process of fixing or working around

such violations may then be necessary.

Unix-based tmcc uses temporary files in the directory defined by P_tmpdir in stdio.h.

Windows-based tmcc uses temporary files in the directory specified by environment

variable TMPDIR (or in the current directory if TMPDIR is not set). Changing the loca-

tion of temporary files by specifying TMPDIR can be very useful. For instance, if the

source files are on a slow network disk, you can specify TMPDIR to keep temporary files

on a fast local disk.

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 19

2
Chapter 2

Using the C Compiler

Topic Page

Introduction 20

Invoking the Compiler Driver for C 20

Invoking the Compiler Driver for C++ 21

Using the Compiler 22

Compiler Driver Options 22

Predefined Macros 33

C Language Pragmas 34

Chapter 2: Using the C Compiler

20 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

This chapter provides all the information needed to compile and link programs.

The tmcc compiler driver (tmCC or tmcpp for C++) provides one-point coordination of

all the compiler phases. The compiler phases are as follows:

■ To compile and link a C or C++ source program, the C front end tmcfe is run. An

integrated preprocessor is incorporated into tmcfe.

■ The back end tmccom applies optimizations and produces trees code.

■ The Instruction Scheduler accepts trees code and produces VLIW assembly code.

■ The Assembler generates an object file in TriMedia’s object format.

■ The Link Editor links relocatable object files into a single executable file. Both

dynamic and static linking are supported. The linker can also be invoked separately.

This chapter provides documentation of the most common compiler options. Options

related to optimization are discussed in Chapter 3, Using the Optimizer.

Invoking the Compiler Driver for C

The compiler driver for C is called tmcc. To invoke tmcc for a C program, enter

tmcc Command that coordinates invocation of the compiler components.

options Options that affect the operation of the components.

file names One or more C source files, trees code source, assembly source, or
object files..

For example, if you want to compile two files named main.c and fibonacci.c and produce

an object file fibonacci, you enter

As tmcc encounters each source file, it prints the C file name followed by a colon. The

example below uses the –V option of tmcc to print version information.

tmcc [options ..] file names ...

tmcc main.c fibonacci.c Ðo fibonacci

tmcc ÐV main.c fibonacci.c Ðo fibonacci
tmcc: V5.4.9 of tcs2.00031Win95
main.c:
fibonacci.c

Chapter 2: Using the C Compiler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 21

2

Source files and object files are distinguished based on the suffix (.c, .o), as follows.

The files need not be in the current directory.

Invoking the Compiler Driver for C++

The compiler driver for C++ is called tmCC. To invoke tmCC for a C++ program, enter

tmCC Command that coordinates invocation of the compiler components.

options Options that affect the operation of the components.

file names One or more C source files, C++ source files, trees code source, assem-
bly source, or object files.

For example, if you want to compile two files named main.C and fibonacci.C and pro-

duce an object file fibonacci, you enter

To aid those who work in environments where the command line is not case-sensitive, a

alternate driver tmcpp is available. You can invoke tmcpp exactly the same way you

invoke tmCC. For the above example, enter

C++ source files are distinguished by the extensions .C, .cc, and .cpp. Other suffixes are

common.

tmcc, tmCC, and tmcpp are, in fact, the same program. The name tmCC (or tmcpp) is
used so that C++ knows the appropriate run-time library to link. The options for tmcc,

tmCC, and tmcpp are the same.

Note
In the remainder of the chapter, the term tmcc is used interchangeably for
both compilers, unless specified otherwise. Use tmCC or tmcpp at link time
to specify the C++ library for object files.

Suffix Description

.c A C source file.

.i cpp output file

.t tmccom output file

.s tmsched output file

.o tmas output file

a.out tmld output file. The file name is always “a.out” unless you specify another out-
put file name.

tmCC [options ..] file names ...

tmCC main.C fibonacci.C Ðo fibonacci

tmcpp main.C fibonacci.C Ðo fibonacci

Chapter 2: Using the C Compiler

22 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Using the Compiler

Compiler behavior can be controlled at several levels:

■ Compiler driver options allow control over the overall process of compilation.

■ Phase-specific options allow control over the behavior of the front and back ends.

■ Instruction Scheduler-specific options allow control over the back end of the C and

C++ compilers.

■ Source language pragmas allow control at the file, routine, or statement level.

Compiler-specific options related to optimization are defined in Chapter 3, Using the

Optimizer.

Instruction Scheduler options are defined in Chapter 4, Using the Instruction Scheduler.

Predefined macros, language pragmas, and compiler options other than optimization are

defined in this chapter.

Compiler Driver Options

The default behavior can be changed and/or extended in various ways by the use of

options. The options described below can be given. Files and options that are not recog-

nized are passed through by the driver to the Link Editor.

Options That Help Understand Compiler Operation

The following options help understand the compiler’s operation and also what compiler

you are using.

Option Description

-h Help. Prints help message and exits. Try: tmcc -h.
The -? option is equivalent to the -h option.

-V Version. Prints tmcc version number, as in tmcc: V5.4.9 of tcs2.00031Win95
where:
V5.4.9 is a version number internal to tmcc
tcs2.0 corresponds to this release (V2.0)
0031Win95 is the build target and number

-v Verbose. Prints name and arguments of each executed phase.

-K Keep. Keeps intermediate files. tmcc generates intermediate files with extensions
as given above rather than using temporary files to pass information between
phases.

Chapter 2: Using the C Compiler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 23

2

The -v and -K options are useful in combination. The -v option prints the name of each

pass as it executes. The -K option keeps the temporary files in the current directory. For

example,

produces the following (the output has been extensively edited):

The C compiler front end is invoked with options that define the configuration. The out-

put is produced in three temporary files (-b options).

The C compiler back end is invoked. Trees code output is produced in the file t.t. This is

because of the -K option.

The Instruction Scheduler is invoked. Assembly source is produced in t.s. This is because

of the -K option. The directory C:\TriMedia is the installation directory.

The assembler is invoked to produce an object file t.o.

The Link editor is invoked. The arguments (not shown) correspond to startup files, con-

figuration information, and libraries.

Pros

■ The -V option is useful for providing information to TriMedia technical support. All

tools in the SDE support it.

■ The -K option provides easy access to compiler intermediate files.

■ The -v option is useful for seeing where time is being spent, and for understanding

tmcc operation.

Cons

■ The -v option produces verbose output.

■ The -K option clutters the current directory.

■ The -K option does not produce a .i file. Use tmcc –P.

■ The intermediate files between tmccom and tmcfe are binary and are not produced

with -K.

tmcc Ðv ÐK t.c

tmcfe ÐXc=cp ÐXYc=mixed Ðb ... ÐO3 Ðeb Ðtarget tm1 t.c

tmccom Ðb ... Ðo t.t ÐO3 Ðeb Ðtarget tm1

tmsched Ðo=t.s Ðeb C:\TriMedia\lib\tm1.md t.t

tmas Ðo=t.o Ðeb C:\TriMedia\lib\tm1.md t.s

tmld Ðo=a.out Ðbtype boot Ðexec ... t.o Ðstart=__start ...

Chapter 2: Using the C Compiler

24 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Options That Stop Compilation After a Particular Phase

The following options stop compilation after a specified phase. The -c (lower case) and -S

(upper case) options are the same as in UNIX compilers.

See Implementation Specifics in Chapter 8 for differences in code generation when the -t

option is specified.

Pros

■ You can get just one intermediate file (.t, .s) without cluttering.

■ Breaking the compilation into phases is good for makefiles and saves compile time.

■ The -S and -c options are UNIX-compatible.

Cons

■ Two commands are necessary for a compilation.

■ Two commands are necessary to get two intermediate files, as compared to one com-

mand with -K.

■ When using inter-procedural analysis (-04, -05), there may be some dependencies

between files.

Option Description

-t Trees. Compiles to intermediate format (.t) only. The default output file name is
“name.t.”

-S Schedule. Compiles and schedules but does not assemble. The default output
file name is “name.s.”

-c Compile only. Compiles to .o, but does not link. The default output file name is
“name.o.”

-Qphase Quit. Quits after the specified phase, which should be one of tmcfe, tmipa,
tmccom, tmsched, tmas, or tmld.

Chapter 2: Using the C Compiler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 25

2

Options That Produce More (or Less) Information

The following options have an incidence on the errors and warnings produced by the

compiler and on the format of the executable.

Diagnostic levels are defined below. If no option is specified, the default level is 1.

There is a single level of warnings.

Pros

■ Compiling with -w allows older C code containing non-portable constructs to be

compiled without excessive warnings.

■ Compiling with -p allows the subsequent speeding up of the program. This requires a

second compile step.

■ Compiling with -ptm allows you to understand where the program is spending its

time.

■ Compiling with debug information allows full debugging.

■ Access to the source is possible during debugging.

Option Description

-w Warnings. Suppresses warning messages.

-g Debug. Produces debug information.
This may enable other special compilation conditions (use tmcc -v). The debug
information produced is in stabs format

-p Profile. Generates profiling information to file dtprof.out.
This option is for the compiler to guide optimization, specifically loop unrolling,
function inlining, and grafting. The dtprof.out file is used by the tmcc -G and -r
options.

-ptm Profile. Generates profiling information to file mon.out.
This option is for the user, to find out what the program is doing. The mon.out
file from -ptm is used by tmprof(1).

-R Report log information from the instruction scheduler tmsched in file.schedlog.

-Xdiag=n Set diagnostic level to n.
-Xdiag with no level specified means -Xdiag=2

Level Description

0 Errors and fatal errors .

1 Warnings, errors, and fatal errors.

2 Remarks, errors, and fatal errors.

Chapter 2: Using the C Compiler

26 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Cons

■ With the -w option, important warnings may be lost.

■ Run-time overhead is added with -p, -ptm and -g.

■ All of these options increase the size of the executable.

Options That Control Preprocessor Operation

The C compiler includes an integrated preprocessor for macro definitions and file inclu-

sion (#define, #include). The following options control the operation of the preprocessor.

It can be invoked so that it only does preprocessing. These options are UNIX-compatible.

■ The -Xinclpath option applies to the processing of include files with relative path

names.

■ -Xinclpath=relative is the default behavior.

Note
Preprocessing (the -E and -P options) eliminates dependencies on
makefiles on your system. This is very useful when submitting a test case
to TriMedia technical support.

■ The -g option cannot be used in combination with these optimizations:

-G, -graft, -if_convert, and -full_if_convert.

Option Meaning

-Dname[=value] Define. Defines macro name to the C front end, tmcfe, with the spec-
ified value, if given.

-E Expand. Runs the C/C++ front end, tmcfe, only and prints output to
the standard output.

-I<path> Include. Passes the given include path to the C/C++ front end,
tmcfe.

-P Preprocess. Runs the C/C++ front-end tmcfe only. Places the output
in name.i.

-U<name> Undefine. Undefine macro name to the C front end, tmcfe.

-nostdinc Do not search the standard include for standard C headers.
The -nostdinc option removes dependencies on system headers.
This is useful for stand-alone applications. However predefined mac-
ros are not affected (see below)

-Xinclpath=absolute When processing a #include, look in the directory of the original
source files.

-Xinclpath=relative When processing a #include, look in the directory of the file that
contains the #include statement.

Chapter 2: Using the C Compiler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 27

2

■ If you attempt to pass -D arguments that include quote marks, be aware that double

quotes and backslashes are interpreted by the shell (DOS command.com or MKS ksh)

before being passed to the invoked tmcc command. For example,

 $ tmcc -c -DFNAME=\\\"test.h\\\" prog.c [DOS shell]

or

 $ tmcc -c '-DFNAME=\\\"test.h\\\"' prog.c [MKS ksh]

have the same effect as adding

 #define FNAME "test.h"

to program prog.c. Note that the backslash and the double quotes must be escaped

for the DOS shell and then single quotes are added for MKS ksh.

Options That Control Optimization

The following is a summary of compiler options that affect optimization. A complete list

is given in Chapter 3, Using the Optimizer.

O[<n>] passes optimization level n to the C compiler tmccom. The default optimization

level is -O3 without -g, and -O1 with -g. Unrolling is activated by default at this level.

A profiled library can be compiled (tmcc -r -c) and then linked separately.

Option Description

-G Grafting. Reads program profile information from file dtprof.out.

-Xunroll=n Performs loop unrolling with unroll factor of n.

-Xunroll=0 Disables loop unrolling.

-Xunroll=1
-Xunroll

Automatic unroll factor is computed.

-p Profile. Generates profiling information to file dtprof.out.

-r
-r="file"

Reads profiling information from file dtprof.out (or from file, if specified.
This option controls function inlining, loop unrolling, and grafting.

-O0 No optimizations.

-O1 Local (per basic block) optimizations only. Variables in stack.

-O2 Local (per decision tree) optimizations. Variables in registers.

-O3 Global optimizations.

-O4 Interprocedural analysis and inlining.

-O5 More extensive inlining and global optimizations.

-Xalias=level Define degree for alias analysis. Level is from 0 to 5.

-A[012] Define degree (0, 1, or 2) for unsafe alias analysis.

-Xmemlimit=n Memory requirement in megabytes.

Chapter 2: Using the C Compiler

28 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Pros

■ More optimization and more alias analysis speed up the program.

Cons

■ Optimization slows down compile time.

■ Inlining, unrolling, and grafting increase the size of the program.

■ Unsafe alias analysis can cause problems with some programs.

Options That Control the Link Editor

The compiler driver invokes the Link Editor, tmld, by default. The following options are

passed to tmld.

Cache performance can be affected by linker reordering.

Options Description

-nostdlib Does not link with any library except those specified
explicitly.

-nocompact Disable linker reordering optimizations.

-b [deferred |
download |
embed |
export |
immediate |
type |
embed |
compact |
foldcode |
removeunusedcode] arg

Passes linker-specific option to the tmld link phase.

-l<file> Library. Passes library libfile.a to the linker tmld.

-L<path> Library path. Adds the given path to the library path, which
tmcc searches for libraries specified with -l options.

-o file Output. Renames output to file.

-partial Partial. Performs partial linking. Partially linked files may be
used in subsequent linking.

-s Strip. Strips the generated executable with tmstrip.

Chapter 2: Using the C Compiler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 29

2

Options That Define the Compilation Target

The following options define the machine being compiled for. In TriMedia terminology,

the target processor is the TriMedia processor that executes the program. The host proces-

sor provides the execution environment (access to input/output). The board means the

TriMedia circuit board, including daughter boards. Refer to the information about board

support packages in Book 3, Software Architecture, Part A, for more information..

Options That Determine the C Language Dialect

Three dialects of C are supported by TriMedia compilers: strict ANSI, Kernighan and

Ritchie (K & R) C, and ANSI C with extensions. These last two dialects are for compatibil-

ity with older compilers.

Options Description

-target <mach> Generate code for tm1 or tm2.

-host <mach> Generates an executable suitable for the given host.
The parameter can be Win95, WinNT, MacOS, Solaris, or nohost.

-e[bl] Generate big-endian or little-endian code.
The user must be careful to use the same endianness in all compilation
and simulation phases.

-board=<path> Specify a board support package for the target. The default reverts to a
list of known boards.

-Xalign Align arrays on word boundaries.

Option Description

-Xc=ansi C dialect is ANSI C. The compiler complies completely with the ANSI and
ISO C standards (ANSI X3.159-1989 and ISO/IEC 9899:1990(E)) as a “con-
forming hosted implementation.” That is, it supports all of the lan-
guage, standard header files, and run-time environment.

-Xc=knr C dialect is K&R C. This is closely compatible with the UNIX pcc compiler.

-Xc=mixed C++ dialect is ANSI C with extensions. This eases the job of porting K&R
C code to TriMedia.

-Xchar Signedness of plain char.

-Xsizet Definition of type size_t.

Chapter 2: Using the C Compiler

30 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ An additional value noknr can be added to the mixed or ANSI C modes. For example

■ The -Xwchart and -Xsizet options change the compiler’s built-in expectations. Nor-

mally, size_t and wchar_t are defined in system include files. Possible values for

wchart are uint, ulong, ushort, uchar, int, long, short, char or schar. Possible values for

sizet are uint, ulong, ushort, uchar (sizet is not allowed to have signed types).

■ Additional values const, volatile, and signed may be added in K&R C mode. For exam-

ple, -Xc=knr+const specifies K&R C with support for the const keyword.

■ An additional value inline can be given with all C modes, to disable inline as a key-

word. For example, use -Xc-=inline to disable the inline keyword.

■ The default is -Xc=mixed+inline.

Pros

■ Use of the less restrictive modes (-Xc=mixed, -varargs) allows for easier porting.

■ The -B option allows an easy way of commenting out code sections.

Cons

■ Strict ANSI compatibility eliminates possible errors and guarantees portability.

■ Code generated using varargs is less efficient.

-Xwchart Definition of type wchar_t.
Normally, wchar_t is defined in a system include file.

-B Accepts C++ style online commenting (delimited by ‘‘//’’) in C sources.

-varargs Passes -varargs option to tmccom.
This option must be used when compiling a source that includes
varargs functions. (Two mechanisms exist in C to specify functions with
a variable number of arguments, stdargs and varargs. Because func-
tions with a variable number of arguments are not explicitly declared,
the varargs mechanism is not portable. The newer mechanism is
stdargs.)

ÐXc=mixed+noknr

Option Description

Chapter 2: Using the C Compiler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 31

2

Options That Determine C++ Language Dialect

Since the ANSI C++ standard is fairly recent, the C++ compiler allows for several anach-

ronisms by specifying a specific dialect. The following table lists the options that influ-

ence the behavior of the compiler with regard to the C++ language.

■ Programs that compile under both arm and cp modes will behave identically.

■ By default, the compiler recognizes array new and array delete operators. To disable

this feature, use -Xc-=array_nd or -Xc=arm-array_nd, for example.

■ By default, wchar_t is defined as a distinct built-in type. To define as a typedef, use

-Xc-=wchar_t, for example. This is different from -Xwchart, which defines the type to

use.

■ By default, bool is recognized as a keyword. Use -Xc-=bool to disable this feature.

■ By default, data structures are generated, and you are protected, if other code throws

an exception. Use -Xc-=exceptions in an exception-free environment

The following preprocessor macros are defined for type definitions.

These can be used to protect your own definition of bool, as shown below:

Option Description

-Xc=arm C dialect is as per Annotated Reference Manual (ANSI), the most recent
definition of the language.

-Xc=cp ANSI C dialect, with extensions for older programs. Allows for several
anachronisms.

-Xc-=rtti Disables RTTI (Runtime Type Identification) keywords.
RTTI keywords are on by default with all C++ modes and must be specifi-
cally disabled by using the option -rtti. For example: -Xc-=rtti or
-Xc=cp-rtti.

-Xc+=c_func_decl Relaxes prototype requirements for extern “C.”
This option relaxes the prototype requirements of the C++ language to
those of the C language for functions declared within an extern "C" block.
This value is not meant for direct use but to enable use of C style system
include files with C++.

wchar_t bool

_WCHAR_T _BOOL_DEFINED

__WCHAR_T_IS_KEYWORD __BOOL_IS_KEYWORD

#ifndef _BOOL_DEFINED
typedef unsigned char bool;
#define _BOOL_DEFINED 1
#endif

Chapter 2: Using the C Compiler

32 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Pros

■ Use of the less restrictive modes (-Xc=cp) allows for easier porting.

Cons

■ Strict ANSI compatibility eliminates possible errors and guarantees portability.

■ Objects compiled with stdlib are generally not compatible with objects compiled

without stdlib.

Options That Control Template Instantiation

This section explains how to control the -Xtmpl command-line option for template

instantiation. Possible values are given in the table below.

Suppose a template is used in two source files (main.C and f.c) and is defined as shown:

■ Compiling both files with -Xtmpl=used generates a symbol redefinition error from

tmld.

■ Compiling both files with -Xtmpl=local generates an extra copy function.

■ Compiling one file with -Xtmpl=none and the other with -Xtmpl=used eliminates the

redundant code.

Option Description

-Xtmpl=none Does not generate code for needed instantiations.

-Xtmpl=used Generates code for needed instantiations. Declare as extern.

-Xtmpl=local Generate code for needed instantiations. Declare as static. This is the
default value.

template <class TYPE>

void copy(TYPE a[], TYPE b[], int n){
 for(int i = 0; i < n; i++) a[i] = b[i];
}

Chapter 2: Using the C Compiler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 33

2

Options That Control Floating Point Operations

This section explains how to control the -dirty_float and the -uselongdoub64 command-

line options. Possible values are given in the table below.

■ The -dirty_float option must be bracketed with –tmccom –– (i.e. this option must be

given as –tmccom -dirty_float N –– on the command line.)

■ -dirty_float 0 is the default option.

■ With -uselongdouble64, the compiler still generates TriMedia hardware floating point

operations for float and double floating point arithmetic operations, but it uses a soft-

ware library to perform long double arithmetic operations. Thus, long double opera-

tions are more accurate but considerably slower than than the corresponding float or

double operations.

Predefined Macros

The C/C++ front end always defines the standard macro __STDC__ (to indicate ANSI/ISO

C Standard compliance). When compiling a C++ source file, it also defines __cplusplus to

indicate C++ compilation.

In addition, the TriMedia compiler tmcc driver instructs tmcfe to define the standard

macro __TCS__ and either __BIG_ENDIAN__ or __LITTLE_ENDIAN__, depending on the

endianness of the compilation. These macros may be used in preprocessor directives to

control conditional compilation of sources.

The following macros are always defined by tmcc.

Option Description

-dirty_float 0 Do no optimization on floating point expressions.

-dirty_float 1 Introduce if conversions and ignore the effects on the PCSW.

-dirty_float 2 Do tree height reduction on floating point expressions to increase par-
allelism. Rounding errors can be introduced at level 2.

-uselongdouble64
-useld64

Use 64-bit long doubles (not 32-bit).

Macro Name Data Type Meaning Example Value

__DATE__ char * date compiled Mar 20 1998

__TIME__ char * time compiled 17:00:51

__FILE__ char * current src file name foo.c

__LINE__ int current line number 42

Chapter 2: Using the C Compiler

34 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

These macros are conditionally defined by tmcc, based on tmcc options used.

TCS Specifics

The macro __TCS__ is always defined in the tmconfig file. tmcc accepts the -host <host>

and -target <target> options and accordingly defines the macros __TCS_<host>__ and

__TCS_<target>__. The defaults for the host and target are tmsim and tm1, respectively.

Thus by default the two macros __TCS_tmsim__ and __TCS_tm1__ are predefined.

For little endian compilation, the macro __LITTLE_ENDIAN__ is defined. For big endian

compilation the macro __BIG_ENDIAN__ is defined.

For compilation with -uselongdouble64, the compiler defines the macro __LDBL_DP__ to

indicate that it represents long doubles using IEEE 754 double precision representation.

It also defines the macro __LDBL_LIBC__ to indicate that the standard library supports

long double versions of some <math.h> and <stdlib.h> routines, as described in

Chapter 9, Library Functions.

C Language Pragmas

Supported pragmas are the handler pragmas (see Chapter 10, Porting and Optimizing Pro-

grams, of Book 2, the Cookbook, Part D) for interrupt service or exception handling rou-

tines, optimization level pragmas, unsafe or safer alias analysis pragmas, dirty float

pragmas, grafting pragmas, an atomic function pragma, and a caller save pragma.

__TCS__ int TCS compiler 1

__STDC__ int ANSI C 1

__TCS_V2__ int Version of TCS compiler 1

Macro Name Data Type Meaning Example Value

__BIG_ENDIAN__ int if -eb 1

__LDBL_DP__ int if -uselongdouble64 —

__LDBL_LIBC__ int if -uselongdouble64 —

__LITTLE_ENDIAN__ int if -el 1

__TCS_Win95__ int if -host Win95 1

__TCS_WinNT__ int if -host WinNT 1

__TCS_tmsim__ int if -host tmsim 1

__TCS_nohost__ int if -host nohost 1

__TCS_tm1__ int if -target tm1 1

Macro Name Data Type Meaning Example Value

Chapter 2: Using the C Compiler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 35

2

Except for the handler pragmas, pragmas are basically used to overwrite command-line

options for particular functions. They apply to the function in which they are specified.

If more than one pragma is specified to overwrite the same option, the last one is taken.

Pragmas specified outside the function scope have undefined result. The exact names

and semantics of supported pragmas are described in Table 1.

Table 1 Supported Pragmas

Name Semantics Scope

TCS_handler Function should be compiled as non-interrupt-
ible interrupt service routine. The IEN bit is
used to mask interrupts.

Function

TCS_interruptible_handler Function should be compiled as interrupt ser-
vice routine. Interrupts are not masked.

Function

TCS_exception_handler Function should be compiled as exception
handler.

Function

TCS_O0,TCS_O1,TCS_O2,TC
S_O3,TCS_O4,TCS_O5

Overwrite the optimization level for this func-
tion only.

Function

TCS_A0, TCS_A1, TCS_A2 Overwrite the unsafe alias analysis for this
function only,. See Unsafe Alias Analysis, begin-
ning on page 53.

Function

TCS_graft, TCS_no_graft Graft or do not graft this particular function.
TCS_no_graft has higher precedence than the
graft parameters from a graft-tuning file.

Function

TCS_caller_save,
TCS_no_caller_save

Use or do not use caller save register for this
function. Note: This will only have effect when
the compiler would have decided to use or not
use caller save register based on the com-
mand-line or default option.

Function

TCS_dirty_float0,
TCS_dirty_float1,
TCS_dirty_float2

Control the level of dirty float optimizations. Function

TCS_break_dtree End a dtree. This is useful in very large linear
pieces of code where possibly scheduled code
is more optimal on smaller dtrees, or when
guaranteeing interrupt latency. When using
the debugger, the breakpoint for the dtree cre-
ated by the TCS_break_dtree pragma should
appear on the next line of executable code.

Line

Chapter 2: Using the C Compiler

36 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

TCS_atomic Function should be compiled with noninter-
ruptible jumps only. Calling other functions is
only allowed when these other functions are
also atomic and a command-line switch
allow_atomic_calls is given. The function exe-
cutes in scheduler registers.

Function

-allow_atomic_calls Functions compiled with the TCS_atomic
pragma can call other functions. The user has
to guarantee that the callee is also atomic. By
default, atomic functions are not allowed to
call any function. Note that some C-operators
are mapped to non-atomic function calls, like
the integer division ‘/’.

Function

TCS_inline=func;func… Inline the specified routine (source or library
intrinsic function).

Line

TCS_noinline=func;func… Do not inline the specified routine. Line

TCS_inllev=<n> Specifies inlining level for ordinary routines.
Level is 0 through 5, with an increasing level of
inlining.

File

TCS_char=signed In C/C++, char is signed by default. File

TCS_char=unsigned In C/C++, char is unsigned by default. File

TCS_deflib=<n> Specifies inlining level for library intrinsic func-
tions. A higher level means more aggressive
inlining.

File

TCS_domain=0 Applies the main optimizations to each outer-
most loop separately.

Routine

TCS_diag=<n> Sets diagnostic level (0 to 2). Corresponds to
-Xdiag command line switch.

Line

TCS_safeintr Intrinsic library functions can be assumed not
to modify external variables (for example,
errno).

Loop

TCS_tmpl=none Do not instantiate C++ templates. Compilation

TCS_tmpl=used Creates all instantiation that are needed. If
templates are used across multiple source files,
this may cause errors for symbol redefinition.

Compilation

TCS_tmpl=local Templates are created as local variables or
functions. This increases code size, but avoids
the possibility of symbol redefinitions.

Compilation

Table 1 Supported Pragmas

Name Semantics Scope

Chapter 2: Using the C Compiler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 37

2

TCS_unroll=0 Does not unroll loops. Loop

TCS_unroll=1 Enables automatic inlining. Loop

TCS_unroll=<n> Unrolls loops <n> times. Loop

TCS_unrollexact=0 Does not make assumptions about the itera-
tion count of loops.

Loop

TCS_unrollexact=1 The iteration count of loops. Can be assumed
to be a multiple of the value of TCS_unroll.

Loop

TCS_align Align arrays to word boundaries Compilation

Table 1 Supported Pragmas

Name Semantics Scope

Chapter 2: Using the C Compiler

38 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 39

3

Chapter 3

Using the Optimizer

Topic Page

Introduction 40

Controlling the Overall Level of Optimization 40

Loop Optimization 43

Function Inlining 49

Alias Analysis 52

Restricted Pointers 55

Mapping from Optimization Level to Optimizations 59

Chapter 3: Using the Optimizer

40 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

The TriMedia compiler integrates a state-of-the-art global optimizer.

This chapter tells you how to control the optimizer’s behavior and what optimizations

are applied by the compiler. The optimizer’s behavior can be controlled at several levels.

■ The optimization level can be set.

■ Loop unrolling can be enabled automatically or manually.

■ Inlining can be enabled automatically or manually.

■ Memory aliasing overhead can be reduced with pragmas or the qualifier restrict.

■ Source-language pragmas allow control at the file, routine, loop or statement level.

Using the optimizer is straightforward.

■ Most optimizations are controlled by the overall optimization level (-O4, -O5).

■ Information from the program’s behavior is used.

■ Trade-offs between code size and speed are applied.

Refer to Chapter 10 of Book 2, the Cookbook, to find out what parts of your program will

benefit the most from optimization.

Controlling the Overall Level of Optimization

The most important control you have over compiling is to set a value together for a

whole group of optimizations. The table below briefly describes the optimizations that

take place at each level.

Each optimization level includes all the optimizations of lower levels.

Level Description

-O0 No optimization.

-O1 Local optimization.

-O2 Variables in registers.

-O3 Increased global optimization.

-O4 Inter-procedural global optimization, inlining.

-O5 Increased inter-procedural global optimization, inlining.

Chapter 3: Using the Optimizer

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 41

3

Optimizations at Level 3

The default value for optimization is -O3. The global optimizer is invoked at this level

with the following optimizations.

■ Alias analysis for variables, arrays, and structures with constant subscripts.

■ Global Constant Propagation.

■ Global Copy Propagation.

■ Forward Code Motion for loops without control flow.

■ Control Flow Optimization.

■ Common Sub Expression Elimination.

■ Backward Hoisting of Code out of Loops.

■ Strength Reduction.

■ Reassociation.

■ Loop Unrolling.

■ “Extra” optimizations.

Additional Optimizations at Level 4

The following optimizations are applied at level 4 (-O4).

■ Function inlining.

■ Inter-procedural global optimization.

Additional Optimizations at Level 5

The following optimizations are applied at level 5 (-O5):

■ More extensive inlining.

■ Strength reduction and re-association for loops with very complex control flow.

■ Loops with embedded branches are not unrolled during grafting.

■ When a loop body contains a function call that is very likely to be executed, unroll-

ing is disabled.

■ After unrolling, the loop body is optimized for the iterator range.

■ Inlining is a function of the size of the callee, the frequency level, the nesting level of

the inlining, and the level of optimization.

Chapter 3: Using the Optimizer

42 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Optimization Pros

■ Optimized code runs faster, generally speaking.

■ Globally specifying the optimization level gets fast code faster.

■ Optimized code may have smaller code size.

Optimization Cons

■ Using optimization can sometimes produce a dramatic increase in compile time.

■ You are limited to -O1 with debugging.

■ Programs generated with intra-procedural optimization must all be recompiled

together.

Global Optimization Issues

Caveat Regarding Global Optimizations

■ An individual optimization can be enabled both globally and by explicit setting. In

this case, the relative order is significant. For example,

generates an error message:

■ Loop unrolling is enabled automatically at -O5.

■ Specifying -O5 later in the command line disables the earlier setting. To work, the rel-

ative positioning should be inverted, as shown below:

Machine-Dependent Options

The following machine-dependent options can be specified to the compiler.

tmcc Ðc ÐXunroll=0 ÐO5 program.c

Overriding explicit setting of control unroll.

tmcc Ðc ÐO5 ÐXunroll=0 program.c

Option Description

-tmccom -no_caller_save –– Do not use caller save registers.

-tmccom -no_dtrees –– Limit decision trees to basic blocks.

-tmccom -serial –– Generate scheduling constraints that enforce the original
source ordering of all load and store operations.

Chapter 3: Using the Optimizer

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 43

3

■ By default, the compiler uses caller save registers for leaf functions.

■ Code size and execution time is increased with the -no_dtrees and -serial options.

■ These options are for compiler and systems debugging.

Loop Optimization

Loop overhead is very important in many programs.

Taken as a group, the following optimizations allow the overhead of loops to be reduced.

They will be discussed individually.

Automatic Loop Unrolling

Overhead is required in loops (to increment loop variables) and in branches. Loop

unrolling reduces overhead by replicating the body of the loop.

■ Loop unrolling is applied automatically at -O3.

■ Loop unrolling is a machine-independent optimization.

The program below calculates the sum of squares of an array (vector distance).

There are 64 iterations of this loop. When applied to this example, the loop is unrolled

eight times, thus reducing overhead.

Using loop unrolling, the transformation above can be obtained without source changes.

The program can be compiled with loop unrolling as follows.

Optimization Syntax

Loop unrolling (automatic at -O3)

Loop unrolling #pragma TCS_unroll
#pragma TCS_unrollexact

Profile-driven compilation tmcc -p
tmcc -r

Grafting tmcc -G

main(){
 int v[64];
 (void)norm(v);
}
norm(int *v){
 int i, f = 0;
 for(i=0; i<64; i++) f += v[i] * v[i];

 return f;
}

tmcc Ðhost tmsim Ðo unroll.out unroll.c

Chapter 3: Using the Optimizer

44 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

The default optimization level is -O3.The program can be compiled without loop unroll-

ing, as follows.

To measure the benefit of automatic unrolling, use the following.

To measure the code size increase, use tmsize(1).

Pros

■ Automatic unrolling is straightforward.

■ Automatic unrolling uses information from the program’s real behavior.

■ Unrolling by the compiler is cleaner than changing your source code.

Cons

■ With automatic unrolling, the compiler sometimes does not know whether the step

count is exact (see below).

Manual Loop Unrolling

The program above can be compiled with manual unrolling, as follows:

The pragma is applied to the following loop. The loop is replaced by a single statement

block. Exact unrolling must be turned off.

Adding the following statement to your program, disables loop unrolling:

Adding the following statement to your program calculates the unroll count automati-

cally.

tmcc Ðhost tmsim ÐXunroll=0 Ðo dont_unroll.out unroll.c
tmsim dont_unroll.out

tmcc ÐO3 ÐXunroll=1

main(){
 int v[64];
 (void)norm(v);
}
norm(int *v){
 int i, f = 0;
#pragma TCS_unroll=64
 for(i=0; i<64; i++) f += v[i] * v[i];

 return f;
}

#pragma TCS_unroll=0

#pragma TCS_unroll=1

Chapter 3: Using the Optimizer

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 45

3

Exact Unrolling

When the loop count is variable, the compiler must add fix-up code for the last iteration,

in case the loop count is not an exact multiple of the step. The pragma TCS_unrollexact

tells the compiler not to do this. The pragma has loop scope.

Pros

■ Manual unrolling is good if you need control in a critical function or loop.

Cons

■ With TCS_unrollexact, if the step is not exact, the code is wrong.

Profile-Driven Compilation

The first step in profile-driven compilation is to obtain profile information about the

program. You can then perform grafting, loop unrolling, and function inlining.

The optimizations in the TriMedia compiler chain are built upon profiling. Loop unroll-

ing and grafting use execution frequencies and branch probabilities. Function inlining

uses execution frequencies at the call site. Decision tree construction uses profile infor-

mation for if conversion.

The effectiveness of all these optimizations is increased using profile-driven compilation.

The program must be run twice. The first run is with the -p option and produces a file

“dtprof.out” file on execution.

The purpose of using the -p option is to generate information to be used by the compiler.

The code generated includes instructions to perform measurements.

■ Some optimizations may be turned off by default when -p is given.

■ The target can be on a PC host or the simulator (-host option).

■ Compile your program at the default optimization level (-O3).

■ Do not use the -g option (debugging).

■ Do not use the -G or -R options.

■ Do not confuse -p option with the -ptm (performance analysis) option.

norm(int *v, int n){
 int i, f = 0;
#pragma TCS_unroll=8
#pragma TCS_unrollexact=1
 for (i=0; i<n; i++) f += v[i] * v[i];

#pragma TCS_unrollexact=0
 return f;
}

tmcc Ðp Ðo profiled.out unroll.c

Chapter 3: Using the Optimizer

46 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

The second run uses the -r option. This reads the information from the file dtprof.out.

■ Loop unrolling is improved with profile information.

■ Use the -G option to enable grafting.

■ Use the -O4 option, to enable function inlining.

■ If you need to keep profile information around, use the -r=file.dtprof option.

■ To determine the speed up, use tmsim -statfile or tmcc -ptm.

■ The same options and optimization levels should be used for both compilation runs.

The dtprof.out file contains information about the behavior of the program, including

how often each function is executed, how often each loop is executed, and the probabil-

ity of the guard of an if statement being true or false.

This information is be used by the compiler to make important decisions.

■ Whether to optimize for code size or for speed.

■ Whether to inline a function, depending on the frequency at the call site.

■ Whether to unroll, depending on the frequency of the loop count.

■ How much to unroll.

■ Choices between optimizations (which algorithm to use, for example).

Pros

■ There is no need to manually specify optimizations.

Cons

■ No control flow optimization.

■ The first run (tmcc -p) runs slower.

■ Some algorithms are data-dependent.

■ If you change your source, you need to reobtain the profile information.

■ No global optimizations.

Grafting

The use of grafting is a straightforward way to improve the performance of your pro-

gram. It reduces loop overhead (loop unrolling, for example); it lends itself to more gen-

eral control structure; and it is also a mechanism of code replication.

tmcc Ðr Ðo optimized.out unroll.c

Chapter 3: Using the Optimizer

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 47

3

Figure 2 shows a decision tree ending in a branch. The actual code is not important in

this example. The decision tree __ip_DT_1 has two exits, one leading back to itself and

the other leading to another tree. The back edge to itself has a probability of 0.98.

Figure 2 Decision Tree Ending in a Branch

In this case, the decision tree has an execution count of 50. These statistics are derived

from a profiling run (tmcc -p option).

The -G option tells the compiler to use grafting. Use grafting in combination with the

tmcc -r option, which tells the compiler to read the dtprof.out file to guide grafting. The

target can be the PC host or the simulator (-host option).

You need to compile your program a first time, as explained previously. To compile using

grafting, use the following command.

Manual Grafting

Manual grafting can be applied on a function-by-function basis.

■ Use #pragma TCS_graft to apply grafting.

■ Use #pragma TCS_nograft to disable grafting.

■ The pragma overrides the command-line option.

Pros

■ Grafting applies to more general control structures.

{__ip_DT_1:}
tree (50)
 2 rdreg (12);
 1 ld32 2;
 4 rdreg (11);
 6 rdreg (10);
 7 ld32x 6 4;
 9 rdreg (9);
 10 ld32x 9 4;
 11 imul 7 10;
 12 iaddi(1) 11
 13 st32 2 12
 after 10 7 1;
 14 iaddi (1) 4;
 15 wrreg (11) 14
 after 4;
 16 ilesi (50) 14;
 if 16 (0.980000) then
 gotree {__ip_DT_1}
 else (16)
 gotree {__ip_DT_2}
 end (16)
endtree (*__ip_DT_1*)

tmcc ÐG Ðhost tmsim Ðo grafted.out unroll.c

Chapter 3: Using the Optimizer

48 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Cons

■ Grafting reduces overhead less than loop unrolling.

■ Grafting increases code size because the loop test must be replicated.

■ Loop unrolling is inhibited by grafting, resulting in a performance reduction in some

cases.

■ Because of compiler algorithms, -g cannot be used in conjunction with grafting.

Graft Tuning File

The graft tuning file allows specification of parameters for individual functions. Default

parameters are as shown below:.

Specify this file with the command line below.

The first field in the line specifies <default> or the function. An example graft tuning file

is shown below.

■ Grafting is disabled on the function fibonacci.

■ For other functions, the default code size is decreased.

Pros

■ Instruction cache misses can be reduced in some cases.

Cons

■ The compiler applies a sophisticated heuristic automatically.

■ Reducing code size can increase ILP because of branches.

Parameter Default Value Description

Graft Enable 1 Boolean flag enabling or disabling grafting.

Codesize 20 Maximum factor to increase code size by grafting.

Depth 20 Number of times grafting along a particular path.

Probability 0.4 Probability of a branch must exceed this threshold.

Execution Count 10 Execution count must exceed this threshold.

Ðtmccom Ðgraft_tuning_file <file> ÐÐ

fibonacci 0 20 20 0.4 10
<default> 1 4.0 2 0.4 10

Chapter 3: Using the Optimizer

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 49

3

Other Optimizations

The following optimizations also improve the performance of loops.

Cross Iteration Hoisting

Cross Iteration Hoisting moves code from one iteration of to the dynamically previous

one. This applies to long latency operations (such as loads). Use -Xcih. This is set at -O3.

Forward Code Motion

Forward Code Motion moves operations such as stores past the loop. Use -Xfcm. This is

set at -O3.

Induction Variable Replacement

Induction Variable Replacement reduces the number of loop control variables. Use

-Xivrep.

Function Inlining

Function inlining is an easy way to improve the performance of your program.

Inlined functions are safer and more portable than manual inlining and preprocessor

macros. Variables are exposed to the global optimizer (thus enabling other optimiza-

tions), procedure call and return overhead are eliminated, and interruptions in control

flow caused by branches are eliminated.

The following sections explain three ways of applying function inlining: automatic

inlining, pragma-controlled inlining, and command-line controlled inlining.

Automatic Inlining

Automatic inlining is the easiest way to obtain the benefits of inlining. It is applied auto-

matically at -O4 and -O5. A simple example is shown below.

This program can be compiled with automatic inlining as follows.

main(){
 int i, sum = 0;

 for(i=0; i<5; i++) sum += prod(i, i, i);

 printf("%d\n", sum);
}
prod(int a, int b, int c){
 return a * b * c;
}

tmcc ÐO4 inline.c Ðo inline.out

Chapter 3: Using the Optimizer

50 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

The function prod is inlined into the body of the main procedure. If the function is

static, the definition is removed.

Automatic Inlining with the -p Option

Inlining is based on an analysis of the source program. The performance of inlining can

be improved by using the program’s run-time behavior.

■ The program above can be compiled with the -p and -O3 options, then executed on

the host processor or the simulator.

■ Recompiling with the -O4 and -r options improves the inlining.

Automatic Explicit Inlining

Inlining is enabled automatically at -04. The compiler distinguishes between three

classes of procedures and functions.

■ Ordinary routines.

■ Routines declared inside a C++ class or in C with the inline keyword.

■ Library intrinsic functions.

The table below shows how to explicitly enable inlining from the command line at

lower optimization levels. These apply to the entire file. Level 0 corresponds to no inlin-

ing. The higher the level, the more aggressive the inlining.

Using the Inline Keyword

Inlining can be applied automatically using the inline keyword. The following is an

example for the C library getc function.

The inline keyword indicates the function is to be expanded at the point of call. If the

inlined function calls a function that is inlined, it will be inlined also. Recursive func-

tions cannot be inlined.

Options Description

-Xdeflib=0 to 3 Inlining of library intrinsic functions. -Xdeflib is equivalent to -Xdeflib=2.
The pragma equivalent is TCS_deflib.

-Xinllev=0 to 5 Automatic inlining of ordinary routines. -Xinllev is equivalent to
-Xinllev=4. The pragma equivalent is TCS_inllev

-Xsinllev=0 to 5 Automatic inlining of “inline” or C++ classes. -Xsinllev is equivalent to
-Xsinllev=4. The pragma equivalent is TCS_sinllev.

static inline int getc(FILE *fp) {
 if (ÐÐfp->count < 0)
 return _getc(fp);
 else
 return *fp->ptr++;
}

Chapter 3: Using the Optimizer

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 51

3

The word inline is a keyword in C by default. Use -xc-=inline to disable it.

Pros

■ Inlined functions are safer and do not have side effects that macros have.

■ Declaring the function as inline makes it debugger-visible.

Cons

■ Definition-controlled inlining is applied systematically whenever the inline compiler

keyword is encountered.

Pragma-Controlled Inlining

An example of TCS pragma-controlled inlining is shown below.

■ This compiles into a single function.

■ The elements of the pragma list can include a priority (higher means more inlining).

■ There are pragma equivalents of automatic inlining.

■ The syntax is #pragma TCS_deflib, #pragma TCS_inllev, #pragma TCS_sinllev.

■ The pragma TCS_noinline specifies no inlining (see below).

Command-Line Controlled Inlining

Functions to be inlined can also be specified on the command line, as shown below. To

escape the semicolons, the lot should be quoted.

Inlining can be applied without specifying the inline keyword, as shown below.

#pragma TCS_inline=prod;sum
main(){
 printf("%d\n", sum(2, 3, 4, 5, 6, 7));
}
sum(int a0, int a1, int b0, int b1, int c0, int c1) {
 return prod(a0, a1) + prod(b0, b1) + prod(c0, c1) ;
}
prod(int x, int y) {
 return x * y;
}

Command Line Description

-Xinline="procedure;procedure; ..." Inline procedures specified.

-Xnoinline="procedure;procedure; ..." Do not inline procedures specified.

tmcc Ðtmccom ÐXinline=prod ÐÐ prog.c

Chapter 3: Using the Optimizer

52 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

The argument to the -Xinline option is a list, separated by semicolons. Each element can

be a procedure name or a pair. The second element is the priority.

The -Xnoinline option specifies procedures not to be inlined.

The following command compiles the previous program with automatic inlining.

Inlining is applied separately to intrinsic routines, user routines, and routines inside

classes.

The ANSI C and C++ standards require intrinsic routines to do some error checking. For

example, the math routines are expected to set the variable errno on either a domain or

a range error, and to provide certain specific values on range overflow or underflow.

The -Xsafeintr option can be used to inform the compiler that error checking in library

intrinsic functions is not necessary.

Pros of Inlining

■ Inlining enables other optimizations that are otherwise limited to a procedure basis.

■ Specifying from the command line allows using a makefile to generate several ver-

sions from one source.

Cons of Inlining

■ Aggressive inlining increases code size.

■ Inlining can affect instruction cache performance.

Automatic vs. Definition-Controlled Inlining

■ Automatic inlining is the easiest to use.

■ Specifying which routines are to be inlined provides control.

■ If intrinsic routines are inlined, they can be faster if it is known that these checks are

not required.

■ In C/C++, the routine sqrt can only be inlined if the safeintr control variable is speci-

fied.

Alias Analysis

This section explains how alias analysis obtains better performance in your program.

Alias analysis is concerned with determining whether two references point to the same

object. The quality of alias analysis is particularly important for optimization.

 tmcc Ðtmccom ÐXinllev ÐÐ prog.c

Chapter 3: Using the Optimizer

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 53

3

There are three ways to control alias analysis in the compiler. You can use the compiler’s

alias analysis algorithm, you can use restricted pointers, or you can use the -A[012] com-

mand option for unsafe aliasing.

Alias Analysis Algorithm

The alias analysis algorithm works for variables, arrays of one dimension, and multi-

dimensional arrays. The following criteria apply.

■ An array reference and a scalar reference do not alias.

■ References to distinct arrays, scalars, and restricted pointers do not alias.

■ Globals, automatics, and statics do not alias.

■ References to distinct constant array indices do not alias.

■ tab[x] and tab[x+C] do not alias, where C is a non-zero constant, x is a variable, and

tab is an array or restricted pointer.

■ References to distinct structure elements do not alias.

■ A scalar does not alias with a pointer reference if the address is not taken.

■ Index expressions involving variables are evaluated over all assignments for constant

values.

■ References that cannot be shown to be different by the above criteria may possibly

alias.

Unsafe Alias Analysis

Alias analysis in C is complex because of the use of pointers. Using unsafe alias analysis

gets better performance by relaxing some of the language requirements of the compiler.

■ The compiler currently has three levels of alias analysis.

■ Level zero is perfectly safe (that is, no assumptions are made other than allowed by

ANSI C).

■ The two higher levels do make assumptions, but are safe in most programs.

Default Behavior

You can specify unsafe alias analysis with the option -A[012] to the compiler. The default

level is level one. Level one makes the following assumptions:

■ It is assumed that a reference to an object points to the whole object

■ A pointer does not point to itself. Moreover, when a pointer points to a structure,

there is no field in the structure that points to the same place.

The example below illustrates the first point. The access to p–>next cannot conflict with

an access to head because the reference is inside the structure.

Chapter 3: Using the Optimizer

54 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

The accesses can be reordered because the initialization of p is required to point to the

whole structure.

The program below illustrates the second point. The accesses can be reordered because p

is not allowed to point to itself.

Unsafe Behavior

The -A2 option relaxes the rules for alias analysis. The compiler assumes that the accesses

to extern and static variables do not alias with stores through pointers.

■ The program below shows a program that initializes four arrays.

■ The compiler does not know whether the addresses of the external variables have

been assigned to a pointer.

■ For example, the loop is executed 32 times.

■ However, qty_first_reg could point to max_qty (possibly).

■ If this is true, the loop should only be executed once.

■ This adds many redundant load accesses

struct ptr {
 char c;
 short s;
 struct ptr *next;
} *p;

struct ptr *head;
p->next = 0;
head = 0;

int **p, **q;
*p = 0;
q = p;

#include <ops/custom_defs.h>
#define NREG 32
typedef struct rtl *rtx;
int *qty_first_reg, *qty_last_reg, max_qty;
rtx *qty_const, *qty_const_insn;
main(){
 int start, stop;
 max_qty = NREG;
 qty_first_reg = (int*)malloc(NREG * sizeof(int));
 qty_last_reg = (int*)malloc(NREG * sizeof(int));
 qty_const = (rtx*)malloc(NREG * sizeof(rtx));
 qty_const_insn = (rtx*)malloc(NREG * sizeof(rtx));
 start = CYCLES();
 clearregs();
 stop = CYCLES();
 printf("cycles = %d\n", stop-start);
}
clearregs(){
 int i;

 for (i = 0; i < max_qty; i++) {
 qty_first_reg [i] = i;

Chapter 3: Using the Optimizer

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 55

3

Pros of the -Xalias option

■ It is always safe.

■ It improves code size and execution time.

Pros of the -A option

■ It can be applied on a per-file basis or using a #pragma (TCS_A0, TCS_A1, TCS_A2).

■ It improves performance more than the -Xalias option alone.

Restricted Pointers

This section explains restricted pointers.

■ Restricted pointers are a very easy way to improve the performance of your program.

■ restrict is a type qualifier like const and volatile.

■ Like volatile, restrict is intended to affect optimization.

■ Like const, there are rules to which a program must conform.

■ restrict is intended to affect optimizations in the opposite direction from volatile, by

enabling them.

■ With restrict, an alias-free function call interface can be obtained, as in FORTRAN.

■ The concept of restricted pointers is as proposed by the ANSI C Numerical Extensions

Group.

■ The performance analysis tool tmprof can be used to find parts of your program that

can benefit.

Semantics of Keyword Restrict

The following points define the semantics of the restrict keyword.

■ A restrict is an assertion that no other variable, pointer, or restricted pointer will alias

the object for as long as the restricted pointer is in scope.

■ Aliasing a restricted pointer with a normal pointer is still possible. For example,

 qty_last_reg [i] = i;
 qty_const [i] = 0;
 qty_const_insn[i] = 0;
 }
}

char *restrict fun;
char **pfun;
pfun = &fun;

Chapter 3: Using the Optimizer

56 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ Declaring a pointer restricted gives it aliasing properties similar to an array or scalar

variable.

■ A restricted pointer must point to a private non-overlapping memory region.

■ The C compiler does not generate ordering constraints between loads or stores to dis-

tinct variables.

Scope of Restricted Pointers

The following sections explain the effects of declaration of a restricted pointer, depend-

ing on the scope.

Restricted Pointers of File Scope

This section explains restricted pointers of file scope.

■ Global variables declared as restrict and variables declared as restrict in a header file

have file scope.

■ A restricted pointer of file scope should point to a single array object for the whole

program.

■ The array may not be referred to through the restricted pointer and its name or

another restricted pointer.

■ References through the pointer are optimized as if they were references to an array in

its declared scope.

■ Restricted pointers of file scope are useful for providing access to dynamically allo-

cated arrays.

Restricted Pointers as Function Parameters

This section explains restricted pointers as parameters to a function.

The following example is the source code for the C library memcpy function.

■ The compiler cannot know whether pointers overlap.

■ This prevents block copying of the arrays on architectures that support this.

■ This forces sequential execution of memory accesses.

void *memcpy(void *s1, void *s2, size_t n){
 char *t1 = s1;
 char *t2 = s2;

 while (nÐÐ > 0) *t1++ = *t2++;

 return s1;
}

Chapter 3: Using the Optimizer

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 57

3

The following shows the source code with using the qualifier restrict

Using the restrict qualifier tells the compiler that s1 and s2 point to different storage

areas

■ The semantics are the same as if s1 and s2 were arrays as opposed to pointers.

■ This corresponds to FORTRAN semantics for call by reference.

■ With restrict the compiler knows that s1 and s2 cannot overlap.

■ Types other than pointer types cannot be restrict-qualified.

Restricted Pointers of Block and Structure Scope

This section explains restricted pointers having block or structure scope.

■ A pointer of block scope makes an aliasing assertion that is limited to the block.

■ For structures, the scope of the assertion is the scope of the ordinary identifier used to

access the structure.

■ For example, in the code below r.p, r.q, s.p, and s.q should all point to distinct stor-

age.

Pros

■ It is easy to add restricted pointers to a program.

■ In many cases, function parameters can be seen not to overlap.

Cons

■ Pay attention to compiler warnings. Otherwise the code may be incorrect.

void *memcpy(void * restrict s1, void * restrict s2, size_t n){
 char * restrict t1 = s1;
 char *t2 = s2;

 while (nÐÐ > 0) *t1++ = *t2++;

 return s1;
}

struct t {
 float *restrict p;
 float *restrict q;
} ;
void f4(struct t r, struct t s) {
 ...
}

Chapter 3: Using the Optimizer

58 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Converting If Statements

Converting If statements eliminates control flow points, eliminates expensive branch

instructions and increases instruction level parallelism.

■ Only control flow points that are not loop headers, function return points, or targets

of table jumps are eligible for if conversion.

■ if conversion works best when profile information is available.

■ Full if conversion can take a long time to compile.

■ Two heuristics are applied to decide which control flow points to convert.

-if_param n sets the ratio between both heuristics (0 ≤ n ≤ 100).

■ if conversion serves the same purpose as grafting. Applying both at the same time is

therefore not recommended when code size is important.

■ In general, if conversion, unlike grafting, results in only a minor code size increase.

Option Description

-tccom -if_param <n> Specifies parameter for conversion

-tccom -max_if_size <n> if conversion, when possible, is applied to if statements with
fewer than <n> operations. The default value is 4.

-if_convert Applies polynomial if conversion algorithm.

-full_ifconvert Applies exponential if conversion algorithm.

Chapter 3: Using the Optimizer

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 59

3

Mapping from Optimization Level to Optimizations

This section explains the optimization mapping. Rows in Table 3-1 correspond to the dif-

ferent individual optimization control variables. Columns in the table correspond to the

different optimization levels.

Entries in Table 2 are the value of the control variable for that optimization level. For

example, the default optimization level (-O3) corresponds to: -Xalias=3 -Xcallmod=1

-Xconstp=2 -Xcopyp=2 -Xfcm=2 -Xflow=1 -Xinllev=0 -Xmopt=4 -Xmopt=4 -Xreg=1 -

Xsched=2 -Xunroll=1 -Xxopt=2 and -Xzone=1.

Rows with 0 or 1 values correspond to control variables with on/off settings.

Table 2 Optimization Mapping

Optimization Level

Optimization Variable –O0 –O1 –O2 –O3 –O4 –O5

Alias Analysis -Xalias 0 1 3 3 4 4

Call Modification Analysis -Xcallmod 0 1 1 1 2 2

Constant Propagation -Xconstp 0 0 2 2 2 2

Copy Propagation -Xcopyp 0 0 2 2 2 2

Loop Forward Code Motion -Xfcm 0 0 1 2 2 2

Control Flow Analysis Xflow 0 0 1 1 1 1

Inlining Level -Xinllev 0 0 0 0 1 1

“Main” Optimizations -Xmopt 0 1 3 4 4 4

Register Allocation -Xreg 0 0 1 1 3 3

Loop Unrolling -Xunroll 0 0 1 1 1 1

“Extra” Optimizations -Xxopt 0 0 2 2 3 5

Expression Reordering -Xzone 0 0 1 1 1 1

Chapter 3: Using the Optimizer

60 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Summary of individual optimizations

This section provides a summary of individual optimizations. Rows in Table 3 corre-

spond to a control variable and the corresponding optimization. Columns correspond to

different settings for the variable.

Entries “—” and “*” correspond to no optimization and an illegal setting, respectively.

“Local” means that an optimization is applied on the basic-block level. “Intra” means

complete intra-procedure analysis is performed. “Inter” means that inter-procedure anal-

ysis is applied to the entire compilation unit or program. “Flow” means that flow analy-

sis is performed to determine the scope of the optimization.

For example, valid settings for the -Xalias control variable are from 0 to 4. Specifying

-Xalias=0 corresponds to no alias analysis. Specifying -Xalias=4 sets alias analysis for sca-

lar variables, array elements with constant subscripts, using flow analysis.

Table 3 Individual Optimizations

Settings

Optimization Variable 0 1 2 3 4 5

Alias Analysis -Xalias — scalar arrays
element

arrays +
flow

arrays +
flow

*

Call Modification
Analysis

-Xcallmod — global intra * * *

Constant
Propagation

-Xconstp — local intra * * *

Copy Propagation -Xcopyp — local intra * * *

Loop Forward
Code Motion

-Xfcm — without
‘if’s

all loops * * *

Control Flow
Optimization

-Xflow — on * * * *

Inlining Level -Xinllev — for 1 ≤ n ≤ 5, increasing aggressiveness and
optimization

“Main”
Optimizations

-Xmopt — local intra intra +
flow

* *

Register
Allocation

-Xreg — intra inter * * *

Loop Unrolling -Xunroll — automatic (for n > 1, use level given)

“Extra”
Optimizations

-Xxopt — for 1 ≤ n ≤ 5, increasing aggressiveness and
optimization

Expression
Reordering

-Xzone — “C” State-
ment

Non-ANSI * * *

Chapter 3: Using the Optimizer

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 61

3

Control flow optimization eliminates dead code and branches to branches and performs

basic block collapsing. “Main” optimizations include common subexpression elimina-

tion, backwards code hoisting, and strength reduction and reassociation. “Extra” optimi-

zations are applicable to only a minority of programs.

Chapter 3: Using the Optimizer

62 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 63

4

Chapter 4

Using the Instruction Scheduler

Topic Page

Introduction 64

Instruction Scheduler Options 64

Instruction Scheduler Reports 68

Decision Tree Syntax 74

Chapter 4: Using the Instruction Scheduler

64 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

This chapter is divided into three main sections. The first section explains Instruction

Scheduler options, the second explains Instruction Scheduler reports, and the third

explains the decision tree syntax.

Below are some general introductory observations.

■ Some scheduler optimizations may need to be disabled because of hardware or other

considerations.

■ Disabling the optimization in a single file limits performance impact.

■ It is important to understand the scheduler and assembler to get the best perfor-

mance.

Instruction Scheduler Options

Main Options

The main options of the Instruction Scheduler are shown in Table 4.

Table 4 Main Options

Option Description

-eb Default endianness is big-endian.

-el Default endianness is little-endian.

-h Prints a brief help message with options.

-dynamic Generates dynamic disambiguation code.

This option generates code potentially to reorder critical and dependent
store → load pairs at runtime. The option can be useful when the static
analysis in the compiler cannot determine whether the store → load pair
can be reordered.

-o=file Uses the explicitly scheduled output file.
The output file (-o) should include the .s extension.

-O1 Selects scheduler optimization level 1.

-O2
-O3

Selects scheduler optimization level 2.
Selects scheduler optimization level 3.
Higher levels of optimization invoke more algorithms.

-reportlog=file Uses the explicitly specified file for the reports.

Chapter 4: Using the Instruction Scheduler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 65

4

These options must be bracketed by -tmsched <option> ––.

■ The default optimization level is -01.

■ Endianness specification is obligatory.

The time taken to generate a schedule depends on the number of operations. Some deci-

sion trees contain hundreds or even thousands of operations, so the scheduling phase of

compilation can be very long. For long trees, use #pragma TCS_break_dtree to force a

break. The tmcc option -v can be used to find which file is being compiled.

Pros

■ More algorithms mean better schedules.

■ For long trees, breaks reduce compile time.

■ Breaks reduce interrupt latency.

Cons

■ Breaks add overhead for jumps.

Control Options

The options shown in Table 5 control scheduler operation.

-V Prints tmsched version information.

-v Enables verbose output.

-w Suppresses warning messages.

Table 5 Control Options

Option Description

-nocode Suppresses assembly code generation.

-serial=treename,treename Serializes memory operations on the trees named by the
comma-separated list of tree names (first label if there is
more than one label for the tree). The effects of this option
are cumulative.

-d=<tree> Generates graphs.dot file for tree. GraphViz, the tool that can
display the graph file, can be found at
http://www.research.att.com/sw/tools/graphviz/

-noverify Disables verification of schedule.

Table 4 Main Options (Continued)

Option Description

Chapter 4: Using the Instruction Scheduler

66 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Cons

■ Use of -serial is limited to the debugging of problems related to alias analysis.

■ Use of -nocode option is limited to the generating of statistics.

The -bc (Avoid Bank Conflicts) Option

This section explains the -bc option. This option tells the scheduler to delay a memory

operation if it is likely to cause a bank conflict.

The TriMedia data cache is set into eight banks. Two memory operations can proceed in

parallel as long as bits 2-4 of their addresses are different. For example, in the following

program, both the first and second pair of assignments can proceed in parallel.

However, if the assignments are interchanged, this parallelism would not be possible:.

Use tmsim -statfile and tmprof to find out where bank conflicts exist.

Pros

■ Avoiding bank conflicts gains a cycle per instruction.

Cons

■ Indexed accesses cannot be optimized.

■ Most programs do not benefit from the optimizing of bank conflicts.

Speculative Execution Options

Instructions can depend on a guard if they are under the control of an if statement. For

best performance, the Instruction Scheduler executes loads and floating-point operations

before the guard is ready. This is called speculative execution. In some situations, specula-

tive execution may not be possible (if floating-point exceptions must be precise, for

example). The speculative execution options of the Instruction Scheduler are shown

below. Note that disabling speculation does reduce performance.

Speculative execution can also cause problems in a system where a read to a memory

location has side effects. This is true, for example, in Pentium II systems using the Intel

440LX chipset. Standard TriMedia PCI drivers now conservatively disable PCI access

int a[32];
a[0] = 0; a[1] = 0;
a[8] = 0; a[9] = 0;

a[0] = 0; a[8] = 0;
a[1] = 0; a[9] = 0;

Chapter 4: Using the Instruction Scheduler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 67

4

unless specifically required. However, code that is expected to run in this sort of environ-

ment might be well-advised to turn off speculative execution.

Debugging and Exception Support Options

Debugging support on TriMedia is in both hardware and software. This section explains

the scheduler options and their effects on debugging.

■ Instruction and data breakpoints are modeled as interrupts.

■ Floating-point instructions have latency for exceptions.

■ The -fuzzy_bp option is recommended for code optimized for speed.

The following options add extra instructions.

Cons

■ The -precise -bp and -precise -fp options adds instructions for latency.

Table 6 Speculative Execution Options

Option Description

-nofloatspec Disallows speculation of floating-point operations. Use this option if you
need precise floating-point exceptions.

-noloadspec Disallows speculation of all memory load operations.

Table 7 Debugging and Exception Support Options

Option Description

-precise_bp Requires precise data interrupts. Use this option if you require that data
breakpoints be caught in the same tree.

-precise_fp Requires precise floating-point exceptions. Use this option if you require
the same treatment for floating-point exceptions. By default, floating-point
exceptions are imprecise.

-fuzzy_bp Does not require precise data interrupts. Use this option if you do not use
data breakpoints. You will need to use the -nofloatspec option as well.

-g Enables scheduler behavior required by the debugger. This option implies -
precise_bp.

Chapter 4: Using the Instruction Scheduler

68 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Instruction Scheduler Reports

The scheduler can generate a fairly wide range of reports, which can be very useful when

you need to understand how your code is being mapped to the TriMedia hardware.The

table below gives a list of report options with the corresponding information. For further

information, refer to Chapter 5, Performance Analysis Overview.

Report types are illustrated for several of these options, beginning on 69. Shown below is

the program for which the sample reports have been generated. The program calculates a

convolution.

Option Description

-report=summary Overall statistics. Issues/cycle, scheduling factor, total cycles, slot utili-
zation.

-report=procstat Same as “summary” on a per-procedure basis.

-report=schedule1 Functional units used per instruction (by category).

-report=schedule2 Operations used per instruction, with probability.

-report=schedule4 Operations used per instruction.

-report=schedule8 Functional units used per instruction (shows all 27 units).

-report=schedule16 Per tree statistics.

-report=treestat Per tree statistics. Compares with code generated for an architecture
with infinite resources.

-report=reportprof One line per tree of statistics.

-report=module Execution time at different clock speeds.

#define NINPUTS 400
void direct_convolution(
 char * restrict a, char * restrict b, int * restrict c)
){
 int k;
 for (k=0; k<NINPUTS; k+=4) {
 c[0] += b[0]*a[0] + b[1]*a[-1] + b[2]*a[-2] + b[3]*a[-3] +
 b[4]*a[-4] + b[5]*a[-5] + b[6]*a[-6] + b[7]*a[-7];
 c[1] += b[0]*a[1] + b[1]*a[0] + b[2]*a[-1] + b[3]*a[-2] +
 b[4]*a[-3] + b[5]*a[-4] + b[6]*a[-5] + b[7]*a[-6];
 c[2] += b[0]*a[2] + b[1]*a[1] + b[2]*a[0] + b[3]*a[-1] +
 b[4]*a[-2] + b[5]*a[-3] + b[6]*a[-4] + b[7]*a[-5];
 c[3] += b[0]*a[3] + b[1]*a[2] + b[2]*a[1] + b[3]*a[0] +
 b[4]*a[-1] + b[5]*a[-2] + b[6]*a[-3] + b[7]*a[-4];
 a += 4;
 b += 4;
 }
}

Chapter 4: Using the Instruction Scheduler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 69

4

Report 1—Issue Slots

Scheduler Report 1 reports on issue slots. Figure 3 shows the sample report.

Figure 3 Report File "schedule1.txt"

You can obtain the report shown in Figure 3 by entering the following:.

#tree __direct_convolution_DT_0
 0: const branch alu ÐÐÐ ÐÐÐ
 1: ÐÐÐ ÐÐÐ ÐÐÐ ÐÐÐ ÐÐÐ
 2: ÐÐÐ ÐÐÐ ÐÐÐ ÐÐÐ ÐÐÐ
 3: ÐÐÐ ÐÐÐ ÐÐÐ ÐÐÐ ÐÐÐ
#ÐÐ
#tree __direct_convolution_DT_1
 0: alu ÐÐÐ ÐÐÐ dmem dmem
 1: alu alu ÐÐÐ dmem dmem
 2: alu ÐÐÐ ÐÐÐ dmem dmem
 3: ÐÐÐ ifmul ÐÐÐ dmem dmem
 4: ÐÐÐ ifmul ifmul dmem dmem
 5: ÐÐÐ ifmul ifmul dmem dmem
 6: ÐÐÐ ifmul ifmul dmem dmem
 7: ÐÐÐ ifmul ifmul dmem dmem
 8: ÐÐÐ ifmul ifmul dmem dmem
 9: ÐÐÐ ifmul ifmul dmem dmem
 10: alu ifmul ifmul dmem dmem
 11: alu ifmul ifmul dmem dmem
 12: alu ifmul ifmul dmem dmem
 13: alu ifmul ifmul dmem dmem
 14: alu ifmul ifmul dmem dmem
 15: alu ifmul ifmul dmem ÐÐÐ
 16: alu ifmul ifmul ÐÐÐ ÐÐÐ
 17: alu ifmul ifmul alu ÐÐÐ
 18: alu ifmul ifmul alu alu
 19: alu ifmul ifmul alu alu
 20: alu ifmul ifmul alu alu
 21: alu ifmul ifmul alu ÐÐÐ
 22: alu ifmul ifmul alu alu
 23: alu ifmul ifmul alu ÐÐÐ
 24: alu ifmul ifmul alu ÐÐÐ
 25: alu ifmul ifmul alu ÐÐÐ
 26: alu ifmul ifmul alu ÐÐÐ
 27: alu ifmul ifmul alu alu
 28: alu ifmul ifmul alu alu
 29: alu ifmul ifmul alu alu
 30: alu ifmul ifmul alu dmem
 31: alu ifmul ifmul alu alu
 32: alu ifmul ifmul alu alu
 33: alu ifmul ifmul alu alu
 34: alu ifmul ifmul alu dmem
 35: alu ifmul alu alu ÐÐÐ
 36: alu alu alu ÐÐÐ ÐÐÐ
 37: alu alu alu ÐÐÐ ÐÐÐ
 38: alu ÐÐÐ ÐÐÐ dmem ÐÐÐ
 39: alu branch branch ÐÐÐ ÐÐÐ
 40: alu ÐÐÐ ÐÐÐ ÐÐÐ ÐÐÐ
 41: alu ÐÐÐ ÐÐÐ ÐÐÐ ÐÐÐ
 42: ÐÐÐ ÐÐÐ ÐÐÐ dmem ÐÐÐ
#ÐÐ

tmcc ÐK Ðtmsched Ðreport=schedule1 Ðreportlog=schedule1.txt ÐÐ filter.c

Chapter 4: Using the Instruction Scheduler

70 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Below are some observations regarding this report.

■ Columns correspond to issue slots, rows to cycles.

■ Four cycles are necessary for the first tree, 42 for the second branches to the loop.

■ The first tree just branches, the second corresponds to the loop.

■ Four distinct phases can be isolated in the second tree.

■ The first phase reads data. dmem corresponds to reading from “a” and “b” in C.

■ The second phase multiplies elements. ifmul corresponds to multiplications in C.

■ The third phase adds elements together. alu corresponds to additions in C.

■ The fourth phase stores the data. The second dmem corresponds to the stores in C.

■ The length of the loop is determined by the number of multiplies.

■ The compiler and scheduler did a reasonable job.

Chapter 4: Using the Instruction Scheduler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 71

4

Report 4—Operations

Scheduler Report 4 reports on operation usage. This provides a better understanding of

the critical path and operation latency. Figure 4 shows the sample report.

Figure 4 Report File “schedule4.txt”

You can obtain the report shown in Figure 4 by entering the following:

Below are some observations regarding this report.

■ Table entries are operations. See the appropriate TriMedia data book for more infor-

mation.

#tree __direct_convolution_DT_1
 0: iaddi ÐÐÐ ÐÐÐ ild8d ild8d
 1: iles igeq ÐÐÐ ild8d ild8d
 2: wrreg ÐÐÐ ÐÐÐ ild8d ild8d
 3: ÐÐÐ imul ÐÐÐ ild8d ild8d
 4: ÐÐÐ imul imul ild8d ild8d
 5: ÐÐÐ imul imul ild8d ild8d
 6: ÐÐÐ imul imul ild8d ild8d
 7: ÐÐÐ imul imul ild8d ild8d
 8: ÐÐÐ imul imul ild8d ild8d
 9: ÐÐÐ imul imul ild8d ild8d
 10: iadd imul imul ild8d ild8d
 11: iadd imul imul ild8d ild8d
 12: iadd imul imul ild8d ld32d
 13: iadd imul imul ild8d ld32d
 14: iadd imul imul ild8d ld32d
 15: iadd imul imul ld32d ÐÐÐ
 16: iadd imul imul ÐÐÐ ÐÐÐ
 17: iadd imul imul iadd ÐÐÐ
 18: iadd imul imul iadd iadd
 19: iadd imul imul iadd iadd
 20: iadd imul imul iadd iaddi
 21: iadd imul imul iaddi ÐÐÐ
 22: iadd imul imul iadd iadd
 23: iadd imul imul iadd ÐÐÐ
 24: iadd imul imul iadd ÐÐÐ
 25: iadd imul imul iadd ÐÐÐ
 26: iadd imul imul iadd ÐÐÐ
 27: iadd imul imul iadd iadd
 28: iadd imul imul iadd iadd
 29: iadd imul imul iadd iadd
 30: iadd imul imul iadd st32d
 31: iadd imul imul iadd iadd
 32: iadd imul imul iadd iadd
 33: iadd imul imul iadd iadd
 34: iadd imul imul iadd st32d
 35: iadd imul iadd iadd ÐÐÐ
 36: iadd iadd iadd ÐÐÐ ÐÐÐ
 37: iadd iadd iadd ÐÐÐ ÐÐÐ
 38: iadd ÐÐÐ ÐÐÐ st32d ÐÐÐ
 39: iadd ijmpi ijmpt ÐÐÐ ÐÐÐ
 40: iadd ÐÐÐ ÐÐÐ ÐÐÐ ÐÐÐ
 41: iadd ÐÐÐ ÐÐÐ ÐÐÐ ÐÐÐ
 42: ÐÐÐ ÐÐÐ ÐÐÐ st32d ÐÐÐ

tmcc ÐK Ðtmsched Ðreport=schedule4 Ðreportlog=schedule4.txt ÐÐ filter.c

Chapter 4: Using the Instruction Scheduler

72 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ Two 8-bit loads can be executed on every cycle (ild8d operation, cycle 0).

■ The multiplication (imul) is in cycle 3 because of latency (3 cycles).

■ One cycle later, there is an ILP (Instruction Level Parallelism) of four operations per

cycle (cycle 4).

■ Six cycles later, there is an ILP of five operations per cycle (cycle 10).

■ Starting at cycle 18, everything is in registers and the additions (iadd) replace the

loads in slots 4 and 5.

■ Parallelism slows down again at the end.

■ The wrregs are register-to-register moves.

Report 16—Statistics

Scheduler Report 16 produces reports on tree statistics. This gives you an overall view of

the trees in your program. Figure 5 shows an edited version of the report for tree 1.

Figure 5 Report File "schedule16.txt"

You can obtain the report shown in Figure 5 by entering the following:.

Below are some observations regarding this report.

■ On average, about 4 operations are executed per cycle (171 divided by 43).

■ There are 43 cycles necessary, as opposed to 12 on a machine with infinite

parallelism.

■ This corresponds to 27 percent of the average ILP.

■ No registers need to be spilled to memory.

■ This decision tree does not use tree-internal jumps.

■ This decision tree used the if conversion algorithm for this tree.

#tree __direct_convolution_DT_1
 scheduling algorithm: ifÐconversion
 instruction count: 43
 operations count: 171
 spilled values: 0
 renumbered values: 0
 tree internal jumps: 0
 average number of cycles (CPI=1): 43.000000
 ideal number of cycles: 12.000000
 scheduling factor: 27.906977%
 invocation count: 0.000000
 contribution to cycle count (CPI=1): 0.000000
 code size (excl. padding): 677 bytes
 live global registers: {r0Ðr7, r9Ðr34}
 live local registers: {r8, r35Ðr115}

tmcc ÐK Ðtmsched Ðreport=schedule16 Ðreportlog=schedule16.txt ÐÐ filter.c

Chapter 4: Using the Instruction Scheduler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 73

4

treestat Reports

The -report=treestat option also produces reports on tree statistics. Figure 6 shows the

sample report.

Figure 6 "treestat.txt" Report

You can obtain the report shown in Figure 6 by entering the following.

Below are some observations regarding this report.

■ There are 82 registers used for the scheduler.

■ The scheduling factor is 27.9 percent (12 divided by 43).

■ Most issues are useful per cycle (3.95 out of 3.97).

■ Dynamic operations correspond to execution probabilities.

■ Static operations correspond to actual instructions.

■ No instructions were generated for rdreg pseudo operations (0 out of 6).

■ One instruction was generated for wrregs (1 out of 3).

Reading Scheduler Reports

The following is useful when reading scheduler reports.

■ Using more registers than the 128 available can cause a significance performance deg-

radation. This is reported by -report=treestat and can be caused by optimizations

such as inlining, unrolling, and grafting

■ To detect hot spots, look for “maximum register live” in -report=treestat.

#tree __direct_convolution_DT_1
#report treestat
maximum register live = 82
number of register spills = 0
average cycles on finite machine = 43.000000
ideal cycles on infinite machine = 12.000000
scheduling factor = 27.91%
tree issues/cycle = 3.976744
tree useful issues/cycle = 3.951163
tree slot utilization = 79.53%
number of operations issued dynamically = 0.000000
number of operations issued dynamically per tree = 171.000000
number of operations issued statically = 171.000000
number of useful operations issued dynamically = 0.000000
number of useful operations issued statically = 169.900000
number of static instructions = 43.000000
number of dynamic instructions = 0.000000
executed 0.000000 times (estimated)
contributes 0.000000 cycles to the total program execution
number of removed rdregs = 6 (of 6)
number of removed wrregs = 2 (of 3)

tmcc ÐK Ðtmsched Ðreport=treestat Ðreportlog=treestat.txt ÐÐ filter.c

Chapter 4: Using the Instruction Scheduler

74 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ Use the scheduling factor as an indicator of the parallelism of the algorithm. This is

defined as the ratio of cycle time to cycle time on a machine with infinite resources.

■ Use issues-per-cycle as an indicator of the parallelism achieved.

■ Use numbers reported as “static” to determine performance for a single decision tree

execution. Use numbers reported as “dynamic” for the whole program. To be signifi-

cant, these require compiling with tmcc -r (and a previous run).

■ Use -report=treestat to verify the effectiveness of elimination of rdreg and wrreg

operations.

Decision Tree Syntax

This section explains the decision tree syntax and describes what is entailed in optimiza-

tion of intermediate code. Decision trees are an intermediate representation between C

and assembler. They are as efficient as assembler, but because the scheduler is used to

enforce pipeline constraints, trees code allows for easier programming and maintenance.

To understand this, it helps to compile a small file with the -t option.

What is a Decision Tree?

A decision tree (DT) is the work unit for the Instruction Scheduler. Some characteristics

of decision trees are described below.

■ A decision tree starts wherever control flows to one point from more than one point.

■ A decision tree can contain constructs such as if···else and while.

■ A merge in control after the construct ends the tree. This is called a join.

■ A call to a function ends the decision tree.

■ A decision tree can have multiple exits.

■ The size of a decision tree is chosen by the compiler.

■ Information from profiling is used when available.

A single decision tree can be used to represent the code below:.

A join is the corresponding place back to which control flows after branching (after the

last statement above, for example).

 if (cond1)
 if (cond2)
 if (cond3)
 a = 1;
 else
 a = 2;
 else
 a = 3;
 else
 a = 5;

Chapter 4: Using the Instruction Scheduler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 75

4

For more information about guarded decision trees, see Guarded Execution on page 80.

Control Flow

Consider the following example.

The input to the Instruction Scheduler can be obtained as follows (file prog.t).

The content of a decision tree is a basic block. This terminates in a control divergence

(if-then-else or select-or), which specifies more basic blocks belonging to the current

decision tree, or in a control transfer out of the decision tree (gotree, nigotree, cgoto,

nicgoto).

■ The basic block statements are always executed at the start.

■ A control divergence is a branch selection between possible conditions coming

together after a branch.

■ A control transfer occurs because of a join.

The file prog.t has two decision trees, the first of which contains just a control transfer.

This decision tree just goes to the __prod_DT_1 (the main body of the function).

Below are some observations regarding this example.

■ The entree construct corresponds to the beginning of a function.

■ The endtree construct corresponds to the end of the tree.

■ The value inside the parentheses of entree is the number of times it was executed (if

measured by profiling).

■ The text marked in (* ... *) are comments for debugging.

int prod(int a, int b, int c){
 do{
 b *= c;
 }while(aÐÐ);
 return b;
}

tmcc Ðt prog.c

 .global _prod
_prod:
entree (0)
 gotree {__prod_DT_1} (* BB:2 *)
endtree (*__prod_DT_0*)

Chapter 4: Using the Instruction Scheduler

76 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Possible control flow constructs are shown in Table 8.

Operations

Code for the second decision tree is shown below. This tree has two branches. The first

branch loops back; the second corresponds to the return.

Below are some observations regarding this example.

■ tree is like entree except that this is not an entry point of a function.

■ The value in parentheses of an if corresponds to the probability of if being taken.

■ The value in parentheses of else and end is used for matching.

Table 8 Control Flow Constructs

Construct Description

gotree SymbolName
nigotree SymbolName

Control transfers to the DT named by SymbolName.
nigotree is the non-interruptible variant of gotree.

cgoto OperationName
nicgoto OperationName

Control transfers to the address produced by Operation-
Name. nicgoto is the non-interruptible variant of cgoto.

if Condition [(Probability)]
then DTree1
else (Condition) DTree2
end (Condition)

If the Condition (operation name) has the Boolean value
true, DTree1 is executed, else Dtree2 is executed.
The optional probability specifies the probability that
DTree1 is executed.

Select
 (Cond1) [(Probability)] : DT
or
 (Cond2) [(Probability)] : DT
...
 default [(Probability)] : DT
endselect

If Cond1 (operation name) has the Boolean value true,
the DT associated with that case is executed, or if Cond2
is true, the DT associated with that case is executed, and
so on. If none of the conditions are true, the default case
(presence required) is executed. The optional probabili-
ties specify the probability of execution for each case.
The conditions (Cond1, Cond2, Condn) must be mutu-
ally exclusive. The probabilities should sum to 1.0.

tree (0)
 1 rdreg (2);
 2 rdreg (5);
 3 rdreg (7);
 4 rdreg (6);
 5 imul 4 3 ;
 6 isubi (1) 2 ;
 7 uneqi (0) 2 ;
 8 wrreg (6) 5 after 4;
 if 7 (0.900000) then
 10 wrreg (5) 6 after 2;
 gotree {__prod_DT_1}
 else (7)
 11 wrreg (5) 5 after 2;
 cgoto 1
 end (7)
endtree

Chapter 4: Using the Instruction Scheduler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 77

4

There is an operation number for each individual assignment to a variable. There is an

operation number for every temporary value in an expression. Redundant values are

eliminated by the compiler.

For documentation on an individual operation, refer to Appendix A of the appropriate

TriMedia data book.

Operation Syntax

This section explains the syntax of an individual operation. Consider the example given

below.

This operation can be decomposed into fields as follows.

■ Displacements are for operations with an immediate value and for rdreg/wrreg opera-

tions.

■ Arguments correspond to previously defined expressions.

■ A semicolon terminates the operation.

■ Guarded operations are generated by the -if -convert option.

12 if 11 st32d(4) 2 3 after 10;

Field Value Required Description

Op# 12 Y Identifies the operation.

Guard 11 N Guard register. Preceded by if.

Opcode st32d 1 Machine operation.

Displacement 4 N Immediate value. Between parentheses.

Arguments 2 3 N Operations for arguments.

After constraints 10 N Operations for ordering constraints. Preceded by
after keyword.

Chapter 4: Using the Instruction Scheduler

78 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Pseudo-Operations

The rdreg and wrreg operations do not map to machine operations. Instead, they estab-

lish a correspondence between operation numbers and hardware registers. The corre-

spondence for the example shown is given in Table 9.

■ rdreg(n) maps the hardware register n to the input of an operation.

■ wrreg (n) m maps the output of operation m to hardware register n.

■ The operation number for a wrreg operation can be referred to for ordering.

■ Register-to-register moves are generated in some cases.

Table 10 shows the register usage convention.

Table 9 Pseudo-Operations Correspondence

Op# Hardware Register Value

1 r2 Return address.

2 r5 Parameter a.

3 r7 Parameter c.

4 r6 Parameter b.

Table 10 Register Usage Convention

Register Definition

r1 r1 is predefined as 1.

rp (r2) rp is the return pointer. On entry to a function, it contains the return address.
For framed functions, rp is not saved. For frameless functions, rp can be saved
in a register to speed up the function return.

fp (r3) fp is the frame pointer. It points at the base of the current stack frame. fp is not
always updated and is, strictly speaking, not part of the calling convention. For
programs compiled with -g, the frame pointer is always updated.

sp (r4) sp is the stack pointer. It points at the last word in use by the current stack
frame.

rv (r5) rv is the return value register. If the return value is a scalar, it is returned in rv.
The return of struct or union values is via copy on exit to an address supplied
as a hidden incoming argument.

Chapter 4: Using the Instruction Scheduler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 79

4

After Constraints

Operation ordering is expressed by the keyword after, followed by a list of operations.

The keyword imposes a partial order between pairs of operations. The meaning is that

the operation specified can be issued, at the earliest, one cycle after all listed operations.

For the purposes of ordering, operations can be divided into the following 5 categories.

Below are three uses for after constraints.

■ Specifying that a load from memory must take place after a store (for pointers, for

example).

■ Specifying that a read from a register must take place after a write to that register.

■ Specifying general purpose constraints (delay).

Not all pairs of operations permit after constraints. The following table defines allowed

pairs of operations.

r5 .. r8 Registers r5 through r8 inclusive are argument registers. The first four function
arguments of basic type are placed in the argument registers. Note that r5 is
the return value register as well as the first argument register.

r9 .. rn-1 Registers r9 through rn-1 inclusive comprise the global register pool. These
registers are used by the compiler for global register allocation. In this pool,
registers r9 up to and including r32 are callee save registers, registers r33 up to
and including r63 are caller save registers. Note that n is currently 64.

rn .. r127 Registers rn through r127 inclusive comprise the decision tree local register
pool. Note that n is currently 64.

Reg rdreg or wrreg pseudo operation.

Mem load or store operation.

Jump gotree, nigotree, cgoto, nicgoto.

Join join pseudo operation.

Other Other Databook Operations.

Source Operation
Target Operation

Reg Mem Jump Join Other

Reg YES YES YES NO NO

Mem YES YES YES YES YES

Table 10 Register Usage Convention

Register Definition

Chapter 4: Using the Instruction Scheduler

80 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ An operation cannot have a jump on the list of its incoming constraints.

■ A join operation is not allowed to have a list of constraints

Guarded Execution

TriMedia Compilation System v.2.0 supports guarded execution in the decision tree for-

mat, as shown in the example below:.

The store operation is executed only if the lsb of value 10 is true. Furthermore, the

pseudo operation named join is supported to merge values. For example.

If the lsb of value 10 is true, value 22 will be equal to value 20 (val 11+4). In case lsb of

value 12 is true, value 22 will be equal to value 21 (val 13-4). The lsbs of 10 and 12 should

not be true at the same time. In the case both are false, the value of 22 is undefined.

In general, joins can be used to merge two or more values. These values should be

guarded such that at most one of the guards is true when the values are merged.

Guarded execution is used when the -if_convert and -if_param flags are given to

tmccom.

Debug Information

In both the trees code and the assembler, the following information is placed by the

compiler:

■ .fileinfo stabs and stabn information is global to the module for debugging.

■ .funcinfo stabs and .funcinfo stabn are local to the function.

■ .treeinfo information is local to the decision tree.

■ .treeinfo regmask defines the registers used by the compiler. This means the others

out of the 128 available are free for the scheduler.

■ .treeinfo label defines the label of this decision tree.

Jump NO NO NO NO NO

Join NO NO YES NO YES

Other NO NO YES NO YES

20 if 10 st32 11 12;

20 if 10 iaddi (4) 11;
21 if 12 isubi (4) 13;
22 join 20 21;

Source Operation
Target Operation

Reg Mem Jump Join Other

Chapter 4: Using the Instruction Scheduler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 81

4

Embedded Assembler Directives

In addition to debug information, the trees code can contain embedded assembler direc-

tives, as shown in the table below.

Assembly Directive Description

.align n Advance current address to the next n bytes aligned
address in the current segment.

.ascii "string" Generate the ASCII equivalent of the string in the current
segment, allowing all the Standard C escape sequences in
the string.

.byte list-of-expressions Generates initialized 1-byte values in the current seg-
ment, given the comma-separated list of assembly
expressions.

.common symbol, size [
"segment" [, alignment]]

Declares the symbol to be a FORTRAN-style common area
with the given size in bytes. If symbol is given, it must be
bss. In any case, the symbol is defined in bss. The symbol
can have an optional alignment that is used by the linker
during its final linking pass (if the symbol did not resolve
to a definition).

.data Switches current segment to the data segment.

.data1 Switches current segment to the data1 segment.

.global list-of-symbols Declares the comma separated list of symbols to be glo-
bal.

.half list-of-expressions Generates initialized 2-byte values in the current seg-
ment, given the comma-separated list of assembly
expressions.

.reserve symbol, size [,"seg-
ment" [, alignment]]

Defines symbol in current or optionally given segment,
reserves size bytes. Align it if given optional alignment
size (in bytes).

.skip n Skip the next n bytes (advance current address by n) in
the current segment (not allowed in the text segment).

.text Switches current segment to the text segment.

.word list-of-expressions Generates initialized 4-byte values in the current seg-
ment, given the comma-separated list of assembly
expressions.

.zero n Zero the next n bytes (and advance current address by n)
in the current segment (not allowed in the text segment).

Chapter 4: Using the Instruction Scheduler

82 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Segments

The assembler has a concept of “current segment” as it parses the assembly source code.

The current segment is initially set to the text segment at the beginning of a module.

The current segment can be switched to other segments via the assembler directives. The

assembler currently supports the following segments: the text segment for instructions,

the data1 segments for read-only initialized data, the data segment for read-and-write

initialized data, and the bss segment for uninitialized data.

Labels/Symbols

Labels define a symbol to be at the current address in the current segment. Labels are

specified by the symbol name followed by a colon. For segment directives, see Embedded

Assembler Directives on page 81.

When using labels, keep the following in mind.

■ Labels must be followed by instructions.

■ Code label arithmetic is not recommended.

■ Do not use labels as markers, since the linker is free to reorder dtrees.

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 83

5

Chapter 5

Performance Analysis Overview

Topic Page

Introduction 84

Important Guidelines for Making Measurements 84

Command Syntax 85

Using tmprof with the Simulator 89

Using tmprof with a Host Processor 90

Standalone Programming Using the tmprof API 91

Caveats Regarding Profiling 95

Chapter 5: Performance Analysis Overview

84 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

This chapter explains the program analysis tmprof. This tool produces a breakdown on

where your program is spending its time.

■ You can use tmprof in combination with tmsim -statfile for simulation.

■ You can use tmprof in combination with tmcc -ptm for actual execution.

■ You can use tmprof on stand-alone systems.

The next sections of this chapter discuss the command syntax and tmprof options, fol-

lowed by discussions on how to use tmprof with the simulator and with a host proces-

sor.

Important Guidelines for Making Measurements

Using tmprof is straightforward. However, as always, use care when making measure-

ments. It is easy to misinterpret results. Here are some important guidelines:

1. Use a fast board (e.g., a 143-Mhz TM-1300 with a 1:1 SDRAM clock ratio) for measure-

ments.

2. Make sure that the speculative load fix option is disabled when measuring.

3. The major change in the profile consists of the introduction of statistical sampling.

The default is to sample the entire program.

4. Full measurements slow the program down by a factor of about 2.5.

5. Stripped library addresses are indicated as “unknown address” lines.

6. Use the profileStart and profileStop functions on context switch for task-based sam-

pling.

7. The overhead is under your control with statistical sampling.

8. Good values are -profdly 20000 -profcnt 20.

9. With statistical sampling, make at least 30 second runs.

10.Decision tree and instruction cycles are exact on the simulator and hardware.

11.Because of measurement interference, cache overhead can be overestimated on the

hardware.

12.Use tmsim with the -ns (no startup) option when comparing.

13.Reported instruction and data cache cycles may be higher than in reality.

14.Idle time can increase with statistical sampling because of overhead reduction.

15.Two timers are required for measurements and are allocated using the API.

16.Applications that use hard-coded timer addresses or more than two timers will not

work.

Chapter 5: Performance Analysis Overview

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 85

5

17.You must quit the program or use profileFlush to get any data.

18.You might need to adjust the size of the profiling buffer.

19.Separately compute overhead using DP and the cycles instruction.

Command Syntax

■ Options are described in the following section.

■ tracefile can be a trace file from tmsim or “mon.out.”

■ The executable is the name of your program.

tmprof Options

There are several classes of options for tmprof, as described in the sections below.

Formatting Options

Output can be produced in two basic formats, standard and detailed. The detailed format

is invoked by the keyword -detail. When no option is given, tmprof produces a report in

standard format.

Standard Format

The standard format reports the number of executions, total cycles, and numbers of

instruction and data cache cycles, as illustrated in Table 11. Cycle totals are in thou-

sands, and include cache overhead and copybacks.

The threshold is set to 0.0100000. Exact total machine cycles is 168,721 cycles.

Below are some observations regarding this report.

■ The first column is the name of a decision tree or function.

■ The second column is the number of executions.

Table 11 Standard tmprof Reporting Format

Treename Executions Total Cycles (%) Inst. Cache
Cycles

Data Cache
Cycles

_fib 13529 68 40.11 0 0

_fib_DT_1 6764 47 28.06 0 0

_fib_DT_2 6764 27 16.06 0 0

_start 1 2 1.25 2 0

Total/Average 28047 169 100.00 18 2

Chapter 5: Performance Analysis Overview

86 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ The remaining columns correspond to total, instruction, and data cache cycles. These

do not include time spent in called functions.

■ Adding the -wide option uses 39-character names.

Detailed Format

The detailed format prints statistics on issues and the CPI (Cycles Per Instruction). This is

specified by using the option -detail.

Table 12 illustrates the tmprof reporting format that results from the -detail option.

Following are some observations regarding this report.

■ With no cache overhead, CPI = 1.

■ CPI figures across a row total.

■ The final columns indicate operations and useful issues.

■ Bank conflicts are reported.

■ Adding the -wide option uses 39-character names.

Table 12 Detailed tmprof Reporting Format

(Instructions + Stall) Instructions Inst. Cache
Stalls

Treename Total Cycles MCS (%) CPI Cycles MCS (%) Cycles CPI

_fib 67680 47.58 1.00 67645 47.61 29 0.00

__fib_DT_1 47348 33.28 1.00 47348 33.33 0 0.00

__fib_DT_2 27089 19.04 1.00 27056 19.04 33 0.00

_main 62 0.04 15.50 4 0.00 58 14.50

_main_DT_1 62 0.04 15.50 4 0.00 58 14.50

Total/Average 142252 100.00 1.00 142068 178 0.00

Data Cache Stalls (Number per Instruction)

Cycles CPI Cycles Copybacks Issues (useful)

6 0.00 0 0 2.60 (1.90)

0 0.00 0 0 0.86 (0.85)

0 0.00 0 0 1.00 (1.00)

0 0.00 0 0 1.75 (1.75)

0 0.00 0 0 0.50 (0.50)

6 0.00 0 0 1.71 1.38

Chapter 5: Performance Analysis Overview

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 87

5

Scaling Options (-scale and -threshold)

This section explains the -scale and -threshold options. These can be used to scale down

the data to manageable amounts. Table 13 lists the tmprof scaling options.

Grouping Options (-func and -fcs)

This section explains the -fcs and -func options. These can be used to group the output

by function. Table 14 lists the tmprof grouping options.

Run-Time Options (-ptm)

This section explains run-time options that are interpreted when you run. The tmprof

run-time library uses statistical sampling. The size of the buffer, the frequency between

samples, and the number of decision trees captured can be specified as shown. These

options apply to an executable compiled with tmcc -ptm. Table 15 lists the tmprof run-

time options.

Below are some observations regarding these options.

■ The default trace buffer size is approximately 16 percent of the code size.

■ The trace buffer size is rounded up to a power of 2.

Table 13 tmprof Scaling Options

Option Description

-scale nn Sets the execution time scale to nn. The parameter nn is a number by
which to divide cycle counts. Default is -scale 1000.

-threshold ff Sets the report threshold. The parameter ff is a floating point number.
Entries that contribute less are not shown. Default is -threshold 0.0001.

Table 14 tmprof Grouping Options

Option Description

-func Reports functions instead of trees. Totals cycle counts and executions per
function.

-fcs <name> Limits report to a single function called name.

-fcs ··· -fcs ··· Limits reports to a range. -fcs low_address -fcs high_address limits the
output to an address range.

Table 15 tmprof Run-Time Options

Option Description

-profsz size Trace buffer is size bytes.

-profdly ccount Sample frequency is ccount cycles.

-profcnt dcount Sample is dcount decision trees in length.

Chapter 5: Performance Analysis Overview

88 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ Use -profdly 100 -profcnt 1 to sample everything.

■ Use the tmprof -dump-header option to find out occupancy. See Miscellaneous Options

on page 88).

■ 32 bytes per decision tree are required in the trace buffer.

Pros

■ Lower sampling frequencies mean lower overhead.

■ A smaller cache buffer means less memory and cache overhead.

Cons

■ Occupancy greater than 50 percent is bad because of hashing.

■ Significance depends on sufficient sampling frequency.

Caveats

The following overhead and measurement errors pertain to the use of the -ptm option.

■ Profiling overhead increases run time by 150 percent of trees sampled. For this rea-

son, cycle counts correspond only to a percentage of executions.

■ By default, profiling overhead increases memory overhead by about 16 percent of the

text size.

■ Profiling overhead can artificially increase instruction and data cache cycles.

Miscellaneous Options

Table 16 lists the tmprof miscellaneous options.

Table 16 tmprof Miscellaneous Options

Option Description

-h Prints a help message.

-V Prints version information.

-genstat Converts from mon.out to tmsim -statfile format. -genstat translates
the mon.out file into tmsim -statfile format. This option can be used for
post-processing.

-clockspeed <n> Specifies clock speed for MCS. Used to specify the processor speed.

-dump-header Prints trace header.

-group Group addresses in one entry.

-mcs Reports an MCS factor, not a percentage. (See below.)

Chapter 5: Performance Analysis Overview

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 89

5

The following explains the handling of unknown addresses and the -group option:

■ Application libraries are stripped to prevent disassembly.

■ Addresses that have been stripped are reported numerically.

■ The -group option reports these as a single item.

■ This can be used to estimate OS overhead if only pSOS in being used.

MCS Factor

tmprof includes an option to calculate the so-called “MCS” factor for a component.

■ This is meaningful when running with real-time input and output data.

■ An operating system must be used to provide blocking.

■ For non real-time tasks, the MCS factor corresponds to percentage utilization at

100 MHz.

The MCS factor is computed as:

For example, suppose a data measurement is being taken on a 125 MHz processor corre-

sponding to 150 million cycles. Assume the measured time in MPEG component is 60

million cycles, in AC-3 40 million cycles, and in a third component 50 million cycles.

Given these assumptions, then

■ The real time for the sample is 1.25 seconds (150 divided by 125).

■ The MCS factor is 50 for MPEG, 33 for AC-3, and 42 for the third component.

■ Two of the three can be run on a 100 MHz processor.

Using tmprof with the Simulator

This section shows you how to use tmprof with the simulator tmsim. A small example

program is shown below.

This program can be compiled and run with tmsim as follows to generate the output in

Table 11 on page 85.

main(int argc, char **argv){
 printf("%d\n", fib(atoi(argv[1])));
}
fib(n){
 if(n <= 2) return 1;
 return fib(nÐ1) + fib(nÐ2);
}

tmcc prog.c
tmsim Ðstatfile foo.stat a.out 20
tmprof Ðthreshold 0.01 foo.stat

Cycles for Entry

Total Cycles
× Clock Frequency

Chapter 5: Performance Analysis Overview

90 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Caveats

The points below explain differences between cycle counts reported by tmprof and by

tmsim with the -v option.

■ Using tmprof, the 30 cycles that are required to fill the pipeline on program startup

are not counted.

■ System calls are counted as zero cycles by tmprof and as one cycle by tmsim.

■ When an instruction cache stall and data cache stall occur simultaneously, two stalls

are reported by tmprof for one cycle.

■ Cycle count discrepancies can also be observed as a result of differences in behavior

because of redirection.

Using tmprof with a Host Processor

The program above can be compiled and run with tmsim as shown below:.

■ Copyback cycles, data conflicts, and operations are not taken into account.

■ The mon.out file has information similar to the statfile.

■ The mon.out file is in binary format.

The following command displays the file:.

Depending on the information available, tmprof is capable of generating a variety of

reports. The information from tmcc -ptm is based on statistical sampling

Pros

■ Executing on the host is several thousand times faster than on the simulator.

■ Using tmcc -ptm, you can obtain data about an application using peripherals.

Cons

■ The -g and -ptm options are incompatible.

■ The -ptm option perturbs the cache behavior, which may affect results in some cases.

■ The simulator output includes operation statistics.

tmcc -host Win95 -ptm prog.c
tmrun -b a.out

tmprof mon.out a.out

Chapter 5: Performance Analysis Overview

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 91

5

Standalone Programming Using the tmprof API

This section explains standalone programming using the TriMedia profiler API. The

information here is useful if you do any of the following:

■ Explicitly activate or deactivate profiling.

■ Use tmprof in a standalone environment.

■ Use tmprof in a multiprocessor environment

■ Write a communications driver.

■ Have already used standalone profiling and upgrade from the 1.1 release.

Explicit Activation and Deactivation of Profiling

You normally invoke tmprof using the -ptm option. The -ptm option has two effects:

1. The -lprof option is added to the tmld command line. The profiling library is in lib-

prof.a.

2. Special code is linked that automatically activates and deactivates profiling. This code

is in tmprof.o.

Explicit activation and deactivation of profiling requires linking in with -lprof but with-

out tmprof.o. To do profiling requires the definition of some parameters and some

changes to source code.

Defining Profiling Parameters

Parameters to initialize profiling must be defined. Parameters are set by defining fields in

the structure profileCaps. The definition of the structure from tmlib/profile_api.h is

shown here:

TMPROF_VERSION is used to check for compatibility between profile_api.h and libprof.a.

The version field should be initialized with this string. PROFILE_ARGSIZ is the length of

the command line. The args field must be initialized using the profileArgs function or

using a dummy value.

The command line can be visualized with the tmprof -dump-headers option.

A buffer for profiling is allocated by tmprofInit using malloc.

#define TMPROF_VERSION "TMPROF_V2.0\0\0\0\0"
#define PROFILE_ARGSIZ 64
struct profileCaps {
 char version[16];
 char args[PROFILE_ARGSIZ];
 int nbytes;
 unsigned nsamples;
 int freq;
} ;

Chapter 5: Performance Analysis Overview

92 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

If non-zero, the nbytes field specifies the buffer size. Otherwise, it is 16 percent of the

text segment size. The term freq corresponds to the interval between samples. The term

nsamples is the number of trees to capture.

These parameters correspond to the -profdly, -profcnt, and -profsz runtime command

line options.

Source Code Changes

Three points must be considered for profiling.

■ Code must be added to initialize profiling on startup.

■ A callback function must be written to output data.

■ Code can be added optionally to turn profiling on and off during execution.

The sample code shown below initializes profiling.

freq is set to generate a timer interrupt every 10,000 clock cycles.

nsamples is set to measure the behavior of 20 decision trees every sample.

Removing these two assignments means profiling the whole program. The arguments to

profileInit are the profiling parameters, a pointer to the callback function, and an open

file descriptor.

How to Write Output Data

Use a callback function to write the data. Call the profileFlush function when data is

needed or at the end of the program.

Sample code for the callback function of the previous example is given below.

#include <tmlib/profile_api.h>
profileBegin(){
 struct profileCaps caps;
 int handle;

 memset(&caps, 0, sizeof(caps));

 caps.freq = 10000;
 caps.nsamples = 20;
 strcpy(caps.version, TMPROF_VERSION);
 strcpy(caps.args , "<command line>");
 handle = open("mon.out",O_RDWR|O_CREAT|O_TRUNC|O_BINARY,0666);
 profileInit(&caps, write_callback, handle);
}

static int
write_callback(int handle, void *array, int nbytes){
 if(nbytes == 0)
 return close(handle);
 else
 return write(handle, array, nbytes);
}

Chapter 5: Performance Analysis Overview

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 93

5

The parameters are the same as the POSIX write system call. The first parameter identifies

the file; it is a file descriptor from open in the previous example. The second and third

parameters represent an array of characters.

All the data must be written to a file on the host system, in the order specified, in binary

format, without conversion or insertion. (The profiling library uses a 1K buffer.)

A byte count of zero means the profiled output is flushed to the host system. This can be

done while the program is running.

Starting and Stopping Profiling

The profileStart function enables profiling (by generating a debugger interrupt). The

debugger interrupt activates the profiling mechanism. To deal with the case where profil-

ing is running already, the TFE (trace) bit is cleared and the timer is stopped.

The profileStop function disables profiling by stopping the timer and by clearing the TFE

(trace) bit. The program below gives a simple example:

Clearing the Profiling Buffer

Use the following function to clear the profiling buffer. Doing so allows you to take sev-

eral samples during the execution of a program.

 void profileClear (float percentage)

The single argument represents the maximum occupancy of the profiling table. The

table is implemented as a hash buffer and occupancies greater than 50 percent result in

increased overhead.

Only samples corresponding to decision trees in the table are recorded if the table over-

flows.

main() {
 profileBegin();
 profileStart();
 fib(20);
 profileStop();
 profileFlush();
}
fib(n){
 if(n < 3)
 return 1;
 else
 return fib(nÐ1) + fib(nÐ2);
}

Chapter 5: Performance Analysis Overview

94 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Adjusting the Size of the Profiling Buffer

The profileDtrees function allows you to adjust the size of the profiling buffer. It is called

to estimate the default value for nbytes. The following provides an example that reduces

the buffer to save space.

Pros

Memory overhead is reduced.

Cache overhead is reduced.

Cons

If the buffer is too small, the operation is incorrect.

Command Line Processing

Command line processing can optionally be performed to initialize the profiling param-

eters. This section explains how to use the profileArgs function.

int profileArgs(struct profileCaps *pcaps, char **argv, int argc)

The first argument points to the profiling parameters, which are initialized to default val-

ues. The second and third arguments correspond to the vector of command line argu-

ments, as commonly implemented in C. The function returns the argument count.

Task-Based Profiling

Profiling information can be captured on the task level or on the component level. The

following example shows how to perform task-based profiling.

caps.nbytes = profileDtrees()*0.5;
...
profileInit(&caps, write_callback, handle);

void root(void) {
 printf("Hello, world\n");
 t_create("aaaa", 4, 10000, 10000, 0, &task1);
 t_create("catc", 100, 10000, 10000, 0, &task2);
 profileBegin();
 ...
}
void SwitchHandler(int to, void *totcb, int from, int *fromtcb) {
 int clocknow = CYCLES();

 if (from==task1) TOTAL += clocknow - NOW;
 if (to==task1) NOW = clocknow;
 if (to==task1)
 profileStart();
 else
 profileStop();
}

Chapter 5: Performance Analysis Overview

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 95

5

The function root is the pSOS main task/function. In addition to root, this code creates

two tasks, task1 and task2. The root calls profileStart when switching context to task1

and profileStop when switching context from task1. SwitchHandler is a pSOS callback

function.

Summary

The following functions comprise the profiling API and use the structure profileCaps,

previously described.

■ int profileArgs(struct profileCaps *pcaps, char **argv, int argc)

■ void profileInit(struct profileCaps *pcaps, int (*writefunc)(), int handle)

■ void profileStart(void)

■ void profileStop(void)

■ void profileClear(float percentage)

■ void profileFlush(void)

Caveats Regarding Profiling

Be aware of the following points:

■ Standalone applications might need to be run with statistical sampling.

■ For correct operation under pSOS, use either full or statistical sampling.

■ A buffer that is too small can result in wrong behavior.

■ With stripped libraries, the output is incorrect.

Chapter 5: Performance Analysis Overview

96 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 97

6

Chapter 6

Systems Programming

Topic Page

Introduction 98

Systems Program Debugging 98

Assertions 99

Interrupt Handlers 99

Software Cache Support 106

Miscellaneous Issues 108

Chapter 6: Systems Programming

98 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

This chapter explains how to use the systems programming features of the TriMedia

compilers and environment. It uses C examples, source code for which is provided with

this release. Refer to source code if you have any problems understanding what is being

described.

See Book 2, Cookbook, for examples of video and audio drivers.

See Books 5–9 for information about how to use APIs.

Systems Program Debugging

The DP feature of the TriMedia C library allows debugging printfs (DPs). This section

explains how to use DP.

■ DPs are written to RAM.

■ DPs and the normal dialog are not mixed up.

■ DPs can be used in a stand-alone environment.

■ printf cannot be used for interrupt and exception handlers, while DP can.

■ DPs are much faster.

To use debugging printfs, a special SDRAM area must be reserved as a circular buffer. The

program below shows an example of the feature.

■ To compile, enter the following command line.

■ To run, use tmgmon.

■ You should see “Hello World” in the console window and “Bonjour tout le monde”

when you click “Dump DP.”

■ Both DP and printf use parentheses, but DP uses an extra pair.

■ The size of the DP buffer is 1024.

#include <stdio.h>
#include <tmlib/dprintf.h>

main(){
 DP_START(1024,0);
 printf("Hello World\n");
 DP(("Bonjour tout le monde\n"))
 exit(0);
}

tmcc -host Win95 program.c -o program.out

Chapter 6: Systems Programming

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 99

6

Assertions

The tmAssert macro is approximately equivalent to the UNIX assert. Assertions are quite

important for embedded development.

In the following example, the assertion checks for a null pointer. The second parameter

is an error code.

The assertion, when triggered, prints filename, line number and error code. Error mes-

sages are written to stderr using DP. The assertion causes the program to abort.

Interrupt Handlers

This section explains how to program interrupt handlers. Code for interrupt manage-

ment can be divided into main and interrupt level.

■ A C function for the interrupt handler must be written.

■ The main function has to set the vector to the handler.

■ Single decision trees have minimal overhead.

■ Interrupts must be enabled in the main program.

■ An atomic function uses scheduler registers so the overhead is lower.

■ Interrupt handlers can be interruptible or non-interruptible.

■ Overhead is controllable.

Writing an Interrupt Handler

This section shows an example of an interrupt handler.

■ The parameter list of the handler must be declared void.

#include <tmlib/tmassert.h>
UInt32 aoGetNumberOfUnits(UInt32 *pNumberOfUnits){
 ...
 tmAssert(pNumberOfUnits != NULL, TMLIBDEV_ERR_NULL_PARAM)
 ...
}

#include <tmlib/dprintf.h>

intInstanceSetup_t isetup;

volatile int count;

void handler(void){

#pragma TCS_handler
 DP(("count = %d\n", count));
 count++;
}

Chapter 6: Systems Programming

100 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ The result type of the handler must be declared void.

■ You must use volatile variables to communicate between interrupt handlers and the

main loop.

■ Do not call the C library for I/O inside a handler.

■ Library utility functions (for example, memcpy, strlen, sin) can still be used.

Initializing an Interrupt Vector

This section explains how to program an interrupt vector. The code below sets up a timer

interrupt.

■ This code is the main level for the example above.

■ The device library is used.

■ timInstanceSetup calls intInstanceSetup to set up the interrupt.

The code below shows how to set up a interrupt using intInstanceSetup.

■ This uses the debug interrupt (level 30).

■ The code for gen_interrupt is shown below .

#include "tm1/tmTimers.h"
#include "tm1/tmInterrupts.h"

main(){
 timInstanceSetup_t setup;
 DP_START(1024,0);
 setup.source = timCLOCK;
 setup.prescale = 1;
 setup.modulus = 1000000;
 setup.handler = Handler;
 setup.priority = intPRIO_4;
 setup.running = 1;
 (void) timOpen(&timer);
 (void) timInstanceSetup(timer, &setup);

 count = 0;

 while (count < 1000){}
}

#include "tm1/mmio.h"
#define SOFTWARE_INT 30
#include "tm1/tmInterrupts.h"
#include "tmlib/dprintf.h"

intInstanceSetup_t isetup;

main(){
 int i, here;

 isetup.enabled = 1;
 isetup.handler = handler;
 isetup.level_triggered = 0;
 isetup.priority = intPRIO_6;

Chapter 6: Systems Programming

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 101

6

Generating a Software Interrupt

Software interrupts can be used for scheduling asynchronous events. The code example

below illustrates how to generate a software interrupt. For information on interrupt

MMIO registers, refer to Chapter 3 of the appropriate TriMedia data book.

Reducing Interrupt Overhead

This section explains how to reduce interrupt overhead. Minimum overhead is achieved

if the handler is programmed as a single decision tree. An example is shown below.

■ There is no need to save registers in one decision tree.

■ There is no need to turn off interrupts since decision trees are non-interruptible.

■ The difference from a normal function is the address to return to.

You can also reduce overhead using the compiler pragma TCS_atomic. This allows you to

program more than one decision tree inside a handler with less overhead.

■ You need to use the option -tmccom -allow_atomic_calls –– to call other functions.

■ These functions must also be declared as atomic. (Be careful because the compiler

does not check).

Pros

■ Code size is reduced.

 intOpen(PROFILE_INT);
 intInstanceSetup(SOFTWARE_INT, &isetup);

 for (i = 0; i<10; i++) {
 here = count;
 gen_interrupt(SOFTWARE_INT);
 }
}

gen_interrupt(int x){
 intAckClear(x);
 intAckPending(x);
 /* wait for interrupt to go away */
 while (intCheckPending (x)){}
}

void handler(void){
#pragma TCS_handler
 buf[count++] = ix;
}

void handler(void){

#pragma TCS_handler
#pragma TCS_atomic
 ...
}

Chapter 6: Systems Programming

102 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ Interrupt response time is reduced also.

Cons

■ Interrupt latency is increased.

Interruptible Handlers

An interruptible handler is like a normal handler, except that it is declared using

#pragma TCS_interruptible_handler.

Pros

■ Latency is improved because the handler is interruptible.

Cons

■ The handler has to be programmed to be re-entrant.

Exception Handlers

This section explains how to program an exception handler. An example is shown below.

■ This is an example of the unaligned access exception.

■ The store through p+1 is to an illegal odd address.

■ Bit 31 in the PCSW validates the exception.

#include "tm1/mmio.h"
#include "ops/custom_defs.h"
#include "tmlib/dprintf.h"

void handler(unsigned spc){
 #pragma TCS_exception_handler
 writepcsw(0x00000000, 0x8000);
 DP(("During exception, spc = %x\n", spc));
}

main(){"
 int a[2], i, p;
 DP_START(1024,0);
 MMIO(EXCVEC) = (int)handler;
 writepcsw(0x80000000, 0x80000000);
 DP(("Before exception\n"));
 for(i=0; i<1000; i++){}

 p = (int) a;
 *(int *)(p + 1) = 0;
 for(i=0; i<1000; i++){}

 DP(("After exception\n"));
}

Chapter 6: Systems Programming

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 103

6

■ Bit 15 in the PCSW registers the exception

■ These are turned on and off in main and handler, respectively.

■ The main function sets bit 31 to trap on this exception.

■ Refer to Chapter 3 of the appropriate TriMedia data book for more information.

Critical Sections

A critical section is code that, when it is executed, must be executed completely and can-

not be interrupted. The following program provides an example.

This produces the following output.

■ A #pragma TCS_break_dtree is used to artificially introduce an interruptible jump.

■ Five increments of count are not accounted for.

■ The number corresponds to interruptions because of the jump.

#include <tmlib/dprintf.h>
#include "tm1/tmTimers.h"

volatile int count, loops, interrupts;

critical_section(){
 int old = count;
#pragma TCS_break_dtree
 count = old + 1;
}
void handler(void){
#pragma TCS_handler
 critical_section();
 ++interrupts;
}
main(){
 timInstanceSetup_t setup;
 int timer, i;

 DP_START(1024,0);
 setup.source = timCLOCK;
 setup.prescale = 1;
 setup.modulus = 100;
 setup.handler = handler;
 setup.priority = intPRIO_4;
 setup.running = 1;
 (void) timOpen(&timer);
 (void) timInstanceSetup(timer, &setup);

 for (i=0; i<50; i++) {
 ++loops;
 critical_section();
 }
 DP(("LOOPS + INTERRUPTS = TOTAL COUNT\n"));
 DP(("%3d + %3d = %3d\n", loops, interrupts,count));
}

LOOPS + INTERRUPTS = TOTAL COUNT
50 + 28 = 73

Chapter 6: Systems Programming

104 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

A single decision tree is a natural critical section. In the example, this corresponds to

removing the jump.

The output numbers then sum up as shown below.

Using an Atomic Function

An atomic function is a function in which interrupts do not occur. The following shows

an example.

■ With TCS_atomic, non-interruptible jumps are used inside the function and the out-

put totals up.

■ The compiler uses scheduler registers, which reduces overhead.

Pros

■ Overhead is reduced by the use of scheduler registers.

Cons

■ Interrupt latency is increased.

Atomic Functions and Procedure Calls

It may be necessary to call a function inside a critical section, as shown in the example

below.

critical_section(){
 int old = count;
 count = old + 1;
}

LOOPS + INTERRUPTS = TOTAL COUNT
50 + 30 = 80

critical_section(){

#pragma TCS_atomic
 int old = count;
#pragma TCS_break_dtree
 count = old + 1;
}

critical_section(){
 #pragma TCS_atomic
 sub_func();
}
sub_func(){
 #pragma TCS_atomic
 ++count;
}

Chapter 6: Systems Programming

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 105

6

Compiling this produces the following error message.

This program can be compiled as follows.

Decision Tree Breaks

This section explains how to use decision tree breaks to control timing with hardware.

These can be used to insert delay cycles for an interrupt acknowledgment. The following

example is taken from the interrupt handler for the "vivot" example.

■ For a level triggered interrupt the interrupt acknowledge must be issued at least two

cycles before the ijump which ends the handler.

■ The #pragma TCS_break_dtree adds a delay of four cycles.

■ For more information, see section 3.4.3.3 of the databook.

The pragma can also be used for scheduling interrupts, as shown below.

■ Interrupts only occur on decision tree jumps, which the pragma forces.

■ In this example, if the pragma is inserted in the middle, interrupt latency is halved.

■ The pragma can also be reduced to reduce spills.

■ For more information, see Chapter 4, Using the Instruction Scheduler.

Caller Save Registers

This section explains caller save registers.

■ If a function or handler is a leaf function, it uses caller save registers.

■ Since there are no function calls, these do not have to be saved at all.

■ This can be overwritten using a pragma TCS_no_caller_save.

■ The pragma needs to be used inside a function, otherwise it will not work.

"ex3d.c", line 7: Atomic function critical_section may not perform calls

tmcc Ðtmccom Ðallow_atomic_calls_ ÐÐ ex3d.c

votestISR(){
 #pragma TCS_handler
 ...

 voAckBFR1_ACK();
 #pragma TCS_break_dtree
 return;
}

{
 (long sequence of instructions)
 #pragma TCS_break_dtree
 (long sequence of instructions)
}

Chapter 6: Systems Programming

106 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Software Cache Support

This section tells you how to use custom operations that manipulate the cache.

Cache Copyback

TriMedia uses a write-back cache, which means that updates from the processor are not

made immediately, but only when the cache line is needed. This poses a problem that

can be illustrated in a PC development system using the IREF board.

■ On the PC the SDRAM from the IREF board is memory mapped.

■ The memory dump utility of tmgmon can be used to examine an address.

An example program is shown below.

This program illustrates the effect of the cache copyback operation.

■ To compile, use tmcc -host Win95 ex4b.c -o ex4b.out.

■ To run, use tmgmon.

■ The program prints the buffer address.

■ To view buf in SDRAM, specify DWORD with the address in tmgmon.

■ To view using the cache, use dump DP in tmgmon.

The command-line arguments must be specified. The first argument corresponds to a fill

pattern. The second argument is a flag indicating the use of copyback. Running the pro-

#include <tmlib/dprintf.h>
#include <ops/custom_ops.h>
#define SZBUF 16

main(int argc, char **argv){
 int i, wd1, wd2, flags;
 int *buf, *after;
 DP_START(1024,0);
 sscanf(argv[1], "%x", &fill);
 sscanf(argv[3], "%x", &flag);
 buf = (int *)_cache_malloc(SZBUF*sizeof(int));
 after = (int *)_cache_malloc(SZBUF*sizeof(int));
 for (i=0; i<SZBUF; i++) after[i] = fill;
 dump(" MEMORY ARRAY BEFORE (%08x)\n", buf);
 dump(" MEMORY ARRAY AFTER\n", after);
 for (i=0; i<SZBUF; i++) buf[i] = after[i];
 if (flag) copyback(buf, 4);

 for(;;){}
}
dump(char *fmt, int *buf){
 int i;
 DP((fmt, buf));
 for(i = 0; i<SZBUF; i+= 4){
 DP(("buf[%2d]: %08x %08x %08x %08x\n", i, buf[i], buf[i+1],
 buf[i+2], buf[i+3]));
 }
}

Chapter 6: Systems Programming

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 107

6

gram without copyback shows the SDRAM as being equal to the old value. Running the

program with copyback shows the memory as one would expect it to be.

Cache Invalidate

TriMedia does not see the effect of writes outside the CPU to the cache. This means that

cache contents must be invalidated after a DMA operation, or when getting data from

another processor.

■ On the PC, the SDRAM from the IREF board is memory mapped.

■ The memory dump utility of tmgmon can be used to patch an address.

An example program is shown below.

This program illustrates the effect of the cache invalidate operation.

■ To compile, use tmcc -host Win95 ex4c.c -o ex4c.out.

■ To run, use tmgmon.

■ To view using the cache, use dump DP.

#include <tmlib/dprintf.h>
#include <ops/custom_ops.h>
#define SZBUF 16
#define CLOCK_SPEED 100000000

main(int argc, char **argv){
 int i, fill, flag;
 int *buf, *after, secs;
 DP_START(1024,0);
 sscanf(argv[1], "%x", &fill);
 sscanf(argv[2], "%d", &secs);
 sscanf(argv[3], "%x", &flag);
 buf = (int *)_cache_malloc(SZBUF*sizeof(int));
 after = (int *)_cache_malloc(SZBUF*sizeof(int));
 for(i=0; i<SZBUF; i++) buf[i] = fill;
 copyback(buf, 4);
 dump(" MEMORY ARRAY BEFORE (%08x)\n", buf);
 pause(secs*CLOCK_SPEED);
 if(flag) invalidate(buf, 4);
 for(i=0; i<SZBUF; i++) after[i] = buf[i];
 dump(" MEMORY ARRAY AFTER (%08x)\n", after);
 for(;;){}
}
dump(char *fmt, int *buf){
 int i;
 DP((fmt, buf));
 for (i = 0; i<SZBUF; i+= 4) {
 DP(("buf[%2d]: %08x %08x %08x %08x\n", i, buf[i], buf[i+1],
 buf[i+2], buf[i+3]));
 }
}
pause(unsigned clicks){
 unsigned end = cycles() + clicks;

 while(cycles() < end){}
}

Chapter 6: Systems Programming

108 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ The program prints the buffer address, then pauses.

■ To patch buf in SDRAM, specify DWORD with the address of the buffer.

■ The buffer can be patched during the pause by typing over the old data.

■ To view the new contents after the pause, use dump DP.

The command-line arguments must be specified. The first argument corresponds to a fill

pattern. The second argument is the time to wait before the update (the number of sec-

onds at 100 MHz). The third argument is whether to invalidate the cache. Running the

program without invalidate shows the SDRAM as being equal to the old value. Running

the program with invalidate shows the memory as one would expect it to be.

Miscellaneous Issues

Code Checksumming

TriMedia architecture does not protect the code segment and it is possible for a store to a

wrong address to destroy part of your program. This occurrence is extremely difficult to

detect. Such behavior is also possible because of a DMA write by a peripheral to a wrong

address. In a PC environment, the board is memory mapped and destruction can be

caused by your host program

The program below shows how to checksum your code. _tmprof_init is a stub that is

linked at the end of the tmld command line. You can adapt this code to do checksum-

ming from the host.

Uninitialized Variables

Automatic variables are not initialized automatically. The content of the variable

depends on the previous stack contents.

int fib(n){
 if (n <= 3) return 1;
 return fib(nÐ1) + fib(nÐ2);
}
int checksum(unsigned char *from, unsigned char *to){
 int sum = 0;

 while (from != to) sum += *from++;
 return sum;
}

extern unsigned char _start[];
extern unsigned char _tmprof_init[];

main(){
 printf("checksum = %x\n", checksum(_start, _tmprof_init));
 fib(20);
 printf("checksum = %x\n", checksum(_start, _tmprof_init));
}

Chapter 6: Systems Programming

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 109

6

Use of an uninitialized variable can cause strange and unpredictable behavior. One

symptom of this is if your program is failing, but then works when you add a printf.

The compiler gives warnings about uninitialized automatic variables. It is important to

pay attention to these warnings.

Race Conditions

A race condition is a condition that depends on timing, because of an interrupt or a

peripheral. It corresponds to a bad use of a critical section. Race conditions are most fre-

quently encountered in combination with a multitasking system such as pSOS

One symptom is if your program works when you compile with -g, then stops working

at a normal level of optimization. Another symptom is if your program fails when com-

piled with a different level of optimization.

Race conditions are more likely in a multiprocessor systems and can be aggravated in

combination with incorrect cache programming. The best way to avoid race conditions

is to carefully program your critical sections

Chapter 6: Systems Programming

110 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 111

7

Chapter 7

Using Custom Operations

Topic Page

Introduction 112

Classes of Custom Operations 113

Chapter 7: Using Custom Operations

112 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

This chapter explains how to use custom operations. By adding custom operations to

your C program, you can take advantage of the highly parallel TriMedia implementa-

tion.

■ Custom operations permit DSP efficient programming at the C level.

■ Custom operations permit efficient programming of multimedia algorithms.

■ Custom operations can be used for vector computation and operate on data in paral-

lel (1, 2, or 4 elements).

■ In some other compilers, custom operations are called intrinsic operations.

For more information, see Chapter 4, Custom Operations for MultiMedia, in the appropri-

ate TriMedia data book. For examples of the use of custom operations, refer to

Chapter 12, Case Studies, in Book 2, the Cookbook.

Syntax

Below are some observations regarding syntax for custom operations (“custom ops” for

short).

■ A custom operation is defined by a prototype like a C function, using the keyword

“custom_op.”

■ The definition defines the type of the function and its operands.

■ The operation should be from Appendix A of the appropriate TriMedia data book.

■ The set of definitions is in the include file <ops/custom_defs.h>.

■ Some databook operations map to more than one custom op because of type.

■ The TM-1100 has additional custom ops.

An example of the definition of dspiadd taken from <ops/custom_defs.h> is shown

below. The dspiadd custom op is a signed 32-bit saturating add.

custom_op long dspiadd(long a, long b);

Chapter 7: Using Custom Operations

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 113

7

Classes of Custom Operations

Custom operations can be divided into the following classes, which are described in

more detail on the following pages.

Note
See Appendix A of the appropriate TriMedia data book for the exact
semantics of each operation.

In the following tables, the “Result Type” refers to a single element, and the
“#operands” refers to the definition of the custom op.

Operations on Vectors of Four Elements

The operations shown below operate on two 32-bit words treated as two four-element

vectors (8 bits).

■ dspuquaddaddui adds two vectors of four bytes.

■ quadumulmsb multiplies two vectors of four bytes.

Class of Operator Page

Operations on Vectors of Four Elements 113

Operations on Vectors of Two Elements 114

Vector-to-Scalar Computation 115

Multiple Precision Arithmetic 115

Clipped Computation 116

Floating Point 116

Vector Data Packing and Rearrangement 117

Minimum, Maximum, and Absolute Value 118

Shift and Rotate 119

Processor Control 119

Cache Control 120

Conditional Computation 120

Result Type Operation #Operands Function

unsigned char dspuquadaddui 2 Quad clipped add.

unsigned quadumulmsb 2 Quad multiply.

unsigned quadavg 2 Quad byte average.

Chapter 7: Using Custom Operations

114 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ quadavg computes the mean vector between two vectors of four bytes.

■ dspuquaddaddui is useful for adding an I-frame to a P-frame in MPEG. For this rea-

son, the first argument is unsigned and the second is signed.

■ quadavg can be used for superimposing two video images.

■ quadumulmsb can be used prior to quadavg for alpha blending.

■ The output of these instructions is clipped to an unsigned byte (see below).

Operations on Vectors of Two Elements

The operations shown below operate on two 32-bit words treated as two two-element

vectors (16 bits).

■ Audio data is often encoded in 16 bits.

■ dspidualadd adds two vectors together of 16 bits.

■ dspidualsub subtracts two vectors together of 16 bits.

■ The result of these instructions is clipped (see below).

■ These are useful for DSP applications, the Discrete Cosine Transform (DCT), and com-

plex arithmetic.

■ The clip instructions limit the output to the range of the second operand.

■ This is useful for the DCT and for saturated arithmetic in DCT applications.

■ dspidualabs computes the absolute value and clips.

■ dspidualmul multiplies two vectors together of 16 bits.

■ The result is clipped to a signed range (see below) and corresponds to the low-order

16 bits.

■ dualiclipi and dualuclipi are not available on the TM-1000.

Result Type Operation #Operands Function

signed short dualiclipi 2 Dual 16 bit signed clip.

unsigned short dualuclipi 2 Dual 16 bit unsigned clip.

signed short dspidualabs 2 Dual signed absolute value 16 bits.

signed short dspidualadd 2 Dual signed add 16 bits.

signed short dspidualsub 2 Dual signed subtract 16 bits.

signed short dspidualmul 2 Dual signed multiply 16 bits.

Chapter 7: Using Custom Operations

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 115

7

Vector-to-Scalar Computation

The operations shown below perform vector-to-scalar computation.

■ These instructions operate on a vector and produce a scalar result.

■ ume8uu computes the distance vector between the inputs and sums up.

■ The “fir” instructions compute a sum of products for two or four elements.

■ The result is represented in full precision (32 bits).

■ The ifir16 and ufir16 instructions are useful for complex arithmetic, for the DCT, for

the Fast Fourier Transform, and in vector processing and DSP applications.

■ The ume8ii and ume8uu instructions are useful for motion estimation in video appli-

cations.

■ The fir instructions on 8-bit data operate on twice as much data, but with half the

precision at the same speed.

Multiple Precision Arithmetic

The operations shown below are useful in multiple precision arithmetic.

■ The carry and borrow instructions can be used to add vectors of long numbers.

■ The imulm and umulm instructions can be used for DSP fractional arithmetic in com-

bination with a multiply.

Result Type Operation #Operands Function

signed short ifir16 2 Dual signed scalar product.

unsigned short ufir16 2 Dual unsigned scalar product.

signed char ifir8ii 2 Quad scalar product.

signed char ifir8ui 2 Quad scalar product.

signed char ufir8uu 2 Quad scalar product.

signed char ume8ii 2 Quad sum of absolute value of
signed differences).

unsigned char ume8uu 2 Quad sum of absolute value of
unsigned differences.

Result Type Operation #Operands Function

unsigned carry 2 Carry from unsigned add.

unsigned borrow 2 Carry from unsigned subtract.

signed long imulm 2 Multiply high-order 32 bits.

unsigned long umulm 2 Multiply high-order 32 bits.

Chapter 7: Using Custom Operations

116 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ These instructions are useful for cryptographic and other applications.

Clipped Computation

The operations shown below perform clipped computation.

■ These instructions are useful for DSP applications.

■ dspiadd adds two numbers but saturates in case of positive or negative overflow.

■ dspiadd is the same for unsigned numbers.

■ dspisub subtracts two numbers.

■ The clip instructions are useful to limit a value to a range.

■ Unsigned clipping is the same as a minimum computation.

■ Signed clipping limits the result to [-M-1 to M].

Floating Point

The operations shown below perform operations on floating-point values.

Result Type Operation #Operands Function

signed long dspiadd 2 Clipped 32-bit add.

unsigned long dspuadd 2 Clipped 32-bit add.

signed long dspimul 2 Clipped 32-bit multiply.

unsigned long dspumul 2 Clipped 32-bit multiply.

signed long dspisub 2 Clipped 32-bit subtract.

signed long iclipi 2 32-bit clipping.

unsigned long uclipi 2 32-bit clipping.

unsigned long uclipu 2 32-bit clipping.

unsigned long iavgeoneop 2 Average of two operands.

Result Type Operation #Operands Function

float fsqrt 1 Floating square root.

float fabsval 1 Floating absolute value.

float fsign 1 Sign of floating point value.

float ifloatrz 1 Convert integer to floating.

float ufloatrz 1 Convert integer to floating.

signed long ifixieee 1 Convert floating to integer.

Chapter 7: Using Custom Operations

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 117

7

■ These instructions are useful for getting better performance with floating point.

■ The fabsval and fsign instructions eliminate branches that impact performance on

VLIW.

■ The fsqrt routine computes a square root in 17 cycles.

■ For fsign, the result is -1, 0. or 1 depending on the sign of the argument.

■ The ifixrz and ufixrz instructions can be used to perform rounding to zero as specified

by C.

■ The ifixieee and ufixieee use the four rounding modes specified by the IEEE-754 stan-

dard.

Vector Data Packing and Rearrangement

The operations shown below operate on vectors of two or four elements. They perform

data packing and rearrangement.

■ Rearrangement of data is frequently necessary in signal processing and vector compu-

tation.

■ The funnel shifts are useful for filters, for the fixed-point FFT, and for motion estima-

tion.

■ pack16msb and pack16lsb are useful for the DCT and its inverse.

unsigned long ufixieee 1 Convert floating to integer.

signed long ifixrz 1 Convert floating to integer.

signed long ufixrz 1 Convert floating to integer.

Result Type Operation #Operands Function

short pack16lsb 2 Pack 16 least significant bits.

short pack16msb 2 Pack 16 most significant bits.

char packbytes 2 Pack least significant bytes.

char mergemsb 2 Merge most significant bits.

char mergelsb 2 Merge least significant bytes.

long funshift1 2 Funnel shift.

long funshift2 2 Funnel shift.

long funshift3 2 Funnel shift.

unsigned char ubytesel 2 Byte select.

signed char ibytesel 2 Byte select.

Result Type Operation #Operands Function

Chapter 7: Using Custom Operations

118 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ mergemsb and mergelsb are useful for the DCT in MPEG.

■ Funnel shifts can be used to perform unaligned data accesses.

■ For more information, refer to Appendix A of the appropriate TriMedia data book.

Minimum, Maximum, and Absolute Value

The operations shown below perform minimum, maximum, and absolute value compu-

tations.

■ Minimum and maximum instructions replace branches that impact performance on

VLIW architectures.

■ The quadumin and quadumax operate on four elements at a time. These operations

are not available on the TM-1000.

■ These greatly increase the performance of median filtering.

■ This is a key algorithm in interlaced-to-progressive scan conversion and image pro-

cessing.

■ iabs computes the absolute value in one cycle.

■ dspiabs computes the absolute value in two cycles and clips.

Result Type Operation #Operands Function

signed long imin 2 Integer minimum.

signed long imax 2 Integer maximum.

unsigned umin 2 Integer minimum.

unsigned uclipi 2 Integer maximum.

float fmin 2 Floating minimum.

float fmax 2 Floating maximum.

unsigned char quadumin 2 Quad minimum.

unsigned char quadumax 2 Quad maximum.

signed long iabs 2 Absolute value.

signed long dspiabs 2 Clipped absolute value.

Chapter 7: Using Custom Operations

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 119

7

Shift and Rotate

The operations shown below perform shift and rotate computations.

■ The rotate instructions are useful for compression and decompression of multimedia

bit streams.

■ The rol instruction takes a variable count and roli takes a fixed count.

■ The dualasr instructions are useful for implementation of 9-bit conformant MPEG

video.

■ Normal C syntax can be used for left and right shifts (signed and unsigned).

■ dualasr is not available on the TM-1000.

Processor Control

The operations shown below perform processor control.

■ These instructions are useful for performance analysis and signal processing.

■ Using the cycles counter, the exact time in a code segment can be bracketed.

■ This is also useful for timestamps in multimedia streams.

■ The processor order is programmable using readpcsw.

Result Type Operation #Operands Function

signed short dualasr 2 Dual arithmetic shift right.

long rol 2 Rotate left.

long roli 2 Rotate left immediate.

Result Type Operation #Operands Function

long readpcsw 0 Read processor control and status
word.

void writepcsw 2 Write processor control and status
word.

unsigned long cycles 0 Read clock cycle counter, lsb.

unsigned long hicycles 0 Read clock cycle counter, msb.

unsigned long curcyles 0 Read current clock cycle counter,
lsb.

unsigned long readspc 0 Read source program counter.

unsigned long readdpc 0 Read destination program counter.

void writedpc 1 Write destination program counter.

void writespc 1 Write source program counter.

Chapter 7: Using Custom Operations

120 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

■ The second argument is a mask.

■ The last four instructions are used to program interrupt and exception handlers for

the IEEG rounding mode.

Cache Control

The operations shown below are useful for cache control. A combination of hardware

and software is used for cache control on TriMedia.

■ Cache control uses a combination of hardware and software on TriMedia.

■ The copyback and invalidate instructions are useful for programming with DMA

peripherals, when using TriMedia in a PC system, and for multiprocessor TriMedia

systems.

■ The prefetch instruction is useful for improving cache performance for video-

conferencing.

■ The allocate instruction is useful for reserving a stack frame for compilers.

■ The starting and ending addresses for these instructions should be cache-aligned

(64 bytes).

■ Incorrect use will result in unpredictable results that are difficult to debug.

Conditional Computation

The operations shown below are useful for conditional computation.

Result Type Operation #Operands Function

void copyback 2 Update memory from cache.

void invalidate 2 Discard memory in cache.

void prefetch 2 Preload memory to cache.

void allocate 2 Discard contents.

Result Type Operation #Operands Function

signed long inonzero 2 If non-zero, select zero.

float fnonzero 2 If non-zero, select zero.

signed long iflip 2 If non-zero, negate.

signed long izero 2 If zero, select zero.

float fzero 2 If zero, select zero.

long mux 3 Select between two arguments.

float fmux 3 Select between two arguments.

Chapter 7: Using Custom Operations

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 121

7

■ These instructions eliminate branches that impact performance on VLIW architec-

tures.

■ mux and fmux replace a C conditional operator (?:) with a guard.

■ mux and fmux are scheduler operations.

■ The “zero” instructions replace a conditional operator where one of the results is

zero.

■ The V2.0 compiler can generate code automatically for these operations in most

cases.

Chapter 7: Using Custom Operations

122 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 123

8

Chapter 8

TriMedia C/C++ Languages

Topic Page

Introduction 124

Standards and Compatibility 124

Language Extensions 126

Implementation 131

Implementation-Defined Behavior 142

C++ Language Definition 155

Implementation Specifics 163

Chapter 8: TriMedia C/C++ Languages

124 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

This chapter defines the C programming language as implemented for the 32-bit variants

of the TriMedia family of microprocessors. This chapter only describes the differences

between the TriMedia implementation of the C programming language, the ISO C lan-

guage standard, and various C dialects. It is not intended as a complete language refer-

ence.

The following sections describe standards and compatibility, extensions to ISO C, and

implementation issues.

Standards and Compatibility

Relevant Standards

This implementation of the C programming language is based on the following stan-

dards.

■ American National Standard for Programming Languages—C, ANS X3.159—1989

■ ISO/IEC 9899:1990

■ Technical Corrigendum 1 (1994) to ISO/IEC 9899:1990

■ IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE 754-1985

Additionally, the compiler supports the concept of restricted pointers, as proposed by the

Numerical C extensions group in

■ X3J11/95-049, WG 14/N448,

available from ftp://ftp.dmk.com/DMK/sc22wg14/c9x/aliasing/.

Note that “ANS X3.159—1989” is the basis for the later ISO standard “ISO/IEC

9899:1990,” which includes the prior standard in its entirety, with only minor editorial

changes, notably section renumbering. All prior references to “ANSI C” or “Standard C”

are equivalent to, and replaced by, references to ISO C, since ISO working group WG14

now controls the common C standard.

The ISO C standard has also been adopted as Federal Information Processing Standard

(FIPS) 160.

Compatibility Considerations

The TriMedia C compiler is primarily an ANSI C compiler. However, some extensions

have been added. These extensions are ones either likely to be approved in future stan-

dard revisions, or ones in common use in other ANSI C compilers. Note that language

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 125

8

extensions in conflict with the ISO C language standard are implemented under control

of compile time switches, allowing for verification of compliance with the standard.

See Chapter 2, Using the C Compiler, for details regarding compiler options.

Additional Reading

For specific details on the TriMedia processor, refer to the appropriate TriMedia data

book.

For a complete definition of the ISO C language or programming in C, consult the fol-

lowing resources:

The C Programming Language (Second Edition)

Kernighan & Ritchie

Prentice-Hall

ISBN 0-13-110362-8

The Annotated ANSI-C Standard, ANSI/ISO 9899-1990

Annotated by Herbert Schild

Osborne/McGraw-Hill

ISBN 0-07-881952-0

C, A Reference Manual (Fourth Edition)

Samuel P. Harbison & Guy L. Steele Jr.

Prentice-Hall

ISBN 0-13-326224-3

Chapter 8: TriMedia C/C++ Languages

126 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Language Extensions

Alternate Extended Reserved Words

The following are extended reserved words. These reserved words are not defined or

allowed by the ISO C standard.

■ custom_op

■ pragma

■ restrict

■ inline

The compiler provides the following alternate reserved words as replacements when ISO

C compliance requires that recognition of the extended reserved words be disabled.

■ __custom_op__

■ __pragma__

■ __restrict__

■ __inline__

To avoid potential conflicts with otherwise standard conforming programs, we recom-

mend you use the alternate reserved word form. You can easily redefine the alternate

reserved words as the extended reserved words.

Future implementations may not support the extended reserved word form.

Custom Operators

Custom operators are provided to allow direct access to all machine-level operations

from the C programming level. For the most commonly used operators there is an

include file custom_defs.h that provides prototypes. This file must be included with

This file defines the custom operations in capitals, which allows the user to compile and

run the program on the TriMedia system, as well as on the native host.1

During TCS compilation, the definitions in custom_defs.h are mapped to the definitions

that reside in the file custom_ops.h, which describes the most commonly used operators

in a syntax that the TriMedia compiler can understand. Only the operations described in

custom_ops.h are officially supported at the current time. Although other machine oper-

#include <ops/custom_defs.h>

1. Compilation and execution on the native host system are unsupported features of the compilation system.
Include files may be found in the directory include/<native host>/custom_ops (for example, include/
SunOS/custom_ops). This directory has to be added to the include file search path with the -I option to the
native compiler. Furthermore, accompanying object files need to be linked in to the application. These
may be found in the directory lib/<native host>/custom_ops (for example, lib/SunOS/custom_ops).

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 127

8

ations will be accepted by the compiler, they have not received the extensive testing that

the ones in custom_ops.h have. In any case, the compiler knows what the prototype

should look like based on the description of the machine. Any prototype declared differ-

ently from this internal description will be flagged as in error.

Custom operations are declared as ISO C prototype function declarations using the stor-

age class specifier custom_op. The use or declaration of a custom operator has exactly the

same semantics as a prototyped ISO C function declaration or call, with the following

additional constraints.

■ A custom operation is not an addressable object.

■ The custom_op specifier only applies to custom operator declarations.

■ The declarative and executable forms of parameterized and unparameterized custom

operations must match.

■ The parameter argument to a parameterized custom operation must be an integer

constant expression and is not allowed in the declarative form.

If custom operations are memory-accessing operations (such as loads or stores) they are

assumed volatile and the compiler generates dependency constraints.

Parameterized custom operators are those hardware operations that require an integer

modifier. For instance, the first parameter in an iaddi(long immediate_value, long value)

instruction is an opcode modifier and should be a constant or a constant expression.

Refer to the appropriate TriMedia data book for more information on machine opera-

tions.

The compiler generates all appropriate conversions as for a prototyped function call and

returns the integer type result of the application of the machine operation dspiadd to j

and 1, as shown in Figure 7.

Figure 7 Definition and Use of an Unparameterized custom_op

Figure 8 shows the use of a parameterized custom operation iaddi. The parameter “2” is

passed through to be generated as the opcode modifier of the emitted operation.

Figure 8 Definition and Use of a Parameterized custom_op

The V2.0 TriMedia Compilation System, like the V1.1 TriMedia Compilation System,

supports custom ops in C++.

int i,j;
custom_op long dspiadd(long, long) ;
i = 2 + dspiadd(j,1) + 3 ;

int i,j;
custom_op long iaddi(unsigned long, long) ;
i = 2 + iaddi(2, j) + 3;

Chapter 8: TriMedia C/C++ Languages

128 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

The Pragma Statement

A pragma statement has been added to the language. The compiler ignores all undefined

syntactically correct pragmas, and produces a warning for those.

The syntax of the pragma statement is

where <expr> is any syntactically well-formed expression in the ISO C language. The

expression is the pragma directive and, in general, is a name, a list of names, or some

simple expression form. An ill-formed expression will cause an unavoidable syntax error.

For a list of supported pragmas, see C Language Pragmas in Chapter 2.

Note
Because pragmas are treated as statements, you must enclose a block of
statements that includes a pragma in braces. The else section below gives
an example:

if(a)
 b: ...

else {

 #pragma break_dtree

 c: ...
}

The asm Statement

The compiler does not support the asm statement. Specific machine operations are

explicitly available at the “C” level.

Restrict

The implementation of the restrict keyword is based on the paper Restricted Pointers in C

by the Numerical C Extensions Group of ANSI X3J11. This paper (WG14/N448, X3J11/

95-049) may be found at ftp://ftp.dmk.com/DMK/sc22wg14/c9x/aliasing.

The restrict reserved word is added syntactically to the set of type qualifiers. It can be

applied only to pointer types. Declaring a pointer to be restricted is an assertion by the

programmer that no variable and no other restricted pointer will be used as alias for the

object that the pointer references for as long as the restricted pointer is in scope. How-

ever, aliasing via a “normal” pointer is still allowed; that is, a nonrestricted pointer in the

same scope as the restricted pointer may point to the same object.

Declaring a pointer to be restricted gives it aliasing properties similar to those of vari-

ables. In C, variables define private, non-overlapping memory regions. The C compiler

need not generate ordering constraints between loads or stores, either from or to distinct

variables, because it knows the memory references must refer to distinct objects.

pragma <expr>;
#pragma <expr>

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 129

8

Aliasing problems for the C compiler arise from the use of pointers. Without extensive

analysis, the compiler must assume that each global variable and each local variable for

which the address has been taken may alias with any pointer. Therefore, the compiler

must be conservative and generate ordering constraints between the memory accesses of

such variables and the memory accesses via pointers.

In many cases, a pointer argument to a function references a private memory region that

the function accesses exclusively through the pointer. Often, the region is a variable that

is not even within the scope of the function. An example of this is shown in Figure 9,

where function foo passes references to local array variables lsample and left_time to

function subbandsyn. In this case, the programmer knows these pointers will never alias

with each other, nor with any variable in scope, but since this information is not avail-

able to the compiler in function subbandsyn, the compiler must assume that these

pointers might alias with each other or with any global variable.

Figure 9 Passing References to Variables

The restrict qualifier lets you tell the compiler that a pointer reference does not alias, so

it allows the compiler to generate more efficient code. Figure 10 shows how function

subbandsyn in the example could be modified to assert that the function arguments ip

and op point to private nonoverlapping memory regions.

IMPORTANT
It is the responsibility of the programmer to guarantee the correctness of
the assertions implied by the use of restrict.

Figure 10 Making Pointers Restricted

Restricted pointers can improve the performance of a program. However, when improp-

erly used, the compiler may generate code for the program that does not operate as

expected.

As a type qualifier, restrict only has meaning for lvalues. In other words, only locations

containing pointers can be restricted, and the assertion applies to the pointer contained

by the location. There is no further restriction on the use of restrict: any variable of

pointer type may be restricted, including local variables, global variables, function argu-

ments, structure members, and array elements. Figure 11 shows some examples of

void subbandsyn(float *ip, int *op){
 ...
}
foo(void){
 float lsample[96];
 int left_time[96];
 subbandsyn(lsample, left_time);
 ...
}

void subbandsyn(float * restrict ip, int * restrict op){
...
}

Chapter 8: TriMedia C/C++ Languages

130 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

restricted pointer declarations. In the function foo, all of the pointers in scope are

declared restricted. The compiler may assume that each pointer must reference a distinct

object. However, the compiler may not be able to determine whether two address expres-

sions refer to the same restricted pointer (for example, restricted_ptrs[*a] and

restricted_ptrs[*c]). In this situation, the pointers, although restricted, are assumed to

alias.

Figure 11 Examples of Restricted Pointers

Long Float

The long float type specifier is a synonym for double.

This extension is minimally useful and is provided for compatibility reasons only.

Constants

The overflow of an integer, float, wide character, or string escape constant generates a

warning, rather than an error. The TriMedia C compiler allows for turning off all warn-

ing-level diagnostics.

The ISO C standard requires a diagnostic be issued on constant overflow.

Bitfields

The TriMedia C compiler allows signed and unsigned bitfields of char, short, or long

types, as well as int type.

The ISO C standard allows only signed or unsigned bitfields of int type.

The maximum number of bits in a bitfield is equivalent to the number of bits in the

specified type.

typedef struct {
 int * restrict p
} MyStruct, *MyStructPtr;

typedef int * restrict Rintp;

Rintp restrict_ints[345];
MyStructPtr restrict_ptrs[345];

extern Rintp restrict_int;

foo(Rintp a, MyStruct b){
 Rintp c;

/* All pointers currently in scope are restricted and therefore must point to
 * distinct objects. */
}

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 131

8

In little-endian mode, the bitfield allocation is compatible with the Microsoft Version

2.2 C compiler.

Implementation

The information in this section is intended for programmers who require detailed

knowledge of the implementation to write system-level interface routines, library sup-

port, or hand-optimized code.

This section defines machine-specific aspects of the C programming language as imple-

mented for the TriMedia processor series. It includes sections on basic data representa-

tion, alignment, parameter passing, function call, function return and stack, register,

and memory usage conventions.

Data Representation

The following table summarizes the sizes of the basic data types in the TriMedia C lan-

guage.

The integer data types char, short, int, and long are, by default, signed types.

The integer data types are expressed as two’s complement 8-, 16- or 32-bit, signed or

unsigned values. The default byte-ordering is big-endian.

Without the -uselongdouble64 option, all floating-point data types are represented as

32-bit, single-precision values. A float value consists of a sign bit, followed by an 8-bit

biased exponent, followed by a 23-bit mantissa (not including the hidden bit). Values of

type float, double, and long double are stored in IEEE Floating Point Standard P754, sin-

gle-precision representation, but denormalized values are not supported by this imple-

mentation. The floating-point representation is discussed in detail later in this chapter.

With the -uselongdouble64 option, floating-point data types float and double are repre-

sented as 32-bit, single-precision values, as described above. Floating-point data type

Type Size (in Bytes)

char 1

short 2

int 4

long 4

float 4

double 4

long double 4 or 8

pointer 4

Chapter 8: TriMedia C/C++ Languages

132 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

long double is represented as a 64-bit, double-precision value. A long double value con-

sists of a sign bit, followed by an 11-bit biased exponent, followed by a 52-bit mantissa

(not including the hidden bit). Values of type long double are stored in IEEE Floating

Point Standard P754 double-precision representation. Long double floating point opera-

tions are performed in software, not with TriMedia hardware operations.

Alignment Requirements

This table summarizes the alignments of the basic data types in the TriMedia C language.

All variables must be aligned to 1-, 2- or 4-byte boundaries, depending on their types, as

follows:

■ Type char variables may be aligned on any byte boundary.

■ Type short variables must be aligned on any half-word, or 2-byte, boundary.

■ All other basic data types require full-word, or 4-byte, boundary alignment.

■ Arrays require the same alignment as their element type, unless you use -Xalign.

■ Structures and unions are aligned according to the alignment requirements of the larg-

est member. They are padded internally to preserve the alignment requirements of

their members and padded at the end to ensure that each element of an array of such

a struct or union type would have proper alignment. In little-endian mode, the bit-

field alignment is compatible with the Microsoft Version 2.2 C compiler.

■ All pointer values are required to be properly aligned for the object type of the

pointer.

Loading or storing a value using a pointer containing an improperly aligned address

causes an undefined result. A common poor programming practice is to assume that all

Type Alignment

char 1

short 2

int 4

long 4

float 4

double 4

long double 4

pointer 4

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 133

8

data types are byte-addressable. The problem is compounded by its intractability, since

such uses cannot be detected at compile time. The following is an example.

Naming Conventions

For function and variable names, the compiler prepends an underscore (_) to the name.

The compiler internally generates names of the form _I.nn (where nn represents an inte-

ger value) as labels for initializer expressions. Local static variables are renamed

_name.LSnn.

Internal C library functions and system-support functions reserve the use of function

and variable names that begin with an underscore to avoid clashes with user-defined

names.

All implementation-defined extensions and macro names must have prepended and

appended double underscores, (__), to the name, for example, __name__.

IMPORTANT
The compiler front end (tmcfe) uses the “__0” prefix when it converts C++
names into C format. Consequently, some “valid” names may conflict with
previous declarations which appear to be unrelated. For example, the
following C++ program will not compile with tmcc:

float __0dDfooBx;
class foo {
 static int x;
};

This is because the mangled name for the static member of the class
conflicts with the float declaration. We highly recommend that you follow
the ANSI standard. At least do not prefix any identifiers with the special
string “__0”.

Memory Layout

Memory can be categorized as dynamically or statically allocated. Statically allocated

memory includes the compiler-generated text, data1, data, and bss segments. Dynami-

cally allocated memory includes the stack, heap, and available memory areas.

int foo(char *cp){
 int *ip;
 ip = (int *) cp; /* cp is improperly aligned for an int type */
 return *ip; /* causing the result to be undefined */
}

Chapter 8: TriMedia C/C++ Languages

134 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Figure 12 shows the relative position of dynamic and static memory areas.

Figure 12 Memory Layout

Statically Allocated Memory

The .data1 and .text segments are read-only initialized static memory. The compiler

places all initialized data in the .data segment. The .data segment is writable.

The compiler places all uninitialized static or global variables in the .bss segment. The

system guarantees that .bss is initialized to all zeros. The .bss segment is writable.

Dynamically Allocated Memory

The stack frame is bounded by the frame pointer and stack pointer registers. At program

start, the stack pointer is initialized to the top of available memory. The stack grows

down, toward the heap.

The heap is used by malloc via the underlying system call _sbrk. The heap grows up,

toward the stack.

In a free-standing or embedded system environment, the programmer is responsible for

ensuring that the stack and heap never collide.

Direct allocation of stack memory is achieved via the built-in compiler function alloca.

Available Memory

.bss

.data

.data1

Stack

Heap

Static Memory

High Address
0xFFFFFFFF

Low Address
0x00000000

Direction of
heap growth

.text

Direction of
stack growth

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 135

8

Register Usage Conventions

Table 17 defines the current C compiler usage conventions for the TriMedia processor

register set. It is intended as generic reference, to provide background for later discus-

sions on calling conventions.

Future compiler and scheduler register usage conventions may change as necessary.

Callee vs. Caller Saved Registers

Except for very simple functions, all compiled C functions need a register working set, that

is, a certain number of global registers for holding values during inter-decision tree

jumps. Because any global register might already be allocated for use by the calling func-

tion, some convention between callers and callees must exist to ensure that none of the

caller’s values are lost during the call. Two well-known conventions for freeing such reg-

ister sets are callee saving and caller saving. The TriMedia compiler uses both of these con-

ventions.

Callee saving refers to the convention of saving the contents of each global register used

in a function by the function itself. Typically, such registers are saved and restored in the

Table 17 Register Usage Conventions

Register Definition

r1 r1 is predefined as 1.

rp (r2) rp is the return pointer. On entry to a function, it contains the return address.
For framed functions, rp is not saved. For frameless functions, rp can be saved
in a register to speed up the function return.

fp (r3) fp is the frame pointer. It points at the base of the current stack frame. fp is not
always updated and is, strictly speaking, not part of the calling convention. For
programs compiled with -g, the frame pointer is always updated.

sp (r4) sp is the stack pointer. It points at the last word in use by the current stack
frame.

rv (r5) rv is the return value register. If the return value is a scalar, it is returned in rv.
The return of struct or union values is through a copy, on exit, to an address
supplied as a hidden incoming argument.

r5 to r8 Registers r5 through r8 inclusive are argument registers. The first four function
arguments of basic type are placed in the argument registers. Note that r5 is
the return value register as well as the first argument register.

r9 to rn–1 Registers r9 through rn–1 inclusive comprise the global register pool. These
registers are used by the compiler for global register allocation. In this pool,
registers r9 up to and including r32 are callee save registers, registers r33 up to
and including r63 are caller save registers. Note that n is currently 64.

rn .. r127 Registers rn through r127 inclusive comprise the decision tree local register
pool. Note that n is currently 64.

Chapter 8: TriMedia C/C++ Languages

136 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

function’s prologue and epilogue, which is the case for the TriMedia compiler. In this

convention, the caller can trust that its register values will not be overwritten by the

functions it calls. The disadvantage is that the callee generally does not know whether

the registers it saves/restores actually contain important values (they might not be used

by the caller).

Caller saving refers to the convention of letting the contents of the caller’s registers be

saved and restored by the caller itself. In this scheme, the callee can trust all the registers

are available for use without the obligation of saving/restoring the original contents. The

advantage here is that the caller can often let the saving and restoring be shared by sev-

eral consecutive calls, thereby reducing the number of saves/restores during execution.

The disadvantage, as in callee saving, is that the caller generally does not know whether

the registers it frees are actually used by the callee. The caller saving convention can alto-

gether prevent register saving/restoring for most leaf functions.

The TriMedia compiler implements callee and caller saving as follows: Registers 9

through 32 are defined as callee-saved; Registers 33 through 63 are defined as caller-

saved. Caller-saved registers currently are only used by leaf functions, and are available

for local use (by the scheduler) when not in use. Note with this current restriction the

term “caller saving” is somewhat of a misnomer, since the caller-saved registers are only

used in situations in which saving is unnecessary.

Calling Conventions

This section describes the function calling sequence. In general, function call overhead is

almost entirely placed on function entry and exit, the assumption being that the compi-

lation system will use procedure inlining whenever possible to eliminate expensive call

sites.

There are several steps involved in executing a function call. At the call site, the argu-

ments must be loaded prior to executing the call. At function entry, the new stack frame

must be set up and the values of the callee-saved registers used by the function must be

saved. At function exit, the old stack frame and the values of the callee-saved registers

must be restored and the return value must be loaded.

Argument Passing

In standard C, all arguments are passed by value. Prior to the actual call operation, all

argument expressions are evaluated. The resulting values are placed on the stack in the

current frame’s outgoing argument area. The evaluation of the argument expressions

and the loading of the actual argument values are two discrete operations and generally

cannot be interspersed.

The actual arguments are always promoted via the default argument promotion rules,

regardless of whether the actual function called is defined with a prototype parameter

list.

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 137

8

Excluding arguments placed in registers, the actual arguments are placed in ascending

address order based on the stack pointer (sp). The implementation uses sp as the outgo-

ing argument base register. The frame pointer is only used for large stack frames or for

functions calling the compiler-supported alloca routine.

Up to four arguments are selected and passed in argument registers r5 through r8. Regis-

ter arguments are selected by scanning the argument list from left to right and taking the

first four non-structure and non-union parameters. If a structure or union parameter is

encountered during the scan, it is simply skipped and the scan continues. Parameters

that live in registers do not have stack space allocated unless:

■ The function is a stdarg function

■ The program is compiled with the -varargs option;

■ When parameters that could have been stored in registers would exceed the four reg-

isters used.

ANSI stdargs functions follow a slightly different calling convention. The fixed argu-

ments (the ones before the ellipsis, if any) are passed using the normal calling conven-

tion rules outlined earlier. Starting at the ellipsis argument, all remaining arguments are

unconditionally placed on the stack regardless of the number of argument registers still

available.

Note
For a call to be considered a stdargs call, the called function's prototype
must be in scope. A non-prototyped call to a stdargs function will not work
correctly.

Old C varargs functions are unsupported. Currently, they work with some limitations.

The first limitation is that no structures or unions may be passed to a varargs function.

The second limitation is that the function definition must properly use the macros in

varargs.h. The arguments are passed to a varargs function using the standard calling con-

vention. The third limitation is that functions having old-style variable number of argu-

ments and all functions calling these functions should be compiled with the -varargs

option1.

Structure-returning functions have a hidden first argument that identifies the address into

which the returned structure value is stored. The compiler allocates a temporary (or uses

a program variable if allowable) and generates the push of its address as part of the argu-

ment passing sequence for such a function.

Function Call

The return address is loaded in the return pointer register (rp). The branch to the target

function is executed.

1. This is because of stackframe optimizations, which are, by default, on. The compiler must reserve stack-
space at the caller of a varargs function to enable the varargs function to save the register parameters on
the stack. Since for varargs functions there is not always a prototype in scope, it would mean that, without
having the -varargs option, the compiler always had to reserve the stackspace.

Chapter 8: TriMedia C/C++ Languages

138 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

At Entry

The old frame pointer value is saved when the frame pointer is used by this function. In

that case, the frame pointer is set to the base of the current frame (old frame's sp). The

stack pointer is set to the end of the current frame. The return pointer (rp) is saved, as are

all function-level callee-saved registers. If necessary, the contents of the incoming argu-

ment registers are stored. For varargs functions, the arguments that contain variable

parameters are always saved to their corresponding stack locations.

If the function is an interrupt service routine (or handler), the argument registers are saved,

as well as the processor’s destination program counter (DPC). This DPC contains the

return address for handlers. For non-interruptible handlers, the interrupt enable bit (IEN)

in the processor status word is cleared after a save of the old status word for later restora-

tion of this bit.

If the function is an exception handler (see Chapter 11 of Book 2, the Cookbook), the argu-

ment registers are saved and DPC is stored to r5, the first incoming parameter of the

exception handler.

At Exit

Upon function exit, the return value register (rv) is loaded (if used). The frame pointer

(when used) and stack pointer are reset to their old values, all callee-saved registers are

restored, and the return pointer is reloaded. Further actions depend on the type of func-

tion.

■ In the case of a normal function, this reloaded return pointer is used as the return

address.

■ In case of an interrupt service routine (handler), the argument registers are restored

and the saved DPC is reloaded and used as a return address.

■ In the case of a noninterruptible handler, the saved processor status word is reloaded

and used to restore the IEN.

■ If the function is structure returning, the returned structure value is copied to the

address supplied as the hidden structure return address argument.

After Return

After return from the called function, it is sometimes necessary to save the contents of

the return value register (rv) if the value of rv is required past intervening calls.

Atomic Functions

Atomic functions can be created with the TCS_atomic pragma. Atomic functions execute

outside of the calling convention just described. The compiler will not use any of the

computer’s global registers. It uses registers from the scheduler’s pool. The scheduler

might choose to use a caller-saved global register.

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 139

8

Function and Handler Entry/Exit Optimizations

The TCS implements the following function and handler entry and exit optimizations.

■ If the function/handler is a leaf function/handler (that is, if the function/handler has

no outgoing calls), the return pointer register (rp) is not saved. rp can also be saved to

a register to speed up the exit code.

■ The frame pointer (fp) is not saved for most functions. Only functions with large

stackframes of unknown size have a frame pointer.

■ If the function/handler is a leaf function/handler it uses caller save registers. Since

there are no function calls, these do not have to be saved at all. It is possible to over-

write this on either the command line or with a pragma TCS_no_caller_save.

■ If the function/handler entry extended basic block has exit edges, those edges can use

local register values rather than reading saved registers from memory.

■ If there are no local variables or outgoing arguments, the entire entry/exit setup can

be deleted. The function/handler then is a frameless function/handler.

■ In case of a leaf handler, the argument registers are not saved.

■ If the handler consists of a single extended basic block, neither the processor status

word nor the DPC is saved.

■ Atomic functions do not save or restore any of the global registers. They execute in

the scheduler’s register set.

Chapter 8: TriMedia C/C++ Languages

140 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Stack Conventions

The stack pointer (sp) is initialized at the start of the program to point to the top of avail-

able memory. As illustrated in Figure 13, the stack grows down from the top of memory

to the end of the heap.

Figure 13 Stack Frame Organization

Stack Calculation

The C run-time system maintains a stack used as the system stack. But when pSOS is

used, each pSOS task has its own stack. pSOS stacks can be monitored using the function

t_taskinfo. A prototype is given in $TCS/OS/pSOS/pSOSystem/include/psos.h. The

t_taskinfo function can be used to monitor the current size of the stack, and it also

records a high watermark.

Incoming Arguments

Stack-based incoming arguments are located in the caller’s frame. Incoming arguments

are addressed in ascending order, based on the frame pointer (fp). The first four argu-

ments of basic type are passed in registers and saved to the incoming argument area (if

required) on function entry. As illustrated in Figure 14, the incoming argument area is

Incoming Arguments

Caller’s Frame

Frame Pointer (fp)

Current Frame

Stack Pointer (sp)

Register Save Area

Temporaries

Outgoing Argument Area

Local Variables

High Address
0xFFFFFFFF

Low Address
0x00000000

Direction of
Stack Growth

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 141

8

assumed to be allocated by the called function regardless of whether any arguments are

stored there.

Figure 14 Stack-Based Incoming Arguments

Stack-based incoming parameters can be any of the following.

■ Structures or unions.

■ Parameters to a stdargs or varargs function.

■ Parameters that exceed the number of parameter registers.

Register Save Area

The register save area is located in the current frame. Space is reserved only for save-on-

entry global register uses. If rp and/or fp are saved, they are stored first in the frame, in

that particular order. Other saved registers are saved in ascending order after rp and fp.

Outgoing Argument Area

Outgoing arguments are loaded in ascending address order based on the stack pointer

(sp). Space is reserved for outgoing arguments beginning at (sp + 0). Since the first four

words of arguments get passed in argument registers, the first argument actually placed

on the stack is at (sp + 16).

The size of the outgoing argument area is the maximum size of all outgoing argument

lists or 16 bytes minimum for the four argument registers for stdarg and vararg func-

tions.

Note
A function using a variable argument list does not know the actual number
of arguments passed and must assume that all argument registers are in
use.

(fp+4)

(fp+0) Argument 0

Argument 0

Frame Pointer

Chapter 8: TriMedia C/C++ Languages

142 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Implementation-Defined Behavior

The ISO C standard requires each implementation to document its behavior in each of

the following areas. The behaviors are implementation-defined.

Note
The letters and numbers in parentheses refer to the relevant sections of the
C language standard.

Environment (G.3.2)

Figure 15 illustrates passing arguments to main.

Figure 15 Arguments to Main

Specific Area Behavior

The semantics of the arguments to
main (5.1.2.2.1)

The main function is passed two arguments, argc,
which is the number of command-line arguments,
and argv[] which is an array of pointers to the com-
mand-line arguments. At least one argument, the
name of the program, is always passed to main.
Currently, the simulator tmsim stores argv[] and
the command line arguments at the bottom of the
heap.

What constitutes an interactive device
(5.1.2.3)

An interactive device is one of the following: an
asynchronous terminal, a paired display and key-
board, or an interprogram connection.

int main (int argc, char *argv[]){
...
}

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 143

8

Identifiers (G.3.3)

Characters (G.3.4)

Specific Area Behavior

The number of significant initial char-
acters (beyond 31) in an identifier with-
out external linkage (5.1.2)

The number of significant initial characters in an
identifier without external linkage is over 2,048
characters.

The number of significant initial char-
acters (beyond six) in an identifier with
external linkage (5.1.2)

The number of significant initial characters in an
identifier with external linkage is over 2,048 char-
acters.

Whether case distinctions are signifi-
cant in an identifier with external link-
age. (5.1.2)

Case distinctions are significant in all identifiers,
with or without external linkage.

Specific Area Behavior

To what do members of the source and
execution character sets, except as
explicitly specified in the standard,
conform. (5.2.1)

The members of the source and execution charac-
ter sets conform to the ASCII character set.

The shift states used for the encoding
of multibyte characters (5.2.1.2)

There is no extended character set nor shift states
for encoding of multibyte characters.

The number of bits in a character in the
execution character set (5.2.4.2.1)

A character in the execution character set occupies
eight bits.

The mapping of members of the
source character set (in character con-
stants and string literals) to members
of the execution character set (6.1.3.4)

The mapping of source and execution character
sets is identical.

Chapter 8: TriMedia C/C++ Languages

144 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

The value of an integer character con-
stant that contains a character or
escape sequence not represented in
the basic execution character set or the
extended character set for a wide char-
acter constant (6.1.3.4)

Integer character constants are truncated so that
only the first character or escape sequence is repre-
sented. Further, the value of an integer character
constant is limited to the range of values repre-
sentable by a char type object.
Wide character constants are truncated so that
only the first wchar_t size characters or escape
sequences are represented. Further, the value of a
wide character constant is limited to the range of
values representable by a wchar_t type object.

The current locale used to convert
multibyte characters into correspond-
ing wide characters (codes) for a wide
character constant (6.1.3.4)

The current locale is “C.”

Whether a “plain” character has the
same range of values as a signed char-
acter or unsigned character (6.2.1.1)

The default char type is signed and has the same
range of values as type signed char.

Specific Area Behavior

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 145

8

Integers (G.3.5)

Note
Integer division is implemented with a call to the floating-point division
hardware. This may raise the sticky "INX" exception bit. Integer division
neither uses nor clears this bit. This issue must be addressed by any
developer wanting to use exceptions.

Specific Area Behavior

The representations and sets of values
of the various types of integers (6.1.2.5)

See Table 18 following.

The result of converting an integer to a
shorter signed integer, or the result of
converting an unsigned integer to a
signed integer of equal length, if the
value cannot be represented (6.2.1.2)

Converting to a shorter integer from a longer inte-
ger truncates the result value. Converting
unsigned to signed of equal length does not alter
the bit pattern of the result. In either case, the
result may be negative.

The results of bitwise operations on
signed integers (6.3)

Bitwise operations yield their results based on the
bitwise evaluation of the operands, including any
sign bits.

The sign of the remainder on integer
division (6.3.5)

The result has the same sign as the dividend.

The result of a right shift of a negative-
valued signed integral type (6.3.7)

The shift is signed. The sign of the operand is pre-
served.

Table 18 Integer Type Representations and Values

Type Bits Minimum Maximum

char 8 –128 127

signed char 8 –128 127

unsigned char 8 0 255

short 16 –32768 32767

signed short 16 –32768 32767

unsigned short 16 0 65535

int 32 –2147483648 2147483647

signed int 32 –2147483648 2147483647

unsigned int 32 0 4294967295

long 32 –2147483648 2147483647

signed long 32 –2147483648 2147483647

unsigned long 32 0 4294967295

Chapter 8: TriMedia C/C++ Languages

146 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Floating Point (G.3.6)

Specific Area Behavior

The representations and
sets of values of the vari-
ous types of floating-
point numbers (6.1.2.5)

Without the -uselongdouble64 option, the representation of
float, double, and long double values is the single-precision for-
mat specified in ANSI/IEEE Standard 754-1985, except that
denormals are not supported by this implementation. The IEEE
standard single-precision format consists of one sign bit, 8 expo-
nent bits, and 23 significand bits. The exponent bits represent a
binary exponent with bias 127, and an implicit hidden 1 bit fol-
lowed by a binary point appears to the left of the most signifi-
cant significand bit. Exponent 255 with nonzero significand
represents NaN (quiet if the most significant significand bit is 1,
signaling if it is 0); exponent 255 with zero significand represents
+Infinity or -Infinity; exponent 0 with nonzero significand repre-
sents a denormalized value (not supported by this implementa-
tion); and exponent 0 with zero significand represents zero. All
other values represent normalized values.
Because types double and long double are represented as 32-bit
single precision values, they do not satisfy some numerical limits
requirements of the ANSI/ISO C Standard 9899-1990. In particu-
lar, section 5.2.4.2.2 Characteristics of floating types <float.h>
mandates:

DBL_DIG 10
LDBL_DIG 10
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

but 32-bit single precision floating point does not satisfy these
requirements. See the following table.

With the -uselongdouble64 option, the representation of float
and double values is the IEEE single-precision format, as noted
above, but the representation of long double values is the IEEE
double-precision format. The IEEE standard double-precision for-
mat consists of one sign bit, 11 exponent bits, and 52 significand
bits. The exponent bits represent a binary exponent with bias
1023, and an implicit hidden 1 bit followed by a binary point
appears to the left of the most significant significand bit. Expo-
nent 2047 with nonzero significand represents NaN (quiet if the
most significant significand bit is 1, signaling if it is 0; exponent
2047 with zero significand indicates +infinity or –infinity; expo-
nent 0 with nonzero significand represents a denormalized
value; and exponent 0 with zero significand represents zero. All
other values represent normalized values.

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 147

8

The direction of trunca-
tion when an integral
number is converted to a
floating-point number
that cannot exactly rep-
resent the original value
(6.2.1.3)

The direction of rounding is to the nearest representable value.

The direction of trunca-
tion or rounding when a
floating-point number is
converted to a narrower
floating-point number
(6.2.1.4)

The direction of rounding is to the nearest representable value.

Table 19 Floating Point Type Representation and Values without -uselongdouble64

Type Bits Minimum Maximum

float 32 1.17549435e-38 3.40282347e+38

double 32 1.17549435e-38 3.40282347e+38

long double 32 1.17549435e-38 3.40282347e+38

Table 20 Floating Point Type Representation and Values with -uselongdouble64

Type Bits Minimum Maximum

float 32 1.17549435e-38 3.40282347e+38

double 32 1.17549435e-38 3.40282347e+38

long double 64 2.2250738585072014E–308 1.7976931348623157E+308

Specific Area Behavior

Chapter 8: TriMedia C/C++ Languages

148 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Arrays and Pointers (G.3.7)

Registers (G.3.8)

Structures, Unions, Enumerations, and Bit-Fields (G.3.9)

Specific Area Behavior

The type of integer required to hold the maxi-
mum size of an array—that is, the type of the
sizeof operator size_t (6.3.3.4, 7.1.1)

The type of size_t is defined in <com-
mon/_size_t.h> as unsigned int.

The result of casting a pointer to an integer or
vice versa (6.3.4)

The value does not change, unless cast-
ing to a smaller integer type, which will
truncate the result.

The type of integer required to hold the differ-
ence between two pointers to elements of the
same array, ptrdiff_t (6.3.6, 7.1.1)

The type of ptrdiff_t is int.

Specific Area Behavior

The extent to which objects can actually be
placed in registers by use of the register storage-
class specifier (8.5.1)

Use of the register storage-class specifier
has no effect on the placement of
objects in registers.

Specific Area Behavior

A member of a union object is accessed using a
member of a different type (8.3.2.3)

The object value is accessed and treated
according to the accessing member
type.

The padding and alignment of members of struc-
tures (8.5.2.1)

See Alignment Requirements on page
132.

Whether a “plain” integer bitfield is treated as a
signed integer bitfield or as an unsigned integer
bitfield (8.5.2.1)

Bitfields of int type are treated as bit-
fields of signed int type.

The order of allocation of bitfields within an int
(8.5.2.1)

In big-endian mode, bitfields are allo-
cated in descending bit order within a
storage unit. In little-endian mode, bit-
field allocation is compatible with the
Microsoft V2.2 C compiler.

Whether a bitfield can straddle a storage unit
boundary (8.5.2.1)

Bitfields cannot straddle a storage-unit
boundary.

The integer type chosen to represent the values
of an enumeration type (8.5.2.2)

The values of an enumeration type are
always represented by a signed int.

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 149

8

Qualifiers (G.3.10)

Declarators (G.3.11)

Statements (G.3.12)

Specific Area Behavior

What constitutes an access to an object that has
volatile qualified type (8.5.3)

Any reference to the name of an object
constitutes an access of that object.

Specific Area Behavior

The maximum number of declarators that may
modify an arithmetic, structure, or union type
(8.5.4)

The number of declarators that may
modify an arithmetic, structure, or union
type is unlimited.

Specific Area Behavior

The maximum number of case values in a switch
statement (8.6.4.2)

The number of case values in a switch
statement is unlimited.

Chapter 8: TriMedia C/C++ Languages

150 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Preprocessing Directives (G.3.13)

Specific Area Behavior

Whether the value of a single-byte character con-
stant in a constant expression that controls con-
ditional inclusion matches the value of the same
character constant in the execution character set;
whether such a character constant may have a
negative value (6.8.1)

The value of a character constant in a
preprocessing expression is the same as
in any other context. Character con-
stants may have negative values.

The method for locating includable source files
(6.8.2)

The preprocessor searches for a file
whose name is delimited by brackets (<
>), first in directories named by the -I
option, then in the standard header file
directory (directory include in the TriMe-
dia Compilation System distribution
directory, typically /usr/local/tcs/
include). The preprocessor searches for a
file whose name is delimited by quotes,
first in the directory containing the cur-
rent source file, then in directories speci-
fied by the -I option, then in the standard
header file directory.

The support of quoted names for includable
source files (6.8.2)

Quoted file names are supported.

The mapping of source file character sequences
(6.8.2)

All source file characters conform to their
defined ASCII character codes.

The behavior on each recognized #pragma direc-
tive (6.8.6)

#pragma directives are translated into
the internal pragma statement form.
Refer to The Pragma Statement on page
128 for more information on the pragma
statement language extension and for
an enumeration of recognized pragmas.

The definitions of __DATE__ and __TIME__
when, respectively, the date and time of transla-
tion are not available (6.8.8)

These definitions are always available.

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 151

8

Library Functions (G.3.14)

Specific Area Behavior

The null pointer constant to which the macro
NULL expands (7.1.5)

The macro NULL expands to 0.

The diagnostic printed by and the termination
behavior of the assert function (7.2)

The assert function emits a diagnostic of
the following form:

Assertion failed: expression, file file-
name, line linenumber

then exits via the abort function.

The sets of characters tested for by the isalnum,
isalpha, iscntrl, islower, isprint, and isupper func-
tions (7.3.1)

The character set test functions operate
on the ASCII character set. Specific
ranges tested by each function are
defined in Table 21.

The values returned by the mathematics func-
tions on domain errors (7.5.1)

Refer to Table 22.

Whether the mathematics functions set the inte-
ger expression errno to the value of the macro
ERANGE on underflow range errors (7.5.1)

Mathematics functions set errno to
ERANGE on overflow or underflow range
errors. Refer to Table 23.

Whether a domain error occurs or zero is
returned when the fmod function has a second
argument of zero (7.5.6.4)

A domain error occurs.

The set of signals for the signal function (7.7.1.1) The signal function currently supports
the signals specified in signal.h.

The semantics for each signal recognized by the
signal function (7.7.1.1)

The signal function currently supports
raising of signals only by raise.

The default handling and the handling at pro-
gram startup for each signal recognized by the
signal function (7.7.1.1)

SIGABRT prints an abort message and
terminates program execution. Other
signals are ignored by default.

If the equivalent of signal(sig, SIG_DFL); is not
executed prior to the call of a signal handler, the
blocking of the signal that is performed (7.7.1.1)

The signal is reset to the default prior to
the signal handler being called.

Whether the default handling is reset if the SIG-
ILL signal is received by a handler specified to the
signal function (7.7.1.1)

The signal function does not restore the
default handler when it receives SIGILL
as a handler.

Whether the last line of a text stream requires a
terminating new-line character (7.9.2)

The last line of a text stream does not
need to end in a new line.

Whether space characters that are written out to
a text stream immediately before a new-line
character appear when read in (7.9.2)

Space characters immediately preceding
a new line appear when the stream is
read in.

Chapter 8: TriMedia C/C++ Languages

152 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

The number of null characters that may be
appended to data written to a binary stream
(7.9.2)

The implementation does not append
null characters to a binary stream.

Whether the file position indicator of an append
mode stream is initially positioned at the begin-
ning or end of the file (7.9.3)

The file position indicator is positioned
at the end of the file.

Whether a write on a text stream causes the asso-
ciated file to be truncated beyond that point
(7.9.3)

A write on a text stream does not trun-
cate the associated file beyond that
point.

The characteristics of file buffering (7.9.3) Output streams are, by default, block
buffered if referring to a file and line
buffered if referring to a terminal. The
output stream stderr is, by default,
unbuffered.

Whether a zero-length file actually exists (7.9.3) Zero-length files do exist.

The rules for composing valid file names (7.9.3) Valid files names are under 1,024 charac-
ters in length and can be composed of
any characters excluding the null charac-
ter and / (slash).

Whether the same file can be opened multiple
times (7.9.3)

The same file can be opened multiple
times.

The effect of the remove function on an open file
(7.9.4.1)

The file is marked for deletion following
the last close of the file. The file cannot
be opened following a remove call.

The effect if a file with the new name exists prior
to a call to the rename function (7.9.4.2)

The existing file is retained and the
rename call fails.

The output for %p conversion in the fprintf func-
tion (7.9.6.1)

The output for %p is equivalent to %x.

The input for %p conversion in the fscanf func-
tion (7.9.6.2)

The input for %p is equivalent to %x.

The interpretation of a “-” character that is neither
the first nor the last character in the scanlist for
%[conversion in the fscanf function (4.9.6.2)

The “-” character, when neither the first
nor last character in the scanlist, indi-
cates an inclusive range.

The value to which the macro errno is set by the
fgetpos or ftell functions on failure (7.9.9.1,
7.9.9.4)

On error, the function fgetpos or ftell
sets the macro errno to ESPIPE.

The messages generated by the perror function
(7.9.10.4)

Refer to Table 23 following.

Specific Area Behavior

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 153

8

The behavior of the calloc, malloc, or realloc
functions if the size requested is zero (7.10.3)

The function calloc or malloc will allo-
cate and return a pointer to a zero-sized
object. The function realloc resizes or
frees a zero-sized object in the same
fashion as any other size object.

The behavior of the abort function with regard to
open and temporary files (7.10.4.1)

The abort function exits immediately,
without closing open files or removing
temporary files.

The status returned by the exit function if the
value of the argument is other than zero,
EXIT_SUCCESS, or EXIT_FAILURE (7.10.4.3)

The exit function returns its argument.

The set of environment names and the method
for altering the environment list used by the
getenv function (7.10.4.4)

The set of environment names are those
that existed in the program environment
at the time program execution was initi-
ated.

The contents and mode of execution of the string
by the system function (7.10.4.5)

The system function with an argument
of NULL returns 0 to indicate that no
command processor is available.
The system function with a non-NULL
argument currently never succeeds; it
always returns EXIT_FAILURE.

The contents of the error message strings
returned by the strerror function (7.11.6.2)

The strerror function returns the same
error messages as the perror function.

The local time zone and Daylight Saving Time
(7.12.1)

The local time zone is set by the environ-
ment variable TZ.

The era for the clock function (7.12.2.1) The era originates at the time program
execution was initiated.

Table 21 Character Set Test Function Ranges

Function ASCII Character Set Range

isalnum A–Z, a–z, and 0–9.

isalpha A–Z and a–z.

iscntrl Character values 0–31 and 127.

islower a–z.

isprint Character values 32 through 126.

isupper A–Z.

Specific Area Behavior

Chapter 8: TriMedia C/C++ Languages

154 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Table 22 Math Function Domain Error Return Values

Function (Domain Error) Return Value

acos(|x| > 1) NaN

asin(|x| > 1) NaN

atan2(±0, ±0) NaN

log(x < 0) NaN

log10(x < 0) NaN

pow(0, y < 0) NaN

pow(x < 0, y non-integral) NaN

sqrt(x < 0) NaN

fmod(x, y == 0) NaN

Table 23 perror Error Messages

Number Message

 9 Bad file number.

12 Not enough memory.

22 Invalid argument.

29 Invalid seek.

33 Argument too large.

34 Result too large.

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 155

8

C++ Language Definition

Dialect

TriMedia-C++ has four modes that govern the C++ dialect accepted by the compiler,

which is determined by the value of control-variable c:

■ ARM mode—This is the strict ANSI mode of TriMedia-C++. It will track the standard

as it develops. This mode initially accepted and implemented the language as

described in The Annotated C++ Reference Manual, by Margaret A. Ellis and Bjarne

Stroustrup (the ARM), which was the base document of the ANSI C++ standard cur-

rently being developed. This mode is invoked by the -Xc=arm option for tmCC and

tmcc.

■ CP mode—This is same as ARM but with several restrictions relaxed. This mode is the

first-default-value for tmCC (.c and .C files) and for tmcc (.C files). This mode is

invoked by the -Xc=cp option.

Version 4.0 of the C++ compiler is nearly current with the standardization process. It

supports exceptions, RTTI (runtime type identification), templates, namespaces, and

libraries including STL (the Standard Template Library). It also recognizes the keywords

for bool, and wchar_t.

Several of the newer features are on by default, but can be selectively disabled by altering

the value of control-variable c. All possible values are discussed in the reference above,

but additional details are given in the next few paragraphs.

Boolean Type (bool)

Whether bool is recognized as a keyword or not is controlled by the presence or absence

of the value bool in control-variable c. Beyond the obvious effect of preventing you

from using bool for something besides the new type, there are additional ramifications

of the change. The issue is similar to the first issue of wchar_t described in the next para-

graph, and the names of the related predefined preprocessor macros are similar as well.

Wide Characters (wchar_t)

There are two fundamental issues related to wchar_t. The first issue is whether wchar_t is

a built-in type distinct from any integer type (this is controlled by the presence or

absence of the value wchar_t in control-variable c); the second issue is exactly what type

is used to store variables declared to be of type (or typedef) wchar_t (this is controlled by

control-variable wchart).

The first issue is more straightforward, but also has a larger impact in existing code.

Recently the symbol wchar_t has been changed from a typedef of an integral type to a

truly distinct, built-in type like char, short, or float always have been. This change in

Chapter 8: TriMedia C/C++ Languages

156 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

behavior has two fundamental effects that are visible to existing code: trying to specify a

typedef for wchar_t is now illegal, so any existing typedef declarations must be removed;

and name mangling rules are different for wchar_t as a typedef than for wchar_t as a dis-

tinct type.

Before wchar_t became a type unto itself, an explicit typedef defining that symbol was

required to be provided in one or more include files. In fact, the nature of the require-

ments usually led to it being defined identically in several include files, with each defini-

tion protected by a preprocessor macro to avoid making multiple definitions visible if

multiple include files (each of which needed to define it) were included in one source file

compilation. The preprocessor macro name varies on different target computer environ-

ments. Basically there was code in header files which looked something like.

This would ensure that wchar_t was defined once and only once. If you request compila-

tion in a mode such that wchar_t is not a distinct built-in type, this behavior remains. If,

however, you request compilation in a mode such that wchar_t is distinct (which is the

default now), the compiler will pre-define -D_WCHAR_T (or whatever is appropriate) to

eliminate all typedefs. If you have similar code in your sources, you will need to protect

that typedef (or remove it entirely) in a similar manner.

The second half of this first issue is that name mangling rules require that the type

wchar_t must be mangled differently from the typedef wchar_t. This has a minor effect

if you have properly declared and used all of your functions and objects consistently.

However, it has a significant impact in three areas: overloading of functions or opera-

tors, mangling of names, and instantiation of templates. For example, you may wish to

overload functions for a variety of types.

In this example, the final function must be supplied if wchar_t is a distinct type, and

must be eliminated otherwise (to avoid a duplicate definition error, since wchar_t was

actually equivalent to one of the other types). To support this, TriMedia-C++ will pre-

define a macro which is present if wchar_t is a keyword (and therefore a distinct type)

and absent otherwise.

The different name mangling becomes visible if you try to link two modules that were

compiled with different values of wchar_t. If wchar_t is a typedef, mangling is done

based on the underlying type. If wchar_t is a type unto itself, mangling is done differ-

#ifndef _WCHAR_T
typedef short /* or something */ wchar_t;
#define _WCHAR_T
#endif

void overloaded_func(char *a) { };
void overloaded_func(unsigned char *a) { };
void overloaded_func(signed char *a) { };
void overloaded_func(short *a) { };
void overloaded_func(unsigned short *a) { };
.....
#ifndef _ _WCHAR_T_IS_KEYWORD
void overloaded_func(wchar_t *a) { };
#endif

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 157

8

ently. This will prevent proper linking unless wchar_t is always (or never) a typedef

across the entire program.

The second issue involving wchar_t is exactly what type is used. This issue exists in both

C and C++, and it exists regardless of whether wchar_t is a type or a typedef. The com-

piler must have a built-in idea of what type is used for wchar_t because it is legal to use a

wide-character string (for example, L"abcd") before declaring the typedef.

In C, and in C++ when wchar_t is not a keyword, it is generally not a good idea to be

changing the type backing wchar_t because the default value is set up to match the defi-

nitions in the include files. In C++ when wchar_t is a keyword, it is also generally not a

good idea to be changing the type backing wchar_t because library routines have been

compiled with the default value. If neither of these is an issue, or if you are supplying

the include files and/or libraries, you may change the type by changing the value of con-

trol-variable wchart.

Special Pragmas

All pragma directives can be used in all four C++ modes. In addition three pragmas have

been added to aid in control of template instantiations. The TriMedia-C++ compiler

implements templates with a linker feedback mechanism.

The above pragma causes the compiler to instantiate argument in this compilation. It

can be used with the -Xtmpl=none mode to do only the required instantiations by

explicitly specifying only the required ones.

The above pragma causes the compiler to not instantiate argument in this compilation.

It can be used with other values of the tmpl control-variable to suppress certain instanti-

ations, because they are being done in some other source file.

The above pragma tells the compiler that the argument may be instantiated in the cur-

rent translation unit if needed.

In each case, argument may be a template class name, a member function name, a static

data member name, a member function declaration, or a function declaration. When a

class name is specified, the directive is applied to all member functions and static data

members of the class.

Exception Handling

Exception handling has two major impacts on the compilation system:

1. Recognition of, and code generation for, explicit exception-handling constructs and

keywords like try, throw, and catch.

#pragma instantiate argument

#pragma do_not_instantiate argument

#pragma can_instantiate argument

Chapter 8: TriMedia C/C++ Languages

158 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

2. Generation of code and/or tables in code that has no exception-handling constructs,

but has local variables that need cleanup in case an exception is thrown across this

code. This could happen if a stack frame for non-exception-related code is on the

portion of the execution stack that is unwound as part of exception handling. The

impact on the compiler is that all functions having local variables that require

destruction must have their destructors called.

Exceptions controls only whether item 2 (preceding) is done. Item 1 (preceding) is done

regardless of the setting. The implementation has a reduced cost where exceptions are

not thrown, at the cost of some extra tables and some constant assignments. This cost is

only borne in routines with destructors. The default is now ‘on’ in cp and arm modes. All

code, by default, works properly in the presence of exceptions, with only minor negative

impact.

An additional benefit is that you may now (with caution) turn exceptions off in portions

of your code that you know are free from exceptions or where calling destructors is not

important. This should, of course, be done with extreme care. As evidenced by our

changing the default value to ‘on’, we recommend compiling all modules with excep-

tions enabled if you compile any modules that way.

If you want to eliminate completely the impact of exceptions on code that otherwise

must be compiled in arm or cp modes, you can specify options such as

-Xc=arm-exceptions or -Xc-=exceptions on the command line.

Ongoing Standardization Issues

As of SDE v2.0, the following features not in the ARM (but in the X3J16/WG21 Working

Paper) are accepted:

■ Standard library and include files.

■ The dependent statement of an if, while, do-while, or for is considered to be a scope,

and the restriction on having such a dependent statement be a declaration is

removed.

■ The expression tested in an if, while, do-while, or for, as the first operand of a ?: oper-

ator, or as an operand of the &&, ||, or ! operators may have a pointer-to-member type

or a class type that can be converted to a pointer-to-member type in addition to the

scalar cases permitted by the ARM.

■ Qualified names are allowed in elaborated type specifiers.

■ A global-scope qualifier is allowed in member references of the form x.::A::B and

p->::A::B.

■ The precedence of the third operand of the ?: operator is changed.

■ If control reaches the end of the main() routine, and main() has an integral return

type, it is treated as if a return 0; statement were executed.

■ Pointers to arrays with unknown bounds as parameter types are diagnosed as errors.

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 159

8

■ A functional-notation cast of the form A() can be used even if A is a class without a

(nontrivial) constructor. The temporary created gets the same default initialization to

zero as a static object of the class type.

■ A cast can be used to select one out of a set of overloaded functions when taking the

address of a function.

■ Template friend declarations and definitions are permitted in class definitions and

class template definitions.

■ Type template parameters are permitted to have default arguments.

■ Function templates may have nontype template parameters.

■ A reference to const volatile cannot be bound to an rvalue.

■ Qualification conversions such as conversion from T** to T const * const * are allowed.

■ Digraphs are recognized.

■ Operator keywords (for example, and, bitand, and so on) are recognized.

■ Static data member declarations can be used to declare member constants.

■ wchar_t is recognized as a keyword and a distinct type, by default.

■ bool is recognized, by default.

■ RTTI (runtime type identification), including dynamic_cast and the typeid operator is

implemented, by default.

■ Declarations in tested conditions (in if, switch, for, and while statements) are sup-

ported.

■ Array new and delete are implemented, by default.

■ New-style casts (static_cast, reinterpret_cast, and const_cast) are implemented.

■ Definition of a nested class outside its enclosing class is allowed.

■ mutable is accepted on nonstatic data member declarations.

■ Namespaces are implemented, including using declarations and directives. Access

declarations are broadened to match the corresponding using declarations.

■ Explicit instantiation of templates is implemented.

■ The typename keyword is recognized.

■ explicit is accepted to declare non-converting constructors.

■ The scope of a variable declared in the for-init-statement of a for loop is the scope of

the loop (not the surrounding scope).

■ Member templates are implemented.

■ The new specialization syntax (using template <>) is implemented.

■ cv-qualifiers are retained on rvalues (in particular, on function return values).

Chapter 8: TriMedia C/C++ Languages

160 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

The following features not in the ARM (but in the X3J16/WG21 Working Paper) are not

accepted:

■ Virtual functions in derived classes may not return a type that is the derived-class ver-

sion of the type returned by the overridden function in the base class.

■ enum types are not considered to be non-integral types.

■ It is not possible to overload operators using functions that take enum types and no

class types.

■ The new lookup rules for member references of the form x.A::B and p->A::B are not yet

implemented.

■ Classes are not assumed to always have constructors, and the distinction between

trivial and nontrivial constructors is not implemented. (From a practical point of

view, this has almost no effect.)

■ enum types cannot contain values larger than can be contained in an int.

■ reinterpret_cast does not allow casting a pointer to member of one class to a pointer

to member of another class if the classes are unrelated.

■ Explicit qualification of template functions, of the form foo<int>(20) is not imple-

mented.

■ Name binding in templates in the style of N0288/93-0081 is not implemented.

■ In a reference of the form f()->g(), with g a static member function, f() is not evalu-

ated. This is as required by the ARM. The Working Paper, however, requires that f()

be evaluated.

■ (p->*pm) = 0 cannot yet be written as p->*pm = 0 (the syntax still matches the ARM).

■ Class name injection is not implemented.

■ Overloading of function templates (partial specialization) is not implemented.

■ Partial specialization of class templates is not implemented.

■ Placement delete is not implemented.

■ Putting a try/catch around the initializers and body of a constructor is not imple-

mented.

■ The notation ::template (and ->template, etc.) is not implemented.

■ Template template parameters are not implemented.

■ Certain restrictions are not yet enforced on the use of (pointer-to-) function types

that involve exception-specifications.

■ extern inline functions are not supported.

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 161

8

■ Distinct name mangling for template function is not implemented. In Modern C++ a

non-template function can not be used as an specialization for a template function.

In order to differentiate between these versions, the name mangling rules may have to

be modified. That has not been done yet.

Other restrictions with the current C++ implementation

If an iterator template is defined with a -> operator method, then the compiler will issue

an error if the type instantiated by the template cannot validly use the –> operation.

(e.g., int). For this reason, our STL library does not include –> operators for the iterator

templates. Please use

(*iterator).function()

instead of

iteratorÐ>function()

as a workaround.

Using Templates

This section describes several pragmas and command line options that are useful when

working with template classes and functions.

Three situations occur when working with template classes:

1. The template class is used in one file only.

2. The template class is used in multiple compilation units (files) but all of its member

functions are declared inline.

3. The template class is used in multiple compilation units and not all member func-

tions can be inline.

The first two situations will pose no problem when trying to compile. However, the third

can cause problems for the user.

To illustrate the point, assume a template list class, declared in list.h, with member func-

tions in list.cc. In the first situation, list.h is included in the one file that uses the tem-

plate list class; tmCC will automatically include list.cc upon parsing list.h to get all the

template <class T> void foo(T a) { template body }
void foo(int x) // say foo-1
{
 // Not a specialization of void(T) for T=int in modern C++
 // Used to be a specialization of void(T) for T=int in old C++.
}
template<> void foo(int x) // say foo-2
{
 // This is a specialization of void(T) for T=int.
}
// ...
foo(30); // calls foo-1
foo<int>(3.1) // calls foo-2 with argument ((int)3.1), which
 // equals 3. This is not accepted in release 4.0

Chapter 8: TriMedia C/C++ Languages

162 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

template definitions, and instantiate them if necessary. Thus, list.cc does not have to be

compiled separately and linked with the other files!

In the second situation, all the member functions in list.cc are declared inline. tmCC

automatically includes list.cc in every file that includes list.h, but because all member

functions are inline, there will be no ‘multiply defined’ symbols, and the compilation

will proceed as expected. This is largely how the STL is implemented.

The third situation—the tricky one—uses options and pragmas to ensure successful

compilation and linking. In this situation, list.cc should contain initializations of static

variables and all member functions that are not declared inline. All inline member func-

tions should be included in list.h. First, you must prevent the automatic inclusion of

list.cc whenever list.h is included in a file, because this will lead to ‘multiply defined’

symbols at link time. You can do this two ways: (a) rename list.cc (for instance, to lst.cc),

which is the quick-and-dirty way, or (b) use the command line option

-Xtmpl=none+noautoincl on all files. Second, recompile the list.cc file separately, with

the following pragma in the file for each different template use of a class:

#pragma instantiate name

where name is the name of the instantiated template class (List<int>) in our example.

This will correct instantiate everything used by List<int> too, e.g. Link<int>. When all

the files are linked together, you should experience no linking errors. There will be only

one function template instantiation.

Using <iostream> and <string>

As of release 2.1 of TriMedia C++, certain common template inline functions in

<iostream> and <string> have moved to the library libC++.a. This gives an enormous

improvement in compilation time for programs that use <iostream>, while only mini-

mally affecting performance.

This move has a slight impact for users that use streams or strings with types other than

char. For these users, there are two compile-time defines that will allow full template

instantiation in the STL. If you need wider strings, use TCS_FULL_STRING. If you need

wider streams, use TCS_FULL_IOSTREAM. These defines can be specified on the tmcc

command line as -DTCS_FULL_IOSTREAM or -DTCS_FULL_STRING.

Chapter 8: TriMedia C/C++ Languages

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 163

8

Implementation Specifics

The following points address specific characteristics of the implementation.

Error Message Compiling with -p

The program must be compiled with the same options when producing a dtprof.out file

(-p option) and for the second compilation run. In particular, the same optimization

level will result in both cases.

The dtprof.out file does not contain the necessary information.

Correct behavior when compiling with different optimization levels for the two runs is

not guaranteed.

Variable Addressing

The compiler can generate code using either based addressing (from a register) or abso-

lute addressing for each individual variable. The default is absolute addressing. Make the

choice by passing -generate data_units to the compiler.

When compiling with the -t or -S options, the default is changed. To examine code gen-

erated by the compiler, use the -tmccom -generate_data_units –– option.

Compiler Messages

The warning level controls that were available in previous versions of the compiler are

no longer available. Some source code that compiled without warnings using the 1.1

compiler’s default settings will now have warnings.

Messages produced by the compiler are subject to change in future versions.

Performance Impact of -compact Option

Cache performance can be affected by code reordering caused by the -compact option.

This can be detected using tmprof.

To disable code reordering, use the tmcc -nocompact option.

Run-Time Exit Code

In order for the run-time system to work, the main function needs to return a value. If

no value is returned, or if main is declared of void type, an undetermined return value is

returned to the host environment and correct operation is not guaranteed.

Chapter 8: TriMedia C/C++ Languages

164 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 165

9

Chapter 9

Library Functions

Topic Page

Introduction 166

Headers 166

Macros 167

Functions 171

Long Double Library Functions 179

Types 180

System Calls 181

Chapter 9: Library Functions

166 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

The TriMedia Compilation System supports the standard C library as defined in American

National Standard for Programming Languages—C, ANSI/ISO 9899-1990, commonly

known as the ANSI C Standard. Section 7 of the Standard specifies standard header files

(cf. 7.1.2), which define macros, types, functions, and globals.

Headers

Table 24 lists the 15 header files required by the Standard, together with the section

number of the Standard that describes the contents of each header and its subject.

Table 24 Headers

Header Section Subject

assert.h 7.2 Diagnostics.

ctype.h 7.3 Character handling.

errno.h 7.1.4 Errors.

float.h 7.1.5 Limits (characteristics of floating types).

limits.h 7.1.5 Limits (sizes of integral types).

locale.h 7.4 Localization.

math.h 7.5 Mathematics.

setjmp.h 7.6 Nonlocal jumps.

signal.h 7.7 Signal handling.

stdarg.h 7.8 Variable arguments.

stddef.h 7.1.6 Common definitions.

stdio.h 7.9 Input/output.

stdlib.h 7.10 General utilities.

string.h 7.11 String handling.

time.h 7.12 Date and time.

Chapter 9: Library Functions

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 167

9

Macros

Table 25 lists the 92 macros required by the Standard, the name of the header that

defines each macro, and a brief description of the macro. A few macros are defined in

more than one header. See the Standard for a detailed description of each macro. See the

headers in the TCS distribution for the TCS implementation of each macro.

Note
TCS defines va_end as a macro while the Standard allows it to be
implemented either as a macro or as a function.

Table 25 Macros

Header Macro Description

stdio.h _IOFBF Fully buffered flag.

stdio.h _IOLBF Line buffered flag.

stdio.h _IONBF Unbuffered flag.

stdio.h BUFSIZ Input/output buffer size.

limits.h CHAR_BIT Bits per character.

limits.h CHAR_MAX Maximum char value.

limits.h CHAR_MIN Minimum char value.

time.h CLOCKS_PER_SEC Clocks per second.

float.h DBL_DIG Decimal digits in double significand.

float.h DBL_EPSILON Smallest double greater than 1, minus 1.

float.h DBL_MANT_DIG Number of digits in double significand.

float.h DBL_MAX Maximum representable double.

float.h DBL_MAX_10_EXP Maximum double decimal exponent.

float.h DBL_MAX_EXP Maximum double exponent.

float.h DBL_MIN Minimum representable double.

float.h DBL_MIN_10_EXP Minimum double decimal exponent.

float.h DBL_MIN_EXP Minimum double exponent.

errno.h EDOM Domain error.

stdio.h EOF End of file indicator.

errno.h ERANGE Range error.

stdlib.h EXIT_FAILURE Program failure exit status.

stdlib.h EXIT_SUCCESS Program success exit status.

stdio.h FILENAME_MAX Longest file name length.

Chapter 9: Library Functions

168 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

float.h FLT_DIG Decimal digits in float significand.

float.h FLT_EPSILON Smallest float greater than 1, minus 1.

float.h FLT_MANT_DIG Number of digits in float significand.

float.h FLT_MAX Maximum float value.

float.h FLT_MAX_10_EXP Maximum float decimal exponent.

float.h FLT_MAX_EXP Maximum float exponent.

float.h FLT_MIN Minimum float value.

float.h FLT_MIN_10_EXP Minimum float decimal exponent.

float.h FLT_MIN_EXP Minimum float exponent.

float.h FLT_RADIX Radix of floating point exponent representa-
tion.

float.h FLT_ROUNDS Floating point rounding mode.

stdio.h FOPEN_MAX Maximum number of simultaneously open
streams.

math.h HUGE_VAL Numeric overflow value.

limits.h INT_MAX Maximum int value.

limits.h INT_MIN Mimimum int value.

locale.h LC_ALL All locale functions.

locale.h LC_COLLATE Locale collating functions.

locale.h LC_CTYPE Locale character handling functions.

locale.h LC_MONETARY Locale monetary formatting functions.

locale.h LC_NUMERIC Locale numeric formatting functions.

locale.h LC_TIME Locale time formatting functions.

float.h LDBL_DIG Decimal digits in long double significand.

float.h LDBL_EPSILON Smallest long double greater than 1, minus 1.

float.h LDBL_MANT_DIG Number of digits in long double significand.

float.h LDBL_MAX Maximum long double value.

float.h LDBL_MAX_10_EXP Maximum long double decimal exponent.

float.h LDBL_MAX_EXP Maximum long double exponent.

float.h LDBL_MIN Minimum long double value.

Table 25 Macros

Header Macro Description

Chapter 9: Library Functions

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 169

9float.h LDBL_MIN_10_EXP Minimum long double decimal exponent.

float.h LDBL_MIN_EXP Minimum long double exponent.

limits.h LONG_MAX Maximum long value.

limits.h LONG_MIN Minimum long value.

stdio.h L_tmpnam Temporary file name length.

stdlib.h MB_CUR_MAX Largest size of a multibyte character in current
locale.

limits.h MB_LEN_MAX Maximum number of bytes in multibyte charac-
ter.

assert.h NDEBUG Suppress assertion processing.

locale.h,
stddef.h,
stdio.h,
stdlib.h,
string.h,
time.h

NULL Null pointer constant.

stdlib.h RAND_MAX Largest size of a pseudo-random number.

limits.h SCHAR_MAX Maximum signed char value.

limits.h SCHAR_MIN Minimum signed char value.

stdio.h SEEK_CUR Seek from current position.

stdio.h SEEK_END Seek from end of file.

stdio.h SEEK_SET Seek from beginning of file.

limits.h SHRT_MAX Maximum short value.

limits.h SHRT_MIN Minimum short value.

signal.h SIGABRT Abnormal termination signal.

signal.h SIGFPE Arithmetic exception signal.

signal.h SIGILL Illegal instruction signal.

signal.h SIGINT Interactive attention signal.

signal.h SIGSEGV Invalid memory access signal.

signal.h SIGTERM Termination request signal.

signal.h SIG_DFL Default signal handler.

signal.h SIG_ERR Signal handler error return value.

Table 25 Macros

Header Macro Description

Chapter 9: Library Functions

170 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

signal.h SIG_IGN Signal handler to ignore signal.

stdio.h TMP_MAX Minimum number of temporary file names.

limits.h UCHAR_MAX Maximum unsigned char value.

limits.h UINT_MAX Maximum unsigned int value.

limits.h ULONG_MAX Maximum unsigned long value.

limits.h USHRT_MAX Maximum unsigned short value.

assert.h assert(p) Check assertion at run time.

errno.h errno Error condition indicator.

stddef.h offsetof(type, member) Offset of member in type.

setjmp.h setjmp(jmp_buf env) Save state for non-local goto.

stdio.h stderr Standard error stream.

stdio.h stdin Standard input stream.

stdio.h stdout Standard output stream.

stdarg.h va_arg(va_list ap, type) Get next argument from argument list.

stdarg.h va_end(va_list ap) Clean up after traversal of argument list.

stdarg.h va_start(va_list ap, parmN) Begin traversal of argument list.

Table 25 Macros

Header Macro Description

Chapter 9: Library Functions

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 171

9

Functions

Table 26 lists the prototypes of the 141 functions required by the Standard, the name of

the header that declares each function, and a brief description of the function’s purpose.

See the Standard for a detailed description of each function.

Table 26 Functions

Header Type Function Description

<stdlib.h> void abort(void) End program immediately.

<stdlib.h> int abs(int j) Return the absolute value of
an integer.

<math.h> double acos(double x) Compute inverse cosine.

<time.h> char * asctime(const struct tm *timeptr) Convert time structure to
string.

<math.h> double asin(double x) Compute inverse sine.

<math.h> double atan(double x) Compute inverse tangent.

<math.h> double atan2(double y, double x) Compute inverse tangent.

<stdlib.h> int atexit(void (*func)(void)) Register function to be
called when the program
exits.

<stdlib.h> double atof(const char *nptr) Convert string to floating
point.

<stdlib.h> int atoi(const char *nptr) Convert string to integer.

<stdlib.h> long atol(const char *nptr) Convert string to long
integer.

<stdlib.h> void * bsearch(const void *key,
const void *base, size_t nmemb,
size_t size, int (*compar)
(const void *, const void *))

Search an array.

<stdlib.h> void * calloc(size_t nmemb, size_t size) Allocate dynamic memory.

<math.h> double ceil(double x) Compute numeric ceiling.

<stdio.h> void clearerr(FILE *stream) Reset stream error status.

<time.h> clock_t clock(void) Get processor time.

<math.h> double cos(double x) Compute cosine.

<math.h> double cosh(double x) Compute hyperbolic cosine.

<time.h> char * ctime(const time_t *timer) Convert system time to
string.

Chapter 9: Library Functions

172 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

<time.h> double difftime(time_t t1, time_t t0) Compute difference
between two times.

<stdlib.h> div_t div(int numer, int denom) Perform integer division.

<stdlib.h> void exit(int status) Terminate program
gracefully.

<math.h> double exp(double x) Compute exponent.

<math.h> double fabs(double x); Compute absolute value.

<stdio.h> int fclose(FILE *stream) Close stream.

<stdio.h> int feof(FILE *stream) Discover stream end of file
status.

<stdio.h> int ferror(FILE *stream) Discover stream status.

<stdio.h> int fflush(FILE *stream) Flush output stream's buffer.

<stdio.h> int fgetc(FILE *stream) Read character from stream.

<stdio.h> int fgetpos(FILE *stream,
fpos_t *pos)

Get value of file-position
indicator.

<stdio.h> char * fgets(char *s, int n, FILE *stream) Read line from stream.

<math.h> double floor(double x) Compute numeric floor.

<math.h> double fmod(double x, double y) Compute floating-point
modulus.

<stdio.h> FILE * fopen(const char *filename,
const char *mode)

Open stream for standard
I/O.

<stdio.h> int fprintf(FILE *stream,
const char *format, ...)

Print formatted output into
stream.

<stdio.h> int fputc(int c, FILE *stream) Write character into stream.

<stdio.h> int fputs(const char *s, FILE *stream) Write string into stream.

<stdio.h> size_t fread(void *ptr, size_t size,
size_t nmemb, FILE *stream)

Read data from stream.

<stdlib.h> void free(void *ptr) Free dynamic memory.

<stdio.h> FILE * freopen(const char *filename,
const char *mode, FILE *stream)

Reopen stream for standard
I/O.

<math.h> double frexp(double value, int *exp) Separate fraction and
exponent.

<stdio.h> int fscanf(FILE *stream,
const char *format, ...)

Format input from stream.

Table 26 Functions

Header Type Function Description

Chapter 9: Library Functions

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 173

9<stdio.h> int fseek(FILE *stream,
long int offset, int whence)

Seek on stream.

<stdio.h> int fsetpos(FILE *stream,
const fpos_t *pos)

Set file-position indicator.

<stdio.h> long ftell(FILE *stream) Return current position of
file pointer.

<stdio.h> size_t fwrite(const void *ptr, size_t
size, size_t nmemb, FILE *stream)

Write to stream.

<stdio.h> int getc(FILE *stream) Read character from stream.

<stdio.h> int getchar(void) Read character from
standard input.

<stdlib.h> char * getenv(const char *name) Read environmental
variable.

<stdio.h> char * gets(char *s) Read string from standard
input.

<time.h> struct tm * gmtime(const time_t *timer) Convert system time to
calendar structure.

<ctype.h> int isalnum(int c) Check if character is a
number or a letter.

<ctype.h> int isalpha(int c) Check if character is a letter.

<ctype.h> int iscntrl(int c) Check if character is a
control character.

<ctype.h> int isdigit(int c) Check if character is a
numeral.

<ctype.h> int isgraph(int c) Check if character is
printable.

<ctype.h> int islower(int c) Check if character is a lower-
case letter.

<ctype.h> int isprint(int c) Check if character is
printable.

<ctype.h> int ispunct(int c) Check if character is a
punctuation mark.

<ctype.h> int isspace(int c) Check if character prints
white space.

<ctype.h> int isupper(int c) Check if character is an
uppercase letter.

Table 26 Functions

Header Type Function Description

Chapter 9: Library Functions

174 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

<ctype.h> int isxdigit(int c) Check if character is a hexa-
decimal numeral.

<stdlib.h> long labs(long j) Return the absolute value of
long integer.

<math.h> double ldexp(double x, int exp) Combine fraction and
exponent.

<stdlib.h> ldiv_t ldiv(long numer, long denom) Perform long integer divi-
sion.

<locale.h> struct
lconv *

localeconv(void) Set members of current
locale.

<time.h> struct tm * localtime(const time_t *time) Convert system time to cal-
endar structure.

<math.h> double log(double x) Compute natural logarithm.

<math.h> double log10(double x) Compute common
logarithm.

<setjmp.h> void longjmp(jmp_buf env, int val) Perform non-local goto.

<stdlib.h> void * malloc(size_t size) Allocate dynamic memory.

<stdlib.h> int mblen(const char *s, size_t n) Compute multibyte
character length.

<stdlib.h> size_t mbstowcs(wchar_t *pwcs,
const char *s, size_t n)

Convert multibyte character
string to wide character
string.

<stdlib.h> int mbtowc(wchar_t *pwc,
const char *s, size_t n)

Convert multibyte character
to wide character.

<string.h> void * memchr(const void *s, int c,
size_t n)

Search region of memory for
character.

<string.h> int memcmp(const void *s1,
const void *s2, size_t n)

Compare two regions.

<string.h> void * memcpy(void *s1, const void *s2,
size_t n)

Copy one region of memory
into another.

<string.h> void * memmove(void *s1,
const void *s2, size_t n)

Copy region of memory into
area it overlaps.

<string.h> void * memset(void *s, int c, size_t n) Fill an area with character.

<time.h> time_t mktime(struct tm *timeptr) Convert broken-down time
into calendar time.

Table 26 Functions

Header Type Function Description

Chapter 9: Library Functions

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 175

9<math.h> double modf(double value, double *iptr) Separate integral part and
fraction.

<stdio.h> void perror(const char *s) System call error messages.

<math.h> double pow(double x, double y) Compute power of a
number.

<stdio.h> int printf(const char *format, ...) Print formatted text.

<stdio.h> int putc(int c, FILE *stream) Write character into stream.

<stdio.h> int putchar(int c) Write character onto the
standard output.

<stdio.h> int puts(const char *s) Write string onto standard
output.

<stdlib.h> void qsort(void *base,
size_t nmemb, size_t size,
int (*compar)(const void *,
const void *))

Sort arrays in memory.

<signal.h> int raise(int sig) Send signal.

<stdlib.h> int rand(void) Generate pseudo-random
numbers.

<stdlib.h> void * realloc(void *ptr, size_t size) Reallocate dynamic memory.

<stdio.h> int remove(const char *filename) Remove file.

<stdio.h> int rename(const char *old,
const char *new)

Rename file.

<stdio.h> void rewind(FILE *stream) Reset file pointer.

<stdio.h> int scanf(const char *format, ...) Accept and format input.

<stdio.h> void setbuf(FILE *stream, char *buf) Set alternative stream buffer.

<setjmp.h> int setjmp(jmp_buf env) Save machine state for non-
local goto.

<locale.h> char * setlocale(int category,
const char *locale)

Set current locale.

<stdio.h> int setvbuf(FILE *stream, char *buf,
int mode, size_t size)

Set alternative file-stream
buffer.

<signal.h> void (*signal(int sig, void (*func)(int)))
(int)

Specify action to take upon
receipt of a given signal.

<math.h> double sin(double x) Compute sine.

Table 26 Functions

Header Type Function Description

Chapter 9: Library Functions

176 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

<math.h> double sinh(double x) Compute hyperbolic sine.

<stdio.h> int sprintf(char *s,
const char *format, ...)

Format output.

<math.h> double sqrt(double x) Compute square root.

<stdlib.h> void srand(unsigned int seed) Seed random number
generator.

<stdio.h> int sscanf(char *s,
const char *format, ...)

Format string.

<string.h> char * strcat(char *s1, const char *s2) Concatenate two strings.

<string.h> char * strchr(const char *s, int c) Find character in a string.

<string.h> int strcmp(const char *s1,
const char *s2)

Compare two strings.

<string.h> int strcoll(const char *s1,
const char *s2)

Compare two strings, using
locale-specific information.

<string.h> char * strcpy(char *s1, const char *s2) Copy one string into
another.

<string.h> size_t strcspn(const char *s1,
const char *s2)

Return length a string
excludes characters in
another.

<string.h> char * strerror(int errnum) Translate an error number
into a string.

<time.h> size_t strftime(char *s, size_t
maxsize, const char *format,
const struct tm *timeptr)

Format locale-specific time.

<string.h> size_t strlen(const char *s) Find length of a string.

<string.h> char * strncat(char *s1,
const char *s2, size_t n)

Append one string onto
another.

<string.h> int strncmp(const char *s1,
const char *s2, size_t n)

Compare two strings.

<string.h> char * strncpy(char *s1,
const char *s2, size_t n)

Copy one string into
another.

<string.h> char * strpbrk(const char *s1,
const char *s2)

Find first occurrence of char-
acter from another string.

<string.h> char * strrchr(const char *s, int c) Search for rightmost occur-
rence of a character in a
string.

Table 26 Functions

Header Type Function Description

Chapter 9: Library Functions

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 177

9<string.h> size_t strspn(const char *s1,
const char *s2)

Return length a string
includes characters in
another.

<string.h> char * strstr(const char *s1,
const char *s2)

Find one string within
another.

<stdlib.h> double strtod(const char *nptr,
char **endptr)

Convert string to floating-
point number.

<string.h> char * strtok(char *s1,
const char *s2)

Break a string into tokens.

<stdlib.h> long strtol(const char *nptr,
char **endptr, int base)

Convert string to long
integer.

<stdlib.h> unsigned
long

strtoul(const char *nptr,
char **endptr, int base)

Convert string to unsigned
long integer.

<string.h> size_t strxfrm(char *s1,
const char *s2, size_t n)

Transform a string.

<stdlib.h> int system(const char *string) Pass a command to the shell
for execution.

<math.h> double tan(double x) Compute tangent.

<math.h> double tanh(double x) Compute hyperbolic cosine.

<time.h> time_t time(time_t *time) Get current system time.

<stdio.h> FILE * tmpfile(void) Create a temporary file.

<stdio.h> char * tmpnam(char *s) Generate a unique name for
a temporary file.

<ctype.h> int tolower(int c); Convert characters to lower-
case.

<ctype.h> int toupper(int c); Convert characters to upper-
case.

<stdio.h> int ungetc(int c, FILE *stream) Return character to input
stream.

<stdio.h> int vfprintf(FILE *stream, const
char *format, va_list arg)

Print formatted text into
stream.

<stdio.h> int vprintf(const char *format,
va_list arg)

Print formatted text into
standard output stream.

Table 26 Functions

Header Type Function Description

Chapter 9: Library Functions

178 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

<stdio.h> int vsprintf(char *s, const char
*format, va_list arg)

Print formatted text into
string.

<stdlib.h> size_t wcstombs(char *s, const
wchar_t *pwcs, size_t n)

Convert wide character
string to multibyte charac-
ter string.

<stdlib.h> int wctomb(char *s, wchar_t wchar) Convert wide character to
multibyte character.

Table 26 Functions

Header Type Function Description

Chapter 9: Library Functions

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 179

9

Long Double Library Functions

In addition to the standard library functions listed above, TCS provides the following

equivalent long double functions for use with the -uselongdouble64 flag. These func-

tions provide greater precision than their double counterparts, at the expense of slower

execution.

Header Function Description

<math.h> _ld_acos(long double) Compute inverse cosine

<math.h> _ld_asin(long double) Compute inverse sine

<math.h> _ld_atan(long double) Compute inverse tangent

<math.h> _ld_atan2(long double, long double) Compute inverse tangent

<math.h> _ld_ceil(long double) Compute numeric ceiling

<math.h> _ld_cos(long double) Compute cosine

<math.h> _ld_cosh(long double) Compute hyperbolic cosine

<math.h> _ld_exp(long double) Compute exponent

<math.h> _ld_fabs(long double) Compute absolute value

<math.h> _ld_floor(long double) Compute numeric floor

<math.h> _ld_fmod (long double, long double) Compute floating-point modulus

<math.h> _ld_frexp(long double, int *) Separate fraction and exponent

<math.h> _ld_ldexp(long double, int) Combine fraction and exponent

<math.h> _ld_log(long double) Compute natural logarithm

<math.h> _ld_log10(long double) Compute common logarithm

<math.h> _ld_modf(long double, long double*) Separate integral part and fraction

<math.h> _ld_pow(long double, long double) Compute power of a number

<math.h> _ld_sin (long double) Compute sine

<math.h> _ld_sinh(long double) Compute hyperbolic sine

<math.h> _ld_sqrt(long double) Compute square root

<math.h> _ld_tan(long double) Compute tangent

<math.h> _ld_tanh(long double) Compute hyperbolic cosine

<stdlib.h> _ld_atof(const char *) Convert string to floating point num-
ber

<stdlib.h> _ld_strtod(const char *, char **) Convert string to floating-point num-
ber

Chapter 9: Library Functions

180 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

Types

Table 27 lists the 14 types required by the Standard, together with the name of the

header that defines each type. A few types are defined in more than one header. See the

Standard for a detailed description of each type. See the headers in the TCS distribution

for the TCS implementation of each type.

Table 27 Types

Header Type Description

time.h clock_t Clock tick.

stdlib.h div_t Result type for div().

stdio.h FILE Input/output stream.

stdio.h fpos_t File position indicator.

setjmp.h jmp_buf Nonlocal goto calling environment.

locale.h struct lconv Locale-specific numeric conversion.

stdlib.h ldiv_t Result type for ldiv().

stddef.h ptrdiff_t Pointer subtraction result type.

signal.h sig_atomic_t Integral atomic object.

stddef.h, stdio.h,
stdlib.h, string.h, time.h

size_t Result type for sizeof().

time.h time_t Time.

time.h struct tm Calendar time components.

stdarg.h va_list Variable argument list.

stddef.h, stdlib.h wchar_t Wide character.

Chapter 9: Library Functions

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part A 181

9

System Calls

In addition to functions that are part of the standard C library defined in ANSI/ISO 9899-

1990, the TriMedia compilation system library includes a number of other functions,

including system calls and functions that are TriMedia-specific. Programs that use these

functions are not necessarily portable to other C implementations.

The TCS library includes implementations of several system calls. Most of these are

defined in the POSIX.1 standard. Table 28 lists these system calls, together with the

header that declares the system call and a brief description of its purpose. For more

detailed descriptions, see the POSIX.1 standard. Programs which use POSIX system calls

are portable across POSIX-compliant systems.

Table 28 System Calls

Header Type Function Purpose

unistd.h int access(const char *path, int amode) Check file access.

unistd.h int close(int fildes) Close file.

dirent.h int closedir(DIR *) Close directory.

unistd.h void _exit(int status) Terminate a program.

fcntl.h int fcntl(int fildes, int cmd, ...) File control.

sys/stat.h int fstat(int fd, struct stat *sbuf) Find file attributes.

unistd.h int fsync(int fildes) Flush I/O buffers (non-
POSIX).

unistd.h int isatty(int fildes) Check if file is a terminal.

unistd.h int link(const char *existing,
const char *newfile)

Create a link.

unistd.h off_t lseek(int fildes, off_t offset,
int whence)

Set read/write position.

unistd.h unsigned
int

microsleep(unsigned int
microseconds)

Sleep for microseconds
(non-POSIX).

unistd.h int mkdir(char *path, int mode) Create directory.

unistd.h char *mktemp(char *temp) Generate a temporary file
name (non-POSIX).

fcntl.h int open(const char *path, int oflag, ...) Open file.

dirent.h DIR * opendir(const char *) Open directory.

unistd.h int putenv(char *string) Put string into environ-
ment (non-POSIX).

unistd.h ssize_t read(int fildes, void *buf,
size_t nbyte)

Read from file.

Chapter 9: Library Functions

182 Book 4—Software Tools, Part A ©1999 Philips Semiconductors 10/08/99

dirent.h struct
dirent

*readdir(DIR *) Read directory.

dirent.h void rewinddir(DIR *) Rewind directory.

unistd.h int rmdir(char *path) Remove directory.

unistd.h void *sbrk(int incr) Increase heap size
(non-POSIX).

unistd.h unsigned
int

sleep(unsigned int seconds) Sleep for seconds.

sys/stat.h int stat(const char *path,
struct stat *sbuf)

Find file attributes.

unistd.h int sync(void) Flush I/O buffers (non-
POSIX).

unistd. int unlink(const char *path) Remove file.

unistd.h ssize_t write(int fildes, const void *buf,
size_t nbyte)

Write to file.

Table 28 System Calls (Continued)

Header Type Function Purpose

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 4—Software Tools
	C Language Users Guide
	1: C Language Introduction
	Introduction
	What This Guide Provides
	What This Guide Does Not Provide

	Overall Structure
	C Compiler Overview
	Standards
	C Language
	C++ Language

	Run-Time Support
	Output Files
	Stabs Format
	Object Format
	Compiler Interface
	Implementation
	Optimization
	Environments and Compatibility
	Compiler Architecture
	Quality Assurance

	A Three-Minute Guide to the TriMedia Compiler

	2: Compiler, Using the
	Introduction
	Invoking the Compiler Driver for C
	Invoking the Compiler Driver for C++
	Using the Compiler
	Compiler Driver Options
	Options That Help Understand Compiler Operation
	Options That Stop Compilation After a Particular Phase
	Options That Produce More (or Less) Information
	Options That Control Preprocessor Operation
	Options That Control Optimization
	Options That Control the Link Editor
	Options That Define the Compilation Target
	Options That Determine the C Language Dialect
	Options That Determine C++ Language Dialect
	Options That Control Template Instantiation
	Options That Control Floating Point Operations

	Predefined Macros
	TCS Specifics

	C Language Pragmas

	3: Optimizer, Using the
	Introduction
	Controlling the Overall Level of Optimization
	Optimizations at Level 3
	Additional Optimizations at Level 4
	Additional Optimizations at Level 5
	Optimization Pros
	Optimization Cons
	Global Optimization Issues
	Caveat Regarding Global Optimizations
	Machine-Dependent Options

	Loop Optimization
	Automatic Loop Unrolling
	Manual Loop Unrolling
	Exact Unrolling

	Profile-Driven Compilation
	Grafting
	Manual Grafting
	Graft Tuning File

	Other Optimizations
	Cross Iteration Hoisting
	Forward Code Motion
	Induction Variable Replacement

	Function Inlining
	Automatic Inlining
	Automatic Inlining with the -p Option
	Automatic Explicit Inlining
	Using the Inline Keyword

	Pragma-Controlled Inlining
	Command-Line Controlled Inlining
	Pros of Inlining
	Cons of Inlining
	Automatic vs. Definition-Controlled Inlining

	Alias Analysis
	Alias Analysis Algorithm
	Unsafe Alias Analysis
	Default Behavior

	Unsafe Behavior
	Pros of the -Xalias option
	Pros of the -A option

	Restricted Pointers
	Semantics of Keyword Restrict
	Scope of Restricted Pointers
	Restricted Pointers of File Scope
	Restricted Pointers as Function Parameters
	Restricted Pointers of Block and Structure Scope

	Converting If Statements
	Mapping from Optimization Level to Optimizations
	Summary of individual optimizations

	4: Instruction Scheduler, Using the
	Introduction
	Instruction Scheduler Options
	Main Options
	Control Options
	The -bc (Avoid Bank Conflicts) Option
	Speculative Execution Options
	Debugging and Exception Support Options

	Instruction Scheduler Reports
	Report 1—Issue Slots
	Report 4—Operations
	Report 16—Statistics
	treestat Reports
	Reading Scheduler Reports

	Decision Tree Syntax
	What is a Decision Tree?
	Control Flow
	Operations
	Operation Syntax

	Pseudo-Operations
	After Constraints
	Guarded Execution
	Debug Information
	Embedded Assembler Directives
	Segments
	Labels/Symbols

	5: Performance Analysis Overview
	Introduction
	Important Guidelines for Making Measurements
	Command Syntax
	tmprof Options
	Formatting Options
	Scaling Options (-scale and -threshold)
	Grouping Options (-func and -fcs)
	Run-Time Options (-ptm)
	Miscellaneous Options
	MCS Factor

	Using tmprof with the Simulator
	Caveats

	Using tmprof with a Host Processor
	Standalone Programming Using the tmprof API
	Explicit Activation and Deactivation of Profiling
	Defining Profiling Parameters
	Source Code Changes
	Command Line Processing
	Task-Based Profiling

	Summary

	Caveats Regarding Profiling

	6: Systems Programming
	Introduction
	Systems Program Debugging
	Assertions
	Interrupt Handlers
	Writing an Interrupt Handler
	Initializing an Interrupt Vector
	Generating a Software Interrupt
	Reducing Interrupt Overhead
	Interruptible Handlers
	Exception Handlers
	Critical Sections
	Using an Atomic Function
	Atomic Functions and Procedure Calls
	Decision Tree Breaks
	Caller Save Registers

	Software Cache Support
	Cache Copyback
	Cache Invalidate

	Miscellaneous Issues
	Code Checksumming
	Uninitialized Variables
	Race Conditions

	7: Custom Operations, Using
	Introduction
	Syntax

	Classes of Custom Operations
	Operations on Vectors of Four Elements
	Operations on Vectors of Two Elements
	Vector-to-Scalar Computation
	Multiple Precision Arithmetic
	Clipped Computation
	Floating Point
	Vector Data Packing and Rearrangement
	Minimum, Maximum, and Absolute Value
	Shift and Rotate
	Processor Control
	Cache Control
	Conditional Computation

	8: C/C++ Language, TriMedia
	Introduction
	Standards and Compatibility
	Relevant Standards
	Compatibility Considerations
	Additional Reading

	Language Extensions
	Alternate Extended Reserved Words
	Custom Operators
	The Pragma Statement
	The asm Statement
	Restrict
	Long Float
	Constants
	Bitfields

	Implementation
	Data Representation
	Alignment Requirements
	Naming Conventions
	Memory Layout
	Statically Allocated Memory
	Dynamically Allocated Memory

	Register Usage Conventions
	Callee vs. Caller Saved Registers
	Calling Conventions
	Argument Passing
	Function Call
	At Entry
	At Exit
	After Return
	Atomic Functions
	Function and Handler Entry/Exit Optimizations

	Stack Conventions
	Stack Calculation
	Incoming Arguments
	Register Save Area
	Outgoing Argument Area

	Implementation-Defined Behavior
	Environment (G.3.2)
	Identifiers (G.3.3)
	Characters (G.3.4)
	Integers (G.3.5)
	Floating Point (G.3.6)
	Arrays and Pointers (G.3.7)
	Registers (G.3.8)
	Structures, Unions, Enumerations, and Bit-Fields (G.3.9)
	Qualifiers (G.3.10)
	Declarators (G.3.11)
	Statements (G.3.12)
	Preprocessing Directives (G.3.13)
	Library Functions (G.3.14)

	C++ Language Definition
	Dialect
	Boolean Type (bool)
	Wide Characters (wchar_t)
	Special Pragmas
	Exception Handling
	Ongoing Standardization Issues
	Other restrictions with the current C++ implementation

	Using Templates
	Using <iostream> and <string>

	Implementation Specifics
	Error Message Compiling with -p
	Variable Addressing
	Compiler Messages
	Performance Impact of -compact Option
	Run-Time Exit Code

	9: Library Functions
	Introduction
	Headers
	Macros
	Functions
	Long Double Library Functions
	Types
	System Calls

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

