

Version 2.1

AB

Book 4—Software Tools

Part B:

Program Development Tools

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part B

iii

Book 4—Software Tools
Part B: Program Development Tools

Table of Contents

Chapter 10 TriMedia Assembler

Introduction... 10

The Assembler ... 11

Assembly Code Checks ... 11

Main Options .. 11

The -handcode option ... 11

Assembly Syntax ... 12

Example .. 12

Machine Constraints .. 13

Other Constraints .. 13

Pseudo-Operations ... 13

Control-Flow Fall-Through ... 14

Branches are Mutually Exclusive.. 14

Assembly Expressions .. 14

Expression Syntax ... 14

Use of Symbols in Assembly Expressions ... 15

Assembler Directives .. 15

Assembler Directives at a Glance .. 16

.text, .data, .data1: Switch Sections ... 16

.ascii: Character Data .. 17

.byte, .half, .word: Generating Data .. 17

.common: Declare a Common Symbol .. 18

.reserve: Define a Symbol with Alignment ... 18

.global: Define a Global Symbol ... 19

.align: Align the Current Address ... 19

Use of Directives and Program Layout .. 19

TM-1

x

00 Constraints .. 20

Instruction Format and TM-1

x

00 Constraints ... 21

Instruction Format .. 21

Code Placement Constraints ... 22

Special Register Semantics .. 25

PCSW Writes and Reads... 25

Changes to DPC ... 26

Table of Contents

iv

Book 4—Software Tools, Part B

©1999 Philips Semiconductors 10/08/99

MMIO Location Updates ... 27

Forward Compatibility ... 28

Crossover of Register Writes .. 28

Assembly Program Checklist ... 29

Interfacing C with Assembly Language Programs ... 30

Memory Layout and C Calling Conventions .. 30

Using the C Preprocessor ... 30

Calling Assembly Code from C Code.. 30

C Variables and Corresponding Assembly Directives .. 39

Opcodes.. 41

Functional Unit Types .. 42

ALU.. 42

BRANCH ... 42

CONST.. 42

DMEM .. 43

DMEMSPEC .. 43

DSPALU.. 43

DSPMUL .. 43

FALU.. 43

FCOMP .. 44

FTOUGH ... 44

IFMUL .. 44

SHIFTER .. 44

TriMedia Opcodes ... 44

Chapter 11 Linking TriMedia Object Modules

Introduction... 68

Overview... 68

Object Files .. 68

Object File Structure .. 69

Object Manipulation Tools ... 73

Object File Contents ... 73

Sections ... 74

Example .. 75

Program Unit Attributes ... 76

Section Attributes ... 77

System Sections and Sections Introduced by tmld .. 78

Symbols ... 78

References .. 80

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part B

v

Static Linking ... 80

Dynamic Linking ... 82

Why Dynamic Linking is Valuable ... 82

Concepts of Dynamic Loading ... 83

Difference Between Static- and Dynamic Linking... 83

Code Segments.. 84

Simple Examples .. 87

Dynamic Library... 87

Runtime Library Update.. 88

Application Shell.. 90

Dynamic Loader Shell .. 91

Responsibilities of the Dynamic Loader ... 93

More on Dynamic Libraries .. 95

Dynamic Library Roles... 95

Dynamic Library Search Path.. 95

Exported Symbols ... 96

Control Over Implicit Dynamic Loading ... 98

Function Stubs..101

Compatibility Across Versions of Dynamic Libraries ..102

Binding Code Segments ...103

TriMedia Dynamic Loader Architecture ..106

Notes and Caveats of Dynamic Loading ...107

Carefully Consider Transitive Errors ..107

Real Time Issue ...107

Carefully Consider Exporting Internal State ..107

Function Stub is Part of Referring Segment ..108

Executables are Generally Larger ..108

Code Segments and PIC..109

Compiler Options for Dynamic Loading ...109

More Examples ...110

Dynamic Loading from Flash ...110

Memory Manager Customization ..111

Implicit Loading Error Handling...112

Section Renaming...113

Sections Produced by tmccom ..114

Other Sections Produced by SDE Tools ...115

Link Optimizations ...116

Multiprocessor Support...117

Shared Memory ...118

Table of Contents

vi

Book 4—Software Tools, Part B

©1999 Philips Semiconductors 10/08/99

SDRAM Memory Images vs Load Images ...119

Constructing Load Images Using tmld ...122

Download Symbols...123

Reserved Download Symbols ...123

Other Download Symbols Used by the TriMedia SDE ...125

tmld Options..126

List Construction by tmld ..130

Example ..131

Other Uses of Chain Symbols ..132

Reserved Chain Symbols ..132

Chapter 12 TriMedia Execution Host Utilities

Summary ..136

The TriMedia Manager ...136

TMMan Setup & Removal ..136

TriMedia Commands ..137

tmgmon ..138

Running the Software ..138

Processor ..138

Code Download ...139

Memory...139

Trace ...140

TMRun ...140

TMmpRun ...141

Chapter 13 The TriMedia Simulator

Introduction to Machine-Level Simulation of TriMedia Processors144

The Simulated Architecture ..146

Command Syntax..149

Command Line Options ..150

Interactive debug commands ..154

Setup Commands..154

Simulation and Debugging Commands...155

Information-Printing Commands ..156

Batch Mode and Source Files ..158

Trace Mode and Performance Statistics..159

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part B

vii

Interrupt and Exception Handlers ...160

Data Layout ..161

Program Debugging...161

Operating System Emulation..162

Performance Analysis Support: The tmsim Statfile ...162

Video-Out Support ...163

Chapter 14 Using the TriMedia CodeWarrior Plugins

Overview...166

Installing the TriMedia CodeWarrior Plugins...166

Win95/98/NT ...166

MacOS ..166

Known Problems ...166

Implementation Notes...167

Speeding Up Compilation ..167

Browser Catalog ...167

File Names and Search Paths ..168

Specifying TriMedia CodeWarrior Settings ..168

Target Settings ...169

Access Paths ..169

File Mappings ...170

TriMedia Target ...171

C Language ..174

TriMedia Assembler ..175

TriMedia Compiler ...176

TriMedia Scheduler ...178

TriMedia Linker ...180

Table of Contents

viii

Book 4—Software Tools, Part B

©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part B

9

10

Chapter 10

TriMedia Assembler

Topic Page

Introduction 10

The Assembler 11

Assembly Syntax 12

TM-1x00 Constraints 20

Interfacing C with Assembly Language Programs 30

Opcodes 41

Chapter 10: TriMedia Assembler

10

Book 4—Software Tools, Part B

©1999 Philips Semiconductors 10/08/99

Introduction

This chapter describes the TriMedia assembler

tmas

. It consists of five main sections,

which contain in this order:

1. An overview of the options to the Assembler.

2. A description of the syntax of the TriMedia Assembly Language.

3. The constraints on the assembly as imposed by the TM-1X00 processors.

4. A guide to interfacing Assembly with C.

5. A table of available opcodes.

The TriMedia Assembly Language has been designed as an intermediate language

between the instruction scheduler and the assembler, and was never meant to be used as

a programming language. Due to the architecture, there are many constraints on the

type of instruction that can be used, and the order in which they can be used. Using the

assembler to write programs is therefore not recommended. This chapter is meant as a

guide for those people who need that extra cycle that assembly programming can bring.

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part B

11

10

The Assembler

Assembly Code Checks

The assembler reads in the assembly file (typically a

.s

 file) and writes an object file (typi-

cally a

.o

 file). Several checks are run on the source file to determine possible run-time

conflicts. Note that not all run-time conflicts can be detected at compile time. The user

should therefore be very careful with writes and branches. Currently, the following

checks are performed:

■

Correct issue slot. The assembler checks whether all operations are in slots that sup-

port the operation.

■

Maximum five results per cycle. The assembler tries to check whether only five result-

producing operations complete at each cycle. It is not always possible to check this in

the presence of guards and jumps.

■

Conflicting writes. The assembler checks whether no two operations complete and

write to the same register simultaneously. Again, under the presence of guards this

will not always be possible.

■

Guarded immediates. Immediate instructions cannot be guarded, so the assembler

checks on this.

Main Options

Table 1 contains the main options of the Assembler

tmas

.

Most of these options are straightforward, so only

-handcode

 is described here.

The -handcode option

The

-handcode

 option reports some extra potential problems with the assembly code.

The option influences two major assembly code checks:

Table 1

Main Options

Option Description

-V Prints version information.

-eb Default endianness is big-endian.

-el Default endianness is little-endian.

-h Prints a brief help message with options.

-o=file Uses the specified file for output.

-handcode Prints additional handcode assistance warnings.

Chapter 10: TriMedia Assembler

12

Book 4—Software Tools, Part B

©1999 Philips Semiconductors 10/08/99

■

Conflicting writes. All simultaneous writes to a register are reported, instead of just

the ones that the assembler considers to be potentially conflicting.

■

Uninitialized reads. The assembler reports reads from registers that have not yet been

initialized with a value in the given schedule.

Assembly Syntax

The assembly code format is the textual representation of scheduled TriMedia code. It is

used as the communication medium between the TriMedia scheduler and the TriMedia

assembler. The inherent characteristics of a VLIW processor and the constraints of the

TM-1X00 processor make it ill-suited for direct use by the programmer.

Example

The following is a simple example assembly code routine for the TriMedia chip:

TriMedia has five issue slots, so five operations are specified in each cycle. The

nops

 are

necessary to specify the operation slot position to the hardware. For instance, in cycle

four, the two stores are scheduled into issue slots four and five, because those are the

(* cycle 0 *)
 IF r1 iadd r5 r6 -> r125 , (* alu/Op10 *)
 IF r1 igtr r5 r6 -> r126 , (* alu/Op11 *)
 IF r1 igeq r6 r5 -> r127 , (* alu/Op20 *)
 IF r1 ld32d(16) r4 -> r125 , (* dmem/Op3 *)
 IF r1 nop ;

(* cycle 1 *)
 IF r1 asri(0x2) r125 -> r125 , (* shifter/Op12 *)
 IF r1 ijmpt r126 r2 , (* branch/Op18 *)
 IF r1 ijmpf r126 r2 , (* branch/Op19 *)
 IF r1 nop ,
 IF r1 nop ;

(* cycle 2 *)
 IF r1 nop ,
 IF r1 nop ,
 IF r1 nop ,
 IF r1 h_st32d(0) r125 r7 , (* dmem/Op13 *)
 IF r1 nop ;

(* cycle 3 *)
 IF r1 nop ,
 IF r1 nop ,
 IF r1 nop ,
 IF r126 h_st32d(0) r6 r8 , (* dmem/Op14 *)
 IF r127 h_st32d(0) r5 r8 ; (* dmem/Op16 *)

(* cycle 4 *)
 IF r1 nop ,
 IF r1 nop ,
 IF r1 nop ,
 IF r126 h_st32d(0) r5 r125 , (* dmem/Op15 *)
 IF r127 h_st32d(0) r6 r125 ; (* dmem/Op17 *)

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part B

13

10

only two issue slots from which stores can be issued. Each operation has an optional

guard (

IF rx

), the opcode, an optional parenthesized modifier field (if appropriate for the

opcode), followed by a list of the argument registers, and an optional destination register

(if appropriate for the opcode). The most general form of the operation is written:

where

ra

 is the guard register,

modifier

 is the opcode modifier value (integer constant),

rb

and

rc

 are the argument registers, and

rd

 is the destination register.

Machine Constraints

When writing an assembly program, you must consider all the constraints of the target

machine. In particular, the following must be satisfied as shown in Table 2. The next sec-

tion describes these constraints in more detail.

Other Constraints

Some additional restrictions on the input must be obeyed to produce a correct program.

Pseudo-Operations

Pseudo-operations are not allowed in the assembly source code, since they are not imple-

mented in the actual hardware. During compilation, the instruction scheduler maps the

pseudo-operations to the real hardware operations.

IF ra opcode(modifier) rb rc Ð> rd,

Table 2

Machine Constraints in Assembly Code

Name Description

Register index The register named must be in the valid range. Hardware regis-
ters

r0

 and

r1

 must not be written to.

Issue slots There must be exactly

n

 operations in each instruction, where

n

is the number of issue slots of the target machine.

Operation property Use of operations must match the properties declared in the
machine description file, such as arity, modifier signedness,
range and step, destination register.

Input crossbar There is a restriction on which operations may issue in which
issue slots.

Writeback buses There must not be more than

n

 results produced in a given
cycle, where

n

 is the number of writeback buses on the target
machine.

Functional unit availability The functional unit that the operation issues on must be avail-
able, as governed by the RECOVERY attribute of the functional
unit type in the machine description file.

Chapter 10: TriMedia Assembler

14

Book 4—Software Tools, Part B

©1999 Philips Semiconductors 10/08/99

Control-Flow Fall-Through

The assembly program execution correctness should not rely on control-flow fall-

through. For example, any execution of an instruction at a label (branch target) should

be a result of a control transfer (FLOW operation). This is required by the instruction

compression scheme. The assembler attempts to detect control-flow fall-throughs and

flags errors/warnings as appropriate. The assembler cannot detect all such cases due to

dynamic behavior of certain assembly code.

Branches are Mutually Exclusive

It is possible to schedule two (or more) branches in one operation, but they have to be

mutually exclusive, i.e. only ONE branch can be taken in each instruction. Care should

be taken when scheduling more than one branch in an instruction that only one guard

evaluates to true. If more than one branch is taken, the outcome is undefined.

Assembly Expressions

The

tmas

 assembler allows a limited set of expressions in assembly programs. The sec-

tions in this section define the types of expressions recognized by

tmas

.

Expression Syntax

The only operators allowed in an assembly expression are

■

Unary plus

■

Unary minus

■

Binary plus

■

Binary minus

An assembly

expression

 can be a numeric constant (an integer constant or a floating-

point constant), a symbol, or a combination of these using the four operators mentioned

previously. Unary operators have higher precedence over binary operators. Parentheses

can be used to group subexpressions. Symbols are limited in the way they can be used, as

explained in the next section. The precise syntax of the expressions is given by the fol-

lowing rules:

expression ::= FloatConst | additive_expression .
additive_expression ::= unary_expression
 | additive_expression "+" unary_expression
 | additive_expression "Ð" unary_expression.
unary_expression ::= primary_expression
 | "+" unary_expression
 | "Ð" unary_expression .
primary_expression ::= SymbolName | IntConst
 | "(" additive_expression ")" .

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part B

15

10

Use of Symbols in Assembly Expressions

An assembly expression must be either

absolute

 or

relocatable

. An expression is absolute if

its value is known at compile time. An expression is relocatable if it contains a symbol.

There are some restrictions on the way symbols can be used in assembly expressions. A

symbol is allowed in an expression only if the resulting expression is relocatable or abso-

lute. Thus, the addition of a symbol and an integer constant is valid, and so is the differ-

ence of two symbols that belong to the same section. When the two symbols whose

difference is taken are in the

text

 section, the expression computes to the number of

instructions between the two instructions.

The following are examples to illustrate these statements. Assume that the two symbols

_sym1

 and

_sym2

 have been defined previously.

Assembler Directives

Assembler directives

 direct the actions of the

tmas

 assembler to initialize data, reserve

space, export symbols to other files, and so on. The assembler recognizes the following

four sections:

text

,

data1

,

data

, and

bss

. The programmer can instruct the assembler to

switch to different sections and take appropriate actions within these sections by using

assembler directives.

The next section,

Assembler Directives at a Glance,

 provides a summary of all the assem-

bler directives. Further discussions elaborate on some of the directives in detail.

Symbol Description

_sym1 A simple relocatable item

_sym1 + 10 A simple relocatable expression

10 – _sym2 Not allowed (result cannot be relocated)

_sym1 + _sym2 Not allowed (result cannot be relocated)

_sym1 – _sym2 Allowed if and only if they are of the same segment and the off-
set is known at assembly time (if text segment, the result is
number of instructions starting at

_sym2

 and ending at

_sym1

,
not including the instruction at

_sym1

)

(_sym1 – _sym2) + _sym3 Valid (equivalent to adding a constant to a symbol)

Chapter 10: TriMedia Assembler

16 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Assembler Directives at a Glance

The TriMedia assembler supports the assembly directives shown in Table 3.

.text, .data, .data1: Switch Sections

The tmas assembler recognizes the following four sections: text, data1, data, and bss.

The text section consists of the assembly instructions to be executed on TriMedia. The

data1 section consists of initialized data that can not be modified at run time. The data

Table 3 Assembly Directives

Assembly Directive Description

.align n Advance current address to the next n-bytes aligned address
in the current segment.

.ascii "string" Generate the ASCII equivalent of the string in the current seg-
ment, allowing all the standard C escape sequences in the
string.

.byte list-of-expressionsA

A. List-of-expressions denotes a comma-separated list of assembly expressions and list-of-symbols is a
comma-separated list of symbols.

Generate initialized 1-byte values in the current segment,
given the comma-separated list of assembly expressions.

.common symbol, size
[, "segment" [, alignment]]

Declare the symbol to be a FORTRAN-style common area
with the given size in bytes. It will be defined either in the
optionally given segment or in bss if none was given. The
symbol can have an optional alignment, which will be used
by the linker during its final linking pass (if the symbol did not
resolve to a definition).

.data Switch current segment to data segment.

.data1 Switch current segment to data1 segment.

.global list-of-symbols Declare the comma-separated list of symbols to be global

.half list-of-expressions Generate initialized 2-byte values in the current segment,
given the comma separated list of assembly expressions.

.reserve symbol, size
[, "segment" [, alignment]]

Define symbol in current or optionally given segment, reserve
size bytes, align it if given optional alignment size (in bytes).

.skip n Skip the next n bytes (advance current address by n) in the
current segment. Not allowed in text segment.

.text Switch current segment to text segment.

.word list-of-expressions Generate initialized 4-byte values in the current segment,
given the comma-separated list of assembly expressions.

.zero n Zero the next n bytes (and advance current address by n) in
the current segment. Not allowed in text segment.

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 17

10

section has initialized data that can be modified during run time, and the bss section has

all uninitialized data (that is, statically allocated space). The bss section is initialized to 0

at run time.

The tmas assembler has the concept of current section. By default, tmas assumes that an

assembly file starts with the text section as the current section. The assembler directives

.text, .data1, and .data specify that the assembler switch the current section to the

appropriate section. For example, in the following program, the assembler initializes the

first word in the data section to hold the value 234, then generates code in the text sec-

tion, and then initializes the first word in the data1 section to be 888.

.ascii: Character Data

The . ascii directive generates the ASCII equivalent of the given string at the current

address in the current section. The string can have any of the escape sequences allowed

in the ANSI/ISO C Standard. The following are some examples:

Note that a \0 must be explicitly given at the end of the string if the string is to be null-

terminated. In the second example, 6 bytes in memory are initialized (the first 3 bytes

with the ASCII values of a, b, and c, followed by two bytes with octal values 001 and 023,

followed by a one byte with hex value 0xF6).

.byte, .half, .word: Generating Data

The directives .byte, .half, and .word reserve storage locations in the current section and

initialize them with the specified values. These directives are not allowed in the text sec-

tion.

The .byte directive reserves one byte of space for each expression in the list and initial-

izes the byte with the low-order eight bits of the corresponding expression’s value.

The .half directive reserves two bytes of space for each expression in the list and initial-

izes the bytes with the low-order 16 bits of the corresponding expression’s value.

The .byte and .half directives do not allow relocatable expressions in their list of expres-

sions. This is because 32-bit addresses will not fit into either the 8-bit or the 16-bit spaces

allocated for these directives.

.data

.word 234

.text
_label_1:
uimm(22) -> r123, ijmpi(_somewhere_else), nop, nop, nop;
nop,nop,nop,nop,nop;
nop,nop,nop,nop,nop;
nop,nop,nop,nop,nop;
.data1
.word 888

.ascii "Hello! How are you? \n\0"

.ascii "abc\001\023\xf6"

Chapter 10: TriMedia Assembler

18 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

The .word directive reserves four bytes of space for each expression in the list and initial-

izes the bytes with the value of the corresponding expression.

The following are some examples:

.common: Declare a Common Symbol

The .common directive allows the user to declare a symbol to be a FORTRAN-style com-

mon area with the given size in bytes. When such a symbol appears in several files, the

linker resolves them and eventually the space allocated for the symbol is the maximum

of all the sizes given in the files. The format of the . common directive is

Regardless of whether bss is explicitly indicated, the symbol is always taken to be in the

bss section. When the alignment is not given, its value defaults to one (byte alignment).

The following are examples:

.reserve: Define a Symbol with Alignment

The . reserve directive defines a symbol in the current section (or in the optionally spec-

ified section) and reserves the specified number of bytes for the symbol. The optional

alignment value is used to ensure that the symbol is aligned to the appropriate byte

boundary.

The format of the . reserve directive is

.data
_symname:
.byte 34 (* reserves 1 byte and initializes it with the value 34. *)
.byte 3,45,6 (* reserves 3 bytes initialized with 3,45,and 6. *)
_sym_2:
.byte 123456 (* reserves 1 byte initialized with 0100 0000 (0x40). *)
 (* 123456 (0x1E240) in binary is 1 1110 0010 0100 0000. *)
.half 123456789 (* reserves 2 bytes initialized with 1100 1101 0001 0101 *)
 (* (0xCD15). 123456789 (0x75BCD15) in binary is *)
 (* 0111 0101 1011 1100 1101 0001 0101. *)
.word _symname (* reserves four bytes initialized with the relocatable *)
 (* address of _symname. *)
.half _symname (* This is illegal. Relocatable expressions are not *)
 (* allowed with the .half directive. *)
.half (_sym_2 Ð _symname) (* This is legal. Two bytes are reserved and *)
 (* initialized with the value of the given *)
 (* expression (which is 4). *)

.common symbol, size [, "bss" [, alignment]]

.common symbol_1, 10 (* symbol_1 is declared to be in the bss section; *)
 (* 10 bytes are reserved for it.*)
.common symbol_2, 12, "bss", 4 (* symbol_2 is declared to be in the bss *)
 (* section; 12 bytes are reserved for it; *)
 (* The linker makes sure that symbol_2 is *)
 (* aligned to a 4-byte boundary. *)

.reserve symbol, size [,"section" [, alignment]]

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 19

10

The following is an example:

.global: Define a Global Symbol

A program can consist of several modules. A symbol defined in one module may be refer-

enced in another. If a symbol defined in one module is to be referenced in another mod-

ule, the symbol must be made global by using the . global directive. If a symbol is not

explicitly exported by using the .global directive, the symbol does not appear in the glo-

bal symbol table, and, thus, is not available for use in other modules.

The format of the . global directive is:

The following is an example:

.align: Align the Current Address

The .align directive advances the current address to the next n-byte boundary. For exam-

ple, this directive could be used to ensure that integers initialized by the .word directive

start at a word boundary. The .align directive is not allowed in the text section.

The format of the .align directive is:

where size is an integer that is an integral divisor of the block size of the current section.

The linker/loader always ensures that each section when relocated starts at a proper

block boundary, where the block size is dependent on the section. This restriction

ensures that the alignment is maintained, even when the section is relocated.

Use of Directives and Program Layout

This section includes an example that shows how to switch sections in an assembly pro-

gram and how to initialize data using assembler directives. Note that the tmas assembler

assumes that the assembly file starts with the text section. Thus, you do not need to start

a file with a .text directive. However, if you want to define symbols in other sections at

.data1

.reserve res_symbol, 12
 (* Reserve 12 bytes for the symbol res_symbol in the data1 section. *)
.reserve another_res, 16, "data", 32
 (* Reserve 16 bytes for the symbol another_res in the data section, *)
 (* aligning it to a 32-byte boundary. *)

.global list-aof-symbols

.data

.global _name
_name:
.word 234 (* _name is a variable available for use in other modules. *)
 (* It is initialized with the value 234. *)
.global name2, name3, name4
 (* name2, name3, name4 are also made global. *)

.align size

Chapter 10: TriMedia Assembler

20 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

the beginning of the file, then you should start the file with an appropriate directive.

There are no restrictions on how many times you can switch sections in an assembly file.

TM-1x00 Constraints

This chapter discusses the text section of a TM-1x00 assembly program. The tmas assem-

bler provides plenty of room for the assembly programmer to exploit parallelism at the

instruction level. To utilize this fully, you must be aware of some machine constraints

and subtleties. The purpose of this chapter is to present you with such constraints from

the point of view of an assembly programmer. The section Instruction Format and TM-

1x00 Constraints discusses the instruction format and machine constraints that influence

the assembly programs. All assembly programmers must know the details presented in

this section. Details involving special operations that read/write special registers and

MMIO locations are discussed in the section Special Register Semantics. Finally, the section

Assembly Program Checklist discusses a convenient checklist to make sure that an assem-

bly program satisfies all the machine constraints.

.data (* change from text section to data section. *)

.align 4 (* current address aligned to a word boundary *)

.global aa (* declare the symbol aa to be global. *)
aa: (* define the symbol aa in data section. *)
.word 1234 (* initialize the word at aa with value 1234. *)
.byte 3 (* initialize the 5th byte starting from aa *)
.byte 4 (* to 3 and the 6th to 4. *)
.ascii "Hello world\n\0"
 (* Initialize the next few bytes with ASCII values for *)
 (* the characters in the string. *)
.align 4 (* skip bytes if needed to align the current address *)
.align 4 (* word boundary. *)

cc:
.half 34, 56, 78, (cc Ð aa)
.reserve another_data,
 (* reserve 4 bytes while defining the symbol another_data *)
 (* the data section. These 4 bytes are filled with zero. *)
 (* The symbol another_data gets the current address as *)
 (* its value. *)

.text (* switch to text section. *)

.global _main
_main:

uimm(aa) Ð> r10, ijmpi(outside), nop, nop,nop;

nop,nop,nop,nop,nop;
nop,nop,nop,nop,nop;
nop,nop,nop,nop,nop;

.data1 (* switch to data1 section. *)

.global bb

.word 0s2.0e30 (* singleÐprecision, floatingÐpoint constant *)

.common sym_1, 4, "bss", 4
 (* declare sym_1 to be in the bss section. *)

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 21

10

Instruction Format and TM-1x00 Constraints

The text section contains a sequence of assembly instructions. Each instruction consists

of five TM-1x00 operations. Instructions are separated by semicolons. A single line can

have many instructions, and a single instruction can cross line boundaries.

Instruction Format

The format of an instruction is

The label field is optional. If present, it consists of an identifier followed by a colon “:”.

Any instruction starting with a label is taken to be a branch target. In contrast to most

machines, the TriMedia assembler does not allow control flow to fall through to a branch

target. In other words, the program must be written so that a branch target instruction

can be reached only by an explicit jump instruction. (For more discussion of this issue,

refer to the section Control Flow Fall-Through beginning on page 24.) The identifier used

in the label can be used in assembly expressions to denote the address of the instruction.

Five operations are allowed within an instruction. That is, each instruction has five issue

slots, and operation_i is in issue slot i. Each operation (operation1 through operation5) has

the following format:

Note the following about the various fields:

■ The guard is optional. When the guard is present, the operation will be executed if and

only if the least-significant bit of the guard register is 1. Immediate operations (uimm

and iimm) cannot be guarded.

■ The optional modifier field can be any assembly expression. Some opcodes do not take

a modifier, some allow the modifier value to be anything representable within 32 bits,

while some others have more severe restrictions (such as restricting the value to be

representable within 7 bits). The table of opcodes in Chapter 6 can be used to find out

the modifier ranges allowed for various opcodes.

■ The operand fields are shown to be optional because some operations do not take any

operands while some operations take only one operand. The destination field is shown

as optional because some operations do not produce any value.

■ Since TriMedia is a load/store architecture (that is all memory transactions are via

explicit loads and stores), ‹guard›, ‹operand_1›, ‹operand_2›, and ‹destination› must be

registers. Registers are represented as rn, where n is the number of the register. Thus,

r5, r98, and r121 are valid representations for registers in an operation.

■ The fields within an operation must be separated by white-space characters (spaces,

tabs, and newlines). Comments are also taken to be white space.

[<label-field>] [<op_1>,<op_2>,<op_3>,<op_4>,<op_5>;]

[If <guard>] <opcode> [(<modifier>)] [<operand_1> [<operand_2>]]
[Ð> destination>]

Chapter 10: TriMedia Assembler

22 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Code Placement Constraints

The TriMedia architecture, while providing a considerable amount of parallelism,

imposes certain restrictions on the way operations can be placed within an instruction.

This section discusses such constraints. Read this section carefully, because it is very

important to understand these constraints before writing assembly programs.

Issue Slot Limitations

Each opcode in the TriMedia assembler belongs to one of the categories listed in Table 4.

Each category is implemented by a certain functional unit type that determines various

properties of the operation (such as latency, recovery and so on). The issue slots in which

an operation can be placed depends on its functional unit type. For example, the opera-

tions belonging to the functional unit type BRANCH can be placed only in the issue slots

2, 3, and 4. Table 4 shows the mapping of the functional unit types to the issue slots. See

page 44 for more information about the opcodes.

Latency, Recovery, and Delay

The latency of a functional unit type defines the number of cycles between the cycle an

operation of that functional unit type is issued and the cycle at which the result of the

Table 4 Mapping from Functional Unit Type to Issue Slot

Functional Unit Type Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

CONST X X X X X

ALU X X X X X

DMEM X X

DMEMSPECA

A. When an operation belonging to the functional unit type DMEMSPEC is placed in an instruction,
an operation from DMEM is not allowed in that instruction. In addition, an invalidate (dinvalid) or
copyback (dcb) operation should not be preceded by any DMEM or DMEMSPEC operation(s) in the
previous instruction (HW bug # 21299), and a copyback (dcb) operation should not follow a store
operation to the same cache block in the next instruction (HW bug # 21331).

XA

SHIFTER X X

DSPALU X X

DSPMUL X X

BRANCH X X X

FALU X X

IFMUL X X

FCOMP X

FTOUGH X

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 23

10

operation becomes available. For example, FALU has a latency of three. This means that

if an fadd instruction is issued in cycle i, its result is available for use in cycle i+3.

Recovery defines the number of cycles needed to free a functional unit after an operation

of that type is issued. All functional units except the FTOUGH unit have a recovery of 1.

FTOUGH has a recovery of 16. For example, if the guard is TRUE and a fsqrt is issued in

cycle i, no FTOUGH operations can be issued in cycles i+1 through i+15. (They are

allowed in cycle i+16.) However, if the guard is FALSE, the recovery time is 2 cycles (as

opposed to the expected single cycle) because of a hardware feature. In other words, two

FTOUGH operations can never be issued sequentially.

Delay (applicable only to BRANCH type operations) defines the number of cycles between

the issue of a branch operation and the cycle in which the instruction at the location

specified by the branch instruction is executed. Thus, in the following example, instruc-

tions in cycles i+1, i+2, and i+3 are executed before the instruction at new_place is exe-

cuted, because the delay of jmpi is three cycles:

Number of Writebacks

The maximum number of writebacks allowed in a cycle is five. This means that, in any

given cycle, at most five operations that produce a result can complete. Thus, the follow-

ing piece of code is illegal:

(*cycle i *)
nop,
jmpi(new_place),
nop,
ld32d(0) r10 Ð> r60,
IF r90 ld32d(4) r10 Ð> r61;

(* cycle i+1 *)
nop,nop,nop,nop,nop;

(* cycle i+2 *)
uimm(1) Ð> r50,
uimm(2) Ð> r51,
uimm(3) Ð> r52,
uimm(4) Ð> r53,
uimm(5) Ð> r54;

(* cycle i+3 *)
nop, nop, nop, nop, nop;

...

new_place:

uimm(mem_loc) Ð> r100,
nop, nop, nop, nop;

nop,
nop,
nop,
ld32d(0) r10 -> r60,
ld32d(4) r10 -> r61;

Chapter 10: TriMedia Assembler

24 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

It is the responsibility of the programmer to ensure that the number of writebacks does

not exceed five in any cycle. Exceeding the limit can cause nondeterministic behavior.

Important
Special care should be taken at points in the program that can be reached
from several places. The number of writebacks should not exceed five in
each possible execution path.

You can use guards to ensure that the number of writebacks does not exceed the limit.

Thus, the following is legal code if the guard registers r90 and r91 are mutually exclusive

(that is only one of them is TRUE when the instruction with the loads is executed):

Control Flow Fall-Through

Any instruction that has an associated label is considered to be a branch target. The vari-

able-length instruction format of TriMedia imposes a restriction on the control flow, for-

bidding control fall-through to a branch target. Thus, the execution of the instruction at

a branch target must be through an explicit BRANCH type instruction. The following

code is thus illegal:

nop,nop,nop,nop,nop;

uimm(1) -> r50,
uimm(2) -> r51,
uimm(3) -> r52,
uimm(4) -> r53,
uimm(5) -> r54;

nop,nop,nop,nop,nop; (* The two loads and the five immediates complete in *)
 (* this cycle, resulting in a total of seven write- *)
 (* backs. (ld32d has a latency of 3 cycles. uimm has *)
 (* a latency of 1 cycle.) Only five are allowed! *)

nop,
nop,
nop,
IF r91 ld32d(0) r10 Ð> r60,
IF r90 ld32d(4) r10 Ð> r61;

nop,nop,nop,nop,nop;

uimm(1) Ð> r50,
uimm(2) Ð> r51,
uimm(3) Ð> r52,
uimm(4) Ð> r53,
nop;

nop,nop,nop,nop,nop; (* When r90 and r91 are mutually exclusive,only one *)
 (* load and four immediates result in writebacks in *)
 (* this cycle, resulting in a total of five writeÐ *)
 (* backs. Thus this code is legal. *)

nop, nop, nop, nop, nop;

(* cycle 0 *)
uimm(1) Ð> r50,
uimm(2) Ð> r51,
uimm(3) Ð> r52,

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 25

10
WARNING
No control-flow fall through to branch targets.

Boolean Values

When interpreting a bit pattern as a Boolean value, only the least-significant bit is used.

A 0 in the least-significant bit is interpreted as FALSE, and a 1 as TRUE. Thus, if a register

has the value 0xFFFFFFF0, it is interpreted as FALSE in contrast to the way it is inter-

preted in C (which is TRUE).

Special Register Semantics

This section is for advanced assembly programmers who intend to use special registers

and/or MMIO locations to influence the instruction execution.

PCSW Writes and Reads

writepcsw and rounding mode

writepcsw has a latency of one. Thus, if a writepcsw updates the rounding mode in cycle

i, its value becomes effective in cycle i+1.

writepcsw and BSX

The BSX (byte order or endianness) gets set once shortly after or during system booting

and is not to be changed again. The precise time when a change in the PCSW.BSX bit

uimm(4) Ð> r53,
uimm(5) Ð> r54;

(* cycle 1 *)
nop, nop, nop, nop, nop;

(* cycle 2 *)
new_label: (* Illegal. This instruction is reached without an explicit *)
 (* jump instruction. *)

uimm(mem_loc) Ð> r100,
nop, nop, nop, nop;

cycle iÐ1 fadd r50 r51 Ð> r52,
 nop, nop, nop, nop;
 (* here fadd uses old rounding mode;*)

cycle i fadd r60 r61 Ð> r62,
 nop,
 writepcsw r100 r101,
 nop, nop;
 (* this writepcsw is effective in next cycle *)
 (* fadd in this cycle uses old rounding mode;*)
cycle i+1 fadd r70 r71 Ð> r72,
 nop, nop, nop, nop;
 (* fadd here uses the new rounding mode; *)

Chapter 10: TriMedia Assembler

26 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

affects loads and stores is undefined and you should refrain from changing the byte

order during program execution.

readpcsw, PCSW Modifying Operations, and Exceptions

For any operation whose execution changes some PCSW bits, the time at which the

change becomes effective is decided by the latency of the operation. Thus, if an fadd that

modifies PCSW is issued in cycle i, the change in PCSW becomes effective in cycle i+3

(fadd has a latency of three). If a store that causes a misaligned store exception is issued

in cycle i, then the MSE bit in PCSW gets set in cycle i+3. In both cases, control will pass

to the exception handler at the next successful interruptible jump that is issued at or

after cycle i+3. When the number of writebacks exceeds five in cycle i, the WBE bit in

PCSW will be set in cycle i. Control will pass to the exception handler in the next suc-

cessful interruptible jump issued at or after cycle i.

All the exception bits that are set by the hardware remain set unless reset by an explicit

write to the PCSW register. The following example illustrates the effect of fadd that mod-

ifies PCSW by generating a floating-point exception:

Changes to DPC

ijmp and readdpc

DPC gets updated at the cycle when an ijmp causes the control to transfer to a new loca-

tion. Thus, if a successful ijmp is issued in cycle i to a label LABEL, the change in DPC

becomes effective in cycle i+4 (that is, at the instruction in LABEL).

cycle i fadd r50 r51 Ð> r52,
 nop, nop, nop, nop; (* let us say the above fadd modifies PCSW *)

cycle i+1 nop, nop,
 readpcsw Ð> r53,
 lsli(3) r52 Ð> r54,
 nop; (* readpcsw returns old value, lsli uses old value of r52 *)

cycle i+2 nop, nop,
 readpcsw Ð> r55,
 lsli(3) r52 Ð> r56,
 nop; (* readpcsw returns old value, lsli uses old value of r52 *)

cycle i+3 nop, ijmpi(_out_of_here),
 readpcsw Ð> r60,
 lsli(3) r52 Ð> r61,
 nop; (* readpcsw returns new value, lsli uses new value of r52 *)

(* at cycle i+7, control passes to the exception handler instead of *)
(* passing to out_of_here. *)

cycle i nop,
 ijmpi(LABEL),
 nop, nop, nop;
cycle i+1 nop,nop,
 readdpc Ð> r10,

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 27

10
writedpc and readdpc

writedpc has a latency of one. Thus the change in DPC is observable in cycle i+1 if a

writedpc was issued in cycle i.

writedpc and ijmp

It is possible that both writedpc and ijmp effect the change in DPC at the same cycle.

This happens if a successful ijmp is issued in cycle i and a writedpc is issued in cycle i+3.

In such a case, DPC gets the value written by writedpc (that is, software takes precedence

over the hardware update).

CCCOUNT and ijmp

CCCOUNT is updated only when a successful interruptible jump is taken. The value of

CCCOUNT can be accessed only through the instructions cycles and hicycles. If a suc-

cessful ijmp is issued in cycle i, the new value of CCCOUNT can be accessed by issuing

cycles and hicycles operations in cycle i+4.

MMIO Location Updates

Note that writes to MMIO locations do not take effect immediately. For example, if a

write to the IPENDING location in cycle i generates an interrupt, then the interrupt will

not be triggered if an ijmpi operation is executed in cycle i+1. The interrupt will be taken

if the ijmpi operation was executed in cycle i+2. The amount of delay required for a write

to an MMIO location, is dependent on the location and this data will be available soon.

 nop,nop; (* readdpc returns old value of DPC *)
cycle i+2 nop,nop,
 readdpc Ð> r11,
 nop,nop; (* readdpc returns old value of DPC *)
cycle i+3 nop,nop,
 readdpc Ð> r12,
 nop,nop; (* readdpc returns old value of DPC *)
 LABEL:
cycle i+4 nop,nop,
 readdpc Ð> r13,
 nop,nop; (* readdpc returns new value (LABEL)of DPC *)

cycle iÐ1 nop,nop,
 readdpc Ð> r10,
 nop,nop; (* readdpc returns old value of DPC *)
cycle i nop,nop,
 writedpc r100,
 nop, nop; (* readdpc returns old value of DPC; *)
cycle i+1 nop,nop,
 readdpc Ð> r10,
 nop,nop; (* readdpc returns new value of DPC *)

Chapter 10: TriMedia Assembler

28 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Forward Compatibility

When a result producing operation of latency x is issued in cycle i, the value of the des-

tination register is altered only in cycle i+x. This means that in cycles i,...,i+x the destina-

tion register can be used for other purposes as illustrated by the following example:

In this example, both uimm and fadd write to register r10. In spite of fadd being issued in

cycle i, r10 has the value 0x123 from the uimm operation in cycles i, i+1, and i+2. The

use of register r10 is overlapping. To insure forward compatibility, you should not overlap

the use of registers. This is because if (in the future) the latency of fadd is reduced from

three to two, the value used in cycle i+2 will be incorrect. In the example, the register

overlap could have been avoided by using different registers for the destinations of uimm

and fadd.

WARNING
Avoid register overlap.

Crossover of Register Writes

Whenever an interruptible jump is issued in cycle i, any operation that has been issued

at or before cycle (i + jump delay) must complete at or before cycle (i + jump delay + 1).

It is often useful to schedule at the end of a loop those operations that produce results

that are used in the first few cycles of the next iteration of the loop. In such situations,

either noninterruptible jumps should be used in the loop or any register writes by opera-

tions scheduled in the loop should complete at the latest 1 cycle after the interruptible

jump completes. Further, the registers used for carrying values from one iteration to the

next across interruptible jumps should be global registers since local registers get over-

written by interrupt service routines. (See page -1 for definitions of global and local regis-

ters.) Thus, the following code is incorrect:

cycle i-1 uimm(0x123) -> r10, nop, nop, nop, nop;

cycle i fadd r20 r21 -> r10,
 iadd r10 r30 -> r31,
 nop, nop, nop; (* r10 has 0x123 in this cycle *)

cycle i+1 iadd r10 r32 -> r33,
 nop, nop, nop, nop; (* r10 has 0x123 in this cycle *)

cycle i+2 iadd r10 r32 -> r34,
 nop, nop, nop, nop; (* r10 has 0x123 in this cycle *)

cycle i+3 fsub r10 r40 -> r41,
 nop, nop, nop, nop; (* r10 has the result of fadd *)

cycle iÐ1 nop, fsqrt r127 Ð> r40, nop, nop, nop;
 (* fsqrt completes in cycle i+16 and so is illegal due to the *)
 (* operation in cycle i *)

cycle i nop, ijmpi(new_label), nop, nop, nop;

cycle i+1 uimm(0x123) Ð> r10, nop, nop, nop, nop;

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 29

10

Assembly Program Checklist

The following checklist can be used to ensure that an assembly language program satis-

fies all the constraints imposed by the architecture. Many of these conditions are

checked and reported by the assembler, but some of them are not. Some of the checks

depend on the program semantics and the assembler can, at best, only issue some warn-

ings.

■ Are all the operations issued in proper issue slots?

This is checked by the assembler.

■ For each operation issued, have all the computations into the argument registers

(including any guard register) finished at the issue cycle? Is this true even in the pres-

ence of loops? (This is a semantic check and cannot be verified by the assembler.)

■ Do at most five result-producing operations complete at each cycle? Is this true in the

presence of loops (that is, merging control flow)? (Again, the assembler cannot check

for this condition fully.)

■ For every branch target (an instruction with a label), does control flow reach the

instruction only by an explicit jump instruction? (This, again, cannot be checked by

the assembler.)

■ Do all jump instructions jump only to instructions that have a label? (Note that r2,

the register containing the return pointer, does point to a branch target.)

■ At each cycle, is it true that no two operations complete and write to the same regis-

ter simultaneously?

■ Are immediates not guarded?

The assembler checks this.

■ Do all guard values and the conditions in jump instructions rely only on the least-

significant bit of the register?

cycle i+2 fadd r20 r21 Ð> r10,
 iadd r10 r30 Ð> r31,
 nop, nop, nop;
 (* fadd completes in cycle i+5 and so is illegal due to the *)
 (* operation in cycle i *)

cycle i+3 iadd r10 r32 Ð> r33,
 nop, nop, nop, nop;

new_label:
cycle i+4 iadd r10 r32 Ð> r34,
 nop, nop, nop, nop;

cycle i+5 fsub r10 r40 Ð> r41,
 nop, nop, nop, nop; (* r10 has the result of fadd *)

Chapter 10: TriMedia Assembler

30 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

■ If an interruptible jump is placed in cycle i, do all operations that are scheduled in or

before cycle (i+ jump delay) and write to registers complete at or before

cycle (i+ jump delay+ 1)?

Interfacing C with Assembly Language Programs

To obtain optimum performance for certain pieces of code, it is sometimes necessary to

write that code in assembly language. This chapter describes how to interface assembly

programs with C programs.

Memory Layout and C Calling Conventions

To be able to call routines coded in assembly language from C programs, and vice versa,

you must understand the memory layout, C calling conventions, and the register usage

conventions of the C compiler. These topics are described in detail in Chapter 8, TriMe-

dia C/C++ Languages. We recommend that you go through the parts of that chapter that

deal with the calling conventions and memory layout before proceeding further in this

chapter, although some of the conventions are explained in the examples.

Using the C Preprocessor

While writing assembly code, it is often convenient to define the registers in terms of

symbolic names. Using symbolic names for registers makes the code more readable. In

addition, the overlaps in the liveliness of the registers become more obvious with sym-

bolic names, allowing for a better register usage. It may also be necessary to include

other files in the assembly program (for example, to initialize a block in the data seg-

ment). This can be accomplished by using the directives provided by the C preprocessor

and invoking the C preprocessor on the assembly program before passing it on to the

tmas assembler. The driver program tmcc for the TriMedia compilation system provides

an option (-x) that can be used to invoke the C preprocessor on assembly programs.

With this option, tmcc passes the right flags to the C preprocessor so that the C prepro-

cessor does not generate lines starting with a # sign, which the tmas assembler does not

understand.

Calling Assembly Code from C Code

This section uses examples to illustrate methods to pass data back and forth between

assembly code and C code.

Passing Integers and Returning a Value

The following C code passes two integers to a routine written in assembly, which adds

them up and returns the sum of the two integers.

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 31

10

C File

Assembly File

Compiling and Running

The following code calls the C compiler on main.c and param.s using tmcc. This results

in a.out being generated. The code then invokes tmsim, the TriMedia machine-level

simulator on a.out, to view the results.

Accessing Arguments from the Stack

When the arguments passed to a function do not fit in the four argument registers (r5, r6,

r7, and r8 are used to pass arguments), the arguments that do not fit are passed on the

stack. This example shows how to access such arguments. The example computes the

maximum of the six integers in the assembly code.

/* file : main.c */
#include <stdio.h>
#include <stdlib.h>

extern int add(int, int);

main(){
 int i;

 i = add(4,5);
 printf("added value i is %d\n", i);
}

(* file : param.s *)
.text
.global _add
_add:

(* add the two parameters and return the result; r5 and r6 have the input
parameters on exit r5 will have the sum; r2 has the return address, so that
the ijmpt operation passes the control back to main(); Note that in the
assembly file, the function is called "_add" and not "add". The compiler pref
ixes the names with an underscore. *)

iadd r5 r6 Ð> r5, nop, ijmpt r1 r2, nop, nop;

nop,nop,nop,nop,nop;

nop,nop,nop,nop,nop;

nop,nop,nop,nop,nop; (* We have three cycles of nops to fill in the
 delay slots of ijmpt in the first instruction. *)

tmcc main.c param.s
main.c:
param.s:
tmsim a.out
added value i is 9

Chapter 10: TriMedia Assembler

32 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

C File

Assembly File

Compiling and Running

Points to Note

Observe the following with respect to the previous assembly program:

■ imax is a DSPALU type operation and has a latency of two. The second slot in the first

cycle is a nop because DSPALU operations can only be issued in slots one and three.

■ The loads in the first cycle belong to the DMEM functional unit type and have a

latency of three. They are loading the last two parameters passed to the function

#include <stdlib.h>
#include <stdio.h>

extern int maximum(int, int, int, int, int, int);
main(){
 int m;

 m = maximum(40, 2, 6, 5, 8, 1);
 printf("max is %d\n", m);
}

.global _maximum
_maximum:

imax r5 r6 Ð> r127,
nop,
imax r7 r8 Ð> r126,
ld32d(16) r4 Ð> r125,
ld32d(20) r4 Ð> r124;

nop, nop, nop, nop, nop;

imax r127 r126 Ð> r123,
nop, nop, nop, nop;

imax r125 r124 Ð> r122,
ijmpt r1 r2,
nop, nop, nop;

nop, nop, nop, nop, nop;

imax r123 r122 Ð> r5,
nop, nop, nop, nop;

nop, nop, nop, nop, nop;

tmcc main.c max.s
main.c:
max.s:
tmsim a.out
max is 40

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 33

10

_maximum. r4 is the stack pointer of the caller of this function and the arguments are

located in ascending order from that stack pointer (which is the frame pointer for the

current function).

■ The jump ijmpt r1 r2 completes even before the operation imax r123 r122 –> r5 has

completed. As a result, r5 is written to only after the control gets back to the main

function. This works because there are no zero-latency operations. It should be noted

that you cannot allow an overlap of more than one cycle. For example, issuing the

same imax operation in the last cycle could result in an error. It is possible that the

first cycle executed after returning from this function has a latency of one operation

writing into r5, which would result in an undefined value in r5. This prevents moving

up the ijmpt operation by one cycle.

■ The intermediate results are computed into registers starting from r127 downward.

The reason is that the first 32 registers are reserved for global register allocation and

must be saved and restored if you must use them. Secondly, in the future, more regis-

ters may be reserved for global register allocation (say up to 64) and, thus, it is safer to

use registers from the higher end to maintain forward compatibility.

Passing Structure Arguments

Structure arguments are always passed on the stack and not in argument registers. The

following example illustrates passing structs to an assembly function.

C File

typedef struct {
 int a;
 int b;
} sname;
extern int foo(int, sname, int);
main(){
 sname st;
 int i;

 st.a = 12;
 st.b = 34;
 i = foo(33, st, 44);
 printf("i is %d\n", i);
}

Chapter 10: TriMedia Assembler

34 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Assembly File

Compiling and Running

The following code calls the C compiler on main.c and foo.s using tmcc. This results in

a.out being generated. The code then invokes tmsim, the TriMedia machine-level simu-

lator, on a.out to view the results.

Points to Note

■ st.a and st.b are at locations (fp+4) and (fp+8), where fp is the frame pointer of the

function _foo (which is the stack pointer of the caller). Integer arguments 33 and 44

are passed in registers r5 and r6. (fp+0) and (fp+12) are allocated on stack for these

arguments, but those locations are not initialized.

Implementing Loops in Assembly Programs

This section provides a larger example that involves writing a loop. The example illus-

trates the use of the C preprocessor, and also is a good case study for becoming familiar

with the various machine constraints. The example sums up the elements of an array

and prints the value. The code for summing up the elements of the array is written in

assembly. The comments in the assembly file indicate how the assembly code is struc-

tured.

.global _foo
_foo:

iadd r5 r6 Ð> r127, (* r127 gets 33 + 44 *)
nop,nop,
ld32d(4) r4 Ð> r126, (* r126 gets 12 *)
ld32d(8) r4 Ð> r125; (* r125 gets 34 *)

nop, (* result of iadd above available here. *)
ijmpt r1 r2,
nop, nop, nop;

nop, nop, nop, nop, nop;

iadd r125 r126 Ð> r124, (* result of loads available here. *)
nop, nop, nop, nop;

iadd r127 r124 Ð> r5,
nop, nop, nop, nop;

tmcc main.c foo.s
main.c:
foo.s:
tmsim a.out
i is 123

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 35

10

C File

Assembly File

#include <stdio.h>
#include <stdlib.h>

#include <custom_defs.h> /* included for using cycles() custom_op. */

#define ARR_SIZE 2000
int arr[ARR_SIZE];
int sum_val;
int arr_size = ARR_SIZE;

main(){
 int i;
 int enter_cycles = 0, end_cycles = 0;

 for(i=0; i < ARR_SIZE; i++){
 arr[i] = i;
 }
 sum_val=0;
 enter_cycles = cycles();

 sum_val = sum10(arr, ARR_SIZE);

 end_cycles = cycles();
 printf("sum is %d \n", sum_val);
 printf("cycles is %d \n", (end_cycles Ð enter_cycles));
}

(* implement the following function in assembly:
 sum10(int *a, int arr_size){
 int sum_val, i;
 sum_val = 0; i = 0;
 while (arr_size Ð i >= 10) {
 sum_val = sum_val + a[i] + a[i+1] + a[i+2] + a[i+3] +
 a[i+4] + a[i+5] + a[i+6] + a[i+7] + a[i+8] + a[i+9];
 i += 10;
 }
 while (i < arr_size) {
 sum_val += a[i];
 }
 return sum_val;
 }
*)

(* loads for next iteration should be interspersed with adds for the
 current loop. The logic is:*)
init_loop: set up for the loop. Be simple here
 1. _a array base is in register r5
 2. array size is passed in register r6
 3. load 10 values a[0] ... a[9] to set up for the first iteration of the
 loop
 4. set index to 10
 5. compute the loop condition that gets used by the jumps in the loop
 (to determine if there is a second iteration of the loop)
 6. jmp to loop (if number of elements in the array >= 10;
 otherwise, jump to exit_loop)

Chapter 10: TriMedia Assembler

36 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

loop:
 1. load values for next loop
 2. add values of current loop
 3. compute the loop condition that gets used in the next iteration.
 Doing this helps in scheduling the compute operations of the current
 even after the jump is placed
 4. jmp back to loop or to loop_exit

exit_loop: take care of exit conditions;
 1. compute the sum of the leftover elements of the array
 2. at most 9 are left Ð the array values are already in registers Ð
 loaded from the loop just add them up after finding out how many
 to be added;
*)

(*******************ACTUAL CODE STARTS HERE**************************)
#define RLOOP_INDEX r127 /* keeps track of the number of iterations. */
#define RSUM_VAL r125 /* the current sum. */
#define RINIT_COND r124 /* the condition that determines loop entry */
#define RLOOP_LABEL r123 /* the address of first instruction of loop. */
#define RLOOP_COND r122 /* condition to see if the loop to be repeated.*/
#define REXIT_LOOP r121 /* address of the first ins. after the loop. */
#define RREMAINS r120 /* number of elements yet to be processed . */
 /* after the loop. */

/* The following registers are used for holding values from the
 array and the intermediate sums. RA_n stands for the register
 holding the value in a[i+n], where 0 < n < 10. Registers that
 have more than 1 digit as a suffix hold the corresponding
 sums Ð for example, RA_0123 has the sum a[i]+a[i+1]+a[i+2]+a[i+3]. */
#define RA_0 r119
#define RA_1 r118
#define RA_2 r117
#define RA_3 r116
#define RA_4 r115
#define RA_5 r114
#define RA_6 r113
#define RA_7 r112
#define RA_8 r111
#define RA_9 r110
#define RA_01 r109
#define RA_23 r108
#define RA_45 r107
#define RA_67 r106
#define RA_89 r105
#define RA_012 r104
#define RA_456 r103
#define RA_4567 r102
#define RA_0123 r101
#define RA_01234 r100
#define RA_012345 r99
#define RA_0123456 r98
#define RA_01234567 r97
#define RA_012389 r96
#define RA_012345678 r95
#define RA_0123456789 r94

/* The following are for processing the array elements after the loop. */
#define RZERO_LEFT r93
#define RONE_LEFT r92
#define RTWO_LEFT r91
#define RTHREE_LEFT r90

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 37

10

#define RFOUR_LEFT r89
#define RFIVE_LEFT r88
#define RSIX_LEFT r87
#define RSEVEN_LEFT r86
#define REIGHT_LEFT r85
#define RNINE_LEFT r84

.text

.global _sum10
_sum10:
init_loop:

 uimm(20) Ð> RLOOP_INDEX,
 uimm(10) Ð> RINIT_INDEX,
 iadd r0 r0 Ð> RSUM_VAL,
 nop,nop;

 igtri(10) r6 Ð> RINIT_COND,
 nop,
 uimm(loop) Ð> RLOOP_LABEL,

 ld32d(0) r5 Ð> RA_0,
 ld32d(4) r5 Ð> RA_1;
 nop,nop,nop,
 ld32d(8) r5 Ð> RA_2,
 ld32d(12) r5 Ð> RA_3;

 nop,nop,nop,
 ld32d(16) r5 Ð> RA_4,
 ld32d(20) r5 Ð> RA_5;

 igtr RLOOP_INDEX r6 Ð> RLOOP_COND,
 IF RINIT_COND jmpi(exit_loop),
 jmpf RINIT_COND RLOOP_LABEL,
 ld32d(24) r5 Ð> RA_6,
 ld32d(28) r5 Ð> RA_7;

 iaddi(40) r5 Ð> r5,
 uimm(exit_loop) Ð> REXIT_LOOP,
 isub RLOOP_INDEX r6 Ð> RREMAINS,
 ld32d(32) r5 Ð> RA_8,
 ld32d(36) r5 Ð> RA_9;

 nop,nop,nop,nop,nop;
 nop,nop,nop,nop,nop;

loop:
 iaddi(10) RLOOP_INDEX Ð> RLOOP_INDEX,
 iadd RA_0 RA_1 Ð> RA_01,
 iadd RA_2 RA_3 Ð> RA_23,
 ld32d(0) r5 Ð> RA_0,
 ld32d(4) r5 Ð> RA_1;

 iadd RA_4 RA_5 Ð> RA_45,
 jmpf RLOOP_COND RLOOP_LABEL,
 jmpt RLOOP_COND REXIT_LOOP,
 ld32d(8) r5 Ð> RA_2,
 ld32d(12) r5 Ð> RA_3;

 iadd RA_01 RA_23 Ð> RA_0123,
 iadd RA_6 RA_7 Ð> RA_67,
 iadd RA_8 RA_9 Ð> RA_89,

Chapter 10: TriMedia Assembler

38 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

 ld32d(16) r5 Ð> RA_4,
 ld32d(20) r5 Ð> RA_5;

 iadd RA_45 RA_67 Ð> RA_4567,
 iadd RA_0123 RA_89 Ð> RA_012389,

 igtr RLOOP_INDEX r6 Ð> RLOOP_COND,
 ld32d(24) r5 Ð> RA_6,
 ld32d(28) r5 Ð> RA_7;

 iadd RA_0123456789 RSUM_VAL Ð> RSUM_VAL,
 iadd RA_012389 RA_4567 Ð> RA_0123456789,
 iaddi(40) r5 Ð> r5,
 ld32d(32) r5 Ð> RA_8,
 ld32d(36) r5 Ð> RA_9;

exit_loop:
 isub RLOOP_INDEX r6 Ð> RREMAINS,
 iadd RA_0123456789 RSUM_VAL Ð> RSUM_VAL,
 nop,nop,nop;

 nop, nop, nop, nop, nop;
 (* to prevent more than 5 writebacks without this instruction, loads *)
 (* form the last cycle in the loop and the ieql is in the next cycle in *)
 (* the next cycle all complete together Ð we have seven writebacks *)

 ieqli(20) RREMAINS Ð> RZERO_LEFT,
 ieqli(19) RREMAINS Ð> RONE_LEFT,
 ieqli(18) RREMAINS Ð> RTWO_LEFT,
 ieqli(17) RREMAINS Ð> RTHREE_LEFT,
 ieqli(16) RREMAINS Ð> RFOUR_LEFT;

 ieqli(15) RREMAINS Ð> RFIVE_LEFT,
 ieqli(14) RREMAINS Ð> RSIX_LEFT,
 ieqli(13) RREMAINS Ð> RSEVEN_LEFT,
 ieqli(12) RREMAINS Ð> REIGHT_LEFT,
 ieqli(11) RREMAINS Ð> RNINE_LEFT;

 IF RONE_LEFT iadd RSUM_VAL RA_0 Ð> RSUM_VAL,
 iadd RA_0 RA_1 Ð> RA_01,
 iadd RA_2 RA_3 Ð> RA_23,
 iadd RA_4 RA_5 Ð> RA_45,
 iadd RA_6 RA_7 Ð> RA_67;

 IF RTWO_LEFT iadd RSUM_VAL RA_01 Ð> RSUM_VAL,
 iadd RA_01 RA_2 Ð> RA_012,
 iadd RA_01 RA_23 Ð> RA_0123,
 iadd RA_45 RA_6 Ð > RA_456,
 iadd RA_45 RA_67 Ð> RA_4567;

 IF RTHREE_LEFT iadd RSUM_VAL RA_012 Ð> RSUM_VAL,
 iadd RA_0123 RA_4 Ð> RA_01234,
 iadd RA_0123 RA_45 Ð> RA_012345,
 iadd RA_0123 RA_456 Ð> RA_0123456,
 iadd RA_0123 RA_4567 Ð> RA_01234567;

 IF RFOUR_LEFT iadd RSUM_VAL RA_0123 Ð> RSUM_VAL,
 IF RFIVE_LEFT iadd RSUM_VAL RA_01234 Ð> RSUM_VAL,
 IF RSIX_LEFT iadd RSUM_VAL RA_012345 Ð> RSUM_VAL,
 IF RSEVEN_LEFT iadd RSUM_VAL RA_0123456 Ð> RSUM_VAL,
 iadd RA_01234567 RA_8 Ð> RA_012345678;

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 39

10Points to Note

■ Use of the C preprocessor to give logical names to the registers.

■ Loop is reached by an explicit jump instruction jmpf RINIT_COND RLOOP_LABEL; This

is to avoid falling through to a branch target.

■ It is possible that some of the loads are loading undefined values. These will not get

used. For example, if the size of the array is seven, there will be three extra loads and

these will be useless.

■ An extra cycle after the loop that has only nop’s prevents the number of writebacks

from exceeding five in a later cycle.

■ The loop for adding the elements adds ten elements in one iteration. Unrolling the

loop further does not help. The reason is that in each cycle, you can have at most two

loads. As a result, the total speedup is limited to a factor of two. This has already been

achieved in this program. Thus, the program is optimal up to a constant additive fac-

tor. Since the goal of this example is to illustrate making the loops efficient, emphasis

is placed only on the loop portion. Thus, the code in the init_loop and exit_loop por-

tions are written for ease of understanding and not for optimality.

■ Noninterruptible jumps are used in the loop to avoid saving and restoring of regis-

ters. This can increase the interrupt latency. If interrupt latency is important, you

must use interruptible jumps here. In that case, the values that are carried across the

interruptible jumps can use global registers. Code in the init_loop and exit_loop por-

tions will need modification to save and restore these registers. Also, in the presence

of interruptible jumps, writes to registers should complete at the latest single cycle

after the jump completes. That is, if an interruptible jump is issued in cycle i, then all

register writes that are part of the loop should complete at the latest in

cycle (i + jump delay). Code in the loop portion must be modified to satisfy this con-

dition.

C Variables and Corresponding Assembly Directives

In the following example showing how C variables get transformed into assembly decla-

rations for final resolution by the linker, note the following:

■ All initialized global variables are declared to be global using the assembler .global

directive. The variable is put in the data section using the .data directive and initial-

ized appropriately using .word/.half/.byte/.ascii directives.

 IF REIGHT_LEFT iadd RSUM_VAL RA_012345678 Ð> RSUM_VAL,
 ijmpt r1 r2,
 nop, nop, nop;

 iadd r0 RSUM_VAL Ð> r5,
 nop,nop,nop,nop;

 nop,nop,nop,nop,nop;
 nop,nop,nop,nop,nop;

Chapter 10: TriMedia Assembler

40 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

■ All initialized static variables (global to the module) are handled similar to the previ-

ous case, except that they are not made global (that is, the .global directive is not

used for them).

■ Initialized static variables within a function are handled similar to the previous case,

except that the name of the variable changes to accommodate C semantics.

■ Uninitialized global variables are declared as common by using the .common assem-

bler directive. The variable is put in the bss section. The space for these variables is

allocated only at link time.

■ Uninitialized static variables (global to the module) are declared to be in the bss sec-

tion using the .reserve directive.

■ Uninitialized static variables within a function are handled similar to the previous

case, except that the name of the variable changes to accommodate C semantics.

C File with Declarations

Corresponding Assembly File

int initialized_global=1;
static int uninitialized_static;
static int initialized_static=1;
int uninitialized_global;
extern int external_var;

foo(){
 int initialized_local =1;
 static int initialized_static_local=10;
 static int uninitialized_static_local;

 external_var=1;
}

(* TriMedia scheduler 1.0a15SunOS (v0.05.3.1) Mon Apr 8 21:15:18 PDT 1996
 [compiled with SELF_CHECK]
 activated on Tue Apr 9 13:07:36 1996
 /t/syssoft/build/tcs1.0a15SunOS/bin/tmsched Ðo=ext.s Ðeb /t/syssoft/build/
 tcs1.0a15SunOS/lib/tm1.md /usr/tmp/baaa12016.t
*)

.fileinfo.stabs "/t/syssoft/build/tcs1.0a15SunOS/bin/tmsched Ðo=ext.s Ðeb /t/
syssoft/build/tcs1.0a15SunOS/lib/tm1.md /usr/tmp/baaa12016.t" 52 0 0 0;
.fileinfo.stabs "Ðo=ext.s Ðeb /t/syssoft/build/tcs1.0a15SunOS/lib/tm1.md /
usr/tmp/baaa12016.t" 60 0 0 829080456;
.data
.align 4
.global _initialized_global
_initialized_global:
.word 1
.align 4
_initialized_static:
.word 1
.align 4
_initialized_static_local.LS0:
.word 10

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 41

10

Opcodes

The TriMedia chip has 12 functional unit types. Each operation in the TriMedia instruc-

tion set can accordingly be classified by its functional unit type. The properties latency,

delay, and recovery are characteristics of the functional unit type, so all operations of a

given functional unit type have the same latency, delay, and recovery (as applicable).

The functional unit type also determines the issue slots in which operations can be

issued, as discussed in TM-1x00 Constraints, starting on page 20.

In the section Functional Unit Types, each TriMedia operation is listed by functional unit

types. In the section TriMedia Opcodes, each opcode is listed in alphabetical order.

.reserve _uninitialized_static_local.LS1, 4, "bss", 4

.text

.global _foo
_foo:
__foo_DT_0:

(* schedule generated by priority scheduler *)

(* tree _foo (0) *)

.treeinfo regmask "0x000000000000000000000001ffffffff";

(* cycle 0 *)
 IF r1 uimm(_external_var) Ð> r127, (* const/Op3 *)
 IF r1 ijmpt r1 r2, (* branch/Op6 *)
 IF r1 nop ,
 IF r1 nop ,
 IF r1 nop ;

(* cycle 1 *)
 IF r1 nop ,
 IF r1 nop ,
 IF r1 nop ,
 IF r1 h_st32d(0) r1 r127, (* dmem/Op2 *)
 IF r1 nop ;

(* cycle 2 *)
 IF r1 nop ,
 IF r1 nop ,
 IF r1 nop ,
 IF r1 nop ,
 IF r1 nop ;

(* cycle 3 *)
 IF r1 nop ,
 IF r1 nop ,
 IF r1 nop ,
 IF r1 nop ,
 IF r1 nop ;

.reserve _uninitialized_static, 4, "bss", 4

.common _uninitialized_global, 4, "bss", 4

Chapter 10: TriMedia Assembler

42 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Note
With the introduction of the TM-1100 and subsequent TriMedia processors,
several new opcodes were added. These opcodes are described in the
appropriate TriMedia data book(s). Note also that the operation of the shift
operations has changed for shift values greater than 32. While this result
was indeterminate on the TM-1000 (and non-zero), the TM-1100 was
changed to guarantee a zero result to ASR or ASL greater than 32 bits.

Functional Unit Types

The following subsections list the latency, legal issue slots, and operations for each func-

tional unit type. Recovery is one for all functional unit types except for the FTOUGH unit

type, for which it is 16. Note that special register operations such as writepcsw, writedpc,

and so on, are part of the FCOMP unit type. Even though DMEM operations can occur in

slots four and five, in general, an additional restriction is that, if a DMEMSPEC operation

is issued in a cycle, then a DMEM operation cannot be issued in the same cycle.

ALU

BRANCH

CONST

LATENCY 1
ISSUE SLOTS 1 2 3 4 5
OPERATIONS
 iadd isub
 igtr igeq ieql ineq
 ileqi igtri igeqi ilesi ieqli ineqi
 ugtr ugeq
 uleqi ugtri ugeqi ulesi ueqli uneqi
 bitand bitor bitxor bitandinv
 bitinv h_iabs
 sex16
 iaddi isubi
 carry
 izero inonzero
 packbytes
 mergemsb mergelsb pack16msb pack16lsb
 ubytesel ibytesel ;

DELAY 3
ISSUE SLOTS 2 3 4
OPERATIONS
 jmpf jmpt ijmpf ijmpt ijmpfnse ijmptnse jmpi ijmpi iclr ;

LATENCY 1
ISSUE SLOTS 1 2 3 4 5
OPERATIONS uimm iimm;

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 43

10

DMEM

DMEMSPEC

DSPALU

DSPMUL

FALU

LATENCY 3
ISSUE SLOTS 4 5
Cannot issue a dmem operation in a cycle in which dmemspec is issued.
OPERATIONS
 ild8d uld8d ild16d uld16d ld32d h_st8d h_st16d h_st32d
 ild8r uld8r ild16r uld16r ld32r
 ild16x uld16x ld32x ;

LATENCY 3
ISSUE SLOTS 5
Cannot issue a dmem operation in a cycle in which dmemspec is issued.
OPERATIONS
 dcb dinvalid
 rdtag rdstatus
 prefd prefr pref16x pref32x prefsize
 allocd allocr allocx ;

LATENCY 2
ISSUE SLOTS 1 3
OPERATIONS
 ume8ii ume8uu
 dspiadd dspisub dspuadd dspusub h_dspiabs
 dspidualadd dspidualsub h_dspidualabs
 iavgonep iflip
 iclipi uclipi uclipu
 quadavg dspuquadaddui
 imax imin ;

LATENCY 3
ISSUE SLOTS 2 3
OPERATIONS
 ifir16 ufir16
 ifir8ii ifir8ui ufir8uu
 dspidualmul
 quadumulmsb ;

LATENCY 3
ISSUE SLOTS 1 4
OPERATIONS
 fadd fsub fabsval
 ifixieee ufixieee ifixrz ufixrz
 ifloat ufloat ifloatrz ufloatrz
 faddflags fsubflags fabsvalflags
 ifixieeeflags ufixieeeflags ifixrzflags ufixrzflags
 ifloatflags ufloatflags ifloatrzflags ufloatrzflags ;

Chapter 10: TriMedia Assembler

44 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

FCOMP

FTOUGH

IFMUL

SHIFTER

TriMedia Opcodes

Table 5, following, summarizes the syntax, definition, latency, functional unit type,

appropriate issue slots, and modifier ranges for all TriMedia opcodes: Shaded boxes indi-

cate the opcodes that are available available only in the TM-1100.

LATENCY 1
ISSUE SLOTS 3
OPERATIONS
 fgtr fgeq feql fneq
 fsign
 fgtrflags fgeqflags feqlflags fneqflags
 fsignflags
 readpcsw writepcsw cycles hicycles
(* these are here for VLSI opportunistic reasons *)
 readdpc writedpc readspc writespc;

LATENCY 17
RECOVERY 16
ISSUE SLOTS 2
OPERATIONS
 fdiv fsqrt
 fdivflags fsqrtflags;

LATENCY 3
ISSUE SLOTS 2 3
OPERATIONS
 fmul imul umul imulm umulm dspimul dspumul
 fmulflags ;

LATENCY 1
ISSUE SLOTS 1 2
OPERATIONS
 asli roli asri lsri asl rol asr lsr (* lsl => asl, lsli => asli *)
 funshift1 funshift2 funshift3 ;

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 45

10

Table 5 TriMedia Opcodes

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

asl src1 src2 → dst arithmetic shift left
n ← rsrc2<4:0>
rdst<31:n> ← src1<31–n:0>
rdst<n–1:0> ← 0

1, shifter 1,2

asli(n) src1 → dst arithmetic shift left immediate
rdst<31:n> ← rsrc1<31–n:0>
rdst<n–1:0> ← 0

1, shifter 1,2
0 to 31

asr src1 src2 → dst arithmetic shift right
n ← rsrc2<4:0>
rdst<31:31–n> ← rsrc1<31>
rdst<30–n:0> ← rsrc1<31:n>

1, shifter 1,2

asri(n) src1 → dst arithmetic shift right immediate
rdst<31:31–n> ← rsrc1<31>
rdst<30–n:0> ← rsrc1<31:n>

1, shifter 1,2
0 to 31

bitand src1 src2 → dst bitwise logical AND
rdst ← rsrc1 & rsrc2

1, alu 1,2,3,4,5

bitandinv src1 src2 → dst bitwise logical AND NOT
rdst ← rsrc1 & ~rsrc2

1, alu 1,2,3,4,5

bitinv src1 → dst bitwise logical NOT
rdst ← ~rsrc1

1, alu 1,2,3,4,5

bitor src1 src2 → dst bitwise logical OR
rdst ← rsrc1 | rsrc2

1, alu 1,2,3,4,5

bitxor src1 src2 → dst bitwise logical exclusive OR
rdst ← rsrc1 ^ rsrc2

1, alu 1,2,3,4,5

carry src1 src2 → dst carry bit from unsigned add
if (rsrc1 + rsrc2) < 232 then
 rdst ← 0
else
 rdst ← 1;

1, alu 1,2,3,4,5

cycles → dst read clock cycle counter least significant word
rdst ← CCCOUNT<31:0>

1, fcomp 3

Chapter 10: TriMedia Assembler

46 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

dcb(d) src1 data cache copy back
if rguard then {
 addr ← rsrc1 + d
 if dcache_valid_addr(addr) &&
 dcache_dirty_addr(addr) then {
 dcache_copyback_addr(addr)
 dcache_reset_dirty_addr(addr)
 }
}

3, dmem-
spec

5,
–256 to 252 by 4

dinvalid(d) src1 invalidate data cache block
if rguard then {
 addr ← rsrc1 + d
 if dcache_valid_addr(addr) then {
 dcache_reset_valid_addr(addr)
 dcache_reset_dirty_addr(addr)
 }
}

3, dmem-
spec

5,
–256 to 252 by 4

dspiadd src1 src2 → dst clipped signed add
temp ← sign_ext32to64(rsrc1) +

sign_ext32to64(rsrc2)
if temp < 0xffffffff800000000 then
 rdst ← 0x80000000
else if temp > 0x000000007fffffff then
 rdst ← 0x7fffffff
else
 rdst ← temp

2, dspalu 1,3

dspidualadd src1 src2 →
dst

dual clipped add of signed 16-bit halfwords
temp1 ← sign_ext16to32(rsrc1<15:0>) +

sign_ext16to32(rsrc2<15:0>)
temp2 ← sign_ext16to32(rsrc1<31:16>) +

sign_ext16to32(rsrc2<31:16>)
if temp1 < 0xffff8000 then temp1 ← 0x8000
if temp2 < 0xffff8000 then temp2 ← 0x8000
if temp1 > 0x7fff then temp1 ← 0x7fff
if temp2 > 0x7fff then temp2 ← 0x7fff
rdst<31:16> ← temp2<15:0>
rdst<15: 0> ← temp1<15:0>

2, dspalu 1,3

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 47

10

dspidualmul src1 src2 →
dst

dual clipped multiply of signed 16-bit halfwords
temp1 ← sign_ext16to32(rsrc1<15:0>) ×

sign_ext16to32(rsrc2<15:0>)
temp2 ← sign_ext16to32(rsrc1<31:16>) ×

sign_ext16to32(rsrc2<31:16>)
if temp1 < 0xffff8000 then temp1 ← 0x8000
if temp2 < 0xffff8000 then temp2 ← 0x8000
if temp1 > 0x7fff then temp1 ← 0x7fff
if temp2 > 0x7fff then temp2 ← 0x7fff
rdst<31:16> ← temp2<15:0>
rdst<15: 0> ← temp1<15:0>

3, dspmul 2,3

dspidualsub src1 src2 →
dst

dual clipped subtract of signed 16-bit halfwords
temp1 ← sign_ext16to32(rsrc1<15:0>) –

sign_ext16to32(rsrc2<15:0>)
temp2 ← sign_ext16to32(rsrc1<31:16>) –

sign_ext16to32(rsrc2<31:16>)
if temp1 < 0xffff8000 then temp1 ← 0x8000
if temp2 < 0xffff8000 then temp2 ← 0x8000
if temp1 > 0x7fff then temp1 ← 0x7fff
if temp2 > 0x7fff then temp2 ← 0x7fff
rdst<31:16> ← temp2<15:0>
rdst<15: 0> ← temp1<15:0>

2, dspalu 1,3

dspimul src1 src2 → dst clipped signed multiply
temp ← sign_ext32to64(rsrc1) ×

sign_ext32to64(rsrc2)
if temp < 0xffffffff80000000 then
 rdst ← 0x80000000
else if temp > 0x000000007fffffff then
 rdst ← 0x7fffffff
else
 rdst ← temp<31:0>

3, ifmul 2,3

dspisub src1 src2 → dst clipped signed subtract
temp ← sign_ext32to64(rsrc1) –

sign_ext32to64(rsrc2)
if temp < 0xfffffffff80000000 then
 rdst ← 0x80000000
else if temp > 0x000000007fffffff then
 rdst ← 0x7fffffff
else
 rdst ← temp<31:0>

2, dspalu 1,3

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

48 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

dspuadd src1 src2 → dst clipped unsigned add
temp ← zero_ext32to64(rsrc1) +

zero_ext32to64(rsrc2)
if (unsigned)temp > 0x00000000ffffffff then
 rdst ← 0xffffffff
else
 rdst ← temp<31:0>

2, dspalu 1,3

dspumul src1 src2 → dst clipped unsigned multiply
temp ← zero_ext32to64(rsrc1) ×

zero_ext32to64(rsrc2)
if (unsigned)temp > 0x00000000ffffffff then
 rdst ← 0xffffffff
else
 rdst ← temp<31:0>

3, ifmul 2,3

dspuquadaddui src1 src2
→ dst

quad clipped add of unsigned/signed bytes
for(i ← 0, m ← 31, n ← 24; i < 4;
 i ← i + 1, m ← m – 8, n ← n – 8) {
temp ← zero_ext8to32(rsrc1<m:n>) +

sign_ext8to32(rsrc2<m:n>)
if temp < 0 then
 rdst<m:n> ← 0
else if temp > 0xff then
 rdst<m:n> ← 0xff
else
 rdst<m:n> ← temp<7:0>
}

2, dspalu 1,3

dspusub src1 src2 → dst clipped unsigned subtract
temp ← zero_ext32to64(rsrc1) –

zero_ext32to64(rsrc2)
if (unsigned)temp > 0x00000000ffffffff then
 rdst ← 0xffffffff
else
 rdst ← temp<31:0>

2, dspalu 1,3

dualasr src1 src2 → dst dual-16 arithmetic shift right
n ← rsrc2<3:0>
rdst<31:31–n> ← rsrc1<31>
rdst<30–n:16> ← rsrc1<30:16+n>
rdst<15:15–n> ← rsrc1<15>
rdst<14–n:0> ← rsrc1<14:n>
if rsrc2<31:4> != 0 then {
 rdst<31:16> ← rsrc1<31>
 rdst<15: 0> ← rsrc1<15>
}

1, shifter 1,2

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 49

10

dualiclipi src1 src2 → dst dual 16 clip signed to signed
rdst<31:16> ←
 min(max(rsrc1<31:16>, –rsrc2<15:0>–1),
 rsrc2<15:0>)
rdst<15:0> ←
 min(max(rsrc1<15:0>, –rsrc2<15:0>–1),
 rsrc2<15:0>)

2, dspalu 1,3

dualuclipi src1 src2 → dst dual-16 clip signed to unsigned
rdst<31:16> ←
 min(max(rsrc1<31:16>, 0), rsrc2<15:0>)
rdst<15:0> ←
 min(max(rsrc1<15:0>, 0), rsrc2<15:0>)

2, dspalu 1,3

fabsval src1 → dst floating point absolute value
if (float)rsrc1 < 0 then
 rdst ← –(float) rsrc1
else
 rdst ← (float) rsrc1

3, falu 1,4

fabsvalflags src1 → dst IEEE status flags from floating point absolute
value
rdst ← ieee_flags(abs_val((float)rsrc1))

3, falu 1,4

fadd src1 src2 → dst floating point add
rdst ← (float)rsrc1 + (float)rsrc2

3, falu 1,4

faddflags src1 src2 → dst IEEE status flags from floating point add
rdst ← ieee_flags((float)rsrc1 + (float)rsrc2)

3, falu 1,4

fdiv src1 src2 → dst floating point divide
rdst ← (float)rsrc1 / (float)rsrc2

17,
ftough

2, recovery=16

fdivflags src1 src2 → dst IEEE status flags from floating point divide
rdst ← ieee_flags((float)rsrc1 / (float)rsrc2)

17,
ftough

2, recovery=16

feql src1 src2 → dst floating point compare equal
if (float)rsrc1 = (float)rsrc2 then
 rdst ← 1
else
 rdst ← 0

1, fcomp 3

feqlflags src1 src2 → dst IEEE status flags from floating point compare
equal
rdst ← ieee_flags((float)rsrc1 = (float)rsrc2)

1, fcomp 3

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

50 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

fgeq src1 src2 → dst floating point compare greater or equal
if (float)rsrc1 ≥ (float)rsrc2 then
 rdst ← 1
else
 rdst ← 0

1, fcomp 3

fgeqflags src1 src2 → dst IEEE status flags from floating point compare
greater or equal
rdst ← ieee_flags((float)rsrc1 ≥ (float)rsrc2)

1, fcomp 3

fgtr src1 src2 → dst floating point compare greater
if (float)rsrc1 > (float)rsrc2 then
 rdst ← 1
else
 rdst ← 0

1, fcomp 3

fgtrflags src1 src2 → dst IEEE status flags from floating point compare
greater
rdst ← ieee_flags((float)rsrc1 > (float)rsrc2)

1, fcomp 3

fmul src1 src2 → dst floating point multiply
rdst ← (float)rsrc1 × (float)rsrc2

3, ifmul 2,3

fmulflags src1 src2 → dst IEEE status flags from floating point multiply
rdst ← ieee_flags((float)rsrc1 × (float)rsrc2)

3, ifmul 2,3

fneq src1 src2 → dst floating point compare not equal
if (float)rsrc1 != (float)rsrsrc2 then
 rdst ← 1
else
 rdst ← 0

1, fcomp 3

fneqflags src1 src2 → dst IEEE status flags from floating point compare not
equal
rdst ← ieee_flags((float)rsrc1 != (float)rsrc2)

1, fcomp 3

fsign src1 → dst sign of floating point value
if (float)rsrc1 = 0.0 then
 rdst ← 0
else if (float)rsrc1 < 0.0 then
 rdst ← 0xffffffff
else
 rdst ← 1

1, fcomp 3

fsignflags src1 → dst IEEE status flags from floating point sign
rdst ← ieee_flags(sign((float)rsrc1))

1, fcomp 3

fsqrt src1 → dst floating point square root
rdst ← square_root(rsrc1)

17,
ftough

2, recovery=16

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 51

10

fsqrtflags src1 → dst IEEE status flags from floating point square root
rdst ← ieee_flags(square_root((float)rsrc1))

17,
ftough

2, recovery=16

fsub src1 src2 → dst floating point subtract
rdst ← (float)rsrc1 – (float)rsrc2

3, falu 1,4

fsubflags src1 src2 → dst IEEE status flags from floating point subtract
rdst ← ieee_flags((float)rsrc1 – (float)rsrc2)

3, falu 1,4

funshift1 src1 src2 → dst funnel-shift 1 byte
rdst<31:8> ← rsrc1<23:0>
rdst<7:0> ← rsrc2<31:24>

1, shifter 1,2

funshift2 src1 src2 → dst funnel-shift 2 bytes
rdst<31:16> ← rsrc1<15:0>
rdst<15:0> ← rsrc2<31:16>

1, shifter 1,2

funshift3 src1 src2 → dst funnel-shift 3 bytes
rdst<31:24> ← rsrc1<7:0>
rdst<23:0> ← rsrc2<31:8>

1, shifter 1,2

h_dspiabs r0 src2 → dst clipped signed absolute value
if rsrc2 >= 0 then
 rdst ← rsrc2
else if rsrc2 = 0x80000000 then
 rdst ← 0x7fffffff
else
 rdst ← –rsrc2

2, dspalu 1,3

h_dspidualabs r0 src2 →
dst

dual clipped absolute value of signed 16-bit half-
words
temp1 ← sign_ext16to32(rsrc2<15:0>)
temp2 ← sign_ext16to32(rsrc2<31:16>)
if temp1 = 0xffff8000 then temp1 ← 0x7fff
if temp2 = 0xffff8000 then temp2 ← 0x7fff
if temp1 < 0 then temp1 ← –temp1
if temp2 < 0 then temp2 ← –temp2
rdst<31:16> ← temp2<15:0>
rdst<15: 0> ← temp1<15:0>

2, dspalu 1,3

h_iabs r0 src2 → dst hardware absolute value
if rsrc2 < 0 then
 rdst ← –rsrc2
else
 rdst ← rsrc2

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

52 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

h_st16d(d) src1 src2 hardware 16-bit store with displacement
if PCSW.bytesex = LITTLE_ENDIAN then
 bs ← 1
else
 bs ← 0
mem[rsrc2 + d + (1 ⊕ bs)] ← rsrc1<7:0>
mem[rsrc2 + d + (0 ⊕ bs)] ← rsrc1<15:8>

3, dmem 4,5
–128 to 126 by 2

h_st32d(d) src1 src2 hardware 32-bit store with displacement
if PCSW.bytesex = LITTLE_ENDIAN then
 bs ← 3
else
 bs ← 0
mem[rsrc2 + d + (3 ⊕ bs)] ← rsrc1< 7: 0>
mem[rsrc2 + d + (2 ⊕ bs)] ← rsrc1<15: 8>
mem[rsrc2 + d + (1 ⊕ bs)] ← rsrc1<24:16>
mem[rsrc2 + d + (0 ⊕ bs)] ← rsrc1<31:24>

3, dmem 4,5
–256 to 252 by 4

h_st8d(d) src1 src2 hardware 8-bit store with displacement
mem[rsrc2 + d] ← rsrc1<7:0>

3, dmem 4,5
–64 to 63

hicycles → dst read clock cycle counter, most-significant word
rdst ← CCCOUNT<63:32>

1, fcomp 3

iadd src1 src2 → dst signed add
rdst ← rsrc1 + rsrc2

1, alu 1,2,3,4,5

iaddi(n) src1 → dst add with immediate
rdst ← rsrc1 + n

1, alu 1,2,3,4,5
0 to 127

iavgonep src1 src2 → dst signed average
rdst ← (rsrc1 + rsrc2 + 1) >> 1;

2, dspalu 1,3

ibytesel src1 src2 → dst signed select byte
if rsrc2 = 0 then
 rdst ← sign_ext8to32(rsrc1<7:0>)
else if rsrc2 = 1 then
 rdst ← sign_ext8to32(rsrc1<15:8>)
else if rsrc2 = 2 then
 rdst ← sign_ext8to32(rsrc1<23:16>)
else if rsrc2 = 3 then
 rdst ← sign_ext8to32(rsrc1<31:24>)

1,alu 1,2,3,4,5

iclipi src1 src2 → dst clip signed to signed
rdst ← min(max(rsrc1, –rsrc2–1), rsrc2)

2, dspalu 1,3

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 53

10

iclr invalidate all instruction cache blocks
block ← 0
for all blocks in instruction cache {
 icache_reset_valid_block(block)
 block ← block + 1
}

?, icache

ieql src1 src2 → dst signed compare equal
if rsrc1 = rsrc2 then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5

ieqli(n) src1 → dst signed compare equal with immediate
if rsrc1 = n then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5
–64 to 63

ifir16 src1 src2 → dst sum of products of signed 16-bit halfwords
rdst ← sign_ext16to32(rsrc1<31:16>) ×

sign_ext16to32(rsrc2<31:16>) +
sign_ext16to32(rsrc1<15: 0>) ×
sign_ext16to32(rsrc2<15: 0>)

3, dspmul 2,3

ifir8ii src1 src2 → dst signed sum of products of signed bytes
rdst ← sign_ext8to32(rsrc1<31:24>) ×

sign_ext8to32(rsrc2<31:24>) +
sign_ext8to32(rsrc1<23:16>) ×
sign_ext8to32(rsrc2<23:16>) +
sign_ext8to32(rsrc1<15: 8>) ×
sign_ext8to32(rsrc2<15: 8>) +
sign_ext8to32(rsrc1< 7: 0>) ×
sign_ext8to32(rsrc2< 7: 0>)

3, dspmul 2,3

ifir8ui src1 src2 → dst signed sum of products of unsigned/signed
bytes
rdst ← zero_ext8to32(rsrc1<31:24>) ×

sign_ext8to32(rsrc2<31:24>) +
zero_ext8to32(rsrc1<23:16>) ×
sign_ext8to32(rsrc2<23:16>) +
zero_ext8to32(rsrc1<15: 8>) ×
sign_ext8to32(rsrc2<15: 8>) +
zero_ext8to32(rsrc1< 7: 0>) ×
sign_ext8to32(rsrc2< 7: 0>)

3, dspmul 2,3

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

54 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

ifixieee src1 → dst convert floating point to integer using PCSW
rounding mode
rdst ← (long) ((float)rsrc1)

3, falu 1,4

ifixieeeflags src1 → dst IEEE status flags from converting floating point to
integer using PCSW rounding mode
rdst ← ieee_flags((long) ((float)rsrc1))

3, falu 1,4

ifixrz src1 → dst convert floating point to integer with round
toward zero
rdst ← (long) ((float)rsrc1)

3, falu 1,4

ifixrzflags src1 → dst IEEE status flags from converting floating point to
integer with round toward zero
rdst ← ieee_flags((long) ((float)rsrc1))

3, falu 1,4

iflip src1 src2 → dst if non-zero negate
if rsrc1 = 0 then
 rdst ← rsrc2
else
 rdst ← –rsrc2

2, dspalu 1,3

ifloat src1 → dst convert signed integer to floating point
rdst ← (float) ((long)rsrc1)

3, falu 1,4

ifloatflags src1 → dst IEEE status flags from convert signed integer to
floating point
rdst ← ieee_flags((float)((long)rsrc1))

3, falu 1,4

ifloatrz src1 → dst convert signed integer to floating point with
rounding toward zero
rdst ← (float) ((long)rsrc1)

3, falu 1,4

ifloatrzflags src1 → dst IEEE status flags from converting signed integer
to floating point with rounding toward zero
rdst ← ieee_flags((float)((long)rsrc1))

3, falu 1,4

igeq src1 src2 → dst signed compare greater or equal
if rsrc1 ≥ rsrc2 then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5

igeqi(n) src1 → dst signed compare greater or equal with immediate
if rsrc1 ≥ n then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5
–64 to 63

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 55

10

igtr src1 src2 → dst signed compare greater
if rsrc1 > rsrc2 then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5

igtri(n) src1 → dst signed compare greater with immediate
if rsrc1 > n then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5
–64 to 63

iimm(n) → dst signed immediate
rdst ← n

1, const 1,2,3,4,5
0x80000000 to
0x7fffffff

ijmpf src1 src2 interruptible indirect jump on false
if (rsrc1 & 1) = 0 then {
 DPC ← rsrc2
 if exception is pending then
 service exception
 else if interrupt is pending then
 service interrupts
 else
 PC, SPC ← rsrc2
}

delay=3,
branch

2,3,4

ijmpi(address) interruptible jump immediate
DPC ← address
if exception is pending then
 service exception
else if interrupt is pending then
 service interrupts
else
 PC, SPC ← address

delay=3,
branch

2,3,4
0 to 0xffffffff

ijmpt src1 src2 interruptible indirect jump on true
if (rsrc1 & 1) = 1 then {
 DPC ← rsrc2
 if exception is pending then
 service exception
 elseif interrupt is pending then
 service interrupts
 else
 PC, SPC ← rsrc2
}

delay=3,
branch

2,3,4

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

56 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

ild16d(d) src1 → dst signed 16-bit load with displacement
if PCSW.bytesex = LITTLE_ENDIAN then
 bs ← 1
else
 bs ← 0
temp< 7:0> ← mem[(rsrc1 + d + (1 ⊕ bs)]
temp<15:8> ← mem[(rsrc1 + d + (0 ⊕ bs)]
rdst ← sign_ext16to32(temp<15:0>)

3, dmem 4,5
–128 to 126 by 2

ild16r src1 src2 → dst signed 16-bit load with index
if PCSW.bytesex = LITTLE_ENDIAN then
 bs ← 1
else
 bs ← 0
temp< 7:0> ← mem[(rsrc1 + rsrc2 + (1 ⊕ bs)]
temp<15:8> ← mem[(rsrc1 + rsrc2 + (0 ⊕ bs)
rdst ← sign_ext16to32(temp<15:0>)

3, dmem 4,5

ild16x src1 src2 → dst signed 16-bot load with scaled index
if PCSW.bytesex = LITTLE_ENDIAN then
 bs ← 1
else
 bs ← 0
temp< 7:0> ← mem[(rsrc1 + (2 × rsrc2) + (1 ⊕ bs)]
temp<15:8> ← mem[(rsrc1 + (2 × rsrc2) + (0 ⊕ bs)]
rdst ← sign_ext16to32(temp<15:0>)

3, dmem 4,5

ild8d(d) src1 → dst signed 8-bit load with displacement
rdst ← sign_ext8to32(mem[rsrc1 + d])

3, dmem 4,5
–64 to 63

ild8r src1 src2 → dst signed 8-bit load with index
rdst ← sign_ext8to32(mem[rsrc1 + rsrc2])

3, dmem,
4,5

4,5

ileqi(n) src1 → dst signed compare less or equal with immediate
if rsrc1 ≤ n then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5
–64 to 63

ilesi(n) src1 → dst signed compare less with immediate
if rsrc1 < n then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5
–64 to 63

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 57

10

imax src1 src2 → dst signed maximum
if rsrc1 > rsrc2 then
 rdst ← rsrc1
else
 rdst ← rsrc2

2, dspalu 1,3

imin src1 src2 → dst signed minimum
if rsrc1 > rsrc2 then
 rdst ← rsrc2
else
 rdst ← rsrc1

2, dspalu 1,3

imul src1 src2 → dst signed multiply
temp ← sign_ext32to64(rsrc1) ×

sign_ext32to64(rsrc2)
rdst ← temp<31:0>

3, ifmul 2,3

imulm src1 src2 → dst signed multiply, return most-significant 32 bits
temp ← sign_ext32to64(rsrc1) ×

sign_ext32to64(rsrc2)
rdst ← temp<63:32>

3, ifmul 2,3

ineq src1 src2 → dst signed compare not equal
if rsrc1 != rsrc2 then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5

ineqi(n) src1 → dst signed compare not equal with immediate
if rsrc1 != n then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5
–64 to 63

inonzero src1 src2 → dst if nonzero select zero
if rsrc1 != 0 then
 rdst ← 0
else
 rdst ← rsrc2

1, alu 1,2,3,4,5

isub src1 src2 → dst subtract
rdst ← rsrc1 – rsrc2

1, alu 1,2,3,4,5

isubi(n) src1 → dst subtract with immediate
rdst ← rsrc1 – n

1, alu 1,2,3,4,5
0 to 127

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

58 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

izero src1 src2 → dst if zero select zero
if rsrc1 = 0 then
 rdst ← 0
else
 rdst ← rsrc2

1, alu 1,2,3,4,5

jmpf src1 src2 indirect jump on false
if (rsrc1 & 1) = 0 then PC ← rsrc2

delay=3,
branch

2,3,4

jmpi(address) jump immediate
PC ← address

delay=3,
branch

2,3,4
0 to 0xffffffff

jmpt src1 src2 indirect jump on true
if (rsrc1 & 1) = 1 then PC ← rsrc2

delay=3,
branch

2,3,4

ld32d(d) src1 → dst 32-bit load with displacement
if PCSW.bytesex = LITTLE_ENDIAN then
 bs ← 3
else
 bs ← 0
rdst< 7: 0> ← mem[rsrc1 + d + (3 ⊕ bs)]
rdst<15: 8> ← mem[rsrc1 + d + (2 ⊕ bs)]
rdst<23:16> ← mem[rsrc1 + d + (1 ⊕ bs)]
rdst<31:24> ← mem[rsrc1 + d + (0 ⊕ bs)]

3, dmem 4,5
–256 to 252 by 4

ld32r src1 src2 → dst 32-bit load with index
if PCSW.bytesex = LITTLE_ENDIAN then
 bs ← 3
else
 bs ← 0
rdst< 7: 0> ← mem[rsrc1 + rsrc2 + (3 ⊕ bs)]
rdst<15: 8> ← mem[rsrc1 + rsrc2 + (2 ⊕ bs)]
rdst<23:16> ← mem[rsrc1 + rsrc2 + (1 ⊕ bs)]
rdst<31:24> ← mem[rsrc1 + rsrc2 + (0 ⊕ bs)]

3, dmem 4,5

ld32x src1 src2 → dst 32-bit load with scaled index
if PCSW.bytesex = LITTLE_ENDIAN then
 bs ← 3
else
 bs ← 0
rdst< 7: 0> ← mem[rsrc1 + (4 × rsrc2) + (3 ⊕ bs)]
rdst<15: 8> ← mem[rsrc1 + (4 × rsrc2) + (2 ⊕ bs)]
rdst<23:16> ← mem[rsrc1 + (4 × rsrc2) + (1 ⊕ bs)]
rdst<31:24> ← mem[rsrc1 + (4 × rsrc2) + (0 ⊕ bs)]

3, dmem 4,5

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 59

10

lsr src1 src2 → dst logical shift right
n ← rsrc2<4:0>
rdst<31:32–n> ← 0
rdst<31–n:0> ← rsrc1<31:n>

1, shifter,
1,2

1,2

lsri(n) src1 → dst logical shift right immediate
rdst<31:32–n> ← 0
rdst<31–n:0> ← rsrc1<31:n>

1, shifter 1,2
0 to 31

mergedual16lsb src1 src2
→ dst

merge dual-16 least significant bytes
rdst< 7: 0> ← rsrc2< 7: 0>
rdst<15: 8> ← rsrc2<23:16>
rdst<23:16> ← rsrc1< 7: 0>
rdst<31:24> ← rsrc1<23:16>

1, shifter 1,2

mergelsb src1 src2 → dst merge least significant bytes
rdst< 7: 0> ← rsrc2< 7:0>
rdst<15: 8> ← rsrc1< 7:0>
rdst<23:16> ← rsrc2<15:8>
rdst<31:24> ← rsrc1<15:8>

1,alu 1,2,3,4,5

mergemsb src1 src2 → dst merge most significant bytes
rdst< 7: 0> ← rsrc2<23:15>
rdst<15: 8> ← rsrc1<23:15>
rdst<23:16> ← rsrc2<31:24>
rdst<31:24> ← rsrc1<31:24>

1,alu 1,2,3,4,5

pack16lsb src1 src2 → dst pack least significant 16-bit halfwords
rdst<15: 0> ← rsrc2<15:0>
rdst<31:16> ← rsrc1<15:0>

1,alu 1,2,3,4,5

pack16msb src1 src2 →
dst

pack most significant 16-bits
rdst<15: 0> ← rsrc2<31:16>
rdst<31:16> ← rsrc1<31:16>

1,1lu 1,2,3,4,5

packbytes src1 src2 → dst pack least significant bytes
rdst< 7:0> ← rsrc2<7:0>
rdst<15:8> ← rsrc1<7:0>

1,1lu 1,2,3,4,5

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

60 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

quadavg src1 src2 → dst unsigned byte-wise quad average
temp ← (zero_ext8to32(rsrc1<7:0>) +

zero_ext8to32(rsrc2<7:0>) + 1) / 2
rdst<7:0> ← temp<7:0>
temp ← (zero_ext8to32(rsrc1<15:8>) +

zero_ext8to32(rsrc2<15:8>) + 1) / 2
rdst<15:8> ← temp<7:0>
temp ← (zero_ext8to32(rsrc1<23:16>) +

zero_ext8to32(rsrc2<23:16>) + 1) / 2
rdst<23:16> ← temp<7:0>
temp ← (zero_ext8to32(rsrc1<31:24>) +

zero_ext8to32(rsrc2<31:24>) + 1) / 2
rdst<31:24> ← temp<7:0>

2, dspalu 1,3

quadumax src1 src2 → dst unsigned byte-wise quad maximum
rdst< 7: 0> ← if rsrc1<7:0> > rsrc2<7:0> then

rsrc1<7:0> else rsrc2<7:0>
rdst<15: 8> ← if rsrc1<15:8> > rsrc2<15:8> then

rsrc1<15:8> else rsrc2<15:8>
rdst<23:16> ← if rsrc1<23:16> > rsrc2<23:16> then

rsrc1<23:16> else rsrc2<23:16>
rdst<31:24> ← if rsrc1<31:24> > rsrc2<31:24> then

rsrc1<31:24> else rsrc2<31:24>

2, dspalu 1,3

quadumin src1 src2 → dst unsigned byte-wise quad minimum
rdst< 7: 0> ← if rsrc1<7:0> < rsrc2<7:0>

then rsrc1<7:0> else rsrc2<7:0>
rdst<15: 8> ← if rsrc1<15:8> < rsrc2<15:8>

then rsrc1<15:8> else rsrc2<15:8>
rdst<23:16> ← if rsrc1<23:16> < rsrc2<23:16>

then rsrc1<23:16> else rsrc2<23:16>
rdst<31:24> ← if rsrc1<31:24> < rsrc2<31:24>

then rsrc1<31:24> else rsrc2<31:24>

2, dspalu 1,3

quadumulmsb src1 src2 →
dst

unsigned quad 8-bit multiply most significant
temp ← zero_ext8to32(rsrc1<7:0>) ×

zero_ext8to32(rsrc2<7:0>)
rdst< 7: 0> ← temp<15: 8>
temp ← zero_ext8to32(rsrc1<15:8>) ×

zero_ext8to32(rsrc2<15: 8>)
rdst<15: 8> ← temp<15:8>
temp ← zero_ext8to32(rsrc1<23:16>) ×

zero_ext8to32(rsrc2<23:16>)
rdst<23:16> ← temp<15:8>
temp ← zero_ext8to32(rsrc1<31:24>) ×

zero_ext8to32(rsrc2<31:24>)
rdst<31:24> ← temp<15:8>

3, dspmul 2,3

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 61

10

rdstatus(d) rsrc1 → rdest read data cache status bits
set_addr ← rsrc1 + d
/* set_addr<10:6> selects set */

rdst< 9: 0> ← dcache_LRU_set(set_addr)
rdst<17:10> ← dcache_dirty_set(set_addr)
rdst<31:17> ← 0

3, dmem-
spec

5,
–256 to 252 by 4

rdtag(d) rsrc1 → rdest read data cache address tag
block_addr ← rsrc1 + d

/* block_addr<13:11> selects element,
block_addr<10:6> selects set */

rdst<20: 0> ← dcache_tag_block(block_addr)
rdst<31:21> ← 0

3, dmem-
spec

5,
–256 to 252 by 4

readdpc → dst read destination program counter
rdst ← DPC

1, fcomp 3

readpcsw → dst read program control and status word
rdst ← PCSW

1, fcomp 3

readspc → dst read source program counter
rdst ← SPC

1, fcomp 3

rol src1 sc2 → dst rotate left
n ← rsrc2<4:0>
rdst<31:n> ← rsrc1<31–n:0>
rdst<n–1:0> ← rsrc1<31:32–n>

1, shifter 1,2

roli(n) src1 → dst rotate left by immediate
rdst<31:n> ← rsrc1<31–n:0>
rdst<n–1:0> ← rsrc1<31:32–n>

1, shifter 1,2
0 to 31

sex16 src1 → dst signed extend 16 bits
rdst ← sign_ext16to32(rsrc1<15:0>)

1,alu 1,2,3,4,5

ubytesel src1 src2 → dst select unsigned byte
if rsrc2 = 0 then
 rdst ← zero_ext8to32(rsrc1< 7: 0>)
else if rsrc2 = 1 then
 rdst ← zero_ext8to32(rsrc1<15: 8>)
else if rsrc2 = 2 then
 rdst ← zero_ext8to32(rsrc1<23:15>)
else if rsrc2 = 3 then
 rdst ← zero_ext8to32(rsrc1<31:24>)

1,alu 1,2,3,4,5

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

62 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

uclipi src1 src2 → dst clip signed to unsigned
rdst ← min(max(rsrc1, 0), rsrc2)

2, dspalu 1,3

uclipu src1 src2 → dst clip unsigned to unsigned
if rsrc1 > rsrc2 then
 rdst ← rsrc2
else
 rdst ← rsrc1

2, dspalu 1,3

ueqli(n) src1 → dst unsigned compare equal with immediate
if rsrc1 = n then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5
0 to 127

ufir16 src1 src2 → dst sum of products of unsigned 16-bit halfwords
rdst ← zero_ext16to32(rsrc1<31:16>) ×

zero_ext16to32(rsrc2<31:16>) +
zero_ext16to32(rsrc1<15: 0>) ×
zero_ext16to32(rsrc2<15: 0>)

3, dspmul 2,3

ufir8uu drc1 src2 → dst unsigned sum of products of unsigned bytes
rdst ← zero_ext8to32(rsrc1<31:24>) ×

zero_ext8to32(rsrc2<31:24>) +
zero_ext8to32(rsrc1<23:16>) ×
zero_ext8to32(rsrc2<23:16>) +
zero_ext8to32(rsrc1<15: 8>) ×
zero_ext8to32(rsrc2<15: 8>) +
zero_ext8to32(rsrc1< 7: 0>) ×
zero_ext8to32(rsrc2< 7: 0>)

3, dspmul 2,3

ufixieee src1 → dst convert floating point to unsigned integer using
PCSW rounding mode
rdst ← (unsigned long) ((float)rsrc1)

3, falu 1,4

ufixieeeflags src1 → dst IEEE status flags from convert floating point to
unsigned integer using PCSW rounding mode
rdst ← ieee_flags((unsigned long) ((float)rsrc1))

3, falu 1,4

ufixrz src1 → dst Convert floating point to unsigned integer with
round toward zero
rdst ← (unsigned long) ((float)rsrc1)

3, falu 1,4

ufixrzflags src1 → dst IEEE status flags from convert floating point to
unsigned integer with round toward zero
rdst ← ieee_flags((unsigned long) ((float)rsrc1))

3, falu 1,4

ufloat src1 → dst convert unsigned integer to floating point
rdst ← (float) ((unsigned long)rsrc1)

3, falu 1,4

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 63

10

ufloatflags src1 → dst IEEE status flags from convert unsigned integer
to floating point
rdst ← ieee_flags((float) ((unsigned long)rsrc1))

3, falu 1,4

ufloatrz src1 → dst convert unsigned integer to floating point with
rounding toward zero
rdst ← (float) ((unsigned long)rsrc1)

3, falu 1,4

ufloatrzflags src1 → dst IEEE status flags from convert unsigned integer
to floating point with rounding toward zero
rdst ← ieee_flags((float) ((unsigned long)rsrc1))

3, falu 1,4

ugeq src1 src2 → dst unsigned compare greater or equal
if (unsigned)rsrc1 ≥ (unsigned)rsrc2 then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5

ugeqi(n) src1 → dst unsigned compare greater or equal with
immediate
if (unsigned)rsrc1 ≥ (unsigned)n then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5
0 to 127

ugtr src1 src2 → dst unsigned compare greater
if (unsigned)rsrc1 > (unsigned)rsrc2 then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5

ugtri(n) src1 → dst unsigned compare greater with immediate
if (unsigned)rsrc1 > (unsigned)n then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5
0 to 127

uimm(n) → dst unsigned immediate
rdst ← uimm(n)

1, const 1,2,3,4,5
0 to 0xffffffff

uld16d(d) src1 → dst unsigned 16-bit load with displacement
if PCSW.bytesex = LITTLE_ENDIAN then
 bs ← 1
else
 bs ← 0
temp< 7:0> ← mem[rsrc1 + d + (1 ⊕ bs)]
temp<15:8> ← mem[rsrc1 + d + (0 ⊕ bs)]
rdst ← zero_ext16to32(temp<15:0>)

3, dmem 4,5
–128 to 126 by 2

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

64 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

uld16r src1 src2 → dst unsigned 16-bit load with index
if PCSW.bytesex = LITTLE_ENDIAN then
 bs ← 1
else
 bs ← 0
temp< 7:0> ← mem[rsrc1 + rsrc2 + (1 ⊕ bs)]
temp<15:8> ← mem[rsrc1 + rsrc2 + (0 ⊕ bs)]
rdst ← zero_ext16to32(temp<15:0>)

3, dmem 4,5

uld16x src1 src2 → dst unsigned 16-bit load with scaled index
if PCSW.bytesex = LITTLE_ENDIAN then
 bs ← 1
else
 bs ← 0
temp< 7:0> ← mem[rsrc1 + (2 × rsrc2) + (1 ⊕ bs)]
temp<15:8> ← mem[rsrc1 + (2 × rsrc2) + (0 ⊕ bs)]
rdst ← zero_ext16to32(temp<15:0>)

3, dmem 4,5

uld8d(d) src1 → dst unsigned 8-bit load with displacement
rdst ← zero_ext8to32(mem[rsrc1 + d])

3, dmem 4,5
–64 to 63

uld8r src1 src2 → dst unsigned 8-bit load with index
rdst ← zero_ext8to32(mem[rsrc1 + rsrc2])

3, dmem 4,5

uleqi(n) src1 → dst unsigned compare less or equal with immediate
if (unsigned)rsrc1 ≤ (unsigned)n then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5
0 to 127

ulesi(n) src1 → dst unsigned compare less with immediate
if (unsigned)rsrc1 < (unsigned)n then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5
0 to 127

ume8ii src1 src2 → dst unsigned sum of absolute values of signed 8-bit
differences
rdst ← abs_val(sign_ext8to32(rsrc1<31:24>) –

sign_ext8to32(rsrc2<31:24>)) +
abs_val(sign_ext8to32(rsrc1<23:16>) –

sign_ext8to32(rsrc2<23:16>)) +
abs_val(sign_ext8to32(rsrc1<15: 8>) –

sign_ext8to32(rsrc2<15: 8>)) +
abs_val(sign_ext8to32(rsrc1< 7: 0>) –

sign_ext8to32(rsrc2< 7: 0>))

2, dspalu 1,3

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 65

10

ume8uu src1 src2 → dst sum of absolute values of unsigned 8-bit
differences
rdst ← abs_val(zero_ext8to32(rsrc1<31:24>) –

zero_ext8to32(rsrc2<31:24>)) +
abs_val(zero_ext8to32(rsrc1<23:16>) –

zero_ext8to32(rsrc2<23:16>)) +
abs_val(zero_ext8to32(rsrc1<15: 8>) –

zero_ext8to32(rsrc2<15: 8>)) +
abs_val(zero_ext8to32(rsrc1< 7: 0>) –

zero_ext8to32(rsrc2< 7: 0>))

2, dspalu 1,3

umul src1 src2 → dst unsigned multiply
temp ← zero_ext32to64(rsrc1) ×

zero_ext32to64(rsrc2)
rdst ← temp<31:0>

3, ifmul 2,3

umulm src1 src2 → dst unsigned multiply, return most significant 32 bits
temp ← zero_ext32to64(rsrc1) ×

zero_ext32to64(rsrc2)
rdst ← temp<63:32>

3, ifmul 2,3

uneqi(n) src1 → dst unsigned compare not equal with immediate
if (unsigned)rsrc1 != (unsigned)n then
 rdst ← 1
else
 rdst ← 0

1, alu 1,2,3,4,5
0 to 127

writedpc src1 write destination program counter
DPC ← rsrc1

1, fcomp 3

writepcsw src1 src2 write program control and status word
PCSW ← (PCSW & ~rsrc2) | (rsrc1 & rsrc2)

1, fcomp 3

writespc src1 write source program counter
SPC ← rsrc1

1, fcomp 3

Table 5 TriMedia Opcodes (Continued)

Syntax Meaning Latency,
FU Type

Issue Slots,
Modifier Range

Chapter 10: TriMedia Assembler

66 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 67

11

Chapter 11

Linking TriMedia Object Modules

Topic Page

Introduction 68

Overview 68

Object File Contents 73

Static Linking 80

Dynamic Linking 82

Section Renaming 113

Link Optimizations 116

Multiprocessor Support 117

SDRAM Memory Images vs Load Images 119

Constructing Load Images Using tmld 122

Download Symbols 123

tmld Options 126

List Construction by tmld 130

Chapter 11: Linking TriMedia Object Modules

68 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Introduction

TriMedia executables typically consist of a mix of user code, runtime support, and sev-

eral user- and system-provided libraries. Using the compiler tools tmccom, tmsched and

tmas, these are all separately compiled into object files, which are finally merged into

executables using the linker, tmld.

Separate compilation has a number of obvious advantages over compiling applications

entirely from source. First, many of the software components involved have been inde-

pendently developed, and for a variety of reasons the authors might not want to publish

their sources. Second, separate compilation simply saves time when earlier results are

reused. This reuse of results can be at the level of applications, where (precompiled) soft-

ware libraries can be shared between applications, or at the development level in recom-

piling a single application, where intermediate compilation results can be left untouched

as long as their sources have not been changed.

Therefore, central to the process of compilation and application building, the object file

can be seen as an intermediate representation by which software can be distributed, and

from which executables can be formed by linking.

Overview

This chapter describes the conceptual structure of object files and the tools with which

they can be manipulated. It does not contain a description of the physical structure of

the object files, as users are shielded from the physical object format details by the vari-

ous TriMedia tools and libraries.

Object Files

Object files will appear in a number of variations that are all instances of the TriMedia

object format. Initially created by the assembler tmas as straightforward translations of

assembly files,“dot o” files (.o), they can be linked with other object files into larger object

files, or into executables or dynamic libraries. (Refer to below.) Executables are fully linked,

self-contained object files that can be loaded onto a processor and subsequently started.

Dynamic libraries are fragments into which executables can be divided, and which can

be independently loaded and unloaded after the executable has started.

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 69

11

Such “fragments,” with executables themselves as special cases, are commonly referred

to as code segments.

Figure 1 Dynamic Libraries

The initial loading of an executable onto a processor before its execution is often called

downloading (in contrast to the loading of a dynamic library during execution, which is

referred to as dynamic loading). Downloading is generally performed by a monitor pro-

gram like tmmon or tmrun, while dynamic loading is performed by a library that has

been linked with the first of the executable’s code segments (that is, the segment initially

downloaded). Executables are usually downloaded to the start of SDRAM of the proces-

sor on which they must be executed. Memory for dynamically loading a code segment is

allocated on the heap by the dynamic loader or by a user-provided memory manager.

Object File Structure

An object file contains the units from which any executable is eventually constructed:

binary instruction sequences and initialized or uninitialized global data items. The

instruction sequences are translations of decision trees (dtrees) at the trees/assembly

level, and the data items almost always correspond with global variables at the C level.

This is illustrated in , which shows a sample C program, its intermediate trees representa-

tion, and its object file. As opposed to an assembly file, which is a more or less readable

ASCI file, an object file is a binary representation which is fit for efficient handling of the

last stages of program manipulation: linking, relocation, and loading to a TriMedia proces-

sor for execution.

TM-1

Downloader

tmld

x.c

d.out

y.c

x.o y.o

z.c t.c

x.o y.o

tmld

x.dll

u.c v.c

u.o v.o

tmld

y.dll

Dynamic loader

Chapter 11: Linking TriMedia Object Modules

70 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Figure 2 C module with corresponding decision trees and resulting object file

{__fib_DT_1:}
tree (0)
 ...
 6 uimm (__fib_DT_2);
 ...
 gotree {_fib}
endtree

{__fib_DT_2:}
tree (0)
 ...
 7 uimm (_fibtab);
 9 uimm (__fib_DT_3);
 ...
 gotree _print_new
endtree

{__fib_DT_3:}
tree (0)
 ...
 4 uimm (_fibtab);
 ...
 cgoto 7
endtree

int fibtab[100];
external void print_new();

int fib(int i){
 if(i<=2){
 return 1;
 } else if (fibtab[i] > 0) {
 return fibtab[i];
 } else {
 fibtab[i]= fib(i-1) + fib(i-2);
 print_new(i, fibtab[i]);
 return fibtab[i];
 }
}

{.
co

mm
on

 _
fi

bt
ab

,4
00

,"
bs

s"
,4

}

{_fib:}
entree (0)
 1 rdreg (4);
 ...
 if 16 (0.5) then
 ...
 else (16)
 26 uimm (_fibtab);
 ...
 if 28 (0.5) then
 ...
 cgoto 13
 else (28)
 ...
 37 uimm (__fib_DT_1);
 ...
 gotree {_fib}
 end (28)
 end (16)
endtree

10101010101011010
10101010110101010
10101101010101010
11010101010101101
01010101011010101
01010110101010101
01010101011010101
01010110101010101
01101010101010110
10101010101101010
10101011010101010
10110101010101011
01010101010110101
01010101101010101
01011010101010101

1010101010101
1010101010101
1010101010101
1010101010101
1010101010101

fib.c

fib.t

fib.o

_fib

symbol

program unit

reference

_fibtab

?

_printnew

_fib_DT_3

1010101010101
1010101010101
1010101010101
1010101010101
1010101010101

_fib_DT_2

1010101010101
1010101010101
1010101010101
1010101010101
1010101010101

_fib_DT_1

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 71

11

The essence of an object file is that it is a representation that contains instruction- and

data units in binary forms that are practically identical to their eventual placement into

SDRAM, but without any assumptions about actual load addresses or the relative loading

order of the instruction and data units. This frees the linker and loaders to reorder these

program units, or even to delete several of them during specific link time optimizations,

and it frees the loaders to accept any desired memory address for loading. In other

words, while it has been the responsibility of the compilation tools tmccom, tmsched

and tmas to generate efficient instruction sequences, it is the responsibility of tmld and

the loaders to map them efficiently to SDRAM without further interpretation of their

contents.

This address independence has a price: a considerable part of the object file consists of

descriptors and administration needed for relocation of the executable or dynamic

library.

Relocation involves “fixing up” the loaded executable or dynamic library for the actual

address in memory where it is loaded. The descriptors and administration needed for

relocation are not used during execution, and hence are discarded after loading.

Relocation is traditionally performed by the linker (especially in virtual memory based

systems like UNIX, which always load their executables at a fixed address in virtual

memory address space). In contrast to this, the 32-bit TriMedia architecture does not

include a memory management unit: the download address is a physical address that

depends on the position in PCI space of the SDRAM of the processor that has been

selected for execution. Because this address is generally unknown at link time, the TriMe-

dia SDE postpones relocation to the loaders.

Load addresses of executables are generally unknown when such executables need to be

run on a variety of TriMedia boards (each board has its own SDRAM base address that in

turn depends on the specific PC plus PCI slot in which the board has been mounted).

However, a simpler download procedure is possible where one single load address will be

used, for instance in the case of an executable that is intended for a specific stand-alone

TriMedia board: relocation can then still be performed during linking, by specifying the

anticipated download address to tmld. This will result in a load image, written to a file. A

load image is a relocated binary representation of an executable that can, for example, be

stored in EEPROM and that can simply be copied to SDRAM for execution. A load image

is no longer an object file. It cannot be relocated again and cannot be executed from a

load address that is different from the anticipated one. Note that constructing a load

image is also an internal phase during downloading.

In addition to the simple merging of the program units (contained by the linked input

files) into the resulting output file, linking also involves symbol resolution. This process is

necessitated by the fact that program units may refer to each other. Each dtree and global

variable has a name which may be used as a placeholder of the yet-unknown SDRAM

address where the program unit will eventually be loaded. Program unit names are also

referred to as symbols. Examples of usage of such symbols are in instruction sequences,

where the addresses might be used as branch targets or for fetching from- or storing to

Chapter 11: Linking TriMedia Object Modules

72 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

memory; in a similar way, variables might be initialized with addresses of program units.

Example of references are shown in , where dtree _fib loads the address of variable _fibtab

in order to fetch from it and store to it, and it performs a recursive call to itself after hav-

ing saved the address of dtree __fibtab_DT_1 as return address.

Descriptions of all references in an object file are stored as part of the relocation informa-

tion of that object file. Until a load image is constructed, references must be kept in a

symbolic form. This is because the final address values are not yet known prior to reloca-

tion, and because object files that have not yet been fully linked might refer to program

units in other object files (a situation that occurs with the use of an external function or

variable in the C program from which the object file was compiled). Because no informa-

tion other than the name of the referenced external program unit is stored in the object

file, such references are referred to as unresolved references. Similarly, the names in unre-

solved references are known as unresolved symbols. It is the responsibility of tmld to

match unresolved references to their similarly named program units while linking a

number of input files. This process, called symbol resolution, is illustrated in Figure 3.

Note
Relocation is nothing more than a traversal of all references of an executable
or code segment after the load address has been established, while placing
the binary address of the referred program unit into the appropriate
position in the image of the referring program unit.

Figure 3 Linking = object file merging + symbol/reference resolution

Executables and dynamic libraries are fully linked, which means that they contain no

unresolved references. For a simple executable, this means that all instructions and data

units are present in the object itself. Generally, in the case of dynamic linking this means

that a referred program unit is either present or that it has been recorded (in the referring

1010101010101
1010101010101
1010101010101
1010101010101
1010101010101

_print_new
1010101010101
1010101010101
1010101010101
1010101010101
1010101010101

_print_new

1010101010101
1010101010101
1010101010101
1010101010101
1010101010101

_fib_DT_2
1010101010101
1010101010101
1010101010101
1010101010101
1010101010101

_fib_DT_2

x.o

y.o

xy.o

_print_new

?

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 73

11

code segment), so that the dynamic loader can be invoked at runtime when the program

unit is needed. This recording is automatically performed by the linker.

Object Manipulation Tools

The following table lists the tools and libraries involved in object file manipulation.

Object File Contents

As described in the overview, an object file consists of program units, symbols, and refer-

ences. Program units are images of instruction sequences and global data that must even-

tually be concatenated to form the load image. Symbols are names of program units.

References represent positions within the program unit images where the currently

unknown address values of other program units will have to be filled in.

Tools and Libraries Description

tmas Creates object file from assembly input.

tmld Links object files, creates executables and dynamic libraries,
maps instruction sequences and global data into sections,
renames sections, assigns caching- or shared memory properties
to sections, exports symbols for dynamic linking, defines down-
load symbols, generates load images.

tmar Maintains archives of object files.

tmnm Lists symbols and symbol properties in object files.

tmsize Lists sections and section sizes in object files.

tmstrip Removes any administration that is not strictly needed for fur-
ther object manipulation.

tmdump Dumps object file contents to ASCII.

tmmon, tmgmon, tmrun,
tmmprun, (tmsim)

Monitors and execution shells, for loading and starting an exe-
cutable object on one or more TriMedia processors.

downloader library Relocates executable object, and constructs load image. This
library is used for this purpose by the tools tmmon, tmgmon,
tmrun, tmmprun, tmsim, and tmld and is also available as a
library libload.a for a variety of platforms.

dynamic loader Relocates dynamic library, adds load image to running TriMedia
program, and links all inter-code segment references. The
dynamic loader is available as a TriMedia library, to be part of
applications which use dynamic loading services.

Chapter 11: Linking TriMedia Object Modules

74 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

This section describes object file contents in more detail. , a sample object file generated

using tmdump, can be used as a running illustration throughout this section.

Figure 4 Sample Output of tmdump

Sections

Many compilers with a Unix tradition separate the generated instruction and global data

units into the standard sections text, data1, data and bss, according to some general prop-

erties. Such compilers perform in this manner so that the following actions can be

quickly achieved:

■ Distinguish between code and data

section size alignment has_data is_code is_shared is_read_only caching

text 281 64 True True False True Cached
data1 0 1 True False False True Cached
data 0 1 True False False False Cached
bss 0 1 False False False False Cached

section units

section offset length alignment
text 0x00000000 156 1
text 0x0000009c 34 1
text 0x000000be 40 1
text 0x000000e6 51 1

symbols

name scope type attr
_fib_DT_3 LocalScope RelativeSymbol text, 0x000000e6
_fib_DT_2 LocalScope RelativeSymbol text, 0x000000be
_fib_DT_1 LocalScope RelativeSymbol text, 0x0000009c
_fib_DT_0 LocalScope RelativeSymbol text, 0x00000000
_fib GlobalScope RelativeSymbol text, 0x00000000
_fibtab GlobalScope CommonSymbol 4,400
_print_new GlobalScope UnresolvedSymbol False

marker_references

dest_offset dest_section src_offset src_section
0x00000045 text 0x00000000 text
0x00000048 text 0x0000009c text
0x000000a1 text 0x00000000 text
0x000000a4 text 0x000000be text
0x000000cd text 0x000000e6 text

symbol references

dest_offset dest_section src_offset src_symbol
0x0000000c text 0x00000000 _fibtab
0x000000c3 text 0x00000000 _print_new
0x000000c6 text 0x00000000 _fibtab
0x000000eb text 0x00000000 _fibtab

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 75

11

■ Set write protection hardware for read only data after loading

■ Set data sharing between different (virtual) address spaces

■ Allocate and initialize memory space for uninitialized data

■ Map certain data into a specific memory range

■ Set cache locking or cache transparency for all data for which this is required

A specific advantage of section grouping in computers with separated data- and instruc-

tion caches, is that instructions and data are kept apart so that instruction caches are not

contaminated with data and vice versa.

TriMedia objects support sections for similar reasons. As described on page 114, tmccom

maps all program units into sections initially named text, data1, data or bss. Linking of

object files will result in successively larger sections. Sections can be renamed using tmld

to create new ones, can be assigned specific properties, and can be broken down again

into their individual section units (for example, for linker optimization such as dead

code removal and identical code folding). Sections contained by an object file, with their

sizes, can be displayed using tmsize.

Example

 shows a use of tmsize in an example which monitors section sizes after section renam-

ing and linking. In this example, a global table maintained by source file print_new.c is

placed into uncached data memory because this table is accessed from another proces-

sor. (For instance, the PC in which this application’s TriMedia board has been mounted.)

Because TriMedia cache coherence is the responsibility of the application, measures must

be taken to ensure that table data written by the program does not pend in the data

cache but actually gets written to memory, and that new table data written by the other

processor does not get masked by stale cache contents. A simple solution is to avoid use

of the cache altogether by placing the table into uncached memory.

Note
It is assumed that this global table is the only global variable in print_new.c,
so that renaming the data section affects only this table.

tmcc Ðc print_new.c fib.c

tmsize print_new.o fib.o
text data data1 bss dec hex name
428 1600 0 0 2028 0x7EC print_new.o
281 0 0 0 281 0x119 fib.o
709 1600 0 0 2309 0x905 Total

tmld print_new.o \
 Ðsectionrename data=table_section \
 Ðsectionproperty data=uncached \
 Ðo print_new.o

tmsize print_new.o fib.o
text data data1 bss table_section dec hex name
428 Ð 0 0 1600 2028 0x7EC print_new.o

Chapter 11: Linking TriMedia Object Modules

76 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Figure 5 Section renaming

Sizes reported by tmsize may differ slightly from their size contributions to the final

linked executables. These differences may be due to linker optimizations (which decrease

contributed size), or to the introduction of internal padding by the linker to enforce

alignments (which increases contributed size). As a general rule, text size increases by as

much as 10% when linking an executable. Link time optimizations typically produce a

total size reduction of 20-30%.

After compiling the two files into object files, the section containing this table, data, is

renamed using tmld to table_section, and given the property uncached. The effect of this

is checked by using tmsize, which shows that the data section in print_new.o has indeed

been moved (the new section property itself can only be shown by using tmdump).

Linking the two object files into a new one by using tmld shows that this new section

indeed is kept separate during further linking. It will eventually result in a separate sec-

tion in the executable which might be finally linked from the result output.o. Upon

loading this executable, the TriMedia downloader will automatically place this section

into uncached memory.

Program Unit Attributes

The following table lists the possible attributes of program units (that is, external vari-

ables, and functions). Because program units are always embedded in sections, they are

also known as section units (this is how tmdump names them). All of these attributes are

constructed from the assembly input:

section Name of the section in which the program unit has been embedded.

offset Position of the start of the program unit in its section, relative to the
start of the section.

length Total size of the program unit in bytes.

alignment Required program unit alignment in bytes. This attribute is taken
from the assembly source. Note that the offset value must be a multi-
ple of the alignment value.

281 0 0 0 Ð 281 0x119 fib.o
709 0 0 0 1600 2309 0x905 Total

tmld print_new.o fib.o Ðo output.o

tmsize output.o
text data data1 bss table_section dec hex
709 0 0 0 1600 2309 0x905

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 77

11

Section Attributes

The following table lists the possible section attributes. Most section properties are inter-

preted by the loader library when downloading an executable. Several section attributes

can be set by the user by using tmld:

name Name of the section. This name is initially chosen by tmccom, but
can be changed by tmld using option -sectionrename. The purpose
of section renaming is to separate particular code or data in further
linking (for instance because specific section properties need to be
assigned).

size Total size of section in bytes, including padding caused by program
unit alignment.

alignment Required section alignment in bytes, which is a multiple (or usually
just equal to) the least common multiple of the alignments of all pro-
gram units that it contains. This attribute is interpreted by the TriMe-
dia downloader, and is automatically set by tmld.

has_data This attribute specifies whether the section has initial contents. If
this is the case (has_data == True), then these initial contents occupy
space in the object file; otherwise no space is reserved in the object
file. Sections which do not “have” data are always renamed instances
of bss sections created by tmccom. This attribute is interpreted by
the TriMedia downloader, and is automatically set by tmas (which
initially creates object files). The downloader reserves space for sec-
tions which do not “have” data, and sets their contents to zero.

is_code When this attribute is equal to True, this section will be assumed to
contain instructions. This attribute is interpreted by the TriMedia
downloader and by tmld. It is automatically set by tmas (which ini-
tially creates object files).

is_shared When this attribute is equal to True, this section will be shared
between all the executables on a multi-TriMedia configuration. This
attribute is interpreted by the TriMedia downloader, and can be set
by tmld using the option -sectionproperty.

is_read_only When this attribute is equal to True, this section will be assumed to
contain non-modifiable data. This attribute is currently not used by
the TriMedia downloader, but its value has an effect during the linker
optimization as triggered by option -foldcode: members of a class of
identical and read-only program units are candidates for removal,
with each use substituted by a use of one representative of the class.
It can be set by tmld using option -sectionproperty.

caching_property This attribute has a number of values which are described below. It
defines whether (and how) the section contents should be cached.
The value of this attribute is interpreted by the TriMedia downloader,
and can be set by tmld using option -sectionproperty, using either of
the following arguments:

Cached Section contents will be subject to normal caching.

Chapter 11: Linking TriMedia Object Modules

78 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Uncached Not allowed for instruction sections (is_code ==
True), due to hardware restrictions of 32-bit TriMedia
processors. Uncached (data) sections will be placed
into uncached memory by the downloader library.

CacheLocked Cachelocked. Allowed for instruction and data sec-
tions. Cachelocked sections will be placed into cach-
elocked memory by the downloader library.

More information on section renaming and assigning properties can be found on pages

113, and 117.

System Sections and Sections Introduced by tmld

Sections are not only used for storing program units in an object file, but also for storing

debugger information and the object file administration itself. This is partly because a

section appears to be a general mechanism within an object file for storing information.

More fundamentally in the context of dynamic loading, under specific conditions, cer-

tain object file administration such as reference data must also be loaded for use onto

TriMedia, and hence must be treated similar to “normal” object file data. Therefore, no

strict separation can be made between program units and object file administration and

all must be given a similar treatment. Since these additional sections are all fully handled

by the object manipulation tools, the user does not need to be concerned with them.

However, tmsize shows all sections that will actually be downloaded, and therefore sec-

tions introduced by the compiler tools sometimes show up in its output. Sections that

might be introduced by the compiler tools and tmld are described on page 115.

Figure 6 Special sections showing up in tmsize output

Symbols

Symbols are entities that have yet-unknown 32-bit values associated with them, which

can be used as placeholders for those values by program units. Although these values are

generally addresses, they may represent any information that can be encoded in a 32-bit

value.

The following table lists the possible symbol attributes. Most of these attributes are taken

directly from the assembly input, but some of them can be set by using tmld:

name Name of the symbol

type Symbol type:

tmcc Ðbtype dynboot main.c

tmsize a.out
text data data1 bss $String$DynLoad$ Ext_ModDynLoad$ _mdescs_ _mdesc_ dec hex
153472 2152 1672 19628 32 2418 98 179496 0x2BD28

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 79

11

AbsoluteSymbol A symbol of this type has a fixed 32-bit value associated; this value is
stored in symbol attribute, attr. Absolute symbols are currently not
used in the TriMedia SDE.

RelativeSymbol A symbol of this type has an address within an associated program
unit. This is often just the address of the start of the program unit,
but hand coding assembly might cause relative addresses strictly
within program units. The relative value is encoded in attr, as a (sec-
tion, offset within that section) pair. The value represented by a relative
symbol becomes known as soon as a load address for section has been
established, and is the sum of that load address and offset. A (section,
offset) pair is also called a marker. (See References on page 80.)

CommonSymbol A symbol of this type represents a tentative uninitialized data defini-
tion with a size and alignment specified in attr, often resulting from
global variable definitions in C without initializer. Refer to ANSI C
Semantics. If an object file containing a common symbol is linked to
another object file containing a relative or absolute symbol with the
same name, the common symbol is merged with the absolute sym-
bol: the common symbol is discarded and its size and alignment are
ignored. Common symbols that are still present while linking an exe-
cutable or code segment are converted to program units into the bss
section. See the description on page 113.

UnresolvedSymbol Unresolved symbol. Attr contains a boolean value which is usually
False, but is set to True for symbols that are defined using tmld, via
option -bdownload, to be download symbols. Download symbols are
the only type of unresolved symbols that are allowed to remain
undefined in executables and other code segments. They are
intended for passing information that becomes available at down-
loading time. More information on download symbols can be found
on page 119.

attr Representation of symbol value; see above.

scope Visibility of symbol in static or dynamic linking:

LocalScope Symbols of this type generally correspond to static variables or static
functions at the C level, and serve only informational purposes in
the object file. Their values can be inspected using tmnm and
tmdump, but they are not used for further linking. This scope value
is taken from the C or assembly source.

GlobalScope Symbols of this type generally correspond to external variables or
external functions at the C level. They are “visible” from within
other object files in static linking. When an object file containing a
specific global symbol is linked to another object file containing an
unresolved reference to an identically named unresolved symbol,
then the unresolved reference will be resolved. Also, errors will occur
when two object files are linked that contain identically named glo-
bal symbols. This scope value is taken from the C or assembly source.

Chapter 11: Linking TriMedia Object Modules

80 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

DynamicScope Symbols of this type will be exported by the current code segment,
and hence are visible from within other code segments. This scope
value must be set using tmld while constructing dynamic library via
option -bexport.

A list of symbols, with their scopes, types and attributes, can be shown by tmnm. (See

Figure 7).

Figure 7 Sample output of tmnm

References

References are descriptions of values to be filled in at a specific location within a program

unit, and hence consist of two parts: a destination of the value, pointing into a program

unit, and a description of the value itself, describing a 32-bit number. Destinations are

always represented by means of a marker (see description of relative symbols on page

78), and referred values are always initially represented by a pair (symbol+offset). The off-

set allows the representing of addresses within the program unit named by the symbol.

These reference representations via symbols are only needed for unresolved references. Ref-

erences resolved to relative symbols (sym_section,sym_offset) can be more directly repre-

sented by replacing the (symbol,offset) pair by a marker (sym_section,sym_offset+offset).

This has the advantage that the symbol is no longer needed and may be stripped from

the object file when desired. References to absolute symbols can even be removed

entirely by the linker after filling in the absolute value at the appropriate place. Symbol

references and marker references are shown by tmdump, as in Figure 4 on page 74.

Static Linking

tmld links a number of object files, performs operations (such as section renaming and

assigning section and symbol properties), and produces an output file. The following

types of files are allowed inputs to the linker:

■ dynamic libraries

■ plain object files (that is, object files that are not code segments)

■ archive files constructed from plain object files using tmar.

tmnm Ðan fib.o
 U _print_new
 C _fibtab
00000000 t __fib_DT_0
00000000 T _fib
0000009C t __fib_DT_1
000000BE t __fib_DT_2
000000E6 t __fib_DT_3

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 81

11

The output file is either an object file or a load image file, and in the case of an object

file, is either again a plain object file (default) or a code segment, depending on the use

of tmld options -exec and -btype.

Linking executables requires specification of a start symbol. Memory image generation

can only be performed while linking an executable, but requires some additional infor-

mation that is usually only available during downloading: MMIO base address, processor

frequency, start and end of SDRAM area in which the image will be loaded, as well as

some optional multiprocessor setup information.

The input files are basically linked in the order in which they are specified on the link

command line. Generally this is only important for the location of the start address of a

boot executable (That is, the most usual type of executable, which is used for loading

and execution (up)on an idle TriMedia processor). Such an executable should have its

transfer address at the start of its text segment, and therefore the link command for con-

structing such an executable should specify the object file that contains the start code as

first input file. This file usually is the file reset.o from the TCS system directory. Linker

optimizations might considerably reorganize the original order of object files, and even

of their contents. However, the location of the first dtree in the text segment will always

be preserved.

The input files are linked in order of their occurrence on the command line. Plain object

files are included into the current result of linking, while resolving all references and

symbols that can be resolved, and while generating errors for all duplicate symbols.

Recall that resolving references involves the matching of unresolved references with cor-

responding symbol definitions, and that resolving symbols involves merging previously

unresolved symbols and common symbols with corresponding relative- or absolute sym-

bol definitions. Only symbols with a non-local scope can be used for resolution, and only

symbols with a non-local scope are able to cause duplicate symbol errors).

When linking an archive file, tmld repeatedly fetches and links plain object files that

define currently undefined symbols in the current result of linking. This repetition stops

when the contents of the archive file are no longer able to resolve undefined symbols.

Archives are not inspected again. Therefore, an unresolved reference that has a corre-

sponding definition in one of the archive’s object files might still remain unresolved if it

were introduced by a “later” object file. This depends on whether the defining object file

has already been fetched from the archive.

Linking a dynamic library is similar to linking an object, with the following differences:

■ Unless it is linked as embedded, its contents are not included into the current result of

linking. Rather, directives for loading it at runtime are generated.

■ Only symbols with dynamic scope are used for resolving yet unresolved references, or

for generating duplicate symbol errors.

Chapter 11: Linking TriMedia Object Modules

82 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Dynamic Linking

Dynamic linking / dynamic loading is the loading and unloading of executable code by

a running application. It allows the developer to put aside many of the concerns of effi-

cient physical construction of software programs.

The TCS supports dynamic linking with special options to the tmcc compiler driver,

which passes them to the tmld linker. Dynamic linking is supported by the cycle-accu-

rate tmsim simulator.

This section explains what dynamic linking is and how it is implemented on the TCS.

Why Dynamic Linking is Valuable

The classic model of program compilation and execution uses static linking to build an

executable program. With static linking, the linker takes a number of object files,

resolves all cross-references to variables and functions, and builds a merged, self-con-

tained executable program that contains executable code for each referenced function

and global data space for each referenced global variable. Such an executable can be

downloaded to TriMedia and executed without the need for, and often even without the

possibility of, adding executable code during runtime.

In contrast, dynamic linking enables system designers to postpone building an executable

until runtime by including a dynamic equivalent of the static linker/loader in the TCS

runtime support library. By using specific options, the static linker tmld can be

instructed to suppress copying one or more of the input files into the produced execut-

able. Instead, it will generate directives to the dynamic loader for loading these omitted

object files at execution time, and for binding (‘linking’) all symbol cross references after

such dynamic loading. The terms dynamic loading and dynamic linking are often used

interchangeably to refer to different aspects of the same process: getting new code into a

running system.

Using dynamic linking provides several new opportunities:

■ Dynamic linking generally reduces disk space, because common libraries such as the

standard C library and boot code need not be included in every executable object file.

Instead, such libraries can be stored once, and loaded whenever they are needed.

■ Dynamic linking might reduce the required amount of runtime memory in multipro-

cessing systems, where different applications can be loaded and executed in parallel:

dynamic libraries can be shared, and hence need not be loaded for each and every

application that uses them.

■ Additional runtime memory might be saved by the ability of loading code only when

it is needed, and by the ability of unloading code, as soon as it is no longer needed.

Memory released by unloaded code can be reused.

■ With certain restrictions, dynamic libraries can be updated without the need for

relinking the applications that use them. This allows for upgrading already released

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 83

11

applications, by distributing new instances of libraries containing bug fixes or other

improvements.

■ Dynamic libraries can be used for hiding architectural details. Dynamic libraries are

similar to static libraries, but allow software to run on different platforms even with-

out relinking. This is illustrated by the TriMedia board support library, libboard: a

dynamic loader based application can be executed on a new type of TriMedia board,

simply by providing a libboard.dll that matches this new board.

Concepts of Dynamic Loading

The following sections describe the concepts that play a role in TriMedia dynamic link-

ing and loading. Because these sections present an overview in somewhat abstract terms,

they can best be read with a general reference in mind to the following sections: Simple

Examples on page 87, and More Examples on page 110.

Difference Between Static- and Dynamic Linking

When used in static mode, tmld produces an executable from a number of object files.

For this, tmld performs the following basic actions: it merges the contents of the object

files, it resolves all references that it encounters and it binds them. After that, the execut-

able can be loaded by the downloader, for which this downloader has to perform address

mapping (in the SDRAM range of the used TriMedia processor) and relocation. The distinc-

tion between resolving references and binding them is usually not explicitly made,

because they can be combined by the linker during static linking. However, in the con-

text of dynamic linking their difference is important: resolving a reference is the process

of locating a definition of a referenced memory object (“knowing where it is”), and bind-

ing a memory object is the process of creating some physical link to that object (“making

it accessible”).

For dynamic linking, tmld goes no further than producing code segments (see), which are

the units of code loading onto a TriMedia processor. Different types of code segments

Chapter 11: Linking TriMedia Object Modules

84 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

exist, and are described in the next section, but during this overview code segments can

be thought of as dynamic libraries.

Figure 8 Static vs. Dynamic Linking

Code segments are the fragments from which executables can be constructed during exe-

cution, and hence they will not necessarily contain executable code for each referenced

function and global data space for each referenced global variable. Because of this, it will

be obvious that tmld is not able to bind all references while producing a code segment.

However, similar to linking static executables, it still is a requirement that all references

can be resolved. In other words, although referenced functions and variables need not yet

be included in code segments, tmld must know which other code segments export

(define) them; this allows tmld to generate information by which the proper code seg-

ment can be properly located and loaded by the dynamic loader during runtime, when

the function or variable is actually needed. The actual binding of references, which have

already been resolved to that code segment by tmld during static linking, will take place

only when a particular code segment is loaded by the dynamic loader.

Code Segments

The previous section mentioned the similarity between the tmld static linker and the

dynamic loader: both are used for merging code and binding object references. However,

there is a major difference: while the static linker takes object files as input, the dynamic

loader operates on code segments. Code segments are the basic unit of dynamic code

loading and unloading, and they are constructed by means of the -btype option to

tmcc/tmld.

main.o a.o b.o c.o libc.a a.o b.o c.o

main.out

main.out

abc.dll libc.dllmain.o

main.dynboot

main.dynboot

libc.dllabc.dll

tmld

tmld

tmld

reference (for symbol resolution)

input (to be included in output)

output

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 85

11

No real representational difference exists between object files and code segments. Both

are versions of the TriMedia object format. A code segment is “just” a particular,

restricted form of an object file, and the main reason for assigning a code segment a spe-

cial status is to support static, early detection of errors like unresolved references by let-

ting tmld enforce several restrictions when building a code segment.

Four possible types of code segments exist, each of them tailored towards a specific use.

The first, the static executable, actually does not have anything to do with dynamic

loading, but is included as a particular ‘unit of code loading’; hence, code segments are

generalizations of the familiar executables.

Boot segment or boot executable (-btype boot, default)

This is an executable that is intended for initial downloading to the start of SDRAM of an

idle TriMedia processor by the TriMedia downloader. The executable may be subse-

quently activated by bringing TriMedia out of its RESET state. Usually, this sequence is

performed by a monitor program like tmgmon upon a load or run command, respec-

tively. A boot segment is the default type of executable produced by the compiler driver

tmcc, but it can not be used for dynamic loading.

A boot segment is required to contain a main function by which user execution starts;

however, tmcc silently includes initialization code for performing a cold processor start

before entering main: that is, this code unpacks the load image, it sets up stack and heap,

it sets up cachelocked and uncached memory regions (when these are used in the exe-

cutable), it initializes various runtime system libraries (e.g. the I/O library, when I/O is

used), obtains the command line arguments from the host (when present), and it per-

forms a reset of some of the TriMedia peripheral devices. Conversely, when main termi-

nates, or when it performs a call to exit, this code reports the exit status to the host

(when present), and after that it will bring TriMedia back into a RESET state. This initial-

ization/termination code is sometimes referred to as ‘the boot code’.

dynboot Segment or dynboot Executable (-btype dynboot)

This type of code segment has a similar function as the ‘plain’ boot segment, but it has

been set up for dynamic loading. In particular, the dynamic loader itself has been

included into the dynboot segment.

Similar to the boot segment, this segment is loaded during initial program loading by

means of the TriMedia downloader library; it is not itself loaded by the dynamic loader.

Per definition, and contrary to the next two types of code segments, there always is at

most one (dynamic) boot segment present in a running TriMedia system. A dynboot seg-

ment can dynamically load additional code segments, in contrast to an ordinary boot

segment.

Chapter 11: Linking TriMedia Object Modules

86 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Dynamic Library Segment or Dynamic Library (-btype dll)

This type of code segment represents a collection of functions and variables. Contrary to

(dynamic) boot segments, there may be multiple dynamic libraries loaded in a running

system, although the dynamic loader takes care of that no more than one instance of a

particular dynamic library is loaded at the same time: dynamic libraries, with their func-

tions and data, are shared between their users.

Dynamic libraries may be explicitly loaded using the explicit dynamic loader API

described in Notes and Caveats of Dynamic Loading on page 107. However, more often

they will be implicitly loaded by means of directives generated by tmld during static

linking. Unloading is also possible, but only by means of an explicit call to the dynamic

loader API.

Of all four types of code segments, only the dynamic library is able to export functions

and variables to other code segments; these exported functions must be specified using

options to tmcc or tmld while constructing the dynamic library.

Application Segment or Application (-btype app)

This type of code segment represents an independent ‘program’ that can be loaded, exe-

cuted and unloaded by an execution shell running on TriMedia, or by an operating sys-

tem using the explicit dynamic loader API.

Similar to (dynamic) boot segments, applications must define a main function, but the

major difference is that, similar to dynamic libraries, more than one application may be

loaded and active in a TriMedia system at the same time. Unlike dynamic libraries, how-

ever, applications are not shared, and hence even multiple instances of the same applica-

tion may be loaded and active at a particular moment.

Applications will neither contain boot- nor system initialization code (which they do

not need), nor runtime system- and I/O libraries (which they attach to during dynamic

loading). As a result, they are usually much smaller than boot executables: while a sim-

ple ‘hello world’ program compiles into a boot executable ranging from 50 kb to over

100 Kb, depending on the host- and I/O libraries used, it will usually occupy less than

only one Kb when compiled as an application segment. But while running, it of course

requires these libraries to be either present, or to be loaded when it needs them.

Figure 9 Size difference of dynboot vs. application segment

[1] tmcc hello.c
[2] tmsize a.out
 text data data1 bss dec hex
 67584 868 640 2708 71800 0x11878
[3] tmcc hello.c Ðbtype app
[4] tmsize a.out
 text data1 bss __mdesc__ $String$DynLoad$ Ext_ModDynLoad$ dec hex
 384 14 0 100 10 24 532 0x214

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 87

11

This size difference is illustrated in , which shows a simple program compiled as full boot

(default by tmcc) and as an application. The three linker generated sections listed by

tmsize for the application contain data structures required by the dynamic loader.

Simple Examples

Although not all dynamic loading concepts have been explained yet at this stage, it is

useful to pause for a few demo programs. This allows the reader to relate the descriptions

in previous and following sections to concrete examples, and it also gives some initial

impression of the capabilities of the dynamic loader. All of the examples in this section

can be found on the TCS release CD, in $TCS/examples/dynamic_loading.

Dynamic Library

The sources of this example (found in $TCS/examples/dynamic_loadingsimple_dll) provide

a simple demo of implicit code loading via dynamic libraries. The (slightly) simplified

sources are shown in Figure 10.

Figure 10 Demonstration of use of dynamic library

Using the first command shown in the Figure, lib.c is converted into a dynamic library

that exports its single function for use by other code segments, by means of the option

-bexport to tmcc. Any function or variable that has not been exported in this way (that

is, the default case) remains invisible from other code segments.

The dynamic library is subsequently used in compiling and linking of its client,

main.out. Providing dynamic libraries as input during static linking provides the linker

with information for resolving references to their exported symbols. Only the lists of

exported symbols of the dynamic libraries are examined during static linking, and none

of their functions or variables are actually included in the created output. Actual loading

of dynamic libraries, and binding of all references from already loaded code segments to

its functions and variables (and vice versa), takes place at run time. This scheme allows

tmcc Ðbtype dll lib.c Ðo lib.dll Ðbexport _dll_function
tmcc Ðbtype dynboot main.c Ðo main.out Ðbdeferred lib.dll Ðhost tmsim
tmsim main.out

main.c
void dll_function(int x);
void main(){
 Int i;

 for(i=0; i<10; i++)
 dll_function(i);
} lib.c

void dll_function(int x){
 printf(Òdll_function: x= %d\nÓ, x);
}

Chapter 11: Linking TriMedia Object Modules

88 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

the use of updated versions of the dynamic libraries during execution, which is further

described in more detail in Compatibility Across Versions of Dynamic Libraries on page 102.

Also refer to the next example Runtime Library Update.

Due to the illustrated way of library- and program building, no programmer interven-

tion is further required for loading of the libraries; rather, this loading is implicitly per-

formed by the TCS runtime system as soon as it decides that the libraries are needed. The

moment of loading can be slightly influenced by means of options to tmcc; this is

described in Dynamic Library Roles on page 95.

During runtime, libraries are located by their names via a search path. In all monitors

provided by TriMedia (tmsim, tmmon, tmgmon, tmrun and tmmprun), this search

path at least includes the current directory, the TCS library directory and the TAS library

directory, but it can be extended by the user. The search path can also be influenced by

providing a custom I/O driver; this architectural feature is especially useful in embedded

systems, and is described in Dynamic Library Search Path on page 95.

Runtime Library Update

The sources of this example can be found in $TCS/examples/dynamic_loading/upgrade.

Figure 11 Library Upgrading

Dynamic loading allows the construction of applications from relatively independent

code segments that are actually linked together after the application starts executing. As

long as their exported interfaces remain ‘compatible’, the individual code segments can

be replaced by upgrades without rebuilding the application. In other words: after copy-

ing such a ‘compatible’ update over the old library, the application should run as before,

except for the effects of the improvements in the library.

This property greatly facilitates upgrading of already released and used software. Espe-

cially when a system is constructed from libraries released by different, independent

main.c
main(){
/* Start using the library; this results in
 implicit loading of the library */
 for(i=0; i<10; i++)
 printf(Òsquare(%d)= %d\nÓ, i, square(i));

/* Simulate an update of the library (just a
 file copy here), and unload its old version
 * from memory */
 copy_file(Òlib_new.dllÓ, Òlib.dllÓ);

 DynLoad_unload_dll(Òlib.dllÓ);

/* Continue using the library; this again results
 in implicit loading of the library */
 for (i=0; i<10; i++)
 printf(Òsquare(%d)= %d\nÓ, i, square(i));
}

lib.c
int square(int x){
 printf("unimplemented\n");
 return Ð1;
}

lib_new.c
int square(int x){
 return x*x;
}

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 89

11

developers or even different vendors, upgrading a library usually requires rebuilding all

applications that make use of it. This can present problems in the following cases:

1. When the user of the application does not have access to a TCS toolkit,

2. When the user of the application does not have access to the other libraries or sources

from which his application has to be rebuilt,

3. When the user of the application is not aware that there is a library to be updated.

When the application has been set up for dynamic loading, and when it has been prop-

erly partitioned into code segments, these problems become considerably less severe.

Upgrading then becomes an issue of distributing new code segments, and (for users) of

just dropping these updates into the place where there applications expect them.

The example described in this section upgrades one of the dynamic libraries that it uses.

It does so largely as described above: an upgrade (lib_new.dll) is copied over the original

version (lib.dll). The application in the example is run with both versions, without being

rebuilt. Note that although the libraries implementation may change, its name should

remain the same. This is because the application ‘knows’ the library by its name.

Although the above text suggests that the effects of upgraded dynamic libraries are

noticed at application startup, when the components are needed and hence loaded, the

example implements a more intricate way of upgrading (Figure 11): it replaces the old

library during execution, by unloading the old version from SDRAM and reloading the

new one. In more extensive systems, such runtime upgrade would require knowledge

that the library is not currently in use (the unload would otherwise fail), and that the

library has no important global internal state that would get lost by unloading.

Chapter 11: Linking TriMedia Object Modules

90 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Application Shell

The sources of the example below (found in $TCS/examples/dynamic_loading/appshell),

demonstrate a simple shell that uses the dynamic loader API for loading and executing

application segments.

Figure 12 Application Shell with Demo Application

The simplified sources of this example (error handling has been omitted here) are shown

in Figure 12. Loading applications using such a shell may have the following advantages

over running them directly as ‘normal’ executables of type boot (i.e. the default type of

executable produced by the compiler driver tmcc):

■ Applications do not include boot code, nor any of the TriMedia libraries (i.e. runtime

support libraries, ANSI C library and device libraries). Rather, these libraries are either

expected to be resident in the application shell or transparently loaded during runt-

ime. As a result they are much smaller than their fully linked boot equivalents.

Although this does not immediately save memory during runtime (because the nec-

essary libraries have to be loaded into SDRAM anyway), it does save secondary storage

space such as disk space, or flash. This is especially true when more than one com-

piled program has to be stored, because application shell and TriMedia libraries need

to be stored once in the form of dynamic libraries: one application shell plus a num-

ber of application segments usually require much less storage space than the same

number of self-contained executables.

■ The fact that applications do not include any of the TriMedia libraries often allows

them to become host- and board independent: they inherit their host dependencies

(mostly I/O mechanisms) from the application shell and their board dependencies

from libboard.dll, assuming here that all variations of TriMedia environments are

tmcc Ðbtype dynboot appshell.c Ðo appshell.MacOS Ðhost MacOS
tmcc Ðbtype dynboot appshell.c Ðo appshell.win95 Ðhost Win95
tmcc Ðbtype dynboot appshell.c Ðo appshell.tmsim Ðhost tmsim
tmcc Ðbtype app appdemo.c Ðo appdemo.app

tmsim appshell.tmsim appshell.out 1 2 3 4 5 6 7
tmrun appshell.Win95 appshell.out 1 2 3 4 5 6 7

appshell.c
#include <tmlib/DynamicLoader.h>
Int main(Int argc, String *argv){
 DynLoad_Code_Segment_Handle module;

 DynLoad_load_application(argv[1], &module);

 exit((module->start) (argc-1, argv+1));
} appdemo.c

Int main(Int argc, String *argv){
 Int i;
 for (i=0; i<argc; i++)
 printf(Òargv[%d]= Ô%sÕ\nÓ, i, argv[i]);
}

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 91

11

encapsulated in the TriMedia board library. More generally, applications that do not

have any host- or board dependencies other than via dynamic libraries can be exe-

cuted without relinking in any environment that provides a specific application shell

as well as specific implementations of the (dynamic) libraries that the application

uses.

This is illustrated in : the same physical appdemo.app can be run on Win95- as well as

MacOS-hosted TriMedia boards, and on tmsim, by using appshell.Win95, app-

shell.MacOS or appshell.tmsim, respectively.

The TriMedia monitor programs tmmon, tmgmon, tmrun and tmsim facilitate the use

of application segments. These monitors use the application shell precompiled from

$TCS/examples/dynamic_loading/appshell when they detect that an executable object to be

loaded is an application segment. In these cases, the appropriate application shell is

implicitly loaded instead, and instructed to execute the specified application using the

specified command line arguments. The precompiled application shells are stored in the

TCS release directory, in $TCS/lib/<endian>/<host>/appshell.out. As a result of this support,

tmmon, tmgmon, tmrun and tmsim are able to run executables like appdemo.app as if

they were ‘normal’ boot executables. Hence, the tmsim and tmrun commands listed in

can be abbreviated as follows:

Dynamic Loader Shell

This example (found in $TCS/examples/dynamic_loading/dynamic_loader_shell), actually is

a straightforward extension of the application shell to a multitasking, pSOS-based com-

mand shell: the shell consists of one dispatcher task that repeatedly reads command

lines constructed from an application name with a number of arguments. For each such

command, the dispatcher creates a new pSOS task to load and run the application, while

passing the specified arguments, in a way as described in the previous example. Addi-

tionally, because the command shell remains active and unused resources have to be

cleaned up, the executed tasks unload their application segments when they terminate.

Note that creating a new task for each command implies that the commands run in the

background, freeing the dispatcher for accepting new commands. This allows starting

different independent jobs in parallel, for instance a DVD player plus an independent

interrupt latency sampler that monitors the player.

This example presents an interesting example of how a typical (pSOS based) dynamic

loading application is transparently structured in different code segments.

Note the following facts and refer to Figure 13, following.

tmsim appshell.out 1 2 3 4 5 6 7
tmrun appshell.out 1 2 3 4 5 6 7

Chapter 11: Linking TriMedia Object Modules

92 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

1. The dynamic loader shell is compiled as an application segment. This implies that it

does not include boot code, nor any of the TCS runtime system/ANSI/device libraries,

nor pSOS. In fact, the entire application size as reported by tmsize is not even 7 kb:

2. When invoked using e.g. tmgmon, this monitor automatically detects that

dynamic_loader_shell.out is of type app and lacks boot code, and hence needs an appli-

cation shell as described in the previous example for running it. This shell is loaded

instead by tmgmon, and instructed to load and start the dynamic loader shell.

3. For obvious reasons, the dynamic loader must always be part of a code segment of

type dynboot (there would be no way other than dynamic loading of getting this

loader into SDRAM, presenting a chicken and egg problem). The same holds for all

runtime libraries, I/O libraries and ANSI libraries that are needed by the dynamic

loader. In this example, this means that a number of low level system- (‘dynamic’)

libraries have been statically linked in the application shell, and as soon as it is

loaded, the dynamic loader shell binds to e.g. the symbols printf, malloc, free etc., and

to the dynamic loader API in the preloaded library libam.dll.

4. Before starting the now loaded dynamic loader shell, the runtime system detects that

this shell needs pSOS, which has not been loaded yet. The necessary pSOS dll is

located via tmgmon’s default search path, and loaded.

Figure 13 Partitioning of the Dynamic Loader Shell into Code Segments

After that, the dynamic loader shell binds to e.g. the symbols t_create and t_start in the

loaded pSOS library.

5. The dynamic loader shell is now started. It initializes and starts pSOS, resulting in

activation of the dispatcher task.

tmsize dynamic_loader_shell.out
text data data1 bss __mdesc__ $String$ Ext_Mod dec hex
5440 8 255 840 100 25 48 6716 0x1A3C

psos.dll
t_create,
t_start

dll

boot code

libam.dll
dll

host_comm.dll
dll

Hostcall_host_send
(for sending I/O to
current host)

malloc,
free,
printf

printf
whatever
pSOS usage

appshell.out
dynboot

dynamic_loader_shell.out
app

libm.dll
dll

print_sine_table.out
appcode segment

statically linked dll

f use of “f” from other code
segment sin

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 93

11

6. Suppose the user issues the (hypothetical) command ‘print_sine_table.app 0 360’,

needing both I/O, the math library, and pSOS (for whatever reason). This command

causes loading of application print_sine_table.app. Again, the runtime system detects

that this application requires libam.dll, libm.dll and psos.dll. The first of these libraries

was already statically included in the application shell, so the reference to e.g. printf

in the print_sine_table application can immediately be bound to libam.dll. Similarly,

the calls to pSOS can be bound, because the pSOS library was already loaded for use

by the dynamic loader shell itself. libm.dll, however, is not yet loaded, so it must be

located and subsequently loaded before the sine table printer is able to bind his refer-

ences to e.g. function sin.

7. The sine table is printed, and print_sine_table.app unloaded by the dynamic loader

shell, using an explicit call to DynLoad_unload_application (exported by libam.dll,

static part of the application shell). The math library libm.dll, however, used only dur-

ing construction of the sine table, is left in memory; it remains unused, and occupies

memory until a next application requires math functions, or until it is removed by an

explicit call to either DynLoad_unload_dll, or to DynLoad_unload_all (a call to the last

function actually unloads all unused code segments).

Responsibilities of the Dynamic Loader

The sole purpose of the dynamic loader is loading, unloading and managing code seg-

ments, and, as described below, to keep track of which code segments are still in use and

hence should not (yet) be unloaded. In other words, the purpose of the dynamic loader

is getting code into and out of a running system, in a reasonably safe way to the user.

Code loading and unloading is completely orthogonal to the concept of multitasking or

multiprocessing. For instance, in a multitasking based operating system like pSOS, there

is no relation whatsoever between code segments and running tasks: more than one task

may be executing code from one and the same code segment, and conversely, one partic-

ular task might need multiple code segments for completing its job. Apart from the fact

that operation of the dynamic loader is thread-safe in operating systems supported by

Chapter 11: Linking TriMedia Object Modules

94 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

TriMedia, both dynamic loading and multitasking are independent mechanisms in a sys-

tem engineer’s toolbox.

Figure 14 Independent applications using a shared dynamic library, and allocating
resources

The dynamic loader is also not responsible for managing and keeping apart system

resources like address spaces, memory and file descriptors that are allocated by applica-

tions.This is considered a shared responsibility of both the ‘current’ operating system,

and of the user who should be aware of which operating system that (s)he is using. For

example, application segments started under pSOS should release all allocated memory,

and all allocated pSOS objects (like semaphores, queues etc.) before they terminate. This

is because these resources are considered by pSOS as independent objects that are not

‘owned’ by any particular task; hence they are not automatically released.

On the other hand, in a multiprocessing operating system where applications are run

encapsulated in separate processes that ‘own’ many of the resources that they create,

applications may be more careless in deallocating, because they can rely on the operat-

ing system for automatic cleanup after they terminate. Resources such as memory that

are allocated, but not explicitly released, by the applications (see Figure 14) are automat-

ically reclaimed, or left as garbage, depending on the operating system that is in use.

A similar difference holds for the internal global data state of dynamic libraries. It is not

the responsibility of the dynamic loader to avoid the interference between different

applications that might occur when they both make use of a shared dynamic library that

maintains an internal state: address space separation between applications is the concern

of the operating system. Figure 14 shows also an example of that: depending on the

operating system use; both applications may print the value of 0 (if the OS provides

address space protection between applications), or 0 and 1 if (as is the case for e.g. pSOS),

all applications run in one shared address space).

app2

extern int global;
main(){
 char *x= malloc(5);
 printf(Ònext global= %d\nÓ, global++);
}

extern int global;
main() {
 char *x= malloc(5);
 printf(Ònext global= %d\nÓ, global++);
}

app1

x.dll
int global= 0;

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 95

11

More on Dynamic Libraries

Of the four different types of code segments, only the application segment and the

dynamic library can actually be loaded and unloaded during a running TriMedia pro-

gram. Both of the others (the two boot code segment types) are used for initial code load-

ing to an idle processor and will never be touched by the dynamic loader.

The application segment is comparatively simple to use: it can not be referenced from

within other code segments, and loading and unloading can only be achieved by means

of explicit calls to the functions DynLoad_load_application and

Dynload_unload_application.

In contrast, dynamic libraries are more complex objects to the user: they can export

symbols that can be referenced by other code segments (of any of the four types), and

they can be loaded into SDRAM in a number of different ways. These two characteristics

introduce a vast number of issues related to external interfaces of dynamic libraries,

which are discussed in the next sections.

Dynamic Library Roles

A dynamic library, once constructed, can be both used during static linking by tmld and

during execution by the dynamic loader. It has different roles in these two stages:

■ During static linking of other code segments, it is used for symbol resolution, as a

specification of its interface. This is illustrated by e.g. the second command in

Figure 10 on page 87: lib.dll is used as input in linking, but unlike ‘normal’ object files

on the tmcc/tmld command line, it is only used for resolving symbols; no references

to it are bound yet, and none of its functions and variables are copied in the resulting

main.out.

■ During execution, it is used for loading code. This is the (implicit) role of lib.dll in the

third command in the Figure: static linking has recorded in the executable main.out

that dll_function was exported by a dynamic library called ‘lib.dll’. During runtime,

this dynamic library is located and loaded.

Separating symbol resolution and symbol binding allows the actually loaded dynamic

library to differ from the one that was used for symbol resolution during static linking,

as long as the external interface is ‘compatible’. This facilitates transparent updating of

dynamic libraries, and using dynamic libraries for abstraction, by providing different

implementations of the same interface. See Compatibility Across Versions of Dynamic

Libraries on page 102.

Dynamic Library Search Path

During runtime, libraries are located by their names via a search path. In all monitors

provided by TriMedia (tmsim, tmmon, tmgmon, tmrun and tmmprun), this search

path at least includes the current directory, the TCS library directory and the TAS library

directory, but it can be extended by the user. The search path can also be influenced by

Chapter 11: Linking TriMedia Object Modules

96 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

providing a custom I/O driver; this architectural feature is especially useful in embedded

systems, and is described in TriMedia Dynamic Loader Architecture on page 106, and illus-

trated in the example Dynamic Loading from Flash on page 110.

The following lists for the various monitors how the dynamic library search path can be

extended by the user:

Exported Symbols

Of the four code segment types, only dynamic libraries are able to export symbols to

other code segments. This directly implies that cross-references between code segments

are always to variables and functions defined in (and exported from) dynamic libraries.

Figure 15 Exporting Symbols from Dynamic Library

The external interface of a dynamic library, that is, the complete list of symbols that can

be referenced, or used, by other code segments, must be specified during creation of the

dynamic library by means of option -bexport to tmcc or tmld. Only symbols that are

exported in this way are visible by other code segments. For instance, function f in the

dynamic library that is constructed in can not be referenced directly from other code

segments because it has not been exported with a -bexport option to tmcc. Multiple

-bexport options are allowed, and each -bexport can have multiple names associated.

Note that the TriMedia compiler prepends an underscore to the C names of external

functions and variables. Because dynamic library construction is a linker action based on

output of the compiler, the external symbols should be specified as the linker knows

them. I.e. an explicit underscore should be added, as shown in the Figure.

In order to facilitate quick lookup of the addresses of a referenced symbols during

dynamic loading, the static linker tmld constructs an address translation table based on

the order of occurrence of the exported symbols in the linker command for constructing

the library. That is, symbols that precede others in the export list of the linker command,

tmsim option-dllpath

tmmon, tmgmon, tmrun and
tmmprun on Win95

option DLLPath in configuration file tmman.ini

tmmon, tmgmon, tmrun and
tmmprun on WinNT

option DLLPath in configuration file tmman.ini

tmmon on MacOS not possible

void f() { .. }
void g() { .. }
void h() { .. }

lib.c

tmcc Ðbtype dll lib.c Ðo lib.dll Ðbexport _g,_h

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 97

11

will also precede these symbols in the translation table. More specifically: the occurrence

of a particular symbol in the export list defines its index in the constructed translation

table. This address translation table is also referred to as the library’s ‘jump table’, and is

stored as part of the code segment header that is stored in the library’s module descrip-

tion section __mdesc__.

Figure 16 References to dynamic libraries via ‘jump tables’

References to exported symbols from within other code segments will be encoded by

tmld using this index, using an external reference descriptor JTab_Reference. This is illus-

trated in Figure 16. Such a descriptor encodes the address of the referred symbol by

means of its index, plus an ‘external module descriptor’ that describes the library that

exports this symbol. This way of encoding allows the exporting library to be identified,

located and loaded as soon as the symbol’s value is needed. Also, as soon as the library

becomes loaded (for whatever reason), the external module descriptor will receive a ref-

erence to the library’s module header. Because the address translation table is part of this

module header, the actual symbol address can be obtained by means of a number of

indirections, and using the symbol index.

The following performance related remarks can be made here:

■ The module header, including the address translation table, remains in SDRAM, and

occupies space, as long as the dynamic library itself remains loaded. The size of the

header usually is a few hundreds of bytes, and can be obtained by inspecting the size

of the module section __mdesc__ in the dynamic library via tmdump, or tmsize.

■ Address lookup via the address translation table is performed each time the corre-

sponding symbol is used by the client of the dynamic library, or only once, when the

library is loaded, depending on the binding mode (deferred or immediate). See Control

Over Implicit Dynamic Loading on page 98).

■ If the dynamic library was linked in immediate mode, address translation is per-

formed when the library is loaded, and no additional cost is involved in accessing the

main.dynboot

”main.boot” ”lib.dll”

lib.dllmdesc mdesc

text
main(){
 h();
}

text
f(){ááá};
g(){ááá};
h(){ááá};

jump table

#0
#1

jtab reference

scatter

#1

”lib.dll”

ext. module

Chapter 11: Linking TriMedia Object Modules

98 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

library’s functions and variables. For instance, the overhead in calling the library’s

functions is no different from the statically linked case.

■ References to the library’s variables are always resolved at library load time, so no

additional cost is involved in using variables exported by a dynamic library.

■ If the dynamic library was linked in deferred mode, calls to its functions are routed

via a linker- generated function stub (see next section “Function Stubs”). Each time

when the library function is called, this function stub checks whether the library is

(still) in memory, and it invokes the dynamic loader if this is not the case. In either

way, it binds the library in preparation of the function call to prevent unloading of

the library during the function call (see section “Binding Code Segments” on page -

1), it does an lookup of the function’s address in the address translation table, calls

the function, and afterwards unbinds the library. The overhead of a function call via a

function stub is about 120 cycles on TriMedia, provided that the function is currently

loaded.

Function stubs are shared between all calls to the same external function in the same

code segment; their accumulated sizes can be obtained by inspecting the size of the

function stub section __fstubs__ via tmdump, or tmsize.

■ Similarly, reference descriptors and external module descriptors must remain in

memory as long as the referring code segment remains loaded, or can be discarded

after loading of the code segment, freeing the memory for other purposes. This

depends on whether they are still needed after loading, e.g. by function stubs as

described above. As a general exception: for technical reasons, reference descriptors

in dynboot segments are always preserved. The total size of reference data that kept

in memory as long as the code segment itself remains loaded, can be obtained by

inspecting the sizes of the dynamic loader data sections xxxDynLoad$ via tmdump,

or tmsize.

Control Over Implicit Dynamic Loading

Although dynamic libraries can be loaded using the dynamic loader API, they usually are

loaded automatically, and implicitly, as soon as they are ‘needed’. There are three differ-

ent modes of automatic dynamic library loading, to be specified via an option to tmcc/

tmld when the dynamic library is used for symbol resolution:

■ immediate mode (default):

tmcc Ðo main.out Ðbtype app main.c Ðbimmediate lib.dll

tmcc Ðo main.out Ðbtype app main.c lib.dll #same as above

tmcc Ðo main.out Ðbtype dynboot main.c Ðbimmediate lib.dll

tmcc Ðo using_lib.dll Ðbtype dll using_lib.c Ðbimmediate lib.dll

Dynamic libraries that are used in this mode by a particular code segment (here:

main.out, or using_lib.dll) will be automatically loaded as soon as the code segment

itself is loaded. Also, the dynamic loader will refuse to unload the library as long as

the code segment itself cannot be unloaded as well (see also “Binding Code Seg-

ments” on page -1). The following examples and notes will give further clarification:

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 99

11

— Upon an explicit load using the dynamic loader API of the application segment
main.out produced by the first (or second) command listed above, the dynamic
loader will not only load main.out itself, but also library lib.dll.

Upon downloading the (dynamic) boot executable main.out that has been pro-

duced by the third command listed above, also lib.dll will be located and down-

loaded.

NOTE: this is how the user should consider this. Actually, it is not the downloader

that loads lib.dll, but the executable itself after it has been started, while executing

its boot code.

— As long as main.out (application or dynboot) is executing, the dynamic loader will
refuse to unload lib.dll.

— Note that loading a code segment can give rise to loading of a cluster of other code
segments. In case of the commands listed above, this can occur when lib.dll makes
immediate use of other dynamic libraries (which might... etc.). Upon loading of
any type of code segment, either explicitly using the dynamic loader API or
implicitly, the dynamic loader will also load its transitive closure via all immediate
uses. Cycles in this graph of immediate references are allowed and properly han-
dled.

— Immediate libraries are only loaded with their clients when this client has at least
one reference to it. In other words: occurrence of an immediate library on the
static linking command line does not imply that is will be automatically loaded: it
should also be used.

Note the caveat with respect to errors occurring during loading of immediate clusters, in

Notes and Caveats of Dynamic Loading on page 107.

■ deferred mode:

tmcc Ðo main.out Ðbtype app main.c Ðbdeferred lib.dll

tmcc Ðo main.out Ðbtype dynboot main.c Ðbdeferred lib.dll

tmcc Ðo using_lib.dll Ðbtype dll using_lib.c Ðbdeferred lib.dll

Dynamic libraries that are used in this mode by a particular code segment (here:

main.out, or using_lib.dll) will be automatically loaded as soon as one of their func-

tions is called. This means that they will not occupy memory as long as they are not

used by loaded clients. Dynamic libraries used in this mode can also be unloaded

while their clients remain loaded, at least when they are not currently in use (more

exactly: as long as they are not bound; see Binding Code Segments on page 103).

This loose coupling to their clients has some price, partly because deferred libraries

can become loaded anytime they are used, and partly because dynamic libraries can

be accessed in other ways than calling their functions:

■ The possible delay introduced by loading a library upon calling its functions might be

undesirable in real time systems (since they could affect real time response). This situ-

ation can be avoided by loading such a deferred library at a more convenient stage in

the application, and subsequently binding it using the dynamic loader API.

Chapter 11: Linking TriMedia Object Modules

100 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

■ Invoking the dynamic loader from an interrupt handler is disallowed, so the program

must guarantee that interrupt handler code will never call one of a deferred library’s

functions with the library not currently loaded. This situation can be avoided by

loading such a deferred library at a more convenient stage in the application, in non-

interrupt handler code, and subsequently binding it using the dynamic loader API.

■ Calling a function from a deferred library is always redirected via a linker- generated

function stub (see next section), even when the library is already loaded. This func-

tion stub introduces additional calling overhead. Function stubs, with their over-

head, are not used for immediate libraries, because these libraries are always

guaranteed to remain loaded as long as their clients are loaded.

■ Explicit accesses to variables exported by deferred libraries might be unsafe, because

contrary to calling a function, there is no automatic mechanism for trapping such

accesses. It is the responsibility of the user to guarantee that the library is loaded

before the access is made. Also, and more implicit, pointers to the library’s static vari-

ables and functions that have been exported by means of an earlier call to one of its

functions will become invalid when the library is unloaded. They remain invalid,

even after a reload of the library, because the library will very probably be loaded at a

different place in memory. Again, unloading can be avoided by binding the library as

long as there is internal state exported.

■ Unloading a library will destroy all internal state that has been built up during its use

since last load. For instance, a device library that keeps track of the different allo-

cated, or ‘opened’ instances of a particular device class, should make sure that it is

never unloaded as long as there are instances allocated, or else the knowledge about

the allocation status would become lost. This can be prevented by the library itself,

by binding itself as long as there are one or more instances opened.

■ embedded mode:

tmcc Ðo main.out Ðbtype dynboot main.c Ðbembed lib.dll

Contrary to the previous modes, only dynboot segments can use dynamic libraries in

embedded mode. This mode lets the library be statically included in the dynboot seg-

ment, but in such a way that it is still distinguishable as a separate library by code seg-

ments that are loaded at run time. This is illustrated by the following example:

tmcc Ðo shell.out Ðbtype dynboot shell.c Ðbembed libc.dll

tmcc Ðo main.app Ðbtype app main.c Ðbdeferred lib.dll

In this example, two executables are linked: a command shell (shell.out), which stati-

cally includes the ANSI library, and an application (main.app) which can be loaded by

the shell. The application doesn’t know anything about the shell, but it dynamically

refers to the ANSI library that happened to be included in the shell. When loaded by

the shell, the application correctly detects this embedded library, and resolves its ref-

erences to it.

Apart from the fact that the shell now actually contains the library, and will not

profit from newer versions, or from the possible disk space reduction, there is no dif-

ference between loading in embedded or immediate mode.

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 101

11

The main reason of existence of this loading mode is for static preloading of the sys-

tem libraries used for dynamic loading itself.

The loading mode is a property of the usage of a dynamic library, and not of the

dynamic library itself. This means that one and the same library can simultaneously

be referred to by different client code segments using different loading modes. This is

already illustrated in the shell example above.

Function Stubs

Loading against a dynamic library in deferred mode explicitly allows for the absence of

the library while the client itself is or remains loaded.

Figure 17 Function Stubs

For instance, in case of the example code listed in on page -1, the dynamic library lib.dll

need not be loaded before the first call to its function dll_fn by the main executable.

Also, the library may be unloaded after literally each of the calls to dll_fn; such transpar-

ent unloading can for instance be performed by an intervening separate task that is

responsible for memory cleanup.

By the semantics of deferred loading described in the previous section, the dynamic

loader automatically loads deferred libraries like lib.dll, as soon as one of their functions

is called (provided that they were not already loaded before). The way in which this is

achieved is as follows:

For referenced function f exported by a dynamic library linked in deferred mode, tmld

generates a function stub, f ′ corresponding to f. Each use of f (usually a call) then is

silently replaced by tmld to a use of the function stub f ′. The function f ′ is henceforth

shared among all such uses.

function stub

main.app

”main.boot” ”lib.dll”

lib.dllmdesc mdesc

main(){
 ááá
 dll_fn′();
}

dll_fn(){ááá};

jump table

#0

”lib.dll”

ext. module

dll_fn′(){
 return
 dynload(, #0);
}

text

text

Chapter 11: Linking TriMedia Object Modules

102 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

The purpose of this function stub is to trap each call to the corresponding external func-

tion f, for two reasons:

1. For checking whether the dynamic library is currently present in memory, and invok-

ing the dynamic loader to load it if this is not the case.

2. For binding the dynamic library for the duration of the call to the actual function f,

in order to prevent an unload of the dynamic library during the function call. The

purpose of code segment binding is described in Binding Code Segments on page

103.

The structure of the stub function is shown in ; it is a wrapper function that calls one of

the dynamic loader’s runtime support functions with the proper arguments, which are a

descriptor of the referred dynamic library, plus the index of the required function, f.

For visibility purposes, function stubs are placed in a separate instruction section by the

name __fstubs__.

Function stubs are not generated for calls to dynamic libraries linked in immediate mode,

because the dynamic loader will guarantee that such libraries are always loaded, and

remain loaded, until their clients can be unloaded. Similar for dynamic libraries linked

in embedded mode (these are statically linked, and can never be unloaded).

Specifically note that references to variables exported by libraries linked in deferred

mode are allowed. However, unlike automatic support for library loading upon calling its

functions, there is no automatic support for loading such libraries upon accessing its

variables. It is the responsibility of the user to guarantee that libraries are loaded before

any of their external variables are accessed. The linker tmld will warn against such vari-

able access.

Compatibility Across Versions of Dynamic Libraries

The TriMedia toolset allows for restricted updating of dynamic libraries between static

linking by tmld and use during runtime by the dynamic loader. There are two general

reasons of why one should want to use a different version of the dynamic library during

execution:

■ It allows for library updates between linking and execution, without the need for

relinking the client(s) of the library. By this, it is possible to let already released, and

possibly unknown applications profit from bug fixes and enhancements of libraries

that they use, by simply distributing a new dll.

■ It allows for different implementations of the same interface, thereby encapsulating

hardware- and other dependencies. Because the clients of such libraries only depend

on the interface of the dynamic library, they will run unmodified in any environ-

ment that provides a proper implementation. One of the previous examples, Applica-

tion Shell, demonstrates how I/O capabilities of the host are encapsulated by the (host

specific) ANSI C library.

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 103

11

Although updating libraries is attractive from a user point of view, it presents potential

problems for the TriMedia dynamic linking strategy, in which references to symbols in

dynamic libraries from within other code segments are represented using the symbol’s

index in the library’s address translation table (see “Exported Symbols” on page -1): it

must be guaranteed that used symbol indices remain the same after a library update.

For this reason, the TriMedia toolset poses a restriction on updating of a dynamic library.

Violation of this restriction will result in a checksum error during dynamic loading of

the library at execution time, resulting in a load failure. More precisely:

The dynamic loader will refuse to load a code segment when this would in any way lead to

the simultaneous presence in memory of a dynamic library, plus a client of this library that

considers the mentioned dynamic library ‘incompatible’ with the corresponding dynamic

library that was used for symbol resolution during static linking.

In other words, dynamic libraries can only be updated with ‘compatible’ ones. ‘Compat-

ible’ is defined as follows:

A dynamic library dll_a is compatible with a dynamic library dll_b if it has the same name,

and if the export list provided with the creation of dll_a starts with the export list provided

with the creation of dll_b (in the same order).

According to this definition, dynamic libraries may only be updated without losing

‘compatibility’ by changing the implementation of existing symbols, or by adding new

definitions whose symbols must be added to the end of the export list.

The following are examples of incompatibility problems:

■ (direct case of incompatible load) A code segment loads an incompatible dll.

■ (indirect case of incompatible load) A code segment loads a dll, but it turns out that

another loaded code segment also is a client of this dll. Although the other client cur-

rently does not need the dll (otherwise the dll would already have been loaded), it

considers the loaded dll incompatible.

■ (another indirect case of incompatible load) A code segment is loaded, and detects

that an incompatible version of a dll that it references is already in memory.

Binding Code Segments

The TriMedia dynamic loader does everything that is reasonably possible to prevent ‘still

used’ code segments from being unloaded. This protection avoids most of the untrace-

able errors caused by dangling references from within other code segments to libraries

that accidentally became unloaded from memory. However, in the C language, almost

any scheme can be defeated, and therefore full protection requires explicit cooperation

by the user. This section defines the required user cooperation.

The dynamic loader maintains four parallel criteria for deciding whether a particular

code segment is still in use, three automatically maintained by the dynamic loader itself,

and one by the user; any attempt to unload a code segment that is still ‘in use’ according

Chapter 11: Linking TriMedia Object Modules

104 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

to any of these criteria will result in a refusal to unload. The (recursive) definitions of the

criteria are as follows:

1. The dynboot segment, as well as any embedded library is always considered ‘used’.

2. The TriMedia runtime system (conceptually) maintains a reference count for each

pair of (task, code segment). This reference count is incremented in the following cases:

— when the task starts executing code from the code segment.

— (when the code segment is a dynamic library): during a call to one of its exported
functions.

The reference count is cleared as soon as the task terminates. As long as any of

these reference counts is non-zero, the corresponding code segment is considered

‘used’.

3. A dynamic library is considered ‘used’ as long as there is another code segment that

has an immediate reference to it, and is still ‘used’ itself.

4. Each code segment has a global (task independent) reference count that is available

to the user, and which can be explicitly updated using the bind and unbind functions

exported by the dynamic loader API. A code segment with a non-zero reference count

is considered ‘used’.

If a code segment is not considered ‘used’ by any of the above criteria, it is considered

‘not used’, and hence can be unloaded.

To maintain the semantics of immediate, the dynamic loader also must unload any

immediate user of a library when the library is used (which is the reason for the third cri-

terion). For this reason, when a particular code segment is unloaded, also its transitive

closure via the reverse immediate usage relation is unloaded. Note that the dynamic

loader API provides three functions for unloading: unloading an application, unloading

a dynamic library (together with all direct or indirect immediate users), and a function

for unloading any currently unused code segment.

Figure 18 ‘Used’ Code Segments

The effect of all this is illustrated in . This figure shows an application segment that

makes immediate use of a dynamic library lib.dll. Upon call of the function exported

void dll_function(int x);
void main(){
 int i;
 dll_function(i);
}

main.c

tmcc -btype dll lib.c -o lib.dll -bexport _dll_function
tmcc -btype app main.c -o main.out -bimmediate lib.dll

#include Òpsos.hÓ
static void task_body() {...}

void dll_function(int x){
 for(i=0; i<10; i++){
 start_psos_task(task_body);
 };
}

lib.c

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 105

11

from this library, a number of tasks are created that start executing from the library’s

code (from static function task_body). Even after completion of dll_function, it will not be

possible to unload the library or the application until all of the created tasks have either

completed or deleted. Note that the fact that the application will not use lib.dll after its

(only) call to this library is unknown to the dynamic loader.

The dynamic loader API provides two types of functions for code segment binding/

unbinding: one for binding a dynamic library by its name (implicitly loading it when it

has not been loaded before), and one for binding a code segment by an address of one of

its functions.

■ The last function takes an arbitrary function pointer (which may be of an exported,

external of static function), and (un)binds the code segment that contains this func-

tion.

■ Although binding a dynamic library will load the library when it is not yet in mem-

ory, unbinding it will never unload it. This should be performed using the unload_dll

function.

■ Binding of an application is implicitly performed using function load_application.

■ Unbinding of an application is implicitly performed using function

unload_application, but only when the application segment can actually be unloaded.

In other words, application unloading will not have any effect when the application

segment’s reference count is not equal to 1; it will just return unload failure instead.

These asymmetrical semantics are the result of having segment unloading entirely under

user control.

In general, code segments should be bound as long as they have any internal state built

up that could become needed by other code segments, or as long as they have any inter-

nal state exported that would become dangling if the code segment were unloaded.

These are quite general statements, but the following might give some clarification:

■ An example of exported state is an installed interrupt handler function. As long as

such a function is installed in TriMedia’s vectored interrupt controller, the code seg-

ment containing this function should remain bound. This is just an example, because

the TriMedia device libraries tmInterrupts and tmExceptions will automatically bind the

code segments of installed interrupt and exception handlers, and unbind these code

segments upon de-installation.

■ Any device library that keeps track of the different allocated or ‘opened’ instances of a

particular device class should bind itself as long as there are one or more instances

opened.

■ Any library that accumulates statistics in whatever form should be bound.

■ Any library that returns an internal pointer (to global data, or a function pointer) to

another code segment by which it is used in deferred mode should be bound until the

pointer is discarded.

Chapter 11: Linking TriMedia Object Modules

106 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

TriMedia Dynamic Loader Architecture

Figure 19 Dynamic Loader Architecture

The architecture of the TriMedia dynamic loader is illustrated in . As indicated by this

figure, the dynamic loader is an independent component that is very loosely coupled to

its environment:

■ It does not make any assumption about the current operating system. Rather, it

derives its reentrancy properties from AppModel, the TCS operating system abstrac-

tion component.

■ It does not make any assumption on the location of the code segments to be loaded,

or about the physical medium on which these are stored. Rather, it makes use of the

POSIX I/O functions open, close, read, write, and one TCS specific function open_dll, all

of which can be mapped to any medium by installing a proper I/O Driver. An example

of specifying a custom IO Driver is described in Dynamic Loading from Flash on page

110.

■ It does not make any assumption about the memory manager that it uses. Rather, it

provides a function to install two different memory managers:

1. a temporary memory manager, for allocating and freeing memory that is only needed

during code segment loading,

2. a permanent memory manager, for allocating and freeing memory for the code seg-

ment itself.

By default, both memory managers make use of the current TCS memory manager.

An example of specifying a custom memory manager can be found in Memory Man-

ager Customization on page 111.

■ It does not make any assumption on the way in which errors are to be handled.

Rather, explicit loader calls to the dynamic loader API return appropriate error codes,

and errors during implicit loading in function stubs (while calling a function

_rts_trace_dynldr DynLoad_swap_stub_error_handler

Dynamic LoaderApp model I/O Drivers

malloc,
free

malloc,
free

DynLoad_swap_mm

pSOS

...

no OS

Host files

...

flash

possibly
makes use of

makes
use of controls

TriMedia software
component

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 107

11

exported by a deferred library) are handled by a user-installable error handler. By

default, this error handler prints a diagnostic and calls exit, but user handlers are

allowed to e.g. clean up memory and retry, or raise an exception (e.g. perform a

longjmp) in order to let the error be handled at a higher level in the application. An

example of recovering from an error during implicit loading from a function stub can

be found in Implicit Loading Error Handling on page 112.

Finally, it exports a flag by which tracing can be enabled: as long as the external variable

_rts_trace_dynldr has a nonzero value, the dynamic loader will print a diagnostic for each

attempt to load (including result status), and for each unload. This is useful for tracing

the loading of immediate clusters.

Notes and Caveats of Dynamic Loading

Note the following when using dynamic libraries:

Carefully Consider Transitive Errors

Because of immediate usage, explicitly or implicitly loading a specific code segment

might result in the loading an entire cluster of others. Any errors during loading of such

an ‘other’ code segment will result in an abort of the current load ‘transaction’: all mem-

bers of the cluster that have been loaded during this transaction will be unloaded again,

and the failure code will be returned as top level error code.

For instance, for the example shown in Figure 18 on page 104, a call to

DynLoad_load_application for loading main.out will result in a File Not Found error, not

only if main.out cannot be found, but also when lib.dll cannot be found.

This can be quite confusing, but the real cause of the error can be immediately detected

by enabling dynamic loader tracing (by setting _rts_trace_dynldr to 1).

Real Time Issue

Although using libraries in deferred mode is the most flexible use, it may cause undesir-

able hiccups due to invocation of the dynamic loader during real time execution. This

can be avoided by using libraries in immediate mode, or by preloading and binding dur-

ing a non-real time part of the execution.

Carefully Consider Exporting Internal State

Be very careful with passing pointers to a code segment’s global variables or functions to

other code segments. These can become dangling when the library is unloaded. Use

binding of the code segment, or use the dynamic library in immediate mode.

Chapter 11: Linking TriMedia Object Modules

108 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Function Stub is Part of Referring Segment

Figure 20 Effect of Stub Functions

In , depending on the way lib.dll is used (immediate, deferred, or embedded), the func-

tion address returned by function ff is either the address of the function dll_function in

lib.dll, or of the corresponding function stub in the code segment where the address of

dll_function is taken, i.e. the corresponding function stub local to main.out.

This could lead to two unexpected effects to users who are not aware of function stubs:

1. When the returned function address is tested for equality with dll_function by a third

code segment, different stubs of dll_function could be compared with each other,

thereby producing an unexpected comparison result.

2. When binding dll_function’s code segment by means of DynLoad_bind_code_segment,

the ‘owner’ of the stub function could be bound instead of lib.dll. This might lead to

unexpected unloading of lib.dll.

Executables are Generally Larger

Enabling dynamic loading generally requires more memory than running an equivalent

statically linked executable. This is for two reasons:

1. The dynamic loader administration takes up to a few hundreds of bytes per code seg-

ments. This dynamic loader administration is stored in the object file in the sections

__mdesc__ and xxDynLd$, and can be shown using tmsize. For instance, on page -

1 shows an administration size of 134 bytes for an application segment. This size gen-

erally grows with 8 bytes per exported symbol (dynamic libraries only).

2. Various linker code size optimizations have less effect. For instance, identical code

folding is performed for each code segment individually, so that identical code

instances in different code segments may still be left. Also, unused code stripping

may have less effect. This is because it is no longer possible to determine whether a

particular function exported by a dynamic library is ever used. For this reason,

dynamic libraries will generally contain more functions than actually required during

any execution. The following examples will clarify this:

— libam.dll (the resident part of the ANSI library) contains e.g. a function tmpnam.
Although this function is rarely used, it cannot be stripped as unused code,

tmcc -btype dll lib.c -o lib.dll -bexport _dll_function
tmcc -btype app main.c -o main.out -bxx lib.dll

main.c
void dll_function(int x);
Func ff(){
 return dll_function;
}

lib.c
void dll_function(int x){
 ...;
}

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 109

11

because it cannot be known whether a loaded code segment actually needs this
function.

— libm.dll (the math library) consists of 25 functions. An application that uses only,
say, the sin function will cause all 24 other functions to be loaded because it can-
not be known whether a code segment is later loaded that needs cos, or exp, or
sqrt, or any of the others.

— The pSOS dynamic library contains all pSOS kernel functions. In case of a stati-
cally linked, pSOS based application, tmld option -bremoveunusedcode will cause
all unused pSOS functions to be removed (often all functions except t_start,
t_create, q_create, q_send and q_receive); this automatically results in a tailored, min-
imal pSOS. However, the pSOS dynamic library must contain all kernel functions,
because it cannot be known whether they might be needed by a later loaded code
segment.

TriMedia provides a reasonable partitioning into dynamic libraries of all the libraries that

it releases. Although the memory needed by dynamic loader administration is marginal,

particular users might want to save the space occupied by functions that they know will

never, or rarely, be used. This can be achieved by creating custom versions of the TriMe-

dia dynamic libraries from their ‘normal’ object files. Dynamic libraries can either be

partitioned (so that e.g. the use of cos will not lead to loading of sqrt, by having these

functions in different partitions), or just made smaller (so that e.g. sqrt is not included at

all, because it is not needed in a particular application).

Code Segments and PIC

In multiprocessing operating systems supporting virtual address spaces, the concept of

dynamic loading is sometimes connected to the concept of position independent code

(PIC). A shared library that is loaded only once in physical memory might need to be

mapped into the address spaces of different processes, possibly at different (virtual) posi-

tions.

Because the 32-bit TriMedia architecture does not include a memory management unit

(mmu), TriMedia-based systems run in one common physical address space. PIC is there-

fore not needed for code segments. When loaded, they are visible by (and can be shared

between) all running applications.

Compiler Options for Dynamic Loading

The following dynamic loader related options exist; they are recognized by both tmcc

and tmld (in fact, tmcc passes them unmodified to tmld):

tmcc -btype [boot | dynboot | app | dll] *.c

Specify type of code segment to be created. Default code segment type is boot, which is

the usual type of executable that does not allow dynamic loading.

tmcc -btype dll -bexport sym1, sym2, ... *.c

Chapter 11: Linking TriMedia Object Modules

110 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Specify symbols exported by the dynamic library that is constructed by the current

command. Multiple bexport options are allowed. Note that the order of the list of

exported symbols is important (see Compatibility Across Versions of Dynamic Librar-

ies on page 102).

tmcc [-bimmediate | -bdeferred | -bembed] lib.dll, lib2.dll, ... *.c

Specify loading mode of dynamic library. Default is bimmediate.

More Examples

Dynamic Loading from Flash

Figure 21 Installing an IO Driver

The sources of this example (found in $TCS/examples/dynamic_loading/flash_demo), dem-

onstrate how to perform dynamic loading from ROM (e.g. flash memory) by means of an

IO Driver. IO Drivers are groups of callback functions that are used by the TCS file I/O

functions (open, close, read, write, etc.) when the name of the file matches the driver’s

‘recognition’ function.

 presents a flavor of how such a driver is installed. The actual implementation of the

driver can be found in flashfiles.c. This C source simulates flash memory by regular

SDRAM, into which the flash contents (the dynamic library lib.dll in this example) are

copied during program startup. I/O is implemented by means of memory copying.

main.c

#include Òtmlib/IODrivers.hÓ
void main(){
 Int i;

 IOD_install_driver(
 (IOD_RecogFunc) RecogFlash,
 (IOD_InitFunc) Null,
 (IOD_TermFunc) Null,
 (IOD_OpenFunc) OpenFlash,
 (IOD_OpenDllFunc) OpenDLL,
 (IOD_CloseFunc) CloseFlash,
 (IOD_ReadFunc) ReadFlash,
 (IOD_WriteFunc) Null,
 (IOD_SeekFunc) SeekFlash,
 (IOD_IsattyFunc) IsattyFlash,
 (IOD_FstatFunc) StatFlash,
 (IOD_FcntlFunc) Null,
 (IOD_StatFunc) Null
);
 for(i=0; i<10; i++){
 dll_function(i);
 }
}

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 111

11

Memory Manager Customization

Figure 22 Installing a Memory Manager

The sources of this example (found in $TCS/examples/dynamic_loading/

memory_management), demonstrate how to install a custom memory manager in the

dynamic loader. The “custom” memory manager used in this example (shown in) just

causes tracing of the allocation/freeing process by the dynamic loader, and further use

calls to the “regular” malloc/free.

main.c

#include <tmlib/DynamicLoader.h>
static Pointer temp_malloc (UInt size){
 Pointer result= malloc(size);
 printf(Ò*** Temp malloc of size= %d: 0x%08x\nÓ, size, result);
 return result;
}
static void temp_free (Pointer block){
 printf(Ò*** Temp free of 0x%08x\nÓ, block);
 free(block);
}
static Pointer perm_malloc (UInt size){ááá}

static void perm_free (Pointer block){ááá}

void main(){
 Int i;

 DynLoad_MallocFun tm= temp_malloc;
 DynLoad_MallocFun pm= perm_malloc;
 DynLoad_FreeFun tf= temp_free;
 DynLoad_FreeFun pf= perm_free;

 DynLoad_swap_mm(&pm, &pf, &tm, &tf);

 for(i=0; i<10; i++){
 dll_function(i);
 }

 DynLoad_unload_dll(Òlib.dllÓ);
}

Chapter 11: Linking TriMedia Object Modules

112 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Implicit Loading Error Handling

Figure 23 Implicit Loading Error Handler

The sources of this example (found in $TCS/examples/dynamic_loading/error_handling),

demonstrate how errors during implicit loading can be trapped and dealt with. The error

handler (shown in) signals an exception, implemented by a call to longjmp, for letting

the error be handled at a higher level in the application.

When the error handler does not signal an exception or aborts execution using e.g. a call

to exit (that is, when it just returns to its caller), the dynamic loader will retry the load.

So in this case, the error handler should try to remove the error condition. This is most

useful when handling load failures due to memory overflow: by cleaning up memory

and returning, the application can proceed after error handling without even noticing a

problem.

main.c
#include <tmlib/DynamicLoader.h>
static jmp_buf jb;

static void error_handler (DynLoad_Status status, String dll){
 printf(Ò*** Loading of %s failed; error= %d\nÓ, dll, status);
 longjmp(jb,1);
}
void main(){
 Int i;
 DynLoad_ErrorFun errh = error_handler;

 DynLoad_swap_stub_error_handler(&errh);

 for(i=0; i<10; i++){
 if(setjmp(jb) == 0){
 dll_function(i);
 }else{
 printf(Ò--> recovering\nÓ);
 }
 }
}

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 113

11

Section Renaming

The tmld option -sectionrename changes the name of a section (either the text section

or one of the three data sections) in an object produced by tmcc. Because tmld merges

all sections with identical names in its input files, a renamed section in an object file pro-

duces a renamed section in the final executable. This is shown in the example below:

Aside from differences in memory mapping and performance, merely renaming a sec-

tion should not change the behavior of the program. However, there are a number of

reasons for renaming a section. First, one might want to group similar data together in

one section. An example of this is the code generated for function stubs that is produced

for dynamic linking by tmld itself: the linker places all function stubs in a section called

__fstubs__ so that the function stub overhead can be obtained quickly by using tmsize.

Similarly, code segment descriptors containing initialized data structures for use by the

dynamic linker are placed in sections __mdesc__ and __mdescs__. A second reason section

renaming is sometimes performed is to allow the mapping of specific data to particular

memory addresses in embedded systems. Finally, section renaming might be performed

in order to give particular data or text a specific treatment in some way or another.

Illustrating the last point, tmld allows a number of properties to be assigned to sections:

an access property ro (read only), caching properties locked and uncached, and the

shared (memory) property. Currently, the linker/downloader has no further use for

access properties. The shared memory property is discussed in the section on multipro-

cessing below. Caching properties are interpreted by the TriMedia downloader in the fol-

lowing way (see also the SDRAM memory map in on page 119):

1. All uncached data sections are mapped at the end of SDRAM, and the TriMedia cache-

able limit is set to the base of this uncached data region. There is no limit to the

amount of uncached data. Specifying uncached text is not allowed. Due to TriMedia

limitations, the granularity of the amount of uncached memory is 64 kB, which will

be automatically taken care of by the TriMedia downloader by rounding up the allo-

cated amount of uncached memory to the next multiple of 64 kB.

2. All cachelocked data sections are mapped in one contiguous memory region, and the

TriMedia cachelocked data region is set exactly to this region. The limit to the

amount of cachelocked data is 8 KB, which would occupy half of the TriMedia data

cache. The granularity of the amount of cachelocked data is 64 bytes (one cache

block). Due to TriMedia limitations, the cachelocked data region must start on a 16

kB boundary. These restrictions will automatically be taken care of by the TriMedia

downloader.

3. All cachelocked text sections are mapped in one contiguous memory region, and the

TriMedia cachelocked text region is set to exactly this region. The limit to the amount

tmld datalock.o -o datalock.o -sectionrename data=my_data
tmcc *.o
tmsize a.out
text data data1 bss my_data dec hex
113920 5492 484 3684 4 123880 0x1E3E8

Chapter 11: Linking TriMedia Object Modules

114 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

of cachelocked text is 16 kB, which would occupy half of the TriMedia instruction

cache. The granularity of the amount of cachelocked instructions is 64 bytes (one

cache block). Due to TriMedia limitations, the cachelocked instruction region must

start on a 32 kB boundary. These restrictions will automatically be taken care of by

the TriMedia downloader.

Caching properties are ignored by the dynamic loader, so that they have effect only for

code segments of type boot or dynboot. The reason for this is that the 32-bit TriMedia

architecture allows only a single range of SDRAM to be uncached and a single range of

SDRAM to be cachelocked. These ranges have been assigned for use by the (dyn)boot exe-

cutables, so none is left for code/data that is loaded at a later time.

The following example shows how the section my_data should be placed in cachelocked

memory. Note that both sectionrename and sectionproperty refer to the original name of

the section, data. The section is also renamed to prevent errors during further linking

with other normally cached sections which are also named data.

Sections Produced by tmccom

In order to effectively use section renaming, one must have an understanding of the ini-

tial section assignment of text and data by tmcc. This is as follows:

1. All program code compiled into TriMedia instructions is placed in a section named

text.

2. Some compiler-generated data such as jumptables for switch statements are placed in

a section named data1 (read-only data).

3. All initialized global C variables are placed in a section named data. For example:

4. All uninitialized global C variables are kept as common symbols, to be resolved in fur-

ther linking, or otherwise mapped by the linker when producing an executable. For

example:

Common symbols are not yet mapped to a particular section, because they might be

resolved during subsequent linking to initialized global variables with the same name.

When they are still not resolved at the creation of the final executable, the linker allo-

cates space for common symbols in a section named bss.

The latter would make it somewhat awkward to isolate uninitialized data using section

renaming, because it would not yet have been mapped to any section in the output of

tmcc. So merely renaming the bss section in an object file containing uninitialized data

would result in an empty renamed section, with the common symbols still placed into

bss during final linking of the executable. For this purpose, tmld provides an option

tmld datalock.o -o datalock.o -sectionrename data=my_data \
 -sectionproperty data=locked

int a[300]= {0};

int a[300];

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 115

11

-map_commons. The effect of this option is to prematurely force all common symbols

into the bss section. This option takes effect before section renaming, so that the follow-

ing tmld command would indeed create a section my_data containing the uninitialized

data:

Note that -map_commons might change the program semantics. For example, suppose

two different source files contain definitions of a variable a, one as shown below.

ANSI C semantics require that these should be treated as two definitions of the same

memory object. However, applying -map_commons to the object file produced from the

second source file has the effect of changing the definition to

This results in a duplicate symbol error in further linking.

IMPORTANT
Using this option, unexpected common symbols might be caused by
including header files containing variable declarations without the qualifier
extern.

See also $TCS/examples/misc/cachelocked for an example defining sections in cachelocked/

uncached memory.

Other Sections Produced by SDE Tools

The following table describes other sections that will sometimes be introduced by the

SDE tools, and which might be encountered in the output of tmld and tmdump. All sec-

tions but the first (debug) contain information that must be kept with loaded code seg-

ments, and are only introduced under certain conditions when compiling/linking for

dynamic loading.

tmld datalock.o -o datalock.o \
 -map_commons \
 -sectionrename bss=my_data \
 -sectionproperty bss=locked

int a [300] = {34};

int a [300] = {0};

Section name Creator Description

debug tmccom Debug information (stabs). Used by tmdbg.

__fstubs__ tmld Function stub code.

__mdesc__ tmld Module descriptor record for current code segment,
used by dynamic linker/loader.

__mdescs__ tmld List of module descriptor records for all embedded
code segments, used by dynamic linker/loader.

SymDynLoad$ tmld Descriptors of the symbols which may sometimes be
left in symbol references. Used by dynamic loader.

Chapter 11: Linking TriMedia Object Modules

116 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Link Optimizations

tmld provides a number of options for reducing the size of a generated executable.

When used, they typically achieve a size reduction of 20–30% without a noticeable per-

formance impact. However, they impair debugging, because all of the options are incom-

patible with the use of tmdbg, because the code might be considerably reordered or

reused. The options are only valid while generating code segments:

■ -bremoveunusedcode

This option attempts to find out which dtrees and global variables cannot be used

when starting execution from either the start symbol or from any of the dynamically

exported symbols. Unused code and data is removed from the output.

■ -bfoldcode

This option causes an analysis of all read only sections (typically instruction sections),

in order to find identical code instances. Such identical code most often consists of

identical function epilogues generated by the compiler, or (in a C++ context) of iden-

tical instantiations of a code template. For each occurrence of such identical code,

one instance is chosen as a representative and all others are removed.

Note
This option should not be used in a program where function addresses/
pointers are compared to something other than NULL. This option causes
functions with identical content to have identical addresses which may
cause semantic differences in programs where function pointers are
compared.

Ext_ModDynLoad$ tmld Descriptors of other code segments to which the
current code segment has references. Used by
dynamic loader.

$String$DynLoad$, tmld String table containing names of objects from the
previous two sections.

Sym_RefDynLoad$l,
$Mrkr_Ref$DynLoad$,
$JTab_Ref$DynLoad$,
$FromDef_Ref$DynLoad$,
$DefDef_Ref$DynLoad$,

tmld Different representations of references which are
needed by dynamic loader.

$Sctr$DynLoad$,
$Sctr_Src$DynLoad$,
$Sctr_Dest$DynLoad$

tmld Scatter descriptors. The bit positions within code
units where address values have to be filled in are
generally non-contiguous; rather, they are scattered
around a certain location. Scatter descriptors
describe how.

Section name Creator Description

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 117

11

■ -bcompact

This option reorders the code (at the dtree level) in order to minimize the amount of

instruction padding that is required by the TriMedia architecture. In contrast to

-bremoveunusedcode and -bfoldcode, this option might have an adverse perfor-

mance impact because it reduces instruction cache locality. Although a study on a

large TriMedia benchmark set showed that reduced code size seemed to compensate

for reduced locality in all cases, it is advisable to verify this in particular applications

for which the -compact option is used.

The effects of these options can be verified using tmnm, tmsize, and tmprof.

Multiprocessor Support

The TCS toolkit provides basic support for a shared memory-based multiprocessor setup,

in which different TriMedia processors are able to access each other’s SDRAM and MMIO

spaces over the PCI bus interface. Such a setup can be created by inserting multiple Tri-

Media boards into the PCI slots of a single PC, but it can also be devised as a multiproces-

sor stand-alone board.

Any form of communication in such a system is founded on two concepts: node identifi-

cation (“node” being a TriMedia processor) and shared memory. Node identification is

needed for distinguishing between the different nodes. Shared memory is needed as an

initial means for passing data to other nodes. With support for these basics as a founda-

tion, more intricate forms of communication can be built.

The TriMedia downloader tmld and the TCS standard library support the concept of a

multiprocessor cluster, which is a number of TriMedia processors that together run a multi-

processor application. A boot or dynboot executable is loaded on each of the processors.

Processors in a multiprocessor cluster are assigned node identifications, being node num-

bers in the range 0 to N-1, which are substituted for the download symbols

_node_number_init in the executables that they run. Substitution is performed by the Tri-

Media downloader under control of the monitor. Processors in a cluster may run copies

of the same executable, or different executables, or a mixture of these. For instance, the

tool tmmprun allows starting a cluster as follows:

This command allocates three processors (when available), numbers them 0,1,2, and

loads a.out on the first and third, and b.out on the second while substituting their respec-

tive node numbers.

Note that the node numbers form a symbolic identification, which has no explicit rela-

tion with the corresponding physical processors. For instance, in a six-processor setup, a

load command as described above could be given twice (not currently supported by

tmmprun), resulting in two independently running three-node clusters (apart from a

likely PCI congestion) which each have numbers 0,1,2. A slightly more intricate monitor

 tmmprun Ðexec a.out Ðexec b.out Ðexec a.out

Chapter 11: Linking TriMedia Object Modules

118 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

must be used where an explicit loading of cluster members on particular processors is

desired. Note again that node numbering is the purpose of the monitor, while the node

values are filled in by the downloader, which is a library used by the tmmprun.

The node numbers are available to the user (see tmProcessor device library). They are also

used in several system libraries. For instance, pSOS+m bases its node numbering on the

TCS node numbers. In addition, hardware semaphores can be accessed using the node

number (see tmSEM device library), interrupts can be sent to other nodes using the node

number (see tmInterrupts device library), and a macro is available for accessing the MMIO

spaces of other nodes using their node numbers (see <tm1/mmio.h>).

Shared Memory

Although all TM-1 processors in a cluster run in one shared address space, specific sec-

tions can be assigned the property shared. Usually, in the case of non-shared sections, the

downloader will load a separate copy of the executable specified for each node. For

instance, in the three-processor load command specified above, node 0 and node 2 each

will receive a full copy of the executable a.out. The only difference is in relocation,

because of the different SDRAM address ranges. So each of nodes 0,1,2 will have sections

text, data1, data and bss.

In contrast to this, specific sections can be assigned the property shared. While down-

loading the executables of a multiprocessor cluster, memory will be allocated for only a

single copy for shared sections of the same name. All executables in the cluster will be

made to refer to this single copy. For instance, the following will define a shared section

with initialized data (note that the shared section here is also defined as uncached to

avoid the need for cache coherence).

When linked to both a.c and b.c shown below, two executables of a simple two-node

multiprocessor cluster are obtained.

A more realistic example is the pSOS+m multiprocessor interface. This interface defines a

message-passing library based on shared memory. One shared section contains a simple

array of message queue addresses, one address per node, to be indexed by node number.

int shared= 357;
tmcc shared.c Ðo shared.o Ðc
tmld shared.o Ðo shared.o \
 Ðsectionrename data=shared \
 Ðsectionproperty data=uncached \
 Ðsectionproperty data=shared

............. a.c
extern volatile int shared;
main() { do { printf(Òshared= %d0, shared); } while (shared == 357); }
............. b.c
extern volatile int shared;
main() { int i; for (i=0; i<10000000; i++){} shared= 308; }
.......................................
tmcc a.c shared.o Ðo a.out
tmcc b.c shared.o Ðo b.out
tmmprun Ðexec a.out Ðexec b.out

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 119

11

When coming up, each processor allocates a message queue in its own memory, and

places the address in the shared array. Hence, this directory is to be used by each of the

nodes to detect whether a particular sibling node is running, and whenever this is the

case, to get access to its queue data structure.

In simple setups, shared sections should be defined as uncached. However, if they are

willing to deal with cache coherence to reduce the memory access overhead over PCI,

users can leave shared sections cached while implementing a coherence scheme using

the routines _cache_copyback and _cache_invalidate in the TCS library. Also, the tmDMA

device library can be used to speed up data transfer over PCI. See $TCS/examples/multipro-

cessing/data_streamer for a pSOS+m + DMA- based interprocessor data transport example.

SDRAM Memory Images vs Load Images

Figure 24 SDRAM Image Map

SDRAM high address

uninitialized, uncached data sections (zeroed)

__cacheable_limit,
__begin_stack_init

___R_zud_len
___R_zud_mbase

___R_ud_len
___R_ud_mbase

initialized, uncached data sections

padding to 16 kb boundary
(TriMedia restriction)(passed to malloc)

stack

heap

uninitialized, cachelocked data sections (zeroed)

initialized, cachelocked data sections

padding to lower 64 kb boundary
(TriMedia restriction)(unused)

cachelocked text sections

padding to 32 kb boundary
(TriMedia restriction)(passed to malloc)

uninitialized, cached data sections (bss) (zeroed)

cached instruction sections (text)

SDRAM low address

___R_ld_len
___R_ld_mbase

___R_zld_len
___R_zld_mbase

___R_zc_len
___R_zc_mbase

___R_lt_len
___R_lt_mbase

__begin_heap_init

__locked_data_addr

__locked_data_size

__locked_text_size
__locked_text_addr

initialized, cached data sections (data1, data)

Chapter 11: Linking TriMedia Object Modules

120 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Note
The symbols at both sides are download symbols for passing mapping
information to the executable. See the section on reserved download
symbols on page 123.

When the downloader is used to construct a load image from an executable object file

(either implicitly via tmld, tmmon or tmrun, or directly by calling the downloader

library from user applications), it first constructs an SDRAM memory image map. This

memory map identifies the locations of a number of different clusters of sections during

execution. The executable’s sections are clustered because the 32-bit variants of the Tri-

Media hardware requires that all cachelocked and uncached data sections, and all cache-

locked instructions are grouped, and also for facilitating the zeroing of the different

types of “uninitialized” data sections. The following section clusters are used by the

downloader:

■ cached instruction sections

■ cached, initialized data sections

■ cached, uninitialized data sections

■ cachelocked instruction sections

■ cachelocked, initialized data sections

■ cachelocked, uninitialized data sections

■ uncached, initialized data sections

■ uncached, uninitialized data sections

Figure 24 on page 119 shows how these clusters are mapped into SDRAM by the down-

loader. Due to 32-bit TriMedia hardware restrictions, the different section clusters cannot

be mapped into a single consecutive region: the first reason for this is that the cluster of

cached instruction sections must be mapped at the start of SDRAM (because the start

address should be located at the very beginning of SDRAM), while the uncached data

sections must be grouped at the end of SDRAM; as a second reason, major areas of pad-

ding have to be introduced because the cachelocked data- and instruction memory

regions must start at 16 kb and 32 kb boundaries, respectively, and because the uncached

data memory region must start at a 64 kb boundary. These major areas are also shown in

the Figure; two of the padding areas, with a total size of up to 48 kb, are recycled to the

application’s heap by the TriMedia standard boot code (contained by the files reset.o and

boot.o which are automatically added to executables by the compiler driver tmcc), after

application startup. The padding in front of the uncached data section cluster is left

unused.

Note
Various minor padding between sections and sectiongroups may also exist,
but this is not shown.

The gap of SDRAM that is not occupied by section clusters, is available for the execut-

able’s combined stack/heap extension area. The standard boot code will initialize the

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 121

11

stack pointer to the top of this area, and the heap extension pointer to the bottom of

this area.

Note
At the start of a pSOS- based application, the entire stack/heap extension
area will be allocated and given to pSOS region 0 (the pSOS default heap).
All tasks will allocate their stacks from this heap, resulting in a slightly more
complicated situation in which stacks, allocated data on the heap, and
unallocated, available heap blocks are all mixed in region 0, in the former
stack/heap extension area.

Figure 25 Packed Load Image Map

Note
The symbols at the left node are download symbols for passing mapping
information to the executable. See Reserved Download Symbols on page 123.

In many cases, the memory image can simply be used as load image. That is, the load

image to be copied to SDRAM then will contain all initial section contents at the exact

positions at which they are needed during execution. However, with the restriction that

a load image should be just a single sequence of bytes that can be stored in EEPROM, for

example, and may simply be copied to SDRAM prior to execution, this would have the

following (sometimes undesirable) consequences:

■ Each image, even the simplest, that contains an uncached data section would have

size of the used SDRAM (usually 8 Mb)

■ Each image containing cachelocked sections would waste up to 48 kb of padding.

■ Each image would waste a number of bytes that is equal to the total size of uninitial-

ized data sections (for instance, bss sections), which becomes noticeable in programs

using very large global buffers.

To avoid these consequences, the downloader constructs a load image that is different

from the eventual memory image, in that it contains only the initialized section clusters,

without the major padding areas (see on page 121). The cluster positions in the load

image and in the memory image, with their sizes, are passed via a set of reserved down-

initialized, uncached data sections___R_ud_len
___R_ud_lbase

___R_ld_len
___R_ld_lbase

initialized, cachelocked data sections

cachelocked text sections

initialized, cached data sections (data1, data)

___R_lt_len
___R_lt_lbase

achelocked instruction sections (text)

Load image high address

Load image low address

Chapter 11: Linking TriMedia Object Modules

122 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

load symbols to the executable. Using these positions and sizes, the executable is able to

unpack itself after startup by moving the initialized section clusters to their proper posi-

tions in SDRAM, and by clearing the uninitialized section clusters.

This unpacking is performed by default, by the TriMedia standard boot code. However,

when the downloader suspects that an executable is not capable of image unpacking, it

still generates a load image that is equal to the executable’s SDRAM memory image. The

downloader’s criterion for this is the absence of a downloader symbol with the reserved

name ___Rdo_unpack. If a download symbol with this name is present, then a packed

load image will be generated; if not, then the SDRAM memory image will be used as load

image. Whenever a packed load image cannot be constructed, an error will result when

the executable has uncached data sections.

Constructing Load Images Using tmld

tmld generates its output by default in the TriMedia object format. This is necessary

when the output is used in further links stages, or (for executables) when the output is to

be downloaded at a yet-unknown SDRAM address.

Sometimes a more simple output of tmld is desired. For instance, in the case of standal-

one booting (described in Chapter 7, Bootstrapping TriMedia in Autonomous Mode of Book

2, the Cookbook) the L1 boot program is copied as-is from the boot EPROM by the hard-

ware, and there obviously is no opportunity for relocation of this L1 boot program.

Also, the size of an L1 boot program is restricted by the TriMedia to 2 kb, so that it is

again impossible to relocate the next stage, the L2 boot program. For these reasons, both

the L1 and L2 boot program must be of a very simple format.

When using option -mi while linking an executable, tmld generates a relocated load

image that can be directly copied to SDRAM. Because it generates a relocated image, -mi

requires the begin and end addresses of the SDRAM area to which the image is to be

loaded, as well as the MMIO base address and the processor clock frequency. Optionally,

a symbol map file may be generated.

The following options are related to memory image generation:

-mi enable load image generation

-load specify SDRAM load area (required)

-mmio_base specify MMIO base address (default 0xefe00000)

-tm_freq specify TriMedia cpu frequency (default 1000000 (Hz))

-symt, -symtfile generate symbol map to standard output, or to file

-rmap, -rmapfile generate segment map to standard output, or to file

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 123

11

The following is an example of constructing load images using tmld:

Download Symbols

Aside from the usual symbol types local, global, unresolved and common, the object format

also supports one particular type of symbol: the download symbol. A download symbol is

a symbol that is intended to be resolved by the downloader, typically for passing infor-

mation that cannot be known before downloading. Download symbols can be defined

using tmld option -bdownload, as in

tmld will refuse to resolve download symbols.

Reserved Download Symbols

The following list describes the download symbols that are reserved for use by the TriMe-

dia downloader itself. They are automatically given values at the call to the functions

TMDwnLdr_relocate or TMDwnLdr_multiproc_relocate from the downloader library. Usu-

ally these functions are called internally by the tools tmmon, tmgmon, tmrun,
tmmprun, tmsim or tmld, when constructing a load image. These relocation functions

map the different sections of a downloaded executable into the available SDRAM, based

for example on section-caching properties, section alignment and SDRAM size, and pass

information on this mapping, together with other basic information, to the loaded exe-

cutable via the appropriate download symbols. The values are resolved whenever the

executable actually uses the corresponding download symbols, otherwise they are

ignored. Figure 24 on page 119 shows how the different sections, stack and heap are

mapped in SDRAM by the downloader.

tmcc main.c \
 Ðtmld Ðmi Ðstart 0,0x800000 ÐÐ

tmcc main.c \
 -tmld -mi -start 0x800000,0x900000 \
 -mmio_base 0xa00000 \
 -symtfile main.symbtab --

 tmld reset.o Ðo reset.o Ðbdownload __start_stack_init

Table 6 Downloader Symbols

Symbol name Description

__begin_stack_init The initial top of stack address, word aligned.

__begin_heap_init The initial start of heap address, word aligned.

__number_of_nodes_init An integer value specifying the number of TriMedia processors
(nodes) in the multiprocessor cluster to which the executable
belongs.

Chapter 11: Linking TriMedia Object Modules

124 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

__node_number_init An integer value specifying the integer node identifier of the
current TriMedia processor in the multiprocessor cluster to
which the executable belongs. Node numbers range from 0 to
number_of_nodes-1.

__host_type_init An integer value describing the current type of host as defined
in <tmlib/tmhost.h>.

__MMIO_base_init,
__MMIO_base<i>_init

The base addresses of the MMIO space of the current proces-
sor, and of processor with node number i.

__clock_freq_init The TriMedia clock frequency.

__segment_list_init A handle to a list of initialized data structures in SDRAM
describing the code segments (dynamic boot segment, plus
embedded dynamic libraries) which were part of the down-
loaded application.

__do_section_lock A value describing whether TriMedia’s cacheable limit and
locked regions should be set according to the next values, just
after start of the downloaded application. The setting is per-
formed when this value is not equal to zero; the next values are
ignored otherwise. The next values depend on whether the
downloaded application contains specially cached sections.

__Rdo_unpack A value describing whether the image should be unpacked by
the boot code, at program startup, according to the values of
the download symbols _Rxx_ibase, _Rxx._mbase and
_Rxx_len, described below. The unpacking is performed when
this value is not equal to zero.

__Rld_ibase Start of block of cachelocked, initialized data sections in load
image.

__Rld_mbase Start of block of cachelocked, initialized data sections in
SDRAM, during execution of the program.

__Rld_len Length of block of cachelocked data sections.

__Rlt_ibase Start of block of cachelocked text sections in load image.

__Rlt_mbase Start of block of cachelocked text sections in SDRAM, during
execution of the program.

__Rlt_len Length of block of cachelocked text sections.

__Rud_ibase Start of block of uncached, initialized data sections in load
image.

__Rud_mbase Start of block of uncached, initialized data sections in SDRAM,
during execution of the program.

__Rud_len Length of block of uncached, initialized data sections.

Table 6 Downloader Symbols

Symbol name Description

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 125

11

Figure 26 Reserved Download Symbols

Other Download Symbols Used by the TriMedia SDE

The following list defines several host-specific download symbols. These and other user-

defined download symbols must be explicitly given values using function

TMDwnLdr_resolve_symbol by the tools that call the download library (usually tmmon,

tmgmon, tmrun, tmmprun, and tmsim). See also the description of the downloader

library starting on page 123. tmsim and most of the monitors and run programs check

for the presence of these symbols while loading executables, in order to verify whether

the executables have been compiled and linked for “their” host. This results in warnings

__Rzc_mbase Start of block of normally cached, uninitialized data sections in
SDRAM, during execution of the program (this block should be
zeroed at program start).

__Rzc_len Length of block of normally cached, uninitialized data sections.

__Rzld_mbase Start of block of cachelocked, uninitialized data sections in
SDRAM, during execution of the program (this block should be
zeroed at program start).

__Rzld_len Length of block of cachelocked, uninitialized data sections.

__Rzud_mbase Start of block of uncached, uninitialized data sections in
SDRAM, during execution of the program (this block should be
zeroed at program start).

__Rzud_len Length of block of uncached, uninitialized data sections.

__locked _data_size Length of the entire SDRAM memory area which must be
locked in the data cache. This value spans the ld and the zld
area, and is rounded to the next multiple of the data cache
block size.

__locked_text_size Length of the SDRAM memory area which must be locked in
the instruction cache. This value spans the lt area, and is
rounded to the next multiple of the instruction cache block
size.

__cacheable_limit Start of the SDRAM memory area which must not be cached.

Table 6 Downloader Symbols

Symbol name Description

Chapter 11: Linking TriMedia Object Modules

126 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

for executables that have been compiled with -host=nohost (actually: any host), because

such executables do not have any “other” download symbol defined.

tmld Options

The following are tmld command options.

-bcluster Code size optimizations -bcompact, -bfoldcode
and -bremoveunusedcode usually result in reord-
ing the contents of code and data sections, and in
deletion of unused parts. This option combines
the contents of each section in the output file
produced by tmld in such a way that reordering
or partial omission of these contents is prevented.

-bcompact Reorder dtrees for code compaction.

-bdeferred file [, file]... Use the code segments in the specified files for
resolving symbols dynamically. Each file will get
loaded at runtime upon the first call to one of its
exported functions (if it is not already loaded). A
warning is generated for all references to data in
code_seg.

-bdownload symbol [, symbol]... Allow the specified symbols to remain unre-
solved, to be defined by the TriMedia downloader.

-bembed file [, file]... Embed the specified dynamic libraries in the out-
put file produced during static linking. Embed-
ding can be considered as static preloading in the
sense that the embedded library is still distin-
guished as a separate library. For instance, appli-
cations linked against libc.dll (containing the
ANSI library) will correctly detect this library
when loaded by a boot segment in which this
library was embedded. Embedding is generally

Symbol name Host type Description

__syscall tmsim Simulator system call trap function.

__HostCall_commvar_init MacOS Address of two-word communication buffer used
by system call RPC implementation.

_TMMANSharedPatch Win95 Address of shared, pagelocked communication
buffer used by the TriMedia Manager (PC/Tri-
Media communication module).

_TMManShared WinNT Address of shared, pagelocked communication
buffer used by the TriMedia Manager (PC/Tri-
Media communication module).

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 127

11

used for preloading system libraries, such as the
libraries needed by the dynamic loader itself.
Embedding is only allowed when the output file
is of type dynboot.

-bfoldcode Perform identical code removal.

-bexport symbol [, symbol]... Declare the symbols in the list as exported to the
dynamic loader.

-bimmediate file [, file]... Use the specified code segments for resolving
symbols dynamically. Each file will get loaded as
soon as the code segment which references it is
loaded (if it is not already loaded).

-bremoveunusedcode Perform unused code removal.

-btype [boot | dynboot | app | dll] Specify type for the produced output file. The
default is an object file which can be further
linked.

-chain Create a linked list at a specified symbol by chain-
ing together all occurrences of a given variable at
link time. For more information, see List Construc-
tion by tmld on page 130.

-debug | -nodebug Omit source level debug information from output
module.

-exec Sets the default type of the produced output file
to boot, instead of to an ordinary object.

-g Inform tmld that debugging on the executable is
required (default false). This will let tmld disallow
options which are incompatible with debugging.

-h Print help information on the command syntax
and options, then exit.

-lib file [, file]... Search the specified library modules in each given
file in the given order for definitions of unre-
solved symbols. tmld loads the required library
modules from each library. tmld searches each
library in turn and loads all needed modules from
it before searching the next library. Searching and
loading each library is a one pass process; the
search determines all the modules needed, taking
into account intermodule dependencies within
the library.

-load begin_memory, end_memory Specify download memory region for option -mi.
The arguments are numbers in C format: when
starting with a digit from 1 to 9, they are inter-
preted as decimal values, when starting with a 0
they are interpreted as octal values, and when
starting with 0x or 0X, they are interpreted as
hexadecimal values.

Chapter 11: Linking TriMedia Object Modules

128 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

-map_commons Map common symbols to bss section (default
false). This mapping is performed for executables,
regardless of this option. However, this flag allows
to do it also for object files which are intended for
further linking.

-mf file Specify machine description file.

-mi Produce binary image for downloading onto Tri-
Media from a host.

-mmio_base address [, address]... Specify MMIO base addresses. This option is only
allowed when producing a memory image using
option -mi. By default, the value 0xEFE00000 will
be used, with a generated warning.

-node_number n TriMedia node number when generating This
option is only allowed when producing a mem-
ory image using option -mi. By default, the value
0 will be used.

-optf file Process the tmld options contained by file.

-o file Specify file name for output module. By default,
the name a.out will be used.

-preserve Preserve the output module even if linking failed.

-P symbol = value [, symbol = value]... Patch symbol with the associated 32-bit values.
This option is only allowed when producing a
memory image using option -mi.

-R symbol = value [, symbol = value]... Resolve a symbol with the associated (absolute)
value. This option may be used to resolve down-
load symbols.

-rmap Print a textual relocation map to the standard
output stream. The map indicates the locations of
all sections from each input module and loaded
library module in the output module. It also indi-
cates gaps created to satisfy alignment require-
ments. It shows base address, sizes and relocation
offsets for each section, as well as the total size of
each linked section. This option is only allowed
when producing a memory image using option
-mi.

-rmapfile file Print a textual relocation map to specified file.
This option is only allowed when producing a
memory image using option -mi.

-sectionrename section = newname [, section = newname]...
Rename sections. This option is useful for isolat-
ing the data from a particular object file and giv-
ing it a special property, while keeping it separate

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 129

11

in the further linking process. The specified old
section name is the name of the section in the
inputfile(s), regardless of any earlier section
renamings on the command line.

-sectionproperty section = property [, section = property]...
Set caching or access properties for sections, to be
interpreted by e.g. the TriMedia downloader. The
term property may be one of the following:

cached shared locked

uncached unshared ro rw

The TriMedia dynamic loader ignores these prop-
erties, so that section properties only have mean-
ing for code segment of type boot or dynboot.
The specified old section name is the name of the
section in the inputfile(s), regardless any previous
section renamings on the command line.

-start symbol Specify start address by global symbol. A start
symbol is required for code segments of type
boot, dynboot and app, and optional for a dll.
The value of the specified symbol can be retrieved
after an explicit call to the dynamic loader.

-stored_endian [el | eb] Specify endianness in which the produced output
file is stored. This is needed for code segments
which are loaded by the dynamic loader, to mini-
mize its code size and necessary run time data
conversions. By default the stored endian is equal
to the endian of the code segment itself, assum-
ing that the dynamic loader executes on the Tri-
Media processor (as opposed to on a host).

-stub file Specify stub template file used by dynamic loader
for redirecting calls to other code segments and
trapping the dynamic loader when this is not
loaded yet.

-symt Print symboltable to standard output. This option
is only allowed when producing a memory image
using option -mi.

-symtfile file Print symboltable to specified file. This option is
only allowed when producing a memory image
using option -mi.

-tm_freq freq Specify TM clock frequency. This option is only
allowed when producing a memory image using
option -mi. By default, the value 100000000
(100 MHz) will be used, with a generated warning.

-u symbol [, symbol]... Enter symbols as unresolved in the symbol table
prior to linking.

Chapter 11: Linking TriMedia Object Modules

130 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

-v Verbose mode: print names of all linked files.

-V Print tmld version.

List Construction by tmld

Through the -chain option, tmld can build, at link time, a linked list containing global

variables defined in separate object files. This ability is useful when the elements of such

a list become known only when linking an executable.

An occurrence of -chain symbol on the tmld command line has the following effects:

■ Multiple global definitions of the specified symbol (in different object files) are

allowed, provided that each definition is located in an initialized data section (e.g.

data, data1, or renamed instances of these sections).

■ Each next occurrence of the symbol (in a next object file on the tmld command line)

is linked after the last encountered occurrence, by patching the address of the new

occurrence into the first word of the last occurrence (see simple C example below).

For correct functioning, this first word must have been reserved in the symbol as a

link field.

■ When linking a code segment (that is, executable or dynamic library), a new variable

symbol_ptr is created, and initialized with the address of the first occurrence of the

symbol.

As a simple example, the following command will result in creation of a static, null-

terminated list of strings ["aap ", "noot ", "mies ", wim"] whose first element is stored in

a new variable _my_string_list_ptr (where a.o, b.o, c.o and main.o have been compiled

from a.c, b.c, c.c and main.c, respectively):

 tmld Ðchain _my_string_list a.o b.o c.o main.o

 typedef struct Element {
 struct Element *next;
 String string;
 } Element;

 ÐÐÐ a.c ÐÐÐ
 Element my_string_list= { Null, "aap" };

 ÐÐÐ b.c ÐÐÐ
 Element x1 = { Null, "mies" };
 Element my_string_list= { &x1, "noot" };

 ÐÐÐ c.c ÐÐÐ
 Element my_string_list= { Null, "wim" };

 ÐÐÐ main.c ÐÐÐ
 extern Element *my_string_list_ptr;

 main (){
 Element *l= my_string_list_ptr;

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 131

11

Note that the two-element sublist in b.c is correctly preserved.

Example

An example of using linker- constructed lists is in implementing C++ static constructor/

destructor functions: unlike C, where static variables can only be initialized with com-

pile time constants, C++ allows dynamic initialization of static variables. For example,

variables can be initialized with the results of a function call, as in:

This more liberal initialization means that code for evaluating all static initializers has to

be executed before the call can be made to the main function of a C++ program.

A complication here is that the complete set of C++ modules that constitute a particular

C++ executable, with their static constructor functions, is generally unknown before

linking of that executable.

For instance, different executables can be linked from the object files main.o, a.o and b.o

(compiled from main.C, a.C and b.C, respectively, see below): a1.out (printing a mere

“hello”), a2.out (printing a decent “hello world”), and others. Merely including a.o, b.o,

or both in either order, while linking an executable, causes the proper static constructor

functions to be correctly picked up and called during initialization.

The TriMedia SDE achieves this by means of symbol chaining, as follows:

1. For each C++ module, the C++ compiler generates a static function __0CH_STCON_v

that initializes all static variables in that module. For instance, the C definition of this

function for module a.C would be

Note that __0CH_STCON_v has static scope; each C++ module has its own private

instance.

 while (l != Null) {
 printf("%s ", lÐ>string);
 l= lÐ>next;
 }
 }

static int x= f();

tmcc main.o -o a1.out a.o
tmcc main.o -o a2.out a.o b.o

 ----- a.C: ----
 static int i1= printf(" world");

 ----- b.C: ----
 static int i2= printf("hello");

 --- main.C: ---
 main(){}

static void __0CH_STCON_v() { i1= printf(" world"); }

Chapter 11: Linking TriMedia Object Modules

132 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

2. Also for each C++ module, the C++ compiler generates a static external variable

__CC_Init_List, according to the C definition:

This variable is the one on which symbol chaining is to be applied; it consists of two

addresses: one link field that will be filled in by the linker (see 3), and one pointer to

the module's initialization function __0CH_STCON_v. Note that although each C++

module has its own instance, __CC_Init_List has external scope. Normally these multi-

ple definitions would result in link errors, but defining __CC_Init_List to tmld as

being a chain symbol (see below) will prevent these errors.

3. __CC_Init_List is a reserved chain symbol to tmcc/tmld. That is, when linking a num-

ber of C++ object files, tmld constructs a list of all encountered global __CC_Init_List

variables by patching pointers to the next element in the list in each first

__CC_Init_List field. The list order of these variables is the order of occurrence of their

object files on the linker command line.

4. Finally, a global variable __CC_Init_List_ptr is produced by tmld, and initialized with

a pointer to the head of the list. The result of steps 3 and 4 is a list of all __CC_Init_List

variables, with a pointer to its first element placed in __CC_Init_List_ptr:

5. The C++ runtime library is able to find and call each __0CH_STCON_v via

__CC_Init_List_ptr at startup, before calling main().

Other Uses of Chain Symbols

Although primarily provided for dealing with static constructor functions in C++, chain

symbols can also be used for creating a ‘drop in’ environment (for device drivers, for

example).

Reserved Chain Symbols

The TriMedia SDK defines the following reserved chain symbols:

__CC_Init_List Symbol for internal SDK use, for dealing with C++
initialization and constructor calling.

__custom_boot, __custom_driver, __custom_start
Symbols by means of which users can insert ini-
tialization functions at different stages of initial-
ization of the executable:

void* __CC_Init_List[2]= { Null, (void*)__0CH_STCON_v };

 (generated by tmld) a.o: b.o
 __CC_Init_List_ptr __CC_Init_List __CC_Init_List ...

 +---------------+ +---------------+
 ----------------->| -------------->| --------------> ... -->
Null
 +---------------+ +---------------+
 | __0CH_STCON_v | | __0CH_STCON_v |
 +---------------+ +---------------+

Chapter 11: Linking TriMedia Object Modules

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 133

11

__custom_boot For defining initialization functions that are to be
called after initialization of the TM-1 processor,
and after setup of stack and heap, but before ini-
tialization of the host call interface. This level of
initialization can be used for customizing TM-1
processor initialization.

__custom_driver For defining initialization functions that are to be
called after host call initialization, but before ini-
tialization of the dynamic loader. This level of ini-
tialization can be used for adding drivers for
devices on which dynamic libraries are stored
that are to be ‘immediately’ loaded by the current
executable.

__custom_start For defining initialization functions that are to be
called after initialization of the dynamic loader,
and after dynamic loading of all ‘immediate’ code
segments, but before the call to the application's
main function, and (in case of a C++ application)
before the call to the first static constructor func-
tion.

Initializations to be added to any of the above levels must be installed by

1. Defining the initialization function of the following prototype:

The function should return a 0 if the initialization was successful, any other value

else. Failing to return 0 causes immediate termination of the executable.

2. Defining an instance of the variable __custom_boot, __custom_driver, or

__custom_start, as follows:

For instance, the following installs an I/O driver (for attaching a flash file system to

the runtime library, for example). Merely linking the corresponding object file to the

application will result in driver installation at the appropriate time:

int init(void);

Int __custom_xxxx[]= {0, (Int) init};

static Int init(void){

 return IOD_install_fsdriver(
 RecogFunc, InitFunc, TermFunc,
 OpenFunc, OpenDllFunc, CloseFunc,
 ReadFunc, WriteFunc, SeekFunc, IsattyFunc, FstatFunc,
 Null, StatFunc, SyncFunc, FSyncFunc, UnlinkFunc,
 LinkFunc, MkdirFunc, UnlinkFunc, AccessFunc,
 OpendirFunc, ClosedirFunc,
 RewinddirFunc, ReaddirFunc
) == NULL;
}

Int __custom_driver[]= { 0, (Int)init };

Chapter 11: Linking TriMedia Object Modules

134 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Note
Termination functions, when required, can be installed by the initialization
functions by means of function atexit from the ANSI library.

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 135

12

Chapter 12

TriMedia Execution Host Utilities

Topic Page

Summary 136

TriMedia Commands 137

Chapter 12: TriMedia Execution Host Utilities

136 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Summary

TriMedia development boards that support a PCI interface can be installed in a Windows

host system so you can do development. This chapter gives summary information on

the tools that make up the Windows execution host support.

The TriMedia Manager

The TriMedia Manager includes the following files and utilities:

TMMan.sys The kernel-mode driver that provides the bulk of the TMMan func-
tionality. This driver supports multiple boards.

TMMan32.dll The user-mode Win32 DLL that provides the TMMan application
programming interface to Win32 applications. This DLL simply calls
tmman.sys for the TMMan functionality.

TMRun.exe A command-line utility (Win32 console application) for download-
ing and running executables on the TriMedia processor. This program
is also used by TMMon as the TriMedia console.

TMmpRun.exe A multiprocessor version of TMRun, that enables multiprocessor clus-
ter downloading on multiple TriMedia boards plugged into the sys-
tem.

TMMon.exe The TriMedia Monitor, an interactive shell for downloading and run-
ning programs on TriMedia. It is a Win32 console-mode application
that provides a command-based interface. TMMon reads its input
and writes its output via standard handles so the input to TMMon
including command can be redirected from an input file.

TMCRT.dll The TriMedia C run-time server. This module accepts requests from
the target and serves them. The requests are Unix level-2 I/O calls
generated by the executable program running on TriMedia. The
server uses the TMMan messaging mechanism to communicate with
the target.

TMMan.a The target component of TMMan. This is a static library with which
‘boot’ applications on TriMedia are linked. This module provides the
TMMan functionality on the target.

Driver.exe This is a helper utility that is provided in order to install the kernel-
mode driver in the system. This utility is required only during soft-
ware installation or when the software is uninstalled.

TMMan Setup & Removal

The driver.exe program is used to setup the kernel mode driver. The installation script

uses this utility to make the relevant entries required to auto start the kernel mode

Chapter 12: TriMedia Execution Host Utilities

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 137

12

driver. If for any reason the user needs to remove the kernel mode driver entry from the

registry the driver utility can be used with the following parameters:

 C:\> driver Ðor Ðntmman

To Reinstall the driver again, use

 C:\> driver Ðoi Ðntmman Ðsa tmman.sys

To install the driver so that it does not start automatically, use

 C:\> driver Ðoi Ðntmman Ðsm tmman.sys

This will make the driver manual start instead of auto start.

After you have installed the NT kernel-mode driver in your system, the registry key has

the following or similar values:

 [HKEY_LOCAL_MACHINECurrentControlSet\Services\tmman]
 "DisplayName"="tmman"
 "ImagePath"=".sys"
 "TYPE"=dword:00000001
 "Start"=dword:00000002
 "ErrorControl"=dword:00000001

The driver can also be configured to start in manual mode by changing the value of Start

to dword:00000003. To start the driver manually, type the following at the command

prompt:

 C:\> net start tmman

To stop the driver manually type the following at the command prompt

 C:\> net stop tmman

The kernel mode driver tmman.sys should be present in the %system-

root%\system32\drivers sub-directory. All other files must be in the current directory or

in the executable search path.

TriMedia Commands

Other TriMedia command or utility programs exist. Some, such as tmsim, are discussed

in depth elsewhere. This chapter summarizes the TriMedia commands.

Command Description Page

tmgmon GUI-based monitor 138

TMRun Single-processor TMRun utility 140

TMmpRun Multiprocessor version of TMRun 141

Chapter 12: TriMedia Execution Host Utilities

138 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

tmgmon

tmgmon is a GUI-based Win32 application that uses the TriMedia Manager Host API

and provides an interactive user interface for downloading and running TriMedia exe-

cutables on the TriMedia processor. All options can be accessed by selecting the option

from the window. Scrollable views are provided for the trace and memory window to aid

in debugging.

The GUI-based monitor program consists of the tmgmon.exe application along with the

following programs:

tmman32.dll TriMedia Manager User Mode 32 bit.

tmld.exe TriMedia Image Relocator and Loader.

vtmman.vxd TriMedia Virtual Device Driver.

tmcons.exe TriMedia Console.

RPCServ.dll Remote Procedure Call Server.

Msvcrt.dll Microsoft Visual C++ 4.2 runtime library.

Mfc42.dll Microsoft Visual C++ 4.2 MFC library.

Copy all of these files into a single directory.

Running the Software

From the Windows Explorer, double click the program tmgmon.exe. The main window

will appear. It is divided into the following groups:

■ Processor

■ Code Download

■ Redirection

■ Memory

■ Trace

At the top right corner are the minimize and close buttons. A dialog showing copyright

and version number can be displayed by selecting the ‘About tmgmon…’ option from

the system menu at the top left corner. The details of the various groups are given in the

following sections.

Processor

In this group, tmgmon displays information about the TriMedia card. The displayed

information includes the card number, processor, type, name and memory addresses.

tmgmon has support for multiple boards, as used for multi-processor systems. Initially,

board number 0 is selected. To select a different board, click the up or down button in

the Num field.

Chapter 12: TriMedia Execution Host Utilities

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 139

12

Code Download

Enter the filename to be downloaded in the Filename field. You can either type the

name, or select the file by clicking the Filename button. If there are any command line

arguments, specify them in the Arguments field. The filename and arguments field have

a memory of recently used files and commands. This can be accessed through the pull

down menu tab at the right of each field. This memory is updated into the registry when

you quit the program.

To load the program in TriMedia, click the Download button. To run the program, click

the Go button. To stop the program, click the Stop button. The Stop button will reset the

TriMedia and all its on-chip peripherals.

The Go option will first load the program in TriMedia if not already loaded and then run

it. If a program is already running in TriMedia and you want either to run it again or to

run a new program mentioned in the Filename option, the Go option will first stop the

current program, load the new program and then run it.

Memory

Specify, in hex, the physical starting address of any memory location you want to dis-

play in the Address field and then click the Display button. The program will check

whether the address you typed lies within the valid ranges. If it is in range, it will display

a dump of memory starting from that location. It will display up to the limit or 100000

hex bytes whichever is smaller.

You can change the memory view to byte, word, or dword by selecting the appropriate

radio button. However, MMIO can be viewed only as dword and clicking the byte and

word radio buttons will not change the view.

ASCII values are also shown on the right side of the memory window.

For navigation in the edit window, you can use the following keys:

Cursor Up Move up one line.

Cursor Down Move down one line.

Cursor Left Move left one character.

Cursor Right Move right one character.

Home Start of line.

End Ending byte, word or dword of line.

Page Up Previous page.

Page Down Next page.

Ctrl Home Start of dump.

Ctrl End End of dump.

Mouse operations and scroll bars also work.

To change the value at any memory location, move cursor over the displayed text and

type the new value. The new memory value will actually be written to the memory when

Chapter 12: TriMedia Execution Host Utilities

140 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

you (1) enter the complete value and press enter or (2) move to another memory loca-

tion or (3) select another window like the main window. This ensures that incomplete

values do not go into memory as you are entering the new value.

To copy a particular region of the memory dump to the clipboard, first select it by drag-

ging the mouse over the area, keeping left button pressed. Then press Ctrl-C. As an alter-

native, you can drag the mouse over the area and then click right mouse button for a

pop-up menu from which you select Copy.

At the top right corner of the memory window are buttons to minimize, maximize, and

close the window. You can also resize the window by dragging the bottom right corner.

Trace

The contents of the DP buffer can be dumped into the trace window. At the bottom of

the trace group, there is a box to specify a file into which the trace should be dumped,

and a check box to enable the file dump. When this is enabled, the contents of the DP

buffer are placed in that file, and not in the trace window.

The Dump DP button at the lower left corner of the group triggers the dump. It does this

over the PCI bus without disturbing the operation of the program on TriMedia. The Tri-

Media’s memory is searched for a magic string that identifies the start of the DP buffer.

This method was adopted to allow you to dump the contents of the trace buffer even

after a warm reset due to a system crash.

You can select a region of text in the Trace window and delete, cut, or copy it using key-

board shortcuts or a pop-up menu activated from a right mouse click.

TMRun

TMRun launches and monitors TriMedia programs interactively or from a batch file. It is

a command-line tool.

Syntax
TMRun [-dDSPNumber] [-wWindowSize] [-b] [-s] ExecutableImage arg...

Options

-b Run in batch (or non-interactive) mode. In this mode, TMRun does not print the
exit code or any other status information to the console and it does not wait for a
keypress before exiting.

-s This is a special mode in which TMRun does not load and execute a boot image. It
just waits for C run-time requests from the target and serves them. This mode is
useful if you need to load and execute boot images programmatically but do not
want to initialize the C run-time server (TMCRT.dll) in its own process context.

Chapter 12: TriMedia Execution Host Utilities

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 141

12

For example, TMMon spawns TMRun with this switch to serve requests from the
target.

-wWindowSize
Controls the number of lines in the TMRun window. Under Windows NT, this
parameter is not really required, because the size of the console can be set in the
property menu of the console window.

-dDSPNumber
Indicates on which processor the executable is to run. The default is 0.

TMmpRun

TMmpRun is a multiprocessor version of the TMRun utility described previously. As

does TMRun, this command-line tool launches and monitors TriMedia programs inter-

actively or from a batch file or script.

Syntax
TMmpRun [-wWindowSize] [-b] -exec executable arg ... [-exec executable arg ...]...

Options

-b Run in batch (or non-interactive) mode. In this mode, TMmpRun does not print
exit code and other status information to the console and it does not wait for a
keypress before exiting.

-wWindowSize
Controls the number of lines in the TMmpRun window. Under Windows NT, this
parameter is not really required, because the size of the console can be set in the
property menu of the console window.

-exec ExecutableImage arg ...
Specifies the executable image and the parameters that must be passed to it. All
parameters up to the next -exec flag belong to the executable image.

You can specify more than one executable image. Each one corresponds to a pro-
cessor in your system. The number of -exec images cannot exceed the number of
processors in your system.

The -exec options are ordered: the nth -exec image corresponds to processor n–1.

Chapter 12: TriMedia Execution Host Utilities

142 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 143

13

Chapter 13

The TriMedia Simulator

Topic Page

Introduction to Machine-Level Simulation of TriMedia Processors 144

The Simulated Architecture 146

Interrupt and Exception Handlers 160

Data Layout 161

Program Debugging 161

Operating System Emulation 162

Video-Out Support 163

Chapter 13: The TriMedia Simulator

144 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Introduction to Machine-Level Simulation of TriMedia Processors

tmsim simulates the execution of a program on a TriMedia processor. The program is

taken at the compiled and linked object file level, as illustrated in Figure ?? on 1. The

properties of the simulated machine are determined by the machine description file.

The invocation above reads the application program from the object file foo, reads the

machine description file tm1.md from the installation directory, and starts executing the

application program at the start address specified in the object file. The strings faa and

fee are passed as arguments to the simulated program.

tmsim serves the following purposes:

■ Full behavior and cycle-accurate DSPCPU simulation as described in the machine

description file.

■ Full behavior and cycle-accurate memory and cache simulation if required.

■ Performance-accurate architecture simulation for the application programmer.

■ Cycle-accurate architecture simulation for comparison against Verilog code.

IMPORTANT
tmsim’s stack dumping mechanism (the stackdump command) does not
work for multiprocessing or stripped binaries.

tmsim foo faa fee
cuv] library [object ...]
o abctmld Ðeb a.o b.o libc.a c.o
.o a.o b.o c.o

Chapter 13: The TriMedia Simulator

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 145

13

Figure 27 The Position of tmsim in the TCS

C/C++ Front End
(tmcfe)

Core Compiler
(tmccom)

Scheduler
(tmsched)

Assembler
(tmas)

Linker
(tmld)

Machine
Description File

tmsim
Dynamic
Loader
a.out

running
on target

Inter-Procedural Analysis
(tmipa)

(optional)

xyz.c xyz.C xyz.cc

···.ipa
···.jpa

···.irb
···.dta

xyz.t

xyz.s

xyz.o

a.out lib.dll

Chapter 13: The TriMedia Simulator

146 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

The Simulated Architecture

The system simulated by tmsim is illustrated in the following figure:

Figure 28 TriMedia System Overview

start

mmio_ack

ack

DDOY

DDIY

DOPCY

DAY

stall

DDOX

DAX

DOPCX

DDIX

dack

dreq

viack

vireq
Video In

vireq
Video In

voack

voreq
Video Out

aack

areq
Audio

fack

freq
FILT

lack

vireq
VLD

lreq

vack

vreq
V.34

pack

preq
PCI

pmmio_req

iack

ireq

Instruction
Cache

Data
Cache

is
ta

ll

d
st

al
l

dmmio_req

IA

ijmp

ijmp

DSPCPU

Timers VIC
Debug

int

m
m

io

iack
ireq

dack
dreq

dmmio_req

viack
vireq

voack
voreq

aack
areq

fack
freq

lack
lreq

vack
vreq

pack
preq

pmmio_req

Adder

MMI

SDRAM

r/
w

ra
s

ca
s

SA SD

h
rt

ra
n

sf
er

hv
al

id H
A H

D

mmio_reply

Chapter 13: The TriMedia Simulator

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 147

13

The system simulated by tmsim consists of the following:

■ DSPCPU — The DSPCPU supports all architected registers, operations and system

functions as described in the CPU Architecture chapter of the appropriate TriMedia

data book.

The number of registers simulated is determined by the machine description file. The

functional unit types and operation latencies are determined by the machine descrip-

tion file.

■ Memory system — By default, the real TriMedia memory system is simulated. If

required, the memory system can be simulated as if only SDRAM were present and

accesses to the SDRAM will not cause any stalls of the CPU. This behavior is enabled

by using the - nomm command-line option. The simulated memory system includes:

— Instruction cache
The full instruction cache as described in the Cache Architecture chapter of the
data book is implemented.

— Data cache
The full data cache as described in the Cache Architecture chapter of the data
book is implemented.

— Highway with arbiter
TriMedia contains an address/data highway that connects the two caches, the
peripherals and the memory interface. It is modeled in the simulator.

— Main Memory Interface and SDRAM
The simulator supports a default SDRAM data aperture of 8 MByte. It is initially
located at address 0x100000 (1M). The size and location of the SDRAM can be
changed through command-line options. Instructions are read from the object file
and stored in the SDRAM. Instruction memory addresses are maintained and can
be used in DPC, SPC, jump immediate instructions and instruction breakpoint
generation. The initialized data is read from the object file and stored in the
SDRAM. The full functionality of the MMI and SDRAM are modeled in the simula-
tor (including the possibility to have the memory and CPU run at various clock
relationships).

■ System Peripheral Devices

The simulator handles devices that are controlled through memory mapped device

registers, sometimes referred to as MMIO. The MMIO aperture is initially located at

address $EFE0,0000 (see also the CPU Architecture chapter of the data book). It can

be relocated in memory by assigning to the variable MMIO_base. Devices can auton-

omously access data memory and can cause CPU interrupts. Devices included in the

simulator are:

— Vectored Interrupt Controller
The VIC manages the setting and clearing of interrupts, acknowledgment genera-
tion and interrupt and exception prioritizing and handling. Interrupt priorities
and modes (edge/level) can be specified. Interrupt vectors are fully programmable.
A complete description is available in the data book.

Chapter 13: The TriMedia Simulator

148 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

— 4 timers/counters
Each timer/counter increments its value until modulus is reached. On the clock tick
that would load modulus, the value resets to zero instead and an interrupt request
is generated. Counting continues as long as the run bit is set. The current counter/
timer model supports five sources: internal clock, internal clock divided by a pres-
cale, external clock, data breakpoint events and instruction breakpoint events. For
a detailed description, see the data book.

— Video In (VI)
The digital video input signal processing unit is simulated accurately according to
the architecture specified in the data book. (Note that timing accuracy is not sup-
ported.)

— Video Out (VO)
The video output unit is simulated, with some exceptions, according to the speci-
fication found in the data book. Support for the following will be provided in a
future release: YUV 4:2:2 interspersed mode, YUV 4:2:0 mode, upscaling, overlay-
ing, the YTHR interrupt, and the use of the Y/U/V_DELTA registers.

— Audio In (AI). the audio input signal processing unit is simulated accurately
according to the architecture specified in the data book. (Note that timing accu-
racy is not supported.)

— Audio Out (AO). The audio output unit is simulated according to the specification
found in the data book.

— Image Co-Processor (ICP). Preliminary support for the ICP unit is provided. See
the data book for a specification.

— PCI Interface. The interface with the PCI bus is simulated (see the architectural
specification in the data book).

— JTAG. The IEEE 1149.1 (JTAG) standard on-chip controller facilitates monitoring
and modification of a running system. This device is described in the data book.

— SSI. The V.34 Serial Synchronous Interface is simulated. See the data book for a
description of this device.

— VLD. The Variable Length Decoder performs Huffman decoding for MPEG/
MPEG2. This device is described in the data book.

— Debug Support. Instruction and/or data breakpoints can be defined. When a
match is found, an event is generated that can be used as the clock input to one of
the timers. After counting a number of events, the timer generates an interrupt
request. For a detailed description, see the data book.

— Cache, memory and CPU control registers. All registers are supported.

— Instruction cache tag and status bits can be read through the MMIO space as
described in the Cache Architecture chapter of the data book.

— The System I/O space is not currently supported.

Chapter 13: The TriMedia Simulator

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 149

13

Figure 29 Memory Map of Instruction and Data Memory

For a complete description of data memory, see the appropriate data book.

Command Syntax

This is a summary of the machine level simulator command syntax. Details follow.

tmsim [option ...] [machine | machine.md]] object [arg ...]

tmsim simulates a compiled and linked executable object file that would run on a Tri-

Media processor. tmsim simulates the DSPCPU as described in the machine description

file machine. Simulation includes:

■ The PCSW, DPC, SPC and CCCOUNT registers.

■ The MMIO space, memory and cache control registers.

■ The vectored interrupt controller.

■ Four timers and debug support (instruction and data breakpoints).

Audio input/output, video input/output, SSI, JTAG, VLD, and ICP peripherals are simu-

lated only when enabled through a command-line option.

tmsim also (1) provides operating system support, (2) catches and reports exceptions,

and (3) includes commands that are useful for debugging. tmsim can print useful infor-

mation about the state of the simulator and store trace information in a file.

system I/O

system I/O

MMIO registers

Cache RAM

0x00 0000

0x10 0000

0x12 0000

0x1F FFFF

MMIO
(2 Mb)

data and
instruction RAM

(8 Mb)

0xFFFF FFFF

0xF000 0000

0xEFE0 0000

initialized from
object file

0x0000 0000

Chapter 13: The TriMedia Simulator

150 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

tmsim can run a simulation either in batch mode or in interactive mode (with the -i

option). When run in batch mode without specifying the -batchfile option, tmsim exe-

cutes the program in the specified object file until completion or until an error occurs. In

interactive mode, you can enter commands to control the simulation. The same com-

mands can be specified in a batch file and executed by invoking tmsim with the

-batchfile option.

tmsim includes commands which set up the simulation, run the simulation and allow

interactive debugging, print information, deal with batch mode execution, and gather

performance information and statistics. In interactive mode, you must enclose strings

and filenames in double quotes ("..."). Labels need not be quoted. Numbers and addresses

can be in decimal (default) or in hexadecimal format (preceded by 0x).

Command Line Options

tmsim recognizes the command-line options described below. Abbreviations for some

options are also available, as shown.

-audioin file | -ai file
Simulates audio input, taking input from file. The input is a text file having one
16-bit hex number per line, where each number represents the pin states at each
cycle.

Note that bit 13 (little-endian) has special significance: when the simulator sees
this bit set, it remembers the point in the data file. When end-of-file is reached,
the simulator returns to that point and continues reading, allowing a continuous
cycle of data after the initial set-up.

The pin assignments are

AI_WS 0x8000
AI_SCK 0x4000
AI_SD 0x0001

By default, tmsim does not simulate audio input.

-audioout file | -ao file
Simulates audio output, taking input from file. The input is a text file having one
16-bit hex number per line, where each number represents the pin states at each
cycle.

Note that bit 13 (little-endian) has special significance: when the simulator sees
this bit set, it remembers the point in the data file. When end-of-file is reached,
the simulator returns to that point and continues reading, allowing a continuous
cycle of data after the initial set-up.

The pin assignments are

AO_WD 0x8000
AO_SCK 0x4000
AO_OSCLK 0x4000
AO_SD 0x0001

By default, tmsim does not simulate audio output.

Chapter 13: The TriMedia Simulator

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 151

13

-batchfile file | -bf file
Reads and executes the simulator commands from the batchfile file.

By default, tmsim does not read a batch file.

-cachetracefile file | -ctf file
Generates a cache trace and write it to file.

By default, tmsim generates no cache trace.

-clockfrequency n | -cf n
Sets the external clock frequency to n MHz. The CPU and memory clock frequen-
cies are derived from the external clock frequency according to the setting of the
PLL_ratios register.

By default, both the CPU and memory clock frequency are twice the external
clock frequency. And by default, the external clock frequency is 50 MHz.

-cycles1 n1 | -c1 n1
Print intermediate simulator information after every n1 cycles (if the -v option is
also specified non-zero).

The default is 1000000 (106).

-cycles2 n2 | -c2 n2
Interrupts execution after n1 × n2 cycles. When tmsim reaches this limit, it prints
“Aborting: Cycle limit exceeded” and exits.

The default is 100000 (105).

-dse Prints a warning message when the simulator encounters a data segmentation
error.

By default, tmsim prints no warning.

-eb Starts the simulation in big-endian mode (i.e., the value of the PCSW.BSX bit is 0).
The default is big-endian.

-el Starts the simulation in little-endian mode (i.e., the value of the PCSW.BSX bit is
1). The default is big-endian.

-h Prints help information.

-i Enters interactive mode after reading the machine description file and the object
file. You can issue commands at the interactive prompt.

By default, tmsim is not interactive.

-imagecoprocessor | -icp
Simulates the image coprocessor.

By default, tmsim does not simulate the image coprocessor.

-intlat Prints interrupt latency statistics in the report file.

By default, tmsim does not print these statistics.

-jtag file | -jt file
Simulate the JTAG unit, taking input from file. The input is a text file having one
16-bit hex number per line, where each number represents the pin states at each
cycle.

Note that bit 13 (little-endian) has special significance: when the simulator sees
this bit set, it remembers the point in the data file. When end-of-file is reached,

Chapter 13: The TriMedia Simulator

152 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

the simulator returns to that point and continues reading, allowing a continuous
cycle of data after the initial set-up.

The pin assignments are

JT_TDO 0x0008
JT_TDI 0x0004
JT_TMS 0x0002
JT_TCK 0x0001

By default, tmsim does not simulate the JTAG unit.

-machinefile file | -mf file
Reads the machine description from file. For the default machine description file,
tmsim searches for these files, in this order:

$TCS_MACHINE, if set

$TCS /lib/tm1.md, if $TCS is set

/usr/local/tcs/lib/tm1.md (or lib/tm1.md under the install directory).

-memorybase n | -mb n
Locates the SDRAM data memory starting at address n.

The default is 1048576 (0x100000 or 220).

-memorymodel | -mm
Simulates the TriMedia cache and memory model.

By default, tmsim does not simulate the cache and memory model.

-memorysize n | -ms n
Sets the size of data memory to n kilobytes.

The default is 8192 kilobytes, i.e., 8 Mb.

-reportfile file | -rf file
Writes simulator information and error messages to file.

By default, tmsim writes to your terminal (or PC screen).

-ssi file
Simulates the SSI, taking input from file. The input is a text file having one 16-bit
hex number per line, where each number represents the pin states at each cycle.

Note that bit 13 (little-endian) has special significance: when the simulator sees
this bit set, it remembers the point in the data file. When end-of-file is reached,
the simulator returns to that point and continues reading, allowing a continuous
cycle of data after the initial set-up.

The pin assignments are

V34_IO2 0x0020

V34_IO1 0x0010

V34_RXDATA 0x0004

V34_RXFSX 0x0002

V34_CLK 0x0001.

By default, tmsim does not simulate the SSI.

Chapter 13: The TriMedia Simulator

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 153

13

-statfile file | -stf file
Generates execution statistics (per decision tree) and prints them to file.

By default, tmsim generates no execution statistics. The statistics file produced by
this option is an ASCII file that contains a line describing each decision tree exe-
cuted during program simulation.

Each line contains nine fields:

Tree name
number of executions
number of instruction cycles.
number of instruction cache stall cycles.
number of data cache stall cycles.
number of cache copybacks.
number of cache conflicts.
number of operations.
number of useful operations.

-status
Returns an exit status (indicating the success or failure of tmsim itself, rather than
the exit status of the simulated program).

By default, tmsim returns the exit status of the simulated program.

-t Times instruction execution and reports the average number of cycles simulated
per second.

By default, tmsim performs no instruction timing.

-tracefile file | -tf file
Enables trace mode and write to the given file.

By default, tmsim performs no tracing.

-trappci
Traps all application program accesses to the PCI bus.

By default, tmsim performs no trapping.

-v Verbose mode: prints header, trailer and intermediate cycle reports.

By default, tmsim prints nothing.

-V Prints tmsim version information.

-videoin file | -vi file
Simulates video input, taking input from file. The input is a text file having one
16-bit hex number per line, where each number represents the pin states at each
cycle.

Note that bit 13 (little-endian) has special significance: when the simulator sees
this bit set, it remembers the point in the data file. When end-of-file is reached,
the simulator returns to that point and continues reading, allowing a continuous
cycle of data after the initial set-up.

The pin assignments are

VI_DVALID 0x8000
VI_CLK 0x4000
VI_DATA 0x03FF (bits 0Ð9)

Chapter 13: The TriMedia Simulator

154 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

By default, tmsim does not simulate video input.

-videoout file | -vo file
Simulates video output, taking input from file. The input is a text file having one
16-bit hex number per line, where each number represents the pin states at each
cycle.

Note that bit 13 (little-endian) has special significance: when the simulator sees
this bit set, it remembers the point in the data file. When end-of-file is reached,
the simulator returns to that point and continues reading, allowing a continuous
cycle of data after the initial set-up.

The pin assignments are

VO_CLK 0x0400

VO_IO2 0x0200

VO_IO1 0x0100

VO_DATA 0x00FF (bits 0Ð7)

By default, tmsim does not simulate video output.

-vld Simulate the variable length decoder.

By default, tmsim does not simulate the variable length decoder.

-wx Normally if warnings are generated, tmsim exits with a negative exit status. This
option will cause tmsim to exit with status = 0 even if warnings were generated.

-xio file
Simulate the PCI-XIO unit as a RAM, taking initial content of the RAM from file.

By default, tmsim does not simulate the PCI-XIO unit.

Interactive debug commands

The following sections present interactive debug commands, in several categories.

Setup Commands

These are the available tmsim setup commands:

clockfrequency freq
Sets the target clock frequency (of the external clock input pin) to freq MHz. The
default is 50 MHz. You can specify freq with a fractional part, e.g., 97.6 MHz.

cycles1 n1 | c1 n1
Sets the number of cycles (after which the simulator prints a short message) to n1.
The default is 1000000 (106).

cycles2 n2 | c2 n2
Interrupt execution after n1 × n2 cycles, printing the message “Aborting: cycle
limit exceeded.” This command is useful for batch mode simulation of programs
with a possible infinite loop. The default is 100000 (105).

Chapter 13: The TriMedia Simulator

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 155

13

datasegmentationerror [ON | OFF] | dse [ON | OFF]
Determine whether tmsim interrupts simulation when it detects a segmentation
error in data memory addressing. ON means interrupt, OFF means do not inter-
rupt. The default is OFF.

echo [ON | OFF | string]
Either turn command echoing ON or OFF or echo the given string. This command
can be useful for batch file execution. The default is OFF.

Simulation and Debugging Commands

break id | b id
Define a breakpoint at the location specified by symbolic address id in the simu-
lated program.

break address | b address
Define a breakpoint at the absolute address in the simulated program. tmsim stops
execution before executing the instruction at the specified address. Any number
of breakpoints can be set.

Examples:

break _main 0
b _printf 2
b 1275
b 0x10 4

delbreak id | db id
Remove the breakpoint at the location given by the symbolic address id.

delbreak address | db address
Remove the breakpoint at the absolute address.

clearbreak | cb
Remove all instruction breakpoints.

continue | c
Continue execution until an exception occurs, the cycle limit is exceeded, or the
program exits normally.

end | q
End the tmsim session.

reset Reset the machine. The command resets the program counter to the start address
of the simulated program. Note, however, that this command does reinitialize any
variables. Specifically, it does not reset ANSI C library dependent behavior (such as
dynamic memory allocation). Your program initialization code might do this.
Otherwise, you must exit and restart tmsim.

run n | r n
Run n cycles or until an exception occurs.

runtilljmp | rj
Run until the next (interruptible or non-interruptible) jump operation is exe-
cuted. The jump can be successful or unsuccessful.

Chapter 13: The TriMedia Simulator

156 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

runtilljmptaken | rt
Run until the next successful (interruptable or non-interruptable) jump operation
is executed.

step | s
Single-step the program (execute one clock cycle).

stepinstruction | si
Single-step the program by executing one instruction.

watchread low high | wrd low high
Causes a read operation in the address range low to high to generate a simulator
interrupt. You can disable watchread by specifying a high address that is lower
that the low address.

watchwrite low high | wwt low high
Causes a write operation in the address range low to high to generate a simulator
interrupt. You can disable watchwrite by specifying a high address which is lower
that the low address.

writemem id number format | wm number format
Write number to the data memory location specified by the label id. Specify the
number in hex. The format can be one of the following:

B byte, 8 bit integer

HW halfword, 16 bit integer

W word, 32 bit integer

writemem address number format | wm address number format
Write number to the given data memory address. Specify the number in hex. The
format can be one of the following:

B byte, 8 bit integer

HW halfword, 16 bit integer

W word, 32 bit integer

writereg [reg | PCSW | SPC | DPC] number | wr [reg | PCSW | SPC | DPC] number
Write number to register number reg or to the specified register. Specify the number
in hex. The number is always treated as a 32-bit value.

Information-Printing Commands

dumpinstructions [low high] file | di [low high] file
Dump instructions to file. If you specify low and high, tmsim dumps only instruc-
tions in the address range low to high. If you specify no address range, tmsim
dumps the complete instruction memory (as derived from the object file). Specify
addresses in hex.

The dump file contains one instruction per line. The format for each operation is:

opcode bits 67–60

source register 1 bits 59–53

source register 2 bits 52–46

guard register bits 45–39

Chapter 13: The TriMedia Simulator

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 157

13

destination registerbits 38–32

modifier bits 31–00

where the LSB is bit 0 and the MSB is bit 67.

For example, the command

di 20 60 "test"

produces:

startaddress 48
exitaddress 4026531840

stackorigin 6912
0000000@14

0e0a000fc000000002008000fd000000305f000007e000000071f0410080ffffffff5
f000007f00000012

0900100800000000059f9fc08000000000090000089000000001f1210080fffffffd1
f0610080fffffffe

09001408a0000000009001808b000000000901f4084000000001f1610080fffffffb1
f1410080fffffffc

dumpmemory file | dm file
Dump data memory to file. The format used is suitable for reading by Cadence
CAD tools. Addresses are written every 256 bytes in the following format:

@address

Data is written in hexadecimal format, one word per line.

help | h
Print a quick summary of the most commonly used commands.

pdcs number
Print the data cache set number, including all tag, status and data information.

pics number
Print the instruction cache set number, including all tag, status and data informa-
tion.

printbreak | pb
Print all break conditions.

printsegments | psg
Print information about the instruction and data segments loaded from the object
file.

printinfo
Print information on the simulation parameters.

printinstructions address | pi address
Print the instruction at address in symbolic form.

printinstructions low high | pi low high
Print the instructions in the address range low to high, in symbolic form.

printmachine | pma
Print information regarding the state of the machine being simulated. This com-
mand prints stack and heap addresses, return address, register contents and pro-
gram counter.

Chapter 13: The TriMedia Simulator

158 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

printmemory id format
Prints the contents of data memory at the address of label id. See the format
description following.

printmemory address format
Prints the contents of one data memory address. See the format description follow-
ing.

printmemory low high format | m low high format
Prints the contents of data memory in the address range low to high. The format
indicates how the memory locations are interpreted:

B Byte (8-bit integer).

HW Halfword, 16-bit integer).

W Word, 32-bit integer.

A ASCII character.

S Null-terminated ASCII string. (The string format prints the string until
either the null character or the high address is reached.)

printreg n | PCSW | DPC | SPC | pr n | PCSW | DPC | SPC
Prints the contents of register n or the specified register.

printfreg n | prf n
Prints the contents of register n in floating-point notation.

printregs | prs
Prints the contents of all registers in the register file.

printsymbol address | ps address
Prints the global or local symbol with the closest address preceding the specified
address. The address can be of a variable or of an instruction.

printsymbol id | ps id
Prints the address of the given label or identifier id. The label can be global or
local.

printsymbols [file] | pss [file]
Print to file all labels in the global and local symbol tables with their correspond-
ing addresses. If you specify no file, the tables are printed to the current report file
(which might be your terminal in interactive mode).

stackdump | sd
Print the subroutine call stack of the simulated program.

Batch Mode and Source Files

All commands can be used in batch mode or from source files. For example, the com-

mand

 tmsim -bf batch.cmd test5.md opdiag

executes the commands from the file batch.cmd after initializing itself from the given

machine description file test5.md and the object file opdiag. The following extra com-

mands are significant for executing batch files and switching between interactive and

batch mode:

Chapter 13: The TriMedia Simulator

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 159

13

batchmode
Switch back to executing commands from the batch file after an interactive com-
mand in the batch file has switched to interactive mode. This command is only
valid if tmsim has entered interactive mode from batch execution.

control
Every batch file must start with the control command to be recognized as a legal
batch file.

interactive
Switch to interactive mode. This command is valid only in a batch file.

source file
Execute commands from file as if you were typing them. The source file need not
start with the control command.

Trace Mode and Performance Statistics

tmsim includes a trace mode which provides information about the execution of the

simulated application program. The commands presented here address tracing and

printing trace information.

ctracefile file | ctf file
Write a cache trace to file.

reportfile file | rf file
Write simulation information to file. tmsim will write all information requests as
well as simulator error and information messages. If file is the null string (""),
tmsim writes information to the standard error stream. The use of a specific report
file keeps the standard output and standard error streams available for output
from the application program.

The simulator writes to the terminal by default.

stats file
Write execution statistics for each decision tree to file. The following information
is available:

number of times each tree is executed (execs),

execution cycles (instc) not counting stalls/conflicts,

total issued operations (isopers) and

total executed operations (exopers) excluding unsuccessful guarded operations.

Furthermore, if you have requested the -mm option, the following are also listed:

instruction cache stall cycles (istallc),

data cache stall cycles excluding conflicts (dstallc),

data cache copybacks (cpbacks) and

data cache bank conflicts (cnflctc).

trace [on | off | ns]
Enable trace (on), disable trace (off), or enable trace only for non-stall cycles (ns).
Trace output occurs after the execution of each instruction. tmsim writes the trace

Chapter 13: The TriMedia Simulator

160 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

information to the report file. If combined with the tct or tcf command, symbolic
information is printed for every instruction address.

The default is off.

tracecalls functions | tcf
Print a trace of all functions executed. If combined with the trace on command,
symbolic information is printed for every instruction address.

By default, tmsim does not trace functions.

tracecalls trees | tct
Print a trace of all trees executed. If combined with the trace on command, sym-
bolic information is printed for every instruction address.

By default, tmsim does not trace trees.

tracecalls off | tc off
Turn off function and tree tracing. By default, tmsim does not trace functions or
trees.

vtracefile file
Enable Verilog tracing to file.

By default, tmsim does no Verilog tracing.

Interrupt and Exception Handlers

tmsim has the capabilities to simulate programs that respond to interrupts and excep-

tions. The mechanism in the current version of tmsim is fully compatible with the archi-

tectural definition of the TriMedia chip as described in the data book.

The interrupt and exception handler routines need to manipulate the PCSW and inter-

rupt devices carefully to ensure a coherent handling mechanism. As an example, the

interrupt handler should save the PCSW and DPC registers and disable further inter-

rupts. It should also acknowledge the interrupting device before re-enabling interrupts.

If nested interrupt handling is desired, a stack of PCSW and DPC registers may need to

be built. Refer to the data book for details on interrupt/exception handler architecture

aspects.

Contrarily to interrupt handlers, exception handlers cannot be written as procedures in

C in the current release, since the SPC is not consistently saved. They should be written

in decision tree (.t) intermediate code.

Chapter 13: The TriMedia Simulator

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 161

13

Data Layout

The tmsim simulator implements the register usage and data memory layout conven-

tions in Figure 30.

Figure 30 Default Data Layout

Program Debugging

tmsim can be started in interactive mode using the -i option. In interactive mode, low

level debug support is provided. This support is provided primarily for debug by non-

casual users.

BSS

RAM top

0

stack

HEAP
by _sbrk

DATA

DATA 1

Chapter 13: The TriMedia Simulator

162 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Operating System Emulation

tmsim can be used in two fundamentally different ways:

■ To execute a single program to completion.

■ To load a set of processes and a real-time kernel, such as pSOS, and simulate the coop-

eration of such a set of processes for a given amount of clock cycles.

Simulations of the first nature execute a single program which may perform standard C

library calls. These calls are executed by the standard C library that is linked in at the

machine code level. This library in turn is built on a limited set of primitive handlers for

level 2 UNIX system call support. These handlers are pre-loaded into simulated memory

by the simulator, and execution of these decision trees leads to internal simulator

actions that map to the underlying host system. The list of level 2 handlers supported is:

_close _fstat _isatty _lseek

_link _mktemp _open _read

_unlink _write gentenv time

If the application program exits with a nonzero exit status, tmsim will exit with that

same exit status.

Simulations of the second nature truly run on the bare hardware, and do not use the

built-in handlers described above. Memory management and I/O is fully handled by the

real-time kernel and the simulated I/O devices. We expect to release special documenta-

tion on such simulations later.

Performance Analysis Support: The tmsim Statfile

The tmsim statfile is an ASCII file that provides a detailed view of the execution of an

application. Every line in the statfile file corresponds to one of the decision trees in the

program and contains nine fields that describe cache effects on program execution

speed:

■ Tree name

■ Number of executions

■ Number of instruction cycles

■ Number of instruction cache stall cycles

■ Number of data cache stall cycles

■ Number of cache copybacks

■ Number of cache conflicts

■ Number of operations

■ Number of useful operations

Chapter 13: The TriMedia Simulator

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 163

13

Generally, developers do not need this detailed of a performance analysis and are satis-

fied with the information provided by the performance analysis procedures outlined in

the section describing the tmprof tool.

For those developers who require detailed performance information, this section

describes the tmsim statfile format. The statfile is named and generated by using the

tmsim command line form:

You can also generate a comparative statfile on the hardware by linking with the profile

library using tmprof -genstat. For more information, refer to Miscellaneous Options,

starting on page 88 of Chapter 5 of Book 4, Part A.

WARNING
To avoid generating false hits on blocks that never get executed, do not use
the -bfoldcode linker option when generating a statfile .

Video-Out Support

Video-out is supported.

tmsim Ðstatfile <statfile name> <executable file>

Chapter 13: The TriMedia Simulator

164 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 165

14

Chapter 14

Using the TriMedia CodeWarrior Plugins

Topic Page

Overview 166

Installing the TriMedia CodeWarrior Plugins 166

Implementation Notes 167

Specifying TriMedia CodeWarrior Settings 168

Chapter 14: Using the TriMedia CodeWarrior Plugins

166 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Overview

The TriMedia CodeWarrior Plugins provide a TriMedia compiler and linker for the

CodeWarrior Integrated Development Environment (IDE) and allow TriMedia developers

to use the Metrowerks CodeWarrior IDE for developing TriMedia applications. The Tri-

Media plugins provide the same functionality as the following command line tools:

tmcc, cpp, tmccom, tmsched, tmas, tmld, tmar, tmstrip, and tmsize.

Note
This document describes how to use the TriMedia-specific components of
the CodeWarrior IDE. For information on how to use CodeWarrior IDE, refer
to the documentation that came with it.

Installing the TriMedia CodeWarrior Plugins

Win95/98/NT

To install the TriMedia CodeWarrior Plugins, double-click the Setup program on your

CodeWarrior Installation CD and follow instructions. If CodeWarrior is installed on your

system, choose to install the TriMedia Plugins only. Otherwise, perform a complete

installation.

MacOS

To install the TriMedia CodeWarrior Plugins, double-click the installation program on

your CodeWarrior Installation CD and follow instructions. If CodeWarrior is installed on

your system, choose to install the TriMedia Plugins only. Otherwise, perform a complete

installation.

Known Problems

The following are known problems with the TriMedia plugins. They apply to all plat-

forms unless otherwise noted.

■ “Disassemble” IDE menu command does nothing.

PowerPC

IDE

x86 TM

tmas tmcc tmld

Chapter 14: Using the TriMedia CodeWarrior Plugins

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 167

14

■ “Preprocess” IDE menu command only applies to C source files. Attempt to prepro-

cess *.s, *.t or object files is ignored.

■ You cannot strip static archive libraries.

■ Win95/98/NT plugins do not do context-sensitive help.

■ Win95/98/NT plugins do not support scripting of preference panels.

■ You cannot interrupt the scheduler or assembler phase during compilation.

■ The CodeWarrior IDE does not automatically launch the TriMedia simulator, debug-

ger, or tm(g)mon applications. You have to launch these as a separate step after creat-

ing your TriMedia executable.

■ Output of TriMedia profiling is incompatible with Metrowerks Profiler. You must use

the TriMedia profiler to generate a report.

■ On Win95/98 the CodeWarrior window colors get messed up when other applica-

tions are running. Problem is known to Metrowerks. Does not happen on WinNT or

MacOS.

Implementation Notes

Speeding Up Compilation

To speed up compilation, do the following:

1. Uncheck the “Keep intermediate files” and “Show code and data sizes” in the TriMe-

dia Target panel. (See TriMedia Target on page 171.)

2. Disable “Activate Browser” in the Build Extras preference panel.

These settings do not affect code generation. They only provide additional information

as a result of compiling your code.

Browser Catalog

If you activate browser recording with “Activate Browser” in the Build Extras panel, the

TriMedia compiler may add macro symbols to the catalog that do not appear in any

source file. Internally defined symbols for which no source file exists will have the value

of 1. In addition, you won’t be able to find the definition of these symbols (such as the

__TCS__ macro) with the browser.

Determining which symbols are internally defined depends on your compiler settings.

Chapter 14: Using the TriMedia CodeWarrior Plugins

168 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

File Names and Search Paths

Files names which are specified in the TriMedia preference panels are searched by the

rules specified in the Access Paths preference panel. For example, the prefix file name in

the C Language panel, the graft tuning file in the TriMedia Compiler panel, and the file

containing export symbols in the TriMedia Linker panel are all searched in the directo-

ries specified in the Access Paths panel.

All file names specified in the TriMedia preference panels and used by the TriMedia com-

piler and linker can have embedded whitespace in them.

Specifying TriMedia CodeWarrior Settings

The <Target Name> Settings command in the Edit menu of the CodeWarrior IDE allows

you to specify the settings that affect a particular target in a project. These settings are

grouped into a hierarchical list of panels.

Figure 31 The Target Settings dialog box

Some of the settings are generic and some are TriMedia-specific. This section describes

the panels that contain TriMedia-specific settings only. For more information about the

other settings, refer to the CodeWarrior IDE documentation.

Chapter 14: Using the TriMedia CodeWarrior Plugins

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 169

14

Target Settings

The Target Settings panel allows you to select the target compiler and the linker to use.

Table 7 describes the TriMedia-specific settings in the Target Settings panel.

Access Paths

The Access Paths panel allows you to specify additional access paths for the CodeWarrior

IDE to search while compiling and linking projects.

Table 7 Target Settings Panel

Setting Description

Target Name Use this field to type the name of the target file.

Linker Use this pull-down menu to select TriMedia Linker to use the TriMedia com-
pilation system (compiler and linker) for the current target.

On the Mac,
make sure you
check this
checkbox so
that references
to DOS and
UNIX paths are
interpreted
correctly

Chapter 14: Using the TriMedia CodeWarrior Plugins

170 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Table 8 describes the TriMedia-specific setting in the File Mappings panel.

File Mappings

The File Mappings panel allows you to associate file name extensions with a plug-in

compiler. If you select TriMedia Linker from the Linker pull-down menu in the Target

Settings panel, the File Mappings panel displays TriMedia-specific file name extensions.

Table 8 Access Paths Panel

Setting Description

Always Search User Paths Check to instruct CodeWarrior to search user paths in addition
to System Paths when looking for files included with include
<...> statements. Note: CodeWarrior automatically searches
user paths and system paths for files included with include "..."
statements.

User Paths Win95: Click the User Paths radio button to display the User
Paths list. The User Paths list provides the access paths of the
files that are specific to your project.

System Paths Win95: Click the System Paths radio button to display the Sys-
tem Paths list. The System Paths list provides the access paths
of system headers, PowerPlant, MSL, and so on.

Host Flags Use this menu to specify the host platform for the currently
selected access path in the User Paths or System Paths list.

Chapter 14: Using the TriMedia CodeWarrior Plugins

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 171

14

Table 9 describes the TriMedia-specific setting in the File Mappings panel.

By default, the TriMedia compiler accepts the following extensions:

For more information on how to add, delete, and modify file mappings, refer to the

CodeWarrior IDE documentation.

TriMedia Target

The TriMedia Target panel allows you to specify the settings that are needed to generate

TriMedia targets.

Table 9 File Mappings Panel

Setting Description

Compiler Use this pull-down menu to select TriMedia Compiler for the currently
selected file type in the File Mappings list.

Extension Description

.c C source files. Can be preprocessed or compiled.

.t TriMedia decision tree files. Can be scheduled and assembled.

.s TriMedia assembly language files. Can be assembled.

.dll TriMedia object files that can be read by the TriMedia compiler to be used
for linking.

.a

.lib

.o

Chapter 14: Using the TriMedia CodeWarrior Plugins

172 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

All the settings in this panel (described in Table 10) have equivalent commands and

command line options.

Table 10 TriMedia Target Panel

Setting Description Command Line
Equivalent

Processor Use this pop-up menu to specify the target TriMedia
processor.

Currently, two options are available: TM1000 and
TM1100.

tmcc -target

Host Use this pop-up menu to specify the host OS or runt-
ime environment.

Use the None selection for embedded systems.

tmcc -host

Big endian Check this box to compile for big endian TriMedia
execution.
Uncheck this box to compile for little endian TriMe-
dia execution.

tmcc -eb

tmcc -el

Keep intermedi-
ate files

Check this box to keep intermediate results created
by the pre-processor, compiler, and scheduler in the
same folder as the source file. Intermediate results
are stored in the *.i, *.t, *.s files. Uncheck this box to
discard intermediate results created by the pre-pro-
cessor, compiler, and scheduler. This saves time and
disk space.

tmcc -K

Strip binaries Check this box to strip symbol information from Tri-
Media object files produced by the currently active
project. Uncheck this box to keep symbol informa-
tion in TriMedia object files.

tmstrip
outfilename

Show code and
data sizes

Check this box to disable the display of code and
data sizes in the project window. Uncheck this box to
display the code and data sizes in the project win-
dow.

tmsize

Build for pSOS Check this box to build for pSOS applications and
enable the remaining pSOS Options checkboxes.
Uncheck this box if not building for pSOS applica-
tions. The remaining pSOS Options checkboxes will
be disabled.

NA

Chapter 14: Using the TriMedia CodeWarrior Plugins

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 173

14

When the “Build for pSOS” flag is enabled, the compiler defines the macro symbols

SC_PSOS, SC_PSOSM, and SC_PNA with values as described in Table 11.

Making pSOS
client

Check this box to make a client pSOS application.
The linker automatically links in the appropriate
library.

NA

Use
multiprocessing

Check this box to build multiprocessing pSOS appli-
cations. See Table 10-1.

NA

Use pNA Check this box to use the pSOS pNA component. See
Table 10-1.

NA

Use PPP Check this box to use the pSOS PPP component. The
linker automatically links in the appropriate library.

NA

Output File
Name

Use this field to type the name of the output file for
the project and target.

tmcc
-o outfilename

Table 11 Possible combinations of #define statements when building for pSOS

SC_PSOS = NO SC_PSOS = NO

SC_PSOSM = YES SC_PSOSM = YES

SC_PNA = YES SC_PNA = NO

SC_PSOS = YES SC_PSOS = YES

SC_PSOSM = NO SC_PSOSM = NO

SC_PNA = YES SC_PNA = NO

Table 10 TriMedia Target Panel

Setting Description Command Line
Equivalent

Chapter 14: Using the TriMedia CodeWarrior Plugins

174 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

C Language

The C Language panel allows you to specify the C language settings for preprocessing

and compiling your TriMedia application. The checkboxes in this panel have equivalent

tmccom and cpp command-line options.

Table 12 describes the TriMedia-specific settings in the C Language panel.

Table 12 File Mappings Panel

Setting Description Command Line
Equivalent

Source Model Use this pop-up menu to choose a pre-selected set
of C/C++ language options.

NA

ANSI strict Check to generate error messages for strict ANSI C
rule violations. Note: Using the ANSI source model
(same as having the ANSI strict and Expand trigraphs
checkboxes checked) is not recommended for TriMe-
dia applications because TriMedia custom ops are
not ANSI.

cpp -pedantic -$

Allow language
extensions

Check to allow C language extensions that are not
part of the ANSI C standard.

tmccom -standard

Accept C++ style
comments

Check to allow use of “//” as the beginning of a C
comment.

cpp -lang-c

Predefine non-
standard macros

Check to predefine nonstandard macros. cpp -undef

Expand
trigraphs

Check to enable compiler recognition of trigraph
characters.

cpp -trigraphs

Chapter 14: Using the TriMedia CodeWarrior Plugins

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 175

14

TriMedia Assembler

The TriMedia Assembler panel allows you to specify the TriMedia Assembler (tmas) set-

tings. The checkboxes in this panel have equivalent tmas command-line options.

Sources have
varargs
functions

Check if your source files contain varargs functions. tmcc -varargs

Warning Level Use this pop-up menu to choose the compiler warn-
ing level.

tmccom -W n

Treat warnings
as errors

Check to instruct the compiler to treat all warnings
as error messages. The compiler will not compile a
file until all warnings are resolved.

NA

Prefix file name Use this field to enter the name of the header file
that the compiler includes before every source file in
the project.

cpp -include

Table 12 File Mappings Panel

Setting Description Command Line
Equivalent

Chapter 14: Using the TriMedia CodeWarrior Plugins

176 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

Table 13 describes the TriMedia Assembler panel settings.

TriMedia Compiler

The TriMedia Compiler panel allows you specify tmccom options. The checkboxes, pop-

up menus, and fields in this panel have equivalent tmccom command-line options.

Table 13 TriMedia Assembler Panel

Setting Description Command Line
Equivalent

Enable warning
messages

Check to enable Assembler warning messages.
Uncheck to disable Assembler warning messages.

tmas -w

Warn about
value truncation

Check to enable value truncation warnings when
values are too large to fit into an object code field.
Uncheck to disable value truncation warnings.

tmas -ignore-trun-
cate

Enable hand-
code assistance
reports

Check to let the Assembler generate warnings and
reports that are meaningful for special-purpose
handcoded assembly programs. Uncheck to disable
the generation of handcode assistance reports.

tmas -handcode

Check for regis-
ter overlap

Check to enable register overlap checking that may
be used in the future for binary compatibility.
Uncheck to disable register overlap checking.

tmas -register-
overlap

Chapter 14: Using the TriMedia CodeWarrior Plugins

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 177

14

Table 14 describes the TriMedia Compiler panel settings.

Table 14 TriMedia Compiler Panel

Setting Description Command Line
Equivalent

Optimization
Level

Use this pop-up menu to choose a pre-selected
optimization level.

The optimization levels in this pop-up menu corre-
spond to the -On command-line option where n
represents the optimization level (from 0 to 3).

tmccom -On

Unsafe Alias
Level

Use this pop-up menu to choose a pre-selected set
of unsafe alias levels.

tmccom -An

Folding Floating
Point Expression
Level

Use this pop-up menu to choose a pre-selected set
of folding levels of floating-point expressions.

tmccom
-dirty_float n

Use caller save
registers

Check to enable the use of caller save registers for
leaf functions.

tmccom
-no_caller_save

Allow use of
modifiable
string literals

Check to allow the program to use string literals to
initialize writable data.

Allow atomic
functions to call
others

Check to allow atomic functions to call other func-
tions.

tmccom
-allow_atomic_calls

Generate
scheduling con-
straints to serial-
ize load and
store operations

Check to generate scheduling constraints that
enforce the original source ordering of all load and
store operations.

tmccom -serial

Maximum if-
statement size

Use this field to specify the maximum number of
operations in small if statements that the program
transforms into mux operations. The default value
is 4. Entering 0 in this field disables transformation.

tmccom
-max_if_size n

tmccom -conservative_03

Chapter 14: Using the TriMedia CodeWarrior Plugins

178 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

TriMedia Scheduler

The TriMedia Scheduler panel allows you to specify tmsched options. The checkboxes

and fields in this panel have equivalent tmsched command-line options.

Generate profile
for grafting

Check to instrument each compiled function with
branch-level profile counters. Note: You can’t check
this checkbox if you have already checked the
“Enable decision tree grafting” checkbox.

tmccom -genprofile

Enable decision
tree grafting

Check to enable decision tree grafting.
Note: You can’t check this checkbox if you have
already checked the “Generate profile for grafting”
checkbox.

tmccom -graft

Profiling infor-
mation file

Use this field to enter the name of the file contain-
ing profiling information to optimize functions
being compiled.

tmccom
-readprofile file

Graft tuning file Use this field to enter the name of the file contain-
ing decision tree grafting tuning parameters.

tmccom
-graft_tuning_file
file

Table 14 TriMedia Compiler Panel

Setting Description Command Line
Equivalent

Chapter 14: Using the TriMedia CodeWarrior Plugins

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 179

14

Table 15 describes the TriMedia Scheduler panel settings.

Table 15 TriMedia Scheduler panel description

Setting Description Command Line Equivalent

Enable warn-
ing messages

Check to enable tmsched warning mes-
sages.

tmsched -w

Speculate
floating
point opera-
tions

Uncheck to disallow speculation of float-
ing point operations

tmsched
-nofloatspec

Speculate
memory load
operations

Uncheck to disallow speculation of mem-
ory load operations.

tmsched
-noloadspec

Attempt data
cache bank
conflict
avoidance

Check to enable tmsched to attempt its
built-in ad hoc data cache bank conflict
avoidance, in absence of information from
the compiler or the user.

tmsched -bc

Dynamic
value renum-
bering trans-
formations

Uncheck to disable all dynamic value
renumbering transformations.

tmsched
-norenumber

Precise float-
ing point
exceptions

Check to enable support for precise float-
ing point exceptions. Precise floating
point exceptions are caught in the same
decision tree.

tmsched
-precise_fp

Precise data
breakpoints

Check to enable precise data breakpoints.
This introduces additional scheduling con-
straints that may affect performance.
Note: Checking this checkbox unchecks
the Fuzzy data breakpoints checkbox.
Data breakpoints cannot be fuzzy and pre-
cise at the same time.

tmsched
-precise_bp

Fuzzy data
breakpoints

Check to enable fuzzy data breakpoints.
This introduces additional scheduling con-
straints that may affect performance.
Note: Checking this checkbox unchecks
the Precise data breakpoints checkbox.
Data breakpoints cannot be fuzzy and pre-
cise at the same time.

tmsched
-fuzzy_bp

Low register Use this field to specify the lowest register
available for instruction scheduling. Note:
The compiler assigns the Low Register
value automatically under normal compi-
lation conditions.

tmsched
-reglow=n

Chapter 14: Using the TriMedia CodeWarrior Plugins

180 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

TriMedia Linker

The TriMedia Linker panel allows you to specify the TriMedia Linker (tmld) options. The

checkboxes and fields in this panel have equivalent tmld command-line options.

High register Use this field to specify the highest regis-
ter available for instruction scheduling.
Note: The compiler assigns the High Regis-
ter value automatically under normal com-
pilation conditions.

tmsched -reghigh=n

File of tree
names to
serialize

Use this field to specify the name of the
file containing the comma-separated list
of tree names. The scheduler will serialize
memory operations for these trees. This is
useful in debugging aliasing problems.

tmsched -serial=treename
[, treename]...

Issue Use these checkboxes to specify the
scheduling algorithms to run on the input
file.

tmsched -algorithm=issue

Issue 2 tmsched -algorithm=issue2

Priority tmsched -algorithm=priority

Priority 2 tmsched -algorithm=priority2

Xform tmsched -algorithm=xform

Xissue tmsched -algorithm=xissue

Xpriority tmsched -algorithm=xpriority

Table 15 TriMedia Scheduler panel description (Continued)

Setting Description Command Line Equivalent

Chapter 14: Using the TriMedia CodeWarrior Plugins

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part B 181

14

Table 16 describes the TriMedia Linker panel settings.

Table 16 TriMedia Linker Panel

Setting Description Command Line
Equivalent

Object Type Use this pop-up menu to choose the object type
to create with the linker.

tmld
-btype [boot | dynboot
|app | dll]

tmld -o filename

Library Format Use this pop-up menu to choose the library for-
mat to use for creating a single object or an
archive of objects. This applies to static libraries
only.

tmld -o filename

tmar -r filename

Application
Type

Use this pop-up menu to choose the type of exe-
cutable to which to link.

tmld
-btype [boot | dynboot
| app | dll]

Generate pro-
filing statistics

Check to enable the generation of profiling statis-
tics during execution. Note: Checking this check-
box unchecks the Link for debugger checkbox.
You cannot link for debugging and profiling at
the same time.

tmcc -ptm

Link for
debugger

Check to generate a TriMedia executable that can
be used with the TriMedia Debugger (tmdbg).
Note: Checking this checkbox unchecks the Gen-
erate profiling statistics checkbox. You cannot
link for debugging and profiling at the same
time. Note: The Enable Debugger option in the
Project menu of the CodeWarrior IDE is not appli-
cable to TriMedia applications.

tmld -g

Start address Use this field to specify the global symbol as the
start address. This value is required for bootable,
dynamically linked, and non-bootable executa-
bles.

tmld
-start=start_symbol

tmld -btype [boot | dynboot | app

tmld -o filename

tmar -r filename

tmld -o filename

Chapter 14: Using the TriMedia CodeWarrior Plugins

182 Book 4—Software Tools, Part B ©1999 Philips Semiconductors 10/08/99

File of export
symbols

Use this field to specify the name of the file con-
taining comma-separated symbols to be
exported to the dynamic loader.

tmld -bexport symbol
[, symbol]...

File of immedi-
ate symbols

Use this field to specify the name of the file con-
taining comma-separated symbols (dynamically
loadable module for resolving modules dynami-
cally). These modules are loaded as soon as the
code segment, which references it, is loaded.

tmld
-bimmediate code_seg
[, code_seg]...

File of deferred
symbols

Use this field to specify the name of the file con-
taining comma-separated files. These modules
are loaded at runtime upon the first call to a func-
tion exported by the code segment(s).

tmld -bdeferred

Remove
identical code

Check to remove duplicate identical code which
consists of identical function epilogues created
by the compiler.

tmld -bfoldcode

Remove
unused code

Check to remove unused code. The linker ana-
lyzes all read-only sections to determine parts
which cannot be used.

tmld
-bremoveunusedcode

Reorder
decision trees
for code com-
paction

Check to reorder code at the decision tree level to
minimize the amount of instruction padding. This
may affect performance.

tmld -bcompact

Table 16 TriMedia Linker Panel

Setting Description Command Line
Equivalent

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 4—Software Tools
	Program Development Tools
	10: TSSA Essentials
	Introduction
	The Assembler
	Assembly Code Checks
	Main Options
	The -handcode option

	Assembly Syntax
	Example
	Machine Constraints
	Other Constraints
	Pseudo-Operations
	Control-Flow Fall-Through
	Branches are Mutually Exclusive

	Assembly Expressions
	Expression Syntax
	Use of Symbols in Assembly Expressions
	Assembler Directives
	Assembler Directives at a Glance
	.text, .data, .data1: Switch Sections
	.ascii: Character Data
	.byte, .half, .word: Generating Data
	.common: Declare a Common Symbol
	.reserve: Define a Symbol with Alignment
	.global: Define a Global Symbol
	.align: Align the Current Address
	Use of Directives and Program Layout

	TM-1x00 Constraints
	Instruction Format and TM-1x00 Constraints
	Instruction Format
	Code Placement Constraints

	Special Register Semantics
	PCSW Writes and Reads
	Changes to DPC

	MMIO Location Updates
	Forward Compatibility
	Crossover of Register Writes
	Assembly Program Checklist

	Interfacing C with Assembly Language Programs
	Memory Layout and C Calling Conventions
	Using the C Preprocessor
	Calling Assembly Code from C Code
	C Variables and Corresponding Assembly Directives

	Opcodes
	Functional Unit Types
	ALU
	BRANCH
	CONST
	DMEM
	DMEMSPEC
	DSPALU
	DSPMUL
	FALU
	FCOMP
	FTOUGH
	IFMUL
	SHIFTER

	TriMedia Opcodes

	11: Linking TriMedia Object Modules
	Introduction
	Overview
	Object Files
	Object File Structure
	Object Manipulation Tools

	Object File Contents
	Sections
	Example

	Program Unit Attributes
	Section Attributes
	System Sections and Sections Introduced by tmld

	Symbols
	References

	Static Linking
	Dynamic Linking
	Why Dynamic Linking is Valuable
	Concepts of Dynamic Loading
	Difference Between Static- and Dynamic Linking
	Code Segments

	Simple Examples
	Dynamic Library
	Runtime Library Update
	Application Shell
	Dynamic Loader Shell

	Responsibilities of the Dynamic Loader
	More on Dynamic Libraries
	Dynamic Library Roles
	Dynamic Library Search Path
	Exported Symbols
	Control Over Implicit Dynamic Loading
	Function Stubs
	Compatibility Across Versions of Dynamic Libraries
	Binding Code Segments

	TriMedia Dynamic Loader Architecture
	Notes and Caveats of Dynamic Loading
	Carefully Consider Transitive Errors
	Real Time Issue
	Carefully Consider Exporting Internal State
	Function Stub is Part of Referring Segment
	Executables are Generally Larger
	Code Segments and PIC

	Compiler Options for Dynamic Loading
	More Examples
	Dynamic Loading from Flash
	Memory Manager Customization
	Implicit Loading Error Handling

	Section Renaming
	Sections Produced by tmccom
	Other Sections Produced by SDE Tools

	Link Optimizations
	Multiprocessor Support
	Shared Memory

	SDRAM Memory Images vs Load Images
	Constructing Load Images Using tmld
	Download Symbols
	Reserved Download Symbols
	Other Download Symbols Used by the TriMedia SDE

	tmld Options
	List Construction by tmld
	Example
	Other Uses of Chain Symbols
	Reserved Chain Symbols

	12: Utilities, Execution Host
	Summary
	The TriMedia Manager
	TMMan Setup & Removal

	TriMedia Commands
	tmgmon
	Running the Software
	Processor
	Code Download
	Memory
	Trace

	TMRun
	TMmpRun

	13: Simulator, The TriMedia
	Introduction to Machine-Level Simulation of TriMedia Processors
	The Simulated Architecture
	Command Syntax
	Command Line Options
	Interactive debug commands
	Setup Commands
	Simulation and Debugging Commands
	Information-Printing Commands
	Batch Mode and Source Files
	Trace Mode and Performance Statistics

	Interrupt and Exception Handlers
	Data Layout
	Program Debugging
	Operating System Emulation
	Performance Analysis Support: The tmsim Statfile

	Video-Out Support

	14: CodeWarrior Plugins, Using the TriMedia
	Overview
	Installing the TriMedia CodeWarrior Plugins
	Win95/98/NT
	MacOS
	Known Problems

	Implementation Notes
	Speeding Up Compilation
	Browser Catalog
	File Names and Search Paths

	Specifying TriMedia CodeWarrior Settings
	Target Settings
	Access Paths
	File Mappings
	TriMedia Target
	C Language
	TriMedia Assembler
	TriMedia Compiler
	TriMedia Scheduler
	TriMedia Linker

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

