

Version 2.1

AB

Book 4—Software Tools

Part C:

TriMedia Debugger

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part C

iii

Book 4—Software Tools
Part C: TriMedia Debugger

Table of Contents

Chapter 15 Introduction to Debugging

Overview of the TriMedia Debugger (tmdbg)... 10

Command-Line Version ... 10

Graphical User Interface Version .. 10

Backward Compatibility .. 10

TriMedia Debugger Architecture ... 12

Front End .. 12

Target-Driver ... 12

Debug Monitor ... 13

Installation Requirements... 13

Getting Started Quickly ... 14

Other Debugging Tools: printf and DP ... 14

Chapter 16 Debugging Standard TriMedia Applications

Preparing Programs for Debugging.. 16

Generating Symbolic Debugging Information .. 17

Linking the Debug Monitor Library .. 17

Using the -g Option .. 17

Using the TriMedia Linker... 17

Using the Debugger ... 18

Starting the Command-Line Version of tmdbg .. 18

Listing tmdbg Commands ... 18

Getting Help about a Specific Command... 19

Listing the Source Code .. 19

Source Code Line Components.. 20

Starting the GUI Version of tmdbg .. 20

Controlling Program Execution.. 23

Single Stepping .. 23

Stepping Across Functions .. 23

Stepping Out of Functions ... 24

Table of Contents

iv

Book 4—Software Tools, Part C

©1999 Philips Semiconductors 10/08/99

Using Breakpoints... 24

Setting Breakpoints .. 24

Setting Software Instruction Breakpoints .. 24

Setting Hardware Data Breakpoints... 26

Setting Hardware Instruction Breakpoints .. 29

Removing Breakpoints .. 30

tmdbg Breakpoint Anomalies .. 31

Software Workaround.. 33

Examining and Changing Data, Memory, and Registers ... 33

Symbolic Access ... 33

Expression Evaluation .. 34

Assignment .. 35

Nonsymbolic Access ... 35

Tracing the Call Stack ... 39

Moving Up and Down the Call Stack .. 39

Disassembling Instructions... 41

Using tmdbg with tmsim on Windows 95 .. 42

Chapter 17 Debugging C++ Code with tmdbg

Introduction... 44

Accessing C++ Definitions... 44

Accessing Class Members.. 45

Accessing C++ Variable Declarations.. 47

Setting Breakpoints.. 47

Accessing Virtual Functions .. 48

Debugging Templates.. 49

Unsupported Features ... 50

Non-ANSI Compliant Names... 52

Notes ... 53

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part C

v

Chapter 18 Debugging TriMedia Applications Using JTAG

Introduction... 56

Stand-Alone Debugging Modes .. 57

No-Host Mode .. 57

Host-Assisted .. 58

System Requirements .. 59

Hardware .. 59

Software .. 60

Setting Up the System for Stand-Alone Debugging .. 61

Testing the JTAG Connection.. 62

Testing the Corelis Board JTAG Connection .. 63

Sample Session .. 63

Testing the Turbo Board JTAG Connection .. 64

Sample Session .. 64

Compiling a Program for Stand-Alone Debugging.. 64

Debugging Stand-Alone TriMedia Applications ... 65

Debugging with No-Host ... 65

JTAG Debugging in Host-Assisted Mode .. 67

Sample Host-Assisted JTAG Debugging Session ... 67

Multiple Debugging Sessions... 68

Chapter 19 Debugging TriMedia pSOS+™ Applications

Introduction... 70

pROBE Functionality in tmdbg —The pSOS+ Monitor .. 70

Setting Up a pSOS+ Application for Use with tmdbg .. 70

Inspecting pSOS+ Objects ... 70

Query pSOS+ Configuration ... 71

Query Date ... 72

Query Object ... 72

Query Partition ... 72

Query Queue ... 73

Query Region .. 73

Query Semaphore ... 74

Query Task .. 74

Table of Contents

vi

Book 4—Software Tools, Part C

©1999 Philips Semiconductors 10/08/99

Getting Profile Information of a pSOS+ Application .. 74

pSOS+ Breakpoints... 76

Breakpoint on pSOS+ System Calls... 76

Breakpoints on Task Scheduling .. 76

Deleting pSOS+ Breakpoints... 77

Callout Functions .. 77

Print ... 78

Pitfalls.. 79

Chapter 20 Debugging TriMedia Applications Using printf and DP

Introduction... 82

Debugging Using printf... 82

Comparing DP and printf .. 82

Using DP ... 83

Description of DP Macros ... 84

Chapter 21 Debugging Multiprocessor and Multitasking Applications

Introduction... 86

Loading a Multiprocessor Application.. 86

Switching Focus .. 87

The procs Command .. 87

Debugging Tasks... 87

Debugging Tasks in System Mode .. 88

Debugging Tasks in the Task Mode .. 89

Chapter 22 Other Debugging Information

Debugging Interrupt Handlers .. 92

Interrupt Handler Characteristics and Problems ... 92

Interrupt Handler Solutions ... 93

Setting Breakpoints .. 93

Debugging the Host Call Interface and Device Library ... 93

Debugging at Optimization Levels Higher Than -O1... 94

Diminished Visibility of Local Variables and Parameters ... 94

Variables May Have Been Optimized Away ... 95

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part C

vii

Code May Have Been Moved .. 95

Code May Have Been Unrolled ... 95

Code May Have Been Inlined .. 95

Chapter 23 tmdbg Command Reference

Overview of Debugger Commands... 98

Debugger Expressions ... 98

Debugger Commands.. 98

Execution Control Commands .. 99

Data and Stack Commands ...100

Source File Commands ..103

pSOS+ Commands ..104

Task-Level Debugging Commands ...105

Multi-Processor Debugging Commands ..105

Miscellaneous Commands ...105

Chapter 24 Code Listings

x.c ...110

foo.c ...110

d.h ..111

d1.c ..112

d2.c ..113

Table of Contents

viii

Book 4—Software Tools, Part C

©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part

C

9

15

Chapter 15

Introduction to Debugging

Topic Page

Overview of the TriMedia Debugger (tmdbg) 10

TriMedia Debugger Architecture 12

Installation Requirements 13

Getting Started Quickly 14

Other Debugging Tools: printf and DP 14

Chapter 15: Introduction to Debugging

10

Book 4—Software Tools, Part

C ©1999 Philips Semiconductors 10/08/99

Overview of the TriMedia Debugger (tmdbg)

The TriMedia Source-Level Debugger (

tmdbg

) is the main tool for debugging TriMedia

applications.

tmdbg

 is an interactive debugging tool that enables you to run a program

with interactive user control and to inspect and modify the state of a stopped program.

tmdbg

 provides complete control over the execution of a program. It enables you to

view the values of variables and expressions, set breakpoints in the code, and run and

trace a program. It is available in the following two flavors:

■

Command-line

■

GUI

Command-Line Version

The command-line version of

tmdbg

 runs on all supported platforms (Windows 95,

Windows NT, and UNIX). It provides a set of commands that enable you to perform the

different debugging tasks. A complete debugger command reference is available in

Chapter 23,

tmdbg Command Reference

.

Graphical User Interface Version

The current graphical user interface (GUI) version of

tmdbg

 runs on all supported plat-

forms in the same way that the command-line version and provides an easy-to-use GUI

that allows you perform most of the debugging actions with the mouse. This reduces

your learning time and enables you to focus on debugging, rather than having to memo-

rize and type complex commands.

Note

The Messages window in the GUI version of

tmdbg

 allows you to enter
commands as if you were using

tmdbg

’s command-line version.

Backward Compatibility

Object code, trees code, or assembly code created by compiling with the

-g

 option on the

1.1 or 2.0a compilers should not be used with the 2.0b debugger. This restriction applies

even if the code is scheduled, assembled, or linked by the 2.0b compiler with other 2.0b

object.

Chapter 15: Introduction to Debugging

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part

C

11

15

Figure 1

tmdbg’s user interface

Note

The look-and-feel of the user interface may differ depending on the
platform you are using. The screen captures in this chapter were taken on a
Windows 95 platform.

Source Code Window

Toolbar Command Icons

Messages Window (can also be
used to enter command lines)

Other Windows (accessible
through the “View” menu)

Chapter 15: Introduction to Debugging

12

Book 4—Software Tools, Part

C ©1999 Philips Semiconductors 10/08/99

TriMedia Debugger Architecture

The TriMedia Debugger (

tmdbg

) works with different host drivers and dynamic loaders.

It can be used on a stand-alone system or on a PC-based system. Figure 2 shows the three

major components of the TriMedia Debugger Architecture: front-end, target-driver, and

debug monitor.

Figure 2

TriMedia debugger architecture

Front End

The front end and the target-driver components run on the host, while the debug moni-

tor runs on the target. The front end includes the following:

■

Command-line parser

■

GUI

■

Expression evaluator

■

Symbol table module

■

Object file reader

Target-Driver

The target-driver is the back end of

tmdbg

 and runs on the host. A target system

includes a TriMedia board, possibly a RTOS, and some host-based drivers used for load-

ing, communications, and so forth. The target-driver has two parts: a target-dependent

part and a target-system-independent part. The target-dependent part (also called the

device driver

) is provided by TriMedia, or another vendor developing a system that

includes a TriMedia microprocessor.

Target-Driver
(Target-Independent Part)

Front End

Target-Dependent
Parts

Stand-Alone
System Driver

Target

tmsim
Driver

TriMedia
Driver

Host

Some RTOS Debug Monitor

Chapter 15: Introduction to Debugging

©1999 Philips Semiconductors 10/08/99

Book 4—Software Tools, Part

C

13

15

Because many target-dependent drivers may exist on a system,

tmdbg

 provides the fol-

lowing command-line options to choose the target system:

Debug Monitor

The debug monitor runs on the target on which an RTOS might or might not be run-

ning. The monitor sends messages to the host-resident debugger in different ways:

■

When you use

tmdbg

 with

tmsim

, the debug monitor uses sockets to send messages.

■

When you use

tmdbg

 to debug programs on TriMedia reference boards (plugged into

a PCI slot on a PC or a Mac), the debug monitor uses the shared memory on the host.

■

For passing messages to the stand-alone systems,

tmdbg

 communicates with the

debug monitor through the Joint Test Action Group (JTAG) port. The TriMedia archi-

tecture provides two MMIO registers to be used as input and output buffers, and one

MMIO control register to be used for handshake. The JTAG registers on the chip are

used solely as a communication mechanism for the debugger.

A common message-passing layer is implemented on top of the low-level data-transfer

mechanisms such as JTAG, PCI, and sockets.

tmdbg

 provides the same functionality

(namely source-level debugging and low-level access to registers, memory, and so on)

whether the target is

tmsim

 or a TriMedia board connected via PCI or JTAG.

Installation Requirements

To use

tmdbg

, you must perform a

complete

 installation of the TriMedia SDE as described

in Book 1,

Getting Started with Philips TriMedia

. If you perform only a light installation

and try to use

tmdbg

, you may get error messages.

Note

tmdbg

 will report a

gethostbyname

 failure if it cannot find an IP address for
the host machine. See

A Note on Installation Requirements For the TriMedia
Debugger

 in Chapter 2 of Book 1,

Getting Started with Philips TriMedia

.

tmdbg -target {tmsim | tm1} a.out
cuv]

library

 [

object

 ...]
o abctmld -eb a.o b.o libc.a c.o
.o a.o b.o c.o

Chapter 15: Introduction to Debugging

14

Book 4—Software Tools, Part

C ©1999 Philips Semiconductors 10/08/99

Getting Started Quickly

If you want to start using the debugger without having to read the debugger documenta-

tion, do the following:

1. Compile the program you want to debug with the

-g

 option.

2. Start the debugger by performing one of the following steps:

— Enter

tmdbg -cli

 at the command line or DOS prompt to launch the command-
line version of

tmdbg

.

— Double-click the tmdbg.exe icon (c:\<Installation_Folder_Name>\bin\) in Win-
dows 95 and Windows NT platforms to launch the GUI version of

tmdbg

.

— Enter

tmdbg

 at the command line or DOS prompt to launch the GUI version of
the debugger. See Chapter 23 for a

tmdbg

 command reference.

3. If you are using the command-line version of

tmdbg

, enter

help

 at

tmdbg

’s com-

mand-line prompt to learn how to use

tmdbg

’s commands.

Other Debugging Tools: printf and DP

Chapter 20,

Debugging TriMedia Applications Using printf and DP,

describes two important

techniques,

printf

 and Debug Print (DP), that you can use to debug TriMedia programs

when not using tmdbg.

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 15

16

Chapter 16

Debugging Standard TriMedia Applications

Topic Page

Preparing Programs for Debugging 16

Using the Debugger 18

Controlling Program Execution 23

Using Breakpoints 24

Examining and Changing Data, Memory, and Registers 33

Tracing the Call Stack 39

Disassembling Instructions 41

Using tmdbg with tmsim on Windows 95 42

Chapter 16: Debugging Standard TriMedia Applications

16 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Preparing Programs for Debugging

To be able to use tmdbg to debug applications, you must do the following:

1. Generate the symbolic debugging information.

2. Link with the debug monitor library (libmon.o).

3. Specify the debugging target environment using the -target option:

— -target tm1000 for the TM-1000 chip

4. Specify the host using the -host option:

— -host Win95 for Windows 95 platforms

— -host WinNT for Windows NT platforms

— -host nohost for stand-alone systems

— -host tmsim for the simulator

By default, the execution host is the simulator.

5. Specify the optimization level.

By default, the compiler performs level 1 optimization. The only other level of opti-

mization that you can specify when using the -g option is level 2. You do this by

using tmcc’s -O2 option.

This is all done automatically when you compile your program using the -g, -target,

and -O2 options, as shown in Figure 3.

Figure 3 Compiler options required to generate the debug information

Note
tmdbg provides no debugging support for any part of a program not
compiled with the -g option (for example, routines linked in from the
standard C library).

The following sections describe the debugging preparation steps.

tmcc Ðg Ðtarget tm1000 Ðhost Win95 ÐO2 Ðo x.out x.c foo.c

• Generates the symbolic debugging information
• Links with the debug monitor library

Optional: specifies the chip as the debugging target

Required

Optional: specifies the host

Optional: specifies level 2 optimization

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 17

16

Generating Symbolic Debugging Information

Using the -g option, the compiler driver (tmcc) automatically generates symbolic debug-

ging information. The tmdbg program uses this information to inspect and modify the

state of the debugged program.

The symbolic debugging information contains source file paths and a wide range of

source code-related information such as types and scope information of variables.

Linking the Debug Monitor Library

You can link the debug monitor library in one of the following two ways:

• Using tmcc’s -g option

• Using the TriMedia linker tmld

IMPORTANT
tmld should generally not be used to link applications directly. tmcc
specifies information to tmld that is essential for the application to work.
This includes the boot type, endianness, runtime startup, and libraries. If
there is a user need to use tmld directly, tmcc -v should be used first to find
out the required elements.

Using the -g Option

Using the -g option, the compiler driver (tmcc) automatically links the program with

the appropriate version of the debug monitor library (libmon.o), depending on whether

it is operating in little-endian or big-endian mode.

Using the TriMedia Linker

Using the TriMedia linker (tmld) directly, you must link the appropriate version of lib-

mon.o (little-endian or big-endian). Little-endian and big endian versions of libmon.o

are located in the following directories:

Debug Monitor Library Version Directory

Little-endian $INSTALL_DIR/lib/el

Big-endian $INSTALL_DIR/lib/eb

Chapter 16: Debugging Standard TriMedia Applications

18 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Using the Debugger

The TriMedia debugger (tmdbg) can be used with either its command-line version, or its

GUI version.

Starting the Command-Line Version of tmdbg

To debug a program (x.out for example) using the command-line version of the debug-

ger, do the following:

1. Enter the following at the shell prompt:

This starts the TriMedia debugger (tmdbg) and the following message appears:

2. Load the x.out program using the load command. tmdbg automatically determines

the debugging target (the simulator or the TriMedia chip) from the executable and

downloads the program to tmsim or the chip.

3. After it loads the program, the debugger is in a ready state, at the beginning of the

main function of the x.c.

Note
If tmdbg encounters problems while loading the program, it reports the
problem by issuing an appropriate message.

IMPORTANT
The current version of tmdbg generates error messages when it attempts
to demangle C identifier names that start with “__0”. Such names are non-
ANSI compliant, but they are valid, which means that tmcc does not flag
them as errors. Therefore, it is highly recommended not to use the “__0”
prefix in C identifier names (C++ identifier names can have this prefix).

Listing tmdbg Commands

Use the help command, or refer to Chapter 23, to see a listing of tmdbg’s commands.

tmdbg -cli

TriMedia C debugger tmdbg
 v0.69 of SunOS (Jul 2 1997 16:21:21)

no target program loaded

tmdbg> load x.out
downloading program ...
target started, waiting for it to initialize ...
done.
Stopped at addr: 0x001000cd line: 31, main() in "x.c"
B 31* int main(int argc, char *argv[])
tmdbg>

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 19

16

Getting Help about a Specific Command

To list the syntax for the br command, for example, enter the following:

Listing the Source Code

One of the commands that you will use very often is the list command. This command

lists the code of the source file that is currently visited.

For example, to list the code of the x.c program, enter the following:

tmdbg displays the following:

In this example, the list command (you can also use l) lists the source code of the x.c file

starting at the line 32 (the line following the line where tmdbg stopped the execution of

x.out).

To list the code in a specified range, enter the following:

tmdbg displays the following:

tmdbg> help br
BREAK - Set a source-level breakpoint (same as the stop command).

break <line> Stop execution at the line
break <line> <file> Stop execution at the line of <file>
break <func> Stop when <func> of current file is called
break addr <addr> Stop execution at the given address

break <line> when <cond> Stop at line when <cond> is true
break <line> <file> when <cond> Stop at line of <file> when <cond> is true
break <func> when <cond> Stop when <func> is called and <cond> is true
break addr <addr> when <cond> Stop at <addr> when <cond> is true

Note: conditions are evaluated in the context of the breakpoint location.

tmdbg> list

 32 {
 33 noot y;
 34 static int z = 42;
 35 fun f = &main;
 36
B 37 y.x = foo(f, bar(x.x));
 38 printf ("%d %d\n", x.x, x.y);
B 39 printf ("%x %x %x %x %x\n", y.x, y.y[0], y.y[1], y.y[2], y.y[3]);
B 40 return z;
 41 }
 42

tmdbg> l 30 35

 30
B 31* int main(int argc, char *argv[])
 32 {
 33 noot y;
 34 static int z = 42;
 35 fun f = &main;

Chapter 16: Debugging Standard TriMedia Applications

20 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Source Code Line Components

tmdbg adds the following indicators to the code lines of the source file (see Figure 4):

■ Line number indicating the sequential order of program lines (starting at 1).

■ Decision tree marker (B) indicating the beginning of a decision tree.

■ Asterisk (*) indicating the current Program Counter (PC). The PC points to the line

where the program is stopped.

Figure 4 Source code line components

Starting the GUI Version of tmdbg

To debug the a TriMedia program using the GUI version of the debugger, do the follow-

ing:

1. Enter tmdbg at the shell prompt (or doubleclick the tmdbg icon).

The tmdbg window appears, as shown below.

2. Choose Set Search Path from the Options menu.

B 31* int main(int argc, char *argv[])

Line Number

Decision Tree Marker

Current PC Location

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 21

16

Enter the paths that you want tmdbg to use when searching for source files. Use the

Add button to add new paths and the Delete button to delete existing paths. Click Set

when finished and close the Source File Search Path dialog box.

3. Choose Load to Target from the File menu.

The Load Target window appears, as shown below.

Figure 5 Load To Target Window

4. Click Load.

tmdbg examines the file to be loaded.

5. Click on the File button and locate the TriMedia executable (.out file).

The tmrun or tmsim window appears (depending on the compilation target) and

tmdbg loads the source files of target program.

Informational GUI Elements
(Set automatically by tmdbg)

If required,
enter program
arguments here

Click the CPU#
button to view

the corresponding
CPU parameters

(SDRAM Base,
MMIO Base,

Frequency, and
CWD). You can

modify these
parameters for

each CPU.

Checked CPUs
area designated

as load targets

Press Enter after
typing a filename so
that tmdbg examines
the file

Current Working Directory

Chapter 16: Debugging Standard TriMedia Applications

22 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

— A source code window appears containing the code where tmdbg stopped. A blue
right-arrow points to the line where execution stopped (current PC location). The
green dot to its left is a decision tree marker (where you can place breakpoints).

— The Source Files window contains a list of all source files. Clicking an item in the
window opens a new source code window containing the code of the selected
source file.

— The Messages window displays the status of the program. A summary of the status
appears in the status bar.

Decision Tree Marker
Current PC Location

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 23

16

Controlling Program Execution

tmdbg allows you to control your program’s execution with the following commands:

This section describes only the step, next, and finish commands.

Single Stepping

To single-step through the source code, but not across functions, use the step command

(also s). Each time you use this command, tmdbg resumes execution until it reaches the

next decision tree that may be in the same function or in another function. Following is

an example:

Stepping Across Functions

To step across functions, use the next command (also n). Each time you use this com-

mand, tmdbg steps over intervening function calls (if any), as shown here.

Command-line GUI

run Although the information in this section is based on the com-
mand-line version of tmdbg, the same applies to the GUI ver-
sion of tmdbg. Instead of typing commands, you click or
choose the corresponding buttons or menu options.

cont

stop

step

next

finish

tmdbg> s
Stopped at addr: 0x001002c3 line: 5, foo() in "foo.c"
B 5* int
tmdbg> s
Stopped at addr: 0x00100192 line: 37, main() in "x.c"
B 37* y.x = foo(f, bar(x.x));

tmdbg d.out
 TriMedia C debugger tmdbg
 v0.61 of SunOS (Apr 30 1997 12:10:32)

downloading program ...
Target started. Waiting for it to initialize ...
done.
Stopped at addr: 0x001001c0 line: 11, main() in "d1.c"
B 11* main()
tmdbg> s

Chapter 16: Debugging Standard TriMedia Applications

24 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Stepping Out of Functions

Use the finish command to step out of functions.

tmdbg respects previously set breakpoints when stepping out of a function. That is, if

the current function calls another which contains a previously set breakpoint, tmdbg

will stop on that breakpoint. The same holds for breakpoints inside the function as well.

Using Breakpoints

This section describes how to set and remove breakpoints.

Setting Breakpoints

Setting breakpoints allows you to trace the execution of your programs. tmdbg provides

the following three types of breakpoints:

■ Software instruction breakpoints

■ Hardware data breakpoints

■ Hardware instruction breakpoints

Setting Software Instruction Breakpoints

Setting a software breakpoint involves applying a software patch to the target code and

consequently incurs more overhead than hardware breakpoints (see Setting Hardware

Data Breakpoints) but are much more flexible.

Stopped at addr: 0x00100219 line: 19, main() in "d1.c"
B 19* printf ("Sum (%d) = %d \n", i, sum(i));
tmdbg> s
Stopped at addr: 0x00100c00 line: 10, sum() in "d2.c"
B 10* int
tmdbg> l
 11 sum (int i)
 12 {
 13 int j, sum;
 14
 15 for (j = 0, sum = 0; j < i+1; j++)
B 16 sum += j;
 17
B 18 return (sum);
 19 }
 20
 21
tmdbg> s
Stopped at addr: 0x00100c60 line: 16, sum() in "d2.c"
B 16* sum += j;
tmdbg> finish
Target is running. Type ctrl-c to stop the target
Stopped at addr: 0x00100280 line: 19, main() in "d1.c"
B 19* printf ("Sum (%d) = %d \n", i, sum(i));

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 25

16

Instruction breakpoints specify the lines in the source code at which execution stops. To

set a software breakpoint:

For example, to set a breakpoint at line 37 in x.c, enter the following:

tmdbg displays a message confirming the setting of the breakpoint:

Important
You can only set breakpoints at lines marked with decision tree markers (B).

Setting a Breakpoint Inside a Function

To set a breakpoint inside a function (for example, bar) enter the following:

tmdbg displays a message confirming the setting of the breakpoint:

In this example, execution stops at line 23, before line 23 is executed.

Setting Conditional Breakpoints

To set a conditional breakpoint, simply use the standard ‘break’ syntax and extend it

with ‘when <expression>’. For example, to reset the breakpoint at line 37, delete it, and

then reset it as follows:

The expression used as the condition is evaluated using the same context as the break-

point location. For example, it is not possible to set a breakpoint at line 37 using the

static int y declared in the file scope. The remaining uses of break are analogous.

Note
It is necessary to remove an existing breakpoint to set a conditional one in
the same place.

For more information about the different formats of the break command, use either the

help command or refer to the manual page. In addition, refer to the section tmdbg Break-

point Anomalies on page 31 for more information.

Command-line GUI

Use the break (b or br) Click the decision tree marker.

tmdbg> b 37

New breakpoint # 1 (line: 37, main() in "x.c")

tmdbg> br bar

New breakpoint # 2 (line: 23, bar() in "x.c")

tmdbg> d 1
cleared bp, line 37 in "x.c" (addr: 0x00100140)
tmdbg> b 37 when y.x == 0
New breakpoint # 3 (line: 37, main() in "x.c")

Chapter 16: Debugging Standard TriMedia Applications

26 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Listing Currently Active Breakpoints

To list currently active breakpoints, do the following:

Setting Hardware Data Breakpoints

Hardware breakpoints are implemented by the TriMedia chip, so they require no soft-

ware overhead. Data breakpoints allow you to trace changes to data. This is especially

Command-line GUI

Use the status command
as in the following exam-
ple.

Right-click a decision tree marker and choose List Breakpoints.
(Alternatively, you can click the List Breakpoints button or
choose List Breakpoints from the View menu.)

tmdbg> status
Stopped at addr: 0x001000cd line: 31, main() in "x.c"
B 31* int main(int argc, char *argv[])
List of breakpoints:
[1] line: 37 addr: 0x00100140, main() in "x.c" when y.x == 0
[2] line: 23 addr: 0x00100080, bar() in "x.c"

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 27

16

important when you suspect that a memory location is being accessed or updated by an

unknown entity. To set a data breakpoint, do the following:

For example, to set a data breakpoint for the variable y in x.c, do the following:

1. Use the print command to find y’s starting address.

2. Use the whatis command to get y’s size.

3. Use the watch load inrange command to set a data breakpoint.

This is illustrated in the following example:

Command-line GUI

Use the watch command.
This command places a
data watchpoint on the
address range you specify.

Click the Set Data Breakpoint button or choose Hardware Data
Breakpoint from the Debug menu.

tmdbg> print &y
evaluates to addr: 0x008fff44
tmdbg> whatis noot
union noot {
 signed int x;
 signed char y[4];
};
tmdbg> watch load inrange 0x008fff44 0x008fff48
Data breakpoint placed for range:0x008fff44 0x008fff48

Chapter 16: Debugging Standard TriMedia Applications

28 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Note
The whatis command accepts expressions.

Following is another example using d.out (compiled from d1.c, d2.c, and d.h). After

starting tmdbg and using the step command, the program is stopped at line 19.

Place a data watchpoint on the address range 0x00117b4c to 0x00117bA8 and continue

execution.

When a store operation is performed in the specified range, a data break event occurs

and execution stops at the end of the decision tree in which the store occurred. The

debugger displays the source line where execution will continue (in this example, line

40) and the source line corresponding to the tree in which the store operation occurred

(in this example, line 51).

Setting More than One Data Breakpoint

You can only set one data breakpoint at a time, as opposed to software instruction break-

points, where there is no limit on the number of instruction breakpoints.

Watch Command Types

tmdbg provides four types of the watch command (each has four variations) that allows

you to set data breakpoints for memory load and store operations inside or outside the

tmdbg d.out
 TriMedia C debugger tmdbg
 v0.61 of SunOS (Apr 30 1997 12:10:32)

downloading program ...
Target started. Waiting for it to initialize ...
done.
Stopped at addr: 0x001001c0 line: 11, main() in "d1.c"
B 11* main()
tmdbg> s
Stopped at addr: 0x00100219 line: 19, main() in "d1.c"
B 19* printf ("Sum (%d) = %d \n", i, sum(i));

tmdbg> watch store inrange 0x00117b4c 0x00117bA8
Data breakpoint placed for range: 0x00117b4c - 0x00117ba8
tmdbg> c
Target is running. Type ctrl-c to stop the target
Sum (0) = 0
 dbpc = 0
bogus(0) = 2.111516
Stopped at addr: 0x00100b00 line: 40, main() in "d1.c"
B 40* foo1 (john, i);
HW data break event in tree at addr: 0x00101040 line: 51, foo() in "d2.c"
B 51 p2->age = sum;

tmdbg> watch store inrange 0x008fff4c 0x008fff50
Please delete the existing data breakpoint using Õdel hwbpÕ.

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 29

16

address range you specify. Figure 6 illustrates the difference among these types. For more

information about the watch command, use the help command.

Figure 6 watch command types

Setting Hardware Instruction Breakpoints

You can set a hardware instruction breakpoint at any instruction address or address

range. To set a data breakpoint, do the following:

Command-line GUI

Use the hb command. Click the Instruction Breakpoint button or choose Hardware
Instruction Breakpoint from the Debug menu.

y [4]
0x0008 FFF48
0x0008 FFF44

0x0008 FFF50
0x0008 FFF4C

0x0008 FFF40
0x0008 FFF38

........

Watch load inrange 0x008FFF44 0x008FFF48

Watch load outrange 0x008FFF44 0x008FFF48

Watch store inrange 0x008FFF44 0x008FFF48

Watch store outrange 0x008FFF44 0x008FFF48

........

Chapter 16: Debugging Standard TriMedia Applications

30 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Since line numbers and functions can be uniquely associated with an address, the

hwbreak command supports these forms as well. For example, to set a hardware break-

point at function main():

The status command will report the existence of the hardware instruction breakpoint.

Notice that the instruction breakpoint, like the data breakpoint, is defined by an address

range. It is possible to specify a larger range than the single instruction in the previous

example. However, there can only be a single hardware breakpoint (including data and

instruction breakpoints) defined at any time. So, first you must delete the breakpoint.

Furthermore, the passcount field allows the breakpoint to be skipped n times before caus-

ing an interrupt.

And finally, the inrange and outrange parameters are analogous to the hardware data

breakpoint

Removing Breakpoints

To remove an instruction breakpoint:

The following example shows you how to delete the first breakpoint:

tmdbg>hb main()
hardware instruction breakpoint placed for range: Ox00100080 - Ox00100080

tmdbg> status
stopped at addr: OxOOlOOOcd, line 31, main() in "x.c"
B 31* int main(int argc, char *argv[])
list of breakpoints:

HW Instruction breakpoint: addr range: Ox00100080 - Ox00100080 passcount: 1
x.c main()

tmdbg> del hwbp
hardware instruction breakpoint deleted
tmdbg> hb inrange Ox00100080 OxOO100090 after 7
hardware instruction breakpoint placed for range: Ox800001cO - Ox800001dO, pa
sscount: 7

Command-line GUI

Use the delete command (also d
and del).

Click the red decision tree marker (represents an instruc-
tion breakpoint). It becomes green.

tmdbg> del 1
cleared bp, line 37 in x.c (addr: 0x00100140

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 31

16

To remove a data breakpoint:

To remove all breakpoints (instruction and data):

tmdbg Breakpoint Anomalies

The TriMedia C compiler (tmccom) transforms the source code for a function into a set

of decision trees. A decision tree may consist of a series of straight-line code followed by

a function call. If a line containing a function call performs an assignment, the assign-

ment may become part of the next decision tree. For example, consider the following

program:

When you compile and load the program into tmdbg, the listing for main appears as fol-

lows:

Although the decision tree marker (B) marks the beginning of a decision tree, the deci-

sion tree boundary is not necessarily at the beginning of the line.

Command-line GUI

Use the del hwbp com-
mand.

Click the Clear button in the Data Breakpoint window.

Command-line GUI

Use the del all command. Click the Clear All Breakpoints button.

#include <stream.h>

int foo (int n){
 cout << "foo has been invoked with: " << n << endl;
 return ++n;
}

int a, b;

int main (){
 a = foo(1);
 b = foo(foo(a));
}

tmdbg> list
 15 {
B 16 a = foo(1);
B 17 b = foo(foo(a));
 18 }

Chapter 16: Debugging Standard TriMedia Applications

32 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

For example, place a breakpoint in line 16 and enter a continue (c) command:

You’ll notice that the function foo has already been executed. However, the assignment

(a = foo(1);) has not been performed yet:

This means that the assignment is part of the next decision tree and the decision tree

marker in line 16 corresponds to the return of function foo.

The same principle holds for embedded function calls. There is a decision tree boundary

after each series of straight-line code, followed by a function call. So, in line 17, there are

actually two decision tree boundaries.

If you set a breakpoint in line 17 and continue execution, tmdbg stops the program exe-

cution after the inner call to foo, but before executing the outer call and the assignment

to b.

If you issue a next command, tmdbg steps over the function call and not the next line.

You actually end up on the same line.

The variable assignment has still not yet been made. If you process the next decision tree

(the last one in main), the variable b gets assigned. You must issue a step command

(instead of next) here or the program will complete and no variables will be active.

The step command lands you in the ANSI C library function exit(), which is the implicit

return point for the main() function. However, you can still access variable b.

tmdbg> b 16
new breakpoint # 1 (line: 16, main() in "g.cc")
tmdbg> c
target is running, type ctrl-c to stop the target
foo has been invoked with: 1
stopped at addr: 0x00100380, line 16, main() in "g.cc"
B 16*

tmdbg> p a
 a = 0

tmdbg> b 17
new breakpoint # 2 (line: 17, main() in "g.cc")
tmdbg> c
target is running, type ctrl-c to stop the target
foo has been invoked with: 2
stopped at addr: 0x001003d2, line 17 main() in "g.cc"
B 17*

tmdbg> n
target is running, type ctrl-c to stop the target
foo has been invoked with: 3
stopped at addr: 0x00100440, line 17, main() in "g.cc"
B 17*
tmdbg> p b
 b = 0

tmdbg> s
stopped at addr: 0x0011f402, line 21, exit() in "exit.c"
source file has no debug info

tmdbg> p b
 b = 4

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 33

16

Software Workaround

If you require the behavior of a traditional debugger, the best thing to do is to set a

breakpoint on the first function called, so that once the breakpoint has been reached,

you can go up the call stack one level and perform whatever inquiries need to be made.

For example, to stop before any work on line 16 is finished; you would use the following

commands:

 break foo

 continue

 up

Then, perform any inquiries:

 down

 continue

And resume as normal.

Examining and Changing Data, Memory, and Registers

This section briefly describes the mechanisms and commands that tmdbg provides for

examining and changing data in the memory and registers. For more detailed informa-

tion, use the help command.

Symbolic Access

Symbolic access allows you to do the following:

■ Display the value of expressions and registers using the print command:

■ Display the address of a symbol using print commandand preceding the variable

name with the address operator (&):

When examining data structures, take into account that the scope of these variables

affects the outcome.

For example, y (the local variable in the function main where execution stopped) is dis-

played when you use the command print y, as long as you are inside the function main,

even if there is a global variable y. Local variables always take precedence.

tmdbg> print x
 x = struct {
 x = 305419896
 y = 2
 }
tmdbg> print f
 f = (nil)

tmdbg> p &y
 evaluates to addr: 0x008fff44

Chapter 16: Debugging Standard TriMedia Applications

34 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Expression Evaluation

tmdbg supports all standard C operators for evaluating expressions using the C promo-

tion rules and supports type casting. In addition, register names, when used in expres-

sions, represent 4-byte integer values.

Expression can be used with the following tmdbg commands:

Command-line GUI

assign Choose Watch Variables from the View menu (or click the Watch Vari-
ables icon), enter the variable name in the Name/Expression field, and
enter the value of the expression in the Value field.

print Select the expression you want to evaluate and choose Evaluate
Selection from the View menu. The value of the selection appears in
the Messages window.

Or, simply select the expression to evaluate and a balloon opens up
displaying the selection’s value.

whatis Select the expression and choose Whatis Selection from the View
menu. The definition of the selection appears in the Messages win-
dow.

Or, simply right-select the expression and a balloon opens up display-
ing the selection’s definition.

examine Refer to the section Nonsymbolic Access on page 35.

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 35

16

Assignment

Assignment allows you to assign (using the assign command) the value of an expression

to a variable or a register, as shown in the following examples:

Note
In the third example, tmdbg displays an alert message before changing the
value of a special register because modifying special registers is not required
in general. Doing so without knowing the register usage conventions and
internals of the run-time system may cause the system to crash.

The assign command is very useful in debugging because it allows you to change the val-

ues of variables and registers while running the program with tmdbg. For example, if

you suspect that a certain variable is responsible for crashing the program you’re debug-

ging, you can use the assign command to change the value of the suspected variable and

test your theory after resuming program execution.

In addition, the assign command allows you to take advantage of free registers (not used

by the compiler and debugger) for temporary storing of expressions.

Nonsymbolic Access

Non-symbolic access allows you to display the values of the specified memory locations

or registers.

tmdbg> assign func =(int)main
tmdbg> print func
 func = 1049731
tmdbg> assign $3 = $14 + 2
tmdbg> print $3
 $3 = 2

tmdbg> a x.x = 21

tmdbg> a $SPC = 100000
about to alter a system register, go ahead? [y/n] default = n:
system register not altered

Chapter 16: Debugging Standard TriMedia Applications

36 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

To display the values memory locations:

Command-line GUI

Use the examine (x)
command, as
shown in the follow-
ing example.

To examine memory locations, use the Memory button or choose
Memory from the View menu.

To examine registers, choose the desired entry from the View menu.

tmdbg> x 0x008fff44 X 16
0x008fff44 : 0x00000000 0x008fff80 0x00116240 0x00000000
0x008fff54 : 0x00000000 0x0010f100 0x0011bf20 0x00100040
0x008fff64 : 0x00000000 0x0010f0c0 0x00000000 0x00000000
0x008fff74 : 0x00100040 0x00000000 0x00000000 0x00000001

You can modify
memory values,
however, it’s not
recommended.

Enter address value
or expression here

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 37

16

Note
The examine command accepts expressions.

To display the values of registers, use the regs command, as shown in the following

example:

The regs command displays the registers of the current (stack) context. This includes the

global and system registers.

To display the value of high registers (64 to 129), choose High Registers from the View

menu. The High Registers window appears.

tmdbg> regs
 $0 = 0 $1 = 0x00000001 [1.401298e-45]
 $2 = 0x00106b80 [1.507932e-39] $3 = 0x008effbc [1.313238e-38]
 $4 = 0x008efe80 [1.313194e-38] $5 = 0x0000002d [6.305843e-44]
 $6 = 0x008efcc8 [1.313132e-38] $7 = 0
 $8 = 0 $9 = 0x00168054 [2.066416e-39]
 $10 = 0x00164904 [2.046574e-39] $11 = 0x00168064 [2.066439e-39]
 $12 = 0x00100140 [1.469816e-39] $13 = 0
 $14 = 0 $15 = 0
 $16 = 0 $17 = 0
 $18 = 0 $19 = 0
 $20 = 0 $21 = 0
 $22 = 0 $23 = 0
 $24 = 0 $25 = 0
 $26 = 0 $27 = 0
 $28 = 0 $29 = 0
 $30 = 0 $31 = 0
 $32 = 0 $33 = 0x0000002d [6.305843e-44]
 $34 = 0xfffffffd [-NaN] $35 = 0x00168318 [2.067408e-39]
 $36 = 0 $37 = 0
 $38 = 0 $39 = 0
 $40 = 0 $41 = 0x00115200 [1.590619e-39]
 $42 = 0x00118574 [1.609077e-39] $43 = 0
 $44 = 0x00000001 [1.401298e-45] $45 = 0x00000001 [1.401298e-45]
 $46 = 0x0000000a [1.401298e-44] $47 = 0x00000030 [6.726233e-44]
 $48 = 0x00000003 [4.203895e-45] $49 = 0
 $50 = 0x00000003 [4.203895e-45] $51 = 0x00000001 [1.401298e-45]
 $52 = 0 $53 = 0xfffffff0 [-NaN]
 $54 = 0x00118564 [1.609055e-39] $55 = 0
 $56 = 0 $57 = 0
 $58 = 0 $59 = 0
 $60 = 0x00115263 [1.590758e-39] $61 = 0x00168308 [2.067386e-39]
 $62 = 0x001682e8 [2.067341e-39] $63 = 0x00132e40 [1.761466e-39]

 $RP ($2) = 0x00106b80 $SPC = 0x0010054c $CC_COUNT_LO = 0x00000000
 $FP ($3) = 0x008effbc $DPC = 0x0010054c $CC_COUNT_HI = 0x00000000
 $SP ($4) = 0x008efe80 $PCSW = 0x00000c00
 arg1($5) = 0x0000002d [6.305843e-44]
 arg2($6) = 0x008efcc8 [1.313132e-38]
 arg3($7) = 0
 arg4($8) = 0

Chapter 16: Debugging Standard TriMedia Applications

38 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

WARNING
Although the GUI version of tmdbg enables you to change the values, you
are highly discouraged from doing so, because unspecified behavior may
result.

To display the value of a single register, use the print command, as shown in the follow-

ing example:

print $1

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 39

16

Tracing the Call Stack

tmdbg’s call stack tracks the function-calling sequence in ascending order based on the

stack pointer. Each entry in the stack is preceded with a number indicating its stack

order.

To display the stack entries:

In this case, the stack pointer (=>) points to bar where execution has stopped.

Note
The function that is on top of the stack (deepest callee function) is always
indicated by [1].

Moving Up and Down the Call Stack

To move up and down the Call Stack:

Command-Line GUI

Use the trace (also t) com-
mand, as shown in the fol-
lowing example.

Choose Call Stack from the View menu, or click the Stack Trace
button to display the Stack window.

Clicking a stack entry displays its corresponding source file in a
new source code window.

tmdbg> t
=>[1] bar(x = 305419896), line 23 in "x.c"
 [2] main(argc = 1, argv = 0x11a2e4), line 37 in "x.c"

Command-line GUI

Use the up and down commands, as shown in the following
example.

Click the desired entry.

Chapter 16: Debugging Standard TriMedia Applications

40 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Going up means that the stack pointer moves from entry n to entry n+1, and vice versa.

tmdbg> up
Current function: main() in file "x.c"
B 37 y.x = foo(f, bar(x.x));
 [1] bar(x = 305419896), line 23 in "x.c"
=>[2] main(argc = 1, argv = 0x11a2e4), line 37 in "x.c"
tmdbg> down
Current function: bar() in file "x.c"
B 23* static int
=>[1] bar(x = 305419896), line 23 in "x.c"
 [2] main(argc = 1, argv = 0x11a2e4), line 37 in "x.c"

Chapter 16: Debugging Standard TriMedia Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 41

16

Disassembling Instructions

The Disassemble command disassembles machine instructions. In the following exam-

ple, only a portion of the disassembled code is shown:

tmdbg> help dis
DIS Ð Disassemble machine instructions.

dis Disassemble 10 instructions from current pc
dis for <n> Disassemble <n> instructions from current pc

dis <line> Disassemble 10 instructions from <line>
dis <line> for <n> Disassemble <n> instructions from <line>

dis <line> "file" Disassemble 10 instructions from <line> of "file"
dis <line> "file" for <n> Disassemble <n> instructions from <line> of "file"

dis addr <adr> Disassemble 10 instructions from address <adr>
dis addr <adr> for <n> Disassemble <n> instructions from address <adr>
dis addr <adr1> to <adr2> Disassemble from address <adr1> to <adr2>

dis <func> Disassemble 10 instructions, from <func>
dis <func> for <n> Disassemble <n> instructions, from <func>

tmdbg> s
Stopped at addr: 0x00106516 line: 31, rand() in "rand.c"
source file has no debug info.
tmdbg> fin
Target is running. Type ctrlÐc to stop the target
Stopped at addr: 0x00100386 line: 22, main() in "d1.c"
B 22* f1 = rand(); fs[1] = f1;
tmdbg> dis
(* cycle 0 *)
 IF r1 iimm(1024) Ð> r2 ,
 IF r1 nop ,
 IF r1 nop ,
 IF r1 h_st32d(Ð128) r5 r3 ,
 IF r1 nop ;

(* cycle 1 *)
 IF r1 nop ,
 IF r1 nop ,
 IF r1 nop ,
 IF r1 ld32d(Ð128) r3 Ð> r127 ,
 IF r1 nop ;

Chapter 16: Debugging Standard TriMedia Applications

42 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Using tmdbg with tmsim on Windows 95

Because tmdbg uses sockets for interprocess communications when used with the simu-

lator tmsim, the host operating system must support sockets.

On Windows 95, you must install TCP/IP networking (even if the host is not attached to

a network) and make sure the machine has an assigned IP address. Do the following:

1. Choose Network from the Control Panels menu.

2. If TCP/IP is not installed, click the Add button and follow installation instructions.

3. Choose IP Address from the Control Panels >> Network >> TCP/IP >> Properties

menu.

4. Make sure the machine has an assigned IP address. If no IP address is assigned, enter

any IP address.

Note
tmdbg reports a gethostbyname failure if it cannot find an IP address for
the host machine.

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 43

17

Chapter 17

Debugging C++ Code with tmdbg

Topic Page

Introduction 44

Accessing C++ Definitions 44

Accessing C++ Definitions 44

Accessing Class Members 45

Accessing C++ Variable Declarations 47

Setting Breakpoints 47

Accessing Virtual Functions 48

Debugging Templates 49

Debugging Templates 49

Unsupported Features 50

Non-ANSI Compliant Names 52

Notes 53

Chapter 17: Debugging C++ Code with tmdbg

44 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Introduction

This version of tmdbg contains many improvements over version 1.1. Mainly, changes

in the compiler give the debugger more information about C++ types. Much C++ infor-

mation (such as member access control, which was missing in the 1.1 debugger) is now

supported. As a result, this version of the C++ debugger is easier to use. Apart from a few

restrictions that are discussed in the following pages, most functions that debug C also

debug C++.

Accessing C++ Definitions

If the class appeared in the source code as

use the whatis command to display the class definition:

Class members might not appear in their original order. The compiler also generates

internal types and functions that were not declared in the C++ code. For example, the

compiler generates the following type definition even though this type was not in the

source.

class derived : public base {
 float data;
 static int instance_count;
public:
 derived (float f = 0.0);
 ~derived ();
 float foo (float f);
 void not_used() { ; }
 derived &operator + (const derived &d);
 derived &operator + (int n);
 operator float ();
 operator farray ();
};

tmdbg> whatis derived
typedef const class derived derived;
public:
 class derived& operator +(const class derived& d);
 class derived& operator +(signed int n);
 float operator float(void);
 class farray operator farray(void);
private:
 static signed int instance_count;
 float data;
public:
 derived(float f);
 ~derived(signed int);
 float foo(float f);
 unknown <int assumed> not_used(void);
 derived(const derived&);
};

typedef const class derived derived;

Chapter 17: Debugging C++ Code with tmdbg

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 45

17

It will also generate, for every class, a default copy constructor (whether the original class

contained one or not):

By default, when using the print function, base class information will not be printed, but

it can be printed if the verbose option is set.

Note:
The compiler does not pass any information to the debugger regarding
friends, and access adjustments. This information will not be printed.

Accessing Class Members

Non-static data members and function members can be accessed by their qualified

names.

In this example, the debugger sees two overloaded symbols for the constructor of

derived. One of them is the constructor specified in the C++ code. The other has been

added by the compiler (the copy constructor), but tmdbg is unable to retrieve its

address. It has been removed by the compiler because this constructor was not used.

derived(const derived&);

tmdbg> wi d1
class derived d1;
tmdbg> p d1
 d1 = class {
 instance_count = 0
 data = 0.0
 }
tmdbg> set verbose on
tmdbg> p d1
 d1 = struct {
 instance_count = 0
 base = class {
 data = 0
 }
 data = 0.0
 }

tmdbg> whatis derived::instance_count
static signed int instance_count;

tmdbg> whatis derived::derived
derived::derived(float f);
addr: 0x00101a83
derived::derived(const derived&);
addr: failed to get address, function may have been removed by compiler
tmdbg> whatis derived::~derived
void derived::~derived(signed int);
addr: 0x00101b83

tmdbg> whatis derived::base::data
signed int base::data;

Chapter 17: Debugging C++ Code with tmdbg

46 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Similarly, to display static data, you can use qualified names to access memory contents.

Note
This is not possible with non-static data. Non-static data requires that an
instance of the class be specified.

To make assignments to static data, you can use the qualified name.

Note
Partially qualified names relative to a scope are not currently being
supported in tmdbg. For example, if you use the variable instance_count
inside derived’s function member foo, the compiler resolves the name to
derived::instance_count. However, tmdbg does not handle this. For
example, if you set a breakpoint in foo, stop there, and try to access
instance_count, you get an error message.

Stopped at addr: 0x00101a83, line 36, derived () in Òcppsample.ccÓ
B 36* derived (float f = 0.0) {instance_count++;
tmdbg> p instance_count
unknown symbol: instance_count
tmdbg> p derived::instance_count
instance_count = 0

To get around this problem, always use fully qualified names.

Base classes can be seen by specifying their names in any of the following ways: base,

derived::base, or : :base. However, : :base and base reduce to the same scope, because of

the lack of context information used in the debugger, as previously specified.

tmdbg> p derived::instance_count
instance_count = 0

tmdbg> a derived::instance_count = 600

tmdbg> whatis ::base
class base {
 signed int data;
public:
 base(void);
 base(signed int d);
 void set_data(signed int d);
 void foo(void);
 base(const base &);
};
typedef const class base base;
tmdbg> wi derived::base
class base {
 signed int data;
public:
 base(void);
 base(signed int d)
 void set_data(signed int d);
 void foo(void);
 base(const base&);
};

Chapter 17: Debugging C++ Code with tmdbg

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 47

17

Accessing C++ Variable Declarations

Assignments to class members are also supported. Static members can either be specified

by class type, or through an instance of the class. For example, if d1 is an instance of

class derived:

Volatile members must be specified through an instance.

Variable declarations in other scopes are generally visible in C++ programs. The debugger

also reports all visible variables starting with the current scope and proceeding to the

outermost. For example, from the context of the function main, several symbols have

the name x:

As illustrated, you can use the global scope modifier ‘: :’.

Setting Breakpoints

To place a breakpoint in a C++ function, you must specify the complete qualified func-

tion name:

You can also place breakpoints in C++ operators and type-conversion routines. For exam-

ple, if you define the class farray this way:

tmdbg> p derived::instance_count
instance_count = 1
tmdbg> a derived::instance_count = 600
tmdbg> p d1.instance_count
evaluates to: 600
tmdbg> p d1.instance_count + derived::instance_count * 2
1800

tmdbg> a d1.data = 15.5
tmdbg> p d1.data
evaluates to: 15.5

tmdbg> wi x
signed int main`x;
signed int x;
tmdbg> wi ::x
signed int x;
tmdbg> p x
 main`x = 0
 x = 15

tmdbg> b derived::foo
new breakpoint # 2 (line: 42, derived::foo() in "cppsample.cc")

tmdbg> b derived::base::foo
new breakpoint # 3 (line: 29, base::foo() in "cppsample.cc")

class farray{
 float data[5];

public:

Chapter 17: Debugging C++ Code with tmdbg

48 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

and redefine the class derived this way:

then you can set breakpoints in the type-conversion routines as follows:

If a function is overloaded, you are prompted to choose one or more functions.

If there are many functions listed, you can enter multiple options at the ‘>’ prompt.

Note
The keyword operator is always necessary for specifying C++ operators and
type-conversion routines.

Accessing Virtual Functions

In the C++ examples in the previous sections, any of the functions could have been vir-

tual. Virtual functions are only an issue when functions are identified via their instance

declarations, which is currently not supported.

 void set_data(float f) { data[0] = data[1] = data[2] = data[3]
 = data[4] = f; }
};

class derived : public base {
 float data;
 static int instance_count;
public:
 derived (float f = 0.0) { instance_count++;
 data = f;
 base::set_data(0.0); }
 ~derived () { instance_count--; }
 float foo (float f) { cout << "derived, foo: " << data << endl;
 return data + f; }

 derived &operator + (const derived &d);
 derived &operator + (int n);

 operator float ();
 operator farray ();
};

tmdbg> b derived::operator float
new breakpoint # 4 (line: 79, derived::operator float() in "cppsample.cc")

tmdbg> b derived::operator farray
new breakpoint # 5 (line: 72, derived::operator farray() in "cppsample.cc")

tmdbg> b derived::operator +
Please choose from options 0 to 3
[0] /* cancel break command */
[1] /* set breakpoint in all */
[2] class derived *operator +(const derived &d)
[3] class derived *operator +(signed int n)
> 1
new breakpoint # 6 (line: 57, derived::operator +() in "cppsample.cc")
new breakpoint # 7 (line: 65, derived::operator +() in "cppsample.cc")

Chapter 17: Debugging C++ Code with tmdbg

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 49

17

Debugging Templates

tmdbg now supports class and function template debugging. It supports parsing of class

template arguments on the command line as well as accessing templates without argu-

ments. To specify a class template without arguments, simply give the name without any

arguments and tmdbg will provide each instance.

For example, given the declaration for vector,

you can access the type definition of each template instance as follows:

Likewise, to set a breakpoint in one of the template members, specify the template name

with no arguments:

template<class T> class vector {
 T* v;
 int sz;
public:
 vector (int n) { v = (T *)malloc(sizeof(T) * n); sz = n; }
 T& operator[] (int i) { return v[i]; }
 T& elem(int i) { return v[i]; }
};

typedef vector<complex> cvec;

vector<int> v1(20);
vector<complex> v2(30);
cvec v3(40);
vector<cvec> m(10); /* matrix of complex's */

tmdbg> wi vector
struct vector<signed int> {
 signed int *v;
 signed int sz;
 struct vector<signed int> *vector(signed int n);
 signed int *operator [](signed int i);
};
struct vector<complex> {
 struct complex *v;
 signed int sz;
 struct vector<complex> *vector(signed int n);
 struct complex *operator [](signed int i);
 struct complex *elem(signed int i);
};
struct vector<vector<complex>> {
 struct vector<complex> *v;
 signed int sz;
 struct vector<vector<complex>> *vector(signed int n);
 struct vector<complex> *operator [](signed int i);
};

tmdbg> b vector::operator []
Please choose from options 0 to 4
[0] /* cancel break command */
[1] /* set breakpoint in all */
[2] signed int *vector<signed int>::operator [](signed int i)
[3] struct complex *vector<complex>::operator [](signed int i)
[4] struct vector<complex>

Chapter 17: Debugging C++ Code with tmdbg

50 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Access to class template data is also straightforward:

Access to static data through the instance is analogous, but you may not access static

data using the class template type:

Function templates are handled similarly. If there is a function template sort,

then specify the function name as normal:

Unsupported Features

The current version of tmdbg has the following limitations:

■ tmdbg cannot access C or C++ include files in general because the compiler does not

generate information about included files. What makes C++ include files even more

difficult to access is the possibility that they may contain executable code. The com-

piler does not generate any debugging information about included files at present.

■ tmdbg does not allow partially qualified names. All names must be fully qualified (as

discussed previously).

■ Because of a bug in the TriMedia compiler front end, tmdbg has trouble understand-

ing class template names with the characters ‘7’ and ‘_’. When a class template iden-

tifier contains one of these characters, tmdbg might fail to identify the correct

 *vector<vector<complex>>::operator [](signed int i)
> 2
new breakpoint # 2 (line: 11, vector::operator []() in "cpp023.cc")

tmdbg> p v2.v[3].re
 evaluates to: 7.0
tmdbg> p m.v[5].v[3].re
 evaluates to: 7.0

tmdbg> p vector::max
error in parsing: syntax error at token: .
tmdbg> p vector<int>::max
error in parsing: syntax error at token: <

template<class T> void
sort(vector<T> v)
{
 ...
}

tmdbg> wi sort
void sort(class vector<signed int> v);
addr: 0x00000000
void sort(class vector<float> v);
addr: 0x00000000
tmdbg> b sort
Please choose from options 0 to 3
[0] /* cancel break command */
[1] /* set breakpoint in all */
[2] void sort(class vector<signed int> v)
[3] void sort(class vector<float> v)
> 2

Chapter 17: Debugging C++ Code with tmdbg

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 51

17

arguments for the template. This might not happen for every name with a ‘7’ or a ‘_’,

but will definitely happen for some names such as vec7junk_<int>.

Moreover, if a struct or class name in a C++ source file has the characters ‘7’ and ‘_’,

tmdbg may incorrectly determine the name to be a class template. For example, the

name “xxx7i_” will be reported as “struct xxx<signed int>”.

If you are having these sorts of problems, the temporary work-around is to remove

the characters ‘7’ and ‘_’ from the class template or struct name.

■ Currently, there is no support for function calls within expressions (either C or C++

functions), so functions might not be accessed through their instances.

■ Currently, tmdbg does not support function calls from within the debugger. Since

many C++ type casts involve a function call, it does not support C++ type casts either:

— No casts involving classes (function calls not implemented in expressions)

— C++ style casts (static_cast, dynamic_cast, and so on)

■ C++ multitasking mechanisms are not supported.

■ In the case where a class receives, by inheritance, two (or more) instances of the same

class, tmdbg cannot distinguish between them by accessing the members directly.

However, accessing the most derived class as a whole will show the different

instances of the base classes.

■ tmdbg does not fully understand unnamed types:

A bug in the compiler makes the type foo to be named __Cn where n is the type num-

ber in the file.

__Cn is an unnamed class (or struct, or union),

__Nn is an unnamed namespace,

__En is an unnamed enum,

__Vn is an unnamed member variable.

This code shows the temporary work-around.

■ The compiler does not support debugging information for anonymous unions.

union { int x; char y; } foo;

tmdbg> wi foo
union foo;
tmdbg> wi __C1
class __C1 {
public:
 signed int x;
 signed char y;
};

Chapter 17: Debugging C++ Code with tmdbg

52 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

■ The compiler generates namespaces as classes with all members static. Since tmdbg

has no knowledge of the using keyword, types and functions that are usually visible

from the global scope are not visible inside the debugger:

Most types and functions that are defined in the standard headers are within the std

namespace.

Non-ANSI Compliant Names

The TriMedia Compiler and the TriMedia Debugger use the string __0 (two underbars

and a zero) as a special prefix to denote mangled C++ names. Mangled C++ names are

valid C identifiers, which contain valid C++ information necessary for debugging. Con-

sequently, the debugger attempts to “demangle” anything beginning with __0.

Names from a source program starting with __0 will most likely not be in a valid mangled

format (for example, __0_fooled_you). Names such as this will cause the debugger to

emit an internal warning, and continue, but a name such as __0dDfooBx will cause the

debugger to mistakenly generate a class named foo containing a static member x.

We highly recommend that you follow the ANSI C standard, or at least not prefix any

identifiers with __0.

tmdbg> wi size_t
unknown symbol: size_t
tmdbg> wi std::size_t
typedef unsigned int std::size_t;

Chapter 17: Debugging C++ Code with tmdbg

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 53

17

Notes

The following information concerns some idiosyncrasies of the tmdbg debugger:

■ If a function within a class is never called, the compiler does not generate informa-

tion for it. Hence, the debugger is unaware it ever existed. When you attempt to

access unused functions, you get an “unknown symbol” error message.

■ Some type names are converted to a base name by the compiler. For example, type-

defs are converted to their base types.

■ Types defined within classes are denoted with their fully qualified names. In the fol-

lowing example, the class inner defined within outer has the name outer: : inner and

this name must be used to specify the type.

tmdbg> wi atype
typedef signed int atype;
tmdbg> break Dclass::operator atype
new breakpoint #23 (line: 144, Dclass::operator signed int()
in Òcpp003.ccÓ

tmdbg> wi outer
struct outer {
struct inner operator outer::inner();
struct inner {
float data;
struct inner *inner (floatf);
};
tmdbg> wi outer::operator outer::inner
struct inner operator outer::outer::inner();
addr: 0x00102400

Chapter 17: Debugging C++ Code with tmdbg

54 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 55

18
Chapter 18

Debugging TriMedia Applications Using JTAG

Topic Page

Introduction 56

Stand-Alone Debugging Modes 57

System Requirements 59

Setting Up the System for Stand-Alone Debugging 61

Testing the JTAG Connection 62

Compiling a Program for Stand-Alone Debugging 64

Debugging Stand-Alone TriMedia Applications 65

Chapter 18: Debugging TriMedia Applications Using JTAG

56 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Introduction

The TriMedia debugger (tmdbg) may be used to debug software on TriMedia-based

stand-alone systems through a JTAG board (which could be a Corelis board or the new

TriMedia JTAG turbo board as described in System Requirements on page 59) that connects

to a TriMedia board via its JTAG port. The current release of the TCS toolset includes sup-

port for stand-alone debugging via JTAG. Detailed specifications of the JTAG block can

be found in Chapter 17 of the TM-1000 Data Book.

The JTAG access port on a TriMedia processor provides access to three special MMIO reg-

isters that are used for communication between the debug monitor running on the Tri-

Media chip and tmdbg running on a PC host. Two of the registers are used as one-word

input/output buffers and the third as a handshake register.

The commands and functionality of the source-level debugger tmdbg remain the same

whether it is used with the machine-level simulator tmsim, the actual TriMedia chip in a

PC host, or in a stand-alone system.

Note
JTAG debugging is not supported when the TriMedia board is in a JTAG chain.

Chapter 18: Debugging TriMedia Applications Using JTAG

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 57

18

Stand-Alone Debugging Modes

This chapter describes how to debug TriMedia stand-alone applications in the following

two modes:

■ No-Host

■ Host-Assisted

No-Host Mode

In this mode, TriMedia runs in a stand-alone setup. For example, the TriMedia IREF

board may be plugged into a passive PCI backplane that provides power. The TriMedia

board is connected to a JTAG board in the PC through a JTAG connector cable. The JTAG

board which could be a Corelis board or the new TriMedia JTAG turbo board as described

in System Requirements on page 59, allows tmdbg to debug stand-alone applications run-

ning on the TriMedia board connected to it.

Figure 7 No-Host Mode

TriMedia Board

Stand-Alone PCI Passive
Backplane Board

JTAG Board

JTAG Connector

C

Chapter 18: Debugging TriMedia Applications Using JTAG

58 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Host-Assisted

In this mode, the TriMedia board runs in a standard PCI slot in a PC and is connected

(via a JTAG connector cable) to a JTAG board that can be in the same PC or a different

PC.

Figure 8 Host-Assisted mode

TriMedia Board

JTAG Board

JTAG Connector

Chapter 18: Debugging TriMedia Applications Using JTAG

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 59

18

System Requirements

This section describes the hardware and software requirements for using tmdbg to debug

stand-alone systems.

Hardware

The following hardware components are necessary to run tmdbg:

■ A Pentium PC with a spare ISA slot and a free I/O address at 0x100, 0x140, 0x240 or

0x300. I/O address 0x140 is usually free and is the default address used by tmdbg to

talk to the JTAG controller card.

■ A Corelis PC-1149.1/100F JTAG controller card

The Corelis PC-1149.1/100F is designed to control the operation of an IEEE Standard

1149.1 (JTAG) scan test path by generating the proper signals under software control

to interface with the target devices.

■ Instead of the Corelis PC-1149.1/100F board, you can use the TriMedia JTAG turbo

board designed specifically to work with tmdbg.

This board (which comes with a JTAG cable) has a single JTAG TAP and its download

speed is about 15 times faster than that of the Corelis board, even though the TriMe-

dia board also runs at a nominal clock speed of 15 Mhz.

For more information, please contact Associated Technologies, Inc. at the following

address:

Associated Technologies, Inc.

Santa Clara, CA 95054

Tel: +1-408-727-3904

Email: astech@worldnet.att.net

■ A TriMedia IREF board such as version 2.2 which includes a JTAG TAP and ground

pins (Figure 10).

■ An 8-pin flat ribbon cable with a a 2×4 connector header at one end and a 40-pin

female flat-cable connector at the other end (the TriMedia turbo board comes with

such a cable).

If you don’t have this type of cable, you can make your own from the following parts:

— A 40-pin female flat-cable connector (40-pin IDC, 3M part number 3432-5203 or
equivalent) to attach to the JTAG board

— A standard 40-pin flat ribbon cable
This cable should not be too long. A 12-inch long cable is the recommended maxi-
mum length. In addition, you only need to use 8 pins (pins 1 to 8) of the cable.

Chapter 18: Debugging TriMedia Applications Using JTAG

60 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Figure 9 Connector Types

— A 2x4 Connector Header (SAMTEC part number TSW-104-07-L-D) to attach to the
TriMedia IREF Board 0.025” square pins, 0.1” centers.

Software

The following software components are necessary to run tmdbg:

■ Windows 95 or Windows NT 4.0

■ L1 boot program found in TCS_INSTALL/examples/autoboot/jtag/l1.eeprom

This directory also contains a README file, the L1 JTAG ROM sources, a Makefile,

jtagtester.exe, jtagturbo.exe, and more.

8-Pin, 2 x 4 Connector

40-Pin Flat Cable Connector

Chapter 18: Debugging TriMedia Applications Using JTAG

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 61

18

Setting Up the System for Stand-Alone Debugging

To set up your system for JTAG-based debugging, do the following:

1. Install the Corelis card or the new TriMedia JTAG board on a PC following the manu-

facturer’s instructions. There is no need to use any IRQs, and I/O address 0x140 is

usually free on most PCs.

2. Run the self-test program that comes with the card and ensure that it passes the test.

3. If debugging with no host, burn an EEPROM with the L1 JTAG EEPROM image

(included in the release) and mount it (the EPROM) on your stand-alone board as the

boot PROM (see Figure 10 for location of EEPROM).

4. [Optional] Attach the 40-pin female flat-cable connector to the flat ribbon cable

according to the following table.

5. [Optional] Attach the 2×4 Connector Header to the other end of the flat ribbon

cable.

The cable should be connected to the Header according to Table 1 above.

Refer to Figure 10 to ensure that the Header is plugged into the TriMedia IREF Board

correctly.

Table 1 The wiring connection for the flat cable connecting the JTAG controller board to
a TriMedia IREF board

JTAG Board Signal JTAG Board TriMedia IREF Board TriMedia Signal

TDOA

A. The JTAG board’s TDO must be connected to TriMedia’s TDI.

Corelis Pin 3 JTAG Pin 1 TDI

TDIB

B. The JTAG board’s TDI must be connected to TriMedia’s TDO.

Corelis Pin 5 JTAG Pin 3 TDO

TCK Corelis Pin 9 JTAG Pin 5 TCK

TMS Corelis Pin 7 JTAG Pin 7 TMS

GROUND Corelis Pin 2 JTAG Pin 2 GROUND

GROUND Corelis Pin 4 JTAG Pin 4 GROUND

GROUND Corelis Pin 6 JTAG Pin 6 GROUND

GROUND Corelis Pin 8 JTAG Pin 8 GROUND

Chapter 18: Debugging TriMedia Applications Using JTAG

62 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Figure 10 TriMedia IREF Board Version 2.2

6. Connect the 40-pin female flat-cable connector of the connector cable to the Corelis

Controller Board.

7. Connect the 2×4 Connector Header of the connector cable to the TriMedia IREF

board.

Testing the JTAG Connection

There are two methods to test JTAG connection, depending on which board you are

using.

Previously, tmdbg assumed that sdram base starts at 0 and mmio base starts at

0xefe00000 for stand-alone systems. You could override this via -memorybase and

-mmiobase command line options in stand-alone mode, but that was error prone. The

new L1 monitor-tmdbg handshake eliminates that possibility.

AC-3 Audio Out

Video Out

Video-In

Audio In/Out

2 x 4 Header

TriMedia Chip

PCI 2.1 Bus

EEPROM

JTAG Connector

Pin 2
GND

C

Pin 4
GND

Pin 6
GND

Pin 8
GND

Pin 1
TDI

Pin 3
TDO

Pin 5
TCK

Pin 7
TMS

Chapter 18: Debugging TriMedia Applications Using JTAG

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 63

18

tmdbg recognizes the new version of the monitor and gets mmio base, sdram base,

sdram limit and cacheable limit from the L1 monitor. It uses these values to relocate the

L2 code appropriately. If the L1 boot completes successfully, it will download that code

(from the L1 monitor) to target via JTAG.

WARNING
Do not use jtagtester.exe with turbo boards. Likewise, do not use
jtagturbo.exe with Corelis JTAG boards.

Testing the Corelis Board JTAG Connection

For the Corelis board, do the following to test the JTAG connection:

1. Power-up the stand-alone system.

If the L1 boot completes successfully, it will wait for application download to start via

JTAG. It signals this by writing a magic number (0x12340002) to JTAG_DATA_OUT and

setting JTAG_CTRL to 0 full bit.

2. Run the program jtagtester.exe

3. Enter the command o (which scans JTAG_DATA_OUT register) a few times and you

should see the output 0x12340002.

4. Quit the jtagtester.exe program by typing q.

Sample Session

[D:/JTAG/tm1/SMON/Debug] jtagtester
Enter a base address for the jtag board
(0x100, 0x140, 0x240, or 0x300) Default: 0x140:

Base address for the board: 0x140
Using JTAG bus : 0
Initialized jtag controller
Type h for help
smon>h
 i <value> ÐÐ scan in <value> to In register
 I <In> <Ifull> ÐÐ scan in In and Ifull registers
 o ÐÐ scan out Out register
 O <Ofull> ÐÐ scan out Out and Ofull registers
 c <value> ÐÐ write <value> to Ctrl register
 r ÐÐ to reset the chip
 q ÐÐ quit
smon>o
jtag_data_out: 0x12340002
smon>c 0
Read Jtag ctrl: 0x05
smon>q
quiting

Chapter 18: Debugging TriMedia Applications Using JTAG

64 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Testing the Turbo Board JTAG Connection

If you are using the TriMedia JTAG turbo board, do the following to test the JTAG con-

nection:

1. Power-up the stand-alone system.

If the L1 boot completes successfully, it will wait for application download to start via

JTAG. It signals this by writing a magic number (0x12340002) to JTAG_DATA_OUT and

setting JTAG_CTRL to 0 full bit.

2. Run the program jtagturbo.exe.

3. Enter the command o (which scans JTAG_DATA_OUT register) a few times and you

should see the output 0x12340002.

4. Quit the jtagturbo.exe program by typing q.

Sample Session

Compiling a Program for Stand-Alone Debugging

The TCS tool kit contains a monitor library libmon.o. This library is automatically linked

in to the user program when the program is compiled with -g option. To prepare a pro-

gram for stand-alone debugging, the programs must be compiled as in the following

example:

The -host nohost and -g options are very important. The latter option links in a debug

monitor. The -host nohost parameter links in stubs (which do nothing) for host calls

such as printf.

C:\TriMedia\bin\jtagturbo.exe
Enter a base address (in hex) for the jtag board
(0x100, 0x140, 0x240, or 0x300) Default: 0x140:

base address for the board: 0x140
Initialized jtag controller
Type h for help
turbo> h
 i <value> ÐÐ scan in <value> to In register
 I <In> <Ifull> ÐÐ scan in In and Ifull registers
 o ÐÐ scan out Out register
 O <Ofull> ÐÐ scan out Out and Ofull registers
 c <value> ÐÐ write <value> to Ctrl register
 r ÐÐ to reset the chip
 q ÐÐ quit
turbo> r
turbo> o
jtag_data_out: 0x12340002
turbo> q
quiting

tmcc Ðhost nohost Ðg a1.c a2.c a3.c Ðo nohost.out

Chapter 18: Debugging TriMedia Applications Using JTAG

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 65

18

Debugging Stand-Alone TriMedia Applications

This section describes how to debug TriMedia stand-alone applications using JTAG in the

No-Host and Host-Assisted modes.

IMPORTANT
When debugging stand-alone applications, tmdbg expects the target
program to have been compiled using the -g and -host nohost options as
outlined in Compiling a Program for Stand-Alone Debugging on page 64. If
this is not the case, tmdbg generates an error message and downloads the
program anyway via JTAG, but you will not be able to debug it.

Debugging with No-Host

To debug a TriMedia stand-alone executable (nohost.out), do the following:

1. Reset your stand-alone board (on which your TriMedia board is installed) by pressing

its reset button.

When the stand-alone board is ready (after reset), tmdbg (running on a PC host) can

talk to the L1 monitor program on the stand-alone board’s EPROM via JTAG.

By default, the L1 monitor program provides tmdbg with the following base SDRAM

and MMIO values:

— Base-SDRAM: 0

— Base-MMIO: 0x0efe00000

These values can be modified by changing the corresponding values in the files Make-

file and L1rom.c that are located in the directory TCS/examples/autoboot/jtag/.

2. Use tmdbg to download your target program (nhost.out) onto the TriMedia chip.

3. Start debugging.

As previously mentioned, the source-level debugging functionality of tmdbg remains

the same with the use of either the simulator, or a TriMedia chip in a PC or in a stand-

alone system. Following is a sample session:

 TriMedia C/C++ debugger tmdbg
 v1.08 of tcsWin95 (Mar 25 1998 17:34:34)

program probably compiled with -host nohost
using TriMedia Jtag Turbo Card,
please ensure that it is properly installed and tested

target ready for application download
L1 monitor version: 1
receiving target info
MMIO_BASE: 0xefe00000
DRAM_BASE: 0x0
DRAM_LIMIT: 0x800000
DRAM_CACHEABLE_LIMIT: 0x800000
load addr: 0x840
downloading program ...

Chapter 18: Debugging TriMedia Applications Using JTAG

66 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

preparing downloadable memory image... done
sent load addr: 0x840
sent code size: 0x1a358
one dot = 4K bytes
........................... done
target started, waiting for it to initialize ...
done.
 stopped at addr: 0x00000a00, line 13, main() in "d1.c"
 B 13* main()
 tmdbg> b 32
 new breakpoint # 1 (line: 32, main() in "d1.c")
 tmdbg> b foo
 new breakpoint # 2 (line: 43, foo() in "d2.c")
 tmdbg> c
 target is running, type ctrl-c to stop the target
 stopped at addr: 0x00000f80, line 32, main() in "d1.c"
 B 32* f8 = rand(); fs[8] = f8;tmdbg> p f7
 f7 = 7419.0
 tmdbg> assign f7 = 1111
 tmdbg> p f7
 f7 = 1111.0
 tmdbg> c
 c
 target is running, type ctrl-c to stop the target
 stopped at addr: 0x00001780, line 43, foo() in "d2.c"
 B 43* int
 tmdbg> t
 t
 =>[1] foo(i1 = 12767, f = 2.75, c = 'g', i2 = 12767,
 p2 = 0x1774c, p1 = <struct>), line 43 in "d2.c"
 [2] main(), line 43 in "d1.c"
 tmdbg> s
 stopped at addr: 0x00001880, line 52, foo() in "d2.c"
 B 52* p2->age = sum;
 tmdbg> p p2
 p2 = 0x1774c
 tmdbg> p *p2
 evaluates to: struct {
 name = 0x17740 "John Doe"
 age = 25
 misc = array [20] of signed int {
 20, 19, 18, 17, 16,
 15, 14, 13, 12, 11,
 10, 9, 8, 7, 6,
 5, 4, 3, 2, 1
 }
 kids = (nil) <`nh1.out`d2.c`struct person *>
 }
 tmdbg> c
 target is running, type ctrl-c to stop the target
 stopped at addr: 0x00000f80, line 32, main() in "d1.c"
 B 32* f8 = rand(); fs[8] = f8;
 tmdbg> c
 target is running, type ctrl-c to stop the target
 stopped at addr: 0x00001780, line 43, foo() in "d2.c"
 B 43* int
 tmdbg> c
 target is running, type ctrl-c to stop the target

Chapter 18: Debugging TriMedia Applications Using JTAG

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 67

18

JTAG Debugging in Host-Assisted Mode

To debug host-assisted stand-alone TriMedia applications, do the following:

1. Use tmgmon or tmmon to download and start the L1 boot program (located in the

examples directory: TCS_INSTALL/examples/autoboot/jtag/l1.out) into the TriMedia

board in the test PC.

2. Click OK to dismiss the following error message issued by tmgmon (Window95 ver-

sion):

_TMMANSharedPatch: Variable: UNDEFINED.

3. Use tmdbg to download a TriMedia stand-alone executable (a program compiled

with the -host nohost option).

4. Click OK to dismiss the dialog box that asks you to reset the stand-alone board man-

ually because the TriMedia board is not actually installed in a stand-alone chassis.

tmdbg does the following:

— Gets the MMIO and SDRAM base address from the L1 boot program.

— Relocates the target program’s load address to SDRAM’s base address plus the
0x840 bytes that represent the 2K (0x800) bytes used by the L1 boot program and
a 64-byte (0x40) pad between the L1 and L2 code

— Downloads the target, via JTAG, as in the no-host case.

5. Start debugging.

Sample Host-Assisted JTAG Debugging Session

This is what you will see in a typical host-assisted JTAG debugging session:

 TriMedia C/C++ debugger tmdbg
 v1.10 of tcsWin95 (Apr 9 1998 13:21:07)

program probably compiled with -host nohost
using TriMedia JTAG Turbo Card,
please ensure that it is properly installed and tested

target ready for application download
L1 monitor version: 1
receiving target info
MMIO_BASE: 0xffc00000
DRAM_BASE: 0xff000000
DRAM_LIMIT: 0xff800000
DRAM_CACHEABLE_LIMIT: 0xff800000
load address: 0xff000000 < sdram base: 0xff000000 + L1 monitor size: 0x840
using load address: 0xff000840
load addr: 0xff000840
downloading program ...
preparing downloadable memory image... done
sent load addr: 0xff000840
sent code size: 0x185a0
one dot = 4K bytes
......................... done
target started, waiting for it to initialize ...
done.

Chapter 18: Debugging TriMedia Applications Using JTAG

68 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Notice that the load address is based on the DRAM_BASE (a host assigned PCI address).

Multiple Debugging Sessions

For multiple debugging sessions, do the following after the first session is done and

before the downloading of a second TriMedia target program:

1. In tmdbg, choose Unload from the File menu, but do not dismiss the dialog box that

asks you to reset the stand-alone board manually just yet.

2. Bring up the tmgmon window and click the Stop button.

3. Click OK to dismiss the warning message that says:

Program Execution may not have started on TriMedia.

This should stop the L1 program and reset the TriMedia board.

4. Go back to the tmdbg window and click OK to dismiss the Board Reset dialog box,

mentioned in step 1.

5. Go back to the tmgmon window and click Download and Go to start the L1 program

again.

tmdbg is now ready to load your next target program.

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 69

19

Chapter 19

Debugging TriMedia pSOS+™ Applications

Topic Page

Introduction 70

pROBE Functionality in tmdbg —The pSOS+ Monitor 70

Callout Functions 77

Print 78

Pitfalls 79

Chapter 19: Debugging TriMedia pSOS+™ Applications

70 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Introduction

pSOS+ applications differ from standard TriMedia applications in that the pSOS operat-

ing system is embedded in them. To debug pSOS+ applications, you can use tmdbg in

the same way that you use in debug standard TriMedia applications.

However, when debugging pSOS+ applications, first break at the root function and then

continue because user pSOS+ calls start at root (equivalent to main in other applications).

You can also break in any task function to debug a multi-task application.

 Note that tmdbg does not yet contain the functionality to support multiprocessors. To

debug a pSOS+m application, use methods such as callout functions, DP and Print,

which are described later in this chapter.

pROBE Functionality in tmdbg —The pSOS+ Monitor

Several commands have been added to tmdbg (both standard and GUI versions) to help

you debug pSOS+ applications. These commands are based on the commands as found

in ISI’s pROBE+ and enable to do the following:

■ Inspect the state of pSOS+ objects (such as tasks and queues).

■ Get profile information on the application.

■ Place breakpoints at pSOS+ events such as service calls and task scheduling. In the

future, task-level debugging support will be supported.

Setting Up a pSOS+ Application for Use with tmdbg

To make use of the added functionality, the pSOS+ application must be compiled with -g

and linked with libmon.o and psosmon.o. libmon.o is linked in automatically when the

-g flag is used during linking. psosmon.o can be found in $(TCS)/lib/{el,eb}. psosmon.o

contains the functions called by the pSOS+ kernel to keep the profile up to date, and the

functions called by tmdbg to get the information on the pSOS+ objects.

Inspecting pSOS+ Objects

To inspect the state of pSOS+ objects or the kernel’s global state, the following functions

are provided:

qc Query pSOS+ configuration

qd Querydate

qo Query objects

qp Querypartitions

Chapter 19: Debugging TriMedia pSOS+™ Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 71

19

Each of these functions are only operative when the pSOS+ kernel is initialized. This

means that the user must execute a program up to the root function to use them. When

started, tmdbg will halt at main, so normally the user will first do a “b root” to set a

breakpoint at function root and then a c command to continue up to that point.

Query pSOS+ Configuration

The qc command will list the pSOS+ configuration table as specified by the user in

sys_conf.h.

qq Queryqueues

qr Queryregions

qs Querysemaphores

qt Querytasks

tmdbg> qc
pSOS Configuration

Table Address 8004c6d0
pSOS code 8004d22c
I/O jump table 8004d2c0
System Stack Size 00008000

------------------ Max number of -------------------
 Tasks Queues Semaphores I/O Devs Objects
--
 5 6 7 2 20

--------- Callout Functions ----------
 Fatal Start Delete Switch

00000000 8003218a 00000000 00000000

--------- Region 0 ---------
 Address Size Unitsize

80059d58 00795e70 00000100

- Root Task Initial Parameters -
 Address Prio Mode Stack Size

800003c0 c8 2000 00008000

 Ticks per Ticks per
Timing second Slice

 500 10

Chapter 19: Debugging TriMedia pSOS+™ Applications

72 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Query Date

The qd command will show the time as set in the pSOS+ application in date, time, and

ticks.

Query Object

The qo command will show the user the list of objects currently available in the applica-

tion. An argument can be passed to qo to only show objects of a specific type.

Query Partition

The qp command will provide the user with information about the partitions currently

available in the pSOS+ application. An argument can be passed to qp that identifies a

specific partition, in which case, only information on this partition will be shown.

tmdbg> qd
 Date Time Ticks

29-OCT-1997 1:31:23 7

tmdbg> qo

Object ID Type

'SEM ' #00030000 Semaphore
'RN#0' #00000000 Region
'ROOT' #00020000 Task
'TSK1' #00070000 Task
'QUE3' #00060000 Queue
'QUE1' #00040000 Queue
'TSK2' #00080000 Task
'QUE2' #00050000 Queue
'IDLE' #00010000 Task

tmdbg> qo queue

Object ID Type

'QUE3' #00060000 Queue
'QUE1' #00040000 Queue
'QUE2' #00050000 Queue

tmdbg> qp
 Buffer Number of Free Delete
Partition Address Size Buffers Buffers Override
--
'PT_1' #00120000 80094200 000100 16 15 yes

Chapter 19: Debugging TriMedia pSOS+™ Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 73

19

Query Queue

The qq command can be used to get information on the queues. It accepts an argument

to specify one queue, in which case, it will print more detailed information.

Query Region

The qr command will inform the user about the usage of the regions at that point by the

pSOS+ application. Again, a specific region can be specified, resulting in more detailed

information.

tmdbg> qq
 Waiting Queue Max. Buffer Queue Message
Queue Tasks Length Length Mgt. Type Size
--
'QUE3' #00060000 0 1 16 local fifo variable
'QUE1' #00040000 0 1 no max sys-pool fifo 16 bytes
'QUE2' #00050000 0 0 6 sys-pool fifo 16 bytes

tmdbg> qq 0x40000
 Waiting Queue Max. Buffer Queue Message
Queue Tasks Length Length Mgt. Type Size
--
'QUE1' #00040000 0 1 no max sys-pool fifo 16 bytes
--
Waiting Tasks: NONE
--
Messages: Address Size
(hex) ----------------
 800599e0 0010

tmdbg> qr
 Free Largest Wait. Delete Queue
Region Address Size Unitsize Bytes Segment Tasks Overr. Type

'RN#0' #00000000 80059d58 00769600 000100 0074a200 00745200 0 fifo

tmdbg> qr RN#0
 Free Largest Wait. Delete Queue
Region Address Size Unitsize Bytes Segment Tasks Overr. Type

'RN#0' #00000000 80059d58 00769600 000100 0074a200 00745200 0 fifo

Waiting Tasks: NONE

Segments: Address Size Status
(hex) ---------------------------
 80050800 00009558 pSOS
 80059d58 0002c800 header
 80086558 00745200 free
 807cb758 00000100 in use
 ...
 807e7a58 00008100 in use
 807efb58 00000070 unusable

Chapter 19: Debugging TriMedia pSOS+™ Applications

74 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Query Semaphore

The qs command, with optional argument to specify a definite semaphore, shows the

user information on the current state of the semaphores in the pSOS+ application.

Query Task

The qt command is offered to get information on the current tasks in the system.

Getting Profile Information of a pSOS+ Application

tmdbg automatically keeps track of several events during execution of a pSOS+ applica-

tion. The information gathered by tmdbg can be accessed with the command lp (for list

profile). Other commands are cp (for clear profile) and prof on and prof off (for profiling

on/off). At the start-up of tmdbg, profiling is set “on.” As shown in the examples, tmdbg

tmdbg> qs
 Waiting
Semaphore Count Tasks Type

'SEM ' #00030000 00000000 1 fifo

tmdbg> qs "SEM "
 Waiting
Semaphore Count Tasks Type

'SEM ' #00030000 00000000 1 fifo

Waiting Tasks:
#00070000

tmdbg> qt
 Prio Ticks to
Task rity Mode Status Timeout Suspended

'ROOT' #00020000 c8 0000 Running
'TSK1' #00070000 c8 0000 Smwait 'SEM ' #00030000 9 yes
'TSK2' #00080000 c8 0000 Wkafter 0
'IDLE' #00010000 64 0000 Ready

tmdbg> qt ROOT
 Prio Ticks to
Task rity Mode Status Timeout Suspended

'ROOT' #00020000 c8 0000 Running

Soft registers:
00000000 00000000 00000000 00001234 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Initial PC 800003c0 Pending events 00000000
Initial priority c8 ASR address 00000000
Initial mode 0000 ASR mode 0000
Stack bottom 807df558 Pending ASR 00000000
Stack top 807e7558

Timers: NONE

Chapter 19: Debugging TriMedia pSOS+™ Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 75

19

keeps track of how many cycles are overhead (in pSOS+ start-up, psosmon.o, and lib-

mon.o) and how many cycles are spent in each task. Furthermore, tmdbg keeps track of

how many times a task has run, and how many times it has been preempted or blocked.

Finally, the number of pSOS+ service calls done by every task is being counted. For every

queue, tmdbg keeps track how often certain system calls are performed and what the

maximum number of messages in the queue has been during the profile interval.

tmdbg> lp

Profile Interval: 2 ticks == 00072a3ba cycles (hex)

system startup 0006cd670
pSOS+ startup 00001c33d cycles (hex)
psosmon 000031507 cycles (hex)

 ÐÐÐÐÐRunning ÐÐÐÐ ÐÐÐÐÐÐÐÐÐÐTimesÐÐÐÐÐÐÐÐÐÐ ÐÐÐCallsÐÐÐ
Task Ticks Cycles Running Blocked Preemptd pSOS I/O
ÐÐ
'TSK1' #00070000 0 0000007d6 2 1 1 3 0
'TSK2' #00080000 0 0000003f6 1 1 0 1 0
'ROOT' #00020000 2 00000e935 3 0 2 36 0
'IDLE' #00010000 0 000000000 0 0 0 0 0

 ÐÐÐÐÐÐÐÐ Number of Calls ÐÐÐÐÐÐÐÐ Maximum
Queue q_send w_urgent q_broadc q_receiv Length
ÐÐÐ
'QUE1' #00040000 1 0 0 0 1
'QUE2' #00050000 0 0 0 0 0
'QUE3' #00060000 1 0 0 0 1

 Number of Calls Maximum
Semaphore sm_p sm_v Value
ÐÐÐ
'SEM ' #00030000 2 0 0

 Ð Number of Calls Ð Minimum Largest
Region rn_getseg rn_retseg Segment (hex)
ÐÐ
'RN#0' #00000000 13 2 00745200

 Ð Number of Calls Ð Minimum
Partition pt_getbuf pt_retbuf Free Buffers
ÐÐÐ
'PT_1' #00090000 1 0 249

tmdbg> lp task

Profile Interval: 2 ticks == 000111d45 cycles (hex)

pSOS startup 0000d133d cycles (hex)
psosmon 000031507 cycles (hex)

 ÐÐÐÐÐRunning ÐÐÐÐ ÐÐÐÐÐÐÐÐÐÐTimesÐÐÐÐÐÐÐÐÐÐ ÐÐÐCallsÐÐÐ
Task Ticks Cycles Running Blocked Preemptd pSOS I/O
ÐÐ
'TSK1' #00070000 0 0000007d6 2 1 1 3 0
'TSK2' #00080000 0 0000003f6 1 1 0 1
'ROOT' #00020000 2 00000e935 3 0 2 36
'IDLE' #00010000 0 000000000 0 0 0 0 0

Chapter 19: Debugging TriMedia pSOS+™ Applications

76 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

pSOS+ Breakpoints

With psosmon.o linked in your application, it is now possible to set breakpoints at cer-

tain pSOS+ events. The new tmdbg commands involved are bp, bt and dp.

The tmdbg commands status and delete all also show and delete pSOS+ breakpoints,

respectively.

Note that when a pSOS+ breakpoint is hit, it is not yet possible to look at the stack trace

to see where exactly in the application this happened.

Breakpoint on pSOS+ System Calls

A breakpoint can be set on the event of a pSOS+ system call using bp. Most system calls

identify the object on which it operates by name (for create) and by ID (for all other calls

on the object). The name or ID, therefore, can be used as a argument to the bp com-

mand, to indicate a specific pSOS+ object.

Examples

The following are examples of breakpoints that may be set:

Breakpoints on Task Scheduling

A breakpoint can be set on the event of a task being blocked or preempted using the

command bt. bt all can be used to stop on any task scheduling, while bt taskname or bt

task_id can be used to stop whenever a specific task gets blocked, preempted, or starts

running.

Command Description

bp Break when a specific system call is called

bt Break when a task gets scheduled in or out

dp Delete pSOS+ breakpoint

tmdbg> bp q_send
New pSOS+ breakpoint # 2 (call q_send)

tmdbg> bp q_create QUE1
New pSOS+ breakpoint # 3 (call q_create with argument 'QUE1')

Chapter 19: Debugging TriMedia pSOS+™ Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 77

19

Examples:

Deleting pSOS+ Breakpoints

dp breakpoint_id can be used to remove a breakpoint, while dp all will remove all pSOS+

breakpoints. The standard tmdbg command delete all will delete all pSOS+ breakpoints,

as well as other breakpoints.

tmdbg does not yet contain the functionality to support multiprocessors. To debug a

pSOS+m application, use methods such as callout functions, DP and Print, which are

described later in this chapter.

Callout Functions

pSOS provides callout functions, a mechanism for notifying the application when certain

events occur. The events include task start, task delete, task switch, and fatal. To use this

mechanism for debugging, first declare the callout functions in sys_conf.h

Next, add definitions to these functions in your code. For example,

tmdbg> bt all
New pSOS+ breakpoint # 4 (on all task scheduling)

tmdbg> bt ROOT
New pSOS+ breakpoint # 5 (on scheduling task 'ROOT')

extern void task_start (unsigned long tid, void *tcb);
extern void task_delete(unsigned long tid, void *tcb);
extern void task_switch(unsigned long entering_tid,
 void *entering_tcb,
 unsigned long leaving_tid,
 void *leaving_tcb);
extern void user_fatal (unsigned long err, unsigned long flag);

#define KC_STARTCO ((void (*)()) task_start)
 /* callout at task activation */
#define KC_DELETECO ((void (*)()) task_delete)
 /* callout at task deletion */
#define KC_SWITCHCO ((void (*)()) task_switch)
 /* callout at task switch */
#define KC_FATAL ((void (*)()) user_fatal)
 /* fatal error handler */

void task_start (unsigned long tid, void *tcb){
 DP(("task_start: %d\n", tid));
}
void task_delete (unsigned long tid, void *tcb){
 DP(("task_delete: %d\n", tid));
}
void task_switch(unsigned long entering_tid, void *entering_tcb,
 unsigned long leaving_tid, void * leaving_tcb){
 DP(("task_switch: entering %d, leaving %d\n", entering_tid, leaving_tid));
}
void user_fatal(unsigned long err, unsigned long flag){
 DP(("user_fatal: err = %d, flag = %d\n", err, flag));
}

Chapter 19: Debugging TriMedia pSOS+™ Applications

78 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

If you want to print the name of the task instead of the task ID, keep a table of the task

ID and corresponding name at the time of t_create, because the name of the task is not

passed as an argument to these callout functions.

You can use tmdbg to break at these callout functions and step through them. Further-

more, you can use the DP command without having to use tmdbg to debug pSOS appli-

cations to track their real-time behavior.

The callout functions listed in this example use the DP command to print information

prepared by the callout functions.

Print

For debugging without tmdbg, printf is recommended and can be used in most pSOS

applications. However, because printf schedules a task switch, it can affect the execution

order of the tasks. The user must provide a non-scheduling printing mechanism, if

needed. An example of this mechanism, called Print, can be found in $(PSOS_SYSTEM)/

configs/print.c. Please note that Print and printf, unlike DP, cannot be used from an ISR.

The following code from print.c suspends scheduling during a call to vprintf.

#include <stdarg.h>
#include <tmlib/AppModel.h>

unsigned long Print(char *format, ...){
 unsigned long result;
 AppModel_AppId self;

 va_list arg_pt;

 AppModel_suspend_scheduling();

 self= AppModel_switch(AppModel_root);
 va_start(arg_pt, format);
 result= vprintf(format, arg_pt);
 AppModel_switch(self);

 AppModel_resume_scheduling();

 return result;
}

Chapter 19: Debugging TriMedia pSOS+™ Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 79

19

Pitfalls

Keep the following in mind when debugging a pSOS application:

■ Check the stack sizes in sys_conf.h. (See sys_conf.h in Chapter 6, pSOS+™ Real-Time

Operating System in Book 3, Software Architecture, Part A.

■ Do not use the following from an ISR:

— printf

— Print, the user-defined non-blocking, non-scheduling printf, modeled after
$(PSOS_SYSTEM)/configs/print.c

— Any pSOS system call that is mentioned in the <italics>pSOS Reference document
is not to be called from an ISR

The reason for this precaution is that a file descriptor can still be locked when the

interrupt handler attempts to print. This situation would result in a deadlock.

■ Do not delete a task that is printing, as the file descriptor would remain locked

forever.

■ tmdbg does not check for single stepping into library code or the stripped code of

pSOS. This happens, for example, when single stepping into sbrk.

Use the following workaround:

— Keep on stepping until you get back to the code on the screen.

— Set a breakpoint on the place to which to return.

Chapter 19: Debugging TriMedia pSOS+™ Applications

80 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 81

20

Chapter 20

Debugging TriMedia Applications Using printf

and DP

Topic Page

Introduction 82

Debugging Using printf 82

Comparing DP and printf 82

Using DP 83

Chapter 20: Debugging TriMedia Applications Using printf and DP

82 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Introduction

The following sections describe how to use the printf and DP debugging techniques to

debug your applications.

Debugging Using printf

On TriMedia, your secondary debugging tool is the printf function. The TriMedia printf

function is included in the C RunTime library. It is implemented using a remote proce-

dure call (RPC) mechanism, which is part of the host-support package.

Comparing DP and printf

printf as implemented on the TriMedia processor is a rather complicated procedure,

involving communication with the host. That is why printf is not always useful for

debugging. TriMedia provides another function (DP) that is much more appropriate.

Table 2 compares the DP and printf techniques.

Table 2 DP and printf comparison

DP printf

Fast
Writes to memory, not screen.

Slow
Writes to screen.

Synchronous
Returns when completed.

Asynchronous
In a multitasking environment, control could
be transferred to another task while printing
completes.

Simple
Writes only to memory.

Complex
Passes messages to the PC over the PCI bus
using interrupts.

Requires action to read output
You must dump the DP buffer.

Does not require action
Output goes to the PC screen as soon as pos-
sible.

Persistent
The contents of the DP buffer are preserved
across a warm boot.

Volatile
A crash to your PC destroys any debugging
information you may have collected.

Can be called from an Interrupt Service Routine
(ISR)

Cannot be called from an ISR

Chapter 20: Debugging TriMedia Applications Using printf and DP

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 83

20

Note
Examine the audio test program (atest.c) to see some typical uses of DP.
Details of errors that you don’t want to show to users are reported by DP.
You can call DP in an ISR to check whether an ISR is running. You can dump
megabytes of trace information into the DP buffer. In this case, it is best to
dump the DP buffer to a file.

Using DP

IMPORTANT
DP is a macro. The DP capability is always enabled unless NO_DP is defined.

DP is defined as a macro in tmlib/dprintf.h. It works like a simple form of printf. You

must call DP with two sets of parentheses. For example, the command

allows DP, which is a varargs function, to be conditionally compiled out.

DP is mapped to the function _dp and works on all hosts (including nohost). DP has an

associated initialization function that must be called before calling DP: DP_START will

create a buffer where subsequent DP will write to.

DP can handle strings of up to 511 bytes long; your program will exit with value

0xFFFFD30F if more than 511 characters have to be copied to the DP buffer in one call.

A powerful feature of this debugging subsystem is the persistent DP buffer that survives a

warm reboot. Using this feature, you can analyze a long trace of the progress of a real-

time system off-line.

You can dump the DP buffer using tmmon or tmgmon on Windows 95 and Windows

NT.

The DP buffer can also be inspected through the GUI version of tmdbg.

Figure 11 DP Options in tmdbg.

DP(("test %d\n", i));

Chapter 20: Debugging TriMedia Applications Using printf and DP

84 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Description of DP Macros

Synopsis Initializes buffer and controlling struct for DP.

Parameters size Size of the buffer.

address Address of user-provided buffer. Null if the buffer
needs to be dynamically allocated.

Returns Address of controlling struct.

Synopsis Frees allocated DP buffer memory.

The DP control structs are overwritten. After
DP_STOP, the contents of the DP buffer are irre-
trievably gone.

Synopsis Switches DP printing back on after a DP_OFF().

Subsequent calls to DP will have effect again.

A DP_ON() is not needed after a dp_START

Synopsis Switches DP printing off.

Subsequent calls to DP will have no effect.

IMPORTANT
Always use the DP_* macros to do your “debug printf.” Do NOT call the
underlying functions. The DP_* macros accept the same arguments as their
corresponding functions. Once you have finished debugging, simply
recompile your source with the -DNO_DP option. All of the DP_* macros
will be compiled out, that is, they become comments and do not impact on
the final code size or execution speed at all.

Note
For backward compatibility the macro DPsize is still defined: DPsize(size) is
equivalent to DP_START(size, Null).

Address DP_START(UInt32 size, Address address)

DP_STOP(void)

DP_ON(void)

DP_OFF(void)

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 85

21

Chapter 21

Debugging Multiprocessor and Multitasking

Applications

Topic Page

Introduction 86

Loading a Multiprocessor Application 86

Switching Focus 87

The procs Command 87

Debugging Tasks 87

Chapter 21: Debugging Multiprocessor and Multitasking Applications

86 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Introduction

Debugging multiprocessor applications is similar to debugging other application using

the GUI version of the TriMedia debugger. The main difference is in how you load the

target and how you set the focus of execution.

Loading a Multiprocessor Application

The Load Target dialog box enables you to load a single TriMedia executable (.out file)

into multiple CPUs. It also enables you to load multiple .out files into multiple CPUs,

but the host type should be the same for the multiple CPUs.

In the Load Target window, clicking a CPU button displays the CPU’s corresponding

SDRAM Base, MMIO Base, Frequency, and current working directory (CWD) values.

For PCI-hosted .out files, the SDRAM Base, MMIO Base, and Frequency fields are read-

only. This information is defined at PCI board installation time and cannot be changed.

For TMSIM executable, a current working directory is not supported.

To load an executable, click the Load button. The .out file is loaded into the selected

CPUs and a tmrun console opens for each CPU.

If you manually enter the
filename, you must press
Enter so that tmdbg
checks the file
automatically

Checkbox for selecting
a CPU. The executable
is downloaded onto
the selected CPUs.

CPU
button

If you locate the executable
using the File button, tmdbg
checks the file automatically to
find out the host on which it is
designed to run

Chapter 21: Debugging Multiprocessor and Multitasking Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 87

21

Switching Focus

To switch the execution focus, do the following:

1. Choose Focus from the View menu.

2. Select the desired CPU from the Target Focus window.

3. Click Focus.

Once in focus, all commands apply to the same CPU.

Note
Clicking on a source code window does not change execution focus.

The procs Command

There is no equivalent command for procs in the GUI version of the TriMedia debugger.

Debugging Tasks

To debug tasks using tmdbg, you must link the target program with the pSOS+ operating

system, and the pSOS debug monitor. (Refer to Setting Up a pSOS+ Application for Use with

tmdbg in Chapter 19.) The debugger supports debugging tasks in the System (default

mode) and Task modes.

If the target is stopped in the System mode, all the tasks on the target stop. Interrupts are

still enabled, but the debug monitor is entered, and does not yield to any other tasks

which may be ready.

If the target is stopped in the Task mode, tmdbg supports debugging a single task while

other tasks are running. Therefore, as long as one task is stopped, you can enter tmdbg

commands. To switch to the Task mode, use the Debug Mode command in the options

menu.

IMPORTANT
The Task mode can only be entered before the target program has started
(that is, when the target is stopped at main).

Chapter 21: Debugging Multiprocessor and Multitasking Applications

88 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Figure 12 Debugging Multi-task Applications

The TriMedia debugger distinguishes between the “visited” tasks and the tasks that are

“in focus” in whether their states are modifiable.

A task being visited can have it’s state examined but not changed (that is, the call stack,

registers, and memory can be viewed, but the task cannot be explicitly restarted by the

debugger). Only the usual operating system mechanism can restart that task.

When a task is in focus, however, it's state is viewable as well as modifiable. Such a task

can be restarted by the debugger without changing the state of any other task.

Debugging Tasks in System Mode

In the System mode, any task can be visited, but only one task is in focus at any time,

and the focus cannot be changed, except by continuing execution and letting the oper-

ating system perform a task switch.

In the Tasks window, a diamond in the Focus column marks the task that is currently in

focus.

Chapter 21: Debugging Multiprocessor and Multitasking Applications

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 89

21

Figure 13 The Tasks window

When the target program stops on a breakpoint, the task currently in focus is the task

being visited. To visit a different task, highlight the task, and click the Visit button. You

can then view the call stack, registers, and memory information for the newly visited

task. But remember that this task is not the one in focus. Clicking the continue button,

for example, applies to the task in focus and not to the task being visited.

Debugging Tasks in the Task Mode

In the Task mode, you can visit or focus on any task that is stopped. For example,

although task A may have hit a breakpoint, you can focus on task B and let it continue

before A restarts.

If a task is not stopped, you can stop it by clicking the Stop Task button in the Tasks win-

dow1. In the same way, you can restart tasks using the Resume Task button.

The Focus Task and Visit Task buttons are both active in the Task mode. As in system

mode, however, only the focused task can be restarted.

1. The act of stopping a task is not precise. In some cases, you cannot stop a task until it makes a system call.

Chapter 21: Debugging Multiprocessor and Multitasking Applications

90 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 91

22

Chapter 22

Other Debugging Information

Topic Page

Debugging Interrupt Handlers 92

Debugging the Host Call Interface and Device Library 93

Debugging at Optimization Levels Higher Than -O1 94

Chapter 22: Other Debugging Information

92 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Debugging Interrupt Handlers

The TriMedia register set is divided into global and local registers. Global registers are

used for values that are alive across decision trees. For more information regarding call-

ing conventions, see Chapter 21, TriMedia Interrupts API, in Book 5, System Utilities, Part

CGenerally, when a function is called, it must save the global registers that it will use to

carry values across decision trees.

The debugger, tmdbg (running on the host machine), interacts with the target program

(running on TriMedia) via a debug monitor (libmon.o, linked in with user code when -g

is used for compiling and linking). The debug monitor runs on TriMedia with the target

program. Breakpoints can be set only at decision tree boundaries. When a breakpoint is

reached, the debug monitor is invoked and it immediately saves all the global registers.

Local registers need not be saved because they are not live across decision tree bound-

aries. The debug monitor then sends a message to tmdbg and awaits a reply.

Interrupt Handler Characteristics and Problems

The local registers are used only by the instruction scheduler for values that are alive

within a decision tree, but dead across trees.

tmdbg does not support breakpoints at or inside typical interrupt handlers. This is

because of two distinct characteristics of the manner in which interrupt handlers are

scheduled and breakpoints are processed.

■ Interrupt handlers that use local registers.

The first problem arises because of the way interrupt handlers (those that are com-

piled with #pragma __TCS_handler__) are compiled. Interrupt handlers are scheduled

to run quickly, so they do not save any registers.

Instead, they use the local registers, none of which should be live when the handler is

invoked. All decision trees in an interrupt handler use local registers to pass informa-

tion from one tree to another, contrary to the usual convention for non-handler

code. Since local registers are not saved by the debug monitor, breaking within an

interrupt handler causes local register contents to be lost.

■ Breakpoint triggering with unpredictable results.

The second problem occurs when a breakpoint in an interrupt handler X is triggered.

The debug monitor tries to send a message to tmdbg and waits for a reply. However,

during this time, another interrupt may occur and trigger the handler X again, re-

entering the monitor. This scenario may be repeated and an infinite loop may occur.

Since the monitor is not re-entrant, breaking in an interrupt handler in general will

cause unpredictable results.

Chapter 22: Other Debugging Information

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 93

22

Interrupt Handler Solutions

The solution to the problems caused by the characteristics of the interrupt handlers is to

debug interrupt handlers by using the following approach:

■ When the handler is invoked, it must first disable the interrupt that triggered it.

Then, to force the local registers to be saved, the handler should call another func-

tion. Following is an example.

Setting Breakpoints

To debug the handler, you can now set a breakpoint in the function safe_handler_bp,

run the program until the breakpoint is reached, do a fin and proceed to debug the han-

dler. You should let the execution continue when it reaches the line containing

intSET_IEN. If you try to step through the code after the interrupts have been re-enabled,

the second problem mentioned may occur. It should also be noted that if you are run-

ning tmdbg with tmsim as the target, you should not step into the Device Library dis-

able and enable interrupt calls (as described in the following section).

Debugging the Host Call Interface and Device Library

Since the monitor sends a message to tmdbg each time it is invoked by a breakpoint, it is

not possible to set breakpoints inside of the message-passing routines. Setting a break-

point will cause the monitor to be entered, which will cause a message to be sent to

tmdbg, which will invoke the message-passing routines, which will cause a breakpoint,

which will cause the monitor to be re-entered, and so on. The results are either an infi-

nite loop or unpredictable.

This is only an issue when debugging using tmsim because, in this case, the message-

passing routines are part of the TriMedia C library. When tmsim is the target, tmdbg

uses the socket routines sock_recv and sock_send to communicate with the monitor.

These routines are implemented by the TriMedia C library on top of HostCall_send and

HostCall_host_send.

Furthermore, these calls are implemented on top of the Device Library. Breakpoints may

not be set inside any of this code. If you happen to interrupt execution by typing

CTRL-C and land within any of this code, you should not use the step, next, or finish

commands. Inquiries can be made, but a breakpoint set will trigger the problem

#include <tm1/tmInterrupts.h>
void safe_handler_bp(void) { ; }

void int_handler(void){
 #pragma __TCS_handler__
 safe_handler_bp();

 /* process interrupt */
}

Chapter 22: Other Debugging Information

94 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

described previously. When tmdbg runs on the TriMedia processor, the monitor does

not rely on any of the TriMedia library, so this problem will not occur.

Debugging at Optimization Levels Higher Than -O1

Although the compiler defaults to -O1 when you specify -g, it is possible to compile with

-g at a higher optimization level. To do this you must state the optimization level you

want along with the -g command (-g -O3, for example). While debugging at higher opti-

mization levels is not explicitly prohibited, it is not supported at optimization levels

greater than -O2.

There are several differences that you should expect when attempting to debug at -O2 or

higher. These are described in the sections below.

Diminished Visibility of Local Variables and Parameters

At -O2 or higher, the compiler uses registers extensively to hold temporary or intermedi-

ate values. In many cases, the original discrete local variable or parameter does not exist

after the first dtree of the code and is only kept in a form that aids in optimization. For

example, consider the following loop, where i is an integer and a and b are arrays of inte-

gers:.

In this case, i is used only as an index. Array indexing is an expensive calculation because

a[i] implies that a+(i*sizeof(int)) and multiplication are more expensive than addition.

The compiler may choose to keep only the value of i (as i*4) and just add 4 at the end of

the loop, conceptually changing the code to the following.

Or the compiler may even go as far as this:

In many cases the local or parameter value is available for the first few dtrees in the func-

tion and then becomes unavailable even though, looking at the code, you can see it is

still in scope.

Similarly, if the value of the return statement is determined early, it may be moved to the

return register early and the debugger may no longer know the variable by its original

name.

for(i = 6; i < m ; i++) a[i] = b[i] Ð m;

for(i =24; i < m*4; i += 4){
 t1 = a + i;
 t2 = b + i;
 *(t1) = *(t2) Ð m;
}

t1 = a + 24;
t2 = b + 24;
for(x = 0 ; x < m; x++, t1 += 4, t2 += 4)
 *t1 = *t2 Ð m;

Chapter 22: Other Debugging Information

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 95

22

Local variables could also be unavailable because the compiler has reordered the code to

make all references to a given variable local to the same dtree.

Variables May Have Been Optimized Away

Parameters or variables that are set but never used may be completely removed. More

confusingly, variables that are only copies of other variables may be removed even if

they are different types. For example:

In the case above, even though f is a char and tmp is an int they can both be represented

by the same register. The compiler knows that f is in register 5 on entry. It also knows

that the value in register 5 is equivalent to tmp so it throws away tmp.

Code May Have Been Moved

This means that a value may have already been updated despite the fact that the source

code has the value updated at a point below the current breakpoint. The simplest exam-

ple of this is when a variable is determined to be invariant during a loop and is assigned

outside the loop.

In order to create maximum opportunity for paralellism, the compiler will ‘hoist’ code

from sections below the current code into the dtree with the current code. For example,

a dtree (say DT_5) could have code generated from lines 127–130 and 150–154 because a

goto at line 130 goes to line 150 and the compiler has brought the code into the same

dtree.

The compiler may also move all references to a local variable into the same dtree. Doing

so can cause confusion. Although visually it seems that the variable should be available

at the given breakpoint, the compiler has moved all references into the same dtree, and

the variable is not available.

Code May Have Been Unrolled

While you are looking at code that goes sequentially through a char array the compiler

may have unrolled it to actually do 2 or 4 values at every loop iteration. Values may be

updated before you think they should be.

Code May Have Been Inlined

When an instance of a function is inlined into another function the function call is

removed and your access to the local variables or parameter of the function that was

int foo (char f) {
 int tmp = f;
 printf("f=%c tmp=%d\n",f,tmp);
 return tmp;
}

Chapter 22: Other Debugging Information

96 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

inlined is also removed. The inlined function itself creates more chances for optimiza-

tion and the code that is actually executed may be quite different from the code that you

are looking at in the debugger.

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 97

23

Chapter 23

tmdbg Command Reference

Topic Page

Overview of Debugger Commands 98

Debugger Expressions 98

Debugger Commands 98

Chapter 23: tmdbg Command Reference

98 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

Overview of Debugger Commands

The following are the most basic tmdbg commands:

break Place a breakpoint in the program

continue Continue execution

help List available commands and their usage

print Display variables

run Run the program being debugged

status List currently active breakpoints

where List call stack trace

This release fully implements all essential features such as setting and removing break-

points, listing of source files, and examining program data structures. The following sec-

tions provide reference information that you may need when using the debugger. You

can also find the most up-to-date reference information in tmdbg manual page.

Debugger Expressions

tmdbg expressions are combinations of variables, constants, function calls, and opera-

tors. Variables are the currently active and visible C variables defined in the program

being debugged. Hexadecimal constants must be preceded by a 0x and octal constants by

a 0. Character constants must be enclosed in single quotation marks. In general, the

expression rules follow those of the C language.

tmdbg updates the current scope as the program enters and exits functions and files dur-

ing execution. tmdbg resolves scope conflicts based on the current function and file. You

can also change the scope explicitly with the func and file commands. When the current

function is changed, tmdbg updates the current file accordingly, and vice versa.

Debugger Commands

Debugger commands are listed according to the following categories:

■ Execution control commands

■ Data and stack commands

■ Source files commands

■ pSOS+ commands

■ Miscellaneous commands

Chapter 23: tmdbg Command Reference

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 99

23

Execution Control Commands

The following are the commands which control execution.

break n Set a breakpoint at source line n.

break func Set a breakpoint at the beginning of function func.

break n "file" Set a breakpoint at line n in source file.

break addr address Set a breakpoint at the given address. The address must be a
branch target. If not, the text segment might become cor-
rupt.

The debugger will check whether the address is a branch
target. If an executable is stripped, verification is not possi-
ble.

call func() Make a function call to a function in the target program.
Only functions of the type void f(void), are currently sup-
ported.

cont Continue execution of the program.

delete n Remove breakpoint number n. The status command prints
breakpoint numbers.

delete dbp Remove datawatch breakpoint (set by the watch com-
mand).

delete all Remove all breakpoints.

finish Finish executing the current function, then stop at the
caller. This is identical to the step up command.

hwbreak line [after n] Set a hardware breakpoint at source line. If the after field is
provided, then the breakpoint is triggered after n execu-
tions.

hwbreak func [after n] Set a hardware breakpoint at the beginning of function
func. If the after field is provided, then the breakpoint is
triggered after n executions.

hwbreak inrange addr1 addr2 [after n]
Set a hardware breakpoint in the range of instructions
addr1 to addr2 (inclusive). If the after field is provided, then
the breakpoint is triggered after n executions.

hwbreak outrange addr1 addr2 [after n]
Set a hardware breakpoint outside of the range of instruc-
tions addr1 to addr2 (exclusive). If the after field is provided,
then the breakpoint is triggered after n executions.

load prog Download a TriMedia executable named prog. The currently
loaded program will be terminated.

Chapter 23: tmdbg Command Reference

100 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

loadmi mifile Download a memory image file mifile to a stand-alone Tri-
Media board via JTAG. The memory image must not be cre-
ated with the debug monitor, libmon.o, and linked in or
else it hangs after it is downloaded. There is no debugging
support for memory image files.

next [n] Step n lines (default: one line); do not step into function
calls. See also step.

run [arg...] With no argument, begin executing the target program
with current arguments. Otherwise, begin executing the
target program with the given arguments arg1, arg2, and so
on. Arguments containing non-alphanumeric characters
(such as “.” or “/”), must be enclosed in quotation marks.

status Print the current breakpoints.

step [n] Single-step n decision trees, stepping into function calls.
The default is n = 1 decision tree. See also next.

step up Finish executing the current function, then stop at the
caller. Same as the finish command.

stop stop is synonymous with break.

watch loadstore [range | value] [passcount]
loadstore ::= load | store | loadstore

range ::= [inrange | outrange] addrl addr2

value ::= when [== | !=] const mask

passcount ::= after const

The loadstore specifier denotes whether loads, stores, or
both, should be watched.

The range specifier requests that addresses should be
checked in the given range.

The value specifier allows specific values to be compared to
a constant const (with mask) and the watchpoint can be
taken if the value is equal to, or not equal to, the constant
and mask conjunction (logical AND).

Either the range specifier or the value specifier (or both)
must be included.

The optional passcount specifier is used to skip a number of
breakpoint occurrences.

Data and Stack Commands

The following are the commands that control data and stack.

assign var = expr Assign the value of expression expr to variable var.

browse [file | all] Browse classes in global scope. If file is given, browse classes
in scope of file, or if all is given, browse classes in global
scope and all source files with debug information.

Chapter 23: tmdbg Command Reference

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 101

23

dis [n] Disassemble 10 (or optionally n) instructions starting at the
current program counter.

dis addr n Disassemble n instructions starting at address addr.

dis func [n] Disassemble 10 (or optionally n) instructions starting at the
address of function func.

down [n] Move down the call stack n levels. The default is one level).

examine addr [fmt [n]] Print the contents of memory at address addr in hexadeci-
mal for 4 bytes. If fmt is given, then print the memory in
fmt format; if n is given also, print in fmt format n times.
The supported formats and their corresponding default
sizes are as follows:

For example, the following command will print in hexadec-
imal, sixty-four 4-byte integers starting at address 0xac00:

 examine 0xac00 X 64

locals [func] Show definition of all local (automatic) variables in a func-
tion. If the func argument is not given, the current scope’s
function is used.

mmio [all | group] Show all or a group of MMIO registers. The supported
MMIO register group names are as follows:

fmt Output Size

b Hexadecimal 1 byte

c ASCII char 1 byte

d Signed decimal 2 bytes

D Signed decimal 4 bytes

f Both hexadecimal & float 4 bytes, 6-digit precision

o Octal 2 bytes

O octal 4 bytes

s String null-terminatedstring

u Unsigned decimal 2 bytes

U Unsigned decimal 4 bytes

x Hexadecimal 2 bytes

X Hexadecimal 4 bytes

Name Description

gen | general DRAM base, DRAM limit, and MMIObase

intr | interrupt Exception handler and interrupt vectors

timer Timer register

Chapter 23: tmdbg Command Reference

102 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

print expr | reg Print the value of expression expr or the value of register reg.
The supported register names are as follows:

hwbp Hardware breakpoint registers

cache I-cache and D-cache

vi Video in

vo Video out

ai Audio in

ao Audio out

pci PCI registers

sem SEM registers

jtag JTAG registers

icp ICP registers

vld VLD registers

i2c I2C registers

ssi SSI registers

evo EVO registers

xio XIO registers

gpi GPI registers

Name Equ Meaning

$n n is in the range 0 to 127

$RP $2 Return Pointer register

$FP $3 Frame Pointer register

$SP $4 Stack Pointer register

$RV $5 Return Value register

$PCSW Program Control and Status Word

Name Description

Chapter 23: tmdbg Command Reference

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 103

23

registers [group | r1 | r1 r2] Show registers of the current (stack) context. Without any
argument, all registers are shown.

When a group is given, the particular group of registers is
shown. The supported register group names are as follows:

When a single register number is given, that register’s con-
tent is shown. If a pair of register numbers are given, they
specify a range of registers to be shown.

trace [f] Display the verbose stack traceback, with register FP and SP
printed as well. This trace command is useful when you
suspect that the target program has a stack space overrun.
The FP and SP register value should give a clear indication
of the stack usage.

up [n] Move up the call stack n levels. The default is one level).

whatis name Print the currently visible definition (either variable or
typedef) of name.

where Print the stack traceback. The set stacklevel command lim-
its the number of levels of traceback printed. The set stack-
verbose command controls the verbosity of stack
information printed.

where q Quick traceback: print only function names.

where v Verbose traceback: print function names, arguments and
source line/file information.

Source File Commands

The following commands control source files.

file ["file"] With no argument, print the name of the current file. Oth-
erwise, change the current file scope to file.

files [all] Without the all option, list the names of source files that
were compiled with debug information. Otherwise, list the
names of all source files.

list [line] List 10 lines of the source file (starting at line number line if
given).

list line1 line2 List source file from line1 to line2.

Name Meaning

a All registers (except locals)

g Global registers ($0 through $63)

l Local registers ($64 through $127)

s System registers (plus $2 through $8)

Chapter 23: tmdbg Command Reference

104 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

list "file" [line1 [line2]] List the given source file from line1 (default: line 1) to line2
if given.

path ["dir [: dir]..."] With no argument, display current source file search path.
Otherwise, set the source file search path to the given
colon-separated directory list. A source file is located using
pathnames in the following search order:

1. Pathname generated by the compiler.

2. The pathname with leading “/tmp_mnt” removed.

3. In the directories set by the path command.

pSOS+ Commands

The following commands control pSOS+ information.

bp servicecall [arg] Set a breakpoint on pSOS+ servicecall. When an argument is
passed, stop only when servicecall is called with its first
argument arg.

bt [all | taskname | taskID] Set a breakpoint on pSOS task scheduling. If you specify all,
tmdbg stops whenever pSOS+ schedules a task.

If you specify taskname, tmdbg stops whenever pSOS+
schedules task taskname.

If you specify taskID, tmdbg stops whenever pSOS+ sched-
ules task taskID.

cp Clear pSOS+ profile information.

dp [number | all] Either delete pSOS+ breakpoint of number number or delete
all breakpoints.

lp [type] Show pSOS+ profile information on all objects or on objects
of the specified type. Possible types are partition, queue,
region, semaphore, and task.

profiling on | off Start/restart or stop profiling pSOS+ events.

qc Query pSOS+ configuration.

qd Query pSOS+ date and time.

qo [type] Query all pSOS+ objects or objects of the specified type. Pos-
sible types are partition, queue, region, semaphore, and
task.

qp [partition] Query all pSOS+ partitions, or one partition with name or
ID partition in more detail.

qq [queue] Query all pSOS+ queues, or one queue with name or ID
queue in more detail.

qr [region] Query all pSOS+ regions, or one region with name or ID
region in more detail.

qs [semaphore] Query all pSOS+ semaphores, or one semaphore with name
or ID semaphore in more detail.

Chapter 23: tmdbg Command Reference

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 105

23

qt [task] Query all pSOS+ tasks, or one partition with name or ID
task in more detail.

Task-Level Debugging Commands

listtasks List all currently active tasks. Task indices can be found by
using this command.

stoptask task_index Stop the execution of task task_index.

resumetask task_index Resume the execution of task task_index.

focustask task_index Focus on task task_index.

Multi-Processor Debugging Commands

focus [proc_index] Focus on processor proc_index.

If no proc_index is given, the currently focused processor
number is shown.

Valid processor can be found by using the procs command.

procs List all installed TriMedia processors.

Miscellaneous Commands

The following commands control miscellaneous information.

args [arg...] Given no arguments, print the current target program’s
arguments. Otherwise, set target program’s arguments to
the arguments specified.

chdir [dir] Set the current working directory to dir.

dumpdp [file] Print out the volatile buffer in target SDRAM that is filled
by the DP macro in the target program. If a file argument is
given, write the buffer to that file.

tmdbg will look for the DP buffer by using the information
that is stored in the debug section of the object file. Because
the location of this buffer is stored at a fixed address per
program, you can reload the same program during a debug-
ging session after a crash has occurred and still be able to
dump the buffer with the old contents (as long as no
DP_START is called).

The macro DP is defined in tmlib/dprintf.h and can be used
to write into a buffer that can be dumped by tmgmon,
tmmon and tmdbg.

You must call DP with two sets of parentheses, for example,

 DP(("hello %s\n", name));

Chapter 23: tmdbg Command Reference

106 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

because when compiled with -DNDEBUG, DP will be com-
piled out. To use DP, you must initialize the internal buffer
in SDRAM by calling the macro DP_START (size,
buffer_addr) where size is the size of the buffer the user
wants to use and buffer_addr the address of the buffer if the
user wants to determine where the buffer will be. If
buffer_addr is 0, DP will use malloc to allocate the buffer.

DP_STOP will free the allocated memory.

DP uses vfprintf and allows all formatting of this C library
function to be used. Each DP call can only print 512 bytes.

In case of an overflow, the program (or task) is exited imme-
diately, with error code FFFFD3OF (DPOverFlow).

For backward compatibility with the Windows95-specific
previous implementation, DPsize(x) does the same as
DP_START(x, 0).

echo [arg...] Echo arguments arg... to stdout.

exit Exit from tmdbg. Same as the quit command.

help [cmd] With no argument, print a summary of all tmdbg com-
mands; otherwise, print the command syntax for the given
debugger command.

pwd Print the current working directory path.

quit Quit tmdbg. Same as the exit command.

script [file] Execute commands from debugger command script file.
Script files can be nested up to 64 files deep.

set Display the current values of debugger environment vari-
ables.

set arraycolumns n Set array output format to n columns. Default number of
columns is calculated automatically based on the TTY’s col-
umn width.

set arrayindex on | off on is the default setting.

set chararray array Print array of characters in its natural format—as an array
of ASCII characters.

set chararray string Print array of characters as a null-terminated ASCII charac-
ter string.

set float float Print floating-point numbers in their natural format (%e).

set float hex Print floating-point numbers as hexadecimal bit patterns.

set intbase dec | hex | oct Set output integer base to decimal, hexadecimal, or octal.

set mode system | task Set the debug mode.

set stacklevel n Set the number of stack frames for the where command to
n.

Chapter 23: tmdbg Command Reference

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 107

23

set stackshowfpsp on | off With the on flag, each stackframe in the stack traceback is
shown, by default, with its FP and SP register values. With
the off flag set, the FP and SP registers will not be shown.

The trace f command can be used to display the FP and SP
registers even if the stackshowfpsp option is turned off.

set stackverbose on | off Set the desired verbosity of the output of the where com-
mand. off means quick traceback and on means verbose tra-
ceback that includes arguments and line information. on is
the default setting.

set strlen n Set the maximum ASCII string length to n. If n is less than
1, the string length is then set to the default length of 512.

set taskeventnotice event on | off
Turn task event notification on or off. Supported events are:
create, delete, resume, start, and suspend.

set verbose on | off Turn command verbose mode on or off. off is the default
setting.

simargs Show arguments to the simulator.

simargs arg... Set arguments to the simulator.

Chapter 23: tmdbg Command Reference

108 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 109

24

Chapter 24

Code Listings

Topic Page

x.c 110

foo.c 110

d.h 111

d1.c 112

d2.c 113

Chapter 24: Code Listings

110 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

x.c

foo.c

#include <stdio.h>
typedef int (*fun)();
extern int foo(fun f, int b);
typedef struct aap {
 int x;
 int y;
} aap;
typedef union noot {
 int x;
 char y[4];
} noot;
aap x = { 0x12345678, 2 };
static int y = Ð1;
static int
bar(int x){
 return x;
}
int zzz;

int main(int argc, char *argv[]){
 noot y;
 static int z = 42;
 fun f = &main;

 y.x = foo(f, bar(x.x));
 printf ("%d %d\n", x.x, x.y);
 printf ("%x %x %x %x %x\n", y.x, y.y[0], y.y[1], y.y[2], y.y[3]);
 return z;
}

typedef int (*fun)();

int zzz;

int
foo(fun f, int b){
 return b;
}

Chapter 24: Code Listings

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 111

24

d.h

typedef struct person {
 char *name;
 int age;
 int misc[20];
 struct person *kids;
} person;

int foo (int, float, char, int, person *, person);
int foo1 (person, int);
int sum (int);
float bogus(int);
custom_op float fsqrt(float);

extern int buffer1[], buffer2[], buffer3[];

Chapter 24: Code Listings

112 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

d1.c

#include <stdio.h>
#include "d.h"

person john = { "John Doe", 25,
 {20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1},
 NULL
 };

person *doe = &john;

main(){
 volatile int i = 0;
 float f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11;
 volatile float fs[12];

 for(i = 0; i < 10; i++){
 printf("Sum (%d) = %d \n", i, sum(i));

 f0 = rand(); fs[0] = f0;
 f1 = rand(); fs[1] = f1;
 f2 = rand(); fs[2] = f2;
 f3 = rand(); fs[3] = f3;
 f4 = rand(); fs[4] = f4;
 f5 = rand(); fs[5] = f5;
 f6 = rand(); fs[6] = f6;
 f7 = rand(); fs[7] = f7;
 f8 = rand(); fs[8] = f8;
 f9 = rand(); fs[9] = f9;
 f10 = rand(); fs[10] = f10;
 f11 = rand(); fs[11] = f11;

 printf ("bogus(%d) = %f\n", i, bogus(i));

 buffer1[i] = i;
 buffer2[i] = sum(i);
 buffer3[i] = buffer1[i] + buffer2[i] + f11 ;
 foo ((int)f11, 2.75, 'g', (int)f11 + buffer2[i], doe, john);
 foo1 (john, i);
 }

 return (5871);
}

Chapter 24: Code Listings

©1999 Philips Semiconductors 10/08/99 Book 4—Software Tools, Part C 113

24

d2.c

#include <stdio.h>
#include "d.h"

int buffer1 [160]; int buffer2 [160]; int buffer3 [160];

int
sum(int i){
 int j, sum;
 for(j = 0, sum = 0; j < i+1; j++) sum += j;
 return (sum);
}

volatile int dbpc = 0;

float
bogus(int i){
 int j = 0; float f = 0.0;
 for(j = 0; j < i; j++){
 dbpc++;
 }
 printf (" dbpc = %d \n", dbpc);
 buffer1[0] = 1234;
 f = f + fsqrt(1.235467);
 return (f + (float) sum((int) f));
}
int
foo(int i1, float f, char c, int i2, person *p2, person p1){
 int j, sum = 0;
 for (j = i1; j < i2; j++) sum += (int) c * (int)f;
 p2Ð>age = sum;
 return (p2Ð>age);
}
int
foo1(person p1, int i1){
 int j, sum = 0;
 for (j = 0; j < i1; j++) sum += i1;
 p1.age = sum;
 return (p1.age);
}

Chapter 24: Code Listings

114 Book 4—Software Tools, Part C ©1999 Philips Semiconductors 10/08/99

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 4—Software Tools
	TriMedia Debugger
	15: Debugging, Introduction
	Overview of the TriMedia Debugger (tmdbg)
	Command-Line Version
	Graphical User Interface Version
	Backward Compatibility

	TriMedia Debugger Architecture
	Front End
	Target-Driver
	Debug Monitor

	Installation Requirements
	Getting Started Quickly
	Other Debugging Tools: printf and DP

	16: Debugging Standard Applications
	Preparing Programs for Debugging
	Generating Symbolic Debugging Information
	Linking the Debug Monitor Library
	Using the -g Option
	Using the TriMedia Linker

	Using the Debugger
	Starting the Command-Line Version of tmdbg
	Listing tmdbg Commands
	Getting Help about a Specific Command
	Listing the Source Code
	Source Code Line Components

	Starting the GUI Version of tmdbg

	Controlling Program Execution
	Single Stepping
	Stepping Across Functions
	Stepping Out of Functions

	Using Breakpoints
	Setting Breakpoints
	Setting Software Instruction Breakpoints
	Setting Hardware Data Breakpoints
	Setting Hardware Instruction Breakpoints

	Removing Breakpoints
	tmdbg Breakpoint Anomalies
	Software Workaround

	Examining and Changing Data, Memory, and Registers
	Symbolic Access
	Expression Evaluation
	Assignment
	Nonsymbolic Access

	Tracing the Call Stack
	Moving Up and Down the Call Stack

	Disassembling Instructions
	Using tmdbg with tmsim on Windows 95

	17: Debugging C++ Code with tmdbg
	Introduction
	Accessing C++ Definitions
	Accessing Class Members
	Accessing C++ Variable Declarations
	Setting Breakpoints
	Accessing Virtual Functions
	Debugging Templates
	Unsupported Features
	Non-ANSI Compliant Names
	Notes

	18: Debugging Using JTAG
	Introduction
	Stand-Alone Debugging Modes
	No-Host Mode
	Host-Assisted

	System Requirements
	Hardware
	Software

	Setting Up the System for Stand-Alone Debugging
	Testing the JTAG Connection
	Testing the Corelis Board JTAG Connection
	Sample Session

	Testing the Turbo Board JTAG Connection
	Sample Session

	Compiling a Program for Stand-Alone Debugging
	Debugging Stand-Alone TriMedia Applications
	Debugging with No-Host
	JTAG Debugging in Host-Assisted Mode
	Sample Host-Assisted JTAG Debugging Session
	Multiple Debugging Sessions

	19: Debugging pSOS+™ Applications
	Introduction
	pROBE Functionality in tmdbg —The pSOS+ Monitor
	Setting Up a pSOS+ Application for Use with tmdbg
	Inspecting pSOS+ Objects
	Query pSOS+ Configuration
	Query Date
	Query Object
	Query Partition
	Query Queue
	Query Region
	Query Semaphore
	Query Task
	Getting Profile Information of a pSOS+ Application
	pSOS+ Breakpoints
	Breakpoint on pSOS+ System Calls
	Breakpoints on Task Scheduling
	Deleting pSOS+ Breakpoints

	Callout Functions
	Print
	Pitfalls

	20: Debugging Using printf & DP
	Introduction
	Debugging Using printf
	Comparing DP and printf
	Using DP
	Description of DP Macros

	21: Debugging Multiprocessor/Multitasking Apps
	Introduction
	Loading a Multiprocessor Application
	Switching Focus
	The procs Command
	Debugging Tasks
	Debugging Tasks in System Mode
	Debugging Tasks in the Task Mode

	22: Interrupt Handlers, Host Call Interface, Device Lib
	Debugging Interrupt Handlers
	Interrupt Handler Characteristics and Problems
	Interrupt Handler Solutions
	Setting Breakpoints

	Debugging the Host Call Interface and Device Library
	Debugging at Optimization Levels Higher Than -O1
	Diminished Visibility of Local Variables and Parameters
	Variables May Have Been Optimized Away
	Code May Have Been Moved
	Code May Have Been Unrolled
	Code May Have Been Inlined

	23: tmdbg Command Reference
	Overview of Debugger Commands
	Debugger Expressions
	Debugger Commands
	Execution Control Commands
	Data and Stack Commands
	Source File Commands
	pSOS+ Commands
	Task-Level Debugging Commands
	Multi-Processor Debugging Commands
	Miscellaneous Commands

	24: Code Listings
	x.c
	foo.c
	d.h
	d1.c
	d2.c

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

