

Version 2.0 beta

AB

Book 5—System Utilities

Part A:

Support Libraries

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part A

iii

Book 5—System Utilities
Part A: Support Libraries

Table of Contents

Chapter 1 TriMedia Utility Functions

TriMedia C Library API Function Descriptions... 18

tmAssert... 19

_dcball .. 20

_dclr... 21

_dlock ... 22

_cache_copyback... 23

_cache_invalidate .. 24

_cache_malloc... 25

_cache_free .. 26

_add_free .. 27

_long_udiv.. 28

TriMedia Types API Overview ... 29

TriMedia Types .. 29

tmVersion_t .. 30

tmprof Profiler ... 31

tmprof API Functions ... 31

profileInit ... 32

profileStart .. 33

profileStop .. 33

profileFlush... 33

profileDtrees .. 34

profileArgs .. 35

AppModel Functions.. 36

AppModel_suspend_scheduling ... 37

AppModel_resume_scheduling ... 38

Mutual Exclusion Semaphores ... 39

AppMut_Mutex... 40

AppMut_create ... 41

AppMut_delete... 41

AppMut_cast.. 42

AppMut_lock ... 43

Table of Contents

iv

Book 5—System Utilities, Part A

©1999 Philips Semiconductors 10/08/99

AppMut_unlock .. 43

AppMut_attempt_lock... 44

OS-Independent Semaphores.. 45

AppSem_Semaphore.. 46

AppSem_create .. 47

AppSem_delete .. 47

AppSem_cast... 48

AppSem_p .. 49

AppSem_v... 49

AppSem_attempt_p ... 50

Chapter 2 TriMedia Registry Manager API

Introduction... 52

Why Use the Registry ... 52

Package-Oriented Data ... 52

Exploring a Registry.. 52

Using the Registry API ... 53

Limitations ... 54

Demonstration Program ... 54

AddEntryTest... 54

QueryEntryTest... 54

RemoveTest ... 54

FindTest... 55

Registry API Data Structures... 56

tsaRegEntryClass_t .. 57

tsaRegEntryDataType_t ... 58

tsaRegDataEntry_t... 59

tsaRegEntryAdd_t .. 60

tsaRegFind_t .. 61

Registry API Functions ... 62

tsaRegAddEntry .. 63

tsaRegAddDirectory.. 65

tsaRegRemoveEntry .. 66

tsaRegQuery... 67

tsaRegFindFirstEntry ... 68

tsaRegFindNextEntry .. 69

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part A

v

Chapter 3 TriMedia Component Manager API

Overview... 72

Advanced Features ... 74

Components With “Required” Flag .. 74

Disabling Components ... 74

Symbol Qualifiers .. 74

Example: Audio In on a Daughter Board .. 75

General Rules About Creating a Dependency Tree .. 76

The Activation Function .. 77

How to Implement a New Component ... 79

Linking a Component Into an Application ... 79

Debugging a New Component (Example Program) .. 80

Macros... 83

compInputQualifier_t ... 84

TSA_COMP_DEF_IO_COMPONENT ... 85

TSA_COMP_DEF_I_COMPONENT... 85

TSA_COMP_DEF_O_COMPONENT... 85

TSA_COMP_DEF_DATA_PROP... 87

TSA_COMP_BUILD_ARG_LIST_1 .. 88

TSA_COMP_BUILD_ARG_LIST_2 .. 89

TSA_COMP_BUILD_ARG_LIST_3 .. 90

TSA_COMP_BUILD_ARG_LIST_1_M .. 91

TSA_COMP_BUILD_ARG_LIST_2_M .. 92

TSA_COMP_BUILD_ARG_LIST_3_M .. 93

Chapter 4 Clock Support API

Clock Support Overview.. 96

Clock Support API Data Structures.. 96

tsaClockFunc_t .. 97

tsaClockCapabilities_t .. 98

tsaClockInstanceSetup_t... 98

Clock Support API Functions .. 99

tsaClockGetCapabilities ...100

tsaClockOpen...101

tsaClockClose...102

tsaClockGetInstanceSetup..103

Table of Contents

vi

Book 5—System Utilities, Part A

©1999 Philips Semiconductors 10/08/99

tsaClockInstanceSetup...104

tsaClockStart ..105

tsaClockStop ..106

tsaClockGetTime...107

tsaClockSetTime ...108

tsaClockSetAlarm ...109

tsaClockTimeDiff...110

tsaClockTimeAdd ...111

tsaClockTimeSub..112

tsaClockTimeDiv ...113

tsaClockTimeMul ..114

Chapter 5 TSA Timer (Stimer) API

TSA Timer API Overview ..116

TSA Timer Errors ..116

TSA Timer Data Structures ..116

tsaTimerCapabilites_t...117

tsaTimerFunc_t ...117

tsaTimerInstanceSetup_t ..118

tsaTimerAlarmSetup_t ...119

TSA Timer Functions...120

tsaTimerGetCapabilities...121

tsaTimerOpen..122

tsTimerClose...123

tsaTimerGetInstanceSetup ...124

tsaTimerInstanceSetup ..125

tsaTimerStart..126

tsaTimerStop..127

tsaTimerCreateAlarm ..128

tsaTimerDestroyAlarm..129

tsaTimerSetupAlarm ...130

tsaTimerStartAlarm..131

tsaTimerStopAlarm..132

Chapter 6 TriMedia Memory Manager API

Introduction...134

Memory Management Trade-Offs ...134

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part A

vii

Overview...134

Memory Fragmentation ..135

Heap Partitioning ..136

Memory Units ...137

Allocation Performance ..138

Additional Functionality ...138

The “malloc” Hierarchy ...139

Leaving TM-memman in Place ...140

The TriMedia Memspace Manager...141

Memspaces ..142

API Summary...143

Allocation and Deallocation ..144

Memspace Organization...146

Summary of Memspace API (Allocation/Deallocation)146

Overview of Debugging Features ...147

Consistency Checking of Internal Administration...147

Provoking Errors on Use of Stale Memory Blocks..148

Tracking Allocated Memory ..148

Examples...149

Redirecting Calls to malloc ..151

Summary of Memspace API (Debugging)..152

TriMedia Memory Manager API Data Structures ..153

memspSpaceInfo..154

memspSystemSpace...155

memspBlockProperty ...156

TriMedia Memory Manager API Functions...157

memspCreate ..158

memspDelete ..158

memspMalloc ..159

memspDebugMalloc ..160

memspFree...161

memspRealloc ...162

memspFastFree...162

memspGetInfo ..163

memspPrintGuarded ..163

memspCheck ...163

memspTraverseSpaces...164

Table of Contents

viii

Book 5—System Utilities, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 7 Programmable Interrupt Controller (PIC) API

PIC API Overview...166

Board Support Interface ...167

Debugging PIC ISRs ..167

PIC API Data Structures..168

tsaPICSource_t ..169

tsaPICCapabilities_t ...171

tsaPICInstanceSetup_t ...172

PIC API Functions ..173

tsaPICGetCapabilities..174

tsaPICOpen ...175

tsaPICInstanceSetup ...176

tsaPICStart...177

tsaPICStop...178

tsaPICClose ...179

Chapter 8 File I/O Drivers API

Introduction...182

File I/O Function Types...183

IOD_RecogFunc ..184

IOD_InitFunc ..184

IOD_TermFunc...184

IOD_OpenFunc..185

IOD_StatFunc...185

IOD_OpenDllFunc ..185

IOD_CloseFunc..186

IOD_ReadFunc...186

IOD_WriteFunc ..186

IOD_SeekFunc ...187

IOD_IsattyFunc..187

IOD_FstatFunc ...187

IOD_FcntlFunc...188

IOD_SyncFunc ...188

IOD_FSyncFunc...188

IOD_UnlinkFunc..189

IOD_LinkFunc ..189

IOD_MkdirFunc ...189

IOD_RmdirFunc...190

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part A

ix

IOD_AccessFunc ...190

IOD_OpendirFunc ..190

IOD_ClosedirFunc ..191

IOD_RewinddirFunc ..191

IOD_ReaddirFunc ...191

File I/O Driver Control Functions..192

IOD_install_fsdriver ...193

IOD_install_driver ..194

IOD_uninstall_driver ...195

IOD_lookup_driver ..195

IOD_lookup_dll ...196

IOD_sync ...196

File I/O Data Structures..197

UID_Driver_t ..198

Chapter 9 The Operating System Wrapper (tmos.h)

Introduction...200

tmosMain ..201

tmosExit ...201

tmosInit..202

Tasks ..203

tmosTaskChangePriority..203

tmosTaskCreate...204

tmosTaskDestroy ..205

tmosTaskIdent ...206

tmosTaskStart ..207

tmosTaskSuspend ..208

tmosTaskResume..208

Queues ..209

tmosQueueCreate..209

tmosQueueDestroy ...210

tmosQueueReceive ...211

tmosQueueSend...212

tmosQueueSendUrgent...213

Semaphores ...214

tmosSemaphoreCreate ..214

tmosSemaphoreDestroy..215

Table of Contents

x

Book 5—System Utilities, Part A

©1999 Philips Semiconductors 10/08/99

tmosSemaphoreP...216

tmosSemaphoreV ..217

Timer ...218

tmosTimSleep..218

Chapter 10 TriMedia Flash File System API

Introduction...220

Flash File System ...220

Flash Basics ..220

Generic Library ...222

Flash Event Handling ...223

Formatting Flash ..223

Copying Files Onto Flash ..224

Boot Images ..224

Flash Assumptions ..225

Flash Manager Properties ...226

Update Safety Properties..226

Flash Manager Space Overhead and Limitations ..226

Sample Flash Performance Figures...227

Dynamic Libraries on Flash ..227

Unimplemented Functionality ...228

Flash File System Hardware Interface ..229

Using the Flash File System with the BSP ...229

Flash File System Driver Specification ...229

Flash Address Space ...229

Sample Driver ...230

Flash Driver Boot Specification ..231

Standalone Flash-Based Systems ..232

Role of the Boot Image ..232

Use of the Dynamic Loader ...233

Safe Upgrading Basics ...234

Update Scheme 1 ..234

Update Scheme 2 ..234

TriMedia Flash File System API Data Structures..236

EventHandler ...236

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part A

xi

TriMedia Flash File System API Functions ..238

FlashUtil_init_filesystem..238

FlashUtil_put_bootimage ...238

Flash_boot ..238

Flash Driver API ...239

FLASH_block_erase ...239

FLASH_init...239

FLASH_write...240

FLASH_read ..240

FLASH_block_read...241

FLASH_block_write ...241

Chapter 11 General Purpose Compression API

Licensing Issues...244

Overview...245

Zlib Statistics ...245

Endian Independence ...246

Compression Tools..247

tmSEI: Self-Extracting Load Images ..247

Sample Performance ..248

P1 ...249

P2 ...249

tmSEA: Self-Extracting Archives ...249

tmWRB: Boot Image Writing ..251

Zlib API Data Structures...252

z_stream ..253

Zlib API Functions ...255

Basic Compression and Decompression Functions..257

zlibVersion...257

deflateInit ..258

deflate...259

deflateEnd...261

inflateInit ...262

inflate ..263

inflateEnd ..265

Table of Contents

xii

Book 5—System Utilities, Part A

©1999 Philips Semiconductors 10/08/99

High-Level Compression and Decompression Functions ...266

compress ...267

compress2...268

uncompress..269

Advanced Functions...270

deflateInit2..271

deflateSetDictionary ...273

deflateCopy ..275

deflateReset..276

deflateParams ..277

inflateInit2...278

inflateSetDictionary...279

inflateSync...280

inflateReset ...281

File Utility Functions...282

gzopen ...282

gzdopen...283

gzsetparams...284

gzread...285

gzwrite..286

gzprintf...287

gzputs...288

gzgets ...289

gzputc...290

gzgetc ...290

gzflush ..291

gzseek...292

gzrewind..293

gztell..294

gzeof ...294

gzclose..295

gzerror ..295

Checksum Functions ..296

adler32 ...297

crc32..298

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part A

xiii

Chapter 12 Downloader API

Downloader Library..300

Downloader API Description ..301

Examples of Downloader Use ...301

Phases of Downloading ..302

Auxiliary Functions ...305

Simple Download Example ...306

Multiprocessor Booting ..308

Downloader API Structures and Enumerations ..310

TMDwnLdr_Status ...311

TMDwnLdr_Caching ...314

TMDwnLdr_Symbol_Scope..314

TMDwnLdr_Symbol_Type...315

TMDwnLdr_Symbol_Traversal_Order...315

TMDwnLdr_CachingSupport...316

TMDwnLdr_Section_Rec ...317

Downloader API Functions ...318

TMDwnLdr_create_shared_section_table..319

TMDwnLdr_unload_shared_section_table..320

TMDwnLdr_load_object_from_file ...321

TMDwnLdr_load_object_from_mem...323

TMDwnLdr_load_object_from_driver..324

TMDwnLdr_get_image_size ..325

TMDwnLdr_relocate..326

TMDwnLdr_multiproc_relocate..328

TMDwnLdr_get_memory_image...331

TMDwnLdr_patch_value ...332

TMDwnLdr_resolve_symbol ..333

TMDwnLdr_get_value..334

TMDwnLdr_unload_object ..335

TMDwnLdr_get_section ..336

TMDwnLdr_traverse_sections...337

TMDwnLdr_get_endian...338

TMDwnLdr_load_symbtab_from_object..339

TMDwnLdr_get_address ...340

TMDwnLdr_get_enclosing_symbol ..341

TMDwnLdr_traverse_symbols...342

TMDwnLdr_unload_symboltable ..343

TMDwnLdr_get_last_error..344

Table of Contents

xiv

Book 5—System Utilities, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 13 Dynamic Linking API

Overview...346

Dynamic Linking API Types...346

DynLoad_Status..347

DynLoad_Code_Segment_Handle..348

DynLoad_MallocFun ...349

DynLoad_FreeFun..349

DynLoad_ErrorFun...349

Dynamic Linking API Functions ...350

DynLoad_load_application ..351

DynLoad_unload_application...352

DynLoad_bind_dll ...353

DynLoad_unbind_dll ..354

DynLoad_unload_dll ..354

DynLoad_unload_all...355

DynLoad_bind_codeseg ...356

DynLoad_unbind_codeseg..356

DynLoad_swap_mm...357

DynLoad_swap_stub_error_handler..358

Chapter 14 TriMedia Manager API for Windows

Introduction...360

Implementation Notes ..360

Synchronization Handle ...360

Win95 Kernel Mode ..360

WinNT/98 KernelMode..361

Object Names ...361

Scatter Gather Buffer Locking ...361

Debug Buffer Pointers ...362

Status Codes ..362

SDRAM Mapping ...362

Speculative Load Fix ...363

Big-Endian Execution ...364

WinCE Issues ..364

Synchronization Flags ..364

Porting Guidelines ..365

Inter-processor Messaging and Event API..365

Object ID...366

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part A

xv

C Run Time ...366

Argument Passing...366

Data Type Changes ...367

Shared Memory Allocation ..367

Scatter Gather Locking..367

Dynamic Task Downloading..367

Get/Set Parameters...367

TMManager Data Structures...368

tagtmmanPacket ..369

tagtmmanVersion ..370

tagtmmanMemoryBlock ...371

tagtmmanDSPInfo ...372

TMManager General Functions..373

tmmanGetErrorString...374

tmmanNegotiateVersion ...375

tmmanMappedToPhysical ..376

tmmanPhysicalToMapped ..376

tmmanValidateAddressAndLength...377

tmmanTranslateAdapterAddress ...378

tmmanDSPGetNum...379

tmmanDSPGetInfo...379

tmmanDSPGetStatus ..380

tmmanDSPMapSDRAM..381

tmmanDSPUnmapSDRAM..382

tmmanDSPGetEndianess ..383

tmmanDSPOpen...384

tmmanDSPClose...385

tmmanDSPLoad..386

tmmanDSPStart ..387

tmmanDSPStop ..388

tmmanDSPReset...389

TMManager Message Interface Functions ...390

tmmanMessageCreate ...391

tmmanMessageDestroy...393

tmmanMessageSend ..394

tmmanMessageReceive...395

TMManager Event Functions..396

tmmanEventCreate..397

tmmanEventSignal ..399

Table of Contents

xvi

Book 5—System Utilities, Part A

©1999 Philips Semiconductors 10/08/99

tmmanEventDestroy ...400

tmmanSharedMemoryCreate..401

tmmanSharedMemoryDestroy ...403

tmmanSharedMemoryOpen..404

tmmanSharedMemoryClose..406

TMManager Buffer Locking Functions..407

tmmanSGBufferCreate ...408

tmmanSGBufferDestroy...410

tmmanSGBufferOpen ...411

tmmanSGBufferClose ...412

tmmanSGBufferFirstBlock ...413

tmmanSGBufferNextBlock ..414

tmmanSGBufferCopy..415

TMManager Debugging Functions ...416

tmmanDebugDPBuffers ..417

tmmanDebugHostBuffers...418

tmmanDebugTargetBuffers ...419

tmmanDebugPrintf ...420

TMManager C Runtime Server ...421

tagCRunTimeParameterBlock..422

cruntimeCreate ...424

cruntimeDestroy...425

cruntimeInit..426

cruntimeExit ...426

TriMedia Manager Registry Entries ...427

©1999 Philips Semiconductors 10/08/99

 Book 5—System Utilities, Part

A

17

1

Chapter 1

TriMedia Utility Functions

Topic Page

TriMedia C Library API Function Descriptions 18

TriMedia Types API Overview 29

tmprof Profiler 31

AppModel Functions 36

Mutual Exclusion Semaphores 39

OS-Independent Semaphoresd 45

Chapter 1: TriMedia Utility Functions

18

Book 5—System Utilities, Part

A ©1999 Philips Semiconductors 10/08/99

TriMedia C Library API Function Descriptions

The header file tmlibc.h contains function prototypes from the TCS standard C library

libc.a that are not declared by the usual standard headers. This section describes those

functions.

The header file which contains information on the debugging printf function,

DP

 is

called dprintf.h, and it resides in the same include directory as the tmlibc.h header file.

The syntax for

DP

 is similar to

printf

.

DP

 maps to a minimally intrusive function which

writes its string to a buffer in SDRAM. The contents of this buffer are retrieved from the

host. Using this mechanism,

DP

 can be called from time critical code like interrupt ser-

vice routines. For more information, see Chapter 18,

Debugging TriMedia Applications

Using JTAG

, in Book 4,

Software Tools

, Part C.

IMPORTANT

Always use the

DP_*

 macros to do your “debug printf.” Do NOT call the
underlying functions. The

DP_*

 macros accept the same arguments as their
corresponding functions. Once you have finished debugging, simply
recompile your src with the

–DNO_DP

 option. All of the

DP_*

 macros will be
compiled out, that is, they become comments and do not impact on the
final code size or execution speed at all.

Name Page

tmAssert 19

_dcball 20

_dclr 21

_dlock 22

_cache_copyback 23

_cache_invalidate 24

_cache_malloc 25

_cache_free 26

_add_free 27

_long_udiv 28

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99

 Book 5—System Utilities, Part

A

19

1

tmAssert

tmAssert(
 Bool condition,
 Int ErrorCode
)

Parameters

condition

Assert when this condition is false.

ErrorCode

Error code to be printed, along with the file name
and line number where the assertion was gener-
ated.

Description

tmAssert

 is a macro, defined in tm1/tmAssert.h. It is very similar to the ANSI standard

assert

.

tmAssert

 is used extensively while bringing up programs that use the TriMedia

Software Architecture (TSA) libraries. When the debug version of a library is used, an

assertion can be generated on numerous error conditions. These conditions include

invalid input and null pointers. An assert stops the execution of the current thread.

Asserts are designed to quickly point out programming errors, rather than attempting to

provide handlers for diverse error conditions.

Note

When

tmAssert

 is triggered in a pSOS system, the

exit

 function causes the
current task to exit. The rest of the system may still be able to run.

Chapter 1: TriMedia Utility Functions

20

Book 5—System Utilities, Part

A ©1999 Philips Semiconductors 10/08/99

_dcball

extern void _dcball(
 void
);

Parameters

None.

Return Codes

None.

Description

Copyback of the data cache.

Side effect: Copyback of entire data cache.

Note
This routine is non-interruptible.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 21

1

_dclr

extern void _dclr(
 void
);

Parameters

None.

Return Codes

None.

Description

Clears the data cache.

Side effect: Clears entire data cache, discarding its contents.

Note
This routine is non-interruptible.

Chapter 1: TriMedia Utility Functions

22 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

_dlock

extern void _dlock(
 UInt32 address,
 UInt32 size
);

Parameters

address Base address of block to clear.

size Size of block to clear.

Return Codes

None.

Description

Locks the data cache.

Side effect: Locks size bytes starting at address in the data cache.

Note
Implements software workaround for hardware data cache locking bug.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 23

1

_cache_copyback

#include <tmlib/tmlibc.h>
void _cache_copyback(
 void *start_address,
 int size
);

Parameters

start_address Address of block to copy back.

size Size of block to copy back.

Return

None.

Description

Copyback a range of memory (to SDRAM).

Side effect: copyback size bytes starting at start_address in the data cache.

Chapter 1: TriMedia Utility Functions

24 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

_cache_invalidate

#include <tmlib/tmlibc.h>
void _cache_invalidate(
 void *start_address,
 int size
);

Parameters

start_address Base address of block to invalidate.

size Size of block to invalidate.

Return

None.

Description

Invalidates a range of memory.

Side effect: invalidate size bytes starting at start_address in the data cache.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 25

1

_cache_malloc

#include <tmlib/tmlibc.h>
void *_cache_malloc(
 size_t size,
 int set
);

Parameters

size Request size of block to be allocated.

set Desired cache set of the result (refer to warning
below).

WARNING
Unlike the normal malloc, this function requires both the size and the set
parameters. (If you do not know about cache sets, just pass –1 as second
argument.) It is very easy to forget the second parameter, especially when
tmlibc.h (containing the prototype) has not been included. Passing only one
parameter will cause problems.

Return

A pointer to the allocated memory block.

Description

Allocates D-cache aligned memory block.

Note
If set is not ANYSET (–1), set % NSETS (32) gives the desired cache set of
the result. The requested size is rounded up to NBLOCK (64) multiple. The
result can be freed with _cache_free, but not with the standard free.

Chapter 1: TriMedia Utility Functions

26 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

_cache_free

#include <tmlib/tmlibc.h>
void _cache_free(
 void *ptr
);

Parameters

ptr Pointer the memory block to be freed.

Return Codes

None.

Description

Frees D-cache aligned memory block.

Note
The memory block must have been allocated with _cache_malloc, and
must not be blocks allocated with the standard malloc.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 27

1

_add_free

void _add_free(
 void *ptr,
 size_t size
);

Parameters

ptr Pointer to block to be freed.

size Size of block to be freed.

Return Codes

None.

Description

Add non-malloc’d memory block to memory free list.

Note
The memory block must not have been allocated with malloc.

Chapter 1: TriMedia Utility Functions

28 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

_long_udiv

void _long_udiv(
 UInt n[2],
 UInt d
);

Parameters

n 64-bit unsigned dividend (first argument).

d 32-bit unsigned divisor.

Return Codes

None. The result is placed back into n.

Description

In-place 64/32-bit unsigned integer division as follows:

Implementation Notes

The only possible error is d==0 (division by zero). However, similar to normal integer

division in C there is no possibility of detecting this other than checking d before or

after a call to this function. In case of division by zero, this function completes with n

undefined. This function completes in a constant time of about 84 instruction cycles, or

490 cycles with cache effects taken into account. The corresponding numbers for 32-bit

integer division in the TriMedia SDE are 65/250.

The parameter n has the least-significant 32-bits in n[0], and the most significant 32-bits

in n[1]. The 2-element UInt array is arranged in little-endian fashion.

Note
This is not to be confused with the individual element’s endianness, which
could be either big endian or little endian.

The (32*32) 64-bit integer multiplication can be performed as follows:

It divides the first argument (array of (2) 32-bit unsigned integer) by the second argu-

ment (a 32-bit unsigned integer) and places the result back into the first argument.

#include <custom_defs.h>
UInt a,b,result[2];
result[0]= a * b;
result[1]= UMULM(a,b);

n =
n[1] × 232 + n[0]

d

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 29

1

TriMedia Types API Overview

The header file tmtypes.h defines types for use in shared and public header files. Such

header files should use definitions made here, or standard C types. This header file is

platform-specific.

Integer and Float types fall into those categories selected for specific precision (for exam-

ple, use in files), and those categories in which control of precision is sacrificed for

machine efficiency.

String is a pointer to a string of characters that is guaranteed to be null-terminated. (Use

char*, otherwise.) Bools normally occupy machine-efficient storage. Use :1 or :8 for more

precise control of packing within structures. Pointer represents a reference to an unspeci-

fied type, whereas Address is ready for use in address-arithmetic. Char and Int are defined

for completeness and consistency.

TriMedia Types

The table below describes the general TriMedia type definitions. Following the table is a

structure that defines the specific version.

Typedef Type Name Purpose

char* Address Ready for address-arithmetic.

unsigned int Bool Null is 0, False is 0, True is 1.

char Char Machine-natural character.

float Float Fast float.

float Float32 Single-precision float.

double Float64 Double-precision float.

int Int Machine-natural integer.

signed char Int8 8-bit signed integer.

signed short Int16 16-bit signed integer.

signed long Int32 32-bit signed integer.

void* Pointer Pointer to anonymous object.

char* String Guaranteed null-terminated.

unsigned int UInt Machine-natural unsigned.

unsigned char UInt8 8-bit unsigned integer.

unsigned short UInt16 16-bit unsigned integer.

unsigned long UInt32 32-bit unsigned integer.

Int Endian Big Endian is 0, Little Endian is 1.

Chapter 1: TriMedia Utility Functions

30 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmVersion_t

typedef struct tmVersion_t{
 UInt8 majorVersion;
 UInt8 minorVersion;
 UInt16 buildVersion;
} tmVersion_t, *ptmVersion_t;

Fields

majorVersion Major version.

minorVersion Minor version.

buildVersion Build version.

Description

Specifies the version: major, minor or build.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 31

1

tmprof Profiler

This module contains the API of profiler library exported to the user. For more informa-

tion, refer to tmlib/tmprof.h file.

tmprof API Functions

The following section describes the tmprof API function descriptions, which are con-

tained in tmlib/tmprof.h header file.

Name Page

profileInit 32

profileStart 33

profileStop 33

profileFlush 33

profileDtrees 34

profileArgs 35

Chapter 1: TriMedia Utility Functions

32 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

profileInit

void profileInit (
 struct profileCaps *pcaps,
 int (*writefunc)(),
 int handle
);

Parameters

pcaps Pointer to initialization parameters

writefunc Function to write data. Second and third argu-
ments are address of buffer and data.

handle The value of handle is passed as the first argu-
ment when writing data.

Return Codes

Returns 0 if OK, otherwise error code.

Description

Initialize hardware and buffer pointers for profiling.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 33

1

profileStart

void profileStart();

Parameters

None.

Description

Starts profiling.

profileStop

void profileStop();

Parameters

None.

Description

Stops profiling (TFE exception).

profileFlush

void profileFlush();

Description

Convert buffer from internal to external format for use by tmprof.

Chapter 1: TriMedia Utility Functions

34 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

profileDtrees

int profileDtrees();

Parameters

None.

Returns

Returns the number of bytes necessary for the profile buffer (estimate).

Note
This does not include locked text.

Description

Calculate the size of the trace buffer.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 35

1

profileArgs

int profileArgs(
 struct profileCaps *pcaps,
 char **argv,
 int argc
);

Parameters

pcap Pointer to initialization parameters.

argv Vector of command line arguments.

argc Argument count.

Returns

Returns the new argument count.

Description

Initialize profiling options. Profiling specific options are removed from the arguments.

Chapter 1: TriMedia Utility Functions

36 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

AppModel Functions

The “appModel” functions provide a number of primitive services independent of an

operating system. The appModel functions are available whether an OS is installed or

not. The decision is made at link time. If an OS is available, the appModel functions are

implemented in terms of that OS. If no OS is installed, simple implementations are used.

The following section describes the AppModel API functions.

Name Page

AppModel_suspend_scheduling 37

AppModel_resume_scheduling 38

AppMut_create 41

AppMut_delete 41

AppMut_cast 42

AppMut_lock 43

AppMut_unlock 43

AppMut_attempt_lock 44

AppSem_create 47

AppSem_delete 47

AppSem_cast 48

AppSem_p 49

AppSem_v 49

AppSem_attempt_p 50

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 37

1

AppModel_suspend_scheduling

extern void AppModel_suspend_scheduling(void);

Parameters

None.

Return

None.

Description

Using whatever operating system is installed, scheduling is suspended. This is a portion

of a larger operating system abstraction layer that is not publicly documented. This

function is generally called at the start of an interrupt service routine, or at the begin-

ning of a section that should be atomic against task switching. Under pSOS, it maps to

ienter. This function is appropriate for use in libraries that may or may not be used in

the presence of an operating system like pSOS. See also AppModel_resume_scheduling.

Chapter 1: TriMedia Utility Functions

38 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

AppModel_resume_scheduling

extern void AppModel_resume_scheduling (void);

Parameters

None.

Return Codes

None.

Description

Using whatever operating system is installed, scheduling is resumed. This is a portion of

a larger operating system abstraction layer that is not publicly documented. This func-

tion is generally called at the end of an interrupt service routine, or at the close of a sec-

tion that should be atomic against task switching. Under pSOS, it maps to ireturn.

This function is appropriate for use in libraries that may or may not be used in the pres-

ence of an operating system like pSOS. See also AppModel_suspend_scheduling.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 39

1

Mutual Exclusion Semaphores

A “mutex” type of semaphore is available for your use. A mutex semaphore provides

mutually exclusive access to a resource. The include file “AppMutex.h” contains these

definitions. The type AppMut_Mutex, presented next, forms the basis for mutual exclu-

sion.

Chapter 1: TriMedia Utility Functions

40 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

AppMut_Mutex

typedef struct {
 volatile Int count;
 Bool casted;
 volatile Pointer first;
 volatile Pointer last;
 volatile Pointer owner;
} *AppMut_Mutex;

Description

Users do not generally have to know about the contents of this structure because it is

always accessed through functions.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 41

1

AppMut_create

extern AppMut_Mutex AppMut_create();

Parameters

None.

Description

Create a mutual exclusion semaphore.

Return

The function returns a pointer to a new mutex semaphore, or NULL when creation failed.

AppMut_delete

extern void AppMut_delete(
 AppMut_Mutex mut
);

Parameters

mut Pointer to the mutex semaphore to be deleted.

Description

Deletes a mutex semaphore. This routine can handle mutex semaphores which were cre-

ated by casting. CAVEAT: Applications which are blocked on the mutex will never be

released.

Return

Void.

Chapter 1: TriMedia Utility Functions

42 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

AppMut_cast

extern void AppMut_cast(
 AppMut_Mutex mut
);

Parameters

mut Pointer, returned, to a memory block to be casted
into a mutex.

Description

Casts a specified memory block into a mutex with specified capacity. This operation

always succeeds.

Return

Void.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 43

1

AppMut_lock

extern void AppMut_lock(
 AppMut_Mutex mut
);

Parameters

mut Pointer to the mutex semaphore to be locked.

Description

Put the mutex semaphore in a locked state.

Return

Void.

AppMut_unlock

extern void AppMut_unlock(
 AppMut_Mutex mut
);

Parameters

mut Pointer to the mutex semaphore to be unlocked.

Description

Puts the mutex semaphore in its unlocked state.

Return

Void.

Chapter 1: TriMedia Utility Functions

44 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

AppMut_attempt_lock

extern Bool AppMut_attempt_lock(
 AppMut_Mutex mut
);

Parameters

mut Pointer to the mutex semaphore to be locked.

Description

Attempts a lock operation on the mutex, but returns immediately and leaves the mutex

untouched when this would cause a block.

Return

True A lock operation has been applied to mut.

False The lock operation could not be done without
causing the current process to be blocked. The
semaphore remains untouched.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 45

1

OS-Independent Semaphores

The file AppSem.h defines an OS-independent semaphore. This device is appropriate for

use when an OS is not available or when it is desired to be independent of an OS. The

OS-independent semaphores use the AppSem_Semaphore type, presented next.

Chapter 1: TriMedia Utility Functions

46 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

AppSem_Semaphore

typedef struct {
 volatile signed long count;
 int casted; /* boolean */
 volatile void *first;
 volatile void *last;
} *AppSem_Semaphore;

Description

Users do not generally have to know about the contents of this structure because it is

always accessed through functions.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 47

1

AppSem_create

extern AppSem_Semaphore AppSem_create(
 Int32 count
);

Parameters

count Required capacity of the semaphore.

Description

Create a semaphore with specified capacity.

Return

The function returns a pointer to a new semaphore, or NULL when creation failed.

AppSem_delete

extern void AppSem_delete(
 AppSem_Semaphore sem
);

Parameters

sem Pointer to the semaphore to be deleted.

Description

Deletes a semaphore. This function can handle semaphores which were created by cast-

ing. CAVEAT: Applications which are blocked on the semaphore will never be released.

Return

Void.

Chapter 1: TriMedia Utility Functions

48 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

AppSem_cast

extern void AppSem_cast(
 AppSem_Semaphore sem,
 Int32 count
);

Parameters

sem Pointer, returned, to a memory block to be cast
into a semaphore.

count Required capacity of the semaphore.

Description

Casts a specified memory block into a semaphore with specified capacity. This operation

always succeeds.

Return

Void.

Chapter 1: TriMedia Utility Functions

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 49

1

AppSem_p

extern void AppSem_p(
 AppSem_Semaphore sem
);

Parameters

sem Pointer to the semaphore to be acquired.

Description

The calling process attempts to acquire the semaphore ‘token’. If the semaphore token

count is positive, then this call returns the semaphore token immediately. If the sema-

phore token count is zero, the task will be blocked until a semaphore token is released.

Return

Void.

AppSem_v

extern void AppSem_v(
 AppSem_Semaphore sem
);

Parameters

sem Pointer to the semaphore to be released.

Description

The calling process intends to release a semaphore token. If a task is already waiting at

the semaphore, it is unblocked and made ready to run. If there is no task waiting, then

the semaphore token count is simply incremented by 1.

Return

Void.

Chapter 1: TriMedia Utility Functions

50 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

AppSem_attempt_p

extern Bool AppSem_attempt_p(
 AppSem_Semaphore sem
);

Parameters

sem Pointer to the semaphore to be acquired.

Description

Attempts to acquire the semaphore, but returns immediately and leaves the semaphore

untouched when this would cause a block.

Return

True The semaphore was acquired.

False The semaphore could not be acquire without
causing the current process to be blocked. The
semaphore remains untouched.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 51

2
Chapter 2

TriMedia Registry Manager API

Topic Page

Introduction 52

Registry API Data Structures 56

Registry API Functions 62

Chapter 2: TriMedia Registry Manager API

52 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

The functionality of the TriMedia Registry is roughly equivalent to that of the registry

found in Microsoft Windows®. The registry is a hierarchically-structured tree consisting

of directories and data containers, which are referred to as entries. Entries can be strings,

integer values, or any customized data.

The registry behaves much like a file system that resides in memory. Like a file system,

you can write to or read from the registry, and add, remove, or scan through the entries.

Unlike a file system, the directory (which is a container of subentries and is itself an

entry) can have data associated to it. Therefore, a directory is an entry, but an entry does

not have to be a directory, since it may not have subentries.

Apart from this dual personality of “directory entries,” there are no major differences

between a file system directory and the TriMedia registry.

Why Use the Registry

Normally when you want to share data between two modules, you must declare an

external variable. This method creates name pollution, wherein the variable becomes

visible to the whole world, thus preventing any other module from using its name.

When you use the registry, however, you store the data in a hidden structure so as not to

adversely affect any other modules.

One could argue that name pollution is shifted to the registry, but that is not completely

true, since you can create separate directories. Declaring external variables is similar to a

file system that allows you to store files only in the root directory. Using the registry is

similar to a file system that lets you use all the directories to store your files.

Package-Oriented Data

This allows you to have a package-oriented approach to data. A package is then a direc-

tory, and variables belonging to that package are entries in this directory. For example,

you could store in a directory called “network” the IP address, DNS, and so forth, so that

the data is accessible to all applications without creating an ip variable.

Exploring a Registry

Since the registry has features similar to a file system, you can explore the registry. For

example, an application might try to open the network directory, and if it fails, will con-

clude that there are no networking facilities. Conversely, if you had stored data in vari-

ables and have no networking facilities on a specific platform, the linker would

complain about an unresolved reference.

Through the registry, your application can adapt itself to the other modules without

having to be recompiled. One typical use is to register device drivers so that a program

developed for one platform can adapt itself to other platforms just by reading the regis-

Chapter 2: TriMedia Registry Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 53

2

try. For example, on some boards, there might be user-writable flash memory, but on

others there may not be. In this case, an application can read the registry to see if flash

memory is present, and act accordingly if it isn’t.

Of course, you don’t have to use the registry within your applications, but if you write

device drivers, it is probably a good idea. Refer to Chapter 5, Device Libraries, of Book 3,

Software Architecture, Part A, for information on how to write a device driver using the

registry.

Using the Registry API

All entries are given a name that is easy to understand from the human point of view.

This name is case-sensitive and consists of a string with a maximum length of 32. At the

present time, names can use any character except * (which is used for pattern matching),

the '\0' (which is used as a string terminator) or the '/' (which is used as a path separator).

Note
Though at present almost any character can be used as an entry name, you
should use only alphanumeric characters. We cannot guarantee that non-
alphanumeric characters will be supported in future implementations.

When you first access the registry, you will see that three directories already exist. These

are created during the boot process by the component manager.

Note
Although you can add other directories at the “root” level, the preferred
method is to use the apps and misc directories.

To use the registry, just include <tm1/tsaReg.h> and link against libdev.a (this is auto-

matically added for you by tmcc). However, if you are still debugging your application,

you should use the debug version of this library, since numerous error conditions are

trapped using asserts. The debug version is in libdev_g.a.

Directory Description

bsp This directory contains all data that is specific to the board. In this directory,
you will find the boardName, the boardID, and a description of the different
peripherals connected to this board (the number of Audio Out units, for exam-
ple). An application designer should never write to this directory, as the bsp
(board support package) and therefore the entire architecture are relying on it.
However, it is possible to read in this directory. There are many helper func-
tions available that allow you to read directly in the registry. These are docu-
mented in Chapter 19, TMBoard API, of Book 5, System Utilities, Part C.

apps This directory may contain data specific to applications. If you want to use this
directory, you should add a subdirectory for every application you write.

misc This one is free for your use.

Chapter 2: TriMedia Registry Manager API

54 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Limitations

The following are some limitations to the registry.

1. Be aware that the registry will be slower than direct access to a variable because of the

time required to find the data.

2. Avoid storing large amounts of data in the registry (structures larger than 1K, for

example). If you want to reference a large amount of data, it is more efficient to store

in the registry only the pointer to the data. Of course, this implies that this data will

have to be static or malloc’d.

3. To avoid possible memory fragmentation, you should also be careful about the

accessing of entries by applications that are running “forever.”

4. The registry is not the place for persistent storage. It is not copied back to any kind of

device, so it must be reconstructed at every boot.

Demonstration Program

The demonstration program resides in the examples/misc/tsaRegExample directory and

shows how to use the TriMedia Register API. It can be decomposed into four sub-pro-

grams. These four sub-programs correspond to the functions described below.

AddEntryTest

This test can be split into three different entities corresponding to regArray, regArray2,

and regBuggyEntries arrays. These three arrays contain entries that have to be added to

the registry with the tsaRegAddEntry function. The first array (regArray) contains entries

that are correctly formatted to access the registry.

The second array contains some deliberate formatting errors (there are some misplaced

forward-slash characters in the paths, for example). This involves a little more work from

the library to reformat internally to the correct names, but this flexibility is convenient.

This array also shows how to create an entry without needing to create all the sub-direc-

tories. This is probably the easiest way to add entries in the registry.

The third array contains a list of entries that are not valid for various reasons, and the

library will return various error codes (see the example for an explanation).

QueryEntryTest

This test tries to retrieve the data previously stored in the registry.

RemoveTest

This test tries to remove two directories (and all their contents). One of them does not

exist and trying to remove this directory produces an error.

Chapter 2: TriMedia Registry Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 55

2

FindTest

This test demonstrates how to use the find functions to explore the registry. This allows

you to scan for entries that match special criteria. Only at this point can you try to find

entries whose name begins with the pattern given as an argument. Therefore, a pattern

can only follow the “pattern*” format. This can be a very convenient way to walk

through the registry.

Note
In future implementations, the find capability might be improved to support
pattern matching inside the entry itself, making searches with targets such
as "bsp/*/1" possible.

Chapter 2: TriMedia Registry Manager API

56 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Registry API Data Structures

This section describes the Registry API device library data structures. These

data structures are defined in the tsaReg.h header file.

Name Page

tsaRegEntryClass_t 57

tsaRegEntryDataType_t 58

tsaRegDataEntry_t 59

tsaRegEntryAdd_t 60

tsaRegFind_t 61

Chapter 2: TriMedia Registry Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 57

2

tsaRegEntryClass_t

typedef enum{
 recNull = 0x00000000,
 recData = 0x00000001,
 recFunction = 0x00000002,
 recCustom = 0x000000ff,
} tsaRegEntryClass_t;

Fields

recNull The entry does not contain data. Mostly used for
sub-directory entries.

recData The entry contains an array of data elements.

recFunction The entry contains a pointer to a function.

recCustom The entry contains some data whose type is
private.

Description

This enumerated type is used to describe the contents of an entry.

Chapter 2: TriMedia Registry Manager API

58 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaRegEntryDataType_t

typedef enum{
 redtInt = 0x00000001,
 redtUInt = 0x00000002,
 redtFloat = 0x00000003,
 redtChar = 0x00000004,
} tsaRegEntryDataType_t;

Fields

redtInt The entry contains an array of integers (C type is
Int).

redtUInt The entry contains an array of unsigned integers
(C type is UInt).

redtFloat The entry contains an array of floating point val-
ues (C type is Float).

redtChar The entry contains an array of characters (C Type
is Char). This array does not have to be a null-ter-
minated string.

Description

When the entry contains data (that is, it has the recData type as described in

tsaRegEntryClass_t), this enumerated type describes the type of the values in the array. If

you want to store elements whose type is not in this enumerated type (such as your own

structure), you should use the recCustom type (see tsaRegEntryClass_t).

Chapter 2: TriMedia Registry Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 59

2

tsaRegDataEntry_t

typedef struct{
 tsaRegEntryDataType_t dataType;
 UInt32 dataLength;
 Pointer data;
} tsaRegDataEntry_t, *ptsaRegDataEntry_t;

Fields

dataType Type of data stored in this entry.

dataLength The number of elements in this data array.

data Pointer to the first element of the array.

Description

When the entry you want to register has the recData type (see tsaRegEntryClass_t), this

describes the data you want to store in the registry.

Chapter 2: TriMedia Registry Manager API

60 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaRegEntryAdd_t

typedef struct{
 Char *path;
 Char keyString[TSA_REG_MAX_KEY_SIZE];
 tsaRegEntryClass_t entryType;
 UInt32 entrySize;
 Pointer entry;
 UInt32 flags;
}tsaRegEntryAdd_t, *ptsaRegEntryAdd_t;

Fields

path Path to entry. This can consist up to
TSA_REG_MAX_PATH_SIZE characters (256 in this
implementation) including the \0 terminator.

keyString This string identifies the entry to be added in
path. This consists in up to
TSA_REG_MAX_KEY_SIZE (32) characters includ-
ing the \0 terminator.

entryType Describes the type of the entry (see
tsaRegEntryClass_t).

entrySize Describes the length of the entry in bytes. This
field is only used when the entry type is a custom-
ized entry type. Otherwise, it is ignored.

entry Pointer to the entry to be added. This part will be
copied into the registry. This field is not used if
the entry type is recNull.

flags Describes additional flags you want to add be
used when creating the entry. At the present time,
only one flag is supported:

 TSA_REG_CREATE_ALWAYS

This tells the tsaRegAddEntry function to try to
create the entry even if all the subdirectories lead-
ing to the entry are not yet created. If this flag is
not set, the tsaRegAddEntry function would fail.

Description

This structure is passed as an argument to the tsaRegAddEntry function and completely

describes the entry to be added, and how the entry should be added (with the flags field).

Chapter 2: TriMedia Registry Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 61

2

tsaRegFind_t

typedef struct {
 Char keyString[TSA_REG_MAX_KEY_SIZE];
 tsaRegEntryClass_t entryType;
 Pointer entry;
 UInt32 flags;
 Pointer handle;
} tsaRegFind_t, *ptsaRegFind_t;

Fields

keyString Name of the entry that was found by the tsaReg-
FindNext or the tsaRegFindFirst functions.

entryType Type of the found entry (see tsaRegEntryClass_t).

entry Pointer to the entry. Its type depends on the field
entryType.

flags Reserved for future use.

handle This is reserved. You should not set or modify this
field.

Description

This structure is used when walking through the registry. The members are set by the

tsaRegFindFirst and tsaRegFindNext functions.

Chapter 2: TriMedia Registry Manager API

62 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Registry API Functions

This section presents the Registry API functions.

Name Page

tsaRegAddEntry 63

tsaRegAddDirectory 65

tsaRegRemoveEntry 66

tsaRegQuery 67

tsaRegFindFirstEntry 68

tsaRegFindNextEntry 69

Chapter 2: TriMedia Registry Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 63

2

tsaRegAddEntry

tmLibdevErr_t tsaRegAddEntry(
 tsaRegEntryAdd_t regEntry
);

Parameters

regEntry Pointer to a structure that contains the descrip-
tion of the entry to be added.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
given if regEntry is null. This is also triggered in
the following cases:

 regEntry–>entry is null and regEntry–>entryType
is not recNull.

 regEntry–>entry->data is null and
regEntry–>entryType is recData.

TSA_REG_ERR_PATH_TOO_LONG Returned if the path given in regEntry exceeds
TSA_REG_MAX_PATH_SIZE (256).

TSA_REG_ERR_INVALID_PATH_NAME Returned if the path contains invalid characters
such as '*'.

TSA_REG_ERR_KEY_NAME_TOO_LONG Returned if the entry length exceeds
TSA_REG_MAX_KEY_SIZE (32).

TSA_REG_ERR_INVALID_KEY_NAME Returned if the entry contains invalid characters
such as '/' or '*', or if the entry is an empty string.

TSA_REG_MEMALLOC_FAILED Returned if the function was unable to allocate
memory for the entry.

TSA_REG_ERR_PATH_NOT_FOUND Returned if TSA_CREATE_ALWAYS is not set in the
flags of regEntry and the path to the entry to be
created is not found.

TSA_REG_ERR_ENTRY_EXISTS Returned when attempting to create an entry that
already exists.

TSA_REG_ERR_UNKNOWN_ENTRY_TYPE Returned when the type of the entry is not
among the predefined types (see
tsaRegEntryClass_t).

TSA_REG_ERR_UNKNOWN_DATA_TYPE Returned when the type of the entry is recData
and the data does not have one of the predefined
types (see tsaRegEntryDataType_t).

Chapter 2: TriMedia Registry Manager API

64 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Description

This functions creates a new entry as defined in the regEntry structure.

Chapter 2: TriMedia Registry Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 65

2

tsaRegAddDirectory

tmLibdevErr_t tsaRegAddDirectory(
 Char *path
);

Parameters

path The path to be added in the registry

Return Codes

TMLIBDEV_OK SuccessSuccess.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
given if regEntry is null. This is also triggered in
the following cases:

 regEntry->entry is null and regEntry->entryType is
not recNull.

 regEntry->entry->data is null and
regEntry->entryType is recData.

TSA_REG_ERR_PATH_TOO_LONG Returned if the path given in regEntry exceeds
TSA_REG_MAX_PATH_SIZE (256).

TSA_REG_ERR_INVALID_PATH_NAME Returned if the path contains invalid characters
such as '*'.

TSA_REG_ERR_KEY_NAME_TOO_LONG Returned if the entry length exceeds
TSA_REG_MAX_KEY_SIZE (32).

TSA_REG_ERR_INVALID_KEY_NAME Returned if one of the tokens between two '/' con-
tains invalid characters such as '/' or '*'.

TSA_REG_MEMALLOC_FAILED Returned if the function was unable to allocate
memory for the entry.

TSA_REG_ERR_ENTRY_EXISTS Returned when attempting to create an entry that
already exists.

Description

This function creates the directory path and all the sub-directories if necessary. For

example, you can create the directory /foo/bar/baz even if /foo does not exist. All the cre-

ated entries are created with the type recNull. If you would prefer to use another type,

you should tsaRegAddEntry instead.

Chapter 2: TriMedia Registry Manager API

66 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaRegRemoveEntry

tmLibdevErr_t tsaRegRemoveEntry(
 Char *keyString,
 UInt32 flags
);

Parameters

keyString The complete path and the entry name to be
removed.

flags Specifies how the entry should be removed. The
following flag is currently supported:

TSA_REG_DELETE_SUBTREE

All subentries are removed recursively.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
given if keyString is null.

TSA_REG_ERR_PATH_TOO_LONG Returned if the path given in regEntry exceeds
TSA_REG_MAX_PATH_SIZE (256).

TSA_REG_ERR_INVALID_PATH_NAME Returned if the path contains invalid characters
such as '*'.

TSA_REG_ERR_PATH_NOT_FOUND Returned if the entry to be destroyed was not
found.

TSA_REG_ERR_CANT_REMOVE_ROOT_ENTRY
Returned if trying to remove the root entry.

TSA_REG_ERR_ENTRY_HAS_SUB_TREE Returned when the entry has sub-directories and
the TSA_REG_DELETE_SUBTREE flag was not set.

Description

Removes the entry described by keyString. If the TSA_REG_DELETE_SUBTREE is set in

flags, then the entry and all its subentries will be removed.

Chapter 2: TriMedia Registry Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 67

2

tsaRegQuery

tmLibdevErr_t tsaRegQuery(
 Char *keyString,
 tsaRegEntryClass_t *entryType,
 Pointer *regEntry
);

Parameters

keyString Name of the entry to be opened.

entryType Pointer to a buffer that will contain the type of
the entry.

regEntry Pointer to a pointer that contains the entry.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
given if keyString, entryType, or regEntry is null.

TSA_REG_ERR_PATH_TOO_LONG Returned if the path given in regEntry exceeds
TSA_REG_MAX_PATH_SIZE (256).

TSA_REG_ERR_INVALID_PATH_NAME Returned if the path contains invalid characters
such as '*'.

TSA_REG_ERR_PATH_NOT_FOUND Returned if the path to the entry is not found.

Description

This function gives you the properties of an entry. In accordance with entryType,

regEntry can be a pointer to a pointer to a function, to a data descriptor (see

tsaRegDataEntry_t), or to some custom data.

Note that with this function you get a direct access to the registry. This means that you

may modify the contents of the registry through this pointer, though you are advised

not to do so, as it may lead to unpredictable results if not done properly.

Chapter 2: TriMedia Registry Manager API

68 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaRegFindFirstEntry

tmLibdevErr_t tsaRegFindFirstEntry(
 Char *keyString,
 ptsaRegFind_t findInfo
);

Parameters

keyString Name of the entry to be opened.

FindInfo Buffer to a structure that contains the description
of the first object matching the criteria

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
given if keyString, or FindInfo is null.

TSA_REG_ERR_PATH_TOO_LONG Returned if the path length exceeds
TSA_REG_MAX_PATH_SIZE (256).

TSA_REG_ERR_KEY_NAME_TOO_LONG Returned if the ending part of keyString exceeds
TSA_REG_MAX_KEY_SIZE (32) characters.

TSA_REG_ERR_INVALID_SEARCH_PATTERN
Returned if the search pattern is not terminated
by an '*' (the only search pattern presently sup-
ported), or if an '*' is found at an inappropriate
place (not at the end). This error code’s behavior
may change in future implementations as new
search methods are added.

TSA_REG_ERR_PATH_NOT_FOUND Returned if the path to the entry is not found.

Description

This function returns in findInfo the first entry that matches keyString. At the present

time, '*' is the only recognized meta character. Moreover, it is only accepted if placed at

the end of keyString. If successful, the findInfo structure contains a description of the

found entry. This structure should be used as a parameter of the tsaRegFindNextEntry

function to find the other entries that match the search criteria.

Chapter 2: TriMedia Registry Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 69

2

tsaRegFindNextEntry

tmLibdevErr_t tsaRegFindNextEntry(
 Char *keyString,
 ptsaRegFind_t FindInfo
);

Parameters

keyString Name of the entry to be opened.

FindInfo Buffer to a structure that contains the description
of the next object matching the criteria.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
given if keyString, FindInfo, or
FindInfo->handle is null.

TSA_REG_ERR_PATH_TOO_LONG Returned if the path length exceeds
TSA_REG_MAX_PATH_SIZE (256).

TSA_REG_ERR_KEY_NAME_TOO_LONG Returned if the ending part of keyString exceeds
TSA_REG_MAX_KEY_SIZE (32) characters.

TSA_REG_ERR_INVALID_SEARCH_PATTERN
Returned if the search pattern is not terminated
by an '*' (the only search pattern presently sup-
ported), or if an '*' is found at an inappropriate
place (not at the end). This error code’s behavior
may change in future implementations as new
search methods are added.

TSA_REG_ERR_PATH_NOT_FOUND Returned if the path to the entry is not found.

Description

In findinfo, the function returns the next entry that matches keyString. At the present

time, '*' is the only recognized meta character. Moreover, this character is accepted only

at the end of the keyString. If successful, the findinfo structure contains a description of

the found entry. The findInfo parameter should be initialized by a call to tsaRegFindFirst-

Entry before any use of the tsaRegFindNextEntry.

Chapter 2: TriMedia Registry Manager API

70 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 71

3

Chapter 3

TriMedia Component Manager API

Topic Page

Overview 72

Advanced Features 74

Example: Audio In on a Daughter Board 75

General Rules About Creating a Dependency Tree 76

The Activation Function 77

How to Implement a New Component 79

Macros 83

Chapter 3: TriMedia Component Manager API

72 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Overview

The component manager provides a mechanism to control the order of system initializa-

tion. Software “components” that are managed by the component manager are initial-

ized before the start of user code. In this way, the component manager provides a way to

install drivers for all sorts of functions, be they hardware or software based.

The initialization that takes place before main typically consists of the following phases.

■ Taking the chip out of reset.

■ Initializing the malloc/free functions.

■ Executing all modules that run at custom_boot.

■ Initializing the host communication (if appropriate).

■ Executing all modules that run at custom_driver.

■ Opening stdin, stdout, and stderr.

■ Parsing the command line (argc, argv).

■ Launching the dynamic loader.

■ Initializing the debugger monitor.

■ Launching all modules that run at custom_start.

The “chaining” mechanism supported by tmld, the TriMedia linker/loader, allows the

adding of other software modules with the three symbols custom_boot, custom_driver,

and custom_start. (For a full description of tmld, see Chapter 11, Linking TriMedia Object

Modules, in Book 4, Software Tools, Part B.) In short, the linker allows a user to create a

linked list of functions to be called before main. Experience with the software system

shows that this mechanism is not flexible enough. This mechanism does not provide a

way to control the order in which the different modules are launched. Two modules that

are declared to be launched at the same level (for example at custom_boot) will get run

in a random order, preventing any dependencies between the two modules.

Moreover, this kind of initialization implies that the initialization of board support com-

ponents is performed only when needed, after program start. This can be very inconve-

nient if you want to develop a module that needs to be launched before main but that is

also dependent on the launching of the board support modules.

The component manager offers a generic way to launch (in an appropriate order) all the

software components that are needed before main. The component manager uses the

“chaining” mechanism internally, but it is transparent to a developer.

We will refer to a piece of software that needs to be launched before main as a component.

This includes, but is not limited to, chip, board, host communication, and flash memory

initialization. A component is a black box that may require the prior launching of other

components. These other required components are referred to as inputs. A component

may also export some properties, and these are referred as outputs. The inputs and out-

Chapter 3: TriMedia Component Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 73

3

puts will be referred to as symbols in the rest of this chapter. You may notice some family

resemblance between the operation of the component manager and that of the linker.

The component manager builds a tree of dependencies out of this list of components,

their inputs, and their outputs. Then it launches all the components one after another

according to the tree. The component manager makes sure that each component has

been properly initialized before launching another component that relies on it. If the

component manager cannot resolve a dependency (either because some of the compo-

nents that could provide a required functionality failed to initialize, or because none of

the components could satisfy the dependencies), then the component manager stops

exploring that leaf (unless told to do so). The component manager will launch all the

components that can be launched according to the dependency tree.

An example of a component is the board support package. A board support package does

not have any input, because it is the first component to be launched. But many compo-

nents rely on it. Therefore it must indicate that it was launched. Therefore, the board

support package is declared to have an output called ‘bsp/boardID’. These inputs and

outputs are symbols that are stored in the registry. See Chapter 2, TriMedia Registry Man-

ager API, for details on the TriMedia registry mechanism.

The component manager tries to launch all of the available components in an appropri-

ate order. Then the component manager will check whether all of the symbols that were

declared (inputs or outputs) are defined. By default, the component manager does not

complain if there is a missing symbol at the end of the exploration of the component

tree. This way, it is possible to link components to an executable even if they are not

used. This can be convenient, for example, when building a component that takes care

of a TCP/IP stack that relies on a modem connection that may be present on some

boards, but may not on some other boards. This mechanism allows you to run a program

that does not need this TCP/IP stack to run anyway.

When the exploration of the tree is done, then it will launch main (and eventually root

of this is a pSOS application).

This method ensures that a program that is launched will run as expected. This does not

mean that all components have been launched successfully, but that all components

have been given a chance to initialize. It is especially important to see the difference

between these two concepts when developing two components that provide similar

functionality (two board support packages, for example) but cannot run at the same

time. With this model, these two components will have the same output, therefore pre-

venting one component to run if the other was successfully activated. This method also

ensures that one and only one of these components will run.

Chapter 3: TriMedia Component Manager API

74 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Advanced Features

The following features are not used in most cases, and should be used only if necessary.

Components With “Required” Flag

By default, the component manager does not complain if a symbol was not created by

any of the components. This behavior can be overridden by attaching a “data property”

to one of the symbols. By default, all symbols are given basic properties. One of them is a

flag that describes whether the symbol is required or not. This specific data property is

called “required.” If this flag is set, the symbol will be considered by the component

manager as a necessary symbol to launch main. This means that the component man-

ager will stop execution (without launching main) if it is unable to locate this symbol at

the end of the initialization of the components. This can be convenient, if a program

cannot run if a symbol is not present. For example, a program that would use the board

support package might want to make the symbol bsp/boardID a required symbol. Note

that this flag is general: this puts a condition on the execution of the main program

itself.

Disabling Components

This mechanism can be extended further when there are one or more components in the

list of components that are not wanted. Another component called a “disabler” is then

created. It will take care of disabling the former. This is done very simply by adding a

new component that outputs the symbol “disabled/name_of_component,” where

name_of_component is the name of the component which is to be disabled. Great care

should be taken when disabling a component, as you also disable implicitly all compo-

nents that relied on the disabled component. This may cause the component manager to

complain about unresolved dependencies at the end (if one of these symbols was

declared as “required”).

Symbol Qualifiers

The default behavior of the component manager is not to launch a component if one of

the inputs is missing. This can be overridden by adding a flag to any of the inputs of a

component. This tells the component manager to try by any mean to resolve all the

inputs of a component, but if unable to do so, to launch the component anyway. For

example, this method is used for the serial console driver component ($TCS/examples/

boards/serialConsoleDriver). This component opens the UART and creates a new driver

(/dev/console) for it. Many boards, though have multiple UARTs which can be used for

different purposes. In this case this component has as an input the entry libio/SerialCon-

solePort. This entry contains the unit it should associate with /dev/console. But, if the

entry is not present, it will use unit0, that is COM1. Then, if you want to build a board

Chapter 3: TriMedia Component Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 75

3

with 2 COMs, and you would rather use COM2 for communications, you just add a new

component that exports libio/SerialConsolePort. This method allows you to put default

values in some of the settings of your components, but the settings can be overridden

just by adding a new component.

Example: Audio In on a Daughter Board

To see how the component manager is used, we can examine some applications. One of

these is the support for an audio input module that resides on an installable daughter

board. This is, in fact, the way that the later DTV reference boards support audio input

using a “NIM” (network interface module) board.

When a new component is created, the first thing to do is to figure out the dependencies

on other components. These other components can either be components one may

implement in the future or components that already exist. The easiest part is to find the

needed inputs, since one already knows the components that exist. These include the

board support package, flash file system, and so on. Most components will rely on the

board support package, at least to get the characteristics of the board, the board ID, or

the address of the Flash memory, etc.

When designing a dependency tree, cyclic dependencies should be avoided, since the

component manager cannot solve this kind of dependencies. The component manager

stops execution as soon as it detects a cyclic dependency.

Figure 1 Tree of Dependencies

In our example, we build three separate components. The first one handles the commu-

nication between the daughter board and the main board. We suppose that there is only

one-way communication. We call it “nim_support.” The second one is a component that

bsp/boardID

nim_support

bsp/daughterboard/nim_support

Philips_Iref

bsp/boardID

Philips_dtv_ref3

bsp/boardID

bsp/daughterboard/nim_support

nim_A

bsp/daughterboard/boardID

bsp/daughterboard/nim_support

nim_D

bsp/daughterboard/boardID

Chapter 3: TriMedia Component Manager API

76 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

should be installed when we are using a board called “nim_A” (network interface module,

analog) to support analog audio input. The third component is another board called

“nim_D” that can provide digital audio input. We can build the tree of dependencies as

shown in Figure 1.

The tree has five components. The two board support packages are called

“Philips_dtv_ref3” and “Philips_Ire.f” ”Philips_Iref” is installed by default in the device

library. The dtv_ref3 package would have to be installed by the programmer. These two

components have the same output called “bsp/boardID.” Declaring two boards that have

the same output ensures that at least one of them will run. The “nim_support” component

needs to know on which board it is running to start its initialization. Hence it takes as an

input “bsp/boardID.” From this value, it will decide either to initialize or to disable itself.

It will only run if “bsp/boardID” corresponds to an Philips_dtv_ref3 board. Then the

“nim_support” component proposes a special interface to access the daughter board. To

do this, it registers the symbol “bsp/daughterboard/comm” that contains a list of the

functions that can be used to access the daughter board. The two daughter boards can-

not be plugged in at the same time, and some special code needs to be run in case we use

the daughter board for analog or digital input. Both of these components have to make

sure that there is a standard way to communicate with the daughter boards, so they rely

on the fact that the “nim_support” component ran successfully, thus creating the depen-

dency. These two daughter boards have another output called “bsp/daughterboard/

comm”. Having the same output ensures that only one of them will run. Due to the

nature of the component manager, the failure to initialize a daughter board component

(if the board is not plugged in or if we do not have any software for it), will not prevent

the program from running.

A diagram like Figure 1 can be very helpful in an analysis of the dependencies between

the different components.

General Rules About Creating a Dependency Tree

■ Avoid components that have no outputs, because it prevents any other component

from relying on it. Besides, by not having an output, it is impossible to make sure

that the component was properly loaded from the component manager point of

view.

■ Use components without any inputs with great care, since they might be launched

before any other component, especially before any board support package. In most

cases adding a dependency on the board support package is a good idea (by adding

“bsp/boardID” as an input).

■ Components should define only the necessary symbols. For example, board support

packages should only output “bsp/boardID” even if they actually register many capa-

bilities such as an audio out or video out unit. It is the role of other components to

use the boardID to query the board interface and find out the capabilities of an audio

out or video out unit.

Chapter 3: TriMedia Component Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 77

3

■ Like any public name space, component and symbol names should be given with

care. Avoid names like A or B. Explicit names should be used instead.

■ Component names are limited to 24 characters and should be treated as a C language

variable.

■ Symbol names, in contrast to component names, must be completely unique. They

exist during the complete execution of the program (see further to create temporary

symbols), and therefore are visible to any program. Symbol names like apps/mycom-

pany/myproject/mycomponent/mysymbol are recommended to avoid conflicts with

any other existing components. Symbol names should comply with the registry rules.

Therefore, alphanumeric names are recommended. See Chapter 2, TriMedia Registry

Manager API, for details on the TriMedia registry mechanism.

In the bsp directory, information about the board can be found. The following two

entries are present:

boardName. This entry contains the board Name. Its class type is recData, redt-

Char (see Chapter 2).

boardID. This entry contains the board ID. Its class type is recData, redtUInt.

In this same directory, one can find the following subdirectories:

AO, AI, VO, VI, SSI, TP, GPIO (on TM2). These directories describe the different

capabilities of the board in terms of I/O.

In all of these directories, all the different interfaces for all the units are registered. For

example, the entry bsp/AO/00/Default contains a description of the first Audio Out

unit (units are numbered starting at 0). Default is actually a pointer to a

boarddevConfig_t structure. See Chapter 19, TMBoard API, of Book 5, System Utilities,

Part C, for details.

At the root directory, the misc and apps directories can be used. Two extra directories,

“temp” and “disabled,” also exist, as described below.

The “temp” directory should contain symbols that are only needed during the boot-

ing process (until main begins). This directory is automatically destroyed when the

component manager finishes.

The “disabled” directory contains the list of the component names that should be

disabled. This directory is automatically destroyed when the component manager fin-

ished.

The Activation Function

The declaration of a component consists not only of its name, inputs and outputs, but

also of an entry point that the component manager uses to access the component. The

entry point is represented by a function called the activation function. The activation

function should be of the type compActivateFunc_t (see <tm1/tsaComponent.h>), and

Chapter 3: TriMedia Component Manager API

78 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

should always be declared static to avoid name space pollution. Hence it should also

reside in the same file as the component declaration. The activation function takes as a

parameter the definition of the component, describing its outputs, inputs, and name. It

does not have any return value. This function should return a tmLibdevErr_t that can be

used for debugging purposes.

The first phase could be called “detection” or “probing” phase, since it is in this part that

the hardware and software (in terms of other installed components) are probed. In our

example, we test to determine that we are running on the Philips_dtv_ref3 board before

doing anything else. If the component is a board, this phase should read the boot

EEPROM using the IIC bus to identify the board. Great care should be taken when writ-

ing the detection phase, since it is very important that any component does not mistak-

enly try to launch itself when it is not safe to do so.

Also in the detection phase, the hardware is interrogated. No assumption should be

made about the underlying hardware. Components can try to get the board ID and

board name (if this component is itself not a Board Support Package), and the processor

version. This is done using the functions described in Chapter 19, TMBoard API, of Book

5, System Utilities, Part C.

If this function succeeds in detecting all the adequate hardware and software compo-

nents, then the second phase can be called. This phase takes care of the initialization.

This can either be software initialization (allocation of buffers, etc.), or hardware initial-

ization (taking the hardware out of reset, etc.). Failures should be forced into the detect

phase and the initialization phase should not fail.

Registration is the only way that the component manager can know about the success of

the activation function. If the symbols that the component is supposed to output are not

there, the component manager will conclude that the component has failed. Other soft-

ware will assume that the component is not installed.

There are two criteria that the component manager uses to declare that a component ini-

tialization has succeeded. The first verifies that all the outputs of these components are

there after exploring the components tree. Since multiple components could have iden-

tical outputs, this criterion is not sufficient to declare a component initialization success-

ful. Therefore, the component manager inspects the return value given by the activation

function. A TMLIBDEV_OK (zero) should signal a successful completion, and any non-

zero value a failure to complete. It is not advisable to use assert conditions (assert, tmAs-

sert, or exit) to trap a problem. Since the component manager is running at custom boot,

these functions will cause an apparent tmcons hang. Since host communication hap-

pens after custom boot, tmcons is unable to establish a connection with the TriMedia

program since it already finished, hence causing the apparent hang.

This return value can be very convenient when debugging a component. This error code

is used by the component manager to print a small report on the execution of the com-

Chapter 3: TriMedia Component Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 79

3

ponents. This report can be inspected in the DP buffer. The report has the following

format.

Or it can look like the following.

The first log was taken from a run with the components dtv_ref2, dtv_ref3, iref, and

dtv_nim on a dtv_ref3 board without any NIM board attached to it. Out of the four com-

ponents, three fail and all return 0xf010017, which is actually

BOARD_ERR_UNKNOWN_BOARD.

The second log was taken from a run of the component manager example in $TCS/

examples/misc/compmanager/. In this case, there are components that were not even

launched because the dependencies were not satisfied. Please read the readme.txt in the

example directory for further details on this example.

How to Implement a New Component

The declaration of the properties (name, inputs, outputs and activation function) is per-

formed through a set of macros that are defined in <tm1/tsaComponent.h>. These mac-

ros are called TSA_COMP_DEF_XX_COMPONENT where XX can be I, O, or IO depending on

the fact that the component to be declared has inputs only, outputs only, or a mix of

inputs and outputs. One of these macros should be placed at the end of one of the files

that describe the new component. Adding this macro is the only change that has to be

made to register a component.

Linking a Component Into an Application

Every component should be contained in a separate .o file. Components cannot be

linked from an archive (.a). Since a component does not export any external functions,

the linker would not link this component if it was included in an archive. Besides, there

should be only one .o per component. In many cases, it is convenient to split the imple-

mentation of a component in many files, therefore this creates many .o. You should use

tmld to merge multiple .o into one.

This linking mechanism ensures that the component manager is not linked (and there-

fore the registry), if the linker does not detect any component to be linked. This reduces

These components failed during initialization :
 Philips_Iref : f010017
 Philips_dtv_ref2 : f010017
 Philips_dtv_nim : f010017
End of logs

These components failed during initialization :
 comp2 : 3f01000a
These components have not been started during initialization
 comp5
End of logs

Chapter 3: TriMedia Component Manager API

80 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

the memory footprint for applications that do not need the component manager, or that

are running on systems with little memory.

If the component you want to install is a board support package, it can be convenient to

have it automatically linked every time you develop a program for this board. You can

then modify your tmconfig file:

These two lines define the components (actually the board support package) that are

automatically linked. For example, if you are developing on a Philips DTV ref3 board

(also known as the GOMAD board), you might want to specify:

This will tell the linker to link the board support package of the DTV Ref 3 board. This

will also reduce the memory footprint of the executable, since the IREF and the DTV Ref

2 are no longer linked. If you need to develop a program that would run on any kind of

board (IREF, DTV Ref2, or DTV Ref3), just add the DTV Ref 3 BSP to the variables instead

of replacing their content.

The variables BOARD_LIST_EL and BOARD_LIST_EB are ignored when linking a tmsim

executable: tmsim is unable to simulate boards, therefore board support packages can-

not run reliably under this environment.

The TriMedia component manager is contained in the archived device library libdev.a.

The libdev.a device library is linked automatically.

If you are developing a dynboot executable (see Chapter 11, Linking TriMedia Object Mod-

ules, of Book 4, Software Tools, Part B), then the components are embedded in the dyn-

boot executable. This can advisable in this case to tune the list of the required

components to avoid having an unnecessary large executable. If you are debugging a

component, a specific version of the component manager should be linked, as detailed

below.

Debugging a New Component (Example Program)

The example program can be found in $TCS/examples/misc/compmanager/. Please refer

to the readme.txt file for build instructions and for description of functionalities of the

program.

When using the component manager, many things are absent that could be useful for

debugging. These include host communication, and therefore printf and other I/O func-

tions because these are initialized as components. Therefore, development of a new com-

ponent should be split into three phases. The first phase consists of making the new

Default boards to be linked
BOARD_LIST_EB= $TCS/lib/eb/libBSPiref.o $TCS/lib/eb/libBSPdtv_ref2.o
BOARD_LIST_EL= $TCS/lib/el/libBSPiref.o $TCS/lib/el/libBSPdtv_ref2.o

BOARD_LIST_EB= $TCS/lib/eb/libBSPdtv_ref3.o
BOARD_LIST_EL= $TCS/lib/el/libBSPdtv_ref3.o

Chapter 3: TriMedia Component Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 81

3

driver work after main by explicitly calling the component activate function. This

enables the use of printf and any other host communication.

Note that in this phase, the calls to the activate functions and the initialization order are

explicit.

The second phase consists of integrating the component into the list of the components

by using one of the TSA_COMP_DEF_XX_COMPONENT macros. This macro should be

added only when the functionality of the new component has been proven. In this sec-

ond phase, the component manager will be forced to be launched after main. This is pos-

sible by explicitly calling the function tsaCompInitComponentManager and linking the

_dbg version of the component manager. This version can be linked by adding on the

tmld command line $TCS/lib/$ENDIAN/tsaComponent_dgb.o (you must replace $TCS

and $ENDIAN by your specific paths and endianness). Calling the component manager

explicitly allows you to use tmdbg and all of the usual debugging techniques except of

course STDIOs. You can make your component dependent on STDIO, making printfs

work. Though in many cases, your component (for example, a BSP) must be started

before, because STDIO initialization relies on it. In this case, making your BSP rely on

STDIO could create a circular dependency that the component manager would be unable

to resolve. Note that running the component manager after main implicitly disables soft-

ware modules that need component manager to run before main.

The last phase consists of restoring the normal behavior of the component manager

(that is, to make it run at custom boot). $TCS/lib/$ENDIAN/libtsaComponent_dgb.o

should be removed from the tmld command line, so that the normal version of the

component manager is used. In this component, the only method you will have to

debug is the use of DPs (debug prints). That is why it is best to tune your component,

main(){
 comp1_activate();
 comp2_activate();
 comp3_activate();
 ...
}

/* main_dbg.c */
...
main(){
 tsaCompInitComponentManager();
 ...
}

Makefile
...

$(OUT_DBG): $(OBJ_DBG)
 $(CC) $(LDFLAGS) -o $@ $(OBJ_DBG) \
 $(TCS)/lib/$(ENDIAN)/tsaComponent_dbg.o
...

Chapter 3: TriMedia Component Manager API

82 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

with the _dbg version of the component manager and with the help of tmdbg, before

using the normal version of the component manager.

It is possible to skip one of the two first phases, though it is not recommended.

In phases II and III, the component manager’s execution report can be used to debug a

component. This report (printed in the DP buffer) contains the description of the differ-

ent component initialization failures that were encountered. The use of DPs is highly

recommended during the last development phase—only DPs can perform reliable I/O at

this time. The component manager enables a DP buffer for you, so that there is no need

to call DP_START. On the contrary, calling DP_START will erase the component manager

logs.

When your component is stable enough, you might want to leave a few DPs in your

code, so that developers of other components using your component will understand

why your component failed. Ideally, you should provide a table that describes all the

error codes that can be returned by your component, so that it should be easy to under-

stand a component's failure to initialize.

main(){
 printf("The component manager has already been launched\n");
 ...
}

Makefile
...

$(OUT) : $(OBJ)
 $(CC) $(LDFLAGS) $(OBJS) -o $@
...

Chapter 3: TriMedia Component Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 83

3

Macros

This section presents the set of macros that should be used to define new components.

One type definition applies:

Name Page

TSA_COMP_DEF_IO_COMPONENT
TSA_COMP_DEF_I_COMPONENT
TSA_COMP_DEF_O_COMPONENT

85
85
85

TSA_COMP_DEF_DATA_PROP 87

TSA_COMP_BUILD_ARG_LIST_1 88

TSA_COMP_BUILD_ARG_LIST_2 89

TSA_COMP_BUILD_ARG_LIST_3 90

TSA_COMP_BUILD_ARG_LIST_1_M 91

TSA_COMP_BUILD_ARG_LIST_2_M 92

TSA_COMP_BUILD_ARG_LIST_3_M 93

Name Page

compInputQualifier_t 84

Chapter 3: TriMedia Component Manager API

84 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

compInputQualifier_t

typedef enum {
 compInputRequired = 0,
 compInputNotRequired = 1
} compInputQualifier_t;

Fields

compInputRequired Specifies that this input is required to launch this
component. This value is the default value for a
component.

compInputNotRequired Specifies that this input is not needed by the com-
ponent manager to launch this component,
although the component manager will try to
resolve this symbol if possible before launching
this component.

Description

Describes the way the component manager should try to resolve the symbols before

launching a specific component. This type is used with the macros:

TSA_COMP_BUILD_ARG_LIST_1_M
TSA_COMP_BUILD_ARG_LIST_2_M
TSA_COMP_BUILD_ARG_LIST_3_M

The macros

TSA_COMP_BUILD_ARG_LIST_1
TSA_COMP_BUILD_ARG_LIST_2
TSA_COMP_BUILD_ARG_LIST_3

have compInputRequired built in.

Chapter 3: TriMedia Component Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 85

3

TSA_COMP_DEF_IO_COMPONENT

TSA_COMP_DEF_IO_COMPONENT(
 name,
 Pointer *inputs,
 Pointer *outputs,
 compActivateFunc_t activate
);

TSA_COMP_DEF_I_COMPONENT

TSA_COMP_DEF_I_COMPONENT(
 name,
 Pointer *inputs,
 compActivateFunc_t activate
);

TSA_COMP_DEF_O_COMPONENT

TSA_COMP_DEF_O_COMPONENT(
 name,
 Pointer *outputs,
 compActivateFunc_t activate
);

Parameters

name Name of the component to be defined. This
should not be enclosed between quotes. This
should also be a valid C variable—only numbers
and letters may be allowed. The number of char-
acters is limited to 24.

inputs An array of names defining the different symbols
the component manager is to find before launch-
ing this component. The last element of this array
should be Null. The different elements in this
array are strings that comply with the registry
naming convention described on page 53 in
Chapter 2, TriMedia Registry Manager API. You can
use the component manager macros

 TSA_COMP_BUILD_ARG_LIST_1
 TSA_COMP_BUILD_ARG_LIST_2
 TSA_COMP_BUILD_ARG_LIST_3

to construct the array.

Chapter 3: TriMedia Component Manager API

86 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

outputs An array of names defining the different symbols
the component manager expects this component
to output after it is launched. The last element of
this array should be Null. The different elements
in this array are strings that comply with the reg-
istry naming convention. You can use the compo-
nent manager macros

 TSA_COMP_BUILD_ARG_LIST_1
 TSA_COMP_BUILD_ARG_LIST_2
 TSA_COMP_BUILD_ARG_LIST_3

to construct the array.

activate This is the entry point of the component. This
function is called by the component manager
when it has resolved all the dependencies
imposed by the inputs array. This function should
initialize the component and register its outputs.

Description

These macros define the component’s name, inputs (for TSA_COMP_DEF_I_COMPONENT

and TSA_COMP_DEF_IO_COMPONENT), outputs (for TSA_COMP_DEF_O_COMPONENT

and TSA_COMP_DEF_IO_COMPONENT), and the component’s activation function.

Use TSA_COMP_DEF_O_COMPONENT if a component doesn't require input. Use

TSA_COMP_DEF_I_COMPONENT if a component doesn't output anything, and use

TSA_COMP_DEF_IO_COMPONENT for components with both inputs and outputs.

Each component should only use one of those macros once. The macro should be called

at the end of the file where the activate function is defined. These macros should never

be placed inside a function body.

These macros define one of two static variables called inputs_xxxx and outputs_xxxx (or

both, in the case of TSA_COMP_DEF_IO_COMPONENT) where “xxxx” should be replaced

by the field name. These two arrays contain the description of the inputs and the out-

puts of the component called name. These macros also define a dummy variable that is

needed by the linker to decide when to link the component manager.

These macros also chain this component in the external variable __component_list. For

more information, see List Construction by tmld on page 130 of Book 4, Software Tools,

Part B.

Chapter 3: TriMedia Component Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 87

3

TSA_COMP_DEF_DATA_PROP

TSA_COMP_DEF_DATA_PROP(
 String name,
 Bool required
);

Parameters

name Name of the symbol (data property).

required Boolean value that describes whether the compo-
nent manager is supposed to expect this symbol
to be created before launching main.

Description

This macro changes the data properties of a symbol. By setting required to True, the sym-

bol name is expected to be present before launching main. If it is not, then the compo-

nent manager stops execution after printing a message explaining the reason of the

failure.

Chapter 3: TriMedia Component Manager API

88 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TSA_COMP_BUILD_ARG_LIST_1

TSA_COMP_BUILD_ARG_LIST_1(
 String name1
);

Parameters

name1 Name of the first input or output that is attached
to a component. This name must comply with
the registry naming conventions (see page 53 of
Chapter 2).

Description

This macro creates the array

{ { name1,comInputRequired }, { Null,0 } }

that is needed in TSA_COMP_DEF_IO_COMPONENT, TSA_COMP_DEF_I_COMPONENT, or

TSA_COMP_DEF_O_COMPONENT as parameter “inputs” or “outputs.”

Chapter 3: TriMedia Component Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 89

3

TSA_COMP_BUILD_ARG_LIST_2

TSA_COMP_BUILD_ARG_LIST_2(
 String name1,
 String name2
);

Parameters

name1 Name of the first input or output that is attached
to a component. This name must comply with
the registry naming conventions (see page 53 of
Chapter 2).

name2 Name of the second input or output that is
attached to a component. This name must com-
ply with the registry naming conventions.

Description

This macro creates the array

{ { name1, compInputRequired },
 { name2, compInputRequired },
 { Null, 0 } }

which is needed in TSA_COMP_DEF_IO_COMPONENT, TSA_COMP_DEF_I_COMPONENT, or

TSA_COMP_DEF_O_COMPONENT as parameter “inputs” or “outputs.”

Chapter 3: TriMedia Component Manager API

90 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TSA_COMP_BUILD_ARG_LIST_3

TSA_COMP_BUILD_ARG_LIST_3(
 String name1,
 String name2,
 String name3
);

Parameters

name1 Name of the first input or output that is attached
to a component. This name must comply with
the registry naming conventions (see page 53 of
Chapter 2).

name2 Name of the second input or output that is
attached to a component. This name must com-
ply with the registry naming conventions.

name3 Name of the third input or output that is attached
to a component. This name must comply with
the registry naming conventions.

Description

This macro creates the array

{ { name1, compInputRequired },
 { name2, compInputRequired },
 { name3, compInputRequired },
 { Null, 0 } }

which is needed in TSA_COMP_DEF_IO_COMPONENT, TSA_COMP_DEF_I_COMPONENT, or

TSA_COMP_DEF_O_COMPONENT as parameter “inputs” or “outputs.”

Chapter 3: TriMedia Component Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 91

3

TSA_COMP_BUILD_ARG_LIST_1_M

TSA_COMP_BUILD_ARG_LIST_1_M(
 String name1,
 compInputQualifier_t qualifier1
);

Parameters

name1 Name of the first input or output that is attached
to a component. This name must comply with
the registry naming conventions (see page 53 of
Chapter 2).

qualifier1 Describes the attributes of the symbol name1.

Description

This macro creates the array

{ {name1, qualifier1}, { Null, 0} }

that is needed in TSA_COMP_DEF_IO_COMPONENT, TSA_COMP_DEF_I_COMPONENT, or

TSA_COMP_DEF_O_COMPONENT. The qualifier is ignored for outputs.

Chapter 3: TriMedia Component Manager API

92 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TSA_COMP_BUILD_ARG_LIST_2_M

TSA_COMP_BUILD_ARG_LIST_2_M(
 String name1,
 compInputQualifier_t qualifier1,
 String name2,
 compInputQualifier_t qualifier2
);

Parameters

name1 Name of the first input or output that is attached
to a component. This name must comply with
the registry naming conventions (see page 53 of
Chapter 2).

qualifier1 Describes the attributes of the symbol name1.

name2 Name of the second input or output that is
attached to a component. This name must com-
ply with the registry naming conventions (see
Chapter 2, page 53).

qualifier2 Describes the attributes of the symbol name2.

Description

This macro creates the array

{ { name1, compInputRequired },
 { name2, compInputRequired },
 { Null, 0 } }

which is needed in TSA_COMP_DEF_IO_COMPONENT, TSA_COMP_DEF_I_COMPONENT, or

TSA_COMP_DEF_O_COMPONENT. The qualifiers are ignored for outputs.

Chapter 3: TriMedia Component Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 93

3

TSA_COMP_BUILD_ARG_LIST_3_M

TSA_COMP_BUILD_ARG_LIST_3_M(
 String name1,
 compInputQualifier_t qualifier1,
 String name2,
 compInputQualifier_t qualifier2,
 String name3,
 compInputQualifier_t qualifier3
);

Parameters

name1 Name of the first input or output that is attached
to a component. This name must comply with
the registry naming conventions (see page 53 of
Chapter 2).

qualifier1 Describes the attributes of the symbol name1.

name2 Name of the second input or output that is
attached to a component. This name must com-
ply with the registry naming conventions (see
page 53 of Chapter 2).

qualifier2 Describes the attributes of the symbol name2.

name3 Name of the third input or output that is attached
to a component. This name must comply with
the registry naming conventions (see page 53 of
Chapter 2).

qualifier3 Describes the attributes of the symbol name3.

Description

This macro creates the array

{ { name1, compInputRequired },
 { name2, compInputRequired },
 { name3, compInputRequired },
 { Null, 0 } }

which is needed in TSA_COMP_DEF_IO_COMPONENT, TSA_COMP_DEF_I_COMPONENT, or

TSA_COMP_DEF_O_COMPONENT. The qualifiers are ignored for outputs.

Chapter 3: TriMedia Component Manager API

94 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 95

4

Chapter 4

Clock Support API

Topic Page

Clock Support Overview 96

Clock Support API Data Structures 96

Clock Support API Functions 99

Chapter 4: Clock Support API

96 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Clock Support Overview

The clock support module provides some generic clock functions to components or

applications. You can have an unlimited number of clock instances, each with their own

frequency.

Only if the alarms must be set on a clock will the clock support module use a timer. All

clock module instances share the one timer.

Clock Support API Data Structures

This section describes the clock support API data structures found in the file tsaClock.h.

Name Page

tsaClockFunc_t 97

tsaClockCapabilities_t 98

tsaClockInstanceSetup_t 98

Chapter 4: Clock Support API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 97

4

tsaClockFunc_t

typedef void (*tsaClockFunc_t)(
 Int instance,
 void* args
);

Parameters

instance A clock instance, as generated by a call to
tsaClockOpen.

args Arguments, determined by the user.

Description

A callback function to be called when a clock instance’s alarm goes off.

Chapter 4: Clock Support API

98 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaClockCapabilities_t

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
} tsaClockCapabilities_t, *ptsaClockCapabilities_t;

Fields

defaultCapabilities Pointer to default capabilities struct. (See tsa.h.)

tsaClockInstanceSetup_t

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 UInt32 frequency;
 Int numAlarms;
} tsaClockInstanceSetup_t, *ptsaClockInstanceSetup_t;

Fields

defaultSetup Pointer to default instance setup struct. (See
tsa.h.)

frequency Frequency at which the clock should run.

numAlarms Maximum number outstanding alarms the clock
instance can have.

Chapter 4: Clock Support API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 99

4

Clock Support API Functions

This section presents the clock support API functions present in the file tsaClock.h.

Name Page

tsaClockGetCapabilities 100

tsaClockOpen 101

tsaClockClose 102

tsaClockGetInstanceSetup 103

tsaClockInstanceSetup 104

tsaClockStart 105

tsaClockStop 106

tsaClockGetTime 107

tsaClockSetTime 108

tsaClockSetAlarm 109

tsaClockTimeDiff 110

tsaClockTimeAdd 111

tsaClockTimeSub 112

tsaClockTimeDiv 113

tsaClockTimeMul 114

Chapter 4: Clock Support API

100 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaClockGetCapabilities

tmLibappErr_t tsaClockGetCapabilities(
 ptsaClockCapabilities_t *cap
);

Parameters

cap Pointer, returned, to a capabilities structure.

Return Codes

TMLIBAPP_OK Success.

Description

Return a pointer to the capabilities of the clock. There is no precondition for this func-

tion.

Chapter 4: Clock Support API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 101

4

tsaClockOpen

tmLibappErr_t tsaClockOpen (
 Int *instance
);

Parameters

instance Pointer, returned, to the clock instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation for the instance variables
failed.

CL_ERR_PROC_CAP Problem obtaining the processor frequency (uses
procGetCapabilities).

Description

Assigns an instance of the clock for use.

Chapter 4: Clock Support API

102 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaClockClose

tmLibappErr_t tsaClockClose (
 Int instance
);

Parameters

instance The clock instance to close.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Not a valid instance

Description

Unassigns the clock instance for usage. The clock instance must have been opened with

tsalClockOpen.

Chapter 4: Clock Support API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 103

4

tsaClockGetInstanceSetup

tmLibappErr_t tsaClockGetInstanceSetup(
 Int instance,
 tsaClockInstanceSetup_t &setup
);

Parameters

instance A clock instance, generated by a call to tsaClock-
Open.

setup Address at which to return the setup structure.

Return Codes

TMLIBAPP_OK Success.

Description

Returns the tsaClockInstanceSetup_t with the present setup of the current instance.

Chapter 4: Clock Support API

104 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaClockInstanceSetup

tmLibappErr_t tsaClockInstanceSetup (
 Int instance,
 tsaClockInstanceSetup_t *setup
);

Parameters

instance A clock instance, generated by tsaClockOpen.

setup Pointer to the FR setup structure
tmalClockInstanceSetup_t.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Not a valid instance.

CL_ERR_INV_FREQ Frequency setup parameter has an invalid value
(it is larger than the CPU clock frequency).

CL_ERR_ALARMS_OUTSTANDING The clock has outstanding alarms that have not
been serviced.

CL_ERR_NO_TIMER The clock instance could not obtain a timer (used
for alarm functionality only).

CL_ERR_TIMER_SETUP Setup of the timer failed.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation for the alarms failed.

Description

Sets up the instance of the clock. Setup includes the clock frequency and number of pos-

sible alarms.

Chapter 4: Clock Support API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 105

4

tsaClockStart

tmLibappErr_t tsaClockStart (
 Int instance
);

Parameters

instance A clock instance, generated by tsaClockOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Not a valid instance.

TMLIBAPP_ERR_NOT_SETUP Instance has not been set up previously.

TMLIBAPP_ERR_ALREADY_STARTED Instance has already been started.

Description

Starts data streaming for the clock instance.

Chapter 4: Clock Support API

106 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaClockStop

tmLibappErr_t tsaClockStop (
 Int instance
);

Parameters

instance A clock instance, generated by tsaClockOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Not a valid instance.

TMLIBAPP_ERR_NOT_SETUP Instance has not been setup previously.

TMLIBAPP_ERR_ALREADY_STOPPED Instance has already been stopped.

Description

Stops data streaming for the clock instance.

Chapter 4: Clock Support API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 107

4

tsaClockGetTime

tmLibappErr_t tsaClockGetTime (
 Int instance,
 tmTimeStamp_t *time
);

Parameters

instance A clock instance, generated by tsaClockOpen.

time Pointer to the timestamp.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Not a valid instance.

TMLIBAPP_ERR_NOT_SETUP Instance has not been set up previously.

Description

Returns the current clock time.

Chapter 4: Clock Support API

108 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaClockSetTime

tmLibappErr_t tsaClockSetTime (
 Int instance,
 ptmTimeStamp_t time
);

Parameters

instance A clock instance, generated by tsaClockOpen.

time Pointer to timestamp (a return value).

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Not a valid instance.

TMLIBAPP_ERR_NOT_SETUP Instance has not been setup previously.

Description

Sets the current clock time.

Chapter 4: Clock Support API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 109

4

tsaClockSetAlarm

tmLibappErr_t tsaClockSetAlarm (
 Int instance,
 ptmTimeStamp_t time,
 Bool periodic
 tsaClockFunc_t func,
 void *args
);

Parameters

instance A clock instance, generated by tsaClockOpen.

time Pointer to timestamp containing the alarm time.

periodic If True, the alarm is enabled periodically. Other-
wise, the alarm occur once only.

func Pointer to function to be called when alarm
expires.

args Pointer to argument provided to callback func-
tion at the time the alarm expires.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Not a valid instance.

TMLIBAPP_ERR_NOT_SETUP Instance has not been set up previously.

CL_ERR_LATE The time has already passed.

CL_ERR_NO_UNUSED_ALRM All alarm slots are currently in use. (The number
of alarm slots is one of the setup parameters.)

Description

Sets an alarm at the specified time. If periodic is True, the alarm is set periodically with

time cycle given by argument time. That is, if the time argument sets a periodic alarm for

30 ms, then the alarm will be set at 30, 60, 90, 120 ms, and so on.

Note
The callback functions are called by the TCS_handler function. Interrupts
are disabled during the call. Therefore, these should be short and cannot
perform tasks which used interrupts (such as printing or communicating
over IIC).

Chapter 4: Clock Support API

110 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaClockTimeDiff

tmLibappErr_t tsaClockTimeDiff (
 Int instance,
 ptmTimeStamp_t time,
 Int *timediff
);

Parameters

instance A clock instance, generated by tsaClockOpen.

time Pointer to timestamp containing the time.

timediff Pointer to time difference (a return value).

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Not a valid instance.

TMLIBAPP_ERR_NOT_SETUP Instance has not been set up previously.

Description

Calculates the integer time difference between a timestamp and the current clock value.

Chapter 4: Clock Support API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 111

4

tsaClockTimeAdd

tmLibappErr_t tsaClockTimeAdd (
 ptmTimeStamp_t time1,
 ptmTimeStamp_t time2
);

Parameters

time1 Pointer to one timestamp.

time2 Pointer to a second timestamp.

Return Codes

TMLIBAPP_OK Success.

Description

Adds two timestamp values and returns the result in the first timestamp.

Chapter 4: Clock Support API

112 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaClockTimeSub

tmLibappErr_t tsaClockTimeSub (
 ptmTimeStamp_t time1,
 ptmTimeStamp_t time2
);

Parameters

time1 Pointer to one timestamp.

time2 Pointer to a second timestamp.

Return Codes

TMLIBAPP_OK Success.

Description

Subtracts the second timestamp value from the first and returns the result in the first

timestamp.

Chapter 4: Clock Support API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 113

4

tsaClockTimeDiv

tmLibappErr_t tsaClockTimeDiv (
 ptmTimeStamp_t time,
 float value
);

Parameters

time Pointer to timestamp (also used to store the
result).

value Floating point divisor.

Return Codes

TMLIBAPP_OK Success.

Description

Divides the timestamp value by the floating point value and returns the result in time-

stamp.

Chapter 4: Clock Support API

114 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaClockTimeMul

tmLibappErr_t tsaClockTimeMul (
 ptmTimeStamp_t time,
 float value
);

Parameters

time Pointer to timestamp (also used to store result).

value Floating point multiplier.

Return Codes

TMLIBAPP_OK Success.

Description

Multiplies timestamp by floating point value and returns the result in timestamp.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 115

5

Chapter 5

TSA Timer (Stimer) API

Topic Page

TSA Timer API Overview 116

TSA Timer Data Structures 116

TSA Timer Functions 120

TSA Timer Errors 116

Chapter 5: TSA Timer (Stimer) API

116 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TSA Timer API Overview

The TSA Timer library is a generalized timer libarary. The timer can be programed to gen-

erate alarms after specified delays from current time. It also provides generation of peri-

odic alarms with a given time period. Unlike the Trimedia Clock library, this Timer is a

software timer, based on periodic events generated by the OS. This timer overcomes the

limitations of Trimedia Clock library in that the callback function is not called as a han-

dler function, hence can be used for wider variety of applications.

TSA Timer Errors

No error callback functions and completion functions are provided in ths library.

TSA Timer Data Structures

This section presents the Timer library data structures.

Name Page

tsaTimerCapabilites_t 117

tsaTimerFunc_t 117

tsaTimerInstanceSetup_t 118

tsaTimerAlarmSetup_t 119

Chapter 5: TSA Timer (Stimer) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 117

5

tsaTimerCapabilites_t

typedef struct {
 tsaTimerDefaultCapabilites_t defaultCapabilities;
} tpCapabilities_t, *ptpCapabilites_t;

Fields

defaultCapabilities Default Capabilites structure.

Description

Provided for conformance wih TSA.

tsaTimerFunc_t

typedef void (*tsaTimerFunc_t)(
 Int instance,
 void*args
);

Description

This is the typedef for the callback function that is called when an alarm is triggered. You

should provide this function. The instance is the pointer to the alarm that was triggered.

Chapter 5: TSA Timer (Stimer) API

118 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaTimerInstanceSetup_t

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 UInt32 resolution;
 Int numAlarms;
 Int priority;
 Int standbyPriority;
 Int timerEvent;
} tsaTimerInstanceSetup_t; *ptsaTimerInstanceSetup_t;

Fields

defaultSetup For Conformance with TSA architecture

resolution The resolution of Timer, alarms are triggered at
time intervals integral multiples of resolution.
Provided in milliseconds.

numAlarms Maximum number of alarms allowed, currently
this is unused.

priority The priority at with the timer task runs.

standbyPriority Priority of timer task when no alarms are pend-
ing.

timerEvent The event to be used by timer for processing the
alarms.

Description

This structure passes setup values to the tsaTimerInstanceSetup function. You can indi-

cate the resolution, event and priority to use. The alarms are triggered at integral multi-

ple of resolution. If an alarm delay is between n×resolution and (n+1)×resolution, the

alarm will be triggered at (n+1)×resolution.

Chapter 5: TSA Timer (Stimer) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 119

5

tsaTimerAlarmSetup_t

typedef struct {
 Int delay;
 Bool periodic;
 tsaTimerFunc_t func;
 void* args;
} tsaTimerAlarmSetup_t; *ptsaTimerAlarmSetup_t;

Fields

delay Delay from the current time before the alarm is
triggered.

periodic Whether the alarm is periodic.

func The callback function to be called when alarm is
triggered.

args Pointer to args to be passed to callback funciton.

Description

This structure sets up the alarms with function tsaTimerSetupAlarm.

Chapter 5: TSA Timer (Stimer) API

120 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TSA Timer Functions

This section presents the Timer device library functions.

Name Page

tsaTimerGetCapabilities 121

tsaTimerOpen 122

tsTimerClose 123

tsaTimerGetInstanceSetup 124

tsaTimerInstanceSetup 125

tsaTimerStart 126

tsaTimerStop 127

tsaTimerCreateAlarm 128

tsaTimerDestroyAlarm 129

tsaTimerSetupAlarm 130

tsaTimerStartAlarm 131

tsaTimerStopAlarm 132

Chapter 5: TSA Timer (Stimer) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 121

5

tsaTimerGetCapabilities

tmLibdevErr_t tsaTimerGetCapabilites(
 ptpCapabilities_t *pCap
);

Parameters

pCap Poointer, returned, to the capabilities structure.

Return Codes

TMLIBDEV_OK Success.

Description

This function returns a pointer to the capabilites strucuture for the timer library. This

function is provided for conformance with the other TSA architecture libraries.

Chapter 5: TSA Timer (Stimer) API

122 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaTimerOpen

tmLibdevErr_t tsaTimerOpen(
 Int* instance;
);

Parameters

instance Used to return handle to the timer instance.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_MEMALLOC_FAILED Failed to allocate memory required for this
instance.

Description

This function opens a new timer and returns the pointer to the timer Instance.

Chapter 5: TSA Timer (Stimer) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 123

5

tsTimerClose

tmLibdevErr_t tsaTimerClose(
 Int instance;
);

Parameters

instance Instance value as returned by tsaTimerOpen.

Return Codes

TMLIBDEV_OK Success.

Description

Close the timer Instance and release system resources acquired by tsaTimerOpen.

Chapter 5: TSA Timer (Stimer) API

124 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaTimerGetInstanceSetup

tmLibdevErr_t tsaTimerGetInstanceSetup(
 Int instance,
 ptsaTimerInstanceSetup_t *setup
);

Parameters

instance Instance handle previously created by tsaTimer-
Open.

setup pointer to the timer Instance setup structure.

Return Codes

TMLIBDEV_OK Success.

Description

This function returns pointer to the preallocated setup structure for the timer. This struc-

ture can be used to set up the timer using function tsaTimerInstanceSetup.

Chapter 5: TSA Timer (Stimer) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 125

5

tsaTimerInstanceSetup

tmLibdevErr_t tsaTimerInstanceSetup(
 Int instance,
 ptsaTimerInstaceSetup_t setup
);

Parameters

instance Instance handle previously created by tpOpenM.

setup Pointer to data structure containing the setup
information.

Return Codes

TMLIBDEV_OK Success.

TP_ERR_ALREADY_SETUP This instance has been already setup.

Description

Initializes the timer task and allocates the system resources required for the timer library.

This also sets up the proper priorities of tasks and resolution to be used for the timer

Chapter 5: TSA Timer (Stimer) API

126 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaTimerStart

extern tmLibdevErr_t tsaTimerStart(
 Int instance
);

Parameters

instance Instance handle previously created by tsaTimer-
Open.

Return Codes

TMLIBDEV_OK Success.

Description

This function starts the timer, the alarms added become active only after starting the

timer. The alarms can be themselves added and deleted with the timer is still active.

Chapter 5: TSA Timer (Stimer) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 127

5

tsaTimerStop

extern tmLibdevErr_t tsaTimerStop(
 Int instance
);

Parameters

instance Instance handle previously created by tsaTimer-
Open.

Return Codes

TMLIBDEV_OK Success.

Description

Stop the timer. This disables generation of alarms.

Chapter 5: TSA Timer (Stimer) API

128 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaTimerCreateAlarm

extern tmLibdevErr_t tsaTimerCreateAlarm(
 Int instance,
 Int* alarmInst
);

Parameters

instance Instance handle previously created by tsaTimer-
Open.

alarmInst Pointer to alarm returned by function.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_MEMALLOC_FAILED Failed to allocate memory required for this
instance.

Description

This function is called to create an alarm for a specified timer. The alarm is disabled until

both the timer and the alarm are started.

Chapter 5: TSA Timer (Stimer) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 129

5

tsaTimerDestroyAlarm

extern tmLibdevErr_t tsaTimerDestroyAlarm(
 Int instance,
 Int alarmInst
);

Parameters

instance Instance handle previously created by tsaTimer-
Open.

alarmInst Alarm handle previously created by tsaTimerCre-
ateAlarm.

Return Codes

TMLIBDEV_OK Success.

Description

This function is called to destroy the alarm instance, the user memory is not freed by the

API and is kept to be reused later.

Chapter 5: TSA Timer (Stimer) API

130 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaTimerSetupAlarm

extern tmLibdevErr_t tsaTimerSetupAlarm(
 Int instance
);

Parameters

instance Instance handle previously created by tsaTimer-
Open.

Return Codes

TMLIBDEV_OK Success.

Description

This function is used to set up the parameters for the alarm, like callback function, delay

and arguments to callback function. Also if the alarm is periodic. This function updates

the alarm data structures appropriately.

Chapter 5: TSA Timer (Stimer) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 131

5

tsaTimerStartAlarm

extern tmLibdevErr_t tsaTimerStartAlarm(
 Int instance
);

Parameters

instance Instance handle previously created by tsaTimer-
Open.

Return Codes

TMLIBDEV_OK Success.

Description

This function starts the alarm, the alarm is insert into the timer to be scheduled at

proper time. The timer also should be started by calling tsaTimerStart before alarms can

be triggered by the timer.

Chapter 5: TSA Timer (Stimer) API

132 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaTimerStopAlarm

extern tmLibdevErr_t tsaTimerStopAlarm(
 Int instance
);

Parameters

instance instance handle previously created by tsaTimer-
Open.

Return Codes

TMLIBDEV_OK Success.

Description

This function is to stop the triggering of alarms. In particular the periodic alarms will

continue to trigger untill the alarm is stopped by calling this function or the Timer itself

is stopped.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 133

6

Chapter 6

TriMedia Memory Manager API

Topic Page

Introduction 134

Overview 134

The “malloc” Hierarchy 139

The TriMedia Memspace Manager 141

TriMedia Memory Manager API Data Structures 153

TriMedia Memory Manager API Functions 157

Chapter 6: TriMedia Memory Manager API

134 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

Many application programmers are not overly concerned with memory management.

When they need only to allocate modest amounts of memory to assure that their appli-

cations function correctly, they can rely on the ANSI function malloc to do a satisfactory

job.

Concerns change when applications run against the boundaries of the available memory

or when other factors such as memory recycle schemes or memory leak debugging play a

larger role. Memory allocation efficiency is especially critical for certain kinds of applica-

tions. To satisfy this range of needs, the TriMedia SDE provides several different memory

managers.

Memory Management Trade-Offs

By design, each SDE memory manager has its own set of strengths and weaknesses. Each

might coexist with, replace, or extend another, depending on the situation, but overall

its performance is determined by its handling of the issues below.

■ Controlling internal fragmentation.

■ Controlling external fragmentation.

■ Real-time, deterministic allocation performance.

■ Ease of deallocation.

■ Additional functionality.

■ Implementation size.

This chapter provides an overview of the SDE memory managers and describes the trade-

offs involved in choosing one over another.

Overview

Figure 2 shows all TriMedia system software components that can be used for allocating

and deallocating blocks of memory.

These components can roughly be divided in two groups. The group on the left contains

a number of memory managers that are implemented on top of one another. In this

group, all allocated memory is eventually obtained via the simplest and lowest level allo-

cator sbrk. The group on the right contains unrelated memory managers, some of which

are available only in pSOS-based applications.

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 135

6

Figure 2 Memory Management Hierarchies

Memory Fragmentation

Memory fragmentation is the general problem of memory being inaccessible to the

application because of the decisions made by the memory manager itself. Internal frag-

mentation refers to additional memory that is allocated per block (for whatever reason),

but that is unused by the application and is hence wasted. External fragmentation refers

to memory outside of allocated blocks that, although nominally available, cannot be

used by the application because the memory is not contiguous.

A modest example of internal fragmentation is the situation where a memory manager

returns word-aligned memory blocks. Any allocation of sizes that are not exact multiples

of the word size result in some bytes being lost to padding. For example, a request for 7

bytes generally results in the allocation of 8 bytes or more. At least one byte is then lost

due to internal fragmentation.

rn_create
rn_delete
rn_getseg
rn_retseg

pt_create
pt_delete
pt_getbuf
pt_retbuf

memspMalloc
memspFree
memspCreate
memspDelete
memspDebugMalloc

_cache_malloc
_cache_free
calloc

Various

TM-memman
(TriMedia Memory

Manager)

TriMedia
Memspace Manager

malloc, free, realloc

“malloc” Hierarchy

alloca

non pSOS-Based Application pSOS-Based Application

malloc Switch

Other Memory Managers

Implemented on top of
malloc/free

pSOS Region 0

sbrk

Stack Alloc

pSOS Partition Manager

pSOS Region Manager

Chapter 6: TriMedia Memory Manager API

136 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

An example of external fragmentation is the scenario in which the allocation of a 4

megabyte block from an 8 megabyte memory area is not possible because of previously

allocated blocks that are awkwardly positioned, as shown in Figure 3.

Figure 3 External Fragmentation

Unlike internal fragmentation, the issue of external fragmentation is directly influenced

by the memory needs of the application. The smaller the requested block size, the

greater the amount of free memory will be accessible. Conversely, if an application

demands larger memory blocks, the more often it will suffer from the effects of memory

fragmentation.

More precisely, external fragmentation tends to rise according to the number of (i.e. vari-

ety of) block sizes allocated from the same memory range. One extreme situation is

formed by allocations of only one single block size x. In this case, inaccessible free mem-

ory would theoretically never be more than x, and any fragmentation would be small

and predictable. The other extreme is what is illustrated in Figure 3.

There are several approaches to the problem of memory fragmentation. However, exter-

nal and internal fragmentation are invariably on opposite sides of the negotiation, so

fragmentation, though reducible, will never be eliminated.

Heap Partitioning

One approach, shown in Figure 4, consists of partitioning the available free memory

into different heaps that are dedicated to different block sizes.

Figure 4 Heap Partitioning

0 8M

4 MB Block Cannot Fit into Available Memory

Free Free Free

0 8M

Small Block Heap Large Block Heap

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 137

6

This partitions (and reduces) memory fragmentation in two ways:

1. For each heap, the variety of block sizes is less, thereby reducing fragmentation.

2. Where the memory manager for the heap allows heap extension, each extension is

just another large block to be allocated from the large block heap.

A disadvantage of this approach is that an individual heap is usually never filled. Because

free space in one heap is generally unavailable for allocation into another heap, use of

different heaps introduces a new, more internal, form of memory fragmentation.

Heap partitioning is supported by the pSOS Partition Manager and the pSOS Region

Manager, both of which allow arbitrary ranges of memory to be cast into a heap. This

memory range can be some large global variable, for instance, or a memory block that

has been explicitly obtained from another heap. Following pSOS tradition, this other

heap is usually “region 0,” which is created during pSOS initialization to hold all avail-

able free memory.

Both heap partitioning and heap extension are supported by the TriMedia Memspace

Manager, which uses the underlying system memory manager (malloc) to obtain mem-

ory for its memspaces and memspace extensions. Extensions are automatically

attempted when allocation requests to a memory space cannot be fulfilled with the

memory currently allocated to that memory space.

Memory Units

Another approach to fragmentation is the use of memory units, where each allocated

memory block is rounded up to a multiple of the unit size, as shown in Figure 5.

Figure 5 Memory Units

This prevents occurrence of blocks smaller than the unit size, thereby reducing the vari-

ety of block sizes. However, rounding adds padding in a memory block whenever the

requested size is not an exact multiple of the unit size. Therefore, the use of memory

units generally reduces external fragmentation at the cost of internal fragmentation.

Memory units are supported by the pSOS Partition Manager and the pSOS Region Man-

ager, both of which allow specification of arbitrary unit size at partition/region creation.

The difference between pSOS partitions and pSOS regions is that the partitions allow

only allocation of single units, whereas the regions allow allocation of arbitrary block

sizes, which are internally rounded up to unit multiples.

0 8M

Memory Unit

Unit Padding

Chapter 6: TriMedia Memory Manager API

138 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

The TriMedia Memspace Manager is a mixture of these. For each memspace, it automati-

cally maintains internal partitions for small sizes (when these are used), and uses one

internal region for large block sizes. The division between “large” and “small” is fixed at

60 bytes. In addition, since an internal partition is created for each small block size that

is used, no unit padding need be added, and the internal fragmentation is bounded.

Allocation Performance

A memory manager also has to balance the effect of fragmentation on the one hand

against allocation time overhead on the other.

In soft real-time systems, the average allocation performance is most important, while

time-critical systems generally like predictability, which suggests a hard upperbounds on

the allocation time. However, multimedia applications (the target of the TriMedia SDE),

generally do not impose hard real-time requirements onto their memory managers, espe-

cially applications that do all or most memory allocation up front, during startup.

Of the four memory managers shown in Figure 2, only one, the pSOS Partition Manager,

has hard real-time properties, though at the cost of reduced functionality. The pSOS

Region Manager is a close second. It does everything to remain predictable, but at the

cost of increased heap fragmentation.

Both of the TriMedia memory managers attempt to minimize heap fragmentation while

maintaining a good average performance, but do not claim to be hard real-time. Both of

them might have occasional performance glitches, such as when they must escape to

lower level memory managers for heap extension.

Additional Functionality

In addition to allocation/deallocation facilities, the SDE memory managers provide the

following additional functionalities.

Functionality Memory Manager

Collective deallocation of related memory blocks.
Deallocation of entire heap.

pSOS Partition Manager
pSOS Region Manager
TriMedia Memspace Manager

Internal consistency checking.
Automatic invalidation of deallocated memory blocks.
Guard areas around allocated memory blocks.
Inspection of heap statistics and of allocated blocks.
Tracking where particular blocks have been allocated.

TriMedia Memspace Manager in
debug mode

Allocation of TM data cache-aligned memory blocks. _cache_malloc
TriMedia Memspace Manager

Allocation of zero-initialized memory. calloc, a variant of malloc

Allocation in current stack frame. alloca

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 139

6

The “malloc” Hierarchy

This section describes what happens to available SDRAM after a TriMedia application

starts executing. This discussion is closely related to the group of memory managers at

the left side of Figure 2 on page 135. As shown in Figure 6, behavior is dependent on

whether the application is pSOS-based.

Figure 6 Memory Management Maps

All pSOS applications start executing identically to non-pSOS based applications, with

pSOS gradually taking over after the core libraries of the SDE are initialized. This is an

important juncture for memory management. Such ANSI functions as malloc and free

are still to be mapped to pSOS memory management, while several core SDE features

(I/O, dynamic loader, or user-defined components like flash-file system drivers) might

already have needed allocation of memory during initialization, in a stage at which

pSOS is not yet up and running.

In cooperation with the downloader, which is documented in Chapter 12, Downloader

API, the first instructions of each application set up a memory map as shown in the left

side of Figure 6. The stack pointer is initialized to the top of SDRAM and grows down-

ward, and a system heap pointer is initialized to just after the loaded program. This heap

pointer is managed by the low level system function sbrk, which implements a very

rudimentary memory management facility. Using sbrk, only block allocation is possible,

by moving the system heap pointer upwards. Memory obtained in this way can never be

given back to the system heap.

Note
The system function sbrk should not be used by applications directly. It is
intended as basis for higher level memory managers.

System Heap

Program/Data/bss
SDRAM Base

SDRAM Limit
Stack

non pSOS-Based Application

System Heap

Program/Data/bss

Data Block

Data Block

Task Stack

Data Block

Task Stack

pSOS-Based Application

Chapter 6: TriMedia Memory Manager API

140 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

One of these managers is the default TriMedia Memory Manager (TM-memman). During

startup, and by default in non-pSOS based applications, TM-memman handles all mem-

ory allocation. It is a small, general purpose memory manager that gradually extends the

system heap (using sbrk) whenever it needs to extend its own heap. During application

initialization for instance, TM-memman is used for allocation of memory that is needed

for IO driver installation, and (in dynamic loader-based systems) for allocating memory

needed for holding dynamic libraries that are loaded during application startup. These

are mostly the dynamic libraries that have been linked in immediate mode to the initial-

izing application. See Chapter 13, Dynamic Linking API, for information.

After core library initialization, the memory organization undergoes a drastic change for

pSOS-based applications. While pSOS takes over, the entire system heap is allocated and

given to “region 0,” to be managed by the pSOS Region Manager. Similarly to other pSOS

tasks later on during execution, the root task is created with a stack allocated from this

memory region, and the startup stack is no longer needed. From this point forward, the

stack pointer always points to a task stack that has been allocated somewhere in

region 0.

More importantly, pSOS convention requires that all malloc/free calls be further man-

aged by the pSOS Region Manager. This is achieved by performing a dynamic switch that

replaces the group of basic memory management functions (malloc, free, and realloc) by

a group that uses region 0. This switch is an important milestone, in that memory allo-

cated using functions malloc or realloc before this switch should never be passed to real-

loc or free after this switch.

It is important to note that all memory management services implemented on top of the

malloc interface (as shown in Figure 2, page 135) will have their underlying memory

manager silently replaced. This includes calloc, _cache_malloc, _cache_free, and the ser-

vices of the TriMedia Memspace Manager.

Leaving TM-memman in Place

In certain cases, you might want to prevent this switch and let the malloc interface be

mapped to TM-memman. One such case has to do with an implementation restriction of

the pSOS Region Manager. Every region, including region 0, has a 32K upperbound to

the number of units that it can manage. The unit size for region 0 is specified using

KC_RN0USIZE in the pSOS application configuration file sys_conf.h and already defaults

to 256 bytes, which places an upperbound of exactly 8 megabytes on the size of region 0.

Larger SDRAM sizes can be handled by either increasing the unit size even more, which

would substantially increase internal memory fragmentation, or by leaving TM-mem-

man in place. The latter is achieved by means of TCS_MALLOC_USE in sys_conf.h.

/* TCS_MALLOC_USE:
 * When YES, do *not* map malloc/free on rn_getseg/rn_free from region 0,
 * as is standard in pSOS. Instead, use the TCS memory manager. The pSOS
 * region manager might be more predictable in its real-time behavior,
 * but this at the cost of larger unit sizes (see KC_RN0USIZE). Also,
 * the pSOS region manager cannot hold more than 32K units, which is 8M

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 141

6

The TriMedia Memspace Manager

The table below summarizes how the TriMedia Memspace Manager is used.

The TriMedia Memspace Manager is a high-level memory manager that serves three gen-

eral purposes:

1. It supports creation of multiple, independent, and extendable heaps (“memory

spaces”) that can each be deleted at any time with all memory blocks currently allo-

cated in them. Such memory spaces can be used for convenient collective dealloca-

tion of related memory blocks without having to keep track of each individual block.

As described earlier, memory spaces may also help in reducing memory fragmenta-

tion.

2. In a debugging version, the Memspace Manager provides a number of tools that help

in detecting heap-related memory errors:

— Automatic internal consistency checking, mostly at the calls to the block dealloca-
tion function memspFree. Various checks are made to guarantee that the freed
memory block is indeed a valid allocated block that has not been deallocated ear-
lier. Invalid blocks trigger assertion failures.

— Freed block corruption. The user contents of each freed block is overwritten by
some magic pattern, increasing the likelihood of (early) problems when the appli-
cation tries to use the contents of stale memory blocks.

 * with the current KC_RN0USIZE, but proportionally less when the unit
 * size is decreased. If this option is enabled, then define
 * TCS_REGION0_SIZE such that region 0 does not occupy all free memory.
 */
#define TCS_MALLOC_USE YES

/* TCS_REGION0_SIZE:
 * When *not* defined, then all free memory (limited to 32K units) is
 * given to region 0. Otherwise, region 0 is created with the specified
 * size, but limited to 32K units; all other memory is available via the
 * TCS memory manager. Use this option in combination with TCS_MALLOC_USE
 * when the desired KC_RN0USIZE results in a region 0 which is not able to
 * contain all available SDRAM.
 */
#define TCS_REGION0_SIZE 512 /* empty region */

Include File $TCS/include/tmlib/Memspace.h

Libraries $TCS/lib/<endian>/libmemspace.a
$TCS/lib/<endian>/libmemspace_g.a

Sample Usage tmcc main.c –lmemspace
tmcc main.c –lmemspace_g

Chapter 6: TriMedia Memory Manager API

142 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

— Guarded block allocation. The alternate memory allocation function memspDe-
bugMalloc allows the allocated block to be surrounded by guard areas for detect-
ing memory writes beyond the bounds of the allocated block. These guard areas
are filled with magic patterns that are implicitly check-and-corrupted when the
block is freed. All currently existing guarded blocks can be explicitly checked for
block bound overwrites by using the function memspCheck.

3. In a debugging version, all currently existing memory blocks in a specific memory

space that have been allocated by memspDebugMalloc can be listed using the func-

tion memspPrintGuarded. This shows the location in the program where the memory

blocks have been allocated. This facility helps in analyzing memory leaks, and in

observing the general allocation behavior of an application (for example, where the

application spends its memory).

The following sections present an overview of memspace concepts and the functions to

deal with them. The complete Memspace Manager API is included at the end of this

chapter, starting on page 153.

Memspaces

Conceptually, memspaces are heaps that own a specific amount of memory in which

they implement their own memory management scheme. A memspace has a name and

an extension size, both assigned at creation. The name is for identification purposes

(while debugging, for example). The extension size specifies the following:

1. The initial amount of memory that is assigned to the memspace at time of its cre-

ation.

2. The minimum amount of memory by which the memspace is extended when the

currently owned amount of memory cannot satisfy a block allocation request. All

memory extensions are allocated from the current system memory manager via calls

to malloc.

The extension size reserves a certain amount of memory when the memory space is cre-

ated, so all memory requests from the memspace up to the extension size are guaranteed

to succeed. This reserved amount is no hard upperbound, in that the Memspace Man-

ager will attempt a heap extension instead of immediately failing when a memspace’s

memory pool is depleted. However, this is no longer guaranteed to succeed.

The creation of a memspace results in a handle that is to be used in all further calls that

operate on memspaces, as shown in the program below.

#include Òtmlib/Memspace.hÓ

static void print_memspace(memspSpace space, Pointer data){
 memspSpaceInfo info;
 memspGetInfo(space, &info);
 printf(Ò\t----> memspace: Ô%sÕ\nÓ, info.name);
}

void main(){
 memspSpace s1,s2;

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 143

6

The output of this program is shown below.

The handles s1 and s2 are used in calls to memspDelete. A Null handle can be used as

abbreviation of one special memspace: the system memspace. This special memspace is

used for storing part of the administration of all user-created memspaces, and cannot be

deleted. It can further be used as any other memspace, but it has an increment size of 0,

which means that most memory requests (those of the “non-small” blocks) are directly

passed to malloc.

API Summary

The following functions of the memspace API deal with entire memspaces:

memspCreate Creates a memspace with specified name and extension
size, and returns a handle, or Null when no memory could
be allocated for it. Memspaces are created with their first
memory extension.

memspDelete Deletes a specified memspace, plus all memory ever allo-
cated from it, and returns all its memory extensions to the
system heap (using calls to free).

memspTraverseSpaces Applies a specified function to all currently existing mem-
ory spaces.

 printf("Before creation:\n");
 memspTraverseSpaces(print_memspace, Null);

 s1 = memspCreate("large_blocks", 200000);
 s2 = memspCreate("small_blocks", 100000);

 printf("After creation:\n");
 memspTraverseSpaces(print_memspace, Null);

 memspDelete(s1);
 memspDelete(s2);

 printf("After deletion:\n");
 memspTraverseSpaces(print_memspace, Null);
}

tmcc main.c Ðlmemspace
tmsim a.out

Before creation:
 ÐÐÐÐ> memspace: 'System'
After creation:
 ÐÐÐÐ> memspace: 'System'
 ÐÐÐÐ> memspace: 'large_blocks'
 ÐÐÐÐ> memspace: 'small_blocks'
After deletion:
 ÐÐÐÐ> memspace: 'System'

Chapter 6: TriMedia Memory Manager API

144 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

memspGetInfo Extracts information from the specified memspace. Infor-
mation includes name, total amount of memory owned by
the memspace, total amount of owned memory that is
available for allocation, and largest free block. See example
usage in the code example on page 142.

memspPrintGuarded Prints a list onto the standard output stream (stdout) of all
memory blocks that have been allocated (and not yet freed)
from the specified memspace using memspDebugMalloc
(described in Allocation and Deallocation starting on page
144). The list includes file name and line number as passed
to this function.

memspCheck Performs a consistency check on the internal state of the
Memspace Manager. A call to this function might abort the
program due to an assertion failure. Errors are reported
onto the standard error stream (stderr).

Allocation and Deallocation

The basic function for allocating blocks of memory from memspaces is memspMalloc.

This function can be used for allocating both “normal” and cache-aligned memory

blocks. Cache-aligned blocks start at the boundary of a TM1 data cache page, and are

silently padded at the end to completely fill the last data cache page. This padding pre-

vents a cache-aligned memory block from sharing cache pages with other program data,

which could be harmful if cache invalidate operations are made on the allocated block.

Any block, cache-aligned or not, and even memory blocks that have been allocated

using memspDebugMalloc, can be freed using memspFree or resized using memspReal-

loc. For memspFree, this is illustrated in the code below, where it is used for deallocating

both cache-aligned and normal blocks. Note that these calls to memspFree are actually

redundant here—their memspace is deleted shortly afterwards.

static void print_memspace(memspSpace space, Pointer data){
 Int i;
 memspSpaceInfo info;
 memspGetInfo(space, &info);

 printf(Ò\t\t-----------> memspace: Ô%sÕ\nÓ, info.name);
 printf(Ò\t\t\t total_size : %d bytes\nÓ, info.total_size);
 printf(Ò\t\t\t segment_size : %d bytes\nÓ, info.segment_size);
 printf(Ò\t\t\t increment_size : %d bytes\nÓ, info.increment_size);

 printf(Ò\t\t\t\nÓ);
 printf(Ò\t\t\t variable size block pool:\nÓ);

 printf(Ò\t\t\t - total free space : %d bytes\nÓ,
 info.variable_block_info.total_free_space);

 printf(Ò\t\t\t - largest free block : %d bytes\nÓ,
 info.variable_block_info.max_free_blocksize);

 printf(Ò\t\t\t - amount of free blocks : %d\nÓ,
 info.variable_block_info.nrof_free_blocks);

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 145

6

The output of this program is shown below.

 printf(Ò\t\t\t\nÓ);
 printf(Ò\t\t\t fixed size block pools:\nÓ);

 for(i=0; i<memspFastSizeBound; i++){
 if(info.small_block_info[i].amount_segments > 0){
 printf(Ò\t\t\t block size= %d:\nÓ, i);
 printf(Ò\t\t\t - amount of block segments : %d\nÓ,
 info.small_block_info[i].amount_segments);
 printf(Ò\t\t\t - amount of free blocks : %d\nÓ,
 info.small_block_info[i].nrof_free_blocks);
 }
 }
}
void main(){
 memspSpace s1;
 Pointer small, large, aligned;

 s1= memspCreate(ÒsampleÓ, 20000);

 print_memspace(s1, Null);

 small = memspMalloc (s1, 4, 0);
 large = memspMalloc (s1,100, 0);
 aligned = memspMalloc (s1, 34, memspCACHE_ALIGNED);

 print_memspace(s1, Null);
 memspFree(small);
 memspFree(large);
 memspFree(aligned);
 memspDelete(s1);
}

tmcc main.c Ðlmemspace
tmsim a.out
 ÐÐÐÐÐÐÐÐÐÐÐ> memspace: ÔsampleÕ
 total_size : 20032 bytes
 segment_size : 4096 bytes
 increment_size : 20000 bytes

 variable size block pool:
 Ð total free space : 20000 bytes
 Ð largest free block : 20000 bytes
 Ð amount of free blocks : 1

 fixed size block pools:
 ÐÐÐÐÐÐÐÐÐÐÐ> memspace: ÔsampleÕ
 total_size : 20032 bytes
 segment_size : 4096 bytes
 increment_size : 20000 bytes

 variable size block pool:
 Ð total free space : 15660 bytes
 Ð largest free block : 11692 bytes
 Ð amount of free blocks : 3

 fixed size block pools:
 block size= 4:
 Ð amount of block segments : 1
 Ð amount of free blocks : 1016

Chapter 6: TriMedia Memory Manager API

146 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Memspace Organization

Internally, memspaces are organized as shown in Figure 7.

Figure 7 Internal Organization of a Memspace

Memspaces are organized as a combination of two things: a conventional memory man-

ager that maintains a circular free list using a roving first-fit strategy, plus a page-based

allocator for blocks smaller than 60 bytes. Such “small” blocks are allocated in 4K pages

of identically-sized blocks. Separate free lists are maintained for each “small” size, so that

allocation and deallocation for such small sizes can be performed very rapidly, and with

very little memory manager administration overhead. The sample program output on

page 145 shows that small block lists are indeed created only for sizes that are actually

used. Furthermore, it shows that the overhead is minimal, one 4K segment yielding 1017

memory blocks of 4 bytes.

Tip
If you have a memspace allocating buffers of two different sizes, your
application will eventually have many small packets in large buffer slots
because of the first-fit algorithm. In this case, use two memspaces to
decrease memory consumption.

Summary of Memspace API (Allocation/Deallocation)

The following functions of the memspace API deal with allocation and deallocation of

memory blocks:

Small Block Segments (Size 24)

Small Block Segments (Size 4)Small Block Free Lists

Variable Block Free Lists

• • •

4K

Size 4
Size 8

Size 12
Size 16
Size 20
Size 24
Size 28
Size 32
Size 32

 = Previously Allocated

• • •

4K

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 147

6

memspMalloc Allocates a block from a specified memspace, of specified
size. The block can be optionally cache-aligned.

memspDebugMalloc The debugging version of memspMalloc. Allocates a block
with guard areas and file/line number values attached. See
“Overview of Debugging Features” starting on page 147 for
more information. This function works as described only in
the debugging version of the memspace library
(lib_memspace_g.a). Otherwise, guard and file position
information is ignored, and the function is identical to
memspMalloc.

memspFree Deallocates memory that has been previously allocated
from memspMalloc or memspDebugMalloc, and that has
not since been passed to either memspFree or memspReal-
loc.

memspRealloc Adjusts the specified memory block to the specified size,
and returns the block, which has possibly been moved. In
any case, the returned block has the same properties as the
input block. For instance, if the input block was cache-
aligned, then the result of memspRealloc will also be cache-
aligned. Similarly, when the input block was created (using
memspDebugMalloc) with guard areas and file/line number
information, the result will have the same guard areas and
the same file/line number values.

Overview of Debugging Features

The debugging version of the Memspace Manager (lib_memspace_g.a) provides for two

different debugging features that can aid in the detection of memory leaks or memory

errors in an application. These features are disabled in the regular version of the Mem-

space Manager. They are independent of the concept of memory spaces, and hence can

also be used for debugging conventional malloc-based applications.

The debugging features are described in the subsections below.

Consistency Checking of Internal Administration.

The feature provides two services. First, it validates memory blocks during various mem-

space operations (for example, checking whether blocks were indeed created, but not yet

deleted by the Memspace Manager). Second, it attempts to detect internal corruption.

Chapter 6: TriMedia Memory Manager API

148 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Using the alternate allocation function memspDebugMalloc, consistency checking can

be explicitly enhanced by surrounding allocated memory blocks with guard areas, as

shown in Figure 8.

Figure 8 Guarded Memory Block

These guard areas have a dual purpose. First, by filling them with a specific pattern, the

Memspace Manager is able to detect memory writes within these areas, which usually

indicates out-of-bound block access. Second, these guard areas put some spacing

between the memory block and the memory manager administration, thereby decreas-

ing the likelihood of a fatal, unknown corruption due to out-of-bound writes. Instead,

these are detected and reported. Sizes of the guard areas can be chosen on a per-block

basis by means of parameters to memspDebugMalloc.

Consistency checking is mostly automatic, although it has some additional support in

the form of function memspCheck, which explicitly triggers it at user-determined execu-

tion points. This means that the mere linking of an application to the Memspace Man-

ager and the routing of all memory management calls to the Memspace Manager

(preferably using memspDebugMalloc for allocation), will give a valuable level of consis-

tency checking. Such a setup requires only minimal effort, and although the applica-

tion’s source code should be recompiled to include source location information, such a

setup is also possible when these sources are not available or when recompilation is oth-

erwise impracticable. This is described in Redirecting Calls to malloc starting on page 151.

Provoking Errors on Use of Stale Memory Blocks

This debugging feature provided by the Memspace Manager automatically invalidates

the contents of freed memory blocks. Consequently, this tends to force application

errors at an early stage in cases where the contents of already deallocated memory blocks

are still used.

The use of such invalidated data as memory addresses (i.e. as pointers) will very likely

show up as memory errors in some form or another shortly afterwards.

Tracking Allocated Memory

Using memspDebugMalloc, you can record the location in the application source code

where memory blocks have been allocated. Two of the parameters to this function, an

Guard Areas of Allocated Block

User-Visible Part of Allocated Block

Memspace Administration or Other Block

Out-of-Bounds Write

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 149

6

integer and a string, will be kept with the resulting memory block and will appear when-

ever this block is listed, and as necessary in error messages and in the list produced by

function memspPrintGuarded. Typically, the C file name and line number indicating the

particular call to memspDebugMalloc are passed via these parameters by using the stan-

dard macros __FILE__ and __LINE__ provided by the C preprocessor.

Allocation tracking in this way has two important uses. First, a single call to memspPrint-

Guarded produces an allocation snapshot, showing exactly where all allocated memory

is used at that particular moment. Second, a sequence of calls to memspPrintGuarded

reveals all memory blocks that persist over time, and which are, consequently, potential

memory leaks. Of course, the precondition to proper memory tracking is that all relevant

memory will have been allocated using memspDebugMalloc.

Examples

The debugging features described are briefly illustrated in the code below.

#include Òtmlib/Memspace.hÓ

/* MacroÐredefine malloc, cache_malloc, and free to the corresponding
 * functions of the memspace library; this demonstrates how an existing,
 * nonÐmemspace based application can be debugged for memory errors by
 * merely recompiling its source and running it. Note that all allocation is
 * done on the system memspace (referred to by ÔNullÕ): */

#define malloc(size) \
 memspDebugMalloc(Null,size, 0, 32,20,__FILE__,__LINE__)

#define cache_malloc(size) \
 memspDebugMalloc(Null,size, memspCACHE_ALIGNED,
 32,20,__FILE__,__LINE__)

#define free(b) \
 memspFree(b)

void main(){

/* Do some allocations: */
 Address buggy = malloc(34);
 Address block = malloc(34);
 Address aligned_block = cache_malloc(34);

 printf(ÒÐ buggy = 0x%08x\nÓ, buggy);
 printf(ÒÐ block = 0x%08x\nÓ, block);
 printf(ÒÐ aligned_block = 0x%08x\nÓ, aligned_block);

/* Write past the boundaries of block ÔbuggyÕ, triggering a guarded block
 * error in the subsequent call to the guarded block list function, or in a
 * call to the consistency checker (memspCheck), or during the blockÕs
 * deallocation: */

 buggy[Ð3]= 0;
 buggy[34+3]= 0;

 memspPrintGuarded(Null);

 printf(Ò\nÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ\nÓ);

Chapter 6: TriMedia Memory Manager API

150 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

The output of this program is shown below.

This example code first shows how malloc and free can be macro-redefined in terms of

Memspace Manager calls. All allocation is redirected to memspace allocation from the

system memspace, with guard spaces of 32 bytes before, and 20 bytes after the allocated

blocks. Following that, three memory blocks are allocated, one of which (“buggy”) is

deliberately corrupted by writing beyond both its boundaries. This corruption is detected

during the guarded block listing of the system memspace. Error messages reveal the cor-

rupted block, along with all recorded information.

Additionally, the example shows that this block is also detected by an explicit call to

memspCheck, and at deallocation of the block. Finally, it demonstrates that a spurious

deallocation of a memory block causes an assertion failure.

 memspCheck();

 printf(Ò\nÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ\nÓ);

 free(buggy);
 free(block);
 free(aligned_block);
 free(buggy); /* spurious deallocation, will result in assertion failure */
}

tmcc main.c Ðlmemspace_g
tmsim a.out
Ð buggy = 0x0012aaa8
Ð block = 0x0012c020
Ð aligned_block = 0x0012e040
Guarded block 0x0012e060 (32/ 64/ 20) allocated at line 30 of
 main.c, cache aligned
Guarded block 0x0012c040 (32/ 34/ 20) allocated at line 29 of
 main.c
 Error: block 0x0012aaa8 allocated at line 28 of main.c in memspace
 ÔSystemÕ corruption in guard space 3 bytes
 before start
 Error: block 0x0012aaa8 allocated at line 28 of main.c in memspace
 ÔSystemÕ corruption in guard space 3 bytes
 after end
Guarded block 0x0012aac8 (32/ 34/ 20) allocated at line 28 of
 main.c

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ
 Error: block 0x0012aaa8 allocated at line 28 of main.c in memspace
 ÔSystemÕ corruption in guard space 3 bytes
 before start
 Error: block 0x0012aaa8 allocated at line 28 of main.c in memspace
 ÔSystemÕ corruption in guard space 3 bytes
 after end

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ
 Error: block 0x0012aaa8 allocated at line 28 of main.c in memspace
 ÔSystemÕ corruption in guard space 3 bytes
 before start
 Error: block 0x0012aaa8 allocated at line 28 of main.c in memspace
 ÔSystemÕ corruption in guard space 3 bytes
 after end
assertion failed in memspace manager: invalid block encountered

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 151

6

None of the checks performed by the debugging Memspace Manager is complete. For a

variety of reasons, error situations can be overlooked. For example, out-of-bounds access

might write past the guard area, or it might write a pattern that is identical to the guard

pattern. Similarly, block validation might let errors go unnoticed, for example if argu-

ments to memspFree resemble valid blocks. This notwithstanding, the probability of

overlooked errors is quite small, and in any case valid situations are never reported as

errors.

Redirecting Calls to malloc

Even if applications do not make explicit use of the Memspace Manager, their memory

allocation behavior can still be debugged or analyzed using the library. For this, all calls

to malloc and free must be redirected. In the ideal situation, all sources are available and

can be recompiled with macro redefinitions of malloc and free, as illustrated in the

example code on page 149. Such redefinitions are then typically placed in a central

include file. Macro redefinition is attractive because it allows memory allocation tracking

by passing the standard macros __FILE__ and __LINE__ to the calls to memspDebug-

Malloc.

In some cases, some of the source may not be available, and hence memory allocation

tracking is not possible. However, it is still possible to redirect the calls from malloc and

free to their memspace counterparts in order to take advantage of consistency checking

services. This can easily be performed by using the linker tmld to rename the symbols

_malloc and _free in the object files, to wrapper functions that call the Memspace Man-

ager instead. This renaming is illustrated in the code sample below, where an equivalent

program to that on page 149 is achieved by the renaming of the symbols _malloc, _free

and _cache_malloc to wrapper functions that are provided in a separate C file. Note that

[18] tmcc -c main.c
[19] tmnm main.o
 U _cache_malloc
 U _free
00000000 T _main
 U _malloc
 U _memspCheck
 U _memspPrintGuarded
 U _printf
[20] tmld main.o -o main.o \
 -symbolrename _malloc=_my_malloc,_free=_my_free,_cache_malloc=
 _my_cache_malloc
[21] tmnm main.o
00000000 T _main
 U _memspCheck
 U _memspPrintGuarded
 U _my_cache_malloc
 U _my_free
 U _my_malloc
 U _printf
[22] tmcc main.o my_malloc.c -lmemspace_g
[23] tmsim a.out
...

Chapter 6: TriMedia Memory Manager API

152 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

these wrapper functions (shown below) should have the same prototype as their origi-

nals, because the compiler-generated calling sequences are left untouched. Apart from

the fact that it is no longer known where the wrapper functions are called, this program

should give results identical to the previous one.

Summary of Memspace API (Debugging)

The following functions of the memspace API provide debugging support:

memspDebugMalloc Debugging version of memspMalloc. Allocates a block with
guard areas and file/line number values attached. This func-
tion only works as described in the debugging version of
the memspace library (lib_memspace_g.a). Otherwise,
guard and file position information is ignored, and the
function is similar to a “regular” memspMalloc.

memspGetInfo Extracts information from the specified memspace. Infor-
mation includes name, total amount of memory owned by
the memspace, total amount of owned memory that is
available for allocation, and largest free block. See example
usage in the code example on page 142.

memspPrintGuarded Prints a list onto the standard output stream (stdout) of all
memory blocks that have been allocated (and not yet freed)
from the specified memspace using memspDebugMalloc
(see description on page 147). The list includes file name
and line number as passed to this function.

memspCheck Performs a consistency check on the internal state of the
Memspace Manager. A call to this function might abort the
program due to an assertion failure. Errors are reported
onto the standard error stream (stderr).

#include Òtmlib/Memspace.hÓ

Pointer my_malloc(Int size){
 return memspDebugMalloc(Null,size, 0, 32,20,Ó<my_malloc>Ó,0);
}

Pointer my_cache_malloc(Int size){
 return memspDebugMalloc(Null,size, memspCACHE_ALIGNED,
 32,20,Ó<my_cache_malloc>Ó,0);
}
void my_free(Pointer block){
 memspFree(block);
}

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 153

6

TriMedia Memory Manager API Data Structures

This section presents the data structures used in the Memory Manager API.

Name Page

memspSpaceInfo 154

memspSystemSpace 155

memspBlockProperty 156

Chapter 6: TriMedia Memory Manager API

154 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

memspSpaceInfo

typedef struct memspSpaceInfo {
 String name;
 Int total_size;
 nt segment_size;
 Int Increment_size;
 struct {
 Int Total_free_space;
 Int max_free_blocksize;
 Int nrof_free_blocks;
 } variable_block_info;
 struct {
 Int amount_segments;
 Int nrof_free_blocks;
 } small_block_info [memspFastSizeBound];
} memspSpaceInfo;

Fields

name Memspace name, given at creation.

total_size Total size (bytes) malloc’d for this space.

segment_size Size of small block segments.

increment_size Memory space extension chunk size.

total_free_space Total free space in var block heap.

max_free_blocksize Largest free block in var block heap.

nrof_free_blocks Number of free blocks in var block heap.

amount_segments Number of small block segments allocated for this
size.

nrof_free_blocks Number of small block available in this size.

Description

Memspace information structure, to be filled by function memspGetInfo. This structure

exposes somewhat the internal details of memory spaces:

Each memory space consists of one variable block heap, plus a number of heaps from

which fixed-size block allocation is possible. Such fixed-size allocation is automatically

performed for blocks smaller than memspFastSizeBound bytes. Such fixed-size blocks are

allocated in 4K segments with as little as zero memory overhead per block. Kept in sepa-

rate lists, they can be allocated and freed very quickly. The idea is that the relative over-

head, both in allocation time and in memory use, is largest for the smallest blocks.

Note
The “small block segments” are allocated from the variable block heap.

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 155

6

Memory spaces implement a separate layer of memory management on top of large

chunks allocated from the underlying system memory manager (malloc). The size of

these memory chunks is one of the parameters to the memory space creation function

increment_size. At creation, and each time the memory space runs out of memory, a

chunk of this size is requested from malloc. When the memory space is deleted, all such

chunks it has allocated since its creation are given back to the system memory manager.

memspSystemSpace

extern memspSpace memspSystemSpace;

Description

Global memory space. This system space is special, in that some of the administration of

all user-created memory spaces is allocated from the system space. It cannot be deleted,

and might be abbreviated by Null in all functions of this API.

For example, the two malloc calls below are identical.

memsp_Malloc(Null, 100, 0)

memsp_Malloc(memspSystemSpace, 100, 0)

Chapter 6: TriMedia Memory Manager API

156 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

memspBlockProperty

typedef enum {
 memspCACHE_ALIGNED = 0x1
} memspBlockProperty;

Fields

memspCACHE_ALIGNED Ensures that the result is cache-aligned, and that
none of the TM data cache pages overlapping the
result contain data that is otherwise in use by the
application.

Description

Memory allocation properties, specifying properties requested for the blocks returned by

memsp(Debug)Malloc. See flags parameter.

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 157

6

TriMedia Memory Manager API Functions

This section presents the functions used in the Memory Manager API.

Name Page

memspCreate 158

memspDelete 158

memspMalloc 159

memspDebugMalloc 160

memspFree 161

memspRealloc 162

memspFastFree 162

memspGetInfo 163

memspPrintGuarded 163

memspCheck 163

memspTraverseSpaces 164

Chapter 6: TriMedia Memory Manager API

158 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

memspCreate

Pointer memspCreate(
 String name,
 UInt increment_size
);

Parameters

name Name for memory space.

increment_size Size of chunks by which the memspace is to be
extended.

Return

Returned new space handle. One chunk has already been allocated for the memspace.

Description

Creates new memory space.

memspDelete

void memspDelete(
 memspSpace space
);

Parameters

space Memory space to be deleted.

Description

Deletes a previously allocated memory space, and gives all its extension chunks back to

the underlying memory manager.

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 159

6

memspMalloc

Pointer memspMalloc(
 memspSpace space,
 Int size,
 UInt32 flags
);

Parameters

space Space from which to allocate.

size Size in bytes of requested memory block.

flags Required memspBlockProperty flags for the
returned block.

Return Codes

Address of returned block. If no memory could be allocated, Null is returned.

Description

Attempts allocation of memory.

Chapter 6: TriMedia Memory Manager API

160 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

memspDebugMalloc

Pointer memspDebugMalloc(
 memspSpace space,
 Int size,
 UInt32 flags,
 UInt16 bsize,
 UInt16 asize,
 String file,
 Int line
);

Parameters

space Space from which to allocate.

size Size in bytes of requested memory block.

flags Required memspBlockProperty flags for the
returned block.

bsize, asize Sizes of guard areas before and after the user part
of the memory block.

file, line For passing file block creator location informa-
tion.

Return Codes

Address of requested block. If no memory could be allocated, Null is returned.

Description

Attempts allocation of guarded memory. Guarded memory blocks have guard regions

immediately before and after their user space. Guard regions are filled with magic con-

tents that can be checked for corruption at critical moments. Also, guarded memory

blocks have file pos/line info attached, by which their creators can be located.

In the non-debugging form of this library, bsize, asize, file, and line are ignored.

A suggested use of this function is to redirect all calls to malloc by compiling sources

with the following macro defined:

extern memspSpace malloc_space;
#define malloc(s) memspDebugMalloc(malloc_space,s,0,0,30,__FILE__,__LINE__)

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 161

6

memspFree

void memspFree(
 Pointer address
);

Parameters

addr Block to be freed.

Return Codes

In the debugging form of this library, various internal consistency checks are performed

and the old contents of the block are corrupted.in incorrect applications. These checks

may fail and result in messages on stdout plus calls to exit.

Description

Frees previously allocated memory.

Chapter 6: TriMedia Memory Manager API

162 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

memspRealloc

Pointer memspRealloc(
 Pointer address,
 Int size
);

Parameters

addr Block to resize.

Description

Changes the size of a memory block, return pointer to the new, possibly resized block.

This function correctly handles guarded, cache-aligned, and “normal” memory blocks. If

a guarded block is passed, the result will also be guarded with the same guard parameters

(i.e. bsize, asize, file and line). The same is true for cache-aligned input blocks.

memspFastFree

void memspFastFree(
 Pointer mem,
 Int size
);

Parameters

mem Memory block to be freed (may be Null).

size Size by which mem was obtained from memsp-
Malloc, or memspSpace_ANY_SIZE, when not
known. Note that the memory space manager
will blindly trust your value, so it can be faster.
(Because of this, you had better be correct, or con-
servative, and use memspSpace_ANY_SIZE).

Description

Fast memory block deallocation primitive. Can be used when size by which block was

allocated is known. This function correctly handles guarded, cache-aligned, and ‘normal’

memory blocks.

Chapter 6: TriMedia Memory Manager API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 163

6

memspGetInfo

void memspGetInfo(
 memspSpace space,
 memspSpaceInfo *info
);

Parameters

space Memory space from which to get information.

info Information block to fill.

Description

Gets current information of specified memory space.

memspPrintGuarded

void memspPrintGuarded(
 memspSpace space
);

Parameters

space Memory space to print.

Description

Prints list of all guarded blocks in specified memspace to stdout. Also, checks guard areas

for each of the blocks, and prints diagnostics on stderr.

memspCheck

void memspCheck();

Description

Does consistency check on internal state on this memory manager, and print diagnostics

on stderr.

Chapter 6: TriMedia Memory Manager API

164 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

memspTraverseSpaces

void memspTraverseSpaces(
 memspSpaceFun fun,
 Pointer data
);

Parameters

fun Function to apply to all spaces.

data User-specified data item to be additionally passed
to each call to fun.

Description

Applies specified function to all memory spaces.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 165

7

Chapter 7

Programmable Interrupt Controller (PIC) API

Topic Page

PIC API Overview 2

PIC API Data Structures 5

PIC API Functions 8

Chapter 7: Programmable Interrupt Controller (PIC) API

166 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

PIC API Overview

The PIC device library provides a standard way for various software modules to install

and use interrupts, regardless of the details of the hardware. The PIC (Programmable

Interrupt Controller) does this by providing a board support API to the hardware and a

standard API to the application above it.

Figure 9 PIC Software Architecture

Interrupts managed by the PIC can come from any sort of external hardware, or even

from software. The external hardware could be a dedicated interrupt pin (TriUserIrq), or

a general purpose I/O pin (GPIO, as implemented on the TM-2700). Or it could use a

sophisticated programmable interrupt controller chip, external to TriMedia. In each case,

the PIC provides a way to write applications without specific dependencies on the hard-

ware. These hardware dependencies are isolated into the board support package.

The PIC library currently supports up to 64 interrrupt sources, with names enumerated

in the tsaPICsource_t. These names are used by applications to identify sources that

might be handled in the board support package.

The BSP portion of the PIC expects that handlers are provided for the standard interrupt

(e.g., detecting the interrupt source, acknowledging an interrupt source, enabling/dis-

abling interrupt sources). The interface to the application is similar to that used in the

TriMedia interrupt device library. An application opens an instance, and sets up that

instance by installing a handler. The details of these operations are described in the fol-

lowing pages. You are also invited to examine the examples of PIC usage that are pro-

vided in the DTV reference boards. The PIC supports the UART and digital audio input.

To install an interrupt handler for a supported interrupt source, the application must

first open an instance of the PIC library for this source:

err = tsaPICOpen(&instance, picSourceComm1);
CHECK(err); /* This macro or its equivalent implemented by the
 application to handle returned error codes. */

Application

PIC

Board Support Package

open, close, instance setup, start, stop, etc.

init, terminate, detect, ACK, etc

Chapter 7: Programmable Interrupt Controller (PIC) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 167

7

The returned instance must be used in subsequent API calls. Now the application can

install the handler by calling tsaPICInstanceSetup:

If the enabled field in the setup structure is set to True, the interrupt for the installed

source is immediately enabled. If the application sets this field to False, it must call tsa-

PICStart to enable the interrupt source.

To disable an interrupt source, the application must call tsaPICStop.

Board Support Interface

For the PIC to support an interrupt source, code must be installed in the BSP to handle

that source. The BSP includes a table that maps the tsaPICsource_t types to an index into

that table, which is used in the BSP. This index is passed to the BSP functions as the inter-

rupt “source.” For example, a DTV reference board supports 5 or the 64 possible inter-

rupt sources. The application will use the tsaPICsource_t (0–63) to identify the source.

The PIC library converts this to a number between 0 and 4 (in this case) to identify the

source.

An init function is called when tsaPICInstanceSetup is called. The init function can set

up the hardware for the given interrupt. It probably does not actually enable the inter-

rupt. That happens in the BSP’s start function. Similarly, a stop function disables the

interrupt. When an interrupt is detected by the hardware, a detect function is called to

allow multiple handlers to be chained together. The detect function returns True when it

sees that its interrupt has been triggered. This points out the need for each interrupt

source to be able to respond to a query. The fact that the interrupt is shared also hints at

the requirement that PIC interrupts be level triggered, and acknowledgable. The BSP also

provides a place for an acknowledge function unique to each interrupt source.

Debugging PIC ISRs

The TriMedia debugger can behave in unexpected ways when stopped in an interrupt

service routine. The DP (debug print) buffer is an invaluable tool when debugging inter-

rupts because it does not use the debugger, nor does it make complex function calls.

Refer to Chapter 18, Debugging TriMedia Applications Using JTAG, of Book 4, Software

Tools, Part C, for more information.

The source code for the PIC is available. You might find it useful to compile this with

some more DPs enabled.

setup.handler = myHandler;
setup.handle = (Pointer)localScope;
setup.enabled = True;
err = tsaPICInstanceSetup(instance, &setup);
CHECK(err);

Chapter 7: Programmable Interrupt Controller (PIC) API

168 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

PIC API Data Structures

This section describes the tsaPIC data structures.

Name Page

tsaPICSource_t 4

tsaPICCapabilities_t 5

tsaPICInstanceSetup_t 5

Chapter 7: Programmable Interrupt Controller (PIC) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 169

7

tsaPICSource_t

typedef enum {
 picSourceNone = 0,
 picSourceComm1 = 1,
 picSourceComm2,
 picSourceComm3,
 picSourceComm4,
 picSourceComm5,
 picSourceComm6,
 picSourceComm7,
 picSourceComm8,

 picSourceModem0,
 picSourceModem1,

 picSourceLpt1,
 picSourceLpt2,

 picSourceKeyboard,

 picSourceIrIn0,
 picSourceIrIn1,
 picSourceIrIn2,
 picSourceIrIn3,

 picSourceIrOut0,
 picSourceIrOut1,
 picSourceIrOut2,
 picSourceIrOut3,

 picSourceIrIO0,
 picSourceIrIO1,
 picSourceIrIO2,
 picSourceIrIO3,

 picSourceAudio1,
 picSourceAudio2,
 picSourceAudio3,
 picSourceAudio4,

 picSource1937,
 picSourceUSB,

 picSourceUsr0,
 picSourceUsr1,
 picSourceUsr2,
 picSourceUsr3,
 picSourceUsr4,
 picSourceUsr5,
 picSourceUsr6,
 picSourceUsr7,
 picSourceUsr8
}tsaPICSource_t;

Chapter 7: Programmable Interrupt Controller (PIC) API

170 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Fields

picSourceNone No valid source.

picSourceCommX Source for serial ports. Here, X stands for the
number of the serial port (ports 1–8).

picSourceModemX Modem interrupt. Here, X is 0 or 1.

picSourceLptX Interrupt from parallel port. Here, X is 1 or 2.

picSourceKeyboard Interrupt source is a keyboard.

picSourceIrInX Interrupt source is an infrared input device. Here,
X is 0–3.

picSourceIrOutX Interrupt source is an infrared outpout device.
Here, X is 0–3.

picSourceIrIOX Interrupt source is an infrared input/output
device. Here, X is 0–3.

picSourceAudioX Interrupt source is an audio device. Here, X is 0–3.

picSource1937 Interrupt source is an IEEE 1937 device.

picSourceUSB Interrupt source is a USB port.

picSourceUsrX These interrupt sources are for sources that are
not specified in tsaPICSource_t. Here, X is 0–8.

Description

Specifies the interrupt source in tsaPICOpen. This type is also used in tsaPICCapabilities_t

to specify the supported sources.

Chapter 7: Programmable Interrupt Controller (PIC) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 171

7

tsaPICCapabilities_t

typedef struct tsaPICCapabilities {
 tmVersion_t version;
 UInt32 numSupportedInstances;
 UInt32 numCurrentInstances;
 Char picName[DEVICE_NAME_LENGTH];
 tsaPICSource_t supportedSources[PIC_MAX_NUM_OF_SOURCES];
} tsaPICCapabilities_t, *ptsaPICCapabilities_t;

Fields

version Version of the PIC library.

numSupportedInstances Number of supported instances (supported inter-
rupt sources).

numCurrentInstances Number of instances currently in use.

picName Name of the PIC.

supportedSources Array with the supported sources.

Description

A struct of this type is used to report the capabilities of the PIC library (see also tsaPIC-

GetCapabilities).

Chapter 7: Programmable Interrupt Controller (PIC) API

172 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaPICInstanceSetup_t

typedef struct tsaPICSetup {
 tsaPICHandler_t handler;
 Pointer handle;
 Bool enabled;
} tsaPICInstanceSetup_t, *ptsaPICInstanceSetup_t;

Fields

handler Handler that will be called in the PIC interrupt
service routine if the related source asserted an
interrupt.

handle Passed to the handler as an argument.

enabled If this flag is set to True the interrupt source will
be enabled in tsaPICInstanceSetup. Otherwise
tsaPICStart needs to be called to enable the inter-
rupt source.

Description

A structure of this type is used in tsaPICInstanceSetup to initialize an interrupt source.

Note: the handler callback function gets called from an interrupt service routine. There-

fore it should do only minimal processing (e.g., signaling an event to a task).

(Since the handler is called from an interrupt service routine, it should be written as a

simple function, and not as an interrupt handler.)

Chapter 7: Programmable Interrupt Controller (PIC) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 173

7

PIC API Functions

This section presents the PIC device library functional interface.

Name Page

tsaPICGetCapabilities 10

tsaPICOpen 11

tsaPICInstanceSetup 12

tsaPICStart 13

tsaPICStop 14

tsaPICClose 15

Chapter 7: Programmable Interrupt Controller (PIC) API

174 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaPICGetCapabilities

extern tmLibdevErr_t tsaPICGetCapabilities(
 ptsaPICCapabilities_t *caps
);

Parameters

caps Pointer (returned) to a static capabilities structure
for the PIC library.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_MEMALLOC_FAILED Failed to allocate memory.

Description

This function gets the PIC capabilities.

It allocates memory for the capabilities structure and fills it with the capabilities that it

gets from the board support package.

Chapter 7: Programmable Interrupt Controller (PIC) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 175

7

tsaPICOpen

extern tmLibdevErr_t tsaPICOpen(
 Int *instance,
 tsaPICSource_t src
);

Parameters

instance Instance returned by tsaPICOpen. This instance
must be used for subsequent PIC function calls.

src Interrupt source that will be opened.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NO_MORE_INSTANCES No more instances available.

TMLIBDEV_ERR_MEMALLOC_FAILED Failure to allocate memory.

PIC_ERR_SOURCE_NOT_AVAILABLE Selected source not available.

TMLIBDEV_ERR_NULL_PARAMETER Asserts this error if instance is a null pointer (but
only in the debugging version of the library).

The function can also return error codes produced by the BSP or the interrupt device

library.

Description

This function opens an instance of the PIC library. The application must specify which

interrupt source it wants to use.

This function allocates all resources needed for this instance. It also opens, initializes and

starts the interrupt if this is the first source opened for this interrupt.

Note that it is possible for the interrupt installed by the open function to be triggered

immediately. If it is not possible to mask the source before opening (in the board_init

function, for example), then the PIC BSP code should be prepared to acknowledge and

clear the source immediately.

Chapter 7: Programmable Interrupt Controller (PIC) API

176 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaPICInstanceSetup

extern tmLibdevErr_t tsaPICInstanceSetup(
 Int instance,
 ptsaPICInstanceSetup_t setup
);

Parameters

instance Instance previously opened by tsaPICOpen.

setup Pointer to a setup struct that will be used to ini-
tialize the interrupt source.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Invalid instance passed to the function (can also
be asserted in debug version).

PIC_ERR_ALLREADY_INITIALIZED Function has been called before for this instance.

PIC_ERR_NO_HANDLER Gets asserted if handler pointer in setup is Null
(in debug version of the library).

The function can also return error codes produced by the board support package.

Description

Initializes a PIC source. The handler function is specified here. The BSP’s init function is

called as a result of this function. If the handler is specified to be enabled, then the BSP’s

start function is also called here. Otherwise, the start function will have to be called sep-

arately to enable the ISR. Call tsaPICInstanceSetup only once after opening.

Chapter 7: Programmable Interrupt Controller (PIC) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 177

7

tsaPICStart

extern tmLibdevErr_t tsaPICStart(
 Int instance
);

Parameters

instance Instance previously opened by tsaPICOpen.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Invalid instance passed to the function (can also
be asserted in debug version).

PIC_ERR_NO_INSTANCE_SETUP Source has not been initialized (gets asserted in
debug version of the library).

The function can also return error codes produced by the board support package.

Description

Starts (enables) an interrupt source. This function calls the BSP’s start function.

Chapter 7: Programmable Interrupt Controller (PIC) API

178 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tsaPICStop

extern tmLibdevErr_t tsaPICStop(
 Int instance
);

Parameters

instance Instance previously opened by tsaPICOpen.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Invalid instance passed to the function (can also
be asserted in debug version).

PIC_ERR_NO_INSTANCE_SETUP Source has not been initialized (gets asserted in
debug version of the library).

The function can also return error codes produced by the board support package.

Description

Stops (disables) an interrupt source. This function calls the BSP’s stop function.

Chapter 7: Programmable Interrupt Controller (PIC) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 179

7

tsaPICClose

extern tmLibdevErr_t tsaPICClose(
 Int instance
);

Parameters

instance Instance previously opened by tsaPICOpen.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Invalid instance passed to the function (can also
be asserted in debug version).

The function can also return error codes produced by the board support package.

Description

Closes a PCI instance. The function also frees all resources allocated for this instance in

tsaPICOpen. This function calls the BSP’s termination function.

To use the interrupt source again, you must reopen it using tsaPICOpen.

Chapter 7: Programmable Interrupt Controller (PIC) API

180 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 181

8

Chapter 8

File I/O Drivers API

Topic Page

Introduction 18

File I/O Function Types 19

File I/O Driver Control Functions 44

File I/O Data Structures 51

Chapter 8: File I/O Drivers API

182 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

This chapter describes the file i/o driver interface defined in <tmlib/IODrivers.h>. These

routines allow a program to install file I/O drivers.

A file I/O driver provides access to file manipulation functions, either through the usual

system call functions (open, read, write, close, and others), or through their standard C

library counterparts (fopen, fread, fwrite, fclose, and others), which the standard library

implements using the underlying system calls.

For additional information on File I/O Drivers, see File I/O Drivers in Chapter 2 of Book 3,

Software Architecture, Part A.

Chapter 8: File I/O Drivers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 183

8

File I/O Function Types

These definitions provide prototypes for file I/O functions. Most of these represent

POSIX.1 system calls.

Name Page

IOD_RecogFunc 21

IOD_InitFunc 22

IOD_TermFunc 23

IOD_OpenFunc 24

IOD_StatFunc 25

IOD_OpenDllFunc 26

IOD_CloseFunc 27

IOD_ReadFunc 28

IOD_WriteFunc 29

IOD_SeekFunc 30

IOD_IsattyFunc 31

IOD_FstatFunc 32

IOD_FcntlFunc 33

IOD_SyncFunc 34

IOD_FSyncFunc 35

IOD_UnlinkFunc 36

IOD_LinkFunc 37

IOD_MkdirFunc 38

IOD_RmdirFunc 39

IOD_AccessFunc 39

IOD_OpendirFunc 40

IOD_ClosedirFunc 41

IOD_RewinddirFunc 42

IOD_ReaddirFunc 43

Chapter 8: File I/O Drivers API

184 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

IOD_RecogFunc

typedef Bool (*IOD_RecogFunc)(
 String path
);

Description

Determines whether a given filename is recognized by this I/O driver.

IOD_InitFunc

typedef Bool (*IOD_InitFunc)(void);

Description

Initialization function.

IOD_TermFunc

typedef void (*IOD_TermFunc)(void);

Description

Termination function.

Chapter 8: File I/O Drivers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 185

8

IOD_OpenFunc

typedef Int32 (*IOD_OpenFunc)(
 String path,
 Int32 oflag,
 Int32 mode
);

Description

Opens a file, like POSIX.1 open.

IOD_StatFunc

typedef Int32 (*IOD_StatFunc)(
 String path,
 struct stat *buf
);

Description

Stats a file (by name), like POSIX.1 stat.

IOD_OpenDllFunc

typedef Int32 (*IOD_OpenDllFunc)(
 String path
);

Description

Opens a DLL.

Chapter 8: File I/O Drivers API

186 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

IOD_CloseFunc

typedef Int32 (*IOD_CloseFunc)(
 Int32 file
);

Description

Closes a file, like POSIX.1 close.

IOD_ReadFunc

typedef Int32 (*IOD_ReadFunc)(
 Int32 file,
 Pointer buf,
 Int32 nbyte
);

Description

Reads from a file, like POSIX.1 read.

IOD_WriteFunc

typedef Int32 (*IOD_WriteFunc)(
 Int32 file,
 Pointer buf,
 Int32 nbyte)
;

Description

Writes to a file, like POSIX.1 write.

Chapter 8: File I/O Drivers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 187

8

IOD_SeekFunc

typedef Int32 (*IOD_SeekFunc)(
 Int32 file,
 Int32 offset,
 Int32 whence
);

Description

Seeks on a file, like POSIX.1 seek.

IOD_IsattyFunc

typedef Int32 (*IOD_IsattyFunc)(
 Int32 file
);

Description

Determines if a file is interactive, like POSIX.1 isatty.

IOD_FstatFunc

typedef Int32 (*IOD_FstatFunc)(
 Int32 file,
 struct stat *buf
);

Description

Stats a file (by file descriptor), like POSIX.1 fstat.

Chapter 8: File I/O Drivers API

188 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

IOD_FcntlFunc

typedef Int32 (*IOD_FcntlFunc)(
 Int32 file,
 Int32 cmd,
 Int32 flags
);

Description

Files control, like POSIX.1 fcntl.

IOD_SyncFunc

typedef Int32 (*IOD_SyncFunc)(void);

Description

Syncs a filesystem, like POSIX.1 sync.

IOD_FSyncFunc

typedef Int32 (*IOD_FSyncFunc)(
 Int32 file
);

Description

Syncs a file, like POSIX.1 fsync.

Chapter 8: File I/O Drivers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 189

8

IOD_UnlinkFunc

typedef Int32 (*IOD_UnlinkFunc)(
 String path
);

Description

Removes a file, like POSIX.1 unlink.

IOD_LinkFunc

typedef Int32 (*IOD_LinkFunc)(
 String src,
 String dest
);

Description

Links a file, like POSIX.1 link.

IOD_MkdirFunc

typedef Int32 (*IOD_MkdirFunc)(
 String path,
 Int32 mode
);

Description

Creatse a directory, like POSIX.1 mkdir.

Chapter 8: File I/O Drivers API

190 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

IOD_RmdirFunc

typedef Int32 (*IOD_RmdirFunc)(
 String path
);

Description

Removes a directory, like POSIX.1 rmdir.

IOD_AccessFunc

typedef Int32 (*IOD_AccessFunc)(
 String path,
 Int32 mode
);

Description

Checks file access, like POSIX.1 access.

IOD_OpendirFunc

typedef DIR* (*IOD_OpendirFunc)(
 ConstString path
);

Description

Opens a directory, like POSIX.1 opendir.

Chapter 8: File I/O Drivers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 191

8

IOD_ClosedirFunc

typedef Int32 (*IOD_ClosedirFunc)(
 DIR *dir
);

Description

Closes a directory, like POSIX.1 closedir.

IOD_RewinddirFunc

typedef void (*IOD_RewinddirFunc)(
 DIR *dir
);

Description

Rewinds a directory, like POSIX.1 rewinddir.

IOD_ReaddirFunc

typedef struct dirent *(*IOD_ReaddirFunc)(
 DIR *dir
);

Description

Reads a directory, like POSIX.1 opendir.

Chapter 8: File I/O Drivers API

192 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

File I/O Driver Control Functions

These definitions provide prototypes for driver control functions.

Name Page

IOD_install_fsdriver 29

IOD_install_driver 30

IOD_uninstall_driver 31

IOD_lookup_driver 32

IOD_lookup_dll 33

IOD_sync 34

Chapter 8: File I/O Drivers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 193

8

IOD_install_fsdriver

UID_Driver IOD_install_fsdriver(
 IOD_RecogFunc recog,
 IOD_InitFunc init,
 IOD_TermFunc term,
 IOD_OpenFunc open,
 IOD_OpenDllFunc open_dll,
 IOD_CloseFunc close,
 IOD_ReadFunc read,
 IOD_WriteFunc write,
 IOD_SeekFunc seek,
 IOD_IsattyFunc isatty,
 IOD_FstatFunc fstat,
 IOD_FcntlFunc fcntl,
 IOD_StatFunc stat,
 IOD_SyncFunc sync,
 IOD_FSyncFunc fsync,
 IOD_UnlinkFunc unlink,
 IOD_LinkFunc link,
 IOD_MkdirFunc mkdir,
 IOD_RmdirFunc rmdir,
 IOD_AccessFunc access,
 IOD_OpendirFunc opendir,
 IOD_ClosedirFunc closedir,
 IOD_RewinddirFunc rewinddir,
 IOD_ReaddirFunc readdir
);

Parameters

See File I/O Function Types beginning on page 19 for descriptions.

Return Value

Returns a new file driver id if successful, or NULL otherwise.

Description

Creates a new file I/O driver. The installed driver's init function is executed; if the init

function fails, the IOD_install_driver call fails.

Chapter 8: File I/O Drivers API

194 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

IOD_install_driver

UID_Driver IOD_install_driver(
 IOD_RecogFunc recog,
 IOD_InitFunc init,
 IOD_TermFunc term,
 IOD_OpenFunc open,
 IOD_OpenDllFunc open_dll,
 IOD_CloseFunc close,
 IOD_ReadFunc read,
 IOD_WriteFunc write,
 IOD_SeekFunc seek,
 IOD_FstatFunc fstat,
 IOD_FcntlFunc fcntl,
 IOD_StatFunc stat
);

Parameters

See File I/O Function Types beginning on page 19 for descriptions.

Return Value

Returns a new file driver id if successful, or NULL otherwise.

Description

Creates a new simple file I/O driver with the specified functions. This interface does not

supply file system/directory manipulation functions. The installed driver’s init function

is executed; if the init function fails, the IOD_install_driver call fails.

Chapter 8: File I/O Drivers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 195

8

IOD_uninstall_driver

void IOD_uninstall_driver(
 UID_Driver driver
);

Parameters

driver Driver to uninstall.

Description

Uninstalls the given driver. Call its term routine. The given driver subsequently is invalid

for use as a driver id.

IOD_lookup_driver

UID_Driver IOD_lookup_driver(
 String name
);

Parameters

name File name to recognize

Return Value

The id of the first driver in the installed driver chain which recognizes name, or NULL if

not recognized.

Description

Call the recognition functions of each installed driver, latest-installed first, to find the

first driver which recognizes name.

Chapter 8: File I/O Drivers API

196 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

IOD_lookup_dll

UID_Driver IOD_lookup_dll(
 String name,
 Int32 *fd
);

Parameters

name DLL name to recognize.

fd Returned open file descriptor.

Result

The ID of the first driver in the installed driver chain which recognizes name, or NULL if

not recognized.

Description

Calls the recognition functions of each installed driver, latest installed driver first, to find

the first driver which recognizes name.

IOD_sync

void IOD_sync(void);

Description

Calls the sync function of each installed driver.

Chapter 8: File I/O Drivers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 197

8

File I/O Data Structures

This section presents the File I/O data structure.

Chapter 8: File I/O Drivers API

198 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

UID_Driver_t

typedef struct UID_Driver_t {
 UID_Driver next;
 IOD_RecogFunc recog;
 IOD_InitFunc init;
 IOD_TermFunc term;
 IOD_OpenFunc open;
 IOD_CloseFunc close;
 IOD_ReadFunc read;
 IOD_WriteFunc write;
 IOD_SeekFunc seek;
 IOD_IsattyFunc isatty;
 IOD_FstatFunc fstat;
 IOD_FcntlFunc fcntl;
 IOD_OpenDllFunc open_dll;
 IOD_StatFunc stat;
 IOD_SyncFunc sync;
 IOD_FSyncFunc fsync;
 IOD_UnlinkFunc unlink;
 IOD_LinkFunc link;
 IOD_MkdirFunc mkdir;
 IOD_RmdirFunc rmdir;
 IOD_AccessFunc access;
 IOD_OpendirFunc opendir;
 IOD_ClosedirFunc closedir;
 IOD_RewinddirFunc rewinddir;
 IOD_ReaddirFunc readdir;
} *UID_Driver;

Fields

next Link to next installed driver.

(others) See File I/O Function Types beginning on page 19
for descriptions.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 199

9

Chapter 9

The Operating System Wrapper (tmos.h)

Topic Page

Introduction 38

Tasks 41

Queues 47

Semaphores 52

Timer 56

Chapter 9: The Operating System Wrapper (tmos.h)

200 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

Programs that adhere to the TriMedia Software Architecture should not access pSOS

directly. Instead, they use this wrapper API to ensure portability. The wrapper API is

designed to clearly delineate the operating system functionality that is expected by the

TriMedia software system. If ever it is necessary to change the OS, only a subset of pSOS

might need to be emulated. That subset is clearly defined by this wrapper. Similarly, the

error reporting behavior of the OS is clearly defined by this wrapper.

The source code for the pSOS wrapper is included with the SDE. Feel free to browse it. For

more information about the specific functions, refer to the individual pSOS functions

that are documented in pSOS System Calls. This is the reference OS implementation.

This table lists the functions available to applications that use the pSOS wrapper.

Functions Page

tmosMain 39

tmosExit 39

tmosInit 40

tmosTaskChangePriority 41

tmosTaskCreate 42

tmosTaskDestroy 43

tmosTaskIdent 44

tmosTaskResume 46

tmosTaskStart 45

tmosTaskSuspend 46

tmosQueueCreate 47

tmosQueueDestroy 48

tmosQueueReceive 49

tmosQueueSend 50

tmosQueueSendUrgent 51

tmosSemaphoreCreate 52

tmosSemaphoreDestroy 53

tmosSemaphoreP 54

tmosSemaphoreV 55

tmosTimSleep 56

Chapter 9: The Operating System Wrapper (tmos.h)

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 201

9

tmosMain

extern void tmosMain(void);

Parameters

None.

Description

This is a macro that maps to the pSOS root function. User code begins execution at this

function. The standard C command line arguments are available as globals inside of this

function. They must be declared in the user’s program if used:

tmosExit

extern void tmosExit(
 Int32 val
);

Parameters

val Exit code.

Description

This function causes the entire program to terminate, as opposed to the Exit function,

which causes the current task to terminate.

extern int __argc;
extern char **__argv;

Chapter 9: The Operating System Wrapper (tmos.h)

202 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmosInit

extern void tmosInit(void)

Parameters

None.

Description

This function ensures that include files define the right things. The function calls dinette

to initialize OS device drivers.

Chapter 9: The Operating System Wrapper (tmos.h)

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 203

9

Tasks

tmosTaskChangePriority

extern UInt32 tmosTaskChangePriority(
 UInt32 tid,
 UInt32 newpriority,
 UInt32 *oldpriority
);

Parameters

tid Task ID.

newpriority New priority.

oldpriority Pointer to old priority.

Description

Sets the priority of the specified task, using a call to the pSOS function:

Errors are mapped through the “MapError” macro to return TMLIBAPP_OK in case of suc-

cess. Possible errors are or’ed with TMLIBAPP_ERR_OS_ERR.

t_setpri(tid, newprio, oldprio);

Chapter 9: The Operating System Wrapper (tmos.h)

204 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmosTaskCreate

extern UInt32 tmosTaskCreate(
 char name[4],
 UInt32 flags,
 UInt32 prio,
 UInt32 sstack,
 UInt32 ustack,
 UInt32 *tid
);

Parameters

name Task name.

flags Flags are listed below.

prio Task priority.

sstack Size of the system stack.

ustack Size of the user stack.

tid Pointer to the task ID (returned).

Description

Creates a task using a call to the pSOS function:

Errors are mapped through the “MapError” macro to return TMLIBAPP_OK in case of suc-

cess. The system stack and the user stack combine into a single stack. Possible errors are

or’ed with TMLIBAPP_ERR_OS_ERR. Legal values for the flags variable are listed here:

t_create(name, prio, sstack, ustack, flags, tid);

typedef enum tmosTaskCreateFlags{ /* for tmosTaskCreate */
 tmosTaskFlagsCreateStd = 0,
 tmosTaskFlagsLocal = 0,
 tmosTaskFlagsGlobal = 1,
 tmosTaskFlagsNoFPU = 0,
 tmosTaskFlagsFPU = 2
} tmosTaskCreateFlags, *ptmosTaskCreateFlags;

Chapter 9: The Operating System Wrapper (tmos.h)

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 205

9

tmosTaskDestroy

extern UInt32 tmosTaskDestroy(
 UInt32 tid
);

Parameters

tid Task ID.

Description

Deletes a task using a call to the pSOS function:

Errors are mapped through the “MapError” macro to return TMLIBAPP_OK in case of suc-

cess. Possible errors are or’ed with TMLIBAPP_ERR_OS_ERR.

t_delete(tid);

Chapter 9: The Operating System Wrapper (tmos.h)

206 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmosTaskIdent

extern UInt32 tmosTaskIdent(
 char name[4],
 UInt32 node,
 UInt32 *tid
);

Parameters

name Task name.

node Task node.

tid Pointer to the task ID.

Description

Given the name and node, the function looks up the TID (task identifier). The function

is implemented using the pSOS function:

Errors are mapped through the “MapError” macro to return TMLIBAPP_OK in case of suc-

cess. Possible errors are or’ed with TMLIBAPP_ERR_OS_ERR.

t_ident(name, node, tid);

Chapter 9: The Operating System Wrapper (tmos.h)

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 207

9

tmosTaskStart

extern UInt32 tmosTaskStart(
 UInt32 tid,
 UInt32 flags,
 void (*start_addr)(),
 UInt32 targs[]
);

Parameters

tid Task ID.

flags Flags are listed below.

start_addr Pointer to a function that comprises the task.

targs Array of (up to 4) arguments passed to the task.

Description

Start the specified task, using a call to the pSOS function:

The flags determine some characteristics of the task. Errors are mapped through the

“MapError” macro to return TMLIBAPP_OK in case of success. Possible errors are or’ed

with TMLIBAPP_ERR_OS_ERR. Legal values for the flags are:

t_start(tid, flags, start_addr, targs);

typedef enum tmosTaskStartFlags{ /* for tmosTaskStart */
 tmosTaskFlagsStandard = 5,
 tmosTaskFlagsPreempt = 0,
 tmosTaskFlagsNoPreempt = 1,
 tmosTaskFlagsNoSliced = 0,
 tmosTaskFlagsSliced = 2,
 tmosTaskFlagsNoAsyncSignalHandling = 4 /*should always be set*/ }
tmosTaskStartFlags, *ptmosTaskStartFlags;

Chapter 9: The Operating System Wrapper (tmos.h)

208 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmosTaskSuspend

extern UInt32 tmosTaskSuspend(
 UInt32 tid
);

Parameters

tid Task ID.

Description

Suspends the specified task. The function is implemented using the pSOS function:

Errors are mapped through the “MapError” macro to return TMLIBAPP_OK in case of suc-

cess. Possible errors are or’ed with TMLIBAPP_ERR_OS_ERR.

tmosTaskResume

extern UInt32 tmosTaskResume(
 UInt32 tid
);

Parameters

tid Task ID.

Description

Resume the specified task, if it was suspended. The function is implemented using the

pSOS function:

Errors are mapped through the “MapError” macro to return TMLIBAPP_OK in case of suc-

cess. Possible errors are or’ed with TMLIBAPP_ERR_OS_ERR.

t_suspend(tid);

t_resume(tid);

Chapter 9: The Operating System Wrapper (tmos.h)

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 209

9

Queues

tmosQueueCreate

extern UInt32 tmosQueueCreate(
 char name[4],
 UInt32 flags,
 UInt32 count,
 UInt32 *qid
);

Parameters

name Queue name.

flags Flags are listed below.

count Queue size.

qid Pointer to the queue ID (returned).

Description

Creates a queue using the pSOS function:

Note that the order of the parameters in q_create is different. Errors are mapped through

the “MapError” macro to return TMLIBAPP_OK in case of success. Possible errors are or’ed

with TMLIBAPP_ERR_OS_ERR. Legal values for the flags are:

q_create(name, count, flags, qid);

typedef enum tmosQueueCreateFlags{ /* for tmosQueueCreate */
 tmosQueueFlagsStandard = 0,
 tmosQueueFlagsLocal = 0,
 tmosQueueFlagsGlobal = 1,
 tmosQueueFlagsNoLimit = 0,
 tmosQueueFlagsLimit = 4
} tmosQueueCreateFlags, *ptmosQueueCreateFlags;

Chapter 9: The Operating System Wrapper (tmos.h)

210 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmosQueueDestroy

extern UInt32 tmosQueueDestroy(
 UInt32 qid
);

Parameters

qid Queue ID.

Description

Deletes a queue and frees all resources associated with it. The function is implemented

with a call to the pSOS function:

Errors are mapped through the “MapError” macro to return TMLIBAPP_OK in case of suc-

cess. Possible errors are or’ed with TMLIBAPP_ERR_OS_ERR.

q_delete(qid);

Chapter 9: The Operating System Wrapper (tmos.h)

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 211

9

tmosQueueReceive

extern UInt32 tmosQueueReceive(
 UInt32 qid,
 UInt32 flags,
 UInt32 timeout,
 UInt32 msg_buf[4]
);

Parameters

qid Queue ID.

flags Flags are listed below.

timeout Timeout period, in ticks.

msg_buf Array of words in which to receive the message.

Description

Attempts to retrieve a packet from the specified queue. The function is implemented

with a call to the pSOS function:

The timeout period is in ticks. The length of a tick is defined in the file sys_conf.h. Ticks

are 10 ms by default. Errors are mapped through the “MapError” macro to return

TMLIBAPP_OK in case of success. ERR_NOMSG is mapped to TMLIBAPP_QUEUE_EMPTY.

ERR_TIMEOUT is mapped to TMLIBAPP_TIMEOUT. Possible errors are or’ed with

TMLIBAPP_ERR_OS_ERR. Legal values for the flags are:

q_receive(qid, flags, timeout, msg_buf);

typedef enum tmosQueueReceiveFlags{ /* for tmosQueueReceive */
 tmosQueueFlagsWait = 0,
 tmosQueueFlagsNoWait = 1
} tmosQueueReceiveFlags, *ptmosQueueReceiveFlags;

Chapter 9: The Operating System Wrapper (tmos.h)

212 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmosQueueSend

extern UInt32 tmosQueueSend(
 UInt32 qid,
 UInt32 flags,
 UInt32 msg_buf[4]
);

Parameters

qid Queue ID.

flags Flags are listed below.

msg_buf Array of words in which to send the message.

Description

Attempts to send a message through a queue using the pSOS function:

Errors are mapped through the “MapError” macro to return TMLIBAPP_OK in case of suc-

cess. Possible errors are or’ed with TMLIBAPP_ERR_OS_ERR.

q_send(qid, msg_buf);

Chapter 9: The Operating System Wrapper (tmos.h)

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 213

9

tmosQueueSendUrgent

extern UInt32 tmosQueueSendUrgent(
 UInt32 qid,
 UInt32 flags,
 UInt32 msg_buf[4]
);

Parameters

qid Queue ID.

flags Flags are listed below.

msg_buf Array of words in which to send the message.

Description

Attempts to send a message through a queue using the pSOS function:

The function sends the message to the head of the queue. Errors are mapped through the

“MapError” macro to return TMLIBAPP_OK in case of success. Possible errors are OR’d

with TMLIBAPP_ERR_OS_ERR.

q_urgent(qid, .msg_buf);

Chapter 9: The Operating System Wrapper (tmos.h)

214 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Semaphores

tmosSemaphoreCreate

extern UInt32 tmosSemaphoreCreate(
 char name[4],
 UInt32 flags,
 UInt32 count,
 UInt32 *smid
); .

Parameters

name Semaphore name.

flags Flags are listed below.

count Initial value of the semaphore.

smid Pointer to the semaphore ID (returned).

Description

Creates a semaphore using a call to the pSOS function:

Errors are mapped through the “MapError” macro to return TMLIBAPP_OK in case of suc-

cess. Possible errors are or’ed with TMLIBAPP_ERR_OS_ERR. Legal values for the flags are:

sm_create(name, .count, .flags, .smid);

typedef enum tmosSemaphoreCreateFlags{
 tmosSemaphoreFlagsStandard = .0,
 tmosSemaphoreFlagsLocal = .0,
 tmosSemaphoreFlagsGlobal = .1,
 tmosSemaphoreFlagsPrior = .2,
 tmosSemaphoreFlagsFifo = .0
} .tmosSemaphoreCreateFlags, .*ptmosSemaphoreCreateFlags;

Chapter 9: The Operating System Wrapper (tmos.h)

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 215

9

tmosSemaphoreDestroy

extern UInt32 tmosSemaphoreDestroy(
 UInt32 smid
);

Parameters

smid Semaphore ID.

Description

Deletes a semaphore and free all associated resources using the pSOS function:

Errors are mapped through the “MapError” macro to return TMLIBAPP_OK in case of suc-

cess. Possible errors are or’ed with TMLIBAPP_ERR_OS_ERR.

sm_delete(smid);

Chapter 9: The Operating System Wrapper (tmos.h)

216 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmosSemaphoreP

extern UInt32 tmosSemaphoreP(
 UInt32 smid,
 UInt32 flags,
 UInt32 timeout
);

Parameters

smid Semaphore ID.

flags Flags are listed below.

timeout Timeout period, in ticks.

Description

Attempts to acquire a semaphore using the pSOS function:

The timeout period is in ticks. The length of a tick is defined in the file sys_conf.h. Ticks

are 10 ms by default. Errors are mapped through the “MapError” macro to return

TMLIBAPP_OK in case of success. ERR_TIMEOUT is mapped to TMLIBAPP_TIMEOUT. Possi-

ble errors are or’ed with TMLIBAPP_ERR_OS_ERR. Legal values for the flags are:

sm_p(smid, flags, timeout);

typedef enum tmosSemaphorePFlags{
 tmosSemaphoreFlagsWait = .0,
 tmosSemaphoreFlagsNoWait = .1
} .tmosSemaphorePFlags, .*ptmosSemaphorePFlags;

Chapter 9: The Operating System Wrapper (tmos.h)

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 217

9

tmosSemaphoreV

extern UInt32 tmosSemaphoreV(
 UInt32 smid
);

Parameters

smid Semaphore ID.

Description

Gives up a semaphore using the pSOS function:

Errors are mapped through the “MapError” macro to return TMLIBAPP_OK in case of suc-

cess. Possible errors are or’ed with TMLIBAPP_ERR_OS_ERR.

sm_v(smid);

Chapter 9: The Operating System Wrapper (tmos.h)

218 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Timer

tmosTimSleep

extern UInt32 tmosTimSleep(
 UInt32 ticks
);

Parameters

ticks Sleep period.

Description

Gives up control and sleeps for the specified number of ticks. The function is imple-

mented using the pSOS function:

The sleep period is in ticks. The length of a tick is defined in the file sys_conf.h. Ticks are

10 ms by default. Errors are mapped through the “MapError” macro to return

TMLIBAPP_OK in case of success. Possible errors are or’ed with TMLIBAPP_ERR_OS_ERR.

tm_wkafter(ticks);

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 219

10
Chapter 10

TriMedia Flash File System API

Note
This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Topic Page

Introduction 220

Flash File System 220

Standalone Flash-Based Systems 232

TriMedia Flash File System API Data Structures 236

TriMedia Flash File System API Functions 238

Flash Driver API 239

Chapter 10: TriMedia Flash File System API

220 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

The Flash File System and flash-based standalone systems are two related topics. This

chapter describes how TriMedia supports each of them.

First, it describes the generic Flash File System Manager provided by the SDE, which pro-

vides flash file access and storage and reliable updates of boot images.

Second, a number of scenarios are described, starting on 232, by which system software

stored on flash can safely be upgraded by the embedded system itself. This process uses

protocols that guarantee that the upgrade completes or, if write errors or power failures

have occurred, that the original version remains installed.

Flash File System

Flash Basics

Flash memory functionality is a convenient mixture of ROM and RAM. Like ROM (but

unlike RAM), its contents are persistent, in that they are not lost when the power is

switched off. Like RAM (but unlike ROM), its contents can be modified in a running sys-

tem1. Like both of them, contents of flash memory can be read by the processor using

normal memory fetches.

In embedded systems, flash memory is typically used for storing boot images, system

parameters, system logs (diagnostics), user data (address books, for example), and even

for complete, general-purpose file systems. One especially attractive property of flash is

that it can store system software that can be upgraded entirely by the system itself, with

minimal user intervention. Such a system does not have to be disassembled for such an

upgrade. Instead, it can merely be instructed to obtain the upgrade from a remote server

via a network connection, to replace its predecessor in flash, and to reboot itself. The

critical issue is that a careful update protocol must be followed. Otherwise, a power loss

or write error during the upgrade process might corrupt the flash contents and render

the system unusable.

Flash memory seems a convenient persistent storage device at a higher level, but there

are some difficulties to be solved by lower level software. These difficulties have to do

with writing to flash memory.

■ Although flash can be read as RAM or ROM, writing a value into a flash memory loca-

tion is considerably more involved, because it generally involves switching the entire

chip to a programming mode, followed by some elaborate write protocol for transfer-

ring the value. This is illustrated by the sample FLASH_write function shown in the

code sample on page 230.

1. This is unlike (EP)ROM, where the system using it must be stopped and the chip removed to update its
contents.

Chapter 10: TriMedia Flash File System API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 221

10

■ It is not always possible to write just any value into a given flash location. Rather,

individual flash bits can only be toggled from a logical 1 to a logical 0 value. So

although the contents of a particular location can be changed from 0xF0F0F0F0 to

0xF000F000, they cannot be changed to 0xF0FFF0FF. Consequently, flash locations

generally must be erased to an all 0xFFFFFFFF pattern before they can be rewritten to

an arbitrary value.

■ Unfortunately, flash locations cannot be individually erased. Flash memory chips are

organized in blocks1, which are the units of flash erasure. In other words, before a

flash location can be rewritten, its enclosing block has to be entirely erased. A typical

flash block size is 32–256 kilobytes and, except for very specific applications, it is very

likely that blocks will still be holding valid data when they have to be erased. Preserv-

ing this data through a block erasure, while guarding against power failures and flash

write errors, requires prudent erasure schemes in flash system software.

■ Block erasure occurs regularly in more intensively used flash file systems (for exam-

ple, in preparation of particular file system sectors for updates). Unfortunately, there

is an upper bound on the number of times that flash blocks can be erased or cycled.

Depending on the type of chip, this amount is typically 105 to 106. When this upper-

bound has been reached, the probability of write and erasure errors rapidly increases.

This means that attempted 1-to-0 writes and 0-to-1 erasures are more likely to fail,

leaving the values of certain bits unmodified.

Although this erasure upperbound is already quite high, and will tend to increase for

newer flash devices, flash drivers that expect frequent flash updates generally imple-

ment some “wear leveling” scheme. Such a scheme periodically moves less frequently

updated flash contents to more frequently erased flash blocks, with the intention to

evenly spread erasure (and related wear) over all flash blocks.

Clearly, flash-based embedded systems must be very careful when updating flash con-

tents. Power failures can always occur, and in any case, flash will eventually wear out.

However, neither of these conditions should cause corruption of the logical flash con-

tents. At worst, the system should roll back to a previous stable point. At best, it should

continue functioning while avoiding errors, thus saving the flash contents until the

chips can be replaced.

The TriMedia Flash File System software described in the next sections provides all these

features.

■ Wear leveling is supported.

■ Power failures cause a rollback to the latest consistent state, which is the state before

the last flash update (from a user point of view).

■ Bad spots in flash are avoided as long as possible. When flash updates can no longer

be made because the flash is full or because of unrecoverable write errors, the logical

flash contents remain unaltered. A distributed file allocation table (FAT) maintained

1. Sometimes also called sectors. (The term block will be used here to avoid confusion with in file system sec-
tors).

Chapter 10: TriMedia Flash File System API

222 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

on flash ensures that this continuous consistency does not cause a noticeable perfor-

mance degradation.

Generic Library

The table below lists the elements of the generic library.

The flash file system manager provided by the TriMedia SDE is in the libio.a library. It

can be used in both pSOS- and non pSOS-based applications and is fully reentrant.

It is also generic, in that it does not make any assumptions of what type of flash is used,

how large it is, or at which memory range it is mapped. This flash-specific information

may instead be provided to the application by the relevant board support package (BSP),

in the form of a flash driver, as specified in Flash File System Driver Specification on page

229. General assumptions under which the flash manager works are specified in Flash

Assumptions on page 225.

Figure 10 Flash File System as an Application Component

To give an application access to flash, merely link the flash file system manager and an

appropriate BSP to that application. The file system manager automatically registers itself

with the ANSI library (as shown in Figure 10), and when it detects a valid flash file sys-

tem, this will be mounted at /flash. This file system can subsequently be accessed using

Include File $TCS/include/tmlib/tmFlash.h

Libraries $TCS/lib/<endian>/libio.a

Sample Usage tmcc main.c –lio –tmld –u _FlashFS ––

Mount Point /flash

Examples $TCS/examples/flash_file_system
flash_demo, mkfs, autoboot, sample_drivers, write_boot, write_files,
all_together

• • • • • • • • • • • • • •

Application

• •
 •

• •
 •

• •
 •

• •
 •

BSP or
User-Provided
Flash Driver

FlashFS

Flash-Specific
Information

ANSI Library

fopen, fclose, opendir,
closedir, link, unlink

Flash Utility
Functions

Flash Event
Callback Handler

Chapter 10: TriMedia Flash File System API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 223

10

the usual ANSI and POSIX 1.1 I/O functions, by specifying file names that start with /

flash/. For instance, a directory /flash/my_dir can be created by calling mkdir("/flash/

my_dir"); a file /flash/my_dir/my_file can be opened for output by the function fopen;

and directory structures can be traversed using the functions opendir, readdir and

closedir. The flash_demo example provides a full demonstration of the functionality pro-

vided by the flash file system manager.

You are strongly encouraged to make use of the appropriate BSP to provide flash-specific

information. You can include the BSP two ways. You can link the BSP on the command

line or you can link the BSP automatically by modifying the BOARD_LIST_EL and

BOARD_LIST_EB lines in tmconfig. We recommend modifying tmconfig. All examples in

this chapter assume that the BSP is linked by modifying tmconfig.

The flash manager is usually enabled by presence of the “/flash” prefix in the file names

that are given to I/O functions. Because of this, and since no explicit initialization is

required by the application, it is possible that the flash file system can be used without

any explicit calls to its functions. For this reason, library extraction of the flash file sys-

tem manager from libio.a has to be forced during linking by placing an explicit reference

to the symbol _FlashFS on the tmld command line, as in

Flash Event Handling

It is possible to act on the error codes returned by each individual flash access. Realisti-

cally, however, applications sometimes need some higher level of error handling. They

can accomplish this by installing an event callback handler using the utility function

Flash_install_event_handler that is described in TriMedia Flash File System API Data Struc-

tures on page 236. The flash manager defines a range of informational and warning

events, such as:

■ Flash getting full

■ Flash definitely full

■ Flash sector written

■ Flash write error

■ Failure of assumptions under which safe flash operation is guaranteed. See Flash

Assumptions on page 225).

Long running applications should monitor the write error/sector write ratio. An increase

in this ratio indicates that the flash is deteriorating, and a warning should be given that

advises users to replace the flash.

Formatting Flash

The flash file manager is enabled only when it detects a valid file system. Flash memory

can be formatted to an empty file system by means of the function

tmcc main.c Ðlio Ðtmld Ðu _FlashFS ÐÐ

Chapter 10: TriMedia Flash File System API

224 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

FlashUtil_init_filesystem. (See page 238). Formatting should be performed by a separate

utility, since there is no way to reinitialize the flash file system manager after a reformat.

An example of such a utility can be found in $TCS/examples/flash_file_system/mkfs.

Note that formatting erases all previous flash contents.

Forced library extraction of the flash file system should not take place as this will cause

the initialization of the flash file system. The initialization of the flash file system by the

BSP should also be disabled. This was done in the example $TCS/examples/flash.file.sys-

tem/mkfs/mkfs.c. Initialization of the flash file system expects a valid file system to be in

place, which may not be the case.

Copying Files Onto Flash

Directories and files can be created on flash using standard I/O functions. Therefore,

directories and files can be easily copied to flash from any other storage medium that is

also connected to the current TriMedia board. For example, simple applications can be

devised for copying from a TCP/IP connection to flash or (in hosted systems) from the

PC disk to flash.

An alternate solution is provided by the tool tmSEA (see tmSEA: Self-Extracting Archives in

Chapter 11.). This tool can be used to embed an entire directory tree structure in com-

pressed form in a TriMedia application. This application can subsequently be down-

loaded to a standalone, flash-based system (via JTAG, for example). When run, it

unpacks its embedded directory tree and writes it to flash.

Boot Images

Apart from a file system, the flash manager maintains at most one boot image on flash. A

boot image can be stored on flash using the function FlashUtil_put_bootimage (see page

238), thereby replacing any previously stored boot image. The boot image is not visible

in the file system, but can be loaded into SDRAM and started via the function

Flash_boot. This function is typically used in L1 boot programs, as is demonstrated in

$TCS/examples/flash_file_system/auto_boot.

When building auto_boot, you must provide the flash-specific information in the form

of the flash driver, as specified in Flash Driver Boot Specification on page 231. This is the

only case where the BSP cannot be used. auto_boot must be less than 2K in size. Includ-

ing the BSP will make auto_boot too large to fit in the EEPROM.

Updating the boot image stored on flash is facilitated by the tool tmWRB (see tmWRB:

Boot Image Writing in Chapter 11), which converts a boot image into an executable that,

when downloaded and started on a flash-based system, writes the boot image that it con-

tains onto flash.

Boot images can also be compressed into a new boot image using tool tmSEI (see tmSEI:

Self-Extracting Load Images in Chapter 11). This new boot image is still intended for sys-

tem booting, but instead of immediately starting the actual system, it unpacks and

Chapter 10: TriMedia Flash File System API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 225

10

decompresses the original boot image, places it at the proper position in SDRAM, and

starts it. Use of tmSEI causes boot images to occupy less flash space, with space savings

of 50%, typically, for large images.

Figure 11 Cascading tmSEI and tmWRB

The tmSEI and tmWRB tools are typically used in a cascade, as shown in Figure 11. This

first converts a boot image into a compressed, self-extracting image, and subsequently

packs it into an application that updates the flash’s boot image with this self-extracting

image. This is fully demonstrated in $TCS/examples/flash_file_system/write_boot.

Although not visible to or accessible by regular I/O functions, the boot image is normally

stored in the flash file system. This means that no special flash partition need be

reserved, and that flash space that is not occupied by the boot image is automatically

available for regular files. In particular, when no boot image has been stored, the entire

flash is available for the file system. A boot image can always be written later without

any need for reformatting, as long as there is space available.

As described in Flash Manager Properties on page 226, the writing of a new boot image is

an atomic, safe operation. It either succeeds or leaves the logical flash state unaltered.

Flash Assumptions

The flash file system manager operates under the following assumptions.

1. Flash errors manifest themselves only as erase or write failures, by failing to write cer-

tain bits from a 1-to-0 value, or by failing to erase them from a 0-to-1 value. Flash

memory contents remain stable, as long as they are not erased or overwritten.

2. Flash write operations currently have no more than seven write errors per byte. Such

a heavy error condition is considered extremely unlikely, even for moderately deteri-

orated flash. However, if this threshold is exceeded at an awkward moment during

certain internal commit operations, such a commit will fail and the flash file system

might become inconsistent. The flash file system manager will detect such a situa-

tion, report a FlashDangerousWriteError, and try to recover from it, but inconsisten-

cies might still result in the event of a subsequent power loss, or where recovery is not

possible due to a flash full condition or unavailability of reliable flash sectors.

Boot Image Unpacker

Boot Image Unpacker

Boot Image

BootwritertmSEI tmWRB

Chapter 10: TriMedia Flash File System API

226 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Flash Manager Properties

Update Safety Properties

As long as no FlashDangerousWriteErrors occur as discussed above, errors and power fail-

ures will generally let the operations succeed or, at the worst, cause them to fail with the

logical state of the flash file system preserved.

However, although the logical state might be unaffected, the data at the physical level

might have changed. For instance, prior to erasure of a certain flash block, data still in

use might have been moved off this block. Consequently, logical flash sectors might

have multiple (identical) physical instances at specific moments during flash operations.

Usually this is corrected shortly afterwards by committing the data move and removing

the old instance. However, a block might contain trash sectors, especially after power

failures.

The following table specifies the safety properties of the individual flash file system oper-

ations. These safety properties can be used as basis for safe, higher level system upgrade

protocols.

Flash Manager Space Overhead and Limitations

■ Sector size: 2048 bytes.

■ Maximum file name length: 300 characters.

■ Maximum supported number of flash blocks: 249

■ Maximum supported flash block size: 512 kilobytes

■ Number of sectors allocated for each directory: 1

■ Number of sectors allocated per file: 1 + (file size in bytes – 1716) / 2032.

Category Description Operations

I Not appropriate, because they do not alter the
flash file system.

opendll, isatty, seek, read,
fstat, stat, access, open (read
mode only), close (read
mode only), opendir,
closedir, readdir, rewinddir

II Either fully succeeds, or fails while leaving the
flash file system unaltered.

link, unlink, mkdir, write
boot image

III File creation, using open in write mode, is com-
mitted when either the file is successfully closed,
or successfully sync’d or fsync’d. Before that, it is
unspecified whether the file is physically created
in the flash file system.This situation is similar for
file updates, using write.

open (for write), write, close
(for write), fsync, sync

Chapter 10: TriMedia Flash File System API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 227

10

This implies a file administration overhead of 1% of file size (asymptotically)

■ Number of sectors allocated per boot image: (boot image size in bytes) / 2028.

This implies a boot sector administration overhead of 1% of boot image (asymptoti-

cally)

■ FAT overhead: 0.8% of entire flash

■ Reserved amount of flash for wear leveling algorithm: 1 flash block

Sample Flash Performance Figures

Three key operations affect flash file system performance, namely writing, reading, and

erasing. The following performance data were collected using the Philips NAB board con-

taining Am29f016B flash memory on a 100 MHz TM-1000. The NAB board uses 8 mega-

bytes of flash in 32 blocks. The data were taken with the compiler optimization set to

-O3. The tmcc profiling and grafting options were not used.

The flash file system write performance test was carried out on a formatted flash file sys-

tem. Over 7.5 megabytes of data was written. Various files were written to different direc-

tories. An average write speed of 0.25 Mb/s was achieved. The write speed varied between

0.37 Mb/s and 0.17 Mb/s. The flash write speed tended to decrease as the flash file system

filled up.

The flash file system read performance test was carried out on an almost full flash file sys-

tem. Various files were read from different directories. An average read speed of

4.37 Mb/s was achieved. The read speed varied between 6.05 Mb/s and 4.33 Mb/s.

There is no direct way of using the standard ANSI or POSIX 1.1 I/O functions to force the

flash file system to erase a block. In normal operation, a block is erased only when it is

required, i.e., when all blocks either contain valid data or invalid data which may be

erased. Therefore, formatting the flash file system using the mkfs example program was

chosen to give an estimate of the erasure time. There is overhead in setting up the flash

file system. The overhead is estimated to be under 5% when formatting the entire 8

megabytes of flash. To run mkfs.out took between 23.2 and 20.8 seconds, giving an

approximate erasure speed of between 0.34 Mb/s and 0.39 Mb/s. The speed difference

depends on how much data was previously in flash. For wear-leveling reasons, before a

block is erased, the NAB flash driver checks whether the block must be erased. Checking

whether a block must be erased actually takes slightly more time than erasing the block.

Dynamic Libraries on Flash

A simple way of dealing with dynamic libraries on flash is provided by the flash file sys-

tem manager. Dynamic libraries are searched for first in the directory /flash/old_dlls, and

then in the directory /flash/dlls.

This scheme allows for safe updating of minimal system components that consist of one

or more dynamic libraries (using the safety properties described in the previous section).

Chapter 10: TriMedia Flash File System API

228 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

A minimal system component here is a subset of the collection of dynamic libraries that

form an application, and can be further defined as follows:

1. The application works with the old version of the component.

2. The application works with the new version of the component.

3. The application does not work (or is not known to work) with part of the old, and

part of the new version of the component.

In particular, the last property requires that component replacement be one atomic oper-

ation from the dynamic loader’s point of view. An example procedure for safe updating

of such a minimal system component is to keep all dynamic libraries in directory /flash/

dlls. When updating, do the following:

1. Create a directory /flash/old_dlls, and move all dynamic libraries that form the old

version of the component to this directory. This hides whatever happens to the com-

ponent in /flash/dlls.

2. Move all dlls that form the new version of the component to /flash/dlls. All this is

hidden from the dynamic loader.

3. Rename /flash/old_dlls to something like /flash/obsolete_dlls. This swaps the new

version of the component in place in one atomic action.

4. Remove /flash/obsolete_dlls.

Because this procedure can be interrupted by errors and power failures, the /flash/

old_dlls should be inspected at each application initialization. When files are detected in

this directory, these should be placed back in /flash/old in order to roll back to the previ-

ous state.

Unimplemented Functionality

The flash file system manager currently does not provide the following functionality.

1. The (internal) flash file system format is endian-dependent. This means that a file sys-

tem created by a big-endian executable cannot be used by little-endian executables,

and vice versa.

2. No file protection modes are provided.

3. No file creation/modification times or dates are provided.

4. No garbage-reclaim utility (for garbage left after power failures) is currently provided.

5. The flash manager does not yet contain an option for transparently handling com-

pressed files. This will be corrected in a future release, in which the flash manager will

be able to decompress such files automatically upon reading them.

Chapter 10: TriMedia Flash File System API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 229

10

Flash File System Hardware Interface

This section describes the interface between the flash file system manager and the physi-

cal flash device. You have two options when choosing the hardware interface for the

flash file system: link the relevant board support package with the application or use a

flash-specific driver instead. We strongly encourage you to use an appropriate BSP to pro-

vide flash-specific information.

Using the Flash File System with the BSP

Linking the relevant board support package with the application will automatically take

care of the flash file system hardware interface. The device library libdev.a is automati-

cally linked with all non-dynamic applications.

When running dynamic applications, the flash file system DLL is required. Note that if

your DLLs reside in a flash file system and you application is dynamic, the libtsa-

FlashFS.dll and libtsaFlash.dll must be embedded in your application using the tmld flag

-bembed, in order to access the flash file system.

Flash File System Driver Specification

The sources of several sample flash drivers can be found in directory $TCS/examples/

flash_file_system/sample_drivers. One of them, a driver for the Philips NAB board, is

listed in Figure 12. Also included in this directory is a flash simulator by which flash-

based applications can be tested without having actual hardware available. This simula-

tor is capable of simulating flash write and erase errors with an adjustable error rate.

Flash Address Space

The flash driver completely hides the physical flash device from the flash file system

manager. Although the physical flash may be partitioned in different segments or banks

(that can only be accessed one at a time after having selecting it), and although the

physical flash may be mapped at an arbitrary place in the current address space, the

driver nonetheless provides a view of one logical, single flash bank starting at flash

address 0. The size of this logical flash bank is defined by the flash driver by means of

two global (constant) variables. It consists of NROF_FLASH_BLOCKS consecutive logical

flash blocks, each of size SZOF_FLASH_BLOCK.

The flash is accessed by the flash file system manager using two read functions, two write

functions, and an erase function provided by the driver. One read and one write func-

tion access flash on long word boundaries only, and read and write long words. The

other read and write functions, and the erase function, access flash on logical flash block

boundaries only, and read, write, and erase logical flash blocks. No byte or short access is

needed by the flash file system manager. In addition to reading, writing and erasing,

these functions are also responsible for logical-to-physical flash mapping. Usually, when

the physical flash consists of a single bank, this mapping merely consists of adding an

Chapter 10: TriMedia Flash File System API

230 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

offset to the logical flash addresses, but when the physical flash consists of several banks,

or when the physical flash only allows byte access, this mapping becomes more intricate.

Sample Driver

Shown below is a sample driver that uses a Philips NAB board containing Am29f016B

flash memory:

#include "tmlib/tmtypes.h"
#define FLASH_BASE ((Address)0xFF400000)
Int SZOF_FLASH_BLOCK = (Int) 0x40000;
Int NROF_FLASH_BLOCKS = (Int) 32;
#define RETRY_COUNT 20

Bool FLASH_block_erase(UInt ab, Bool check_if_necessary){
 Int i;
 volatile UInt32 *blockbase = (Pointer)(FLASH_BASE+ab*SZOF_FLASH_BLOCK);
 volatile UInt32 *flashbase = (Pointer)FLASH_BASE;

 if(check_if_necessary){
 Int i;
 UInt32 *pt = (Pointer)blockbase;
 Bool necessary = False;
 for(i = 0; i < (SZOF_FLASH_BLOCK/sizeof(Int)); i++){
 if(*(pt++) != 0xffffffff){
 necessary = True;
 break;
 }
 }
 if(!necessary) return True;
 }
 for(i = 0; i < RETRY_COUNT; i++){
 flashbase[0x555] = 0xAAAAAAAA;
 flashbase[0x2AA] = 0x55555555;
 flashbase[0x555] = 0x80808080;
 flashbase[0x555] = 0xAAAAAAAA;
 flashbase[0x2AA] = 0x55555555;
 blockbase[0x000] = 0x30303030;
 while((*blockbase ^ *blockbase) & 0x40404040){}
 if((*blockbase) == 0xffffffff) return True;
 }
 return False;
}
Bool FLASH_write(Pointer address, UInt32 data){
 Int i;
 volatile UInt32 *addr = (Pointer)(FLASH_BASE+(UInt)address);
 volatile UInt32 *flashbase = (Pointer)FLASH_BASE;
 UInt32 old_data = *addr;
 UInt32 new_data = old_data & data;

 if (new_data == old_data) return data == new_data;

 for(i=0; i<RETRY_COUNT; i++){
 flashbase[0x555] = 0xAAAAAAAA;
 flashbase[0x2AA] = 0x55555555;
 flashbase[0x555] = 0xA0A0A0A0;
 *addr = new_data;
 while((*addr ^ *addr) & 0x40404040){}
 if (*addr == new_data) { return True; }
 }

Chapter 10: TriMedia Flash File System API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 231

10

Figure 12 Sample Driver for Philips NAB Board, Containing Am29f016B Flash Memory

Flash Driver Boot Specification

When booting from flash, the L1 boot program that resides in a 2K EEPROM must be

capable of reading flash and copying the relevant L2 boot program from flash into

SDRAM. A flash driver is required for this since BSPs are too big to include in an applica-

tion that must fit in the 2K EEPROM.

The flash driver boot specification is a subset of the flash file system driver specification.

The boot specification requires that the integers SIZOF_FLASH_BLOCK and

NROF_FLASH_BLOCKS be defined, and that the functions FLASH_read and

FLASH_block_read be defined.

In the example flash L1 boot program, as is demonstrated in $TCS/examples/

flash_file_system/auto_boot, it is assumed that the flash hardware is initialized and can

be used by default.

If you are using a BSP as the standard hardware interface for all other applications, you

must ensure that the parameters SZOF_FLASH_BLOCK and NROF_FLASH_BLOCKS in the

flash boot driver are equal to the corresponding parameter in the BSP. To do this, call the

function tsaFlashGetCapabilties as defined in tsaFlash.h. Set the value of

SZOF_FLASH_BLOCK to the returned sectorSize field multiplied by the size of a word. set

NROF_FLASH_BLOCKS to the returned numberOfSectors field.

Bool FLASH_block_write(Pointer flash, Pointer image, Int nrof_words){
 Int32 *f = ((Int32*)flash) + nrofwords;
 Int32 *i = ((Int32*)image) + nrofwords;
 Bool result;
 do{
 result = FLASH_write(ÐÐf, *(--));
 } while((Pointer)f != flash && result);
 return result;
}
UInt32 FLASH_read(Pointer address){
 UInt32 *addr= (Pointer)(FLASH_BASE+(UInt)address);

 return *addr;
}
void FLASH_block_read(Pointer flash, Pointer image, Int nrof_words){
 Int32 *f = ((Int32*)flash);
 Int32 *i = ((Int32*)image);
 while(nrof_words--){
 *(i++) = FLASH_read(f++);
 }
}
Bool FLASH_init() { return True; }

Chapter 10: TriMedia Flash File System API

232 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Standalone Flash-Based Systems

This following sections offer suggestions on how to set up a standalone system using the

flash file system manager, and how to perform safe updates of system software stored on

flash. The expression “safe updates” denotes the replacement of the system software, or

parts thereof, in such a way that errors or power failures during an update do not result

in an inconsistent, useless system.

Role of the Boot Image

A cold boot of a TM-1 processor in standalone mode causes an initial program to be

loaded and started from the IIC-connected boot EEPROM. The TM-1 hardware requires

this program to be smaller than 2 kilobytes, which is obviously too small for any realistic

application. This situation has led to the L1/L2 standalone boot procedure in which the

actual, unrestricted application is loaded by this initial program (from JTAG, flash, or

EPROM, for example). In L1/L2 boot terminology, the initial program is referred to as L1,

and the subsequently loaded application as L2. L1/L2 booting is fully described in

Chapter 7, Bootstrapping TriMedia in Autonomous Mode, of Book 2, Cookbook, Part C.

In a flash-based setup using the TriMedia flash manager, the L2 application will be stored

as the flash boot image, to be started by L1 using function Flash_boot of the flash man-

ager API (see page 238). The size of this function is about 800 bytes, which is small

enough to be used in an L1 image.

Although applications of any size can be easily stored as the flash boot image, it is sim-

pler when this flash boot image instead holds the second stage of a new, three-stage boot

procedure. In such an extended boot procedure, L2 is no longer the final application, but

just a second, more powerful loader that subsequently loads the final application as an

L3 from a regular flash file. This results in a situation in which all system software can

simply be thought of as residing in one or more regular flash files, with an application-

independent L2 loader stored as the boot image. By this, the issue of safely upgrading

system software can now be entirely expressed in terms of manipulating regular flash

files. Additionally, because this L2 loader is application-independent, it can be standard-

ized as a generic boot component, to be used by different applications. It needs few if

any updates.

Various application-independent functionality can be put into this L2 loader. For

instance, it can decide between continuing to boot from flash or obtaining the final

application L3 via an external port such as JTAG. Such flexibility is useful during devel-

opment, but also attractive as a diagnostic or service option in production systems and

hence should be standardized. Also, in a dynamic loader based setup (see 233), the L2

loader can have the form of an application shell as described in the linker documenta-

tion (see Chapter 11, Linking TriMedia Object Modules, in Book 4, Software Tools, Part B.).

Such a shell contains most or all board-specific drivers and board support, and lets the

subsequently loaded application remain more or less board-independent.

Chapter 10: TriMedia Flash File System API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 233

10

Use of the Dynamic Loader

Use of a single application image in a flash-based production system has a number of dis-

advantages:

■ Most safe upgrade strategies are based on first copying the new version onto flash,

toggling some form of a switch, and then deleting the old version. This means that

for safely upgrading an image file of size N, flash space of at least 2N should be avail-

able. Since most multimedia applications consist of multi-megabyte images, the

reserved amount of flash space needed for upgrading is considerable.

■ It is hard to upgrade individual components, especially when an application consists

of parts provided by multiple vendors. For instance, in a Java-based, monolithic

application, an upgrade in the Java virtual machine can only be performed with the

cooperation of the owner of the application, who should relink the application with

the upgrade of Java, and redistribute it.

■ Applications are necessarily system-dependent. Because they are monolithic, they

must include full board support, and because they are load images, they must know

about the load address, SDRAM size, processor frequency, etc. from the target system.

Most or all of these disadvantages can be solved using the TriMedia dynamic loader. A

dynamic loader based setup allows an application to be partitioned into a number of

dynamic libraries, plus a largely application-independent core that contains all board-

dependent drivers.

The core board functions can be embedded in the L2 boot image, ideally by the manu-

facturer of the board. This is more feasible, because board definitions are more standard-

ized in board support packages.

When the dynamic libraries are given well defined, controlled interfaces, more finely

grained application upgrades can be performed, involving small groups of dynamic

libraries or even single dynamic libraries. For instance, a new Java interpreter requires

only one corresponding dll to be upgraded, with all other parts of the system untouched.

In particular, this means:

■ Smaller reserved flash space is needed for upgrading.

■ Modifications by component vendors can be incorporated by application clients,

without the need for cooperation by application vendors.

■ Components are application- and board-independent. Applications contain less

board dependencies or might even contain no board dependencies at all.

When time-critical parts of the application are linked as dynamic libraries in immediate

mode (see Chapter 13, Dynamic Linking API), these libraries are loaded and linked from

flash during application startup with a result that is indistinguishable from a statically

linked executable. No inter-library function calls and variable references will be redi-

rected via function stubs.

Chapter 10: TriMedia Flash File System API

234 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

The advantages of dynamic loading must be weighed against the following disadvan-

tages:

■ Upfront loading and linking adds to startup time.

■ Dynamic libraries contain more flash space than images because they are still

relocatable.

Safe Upgrading Basics

Self-upgrading systems can basically choose between the following two update schemes.

Update Scheme 1

One scheme involves partial upgrading, where independent components are replaced

with new versions having an unchanged or extended interface. Examples of this are:

■ upgrading the entire system

■ upgrading the Java virtual machine (jvm.dll)

■ upgrading the entire set of Java romized classes(romjava.dll)

■ upgrading a device library with a new, corrected version (libVO.dll, only internal

change)

■ upgrading the OS with a new version that has a more efficient implementation

(psos.dll)

Essential to this type of system upgrading is that the entire system be functional with

both the old and new version of the upgraded component. This means that an upgrade

can be started and followed at any moment by a commit or rollback. This is best illus-

trated using pSOS.dll. Because the pSOS external interface is well-defined and stable, it

can be readily replaced with a new version that contains either a different implementa-

tion of this interface or one that simply provides more system calls. As long as it is well

tested and correct, the upgraded system will function with both the old and new pSOS

version.

Using the safe flash update properties described on 226, and a variant of the hide-and-

swap protocol described on page 227, a system can start a component upgrade knowing

that, whatever happens, the system will remain functional.

Update Scheme 2

Where system components can be accessed at any time at standardized places on an net-

work, systems can be designed that follow less safe upgrade protocols. Using the safe

flash update properties but with unsafe, opportunistic, simple copying schemes, systems

can economize on flash save space, at the risk of ending up in inconsistencies after errors

during updates. Recovery from inconsistencies is then possible by keeping a small net-

work-enabled loader in flash that collects all system components from their servers. Note

Chapter 10: TriMedia Flash File System API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 235

10

that when using this scheme, the system might become unusable (temporarily or perma-

nently), when servers are down, or in the case of heavily deteriorated flash.

Chapter 10: TriMedia Flash File System API

236 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TriMedia Flash File System API Data Structures

EventHandler

typedef void (*EventHandler)(
 FlashEvent
);

typedef enum {
 FlashCleanBlock,
 FlashSwapCleanBlock,
 FlashSectorWrite,
 FlashPurgeTT,
 FlashRelocateSector,
 FlashWriteError,
 FlashFailedCleanBlock,
 FlashBecomingFull,
 FlashFull,
 FlashDangerousWriteError,
 FlashStaleBootRemoved,
 FlashStaleSTTRemoved,
 FlashStaleRootRemoved,
 FlashInterruptedMoveRepaired
} FlashEvent;

Fields

FlashCleanBlock Info: Block dirty sector reclaim started.

FlashSwapCleanBlock Info: Block dirty sector reclaim and block con-
tents swap with a less often erased one started.

FlashSectorWrite Info: Sector allocated and written.

FlashPurgeTT Info: SectorTranslatorSector has been purged and
reallocated because one of its entries became full.

FlashRelocateSector Warning: Flash sector was relocated due to write
error during block dirty sector reclaim.

FlashWriteError Warning: Flash write error detected. Sector has
been marked bad, and retried on other sector.

FlashFailedCleanBlock Warning: Block dirty sector reclaim failed, usually
due to an abundance of write errors resulting in a
reserved pool underflow.

FlashBecomingFull Warning: Starting to allocate from reserved pool.

FlashFull Warning: Last flash sector write failed.

FlashDangerousWriteError Serious warning: More than 7 bits were in error
during an attempted uncommit of a virtual block
mapping. The uncommit failed, and in case of a

Chapter 10: TriMedia Flash File System API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 237

10

power loss during retry, or a flash full condition
during retry, the file system will become inconsis-
tent.

FlashStaleBootRemoved Stale boot sector, probably caused by power loss
during boot image update, has been freed

FlashStaleSTTRemoved Stale SectorTranslatorSector, probably caused by
power loss during block erase, has been freed.

FlashStaleRootRemoved Stale root sector, probably caused by power loss
during block erase, has been freed.

FlashInterruptedMoveRepaired Intermediate file move condition, probably
caused by power loss during block erase, has been
repaired.

Description

Provides for installing a callback function that is called upon the events described above.

The default event handler does not do anything at all. However, a more realistic handler

should at least detect that the write error/write sector ratio becomes nonsignificant, and

advise users to replace their flash. A FlashFull event is not strictly harmful. The file sys-

tem remains consistent, although it is of course no longer possible to update.

The Flash_install_event_handler function installs the specified handler, and returns the

old one:

EventHandler Flash_install_event_handler(

 EventHandler

);

Chapter 10: TriMedia Flash File System API

238 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TriMedia Flash File System API Functions

FlashUtil_init_filesystem

Bool FlashUtil_init_filesystem();

Description

The function creates an empty file system on the flash. Failure is generally caused by

write errors.

FlashUtil_put_bootimage

Bool FlashUtil_put_bootimage(
 Pointer p,
 Pointer start_address,
 Int size
);

Return

This function returns True if it succeeded and False if it failed.

Description

Function for writing a new boot image to flash. The boot image is passed via ‘image’, and

has specified size. It is intended for copying to the specified start address during booting.

Note that this start address can be chosen per boot image.

Flash_boot

void Flash_boot();

Description

Copies the boot image from flash into SDRAM, and starts it. The function never returns.

Note that the start address in SDRAM where the image will be copied has been defined

by the corresponding call to FlashUtil_put_bootimage, and that the caller is responsible

that this target area is unused during Flash_boot. This function should be called with

data cache disabled.

Chapter 10: TriMedia Flash File System API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 239

10

Flash Driver API

FLASH_block_erase

Bool FLASH_block_erase(
 UInt ab,
 Bool check_if_necessary
);

Parameters

ab The logical flash block to be erased. Block 0 is the
first valid logical block in flash.

check_if_necessary Indicates that you should check whether erasure
is really needed (the block might already have
erased contents). This parameter is typically used
during initialization of the flash manager to have
certain blocks erased as start condition without
unnecessarily adding to flash wear.

Description

The function erases the specified logical flash block.

Return

The function returns True if it succeeded and False if it failed.

FLASH_init

Bool FLASH_init();

Description

This function performs required initialization, if any.

Return

The function True if it succeeded and False if it failed.

Chapter 10: TriMedia Flash File System API

240 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

FLASH_write

Bool FLASH_write(
 Pointer address,
 UInt32 data
);

Parameters

address The logical address at which to write. Address 0 is
the first valid logical address in flash.

data The data to be written.

Description

This function writes the specified 32-bit value at the specified logical flash address.

Return

The function returns True if it succeeded and False if it failed.

FLASH_read

UInt32 FLASH_read(
 Pointer address
);

Parameters

address The logical address at which to read. Address 0 is
the first valid logical address in flash.

Description

The function reads the specified 32-bit value from the specified logical flash address.

Return

The function returns the 32-bit value read from flash.

Chapter 10: TriMedia Flash File System API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 241

10

FLASH_block_read

void FLASH_block_read (
 Pointer address,
 Pointer image,
 Int number_of_words
);

FLASH_block_write

Bool FLASH_block_write (
 Pointer address,
 Pointer image,
 Int number_of_words
);

Parameters

address The logical address in flash at which to read or
write. Address 0 is the first valid logical address in
flash.

image The address in RAM of the image to transfer.

number_of_words The number of words to transfer.

Description

The above two functions are similar to FLASH_read and FLASH_write. These two func-

tions are guaranteed to read data from. or write data to, a single flash block. Hence, bank

selection can be shared between all transferred words.

FLASH_block_write should write the image starting with its last word, as in this

pseudocode example:

f = address + number_of_words * sizeof(UInt32);
i = image + number_of_words * sizeof(UInt32);
do {
 result = FLASH_write(--f, *(--i));
} while (ááá)

Chapter 10: TriMedia Flash File System API

242 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 243

11

Chapter 11

General Purpose Compression API

Topic Page

Licensing Issues 244

Overview 245

Compression Tools 247

Zlib API Data Structures 252

Basic Compression and Decompression Functions 257

High-Level Compression and Decompression Functions 266

Advanced Functions 270

File Utility Functions 282

Checksum Functions 296

Chapter 11: General Purpose Compression API

244 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Licensing Issues

The directory tree $TCS/examples/compression/zlib provides the public domain, gen-

eral-purpose data compression library zlib 1.1.3 by Jean-loup Gailly and Mark Adler. The

library has been obtained as is from http://www.cdrom.com/pub/infozip/zlib/, and

carries a copyright notice, which is reproduced here:

(C) 1995-1998 Jean-loup Gailly and Mark Adler

This software is provided "as-is", without any expressor implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must
 not claim that you wrote the original software. If you use this
 software in a product, an acknowledgment in the product
 documentation would be appreciated, but is not required.

2. Altered source versions must be plainly marked as such, and must
 not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source
 distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

The header file zconf.h has been altered. The changes made are listed in the following

file $TCS/examples/compression/zlib/zlib-1.1.3/CHANGESMADE. The rest of the source

of zlib remains unaltered. However, the makefile was altered to produce TCS-compatible

binaries.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 245

11

Overview

The zlib compression library provides in-memory compression and decompression func-

tions, including integrity checks of the uncompressed data. This version of the library

supports only one compression method (deflation) but other methods will be added

later and will have the same stream interface.

Compression can be done in a single step if the buffers are large enough (for example, an

input file is mmap’ed), or can be done by repeated calls to the compression function. In

the latter case, the application must provide more input and/or consume the output

(providing more output space) before each call.

The library also supports reading and writing files in gzip (.gz) format with an interface

similar to that of stdio.

The library does not install any signal handler. The decoder checks the consistency of

the compressed data, so the library should never crash even in case of corrupted input.

Zlib Statistics

Compression statistics were computed using the high-level compression functions com-

press and uncompress. These functions use the default values for speed and memory

requirement.

Compression of data makes more memory available to a user. However, when using a

compression algorithm, a user should be aware of the cost of compression. Code size will

increase because of the size of the compression or decompression source. Dynamic Mem-

ory requirements may increase as data are compressed or decompressed. Access time to

the data will also increase as the data must be decompressed before it can be used.

The following measurements were carried out using the default compression level. The

compression levels can vary between 0 and 9. Level 1 gives the best speed. Level 9 gives

the best compression. Level 0 gives no compression at all. The default compression level

is 6, which makes a compromise between speed and compression.

The performance data were collected using the Philips NAB board on a 100 MHz TM-1.

They were taken with the compiler optimization set to -O3. The tmcc profiling and graft-

ing options were not used. The use of profiling and grafting will increase the compres-

sion and decompression speed of the zlib library.

Using the zlib library increases the code size of your application. If an application com-

presses data only (no decompression), the code size will increase by an extra 57 kilo-

bytes. If an application decompresses data only (no compression), the code size will

increase by an extra 57 kilobytes. If an application uses both compression and decom-

pression, the code size will increase by about 112 kilobytes.

Dynamic memory is generally required to carry out compression and decompression.

When decompressing data, zlib allocates, and subsequently frees, a maximum of 47 kilo-

Chapter 11: General Purpose Compression API

246 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

bytes. When compressing data, zlib allocates, and subsequently frees, a maximum of 268

kilobytes.

The time taken to compress or decompress data depends on the type of data. The follow-

ing timing measurements were done on a Philips NAB board running on a TM-1 at

100 MHz.

When compressing data, the rate of compression varies depending on the type of data.

The compression/decompression tests were carried out on various DLL and Dynamic

applications. The average data compression rate was 0.237 Mb/s. The average data

decompression rate was 4.53 Mb/s. If tmcc’s profiling and grafting options are used

when calculating the rate of compression or decompression, then the average compres-

sion rate is 0.74 Mb/s and the average decompression rate is 7.15 Mb/s.

When compressing data, the compression ratio varies depending on the type of data.

Text usually compresses better than a binary image. The compression/decompression

tests were carried out on various DLL and Dynamic applications. In the test carried out,

the average compression ratio (compressed vs. original image) was 44.78 percent. The

rate of compression of the original images varied from between 24.95% and 61.05%.

Endian Independence

The tests carried out verify that zlib is “endian” independent. Data can be compressed

on a big endian machine and can be decompressed on a little endian machine, and vice

versa. The data itself will remain as it was before compression, i.e., big endian data com-

pressed on a big endian machine will remain big endian data, even when decompressed

on a little endian machine.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 247

11

Compression Tools

The compression library forms a basis for utilities related to flash memory and flash boot

that are described in the next three sections. The utilities are provided in the form of

examples under $TCS/examples/compression/zlib/utilities.

The examples provided in this chapter assume that the relevant BSP is linked by default.

You can do this by altering the BOARD_LIST_EL and BOARD_LIST_EB lines in tmconfig.

Tee compression tools use the BSP as the flash file system hardware interface by default.

Because TriMedia tools place no other dependencies onto the compression library, devel-

opers are free to replace the compression library with their own version.

tmSEI: Self-Extracting Load Images

Figure 13 A Self-Extracting Load Image

tmSEI is a sample tool that can be used when the size of load images is an issue, for

example, when these load images must be stored on a scarce storage medium, such as

flash in an embedded system.

The tool achieves size reduction by extracting a load image from a given executable

object file, subsequently compressing it using the compressor library, and finally embed-

application.mi application.mi

Decompress

0x400000

0x800000

0x000000

sei.mi sei.mi

heap

stack
heap

stack

tmcc -host nohost ... -o application.out

tmSEI application.out -o sei.mi \
 -load 0x000000,0x800000 \
 -sei 0x400000,0x800000 \
 -tm_freq 100000000 \
 -mmio_base 0xefe00000

Chapter 11: General Purpose Compression API

248 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

ding the result into an extractor application. The sole purpose of this extractor applica-

tion is to decompress the original load image to its start address, and transfer control to

it. This scheme reduces the net size of the load image when the size reduction gained by

compression exceeds the constant overhead of the compressor library that is subse-

quently linked to it. Note that the extractor application is discarded after starting the

original application, as shown in Figure 13.

tmSEI needs the following options and arguments:

■ Name of input file. This must be a TriMedia executable object file compiled with

host=nohost.

■ The DSCPU frequency and MMIO base address of TriMedia processor, via options

-tm_freq, and -mmio_base, respectively. These values are filled into the load image

that is extracted from the input executable.

■ The load range of extracted load image, via option -load.

■ The load range of ‘sei’ image, via option -sei. When this option is omitted, the output

file will still be an executable object file.

Because the extracted load image generally needs to be assigned the entire SDRAM, the

arguments of option -load usually are the SDRAM base and end address. The arguments

of option -sei must be chosen so that the extracted load image, at the start of SDRAM,

does not overlap the memory range in which the unpacker itself operates. This can be

achieved by loading this unpacker at the top of SDRAM, hence leaving the lower end

available for unpacking. In this scheme, the unpacker should be loaded at

SDRAM_BASE+N, where N is larger than the summed size of all the initialized sections as

reported by tmsize, rounded up to the next multiple of the TM instruction cache size of

64 bytes. For executables that are not extremely large, simply load the unpacker at the

middle of SDRAM, as shown in Figure 13. Note that the flash boot image writer allows

the choice of a different base address for each individual boot image.

Extractor images can be used as L2 boot programs, provided that the L1 boot code loads

them at the proper start address. See Chapter 7, Bootstrapping TriMedia in Autonomous

Mode of Book 2, Cookbook, Part C, for a description of L1/L2 booting.

Sample Performance

The following shows the size reduction, plus unpack time, of two large sample executa-

bles. One of these executables (P1) almost exclusively consists of TriMedia instructions,

while the other (P2) consists mostly of embedded Java class files. Both of them reduce to

slightly below 50%. Unpacking increases the startup time by about one second, at a

decompression rate of approximately 3.5 megabytes/sec on a 100 MHz TM-1. The con-

stant overhead of the unpacker application has been observed to be around 80 kilobytes,

with a size reduction break-even point around 240 kilobyte (original) image size.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 249

11

P1

P1 is a large multimedia application.

■ Contents: 1.76 megabytes of instructions, 0.43 megabytes of initialized data

■ Original load image: 2.19 megabytes

■ Resulting load image: 0.97 megabytes

■ Size reduction: 44%

■ Unpacking overhead: 0.6 seconds (on 100 MHz TM-1)

P2

P2 is a Java interpreter, with a large set of ROMized standard classes.

■ Contents: 2.25 megabytes of instructions, 1.60 megabytes of initialized data.

■ Original load image: 3.85 megabytes.

■ Resulting load image: 1.86 megabytes.

■ Size reduction: 48%.

■ Unpacking overhead: 1.1 seconds (on 100 MHz TM-1).

tmSEA: Self-Extracting Archives

Figure 14 A Self-Extracting Archive

tmSEA is a sample tool that can be used for easy transfer of files from a development

platform to a flash file system on a standalone TM-based board. Similarly to tmSEI, it

embeds the directories in compressed form into an unpacker application, along with

directives on where it should be copied into the target file system. This program can be

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Development Platform

/flash/dir

tmSEA
sea.out

/u/my_home/dir

TM-1 Based
Standalone System

tmSEA /u/my_home/dir \
 -od /flash/dir \
 -flashbsp \
 -o sea.out

Chapter 11: General Purpose Compression API

250 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

downloaded to the standalone board (via a JTAG connection, for example) and will

extract and store its embedded files to the indicated target directory.

In its default form, tmSEA links the TriMedia flash file system manager to the generated

archive, assuming that the target directory is somewhere on /flash. tmSEA uses the BSP

as the flash file system hardware interface by default.

However, tmSEA can also be used when the target is a file system other than flash man-

aged by the TriMedia flash file system manager, as long as this file system can be accessed

using ANSI and POSIX 1.1 I/O functions. Options -nostandard and -ldflags can then be

used for suppressing the use of the TriMedia flash manager, and for using another file

system manager, respectively.

tmSEA supports the following options and arguments:

inputdir Input directory.

-od outputdir Name of the target directory (default “/flash”)

-el | -eb Specify endianness of tmSEA output file.

-host type Specify one of the following types for the host processor:

nohost. No host is the default.
tmsim. The TriMedia simulator.
Win95. Windows 95.
MacOS. Macintosh.
WinNT. Windows NT.

-nostandard Disables use of TriMedia flash manager.

-flashbsp Use BSP as the flash file system hardware interface. This is
the default. To disable this option, use the -noflashbsp
option.

-noflashbsp Use a flash-specific driver as the flash file system hardware
interface, as specified in the makefile.

-v Specify that the tmSEA output file is verbose during
unpacking. (Users might want to link a console I/O driver
using option -ldflags).

-ccflags "cc_string" A string of arguments to pass to tmcc when compiling
sources for tmSEA application.

-ldflags "ld_string" A string of arguments to pass to tmcc when linking tmSEA
application.

-o outputfile Name of tmSEA output file that will be created. Default
output name is “a.out.”

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 251

11

tmWRB: Boot Image Writing

Figure 15 Boot Image Writing

tmWRB is a sample tool that can be used for easy transfer of a boot executable from a

development platform to the boot image of a flash file system on a standalone TM-based

board. Similarly to tmSEI, it extracts a load image from a specified executable and

embeds it in an unpacker application. Again, this program can be downloaded to the

standalone board (via a JTAG connection, for example) and will extract and install the

embedded image as the boot image in flash memory, thereby overwriting the previous

boot image. Updating the boot image in this way is safe, in that it either succeeds, or (in

case of power failures or serious flash errors) has no effect. See the discussion in Flash

Manager Properties on page 226 in Chapter 10.

tmWRB uses the BSP as the flash file system hardware interface by default.

tmWRB supports the following options and arguments:

inputfile Name of input file. This must be a TriMedia executable
object file compiled with host=nohost. Because image file
size is probably an issue here, it is advisable to have this
object file linked with tmld compaction options -bcom-
pact, -bfoldcode, and -bremoveunusedcode.

-eb | -el Specify endianness of tmWRB output file.

-o outputfile Name of tmWRB output file that will be created. Default
output name is a.out.

-tmfreq freq Frequency of TriMedia processor. This value is filled into
the load image that is extracted from the input executable.

-load beginMem , endMem Specify the download memory region of the input file.

-flashbsp Use BSP as the flash file system hardware interface. This is
the default. To disable this option, use the -noflashbsp
option.

B
o

o
t Im

ag
e

tmcc boot.c -host nohost -o boot.out
tmWRB boot.out -o wrb.out -load 0,0x8000 Ðflashbsp

boot.out

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Development Platform

/flash/dir

tmWRB
wrb.out

TM-1 Based
Standalone System

Bo
o

t Im
ag

e

Chapter 11: General Purpose Compression API

252 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

-noflashbsp Use a flash-specific driver as the flash file system hardware
interface, as specified in the makefile.

-mmio_base base MMIO base address of TriMedia processor. This value is
filled into the load image that is extracted from the input
executable.

Zlib API Data Structures

The z_stream data structure is the primary data structure in zlib. All compression and

decompression make use of this structure. For definition of all types other than those

described here and used by the zlib library please refer to the zconf.h and zlib.h header

files.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 253

11

z_stream

typedef struct z_stream_s {
 Bytef *next_in;
 uInt avail_in;
 uLong total_in;
 Bytef *next_out;
 uInt avail_out;
 uLong total_out;
 char *msg;
 struct internal_state FAR *state;
 alloc_func zalloc;
 free_func zfree;
 voidpf opaque;
 int data_type;
 uLong adler;
 uLong reserved;
} z_stream;

typedef z_stream FAR *z_streamp;

Fields

next_in Next input byte.

avail_in Number of bytes available at next_in.

total_in Total number of input bytes read so far.

next_out Next output byte.

avail_out Remaining free space at next_out.

total_out Total number of bytes output so far.

msg Last error message, Null if no error.

state Not visible by applications.

zalloc Pointer to the function that allocates the internal
memory.

zfree Pointer to a function that frees the internal mem-
ory.

opaque Private data object passed to zalloc and zfree.

data_type Best guess about the data type: ASCII or binary.

adler Adler32 value of the uncompressed data.

reserved Reserved for future use.

Description

The application must update next_in and avail_in when avail_in has dropped to zero. It

must update next_out and avail_out when avail_out has dropped to zero. The application

must initialize zalloc, zfree and opaque before calling the initialization function. All

Chapter 11: General Purpose Compression API

254 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

other fields are set by the compression library and must not be updated by the applica-

tion.

The opaque value provided by the application will be passed as the first parameter of

calls to zalloc and zfree. This can be useful for custom memory management. The com-

pression library attaches no meaning to the opaque value.

zalloc must return Z_NULL if there is not enough memory for the object. If zlib is used in

a multi-threaded application, zalloc and zfree must be thread safe.

The fields total_in and total_out can be used for statistics or progress reports. After com-

pression, total_in holds the total size of the uncompressed data and may be saved for use

in the decompressor (particularly if the decompressor wants to decompress everything in

a single step).

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 255

11

Zlib API Functions

The following tables list the functions available to applications that use the TCS zlib

library.

Basic Functions Page

zlibVersion 257

deflateInit 258

deflate 259

deflateEnd 261

inflateInit 262

inflate 263

inflateEnd 265

High-Level Functions Page

compress 267

compress2 268

uncompress 269

Advanced Functions Page

deflateInit2 271

deflateSetDictionary 273

deflateCopy 275

deflateReset 276

inflateInit2 278

inflateSetDictionary 279

inflateSync 280

inflateReset 281

File Utility Functions Page

gzopen 282

gzdopen 283

gzsetparams 284

gzread 285

gzwrite 286

Chapter 11: General Purpose Compression API

256 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

gzprintf 287

gzputs 288

gzgets 289

gzputc 290

gzgetc 290

gzflush 291

gzseek 292

gzrewind 293

gztell 294

gzeof 294

gzclose 295

gzerror 295

Checksum Functions Page

adler32 297

crc32 298

File Utility Functions Page

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 257

11

Basic Compression and Decompression Functions

This section presents the functions used for basic (low-level) compression and

decompression.

zlibVersion

const char *zlibVersion();

Parameters

None.

Return

The function returns a null-terminated string with the current version of zlib, for exam-

ple “1.1.3.”

Description

The application can compare the value of zlibVersion and ZLIB_VERSION for consistency.

If the first character differs, the library code actually used is not compatible with the

zlib.h header file used by the application. This check is automatically made by deflateInit

and inflateInit.

Chapter 11: General Purpose Compression API

258 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

deflateInit

int deflateInit(
 z_streamp stream,
 int level
);

Parameters

stream Stream state reference that can be used for com-
pression.

level Compression level. See the description below for
compression level options.

Return Codes

Z_OK Success.

Z_MEM_ERROR There was not enough memory.

Z_STREAM_ERROR Level is not a valid compression level.

Z_VERSION_ERROR The zlib library version (zlib_version) is incom-
patible with the version assumed by the caller
(ZLIB_VERSION).

Description

Initializes the internal stream state for compression. The fields zalloc, zfree and opaque

must be initialized before by the caller. If zalloc and zfree are set to Z_NULL, deflateInit

updates them to use default allocation functions.

The compression level must be a value from 0 to 9. Level 1 gives the best speed, level 9

gives the best compression, and level 0 gives no compression at all (the input data is sim-

ply copied a block at a time). The term Z_DEFAULT_COMPRESSION requests a default

compromise between speed and compression (currently equivalent to level 6).

msg is set to null if there is no error message. deflateInit does not perform any compres-

sion. Compression is performed by deflate.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 259

11

deflate

int deflate (
 z_streamp stream,
 int flush
);

Parameters

stream Stream state reference for compression returned
by deflateInit.

flush Valid flush value. See the description below for
details.

Return Codes

Z_OK Some progress has been made (more input pro-
cessed or more output produced).

Z_STREAM_END If all input has been consumed and all output has
been produced (only when flush is set to
Z_FINISH).

Z_STREAM_ERROR If the stream state was inconsistent (for example
if next_in or next_out was NULL).

Z_BUF_ERROR If no progress is possible (for example avail_in or
avail_out are zero).

Description

The function compresses as much data as possible, and stops when the input buffer

becomes empty or the output buffer becomes full. It may introduce some output latency

(reading input without producing any output) except when forced to flush.

The function performs one or both of the following actions:

■ Compress more input starting at next_in and update next_in and avail_in accordingly.

If not all input can be processed (because there is not enough room in the output

buffer), next_in and avail_in are updated and processing will resume at this point for

the next call to deflate().

■ Provide more output starting at next_out and update next_out and avail_out accord-

ingly. This action is forced if the parameter flush is non-zero. Forcing flush frequently

degrades the compression ratio, so this parameter should be set only when necessary

(in interactive applications). Some output may be provided even if flush is not set.

Before the call to deflate, the application should ensure that at least one of the actions is

possible, by providing more input and/or consuming more output, and updating avail_in

or avail_out accordingly; avail_out should never be zero before the call. The application

can consume the compressed output when it wants, for example, when the output

Chapter 11: General Purpose Compression API

260 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

buffer is full (avail_out==0), or after each call of deflate(). If deflate returns Z_OK and

with zero avail_out, it must be called again after making room in the output buffer

because there might be more output pending.

If the parameter flush is set to Z_SYNC_FLUSH, all pending output is flushed to the out-

put buffer and the output is aligned on a byte boundary, so that the decompressor can

get all input data available so far. (In particular, avail_in is zero after the call if enough

output space has been provided before the call.) Flushing may degrade compression for

some compression algorithms and so it should be used only when necessary.

If flush is set to Z_FULL_FLUSH, all output is flushed as with Z_SYNC_FLUSH, and the

compression state is reset so that decompression can restart from this point if previous

compressed data has been damaged or if random access is desired. Using Z_FULL_FLUSH

too often can seriously degrade the compression.

If deflate returns with avail_out == 0, this function must be called again with the same

value of the flush parameter and more output space (updated avail_out), until the flush is

complete (deflate returns with non-zero avail_out).

If the parameter flush is set to Z_FINISH, pending input is processed, pending output is

flushed and deflate returns with Z_STREAM_END if there was enough output space; if

deflate returns with Z_OK, this function must be called again with Z_FINISH and more

output space (updated avail_out) but no more input data, until it returns with

Z_STREAM_END or an error. After deflate has returned Z_STREAM_END, the only possible

operations on the stream are deflateReset or deflateEnd. Z_FINISH can be used immedi-

ately after deflateInit if all the compression is to be done in a single step. In this case,

avail_out must be at least 0.1% larger than avail_in plus 12 bytes. If deflate does not

return Z_STREAM_END, then it must be called again as described above. deflate() sets

stream->adler to the adler32 checksum of all input read so far (that is, total_in bytes).

deflate() may update data_type if it can make a good guess about the input data type

(Z_ASCII or Z_BINARY). In doubt, the data is considered binary. This field is only for

information purposes and does not affect the compression algorithm in any manner.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 261

11

deflateEnd

int deflateEnd (
 z_streamp stream
);

Parameters

stream Stream state reference used for compression
returned by deflateInit.

Return

Z_OK Success.

Z_STREAM_ERROR The stream state was inconsistent.

Z_DATA_ERROR The stream was freed prematurely (some input or
output was discarded).

Description

All dynamically allocated data structures for this stream are freed. This function discards

any unprocessed input and does not flush any pending output.

In the error case, msg may be set but then points to a static string (which must not be

deallocated).

Chapter 11: General Purpose Compression API

262 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

inflateInit

int inflateInit (
 z_streamp stream
);

Parameters

stream Stream state reference that can be used for decom-
pression.

Return

Z_OK Success.

Z_MEM_ERROR There was not enough memory.

Z_VERSION_ERROR The zlib library version is incompatible with the
version assumed by the caller.

Description

Initializes the internal stream state for decompression. The fields next_in, avail_in, zal-

loc, zfree and opaque must be initialized before by the caller. If next_in is not Z_NULL

and avail_in is large enough (the exact value depends on the compression method),

inflateInit() determines the compression method from the zlib header and allocates all

data structures accordingly. Otherwise, the allocation will be deferred to the first call

toinflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to use default allo-

cation functions.

msg is set to null if there is no error message. inflateInit does not perform any decompres-

sion apart from reading the zlib header if present: this will be done by inflate. (So next_in

and avail_in may be modified, but next_out and avail_out are unchanged.)

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 263

11

inflate

int inflate (
 z_streamp stream,
 int flush
);

Parameters

stream Stream state reference for decompression returned
by inflateInit.

flush Valid flush value. See the description below for
details.

Return

Z_OK Some progress has been made (more input pro-
cessed or more output produced).

Z_STREAM_END The end of the compressed data has been reached
and all uncompressed output has been produced.

Z_NEED_DICT A preset dictionary is needed at this point.

Z_DATA_ERROR The input data was corrupted (input stream not
conforming to the zlib format or incorrect
adler32 checksum).The application may then call
inflateSync to look for a good compression block.

Z_STREAM_ERROR The stream structure was inconsistent (for exam-
ple if next_in or next_out was NULL).

Z_MEM_ERROR There was not enough memory.

Z_BUF_ERROR No progress is possible or there was not enough
room in the output buffer when Z_FINISH is used.

Description

The function decompresses as much data as possible, and stops when the input buffer

becomes empty or the output buffer becomes full. It may some introduce some output

latency (reading input without producing any output) except when forced to flush.

The function performs one or both of the following actions:

■ Decompress more input starting at next_in and update next_in and avail_in accord-

ingly. If not all input can be processed (because there is not enough room in the out-

put buffer), next_in is updated and processing will resume at this point for the next

call of inflate.

■ Provide more output starting at next_out and update next_out and avail_out accord-

ingly. inflate provides as much output as possible, until there is no more input data or

no more space in the output buffer (see below about the flush parameter).

Chapter 11: General Purpose Compression API

264 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Before the call to inflate(), the application should ensure that at least one of the actions

is possible, by providing more input and/or consuming more output, and updating the

next_* and avail_* values accordingly. The application can consume the uncompressed

output when it wants, for example, when the output buffer is full (avail_out==0), or after

each call to inflate(). If inflate returns Z_OK and with zero avail_out, it must be called

again after making room in the output buffer because there might be more output

pending.

If the parameter flush is set to Z_SYNC_FLUSH, inflate flushes as much output as possible

to the output buffer. The flushing behavior of inflate is not specified for values of the

flush parameter other than Z_SYNC_FLUSH and Z_FINISH, but the current implementa-

tion actually flushes as much output as possible anyway.

inflate() should normally be called until it returns Z_STREAM_END or an error. However

if all decompression is to be performed in a single step (a single call of inflate), the

parameter flush should be set to Z_FINISH. In this case all pending input is processed and

all pending output is flushed; avail_out must be large enough to hold all the uncom-

pressed data. (The size of the uncompressed data may have been saved by the compres-

sor for this purpose.) The next operation on this stream must be inflateEnd to deallocate

the decompression state. The use of Z_FINISH is never required, but can be used to

inform inflate that a faster routine may be used for the single inflate() call.

If a preset dictionary is needed at this point (see inflateSetDictionary below), inflate sets

stream->adler to the adler32 checksum of the dictionary chosen by the compressor and

returns Z_NEED_DICT; otherwise it sets stream->adler to the adler32 checksum of all out-

put produced so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or an

error code as described below. At the end of the stream, inflate checks that its computed

adler32 checksum is equal to that saved by the compressor and returns Z_STREAM_END

only if the checksum is correct.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 265

11

inflateEnd

int inflateEnd (
 z_streamp stream
);

Parameters

stream Stream state reference used for decompression
returned by inflateInit.

Return Codes

Z_OK Success.

Z_STREAM_ERROR The stream state was inconsistent.

Description

All dynamically allocated data structures for this stream are freed. This function discards

any unprocessed input and does not flush any pending output.

In the error case, msg may be set but then points to a static string (which must not be

deallocated).

Chapter 11: General Purpose Compression API

266 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

High-Level Compression and Decompression Functions

The following utility functions are implemented on top of the basic stream-oriented

functions. To simplify the interface, certain default options are assumed (compression

level and memory usage, standard memory allocation functions). The source code of

these utility functions can easily be modified if you need special options.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 267

11

compress

int compress (
 Bytef *dest,
 uLongf *destLen,
 const Bytef *source,
 uLong sourceLen
);

Parameters

dest Destination buffer.

destLen Length of destination buffer.

source Source buffer.

sourceLen Length of source buffer.

Return Codes

Z_OK Success.

Z_MEM_ERROR There was not enough memory.

Z_BUF_ERROR There was not enough room in the output buffer.

Description

Compresses the source buffer into the destination buffer. sourceLen is the byte length of

the source buffer. Upon entry, destLen is the total size of the destination buffer, which

must be at least 0.1% larger than sourceLen plus 12 bytes. Upon exit, destLen is the

actual size of the compressed buffer.

This function can be used to compress a whole file at once if the input file is mmap’d.

Chapter 11: General Purpose Compression API

268 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

compress2

int compress2 (
 Bytef *dest,
 uLongf *destLen,
 const Bytef *source,
 uLong sourceLen,
 int level
));

Parameters

dest Destination buffer.

destLen Length of destination buffer.

source Source buffer.

sourceLen Length of source buffer.

level Compression level.

Return

Z_OK Success.

Z_MEM_ERROR There was not enough memory.

Z_BUF_ERROR There was not enough room in the output buffer.

Z_STREAM_ERROR The level parameter is invalid.

Description

Compresses the source buffer into the destination buffer. The level parameter has the

same meaning as in deflateInit. sourceLen is the byte length of the source buffer.

Upon entry, destLen is the total size of the destination buffer, which must be at least

0.1% larger than sourceLen plus 12 bytes. Upon exit, destLen is the actual size of the

compressed buffer.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 269

11

uncompress

int uncompress (
 Bytef *dest,
 uLongf *destLen,
 const Bytef *source,
 uLong sourceLen
);

Parameters

dest Destination buffer.

destLen Length of destination buffer.

source Source buffer.

sourceLen Length of source buffer.

Return Codes

Z_OK Success.

Z_MEM_ERROR There was not enough memory.

Z_BUF_ERROR There was not enough room in the output buffer.

Z_DATA_ERROR The input data was corrupted.

Description

Decompresses the source buffer into the destination buffer. sourceLen is the byte length

of the source buffer. Upon entry, destLen is the total size of the destination buffer, which

must be large enough to hold the entire uncompressed data. (The size of the uncom-

pressed data must have been saved previously by the compressor and transmitted to the

decompressor by some mechanism outside the scope of this compression library.) Upon

exit, destLen is the actual size of the compressed buffer. This function can be used to

decompress a whole file at once if the input file is mmap’ed.

Chapter 11: General Purpose Compression API

270 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Advanced Functions

The following functions are needed only in some special applications.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 271

11

deflateInit2

int deflateInit2 (
 z_streamp stream,
 int level,
 int method,
 int windowBits,
 int memLevel,
 int strategy
);

Parameters

stream Stream state reference used for decompression,
returned by inflateInit.

level Compression level.

method Compression method. It must be Z_DEFLATED in
this version of the library.

windowBits The base 2 logarithm of the window size (the size
of the history buffer).

memLevel Specifies how much memory should be allocated
for the internal compression state.

strategy Specifies the compression algorithm.

Return Codes

Z_OK Success.

Z_MEM_ERROR There was not enough memory.

Z_STREAM_ERROR A parameter is invalid (such as an invalid
method).

Description

This is another version of deflateInit with more compression options. The fields next_in,

zalloc, zfree and opaque must be initialized before by the caller.

The compression level must be a value from 0 to 9. Level 1 gives best speed, level 9 gives

best compression, and level 0 gives no compression at all (the input data is simply cop-

ied a block at a time). The term Z_DEFAULT_COMPRESSION requests a default compro-

mise between speed and compression (currently equivalent to level 6).

The windowBits parameter is the base 2 logarithm of the window size (the size of the his-

tory buffer). It should be in the range 8 to 15 for this version of the library. Larger values

of this parameter result in better compression at the expense of memory usage. The

default value is 15 if deflateInit is used instead.

Chapter 11: General Purpose Compression API

272 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

The memLevel parameter specifies how much memory should be allocated for the inter-

nal compression state.

memLevel=1 uses minimum memory but is slow and reduces compression ratio

memLevel=9 uses maximum memory for optimal speed.

The default value is 8. See zconf.h for total memory usage as a function of windowBits

and memLevel.

The strategy parameter tunes the compression algorithm. Use the value

Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a filter (or pre-

dictor), or Z_HUFFMAN_ONLY to force Huffman encoding only (no string match). Fil-

tered data consists mostly of small values with a somewhat random distribution. In this

case, the compression algorithm is tuned to compress them better. The effect of

Z_FILTERED is to force more Huffman coding and less string matching; it is somewhat

intermediate between Z_DEFAULT and Z_HUFFMAN_ONLY. The strategy parameter affects

only the compression ratio but not the correctness of the compressed output (even if it is

not set appropriately).

msg is set to NULL if there is no error message. deflateInit2 does not perform any com-

pression. Compression is performed by deflate.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 273

11

deflateSetDictionary

int deflateSetDictionary (
 z_streamp stream,
 const Bytef *dictionary,
 uInt dictLength
);

Parameters

stream Stream state reference used for compression,
returned by deflateInit.

dictionary A byte sequence that consist of strings that are
likely to be encountered later in the data to be
compressed.

dictLength Length of the dictionary byte sequence.

Return Codes

Z_OK Success.

Z_STREAM_ERROR A parameter is invalid (such as NULL dictionary)
or the stream state is inconsistent (for example if
deflate has already been called for this stream or if
the compression method is bsort).

Description

Initializes the compression dictionary from the given byte sequence without producing

any compressed output. This function must be called immediately after deflateInit,

deflateInit2 or deflateReset, before any call of deflate. The compressor and decompressor

must use exactly the same dictionary (see inflateSetDictionary).

The dictionary should consist of strings (byte sequences) that are likely to be encoun-

tered later in the data to be compressed, with the most commonly used strings prefera-

bly put towards the end of the dictionary. Using a dictionary is most useful when the

data to be compressed is short and can be predicted with good accuracy; the data can

then be compressed better than with the default empty dictionary.

Depending on the size of the compression data structures selected by deflateInit or

deflateInit2, a part of the dictionary may in effect be discarded, for example if the dictio-

nary is larger than the window size in deflate or deflate2. Thus the strings most likely to

be useful should be put at the end of the dictionary, not at the front.

Upon return of this function, stream–>adler is set to the Adler32 value of the dictionary;

the decompressor may later use this value to determine which dictionary has been used

by the compressor. (The Adler32 value applies to the whole dictionary even if only a sub-

set of the dictionary is actually used by the compressor.)

Chapter 11: General Purpose Compression API

274 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

deflateSetDictionary does not perform any compression. Compression is performed by

deflate.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 275

11

deflateCopy

int deflateCopy (
 z_streamp dest,
 z_streamp source
);

Parameters

dest Destination stream.

source Source stream.

Return Codes

Z_OK Success.

Z_MEM_ERROR There was not enough memory.

Z_STREAM_ERROR The source stream state was inconsistent (such as
zalloc being NULL).

Description

Sets the destination stream as a complete copy of the source stream.

This function can be useful when several compression strategies will be tried, for exam-

ple when there are several ways of pre-processing the input data with a filter. The streams

that will be discarded should then be freed by calling deflateEnd. Note that deflateCopy

duplicates the internal compression state which can be quite large, so this strategy is

slow and can consume much memory.

msg is left unchanged in both source and destination.

Chapter 11: General Purpose Compression API

276 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

deflateReset

int deflateReset (
 z_streamp stream
);

Parameters

stream Stream state reference used for compression,
returned by deflateInit.

Return

Z_OK Success.

Z_STREAM_ERROR The source stream state was inconsistent (such as
zalloc or state being NULL).

Description

This function is equivalent to deflateEnd followed by deflateInit, but does not free and

reallocate all the internal compression state. The stream will keep the same compression

level and any other attributes that may have been set by deflateInit2.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 277

11

deflateParams

int deflateParams (
 z_streamp stream,
 int level,
 int strategy
);

Parameters

stream Stream state reference used for compression
returned by deflateInit.

level New compression level.

strategy New compression strategy.

Return

Z_OK Success.

Z_STREAM_ERROR The source stream state was inconsistent or if a
parameter was invalid.

Z_BUF_ERROR The field stream–>avail_out was zero.

Description

Dynamically update the compression level and compression strategy. The interpretation

of level and strategy is as in deflateInit2. This can be used to switch between compres-

sion and straight copy of the input data, or to switch to a different kind of input data

requiring a different strategy. If the compression level is changed, the input available so

far is compressed with the old level (and may be flushed); the new level will take effect

only at the next call of deflate.

Before the call of deflateParams, the stream state must be set as for a call of deflate, since

the currently available input may have to be compressed and flushed. In particular,

stream–>avail_out must be non-zero.

Chapter 11: General Purpose Compression API

278 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

inflateInit2

int inflateInit2 (
 z_streamp stream,
 int windowBits
);

Parameters

stream Stream state reference that can be used for decom-
pression.

windowBits The base 2 logarithm of the maximum window
size (the size of the history buffer).

Return Codes

Z_OK Success.

Z_MEM_ERROR There was not enough memory.

Z_STREAM_ERROR A parameter is invalid (e.g., a negative memLevel).

Description

This is another version of inflateInit with an extra parameter. The fields next_in, avail_in,

zalloc, zfree and opaque must be initialized before by the caller.

The windowBits parameter is the base 2 logarithm of the maximum window size (the size

of the history buffer). It should be in the range 8 to 15 for this version of the library. The

default value is 15 if inflateInit is used instead. If a compressed stream with a larger win-

dow size is given as input, inflate() will return with the error code Z_DATA_ERROR

instead of trying to allocate a larger window.

msg is set to NULL if there is no error message. inflateInit2 does not perform any decom-

pression apart from reading the zlib header if present: this will be done by inflate. (So

next_in and avail_in may be modified, but next_out and avail_out are unchanged.)

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 279

11

inflateSetDictionary

int inflateSetDictionary (
 z_streamp stream,
 const Bytef *dictionary,
 uInt dictLength
);

Parameters

stream Stream state reference used for decompression,
returned by inflateInit.

dictionary A byte sequence that consist of strings that are
likely to be encountered later in the data to be
decompressed.

dictLength Length of the dictionary byte sequence.

Return Codes

Z_OK Success.

Z_STREAM_ERROR A parameter is invalid (e.g., a NULL dictionary) or
the stream state is inconsistent.

Z_DATA_ERROR The given dictionary doesn’t match the expected
one (incorrect Adler32 value).

Description

Initializes the decompression dictionary from the given uncompressed byte sequence.

This function must be called immediately after a call to inflate if this call returned

Z_NEED_DICT. The dictionary chosen by the compressor can be determined from the

Adler32 value returned by this call to inflate. The compressor and decompressor must use

exactly the same dictionary (see deflateSetDictionary).

inflateSetDictionary does not perform any decompression. Decompression is performed

by subsequent calls to inflate.

Chapter 11: General Purpose Compression API

280 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

inflateSync

int inflateSync (
 z_streamp stream
);

Parameters

stream Stream state reference used for decompression,
returned by inflateInit.

Return Codes

Z_OK A full flush point has been found.

Z_BUF_ERROR No more input was provided.

Z_DATA_ERROR No flush point has been found.

Z_STREAM_ERROR The stream structure was inconsistent.

Description

Skips invalid compressed data until a full flush point (see above the description of deflate

with Z_FULL_FLUSH) can be found, or until all available input is skipped. No output is

provided.

In the success case, the application may save the current value of total_in which indi-

cates where valid compressed data was found. In the error case, the application may

repeatedly call inflateSync, providing more input each time, until success or end of the

input data.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 281

11

inflateReset

int inflateReset (
 z_streamp stream
);

Parameters

stream Stream state reference used for decompression,
returned by inflateInit.

Return

Z_OK Success.

Z_STREAM_ERROR The source stream state was inconsistent (such as
zalloc or state being NULL).

Description

This function is equivalent to inflateEnd followed by inflateInit, but does not free and

reallocate all the internal decompression state. The stream will keep attributes that may

have been set by inflateInit2.

Chapter 11: General Purpose Compression API

282 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

File Utility Functions

The following functions provide the support for reading and writing files in gzip (.gz)

format. The interface is similar to that of stdio.

gzopen

gzFile gzopen (
 const char *path,
 const char *mode
);

Parameters

path Path of file to open.

mode Mode in which the file should be opened.

Return

On success, the function returns a gzFile reference.

The function returns NULL if the file could not be opened or if there was insufficient

memory to allocate the (de)compression state; errno can be checked to distinguish the

two cases (if errno==0, the zlib error is Z_MEM_ERROR).

Description

Opens a gzip (.gz) file for reading or writing. The mode parameter is as in fopen ("rb" or

"wb") but can also include a compression level ("wb9") or a strategy: 'f' for filtered data as

in "wb6f", 'h' for Huffman only compression as in "wb1h". (See the description of

deflateInit2 for more information about the strategy parameter.)

The function can read a file which is not in gzip format. In such a case, gzread will

directly read from the file without decompression.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 283

11

gzdopen

gzFile gzdopen (
 int fd,
 const char *mode
));

Parameters

fd gzFile descriptor.

mode Mode in which the file should be opened.

Return Codes

On success, the function returns a gzFile reference to the opened file.

The function returns NULL if there was insufficient memory to allocate the (de)compres-

sion state.

Description

The function associates a gzFile with the file descriptor fd. File descriptors are obtained

from calls like open, dup, creat, pipe or fileno (if the file has been previously opened

with fopen).

The next call to gzclose applied to the returned gzFile will also close the file descriptor fd,

just as fclose(fdopen(fd), mode) closes the file descriptor fd. If you want to keep fd open,

use gzdopen(dup(fd), mode).

Chapter 11: General Purpose Compression API

284 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

gzsetparams

int gzsetparams (
 gzFile file,
 int level,
 int strategy
));

Parameters

file A gzFile reference to an open file.

level Compression level.

strategy Compression strategy.

Return Codes

Z_OK Success.

Z_STREAM_ERROR The file was not opened for writing.

Description

Dynamically update the compression level or strategy. See the description of deflateInit2

for the meaning of these parameters.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 285

11

gzread

int gzread (
 gzFile file,
 voidp buf,
 unsigned len
);

Parameters

file A gzFile reference to an open file.

buf Buffer in which to put read data.

len Length of buffer.

Return

The function returns the number of uncompressed bytes actually read (0 for end of file,

and –1 for error).

Description

Reads the given number of uncompressed bytes from the compressed file. If the input

file was not in gzip format, gzread copies the given number of bytes into the buffer.

Chapter 11: General Purpose Compression API

286 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

gzwrite

int gzwrite (
 gzFile file,
 const voidp buf,
 unsigned len
);

Parameters

file A gzFile reference to an open file.

buf Buffer from which to take data.

len Length of buffer.

Return

The function returns the number of uncompressed bytes actually written (0 in case of

error).

Description

Writes the given number of uncompressed bytes into the compressed file.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 287

11

gzprintf

int gzprintf (
 gzFile file,
 const char *format,
 ...
);

Parameters

file A gzFile reference to an open file.

format Format string as in fprintf.

Return Codes

The function returns the number of uncompressed bytes actually written (0 in case of

error).

Description

Converts, formats, and writes the args to the compressed file under control of the format

string, as occurs in fprintf.

Chapter 11: General Purpose Compression API

288 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

gzputs

int gzputs (
 gzFile file,
 const char *s
);

Parameters

file A gzFile reference to an open file.

s Null-terminated string to be written.

Return Codes

The function returns the number of characters written, or –1 in case of error.

Description

Writes the given null-terminated string to the compressed file, excluding the terminat-

ing null character.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 289

11

gzgets

char *gzgets (
 gzFile file,
 char *buf,
 int len
);

Parameters

file A gzFile reference to an open file.

buf Buffer from which to read.

len Maximum length of the string to be read, includ-
ing null termination.

Return

The function returns buf, or Z_NULL in case of error.

Description

Reads bytes from the compressed file until len–1 characters are read, or a newline charac-

ter is read and transferred to buf, or an end-of-file condition is encountered. The string is

then terminated with a null character.

Chapter 11: General Purpose Compression API

290 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

gzputc

int gzputc (
 gzFile file,
 int ch
);

Parameters

file A gzFile reference to an open file.

ch Character to be written to the file.

Return Codes

The function returns the value that was written, or –1 in case of error.

Description

Writes ch (as an unsigned char) into the compressed file.

gzgetc

int gzgetc (
 gzFile file
);

Parameters

file A gzFile reference to an open file.

Return

The function returns the byte read, or –1 in case of end-of-file or error.

Description

The function reads one byte from the compressed file.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 291

11

gzflush

int gzflush (
 gzFile file,
 int flush
);

Parameters

file A gzFile reference to an open file.

flush Valid flush value. See the description of deflate for
details.

Return Codes

The function returns Z_OK if the flush parameter is Z_FINISH and all output could be

flushed. The return value is the zlib error number. (See function gzerror on page 295.)

Description

Flushes all pending output into the compressed file. The function should be called only

when strictly necessary because it can degrade compression.

Chapter 11: General Purpose Compression API

292 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

gzseek

z_off_t gzseek (
 gzFile file,
 z_off_t offset,
 int whence
);

Parameters

file A gzFile reference to an open file.

offset Represents a number of bytes in the uncom-
pressed data stream.

whence Defined as in lseek(2);

Return Codes

The function returns the resulting offset location, as measured in bytes from the begin-

ning of the uncompressed stream. In the case of error, the function returns –1, particu-

larly when the file is open for writing and the new starting position would be before the

current position.

Description

Sets the starting position for the next gzread or gzwrite on the given compressed file. The

whence parameter is defined as in lseek(2); the value SEEK_END is not supported. If the

file is open for reading, this function is emulated but can be extremely slow. If the file is

open for writing, only forward seeks are supported; gzseek then compresses a sequence

of zeroes up to the new starting position.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 293

11

gzrewind

int gzrewind (
 gzFile file
);

Parameters

file A gzFile reference to an open file.

Return

The function returns the resulting offset location, as measured in bytes from the begin-

ning of the uncompressed stream. The function returns 0 on success or –1 in case of

error, particularly when the file is open for writing and the new starting position would

be before the current position.

Description

Rewinds the given file. This function is supported only for reading. gzrewind(file) is

equivalent to (int)gzseek(file,0L,SEEK_SET).

Chapter 11: General Purpose Compression API

294 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

gztell

z_off_t gztell (
 gzFile file
);

Parameters

file A gzFile reference to an open file.

Return Codes

Returns the starting position for the next gzread or gzwrite on the given compressed file.

Description

The returned position represents a number of bytes in the uncompressed data stream.

gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR).

gzeof

int gzeof (
 gzFile file
);

Parameters

file A gzFile reference to an open file.

Return

The function returns 1 when end-of-file has previously been detected reading the given

input stream. Otherwise, the function returns zero.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 295

11

gzclose

int gzclose (
 gzFile file
);

Parameters

file A gzFile reference to an open file.

Return Codes

The function returns the zlib error number (see function gzerror below).

Description

The function flushes all pending output if necessary, closes the compressed file and deal-

locates the entire (de)compression state.

gzerror

const char *gzerror (
 gzFile file,
 int *errnum
);

Parameters

file A gzFile reference to an open file.

errnum Address at which the zlib error number can be
written.

Return Codes

The function returns the error message for the last error that occurred on the given com-

pressed file.

Description

The function sets errnum to the zlib error number. If an error occurred in the file system

and not in the compression library, errnum is set to Z_ERRNO and the application may

consult errno to get the exact error code.

Chapter 11: General Purpose Compression API

296 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Checksum Functions

These functions are not related to compression but are exported anyway because they

might be useful in applications using the compression library.

Chapter 11: General Purpose Compression API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 297

11

adler32

uLong adler32 (
 uLong adler,
 const Bytef *buf,
 uInt len
);

Parameters

adler Previous Adler-32 checksum.

buf Buffer for which to calculate Adler-32 checksum.

len Length of buffer.

Return Codes

If buf is NULL, the function returns the required initial value for the checksum. Other-

wise this function returns a new Adler-32 checksum.

Description

Update a running Adler-32 checksum with the bytes in buf (the first len bytes) and

return the updated checksum. If buf is NULL, the function returns the required initial

value for the checksum.

An Adler-32 checksum is almost as reliable as a CRC32 but can be computed much faster.

Example

uLong adler = adler32(0L, Z_NULL, 0);
while(read_buffer(buffer, length) != EOF){
 adler = adler32(adler, buffer, length);
}
if(adler != original_adler) error();

Chapter 11: General Purpose Compression API

298 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

crc32

uLong crc32 (
 uLong crc,
 const Bytef *buf,
 uInt len
);

Parameters

crc Previous CRC.

buf Buffer for which to calculate the CRC.

len Length of buffer.

Return

If buf is NULL, the function returns the required initial value for the checksum. Other-

wise this function returns a new CRC.

Description

The function updates a running CRC from the bytes in buf (the first len bytes) and

returns the updated CRC. If buf is NULL, the function returns the required initial value

for the CRC. Pre- and post-conditioning (one’s complement) is performed within this

function; your application shouldn’t do it.

Example

uLong crc = crc32(0L, Z_NULL, 0);
while(read_buffer(buffer,length) != EOF){
 crc = crc32(crc, buffer, length);
}
if(crc != original_crc) error();

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 299

12

Chapter 12

Downloader API

Topic Page

Downloader Library 300

Downloader API Description 301

Downloader API Structures and Enumerations 310

Downloader API Functions 318

Chapter 12: Downloader API

300 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Downloader Library

The TriMedia downloader library is intended for extracting a relocated load image from

an executable object file. This functionality is used by several of the TriMedia SDE tools,

and is also available in the form of a library libload.a which has been compiled for a

number of platforms. By this, instead of using tmmon or tmrun, users are able to use

the downloader within their own application for loading and starting TriMedia pro-

grams. The downloader library can even be used from the TriMedia processor itself; an

example that uses the downloader library for standalone booting is presented at the end

of this section.

The following table shows where in the SDE the header file and the different libraries can

be found:

The following commands show how to build an application that uses the downloader

library for the TriMedia-based or the SunOS-based case, respectively:

The downloader is robust, in the sense that it detects exceptional situations like memory

overflow, and translates them into appropriate error codes. It is also efficient, in that it

only reads those parts of the downloaded object file that are strictly necessary for down-

loading. For instance, unless it has been stripped, a large part of an object file generally

consists of symbol and debug information; none of this information will be touched by

the downloader. The downloader can be used for generating load images that use shared

memory on a multiprocessor cluster. Finally, the downloader can be instructed to read

from different types of object file sources such as a file or a consecutive memory area (for

example, EEPROM). The memory needed for downloading can roughly be estimated by

the total executable size reported by tmsize, plus 20 kb.

Location in SDE File Name Description

$TCS/include/tmlib TMDownLoader.h header file

$TCS/lib/el libload.a library, TriMedia version, little endian

$TCS/lib/eb libload.a library, TriMedia version, big endian

$TCS/lib/<platform> libload.a library, for platforms Win95, MacOS, SunOS and
HP-UX

tmcc main.c Ðlload
acc main.c ÐI$TCS/include ÐL$TCS/lib/SunOS Ðlload

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 301

12

Downloader API Description

This interface provides the typical functions which are needed by a TM-1 downloader.

Downloading here is defined as the process of getting a bootable executable on a TM-1 in

reset state. This is in contrast to “dynamic loading,” in which case the TM-1 itself loads

an executable or library.

Examples of Downloader Use

In most situations, the downloader library is used by a monitor program or execution

shell to place a relocated image of an executable object file into the SDRAM of an idle

TriMedia processor. The processor is then booted by releasing it from its RESET state; this

causes it to start executing instructions from the start of SDRAM (where the image has

been loaded). Examples of TriMedia tools which use the downloader library in this way

are tmmon, tmgmon, tmrun, and tmmprun.

Apart from use by this monitor- type of application running on a host, the downloader

library can also be used in several other situations:

■ The downloader library can be used in a tool that stores the load image in a file for

later use, for later copying into SDRAM, for example, or for burning into EEPROM.

An example of such a tool is tmld, when it is used with option -mi.

■ The downloader library can be used by a resident monitor program running on a

standalone TriMedia board. This monitor’s load image is copied from EEPROM to the

beginning of SDRAM when the processor is booted.Upon commands from a terminal,

the monitor may itself download and relocate executables from a parallel port, or

from flash memory. Because the monitor program already occupies memory at the

beginning of SDRAM, it must place the new load image ‘somewhere’ at a higher posi-

tion. It can choose any memory range for that, as long as this does not interfere with

monitor execution. After relocation and loading, the monitor starts the loaded image

simply by transferring control to its first instruction. Figure 16, following, sketches a

load map containing the memory areas occupied by the monitor and by the execut-

able that is later loaded by it.1

■ The downloader can also be used by a standalone multiprocessor boot procedure to

economize on EEPROM size when the images to be loaded on the different processors

are obtained from the same executable. Especially for large executables, or when the

number of processors is high, storing load images for all processors would require

considerably more EEPROM than storing the (still relocatable) object file, plus a

downloader-based boot program that reads and relocates the executable for each of

1. For simplicity, this example does not show that also the monitor itself is loaded in two phases by the L1/L2
boot procedure.

Chapter 12: Downloader API

302 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

the processors, starts them, and in the last step overwrites itself. An example illustrat-

ing this is shown in the simple download program in Figure 17 on page 307.

Figure 16 Downloading of Executable by Monitor Program

Phases of Downloading

The following steps describe in which phases downloading is to be performed. First, the

procedure for ‘normal’, single processor downloading is described, followed by a descrip-

tion of how this should be adapted for downloading a multiprocessor cluster. The exam-

ples shown in Figure 17 on page 307 and Figure 18 on page 309 can be used as

illustrations of both procedures. The individual functions of the downloader API are

only listed here.

1. An executable object is loaded, that is, a handle is created which is to be used to refer

to the object in the next steps; some internal data structures are set up, and initial

data like the object’s header is copied to the downloader’s memory. None of this

loaded information is accessible other than via calls to downloader functions while

specifying the handle.

executable’s load image,
loaded by monitor from
parallel port or flash memory
upon load command

executable’s transfer address, to
which monitor jumps after loading

Memory area assigned
to loaded executable.
Selected by monitor
and passed to the
downloader library
while relocating this
executable.

SDRAM high address

Memory area assigned
to monitor program.
Specified when
generating its load
image (by tmld, for
example).

SDRAM low address

stack

heap

stack

heap

Monitor’s load image, loaded by
hardware from EEPROM upon
processor boot

2

1

Monitor’s transfer address, to which
hardware jumps upon processor boot

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 303

12

Different functions for loading are available, to be used for different locations of the

object:

2. Optionally, the image size and required image alignment can be retrieved. This size

can be used for checking whether the memory area into which the image is to be

placed is large enough to hold this image, or (in tools like tmld which construct load

images) to allocate memory for temporarily storing the image before it can e.g. be

written to file; the retrieved alignment can be used for checking whether the align-

ment of the eventual SDRAM load address matches the one that is required by the

executable.

The retrieved size is approximately equal to the sum of the sizes of the initialized sec-

tions reported by tmsize. Differences are caused by padding between section images

for maintaining section alignment.

The retrieved alignment usually is equal to 64 bytes, which is the TriMedia instruction

cache block size. Alignments of executables will become larger when .align directives

specifying alignments that are not divisors of 64 have been used in trees or assembly

sources. Such alignments will not be generated by the TriMedia C compiler.

3. All download symbols present in the executable other than the reserved ones must be

resolved by giving them appropriate 32-bit values, depending on their semantics. The

reserved download symbols will be implicitly resolved in the next step.

Note
For more information on reserved symbols, refer to Reserved Download
Symbols in Chapter 11 of Book 4, Software Tools, Part B.

4. After all symbols other than reserved download symbols have been resolved, the exe-

cutable must be relocated. Relocation does not retrieve an image yet; rather, it reads

the remaining parts of the object that are needed, does some error checking, maps all

Function Object Location

TMDwnLdr_load_object_from_file File

TMDwnLdr_load_object_from_mem A consecutive memory range

TMDwnLdr_load_object_from_driver Anywhere, by constructing an appropriate
Lib_IODriver object. Such an object is an
encapsulation of user-specified callback func-
tions which are used to access the object in a
user-specified way.

Function Description

TMDwnLdr_get_image_size Get minimal image size and minimal image alignment.

Function Description

TMDwnLdr_resolve_symbol Resolve download symbol to absolute 32-bit value.

Chapter 12: Downloader API

304 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

of the object’s sections in the specified SDRAM memory range and prepares image

extraction; as a side effect it implicitly resolves the reserved download symbols using

the some basic information that is passed as arguments to the relocation function:

— SDRAM memory range into which the load image is to be eventually placed

— Host type

— MMIO base address

— Processor frequency

— A flag indicating whether caching should be automatically enabled or disabled, or
left to the user

5. After the loaded object has been relocated, the load image can be extracted. The

image extraction function takes a memory base address to which the image must be

copied; this address must not be confused with the memory base specified to the relo-

cation call (Refer to step 4, above). While the latter address specifies the SDRAM

address where the load image eventually must be loaded, the image extraction address

specifies where the result of image extraction currently must be placed. The physical

SDRAM load address must be specified during relocation. In monitor programs that

place the extracted image immediately into SDRAM, the virtual SDRAM load address

in the monitor’s address space must be specified during image extraction. Similarly, in

case of a tool that writes the extracted image to a file, the address of a temporary

buffer for holding the image before it can be written to file must be specified during

image extraction.

6. For the final step, the object handle, with all resources currently allocated for it, must

be deallocated. A handle can not be reused for a new relocation, or for a new image

extraction.

In case of downloading a multiprocessor cluster, the above procedure must be repeated

for loading all executables on all the processors, with a slight adaptation necessary for

implementing shared sections. First, a logical numbering of the used processors must be

made using numbers 0 .. N-1, where N is the number of processors. Second, an alternate

relocation function must be used in step 4; this function takes an array of MMIO bases of

all processors as additional argument, as well as the assigned number of the ‘current’

processor and the total number of processors (N). Finally, a single shared section table

must be passed to all calls to the relocation function. This table is necessary to record

Function Description

TMDwnLdr_relocate Relocate an executable.

Function Description

TMDwnLdr_get_memory_image Extract load image.

Function Description

TMDwnLdr_unload_object Free object handle with all associated resources.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 305

12

some downloader history, such as the endian of all previously loaded executables (all

members of a multiprocessor cluster must have same endian), and which shared sections

have been encountered in previously loaded executables: executables containing shared

sections that already have been encountered in previous executables will not receive a

new copy of the section, but will instead be made to refer to the already loaded one.

Auxiliary Functions

The following functions allow some further inspection of loaded objects:

Function Description

TMDwnLdr_create_shared_section_table Create a shared section table.

TMDwnLdr_multiproc_relocate Relocate an executable that is part of a multi-
processor cluster.

TMDwnLdr_unload_shared_section_table Free a shared section table, with all allocated
resources.

Function Description

TMDwnLdr_get_endian Get the object’s “endian-ness.”

TMDwnLdr_patch_value Store a 32 bit value into the object, at the
address of the specified symbol. The value will
be stored in the ‘correct’ byte order, according
to the object’s own endian; that is, a 32-bit full
word memory fetch from the specified
address by the downloaded executable will
result in the patched value. A patch must be
performed after relocation, but before image
extraction. The symbol must correspond with
an address in an initialized data section.

TMDwnLdr_get_value Get the 32-bit value from the specified
address from the object. The value will be
read according to the object’s own endian;
see above. A ‘get_value’ must be performed
after relocation, but before memory extrac-
tion.The symbol must correspond with an
address in an initialized data section.

TMDwnLdr_load_symbtab_from_object Construct a symbol table containing the
names and values of all of the object’s sym-
bols, and return a handle. Symbol table con-
struction must be performed after relocation,
but before memory extraction.

TMDwnLdr_get_address Get a symbol’s 32 bit value from a symbol
table.

Chapter 12: Downloader API

306 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Simple Download Example

The program listed in Figure 17 on page 307, shows a tmsim-based shell which uses the

downloader library for loading a second executable into a 4-megabyte region of the

SDRAM that has been allocated from the shell’s own heap. Loading is performed accord-

ing to the steps described earlier in this section; after the executable has been loaded, the

shell transfers control to it by means of a branch to its start address. Note that the mem-

ory map of shell and loaded program during this procedure is comparable to the one

shown in Figure 16 on page 302, but with the exception that loading now is performed

into the stack/heap gap instead of after the SDRAM area allocated to the shell. Checking

of the error codes returned by the downloader functions has been omitted in the listed

program; this is for readability only, and not advised in realistic applications.

By the standard boot code $TCS/lib/<endian>/reset.o which is added by the compiler

driver tmcc to executables, the second executable runs completely independent from

the shell, and never returns: it performs a cold software start, by setting a new processor

endianness (the endianness of shell and of the executable loaded by it need not be the

same), by setting up a new stack/heap area within the 4-megabyte memory range in

which it was loaded, and by initializing its runtime libraries. Upon termination, similar

to any executable, it will bring TriMedia into a RESET state, without returning to the

shell. Without special measures for recovering this memory, all SDRAM but the memory

in which the second executable has been loaded remains unused. An example of such

“special measure” is looking up the actual SDRAM range from MMIO locations

DRAM_BASE and DRAM_LIMIT.

Because the user is responsible for TriMedia cache coherence, it is necessary to flush the

data cache, and invalidate the instruction cache after an executable has been loaded.

This to force parts of the written executable that are still pending in the data cache to be

written out to SDRAM, and to prevent stale contents of the instruction cache from being

TMDwnLdr_enclosing_symbol Return a descriptor of a symbol with largest
value that is still less than or equal to a speci-
fied value.

TMDwnLdr_traverse_symbols Call a specified callback function on all sym-
bols in the symbol table, in either alphabetical
order, or in order of the symbol’s increasing
value.

TMDwnLdr_unload_symboltable Free a symbol table, with all allocated
resources.

TMDwnLdr_get_last_error This function returns a pointer to an internal
buffer containing a textual representation of
the status of the last call to the downloader
library.

Function Description

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 307

12

executed after the newly loaded executable has started. This is the purpose of the calls to

_cache_copyback and iclr in the example. Note the special way in which download sym-

bols are defined: because it is not possible to cleanly define absolute symbols in C, they

have been defined as external arrays.

Figure 17 Sample Use of Downloader

#include Òtm1/mmio.hÓ
#include Òtmlib/TMDownLoader.hÓ
#include Òtmlib/tmlibc.hÓ
#include Òassert.hÓ
#include Òstdio.hÓ
typedef void (*Func)();
custom_op void iclr(void);

/* tmsimÕs download parameter, to be passed on: */
 void _syscall();
/* general download parameters, to be passed on: */
 extern Int _host_type_init[];
 extern Int _clock_freq_init[];
 extern Int _MMIO_base_init[];

main(){
 String filename = Òsecond.outÓ;
 UInt sdram_length = 4000000;
 Pointer sdram_base = _cache_malloc(sdram_length, Ð1);
 Int alignment, minimal_image_size;
 TMDwnLdr_Object_Handle handle;

 printf(ÒLoading...\nÓ);

/* STEP 1 */
 TMDwnLdr_load_object_from_file (filename, Null, &handle);

/* STEP 2 */
 TMDwnLdr_get_image_size (handle, &minimal_image_size, &alignment);
 assert((Int)sdram_base % alignment == 0);

/* STEP 3 */
 TMDwnLdr_resolve_symbol (handle, Ò__syscallÓ, (Int)_syscall);

/* STEP 4 */
 TMDwnLdr_relocate(handle, (tmHostType_t)_host_type_init,
 (Address)_MMIO_base_init,
 (UInt)_clock_freq_init,
 sdram_base, sdram_length,
 TMDwnLdr_LeaveCachingToDownloader);
/* STEP 5 */
 TMDwnLdr_get_memory_image (handle, sdram_base);

/* STEP 6 */
 TMDwnLdr_unload_object (handle);

 printf(ÒRunning...\nÓ);
 _cache_copyback(sdram_base, LOAD_SIZE);
 iclr();
 ((Func)sdram_base)();
 /* never come back */
}

Chapter 12: Downloader API

308 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Multiprocessor Booting

Figure 18 on page 309 shows a simple extension of the downloader program from

Figure 17 on page 307 to a multiprocessor downloader function. In this particular setup,

the function takes a single executable object from a specified memory address, and loads

this executable on a number of TriMedia processors that are specified by a few informa-

tion arrays passed to the function. Error checking is still omitted for clarity of the exam-

ple, but should be handled properly in a real use of this function.

If it is assumed that executable objects can be stored into an EEPROM mapped in PCI

space, this function can be used for booting a standalone multiprocessor cluster, as fol-

lows:

1. One selected processor boots in standalone mode; this processor is referred to as the

boot processor. All other processors, referred to as the slave processors, will boot in ‘host

assisted’ mode, with the boot processor serving as ‘host’ during booting. Note that

this master/slave relationship is only valid during booting, and does not correspond

with any master/slave relationship of the processors during execution.

2. The boot processor goes through the L1/L2 boot stages, as described in Chapter 7,

Bootstrapping TriMedia in Autonomous Mode, of Book 2, Cookbook, Part C, and starts a

multiprocessor loader based on the function described in Figure 18. The loader relo-

cates and distributes the executable object from EEPROM to all slave processors and

to the boot processor.

3. The boot processor releases all slave processors from their RESET states by writing to

their BUI_CTL registers in their MMIO spaces. Upon release; the slave processors start

executing their copy of the loaded executable.

4. The boot processor flushes the data cache (using library function _cache_copyback)

to make sure that the loaded executable is completely written to SDRAM; after that, it

invalidates the instruction cache (using custom operation iclr), to make sure that the

instruction cache does not contain stale contents, and it performs a jump to the start

address of its own copy of the loaded executable.

The above steps perform multiprocessor booting, except for one technical detail: while

loading the new executable on to itself, the boot processor should not overwrite the

downloader program. This is easily solved by modifying the L1 part of the L1/L2 loader

so that it loads the multiprocessor loader in the stack/heap gap of the final executable.

This stack/heap gap remains unused until the loaded executable is started and the multi-

processor loader is no longer needed.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 309

12

A full tmsim-based example demonstrating this, with the L1 loader simulated by a

tmsim executable, can be found in the TCS example directory:

$TCS/examples/downloading/mp_downloading

Figure 18 Sample multiprocessor downloader function

LoadMPCluster(
 UInt nrof_nodes,
 Pointer eeprom_address,
 Int eeprom_length,
 tmHostType_t host_type,
 Address mmio_bases[],
 UInt cpu_frequencies[],
 Address sdram_bases[],
 UInt sdram_lengths[]
){
 Int node;
 TMDwnLdr_SharedSectionTab_Handle shared_sections;

 TMDwnLdr_create_shared_section_table(&shared_sections);

 for(node = 0; node < nrof_nodes; node++){
 TMDwnLdr_Object_Handle handle;
 Int alignment, minimal_image_size;

 TMDwnLdr_load_object_from_mem(eeprom_address, eeprom_length,
 shared_sections, &handle);

 TMDwnLdr_multiproc_relocate(handle, host_type, mmio_bases, node,
 nrof_nodes, cpu_frequencies[node],
 sdram_bases[node], sdram_lengths[node]
 TMDwnLdr_LeaveCachingToDownloader);

 TMDwnLdr_get_memory_image(handle, sdram_bases[node]);

 TMDwnLdr_unload_object(handle);
 }
 TMDwnLdr_unload_shared_section_table(shared_sections);
}

Chapter 12: Downloader API

310 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Downloader API Structures and Enumerations

This section presents the TriMedia Downloader API data structure and enumerations.

Category Name Page

Enumerations TMDwnLdr_Status 311

TMDwnLdr_Caching 314

TMDwnLdr_Symbol_Scope 314

TMDwnLdr_Symbol_Type 315

TMDwnLdr_Symbol_Traversal_Order 315

TMDwnLdr_CachingSupport 316

Structure TMDwnLdr_Section_Rec 317

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 311

12

TMDwnLdr_Status

typedef enum {
 TMDwnLdr_OK,
 TMDwnLdr_UnexpectedError,
 TMDwnLdr_InputFailed,
 TMDwnLdr_InsufficientMemory,
 TMDwnLdr_NotABootSegment,
 TMDwnLdr_InconsistentObject,
 TMDwnLdr_UnknownObjectVersion,
 TMDwnLdr_NotFound,
 TMDwnLdr_UnresolvedSymbols,
 TMDwnLdr_SymbolIsUndefined,
 TMDwnLdr_SymbolNotInInitialisedData,
 TMDwnLdr_SDRamTooSmall,
 TMDwnLdr_SDRamImproperAlignment,
 TMDwnLdr_SymbolNotADownloadParm,
 TMDwnLdr_NodeNumberTooLarge,
 TMDwnLdr_NumberOfNodesTooLarge,
 TMDwnLdr_HandleNotValid,
 TMDwnLdr_EndianMismatch
} TMDwnLdr_Status;

Return Codes

All functions exported by the downloader library provide a return status. The list below

describes the possible values:

Return Value Description

TMDwnLdr_OK Successful completion.

TMDwnLdr_UnexpectedError An unexpected situation occurred. This status
should actually never be returned, and indicates
an internal error.

TMDwnLdr_InputFailed While loading an object from file, the specified
file could not be opened as an object.

TMDwnLdr_InsufficientMemory A memory overflow occurred.

TMDwnLdr_NotABootSegment Attempt to load an object that is either a plain
object, a dynamic library, or an application seg-
ment. Use an object that has been compiled and
linked with -btype boot or -btype dynboot
instead.

TMDwnLdr_InconsistentObject Attempt to load an object whose contents are
possibly corrupted. Try to rebuild the object.

Chapter 12: Downloader API

312 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_UnknownObjectVersion Attempt to load an object that has an unex-
pected (possibly newer) object file format version
number. Try a downloader library from a newer
SDE.

TMDwnLdr_UnresolvedSymbols Unresolved (download) symbols were encoun-
tered during relocation. Usually this occurs when
the object has been compiled and linked for an
improper host. Inspect the object’s download
symbols using tmnm.

TMDwnLdr_SymbolsUndefined Attempt to patch, resolve, or lookup a symbol
that is not defined in the object, or (depending
on the call) that is not defined as global symbol in
the object.

TMDwnLdr_SymbolNotInInitializedData Attempt to patch, or get the contents of a symbol
that is not in an initialized data section.

TMDwnLdr_SDRamTooSmall The relocation function detected that the object
image is too big to fit in the specified amount of
SDRAM.

TMDwnLdr_SDRamImproperAlignment The relocation function detected an improper
alignment of the specified SDRAM start address;
check the.align directives in the object’s hand-
coded trees and assembly sources.

TMDwnLdr_SymbolNotADownloadParm The symbol specified to a call to the resolve func-
tion is not a download parameter. Reason for this
was that it was already not a download parame-
ter in the loaded object, or that it has already
been resolved: resolution changes download
parameters into absolute symbols.

TMDwnLdr_NodeNumberTooLarge The node number specified in the multiprocessor
relocation call is not within the range 0 to N-1,
where N is the specified number of nodes.

Return Value Description

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 313

12

Description

This enumeration type defines the possible return status values of the functions in the

downloader API.

TMDwnLdr_NumberOfNodesTooLarge The specified number of nodes is too large for
the loaded executable. The maximally allowed
number of nodes is considered to be the largest
number N for which all download symbols
__MMIO_base_init_i exist in the object for all
0 ≤ i < N.

TMDwnLdr_HandleNotValid The object, symboltable, or shared sectiontable
handle specified in a downloader call was not
known.

TMDwnLdr_EndianMismatch While relocating a member of a multiprocessor
cluster (using function
TMDwnLdr_multiproc_relocate), it had an
“endian-ness” different from the first relocated
member of the cluster.

Return Value Description

Chapter 12: Downloader API

314 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_Caching

typedef enum {
 TMDwnLdr_Cached,
 TMDwnLdr_Uncached,
 TMDwnLdr_CacheLocked
} TMDwnLdr_Caching;

Description

This enumeration is used in section descriptors, and defines the number of ways the Tri-

Media cache can be used on the data within specific sections.

TMDwnLdr_Symbol_Scope

typedef enum {
TMDwnLdr_LocalScope,
TMDwnLdr_GlobalScope,
TMDwnLdr_DynamicScope
} TMDwnLdr_Symbol_Scope;

Description

This enumerations used in symbol descriptors, and defines the visibility of symbols in

static and dynamic linking.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 315

12

TMDwnLdr_Symbol_Type

typedef enum {
 TMDwnLdr_UnresolvedSymbol,
 TMDwnLdr_AbsoluteSymbol,
 TMDwnLdr_RelativeSymbol,
 TMDwnLdr_DynamicallyImportedSymbol
} TMDwnLdr_Symbol_Type;

Description

This enumeration is used in symbol descriptors, and specifies the type of the symbol.

TMDwnLdr_Symbol_Traversal_Order

typedef enum {
 TMDwnLdr_ByAddress,
 TMDwnLdr_ByName
} TMDwnLdr_Symbol_Traversal_Order;

Description

This enumeration is used as a parameter in the function TMDwnLdr_traverse_symbols,

and specifies the order in which the symbol callback function is called.

Chapter 12: Downloader API

316 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_CachingSupport

typedef enum {
 TMDwnLdr_CachesOff,
 TMDwnLdr_LeaveCachingToUser,
 TMDwnLdr_LeaveCachingToDownloader
} TMDwnLdr_CachingSupport;

Description

This enumeration is used as a parameter in the functions, TMDwnLdr_relocate and

TMDwnLdr_multiproc_relocate. It specifies how the TriMedia instruction and data cache

should be initialized. See also the description of caching_support on page 326.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 317

12

TMDwnLdr_Section_Rec

typedef struct TMDwnLdr_Section_Rec{
 String name;
 Address bytes;
 UInt size;
 UInt alignment;
 Bool big_endian;
 Bool has_data;
 Bool is_code;
 Bool is_read_only;
 TMDwnLdr_Caching caching;
 Address relocation;
} TMDwnLdr_Section_Rec;

Fields

name Name of the section.

bytes If has_data is equal to True, then bytes is a
pointer to a copy of the section’s data in memory.

size The size of the section in bytes.

alignment Required alignment of the section in SDRAM.

big_endian A flag specifying if the section contains instruc-
tions or data from a big- or little endian program.

has_data A flag specifying if the section has initial con-
tents.

is_code A flag specifying if the section contains TriMedia
instructions.

is_read_only A flag specifying if the section’s data is intended
to be modified during execution.

caching Specification of how the section’s data should be
cached during execution.

relocation After a call to TMDwnLdr_relocate, this field is set
to the SDRAM address to which the section will
be loaded.

Description

This descriptor is a section representation, used in functions TMDwnLdr_get_section,

and TMDwnLdr_traverse_sections. Its fields are described under Section Attributes in

Chapter 11, Linking TriMedia Object Modules, of Book 4, Software Tools, Part B.

Chapter 12: Downloader API

318 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Downloader API Functions

This section presents the TriMedia Downloader API functions.

Category Name Page

Shared Section Table Functions TMDwnLdr_create_shared_section_table 319

TMDwnLdr_unload_shared_section_table 320

Object Loading Functions TMDwnLdr_load_object_from_file 321

TMDwnLdr_load_object_from_mem 323

TMDwnLdr_load_object_from_driver 324

TMDwnLdr_get_image_size 325

TMDwnLdr_relocate 326

TMDwnLdr_multiproc_relocate 328

TMDwnLdr_get_memory_image 331

TMDwnLdr_patch_value 332

TMDwnLdr_resolve_symbol 333

TMDwnLdr_get_value 334

TMDwnLdr_unload_object 335

TMDwnLdr_get_section 336

TMDwnLdr_traverse_sections 337

TMDwnLdr_get_endian 338

TMDwnLdr_load_symbtab_from_object 339

Symbol Table Functions TMDwnLdr_get_address 340

TMDwnLdr_get_enclosing_symbol 341

TMDwnLdr_traverse_symbols 342

TMDwnLdr_unload_symboltable 343

TMDwnLdr_get_last_error 344

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 319

12

TMDwnLdr_create_shared_section_table

TMDwnLdr_Status TMDwnLdr_create_shared_section_table(
 TMDwnLdr_SharedSectionTab_Handle *result
);

Parameters

result Returned handle, or undefined when result
unequal to TMDwnLdr_OK.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_InsufficientMemory A memory overflow occurred.

TMDwnLdr_UnexpectedError An unexpected situation occurred. This status
should actually never be returned, and indicates
an internal error.

Description

Create an empty shared section table, for use in multiprocessing downloading.

Side effects: Memory to hold the result is allocated via malloc.

Chapter 12: Downloader API

320 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_unload_shared_section_table

TMDwnLdr_Status TMDwnLdr_unload_shared_section_table(
 TMDwnLdr_SharedSectionTab_Handle handle
);

Parameters

handle Handle of loaded table to unload.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_HandleNotValid Returned when handle becomes invalid.

Description

Unload shared section table. Postcondition: handle becomes invalid.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 321

12

TMDwnLdr_load_object_from_file

TMDwnLdr_Status TMDwnLdr_load_object_from_file(
 String path,
 TMDwnLdr_SharedSectionTab_Handle shared_sections,
 TMDwnLdr_Object_Handle *result
);

Parameters

path Name of executable file to be loaded.

shared_sections Table that stores the addresses of shared sections
in case of multiple downloads of executables in a
multiprocessor system. Null is allowed when this
facility is not used, for instance in single proces-
sor downloads.

*result Returned handle, or undefined when result
unequal to TMDwnLdr_OK.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_FileNotFound While loading an object from file, the specified
file could not be opened.

Note
This status will also be returned in case of a file
read protection violation. Provide the proper
filename, or allow read access.

TMDwnLdr_NotABootSegment Attempt to load an object that is either a plain
object, a dynamic library, or an application seg-
ment. Use an object that has been compiled and
linked with -btype boot or -btype dynboot
instead.

TMDwnLdr_UnknownObjectVersion Attempt to load an object that has an unexpected
(possibly newer) object file format version num-
ber. Try a downloader library from a newer SDE.

TMDwnLdr_InsufficientMemory A memory overflow occurred.

TMDwnLdr_InconsistentObject Attempt to load an object whose contents are pos-
sibly corrupted. Try to rebuild the object.

TMDwnLdr_UnexpectedError An unexpected situation occurred. This status
should actually never be returned, and indicates
an internal error.

Chapter 12: Downloader API

322 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Description

Read an executable from file into memory, and return a handle for subsequent opera-

tions. Side effects: Memory to hold the result is allocated using malloc.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 323

12

TMDwnLdr_load_object_from_mem

TMDwnLdr_Status TMDwnLdr_load_object_from_mem(
 Address mem,
 Int length,
 TMDwnLdr_SharedSectionTab_Handle shared_sections,
 TMDwnLdr_Object_Handle *result
);

Parameters

mem Start of memory image of executable.

length Length of image.

shared_sections Table remembering the addresses of shared sec-
tions in case of multiple downloads of executa-
bles in a multiprocessor system. Null is allowed
when this facility is not used, for instance in sin-
gle processor downloads.

result Returned handle, or undefined when result
unequal to TMDwnLdr_OK.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_NotABootSegment Attempt to load an object that is either a plain
object, a dynamic library, or an application seg-
ment. Use an object that has been compiled and
linked with -btype boot or -btype dynboot
instead.

TMDwnLdr_UnknownObjectVersion Attempt to load an object that has an unexpected
(possibly newer) object file format version num-
ber. Try a downloader library from a newer SDE.

TMDwnLdr_InsufficientMemory A memory overflow occurred.

TMDwnLdr_InconsistentObject Attempt to load an object whose contents are pos-
sibly corrupted. Try to rebuild the object.

TMDwnLdr_UnexpectedError An unexpected situation occurred. This status
should actually never be returned, and indicates
an internal error.

Description

Reads an executable from a memory area into memory, and returns a handle for subse-

quent operations. Memory to hold the result is allocated using malloc.

Chapter 12: Downloader API

324 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_load_object_from_driver

TMDwnLdr_Status TMDwnLdr_load_object_from_driver(
 Lib_IODriver driver,
 TMDwnLdr_SharedSectionTab_Handle shared_sections,
 TMDwnLdr_Object_Handle *result
);

Parameters

driver Driver controlling object access.

shared_sections Table that stores the addresses of shared sections
in case of multiple downloads of executables in a
multiprocessor system. Null is allowed when this
facility is not used, for instance in single proces-
sor downloads.

result Returned handle, or undefined when result
unequal to TMDwnLdr_OK.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_NotABootSegment Attempt to load an object that is either a plain
object, a dynamic library, or an application seg-
ment. Use an object that has been compiled and
linked with -btype boot or -btype dynboot
instead.

TMDwnLdr_UnknownObjectVersion Attempt to load an object that has an unexpected
(possibly newer) object file format version num-
ber. Try a downloader library from a newer SDE.

TMDwnLdr_InsufficientMemory A memory overflow occurred.

TMDwnLdr_InconsistentObject Attempt to load an object whose contents are pos-
sibly corrupted. Try to rebuild the object.

TMDwnLdr_UnexpectedError An unexpected situation occurred. This status
should actually never be returned, and indicates
an internal error.

Description

Reads an executable from a previously created driver, and returns a handle for subse-

quent operations. Memory to hold the result is allocated using malloc.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 325

12

TMDwnLdr_get_image_size

TMDwnLdr_Status TMDwnLdr_get_image_size(
 TMDwnLdr_Object_Handle handle,
 Int *minimal_image_size,
 Int *alignment
);

Parameters

handle Handle of loaded exec to be queried.

minimal_image_size Pointer to minimal size of image alignment.

alignment Pointer to required alignment of the download
area in terms of TM-1’s address space.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_HandleNotValid Returned when the handle is invalid.

Description

Gets the extracted image size, and its required alignment in SDRAM.

Chapter 12: Downloader API

326 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_relocate

TMDwnLdr_Status TMDwnLdr_relocate(
 TMDwnLdr_Object_Handle handle,
 tmHostType_t host_type,
 Address MMIO_base,
 UInt TM1_frequency,
 Address sdram_base,
 UInt sdram_length,
 TMDwnLdr_CachingSupport caching_support
);

Parameters

handle Handle of loaded executable to be relocated.

host_type Value that the object might want to know.

MMIO_base Value that the object might want to know.

TM1_frequency Value that the object might want to know.

sdram_base Base of download area in TM’s address space.

sdram_length Length of download area.

caching_support Specification of responsibility of setting the
cacheable limit and the cachelocked regions:

TMDwnLdr_LeaveCachingToUser

Cacheable limit and cachelocked regions are
entirely under control of the user, the down-
loader/boot code will not touch it.

TMDwnLdr_LeaveCachingToDownloader

Cachelocked regions and cacheable limit are
entirely under control of the downloader, which
will use this control to intelligently map the dif-
ferent cached/uncached/ cachelocked sections
within the specified sdram, partitioned in differ-
ent caching property regions, and let the down-
loaded program set cacheable limit and
cachelocked regions accordingly.

TMDwnLdr_CachesOff

Cachelocked regions and cacheable limit are
entirely under control of the downloader, which
will let the downloaded program run with cache
“off.”

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 327

12

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_UnresolvedSymbols Unresolved (download) symbols were encoun-
tered during relocation. Usually this occurs when
the object has been compiled and linked for an
improper host. Inspect the object’s download
symbols using tmnm. (Refer to Reserved Download
Symbols in Chapter 11 of Book 4, Software Tools,
Part B.)

TMDwnLdr_SDRamTooSmall The relocation function detected that the object
image is too big to fit in the specified amount of
SDRAM.

TMDwnLdr_SDRamImproperAlignment The relocation function detected an improper
alignment of the specified SDRAM start address;
check the .align directives in the object’s hand-
coded trees and assembly sources.

TMDwnLdr_HandleNotValid Returned when the handle is invalid.

TMDwnLdr_InsufficientMemory A memory overflow occurred.

TMDwnLdr_InconsistentObject Attempt to load an object whose contents are pos-
sibly corrupted. Try to rebuild the object.

TMDwnLdr_UnexpectedError An unexpected situation occurred. This status
should actually never be returned, and indicates
an internal error.

Description

Relocate the loaded executable into a specified TM1 address range, with specified values

for MMIO_base and TM1_frequency. The specified TM1 address base must be aligned

according to the value returned by TMDwnLdr_get_image_sizes. Also the length of this

range must be larger than the minimal length returned by TMDwnLdr_get_image_sizes.

Cachelocked regions and cacheble limit are entirely under control of the downloader,

which will let the downloaded program run with cache “off.”

Chapter 12: Downloader API

328 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_multiproc_relocate

TMDwnLdr_Status TMDwnLdr_multiproc_relocate(
 TMDwnLdr_Object_Handle handle,
 tmHostType_t host_type,
 Address *MMIO_bases,
 UInt node_number,
 UInt number_of_nodes,
 UInt TM1_frequency,
 Address sdram_base,
 UInt sdram_length,
 TMDwnLdr_CachingSupport caching_support
);

Parameters

handle Handle of loaded executable to be relocated.

host_type By this, the host that downloads the executable
makes itself known to the executable.

MMIO_bases Array specifying for each node in the range 0 to
number_of_nodes–1 of its mmio base address.

node_number ‘Current’ node number, that is, the processor
number on which the relocated code is to run; its
value is required to be in the range 0 to
number_of_nodes–1.

number_of_nodes Number of TM-1s available.

TM1_frequency Processor frequency [MHz].

sdram_base Base of download area in TM’s address space.

sdram_length Length of download area.

caching_support Specification of responsibility of setting the
cacheable limit and the cachelocked regions:

TMDwnLdr_LeaveCachingToUser

Cacheable limit and cachelocked regions are
entirely under control of the user, the down-
loader/boot code will not touch it

TMDwnLdr_LeaveCachingToDownloader

Cachelocked regions and cacheable limit are
entirely under control of the downloader, which
will use this control to intelligently map the dif-
ferent cached/uncached/cachelocked sections
within the specified sdram, partitioned in differ-
ent caching property regions, and let the down-
loaded program set cacheable limit and
cachelocked regions accordingly.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 329

12

TMDwnLdr_CachesOff

Cachelocked regions and cacheable limit are
entirely under control of the downloader, which
will let the downloaded program run with ‘cache
off.’

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_UnresolvedSymbols Unresolved (download) symbols were encoun-
tered during relocation. Usually this occurs when
the object has been compiled and linked for an
improper host. Inspect the object’s download
symbols using tmnm. (Refer to Reserved Down-
load Symbols in Chapter 11, Linking TriMedia
Object Modules, of Book 4, Software Tools).

TMDwnLdr_SDRamTooSmall The relocation function detected that the object
image is too big to fit in the specified amount of
SDRAM.

TMDwnLdr_SDRamImproperAlignment The relocation function detected an improper
alignment of the specified SDRAM start address;
check the.align directives in the object’s hand-
coded trees and assembly sources.

TMDwnLdr_HandleNotValid Returned when the handle is invalid.

TMDwnLdr_InsufficientMemory A memory overflow occurred.

TMDwnLdr_InconsistentObject Attempt to load an object whose contents are pos-
sibly corrupted. Try to rebuild the object.

TMDwnLdr_NodeNumberTooLarge The node number specified in the multiprocessor
relocation call is not within the range 0 to N-1,
where N is the specified number of nodes.

TMDwnLdr_NumberOfNodesTooLarge The specified number of nodes is too large for the
loaded executable. The maximum number of
nodes is considered to be the largest number N for
which all download symbols __MMIO_base_init_i
exist in the object for all 0 ≤ i < N.

TMDwnLdr_UnexpectedError An unexpected situation occurred. This status
should actually never be returned, and indicates
an internal error.

Description

Relocates the loaded executable into a specified TM1 address range, with specified values

for MMIO_base and TM1_frequency. The specified TM1 address base must be aligned

according to the value returned by TMDwnLdr_get_image_sizes. Also the length of this

range must be larger than the minimal length returned by TMDwnLdr_get_image_sizes.

Chapter 12: Downloader API

330 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

This relocation function is intended for use in multiprocessor TM1 environments; the all

processors are numbered from 0 to number_of_nodes-1, and their SDRAMs and MMIO

spaces are cross accessible.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 331

12

TMDwnLdr_get_memory_image

TMDwnLdr_Status TMDwnLdr_get_memory_image(
 TMDwnLdr_Object_Handle handle,
 Address base
);

Parameters

handle Handle of loaded executable to be queried.

base Base of download area in the address space of the
caller of this function.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_HandleNotValid Returned when the handle is invalid.

Description

Copy the section’s memory images of the specified loaded executable into a buffer in the

current (for example, the downloader’s) address space. NB: This function is destructive

on the loaded object. It cannot further be used and must be deallocated after this call.

Chapter 12: Downloader API

332 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_patch_value

TMDwnLdr_Status TMDwnLdr_patch_value(
 TMDwnLdr_Object_Handle handle,
 String symbol,
 UInt32 value
);

Parameters

handle Handle of loaded exec to be patched.

symbol Name of symbol in null-terminated string.

value Value to assign.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_SymbolIsUndefined Attempt to patch, resolve, or lookup a symbol
that is not defined in the object, or (depending
on the call) that is not defined as global symbol in
the object.

TMDwnLdr_SymbolNotInInitialisedData
Attempt to patch, or get the contents of a symbol
that is not in an initialized data section.

TMDwnLdr_HandleNotValid Returned when the handle is invalid.

Description

Assign a 32-bit value to a symbol with specified name in an initialized data section.

Note
The symbol must have dynamic scope.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 333

12

TMDwnLdr_resolve_symbol

TMDwnLdr_Status TMDwnLdr_resolve_symbol(
 TMDwnLdr_Object_Handle handle,
 String symbol,
 UInt32 value
);

Parameters

handle Handle of loaded exec to be patched.

symbol Name of symbol in null-terminated string.

value Value to assign.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_SymbolIsUndefined Attempt to patch, resolve, or lookup a symbol
that is not defined in the object, or (depending
on the call) that is not defined as global symbol in
the object.

TMDwnLdr_HandleNotValid Returned when the handle is invalid.

TMDwnLdr_SymbolNotADownloadParm The symbol specified to a call to the resolve func-
tion is not a download parameter. Reason for this
is because it was not a download parameter in the
loaded object, or it had already been resolved: res-
olution changes download parameters into abso-
lute symbols.

Description

Define a 32-bit absolute value for the still unresolved symbol with specified name (this

must then be an unresolved symbol of type download_parm). This function must be

used to resolve all download parameters before any call to TMDwnLdr_relocate.

Note
The symbol must have dynamic scope, but this is automatically the case
when it has been created by the TriMedia object library, or by tmld.

Chapter 12: Downloader API

334 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_get_value

TMDwnLdr_Status TMDwnLdr_get_value(
 TMDwnLdr_Object_Handle handle,
 String symbol,
 UInt32 *result
);

Parameters

handle Handle of loaded executable.

symbol Name of symbol in null-terminated string.

result Pointer to result location.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_SymbolIsUndefined Attempt to patch, resolve, or lookup a symbol
that is not defined in the object, or (depending
on the call) that is not defined as global symbol in
the object.

TMDwnLdr_SymbolNotInInitialisedData
Attempt to patch, or get the contents of a symbol
that is not in an initialized data section.

TMDwnLdr_HandleNotValid Returned when the handle is invalid.

Description

Retrieves a 32-bit value from a symbol with specified name in an initialized data section.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 335

12

TMDwnLdr_unload_object

TMDwnLdr_Status TMDwnLdr_unload_object(
 TMDwnLdr_Object_Handle handle
);

Parameters

handle Handle of loaded exec to unload.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_HandleNotValid Returned when handle is invalid.

Description

Unload loaded executable; all resources allocated for the executable will be freed, but

extracted section group images and extracted symbol tables will be unaffected. Postcon-

dition: handle becomes invalid.

Chapter 12: Downloader API

336 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_get_section

TMDwnLdr_Status TMDwnLdr_get_section(
 TMDwnLdr_Object_Handle handle,
 String name,
 UInt32 *section
);

Parameters

handle Handle of loaded exec to get section from.

name Name of requested section.

section Pointer to buffer which will be set as a result of
this function.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_NotFound While loading an object from file, the specified
file could not be opened.

Note
This status will also be returned in the case of a
file read protection violation. Provide the
proper filename, or allow read access.

TMDwnLdr_HandleNotValid Returned when handle is invalid.

Description

Look up a user section by name.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 337

12

TMDwnLdr_traverse_sections

TMDwnLdr_Status TMDwnLdr_traverse_sections(
 TMDwnLdr_Object_Handle handle,
 TMDwnLdr_Section_Fun fun,
 Pointer data
);

Parameters

handle Handle of loaded executable to traverse.

symbol Function to apply.

value Additional data argument.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_HandleNotValid Returned when the handle is invalid.

Description

Apply function fun to all sections in the specified loaded object, in download order and

Side effects: fun has been applied to all sections, in the order in which they will be

downloaded.

Note
The TMDownLoader will place all the cached sections at the beginning of
SDRAM and the uncached (data) sections at the end. Although the function
will traverse in download order, there might be a hole in between. The
section buffers used in the calls to fun will not survive this function call.

Chapter 12: Downloader API

338 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_get_endian

TMDwnLdr_Status TMDwnLdr_get_endian(
 TMDwnLdr_Object_Handle handle,
 Endian *endian
);

Parameters

handle Handle of loaded executable.

endian Pointer to result location.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_HandleNotValid Returned when the handle is invalid.

Description

Get the endianness of the specified loaded object.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 339

12

TMDwnLdr_load_symbtab_from_object

TMDwnLdr_Status TMDwnLdr_load_symbtab_from_object(
 TMDwnLdr_Object_Handle object,
 TMDwnLdr_Symbtab_Handle *result
);

Parameters

object Object extracts from this handle.

result Returned handle, or undefined when result
unequal to TMDwnLdr_OK.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_HandleNotValid Returned when the handle is invalid.

TMDwnLdr_InsufficientMemory A memory overflow occurred.

TMDwnLdr_InconsistentObject Attempt to load an object whose contents are pos-
sibly corrupted. Try to rebuild the object.

TMDwnLdr_UnexpectedError An unexpected situation occurred. This status
should actually never be returned, and indicates
an internal error.

Description

Construct a symbol table from a previously loaded object, and return a handle for subse-

quent operations. Memory to hold the result is allocated using malloc.

Note
The information in this symbol table becomes meaningless upon
subsequent relocation of the object, but remains valid when the object is
unloaded.

Chapter 12: Downloader API

340 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_get_address

TMDwnLdr_Status TMDwnLdr_get_address(
 TMDwnLdr_Symbtab_Handle handle,
 String symbol,
 String *section,
 Address *address
);

Parameters

handle Handle of executable’s symbol table.

symbol Name of symbol in null-terminated string.

section Returned name of symbol’s section.

address Returned symbol address.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_SymbolIsUndefined Attempt to patch, resolve, or lookup a symbol
that is not defined in the object, or (depending
on the call) that is not defined as global symbol in
the object.

TMDwnLdr_HandleNotValid Returned when handle is not valid.

Description

Return the address of the symbol in terms of the loaded object’s memory space given its

current relocation state.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 341

12

TMDwnLdr_get_enclosing_symbol

TMDwnLdr_Status TMDwnLdr_get_enclosing_symbol(
 TMDwnLdr_Symbtab_Handle handle,
 Address address,
 String *section,
 String *symbol,
 Address *symbol_address
);

Parameters

handle Handle of executable’s symbol table.

address Input address.

section Section name of matching symbol.

symbol Name of matching symbol.

symbol_address Address of matching symbol.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_SymbolIsUndefined Attempt to patch, resolve, or lookup a symbol
that is not defined in the object, or (depending
on the call) that is not defined as global symbol in
the object.

TMDwnLdr_HandleNotValid Returned when handle is not valid.

Description

Return info on the symbol with the highest address less than or equal to the specified

address. All addresses in terms of the loaded object’s memory space given its current relo-

cation state.

Chapter 12: Downloader API

342 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_traverse_symbols

TMDwnLdr_Status TMDwnLdr_traverse_symbols(
 TMDwnLdr_Symbtab_Handle handle,
 TMDwnLdr_Symbol_Traversal_Order order,
 TMDwnLdr_Symbol_Fun fun,
 Pointer data
);

Parameters

handle Handle of symbol table to traverse.

order Parameter to guide order of traversal.

fun Function to apply.

data Additional data argument.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_HandleNotValid Returned when handle is invalid.

Description

Apply function fun to all symbols in the specified symbol table, with additional data

argument. fun has been applied to each symbol, in the order specified by order.

Chapter 12: Downloader API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 343

12

TMDwnLdr_unload_symboltable

TMDwnLdr_Status TMDwnLdr_unload_symboltable(
 TMDwnLdr_Symbtab_Handle handle
);

Parameters

handle Handle of loaded symbol table to unload.

Return Codes

TMDwnLdr_OK Success.

TMDwnLdr_HandleNotValid Returned when handle is invalid.

Description

Unload loaded symbol table; all resources allocated for the symbol table will be freed.

Postcondition: Handle becomes invalid.

Chapter 12: Downloader API

344 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMDwnLdr_get_last_error

String TMDwnLdr_get_last_error(
 TMDwnLdr_Status status
);

Parameters

status Last returned error code.

Return

The function return is (a pointer to) the string.

Description

Returns a string that contains the last error message. The string is owned by the library.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 345

13

Chapter 13

Dynamic Linking API

Topic Page

Overview 346

Dynamic Linking API Types 346

Dynamic Linking API Functions 350

Chapter 13: Dynamic Linking API

346 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Overview

This section describes the explicit dynamic loader programming interface. The dynamic

loader is a TriMedia library that is part of the system library libam.dll, and is automati-

cally available for TriMedia programs that have been compiled for dynamic linking (that

is, for code segments that have been linked with tmcc option -btype dynboot, -btype dll,

or -btype app).

Functions are provided for loading and unloading code segments, and for binding and

unbinding them. These and other dynamic loader concepts are described in are

described in Chapter 11, Linking TriMedia Object Modules, of Book 4, Software Tools, Part B.

The function prototypes and typs of the dynamic loader API are defined in the include

file tmlib/DynamicLoader.h.

Dynamic Linking API Types

This section presents the TriMedia Dynamic Linking API types.

Category Name Page

enum DynLoad_Status 347

struct DynLoad_Code_Segment_Handle 348

function DynLoad_MallocFun 349

DynLoad_FreeFun 349

DynLoad_ErrorFun 349

Chapter 13: Dynamic Linking API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 347

13

DynLoad_Status

typedef enum {
 DynLoad_OK = 0,
 DynLoad_FileNotFound = 1,
 DynLoad_InsufficientMemory = 2,
 DynLoad_InconsistentObject = 3,
 DynLoad_UnknownObjectVersion = 4,
 DynLoad_WrongEndian = 5,
 DynLoad_WrongChecksum = 6,
 DynLoad_NotUnloadable = 7,
 DynLoad_UnresolvedSymbol = 8,
 DynLoad_NotADll = 9,
 DynLoad_NotAnApp = 10,
 DynLoad_NotPresent = 11,
 DynLoad_StillReferenced = 12,
 DynLoad_StackOverflow
} DynLoad_Status;

Description

Result status values for the exported functions.

Chapter 13: Dynamic Linking API

348 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

DynLoad_Code_Segment_Handle

typedef struct {
 String name;
 Pointer start;
} *DynLoad_Code_Segment_Handle;

Fields

name Segment name.

start Start address.

Description

Representation of loaded code segment.

Chapter 13: Dynamic Linking API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 349

13

DynLoad_MallocFun

typedef Pointer (*DynLoad_MallocFun)(
 UInt
);

Description

Pointer to the DynLoad_MallocFun function.

DynLoad_FreeFun

typedef void (*DynLoad_FreeFun)(
 Pointer
);

Description

Callback to DynLoad_FreeFun function.

DynLoad_ErrorFun

typedef void (*DynLoad_ErrorFun)(
 DynLoad_Status,
 String
);

Description

Callback to the *DynLoad_ErrorFun function.

Chapter 13: Dynamic Linking API

350 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Dynamic Linking API Functions

This section presents the TriMedia Dynamic Linking API functions.

Name Page

DynLoad_load_application 351

DynLoad_unload_application 352

DynLoad_bind_dll 353

DynLoad_unbind_dll 354

DynLoad_unload_dll 354

DynLoad_unload_all 355

DynLoad_bind_codeseg 356

DynLoad_unbind_codeseg 356

DynLoad_swap_mm 357

DynLoad_swap_stub_error_handler 358

Chapter 13: Dynamic Linking API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 351

13

DynLoad_load_application

DynLoad_Status DynLoad_load_application(
 String path,
 DynLoad_Code_Segment_Handle *result
);

Parameters

path Name of executable file to be loaded.

*result Returned handle, or undefined when result
unequal to DynLoad_OK.

Return Codes

DynLoad_OK Success.

DynLoad_FileNotFound File was not found.

DynLoad_InsufficientMemory There was insufficient memory.

DynLoad_InconsistentObject Incorrect path specification.

DynLoad_UnknownObjectVersion Unknown object version.

DynLoad_WrongEndian Wrong endian.

DynLoad_WrongChecksum Wrong checksum.

DynLoad_UnresolvedSymbol Unresolved symbol.

DynLoad_NotADll There is no dll.

Description

Read an application segment from file into memory, and return a handle for subsequent

operations. Contrary to dlls, location of application object files is not subject to any

lookup mechanism; for this reason a path must be used for specifying the application

file. The path here is the text string which could be used in calls to open in order to open

the application object file. Also contrary to dlls, duplicate copies of apps are allowed, and

therefore subsequent load calls with the same path value result in different, independent

loaded applications. The transfer address of a loaded application can be found in the

start field of the returned module descriptor. Loaded applications can be unloaded by

means of a call to DynLoad_unload_segment.

Memory to hold the result is allocated using either malloc or the user-specified memory

manager (Refer to function DynLoad_swap_mm on page 100).

Chapter 13: Dynamic Linking API

352 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

DynLoad_unload_application

DynLoad_Status DynLoad_unload_application(
 DynLoad_Code_Segment_Handle segment
);

Parameters

segment Descriptor of application to unload.

Return Codes

DynLoad_OK Success.

DynLoad_NotAnApp Does not correspond with an application seg-
ment.

DynLoad_StillReferenced The application’s code is still in use.

Description

Unload specified application from memory. This function will fail if the segment does

not correspond with an application segment, or if the application’s code is still in use

(e.g. when it contains a still installed interrupt handler, or when other tasks are still exe-

cuting its code, or when it has been bound by a call to AppModel_bind_codeseg.

Chapter 13: Dynamic Linking API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 353

13

DynLoad_bind_dll

DynLoad_Status DynLoad_bind_dll(
 String name,
 DynLoad_Code_Segment_Handle *result
);

Parameters

name Name of dll to be loaded. No path specification is
allowed.

result Returned handle, or undefined when result
unequal to DynLoad_OK.

Return Codes

DynLoad_OK Success.

DynLoad_FileNotFound File was not found.

DynLoad_InsufficientMemory There was insufficient memory.

DynLoad_InconsistentObject Incorrect path specification.

DynLoad_UnknownObjectVersion Unknown object version.

DynLoad_WrongEndian Wrong endian.

DynLoad_WrongChecksum Wrong checksum.

DynLoad_UnresolvedSymbol Unresolved symbol.

DynLoad_NotADll There is no dll.

Description

Locate specified dll, load it into memory when not already loaded, and return a handle

for subsequent operations. The dll is marked as being in use, preventing it from being

unloaded, until a matching call to DynLoad_unbind_dll.

Contrary to applications, which must be loaded with complete path specification, dlls

are subject to a lookup mechanism; for this reason, no path specification is allowed.

Instead, just the base file name need be given.

DynLoad_bind_dll and DynLoad_unbind_dll maintain a reference count. Memory to hold

the result is allocated using malloc or the user-specified memory manager (Refer to the

function DynLoad_swap_mm on page 100).

Chapter 13: Dynamic Linking API

354 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

DynLoad_unbind_dll

DynLoad_Status DynLoad_unbind_dll(
 String name
);

Parameters

name Name of DLL to unbind.

Return Codes

DynLoad_OK Success.

DynLoad_NotPresent Returned if the DLL is not present.

Description

Remove usage mark from DLL.

DynLoad_unload_dll

DynLoad_Status DynLoad_unload_dll(
 String name
);

Parameters

name Name of DLL to unload.

Return Codes

DynLoad_OK Success.

DynLoad_NotPresent It is not present.

DynLoad_StillReferenced Returned when other tasks are still executing its
code.

Description

Unload specified DLL from memory, together with all other dlls that make “immediate”

use of it. Unloading will fail if any of these DLLs contain code that is still in use (for

example, when it contains a still installed interrupt handler, or when other tasks are still

executing its code, or when it has been bound by a call to AppModel_bind_codeseg or

DynLoad_bind_dll).

Chapter 13: Dynamic Linking API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 355

13

DynLoad_unload_all

DynLoad_Status DynLoad_unload_all(
 String name
);

Parameters

name Name of the DLL to unload.

Return Codes

DynLoad_OK Success.

Description

Unload all currently unused DLLs.

Chapter 13: Dynamic Linking API

356 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

DynLoad_bind_codeseg

DynLoad_Code_Segment_Handle DynLoad_bind_codeseg(
 Address code
);

Parameters

code Code address (for example, a function pointer).

Return Codes

DynLoad_OK Success.

Description

Mark the code segment that contains the specified code address as used.

DynLoad_bind_codeseg maintains a reference count.

DynLoad_unbind_codeseg

DynLoad_Code_Segment_Handle DynLoad_unbind_codeseg(
 Address code
);

Parameters

code Code address (for example, a function pointer).

Return Codes

DynLoad_OK Success.

Description

Mark the code segment that contains the specified code address as no longer used.

DynLoad_bind_codeseg maintains a reference count.

Chapter 13: Dynamic Linking API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 357

13

DynLoad_swap_mm

void DynLoad_swap_mm(
 DynLoad_MallocFun *perm_malloc,
 DynLoad_FreeFun *perm_free,
 DynLoad_MallocFun *temp_malloc,
 DynLoad_FreeFun *temp_free
);

Parameters

perm_malloc Functions for allocating storage for loaded code
segments.

perm_free Functions for allocating storage for loaded code
segments.

temp_malloc Functions for allocating storage for working
memory during dynamic loading.

temp_free Functions for allocating storage for working
memory during dynamic loading.

Return Codes

DynLoad_OK Success.

Description

Swap the permanent and temporary storage manager currently in use by the dynamic

loader.

Note
This function is for system’s purposes only, and should be called before the
dynamic loader has been active.

Chapter 13: Dynamic Linking API

358 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

DynLoad_swap_stub_error_handler

void DynLoad_swap_stub_error_handler(
 DynLoad_ErrorFun *stub_error_handler
);

Parameters

stub_error_handler Function stub error handler.

Return Codes

DynLoad_OK Success.

Description

Swap the (global) error handler that is to be called upon failure in implicit dll loading

from function stubs.

Note
Generally, this error handler has three options:

1. Abort the application by calling exit, optionally after printing a diagnostic.

2. Clean up the global application state (e.g., free up memory after a load
failure due to memory overflow), and return, so that the dynamic loader can
retry its failing load.

3. Raise an exception (or perform a longjmp in C) so that the implicit load
failure can be handled by the application at a higher level.

As long as the error handler returns, the dynamic loader will retry the load.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 359

14

Chapter 14

TriMedia Manager API for Windows

Topic Page

Introduction 360

TMManager Data Structures 368

TMManager General Functions 373

TMManager Message Interface Functions 390

TMManager Event Functions 396

TMManager Buffer Locking Functions 407

TMManager Debugging Functions 416

TMManager C Runtime Server 421

TriMedia Manager Registry Entries 427

Chapter 14: TriMedia Manager API for Windows

360 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

The new unified version of the TriMedia Manager (TMMan) was developed as a more

portable refinement of the Windows 95 TriMedia Manager. The new TMMan runs on

Windows NT, Windows 95, Windows 98, and Windows CE. The new interfaces are very

similar to the old interfaces of TMMan for Windows 95. Both interfaces are designed to

support communication between TriMedia and a host processor. For an architectural

overview, see Chapter 3, Host Windows Interfaces, of Book 3, Software Architecture, Part A.

Implementation Notes

Throughout this chapter, function descriptions refer to the following notes:

Synchronization Handle

The caller creates these handles via calls to the operating system specific functions like

CreateEvent or AppSem_create. The caller is also responsible for freeing these handles.

The following sections list the operating systems supported by TMMan, the functions

used by the caller to allocate these handles and the functions TMMan uses to signal

these handles.

Win95 Kernel Mode

Synchronization Handle on page 360 Object Names on page 361

Scatter Gather Buffer Locking on page 361 Debug Buffer Pointers on page 362

Status Codes on page 362 SDRAM Mapping on page 362

Speculative Load Fix on page 363 Big Endian Execution on page 363

WinCE Issues on page 364 Synchronization Flags on page 364

Task Function

Creation CreateEvent

Signaling VWIN32_SetWin32Event

Closing CloseHandle

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 361

14

WinNT/98 KernelMode

pSOS

Stand-alone (no operating system)

Note
Under Windows operating systems (WinNT, Win95, Win98, or WinCE) this
event has to be created as an Auto Reset Event.

Object Names

Every TMMan object has a name associated with it. This name is used to form a binding

between the host and target counterparts of the objects. This object name is a unique

user supplied name that can be 12 characters long (maximum). The names are case sen-

sitive. The host has to create the named object before the target can find it otherwise the

named object creation on the target will fail. These names do not have to be unique

across objects—an event and a message channel can use the same name.

Scatter Gather Buffer Locking

The tmmanSGBufferxxx functions are applicable to systems in which the host processor

supports virtual memory. If an application running on the host allocates a buffer which

the target processor needs to access (read from or write to), scatter gather locking has to

be performed. Scatter Gather locking a buffer ensures that the memory allocated to that

Task Function

Creation CreateEvent

Signaling KeSignalEvent

Closing CloseHandle

Task Function

Creation AppSem_create + AppSem_p

Signaling AppSem_v

Closing AppSem_delete

Task Function

Creation AppSem_create + AppSem_p

Signaling AppSem_v

Closing AppSem_delete

Chapter 14: TriMedia Manager API for Windows

362 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

buffer does not get paged out. This locking operation also generates a scatter gather list

that is used by the target to access the memory allocated to the buffer which is frag-

mented in physical address space.

Debug Buffer Pointers

The tmmanDebugxxxBuffers functions return 2 sets of pointers and sizes. These pointers

point to a circular buffer in SDRAM or in PC memory. The pointers that track the current

state of the debug buffers are constantly changing. These functions returns a snapshot of

the pointers. The contents of the circular wrap-around buffer must be accessed in two

parts via the FirstHalfPtr and the SecondHalfPtr. If the buffer has not wrapped around at

the instant a call is made, the FirstHalfPtr will be Null. And only the SecondHalfPtr will

point to valid contents. To print the contents of the buffer, the code should be like this.

Status Codes

All the TMMan API functions return statusSuccess on successful completion. Callers can

retrieve a textual description of the failure codes by calling tmmanGetErrorString. All

error codes are documented in the file TMManErr.h.

SDRAM Mapping

Due to limited amount of virtual address space on some Windows platforms, simulta-

neous mapping of SDRAM and MMIO spaces of multiple TM processors may fail.

One solution for this problem is to defer SDRAM mapping until it is needed and immedi-

ately follow it with unmapping to free Virtual Address Space for mapping other TriMedia

processor SDRAMs in the machine.

The following two functions have been added to perform SDRAM mapping and unmap-

ping:

■ tmmanDSPMapSDRAM

■ tmmanDSPUnmapSDRAM

To disable SDRAM mapping at initialization (default is to map all of SDRAM), the follow-

ing registry key has to be set:

if(FirstHalfPtr){
 Print(FirstHalfPtr, FirstHalfBufferSize);
}
Print(SecondHalfPtr, SecondHalfBufferSize);

HKLM\SOFTWARE\PhilipsSemiconductors\TriMedia\TMMan
MapSDRAM=0

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 363

14

When SDRAM mapping is disabled, calls to tmmanDSPDSPInfo return invalid values in

the tmmanMemoryBlock.SDRAM.MappedAddress field. Other calls that make use of this

field will also fail. For example:

To avoid failures, calls to the SDRAM mapping/unmapping functions must to be

wrapped with calls to tmmanDSPMapSDRAM and tmmanDSPUnmapSDRAM.

Note
The C Run Time library server DLL (tmcrt.dll) will not work anymore since it
depends on the entire SDRAM to be accessible all the times. So target
executables have to be compiled with -host nohost or a dummy version of
the host_comm.o have to be linked if -host Windows is used. Also note that
TriMedia DLLs will not work since loading DLLs require file I/O.

Speculative Load Fix

The TriMedia compiler supports speculative loading—values in registers are used as

pointers and are dereferenced to load data from memory in advance.

Speculative loading can happen from SDRAM MMIO or over the PCI bus. On certain

Intel 440LX and 440BX Pentium II machines, load access to PC memory, adapter mem-

ory (like VGA frame buffer), or unclaimed PCI physical address space, across the PCI bus

causes the machine to lock up.

The TriMedia processor has a hardware feature that allows all PCI access (expect SDRAM

and MMIO accesses) to be disabled. This feature can be enabled and disabled at run time.

The TriMedia Manager disables PCI accesses at startup. When the TriMedia Manager,

however, needs to access PC memory for host communication functions, it enables PCI

accesses, performs the accesses and then disables PCI accesses.

Similarly, user programs that allocate and use shared memory should use the pciMemo-

ryReadUIntXX and pciMemoryWriteUIntXX functions to access shared memory on the

host, instead of reading and writing memory by de-referencing pointers directly. These

functions are documented in TCS\include\tm1\tmPCI.h.

The SpeculativeLoadFix option is turned OFF by default. It can be turned ON by the fol-

lowing registry entry.

WARNING
Current applications using shared memory will break if this fix is turned on.

tmmanMappedToPhysical
tmmanPhysicalToMapped
tmmanValidateAddressAndLength
tmmanTranslateAdapterAddress
tmmanDebugDPBuffers
tmmanDebugTargetBuffers

[HKEY_LOCAL_MACHINE\\SOFTWARE\\PhilipsSemiconductors\\TriMedia\\TMMan]
"SpeculativeLoadFix"=dword:00000001

Chapter 14: TriMedia Manager API for Windows

364 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Big-Endian Execution

The TriMedia processor can execute in both big-endian and little-endian modes. TMMan

supports execution of little endian as well as big endian executables on the TriMedia pro-

cessor.

If a PC-hosted TriMedia processor executes in big endian mode, every access made to

shared memory must be swapped to maintain data consistency because the PC’s host

processor always executes in little endian mode.

The TriMedia processor always accesses data in native endianess (big endian or little

endian mode). It is the host application’s responsibility to swap data types if the target is

running in a different endianess from that of the host. The sample programs: memory,

message, tmapi, and sgbuffer, take care of endianess issues using macros for swapping

data.

To execute big endian examples, set the following flag in %windir%\\tmman.ini:

The machine does not have to be rebooted after this change.

WinCE Issues

Under other Win32 platforms like WinNT, Win95, and Win98, Kernel Mode drivers can

signal user mode events via handles.

Under WinCE, however, TMMan Drivers run in user mode within the driver .exe process.

The only way to set an event in user mode is by obtaining a handle to the event via the

same name that the user application used to create the event. For this reason, applica-

tions that use TMMan Event and Messaging Interfaces and run under WinCE have to

take the following into considerations:

■ All Win32 events must be named events.

■ All event names must be unique, even across applications because events are created

in the global Win32 namespace.

Note
These restrictions do not apply to other Win32 platforms.

Synchronization Flags

constTMManModuleHostKernel Indicates that the Host module calling the
required function is running in Kernel Mode. If
this flag is specified TMMan interprets the Syn-
chronizationHandle parameter as a handle to a
Win32 Synchronization Object. Typically
WinNT/Win9X Device Drivers.

[TMMan]
Endian=1 ; LITTLE Endian Ð This is the default
Endian=0 ; BIG Endian

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 365

14

constTMManModuleHostUser Indicates that the Host module calling the
required function running in User Mode. Typi-
cally WinNT/Win9X/WinCE DLLs or Applica-
tions.

constTMManModuleTargetKernel On the target there is no distinction between user
and kernel mode. If this flag is specified TMMan
interprets SynchronizationHandle as an AppSem
type of synchronization object.

constTMManModuleTargetUser On the target there is no distinction between user
and kernel mode. If this flag is specified TMMan
interprets SynchronizationHandle as an AppSem
type of synchronization object.

Porting Guidelines

The TriMedia Manager API has changed considerably from the previous release. The new

interface is currently available under Windows NT only. In future releases, it will be

available under other platforms like Windows 95, Windows 98, and Windows CE. Due to

the changes to the TriMedia Manager API, existing applications that use the existing

Windows 95 TMMan API will have to be ported to the new TMMan interface.

This document describes the issues involved in porting applications from the old to the

new interface.

Inter-processor Messaging and Event API

Under the old TMMan API, the tmMessageCreate function, both on the host and the tar-

get, required the caller to specify a callback function. On the host this callback would be

called from a high priority thread (within TMMan) when a message arrived from the tar-

get. On the target TMMan would invoke this callback from within the ISR. This callback

function was called with a pointer to the packet that arrived. This was a push mecha-

nism and in most applications the caller had to insert the packet into a temporary queue

from within the callback and process the packet later.

Under the new TMMan API, the tmmanMessageCreate function, both on the host and

the target, expects the caller to pass in a handle to an operating system object that can be

signaled. On the host callers allocate a Win32 event and pass a handle to that event.

When a message arrives from the target this event is signaled. If the caller was blocked

on this event, it would unblock. On the target side the caller creates an AppSem with a

semaphore count of 1. The caller then claims the Semaphore via AppSem_p reducing the

count to 0 and then passes the handle to this Semaphore to tmmanMessageCreate. The

caller then does an AppSem_p again and blocks. On the arrival of a new packet from the

host TMMan calls AppSem_v to increment the semaphore count to 1 unblocking the call

to AppSem_p. The caller then makes repeated calls to tmmanMessageReceive to retrieve

the incoming packets until such time that the tmmanMessageReceive call returns an

Chapter 14: TriMedia Manager API for Windows

366 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

error. At this point it can call the OS specific blocking function i.e. (WaitForSingleObject

or AppSem_p) and wait for it to be signaled when the next message(s) arrive.

Inter-processor events are new to the TMMan API. They follow the same guidelines for

blocking and signaling as the messaging APIs.

Object ID

The old TMMan API used numeric IDs to form co-relation between objects created on

the host and the target. For example the host would create a message channel with an ID

of 2. Similarly the target would create a message channel with an ID of 2. When the host

would send a message to the target, it is would be received by the callback installed for

message channel with the ID of 2.

Under the new TMMan API ASCII strings are used instead of IDs. These strings can be a

maximum of 12 characters long. This decreases the probability of collisions when multi-

ple applications, using the TMMan API, create multiple objects. Using this interface, the

host will pass a unique ASCII string, e.g., "MyObject123", while creating any TMMan

object. The target side will use exactly the same string, "MyObject123", while creating the

corresponding TMMan object on the target.

C Run Time

Under the old interface TMCons.exe was use as a C Run Time Server on the host.

TMCons would handle and satisfy all requests that the target makes to POSIX level 2

calls like create, read, write, seek, fcntl, isatty, setmode, mktemp, and so forth. Also

TMCons was automatically invoked by virtue of the host application calling tmDSPExe-

cutableRun.

Under the new interface all C Run Time Dependencies has been removed from TMMan.

There is a separate DLL TMCrt.dll that provides the C Run Time Server functionality.

TMRun uses this DLL, TMMPRun and all other host applications that need to provide C

Run Time support for the target executable. TMMon and TMGMon explicitly invoke

TMRun for providing support to executables on the target. Host side applications written

users do not need to call the TMCRT interface if the corresponding target executable is

compiled with –host nohost linker flags.

Argument Passing

The host passes command Line arguments to the target executables.

Under the old TMMan API the host application passed these arguments to the tmDSPEx-

ecutableRun function which would internally pass it on to the target executable.

Under the new TMMan API the host application passes these arguments via the crunt-

imeXXX set of functions exported by TMCRT.dll.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 367

14

Data Type Changes

The old TMMan interface used Windows specific data types like VOID, DWORD, WORD,

and so forth, that made the header files non-portable to other platforms.

The new TMMan interface uses TriMedia standard Data types such as UInt32, UInt16,

UInt8, and so forth, which are defined in tmtypes.h.

Shared Memory Allocation

The tmShmemAllocate function, of the old TMMan interface, would return the Physical

address of the shared memory. This address would be passed to the target side using mes-

sages or the tmParameterDWORDSet function. The target could access the shared mem-

ory directly.

The new TMMan API requires a object name to be assigned to every shared memory

buffer allocated. The host does not receive a physical address. The target side can retrieve

the address of the shared memory block by using the same object name and calling the

tmmanSharedMemoryxxx set of calls.

Scatter Gather Locking

The tmBufferPrepare function, of the old TMMan interface, would return a physical

address that the host would communicate to the target via messages or via the tmParam-

eterDWORDSet function. The target would pass this physical address directly to tmSGxxx

set of calls.

Under the new interface the tmmanSGBufferCreate call requires an unique object name

at the time of page locking the buffer on the host. By the same token the tmmanSG-

BufferOpen call on the target requires the same object name. The tmmanSGBufferOpen

function returns a handle which is then passed to the tmmanSGBufferxxx set of calls on

the target.

Dynamic Task Downloading

The Dynamic Task Downloading API has been removed from the new TMMan interface

as this was introducing Operating System specific functionality within TMMan. Host ini-

tiated dynamic task downloading can be implemented using shared memory and mes-

sage passing functionality. An example program that demonstrates how to do this will be

provided in a later release.

Get/Set Parameters

The tmParameterDWORDxxx Parameter APIs have been removed from the new interface.

The introduction of the object name space and the shared memory API obviates the

need for these APIs.

Chapter 14: TriMedia Manager API for Windows

368 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMManager Data Structures

This section presents the TMManager data structures.

Name Page

tagtmmanPacket 369

tagtmmanVersion 370

tagtmmanMemoryBlock 371

tagtmmanDSPInfo 372

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 369

14

tagtmmanPacket

typedef struct tagtmmanPacket{
 UInt32 Argument[constTMManPacketArgumentCount];
 UInt32 Reserved;
} tmmanPacket;

Fields

Argument Array containing application specific arguments
that TMMan does not modify or interpret.

Reserved Do not use this field. TMMan overwrites it.

Description

Specifies the packet to be used by TMMan.

Chapter 14: TriMedia Manager API for Windows

370 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tagtmmanVersion

typedef struct tagtmmanVersion{
 UInt32 Major;
 UInt32 Minor;
 UInt32 Build;
} tmmanVersion;

Fields

Major Major version number of the specified TMMan
component.

Minor Minor version number of the specified TMMan
component.

Build Build version number of the specified TMMan
component.

Description

Specifies the version (Major, Minor, or Build) of TMMan.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 371

14

tagtmmanMemoryBlock

typedef struct tagtmmanMemoryBlock{
 UInt32 MappedAddress;
 UInt32 PhysicalAddress;
 UInt32 Size;
} tmmanMemoryBlock;

Fields

MappedAddress Operating System Mapped Address corresponding
to PhysicalAddress.

PhysicalAddress Physical address of the SDRAM or MMIO Win-
dow.

Size Size of the SDRAM or MMIO Window.

Description

Specifies the Operating System Mapped Address, and the SDRAM or MMIO Window

Physical Address.

Chapter 14: TriMedia Manager API for Windows

372 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tagtmmanDSPInfo

typedef struct tagtmmanDSPInfo{
 tmmanMemoryBlock SDRAM;
 tmmanMemoryBlock MMIO;
 UInt32 TMClassRevisionID;
 UInt32 TMSubSystemID;
 UInt32 DSPNumber;
 UInt32 TMDeviceVendorID;
 UInt32 BridgeDeviceVendorID;
 UInt32 BridgeClassRevisionID;
 UInt32 BridgeSubsystemID;
 UInt32 Reserved[8];
} tmmanDSPInfo;

Fields

SDRAM Address information about SDRAM.

MMIO Address information about MMIO.

TMClassRevisionID TriMedia PCI Class and Revision ID for CPU ver-
sion.

TMSubSystemID TriMedia PCI Subsystem & Subsystem Vendor
ID—same as Board Revision.

DSPNumber DSP Number that depends on the order this
device was found on the PCI bus.

TMDeviceVendorID TriMedia PCI Device and Vendor ID—TM1xxx /
TM2xxx support.

BridgeDeviceVendorID Bridge PCI Device and Vendor ID—non-transpar-
ent bridge support.

BridgeClassRevisionID Bridge PCI Class and Revision ID for CPU version.

BridgeSubsystemID Bridge PCI Subsystem & Subsystem Vendor ID—
non-transparent bridge support.

Reserved Reserved for future use.

Description

This structure contains PCI-specific information about the TriMedia device of the bridge

device.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 373

14

TMManager General Functions

This section describes the general TMManager functions.

Category Name Page

General type tmmanGetErrorString 374

tmmanNegotiateVersion 375

tmmanNegotiateVersion 375

tmmanMappedToPhysical 376

tmmanPhysicalToMapped 376

tmmanValidateAddressAndLength 377

tmmanTranslateAdapterAddress 378

DSP Interfaces tmmanDSPGetNum 379

tmmanDSPGetInfo 379

tmmanDSPGetStatus 380

tmmanDSPMapSDRAM 381

tmmanDSPUnmapSDRAM 382

tmmanDSPGetEndianess 383

tmmanDSPOpen 384

tmmanDSPClose 385

tmmanDSPLoad 386

tmmanDSPStart 387

tmmanDSPStop 388

tmmanDSPReset 389

Chapter 14: TriMedia Manager API for Windows

374 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanGetErrorString

Int8* tmmanGetErrorString(
 TMStatus StatusCode
);

Parameters

StatusCode Status code that needs to be converted to a string.

Return

Int8* (Pointer to a) Null-terminated string describing
the error.

Description

Returns the string corresponding to the specified error code.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 375

14

tmmanNegotiateVersion

TMStatus tmmanNegotiateVersion(
 UInt32 ModuleID,
 tmmanVersion *Version
);

Parameters

ModuleID Module Identification of the TMMan component
whose version needs to be verified. Possible values
of this parameter are:

 constTMManModuleHostKernel

 constTMManModuleHostUser

 constTMManModuleTargetKernel

 constTMManModuleTargetUser

Version Pointer to the TMMan version structure with its
Major and Minor fields filled up.

Return Codes

statusMajorVersionError Caller provided a major version that is less than
the major version of the given module.

statusMinorVersionError Caller provided a minor version that is less than
the minor version of the given module.

statusUnknownComponent Caller-provided ModuleID was outside the range
supported on this platform such as when this
function is called on the host with constTMMan-
ModuleTargetKernel or constTMManModule-
TargetUser.

Description

Called by the application to perform a version negotiation with the different compo-

nents of TMMan. The application should fill up the fields of the version structure with

the constTMManDefaultVersionxxx constants defined in this file, before calling the func-

tion. If TMMan cannot handle the version passed in this structure it will return an error.

Otherwise it will return a success status. Note that both in case of a failure or success

TMMan will write its current version information in the structure pointed to by the ver-

sion parameter. An application can restrict itself to run with a specific version of TMMan

by doing either of the following:

■ Not proceeding if this function returns failure.

■ Not proceeding based on the TMMan version returned by this function.

Chapter 14: TriMedia Manager API for Windows

376 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanMappedToPhysical

UInt32 tmmanMappedToPhysical(
 tmmanMemoryBlock *MemoryBlock,
 UInt32 MappedAddress
);

Parameters

MemoryBlock Pointer to a SDRAM or MMIO memory block
structure, that will be used for translating the
address. The contents of this structure can be
retrieved by calling tmmanDSPGetInfo.

MappedAddress The platform specific translated (mapped)
address.

Description

Translates an Operating System Mapped SDRAM or MMIO address to a physical address

and returns it (the physical address). This function translates SDRAM and MMIO

addresses only.

tmmanPhysicalToMapped

UInt32 tmmanPhysicalToMapped(
 tmmanMemoryBlock *MemoryBlock,
 UInt32 PhysicalAddress
);

Parameters

MemoryBlock Pointer to a SDRAM or MMIO memory block
structure, that will be used for translating the
address. The contents of this structure can be
retrieved by calling tmmanDSPGetInfo.

PhysicalAddress The platform-specific MMIO or SDRAM physical
address.

Description

Translates a SDRAM or MMIO physical address to an Operating System mapped address

and returns it.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 377

14

tmmanValidateAddressAndLength

Bool tmmanValidateAddressAndLength(
 tmmanMemoryBlock *MemoryBlock,
 UInt32 Address,
 UInt32 Length
);

Parameters

MemoryBlock Pointer to a SDRAM or MMIO memory block
structure, that will be used for translating the
address. The contents of this structure can be
retrieved by calling tmmanDSPGetInfo.

Address Physical address that needs to be checked.

Length Length of the block that needs to be checked.

Return Codes

True If the address and length describes a block lying
within the range specified by MemoryBlock.

False If the address and length describes a block lying
outside the range specified by MemoryBlock.

Description

Checks if the given physical address and length lies within the definable limits of the

given memory block. This function works for SDRAM and MMIO addresses only.

Chapter 14: TriMedia Manager API for Windows

378 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanTranslateAdapterAddress

Bool tmmanTranslateAdapterAddress (
 UInt32 MappedAddress,
 UInt32 Length,
 UInt32 *PhysicalAddressPtr
);

Parameters

MappedAddress OS Mapped memory address that needs to be
translated.

Length Length of the block that needs to be translated.
Does not need to encompass the entire memory
range.

PhysicalAddressPtr Address of the memory location where the trans-
lated physical address will be stored.

Return Codes

True Address and length translated successfully to an
adapter physical address.

False Address translation failed.

Description

Uses the TMMan Kernel Mode Driver to translate an adapter-mapped address to a physi-

cal address that can be accessed by the TM processor.

NOTE
This function can only be used to translate physical adapter memory
addresses (physical memory that is guaranteed to be page locked and
contiguous). Because the address range is assumed to be contiguous, the
length of memory range passed to this function does not have to be the
entire range of memory that needs to be accessed.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 379

14

tmmanDSPGetNum

UInt32 tmmanDSPGetNum(void);

Parameters

None.

Description

Returns the number of TriMedia processors installed in the system.

tmmanDSPGetInfo

TMStatus tmmanDSPGetInfo(
 UInt32 DSPHandle,
 tmmanDSPInfo *DSPInfo
);

Parameters

DSPHandle Handle to the DSP returned by tmmanDSPOpen.

DSPInfo Pointer to the structure where the TriMedia pro-
cessor-related information will be returned.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

Description

Retrieves the properties of the specified TriMedia processor.

Chapter 14: TriMedia Manager API for Windows

380 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanDSPGetStatus

TMStatus tmmanDSPGetStatus(
 UInt32 DSPHandle,
 UInt32 *StatusFlags
);

Parameters

DSPHandle Handle to the DSP returned by tmmanDSPOpen.

StatusFlags Pointer to the location where the status flags will
be stored. The status flags can be one of the fol-
lowing:

constTMManDSPStatusUnknown: TMMan cannot
determine the state of the TriMedia processor.

constTMManDSPStatusReset: TriMedia processor
is in a reset state, so it is not running.

constTMManDSPStatusRunning: TriMedia proces-
sor is in a running state.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

statusUnsupportedOnThisPlatform If this function is called on the target.

Description

Returns the current state of the specified TriMedia Processor.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 381

14

tmmanDSPMapSDRAM

TMStatus tmmanDSPMapSDRAM (
 UInt32 DSPHandle
);

Parameters

DSPHandle Handle to the DSP returned by tmmanDSPOpen.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

statusOutOfVirtualAddresses There are no more free Page Table Entries to map
this memory.

statusUnsupportedOnThisPlatform If this function is called on the target.

Description

Maps SDRAM into the Operating System and Process virtual address space.

Chapter 14: TriMedia Manager API for Windows

382 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanDSPUnmapSDRAM

TMStatus tmmanDSPUnmapSDRAM (
 UInt32 DSPHandle
);

Parameters

DSPHandle Handle to the DSP returned by tmmanDSPOpen.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

statusUnsupportedOnThisPlatform If this function is called on the target.

Description

Unmaps SDRAM from Process virtual address space. If all instances of SDRAM for this

processor have been unmapped, the OS mapping is also undone.

Note
tmmanDSPMapSDRAM and tmmanDSPUnmapSDRAM must be called in
pairs.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 383

14

tmmanDSPGetEndianess

TMStatus tmmanDSPGetEndianess (
 UInt32 DSPHandle,
 UInt32 *EndianessFlags
);

Parameters

DSPHandle Handle to the DSP returned by tmmanDSPOpen.

EndianessFlags Pointer to the location where the endianess flags
will be stored.

The endianess flags can be one of the following.

constTMManEndianessUnknown
constTMManEndianessLittle
constTMManEndianessBig

Return

statusInvalidHandle Handle to the DSP is corrupted.

statusUnsupportedOnThisPlatform If this function is called on the target.

Description

Gets the current endianess of the specified TriMedia Processor.

Chapter 14: TriMedia Manager API for Windows

384 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanDSPOpen

TMStatus tmmanDSPOpen(
 UInt32 DSPNumber,
 UInt32* DSPHandlePointer
);

Parameters

DSPNumber Number of the TriMedia processor that needs to
be opened. Note that this count reflects the order
in which the TriMedia processor was detected by
tmman. This is generally dependent on the PCI
slot in which the TriMedia board is sitting.

DSPHandlePointer Address of the memory location where the handle
to the DSP will be stored. All future references to
the board have to be made via the handle.

Return Codes

statusDSPNumberOutofRange The DSPNumber parameter does not lie within 0
and tmmanDSPGetNum–1.

Description

Opens the given TriMedia Processor. This call simply increments an internal reference

count. It does not perform physical detection of the processor. All TriMedia processors

are detected when TMMan is loaded.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 385

14

tmmanDSPClose

TMStatus tmmanDSPClose(
 UInt32 DSPHandle
);

Parameters

DSPHandle Handle to the TriMedia processor returned by
tmmanDSPOpen.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

Description

Closes the given handle to the TriMedia processor. This call decrements an internal refer-

ence count. The caller will be able to use the handle even after closing it. The handle to

the DSP remains valid as long as the TriMedia processor to which the handle refers exists

in the system.

Chapter 14: TriMedia Manager API for Windows

386 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanDSPLoad

TMStatus tmmanDSPLoad(
 UInt32 DSPHandle,
 UInt32 LoadAddress,
 UInt8* ImagePath
);

Parameters

DSPHandle Handle to the TriMedia processor returned by
tmmanDSPOpen.

LoadAddress Address of SDRAM where the executable should
be downloaded. To use the default values use con-
stTMManDefault.

ImagePath Path to the executable file image. This image
should have a boot image, not a task.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted or DSP has already
been closed.

statusUnsupportedOnThisPlatform If this function is called on the target.

statusOutOfVirtualAddresses There are no more free Page Table Entries to map
SDRAM for image download.

statusExecutableFileWrongEndianness
The endianess of the executable file is not the
same as that specified in the INI file or registry.

statusDownloaderXXX Range of TMDownloader error codes. For expla-
nation of these error codes refer to TMDown-
loader.h.

Description

Loads a boot image on to the DSP. This image must be compiled with the -btype boot

flag.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 387

14

tmmanDSPStart

TMStatus tmmanDSPStart(
 UInt32 DSPHandle
);

Parameters

DSPHandle Handle to the TriMedia processor returned by
tmmanDSPOpen.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

statusUnsupportedOnThisPlatform If this function is called on the target.

Description

Unresets the DSP. The DSP starts executing code at SDRAM base. See C Run Time on

page 366.

Chapter 14: TriMedia Manager API for Windows

388 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanDSPStop

TMStatus tmmanDSPStop(
 UInt32 DSPHandle
);

Parameters

DSPHandle Handle to the TriMedia processor returned by
tmmanDSPOpen.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

statusUnsupportedOnThisPlatform If this function is called on the target.

Description

Puts the CPU into a reset state. Resets all the peripherals via MMIO registers. Resets

shared data structures that TMMan uses across the bus.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 389

14

tmmanDSPReset

TMStatus tmmanDSPReset(
 UInt32 DSPHandle
);

Parameters

DSPHandle Handle to the TriMedia processor returned by
tmmanDSPOpen.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

statusUnsupportedOnThisPlatform If this function is called on the target.

Description

Initializes the TriMedia Processor after it has been manually reset by the reset button or

other means.

This function can additionally preform a hardware reset of the TriMedia processor pro-

vided the necessary hardware modifications have been made to the IREF board.

Chapter 14: TriMedia Manager API for Windows

390 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMManager Message Interface Functions

This section presents the Message Interface TMManager functions.

Name Page

tmmanMessageCreate 391

tmmanMessageDestroy 393

tmmanMessageSend 394

tmmanMessageReceive 395

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 391

14

tmmanMessageCreate

TMStatus tmmanMessageCreate(
 UInt32 DSPHandle,
 UInt8 Name,
 UInt32 SynchronizationHandle,
 UInt32 SynchronizationFlags,
 UInt32 *MessageHandlePointer
);

Parameters

DSPHandle Handle to the TriMedia processor returned by
tmmanDSPOpen.

Name Unique caller-supplied name for this message
channel. See Object Names on page 361.

SynchronizationHandle Pointer to OS-specific synchronization object. See
Synchronization Handle on page 360.

SynchronizationFlags This parameter describes how TMMan should
interpret the SynchronizationHandle parameter.
See Synchronization Flags on page 364.

MessageHandlePointer Address of the location where the pointer to the
message channel will be stored in tmmanapi.h.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

statusObjectAllocFail Object memory allocation failed.

statusObjectListAllocFail No more message channels free.

statusNameSpaceNoMoreSlots Out of name space slots; internal error.

statusNameSpaceLengthExceeded Name is more than 12 characters.

statusNameSpaceNameConflict The user-assigned name already exists in TMMan
name space.

statusSynchronizationObjectCreateFail
The synchronization flags were invalid or mem-
ory could not be allocated for the Synchroniza-
tion object.

statusQueueObjectCreateFail Creation of the queue to buffer incoming packets
failed.

Description

Creates a bidirectional message channel between the host and the target processor. This

message channel can be used to send fixed size packets of type tmmanPacket from one

processor to another. The message packets are copied across the PCI bus via shared mail-

Chapter 14: TriMedia Manager API for Windows

392 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

boxes. Every message channel has its own private queue where incoming packets from

the other processor are temporarily buffered.

When a packet arrives from the other processor the caller supplied OS synchronization

object will be signalled. The caller can use native OS primitives to block on this object or

on multiple objects as required. Note, however, that due to the relative speed of the two

processors there may not be a one to one correspondence between the number of times

the object is signalled and the number of packets in the incoming queue.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 393

14

tmmanMessageDestroy

TMStatus tmmanMessageDestroy(
 UInt32 MessageHandle
);

Parameters

MessageHandle Handle to the message channel returned by
tmmanMessageCreate.

Return Codes

statusInvalidHandle Handle to the message channel is corrupted or
has already been closed.

Description

Closes the message channel handle returned by tmmanMessageCreate. Only the message

channel and the queue are freed. The caller is responsible for freeing the OS synchroniza-

tion object that was supplied at the time of tmmanMessageCreate.

Chapter 14: TriMedia Manager API for Windows

394 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanMessageSend

TMStatus tmmanMessageSend(
 UInt32 MessageHandle,
 void *DataPointer
);

Parameters

MessageHandle Handle to the message channel returned by
tmmanMessageCreate.

DataPointer Pointer to the tmmanPacket data structure. Once
this call returns successfully the data structure can
be reused.

Return Codes

statusInvalidHandle Handle to the message channel is corrupted or
has already been closed.

statusChannelMailboxFullError The interprocessor mailbox is temporarily full,
this is a temporary condition. The user is sup-
posed to retry the call only when this error code is
returned. See the Implementation Notes below.

Description

This function sends a fixed size data packet of type tmmanPacket to the peer processor.

This functions returns an error if there is no space in the interprocessor mailbox to send

packets. However this may be a temporary condition and caller should retry sending the

packet after a timeout. Packets on a certain message channel are guaranteed to arrive in

order on the peer processor.

Implementation Notes

Regarding the error code, statusChannelMailboxFullError, the caller should not do the fol-

lowing:

Rather, the caller should do the following:

while (tmmanMessageSend(Handle,&Packet) != statusSuccess){}

while(tmmanMessageSend(Handle,&Packet) ==
 statusChannelMailboxFullError){}

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 395

14

tmmanMessageReceive

TMStatus tmmanMessageReceive(
 UInt32 MessageHandle,
 void *DataPointer
);

Parameters

MessageHandle Handle to the message channel returned by
tmmanMessageCreate.

DataPointer Pointer to the tmmanPacket data structure. If this
call succeeds the tmmanPacket structure contains
a valid packet.

Return Codes

statusInvalidHandle Handle to the message channel is corrupted or
has already been closed.

statusInvalidHandle Handle to the message channel is corrupted or
has already been closed.

statusMessageQueueEmptyError There are no pending packets in the incoming
message queue for this message channel.

Description

This function retrieves a packet from the incoming packet queue. This is a non-blocking

function, so if there are no packets in the queue this function returns immediately with

an error code. A synchronization object may be signalled one for multiple packets. The

caller should call this function repeatedly, until it fails, to retrieve all packets that have

arrived.

Chapter 14: TriMedia Manager API for Windows

396 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMManager Event Functions

This section presents the TMManager Event functions.

Category Name Page

Event tmmanEventCreate 397

tmmanEventSignal 399

tmmanEventDestroy 400

Shared Memory tmmanSharedMemoryCreate 401

tmmanSharedMemoryDestroy 403

tmmanSharedMemoryOpen 404

tmmanSharedMemoryClose 406

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 397

14

tmmanEventCreate

TMStatus tmmanEventCreate(
 UInt32 DSPHandle,
 UInt8* Name,
 UInt32 SynchronizationHandle,
 UInt32 SynchronizationFlags,
 UInt32 *EventHandlePointer
);

Parameters

DSPHandle Handle to the TriMedia processor returned by
tmmanDSPOpen.

Name Unique caller-supplied name for this event. See
Object Names on page 361.

SynchronizationHandle Pointer to OS-specific synchronization object. See
Synchronization Handle on page 360.

SynchronizationFlags Describes how TMMan should interpret the
SynchronizationHandle parameter. See Synchroni-
zation Flags on page 364.

EventHandlePointer Address of the location where the pointer to the
event will be stored.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

statusObjectAllocFail Object memory allocation failed.

statusObjectListAllocFail No more events free.

statusDeviceIoCtlFail Internal Error.

statusNameSpaceNoMoreSlots Out of name space slots, internal error.

statusNameSpaceLengthExceeded Name is more than 12 characters.

statusNameSpaceNameConflict The user-assigned name already exists in TMMan
name space.

statusSynchronizationObjectCreateFail
The synchronization flags were invalid or mem-
ory could not be allocated for the Synchroniza-
tion object.

Description

Events provide an interprocessor signalling mechanism. It enables one processor to sig-

nal an event that will cause another processor to unblock if it is waiting for that event.

The caller of this function should use the native OS dependent Synchronization primi-

Chapter 14: TriMedia Manager API for Windows

398 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tives to create a OS synchronization object, and pass the pointer to that object to this

function. Due to the relative speeds of the two processors, there may not be one-to-one

correspondences between the number of times one processor signals the event and the

number of times the event gets signalled on the peer processor.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 399

14

tmmanEventSignal

TMStatus tmmanEventSignal(
 UInt32 EventHandle
);

Parameters

EventHandle Handle to the event returned by tmmanEvent-
Create.

Return Codes

statusInvalidHandle Handle to the event is corrupted or has already
been closed.

Description

This function signals the event object causing the OS synchronization object on the peer

processor to be signaled.

Chapter 14: TriMedia Manager API for Windows

400 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanEventDestroy

TMStatus tmmanEventDestroy(
 UInt32 EventHandle
);

Parameters

EventHandle Handle to the event returned by tmmanEvent-
Create.

Return Codes

statusInvalidHandle Handle to the object is corrupted or has already
been closed.

Description

Closes the EventHandle parameter and frees up the resources allocated by TMMan for

this object. It is the caller’s responsibility to free the OS synchronization object that was

passed to the tmmanEventCreatefunction.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 401

14

tmmanSharedMemoryCreate

TMStatus tmmanSharedMemoryCreate(
 UInt32 DSPHandle,
 UInt8* Name,
 UInt32 Length,
 UInt32 *AddressPointer,
 UInt32 *SharedMemoryHandlePointer
);

Parameters

DSPHandle Handle to the TriMedia processor returned by
tmmanDSPOpen.

Name Unique caller-supplied name for this object. See
Object Names on page 361.

Length Length of the required shared memory block in
bytes.

AddressPointer Address of the memory location where the
pointer to the shared memory will be stored. This
pointer can be used by the host directly to access
the allocated memory.

SharedMemoryHandlePointer Address of the location where the handle to the
shared memory will be stored. This handle is
required to free this resource.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

statusObjectAllocFail Object memory allocation failed.

statusObjectListAllocFail No more shared memory slots free.

statusNameSpaceNoMoreSlots Out of name space slots, internal error.

statusNameSpaceLengthExceeded Name is more than 12 characters.

statusNameSpaceNameConflict The user-assigned name already exists in TMMan
name space.

statusMemoryUnavailable No more shared memory available.

statusUnsupportedOnThisPlatform If this function is called on the target.

Description

Allocates a block of shared memory and returns a pointer to the memory block. This

memory is allocated out of contiguous, page locked memory on the host processor.

Shared memory can only be allocated on the host but can be accessed from the target.

Note that this is a very expensive system resource and should be used sparingly. The

Chapter 14: TriMedia Manager API for Windows

402 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

memory block returned is always aligned on a 32-bit boundary. TMMan allocates a

region of shared memory for every board present in the system (at startup) and then sub-

allocates blocks from this region when this function is called.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 403

14

tmmanSharedMemoryDestroy

TMStatus tmmanSharedMemoryDestroy(
 UInt32 SharedMemoryHandle
);

Parameters

SharedMemoryHandle Handle to the shared memory block returned by
tmmanSharedMemoryCreate.

Return Codes

statusInvalidHandle Handle to the object is corrupted.

statusUnsupportedOnThisPlatform If this function is called on the target.

Description

Closes the SharedMemoryHandle parameter, and frees up the shared memory that was

allocated via the call to tmmanSharedMemroyCreate. This function should be called by

the host processor only.

Chapter 14: TriMedia Manager API for Windows

404 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanSharedMemoryOpen

TMStatus tmmanSharedMemoryOpen(
 UInt32 DSPHandle,
 UInt8* Name,
 UInt32 *LengthPointer,
 UInt32 *AddressPointer,
 UInt32 *SharedMemoryHandlePointer
);

Parameters

DSPHandle Handle to the TriMedia processor returned by
tmmanDSPOpen.

Name Unique caller-supplied name for this object. See
Implementation Notes following.

LengthPointer Address of the memory location where the
Length of the shared memory block identified by
name will be stored.

AddressPointer Address of the memory location where the
pointer to the shared memory will be stored. This
pointer can be used by the target directly to access
the allocated memory.

SharedMemoryHandlePointer Address of the location where the handle to the
shared memory will be stored. This handle is
required to free references to this resource.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted or DSP has already
been closed.

statusObjectAllocFail Object memory allocation failed.

statusObjectListAllocFail No more shared memory slots free.

statusNamesPacelengthExceeded Name is more than 12 characters.

statusNameSpaceNameNonexistent The user-provided name does not exist in TMMan
name space.

statusUnsupportedOnThisPlatform If this function is called on the host.

Description

This function opens a handle to a shared memory resource created on the host. This

function does not actually allocate any memory, it returns a handle to an existing shared

memory block, that has been already allocated on the host. This function should be

called on the target processor only.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 405

14

Implementation Notes

1. Name: The counterpart of this object on the host/target should use the same name.

TMMan uses this name internally to set up the shared data structures between the

host and the target. The name should not exceed 12 characters. The name is case-sen-

sitive. Names do not have to unique across objects; for example, an event and a mes-

sage channel can use the same name.

Chapter 14: TriMedia Manager API for Windows

406 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanSharedMemoryClose

TMStatus tmmanSharedMemoryClose(
 UInt32 SharedMemoryHandle
);

Parameters

SharedMemoryHandle Handle to the event returned by tmmanShared-
MemoryOpen.

Return Codes

statusInvalidHandle Handle to the object is corrupted or has already
been closed.

statusUnsupportedOnThisPlatform If this function is called on the host.

Description

Closes the SharedMemoryHandle and frees up the resources allocated by TMMan for this

object. This function does not free the shared memory. The shared memory has to be

freed by the host. This function should be called from the target processor only.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 407

14

TMManager Buffer Locking Functions

This section describes the Buffer Locking TMManager functions. The Buffer Locking

functions are applicable to systems that support virtual memory. If a user allocates a

buffer on one processor and needs the peer processor(s) to access this memory, the mem-

ory can not be paged out. Also, the peer processor needs to know the manner in which

the memory is fragmented in the physical address space. These functions handle the

above issues.

Category Name Page

Scatter Gather Buffer Locking tmmanSGBufferCreate 408

tmmanSGBufferDestroy 410

tmmanSGBufferOpen 411

tmmanSGBufferClose 412

tmmanSGBufferFirstBlock 413

tmmanSGBufferNextBlock 414

tmmanSGBufferCopy 415

Chapter 14: TriMedia Manager API for Windows

408 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanSGBufferCreate

TMStatus tmmanSGBufferCreate(
 UInt32 DSPHandle,
 UInt8 Name,
 UInt32 MappedAddress,
 UInt32 Size,
 UInt32 Flags,
 UInt32 *BufferHandlePointer
);

Parameters

DSPHandle Handle to the TriMedia processor returned by
tmmanDSPOpen.

Name Unique caller-supplied name for this object. See
Implementation Note 1, following.

MappedAddress Host address of the block of memory that needs
to be page locked. This parameter is typically the
return value of malloc.

Size Size of the memory in bytes.

Flags See Implementation Note 2, following.

BufferHandlePointer Address of the location where the handle to the
page-locked memory will be stored. This handle is
required to unlock the page-locked memory.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

statusObjectAllocFail Object memory allocation failed.

statusObjectListAllocFail No more shared memory slots free.

statusDeviceIoCtlFail Internal Error.

statusNameSpaceNoMoreSlots Out of name space slots, internal error.

statusNameSpaceLengthExceeded Name is more than 12 characters.

statusNameSpaceNameConflict The user-assigned name already exists in TMMan
name space.

statusMemoryUnavailable No more shared memory available to copy the
page frame table.

statusUnsupportedOnThisPlatform If this function is called on the target.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 409

14

Description

Page locks the specified memory and generates a page frame table that can be used by

the target to access the page-locked memory. This function is only supported on hosts

that have virtual memory, and can only be called by the host processor.

Implementation Notes

1. Name: The counterpart of this object on the host/target should use the same name.

TMMan uses this name internally to set up the shared data structures between the

host and the target. The name should not exceed 12 characters. The name is case-sen-

sitive. Names do not have to unique across objects; for example, an event and a mes-

sage channel can use the same name.

2. Flags can have one or more the following values:

constTMManSGBufferRead Buffer is going to read into (Incoming Data).

constTMManSGBufferWrite Buffer is going to be written from (Outgoing
Data).

Chapter 14: TriMedia Manager API for Windows

410 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanSGBufferDestroy

TMStatus tmmanSGBufferDestroy(
 UInt32 BufferHandle
);

Parameters

BufferHandle Handle to the event returned by tmmanShared-
MemoryOpen.

Return Codes

statusInvalidHandle Handle to the object is corrupted or has already
been closed.

statusUnsupportedOnThisPlatform If this function is called on the target.

Description

Closes the handle of the page-locked memory, unlocks the memory, and frees up the

page frame tables. This function should be called by the host processor only.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 411

14

tmmanSGBufferOpen

TMStatus tmmanSGBufferOpen(
 UInt32 DSPHandle,
 UInt8* Name,
 UInt32 *EntryCountPointer,
 UInt32 *SizePointer,
 UInt32 *BufferHandlePointer
);

Parameters

DSPHandle Handle to the TriMedia processor returned by
tmmanDSPOpen.

Name Unique caller-supplied name for this object. See
Implementation Notes following.

EntryCountPointer Address of the memory location where the count
of the PTE entries is stored by this function.

SizePointer Address of the memory location where the size of
the buffer is stored.

BufferHandlePointer Address of the location where the handle to the
scatter gather buffer will be stored. This handle is
required to free references to this resource.

Return Codes

statusInvalidHandle Handle to the DSP is corrupted.

statusObjectAllocFail Object memory allocation failed.

statusObjectListAllocFail No more shared memory slots free.

statusNameSpaceLengthExceeded Name is more than 12 characters.

statusNameSpaceNameNonExistent The user-provided name does not exist in TMMan
name space.

statusUnsupportedOnThisPlatform If this function is called on the host.

Description

Opens a handle to the block of memory that was page-locked on the host. This function

should only be called by the target processor.

Chapter 14: TriMedia Manager API for Windows

412 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Implementation Notes

1. Name: The counterpart of this object on the host/target should use the same name.

TMMan uses this name internally to set up the shared data structures between the

host and the target. The name should not exceed 12 characters. The name is case-sen-

sitive. Names do not have to unique across objects; for example, an event and a mes-

sage channel can use the same name.

tmmanSGBufferClose

TMStatus tmmanSGBufferClose(
 UInt32 BufferHandle
);

Parameters

BufferHandle Handle to the buffer returned by tmmanSGBuffer-
Open.

Return Codes

statusInvalidHandle Handle to the object is corrupted.

statusUnsupportedOnThisPlatform If this function is called on the host.

Description

Closes the reference to the scatter gather page-locked memory. This function does not

unlock the memory pages.This function should be called from the target processor only.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 413

14

tmmanSGBufferFirstBlock

TMStatus tmmanSGBufferFirstBlock(
 UInt32 BufferHandle
 UInt32 *OffsetPointer,
 UInt32 *AddressPointer,
 UInt32 *SizePointer,
);

Parameters

BufferHandle Handle to the buffer returned by tmmanSGBuffer-
Open.

OffsetPointer Address of the memory location (where the offset
of the block from the beginning of the memory
that was page-locked on the host) will be stored.

AddressPointer Address of the memory location where the
pointer to the memory block will be stored.

SizePointer Address of the memory location where the size of
the block will be stored.

Return Codes

statusInvalidHandle Handle to the object is corrupted.

statusUnsupportedOnThisPlatform If this function is called on the host.

Description

Returns the description of the first contiguous run of the page locked memory on the

host. The description consists of the offset of the block from the beginning of the mem-

ory, pointer of the block that the target processor can use to access the memory, and the

size of the block. A call has to be made to the tmmmanSGBufferNextBlock to get descrip-

tion of subsequent blocks.

Chapter 14: TriMedia Manager API for Windows

414 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanSGBufferNextBlock

TMStatus tmmanSGBufferNextBlock(
 UInt32 BufferHandle,
 UInt32 *OffsetPointer,
 UInt32 *AddressPointer,
 UInt32 *SizePointer
);

Parameters

BufferHandle Handle to the buffer returned by tmmanSGBuffer-
Open.

OffsetPointer Address of the memory location (where the offset
of the block from the beginning of the memory
that was page locked on the host) will be stored.

AddressPointer Address of the memory location where the
pointer to the memory block will be stored.

SizePointer Address of the memory location where the size of
the block will be stored.

Return Codes

statusInvalidHandle Handle to the object is corrupted.

statusSGBufferNoMoreEntries There are no more entries in the page frame table.
To restart parsing of the page frame table, call
tmmanSGBufferFirstBlock followed by calls to
tmmanSGBufferNextBlock.

statusUnsupportedOnThisPlatform If this function is called on the host.

Description

Returns the description of consecutive runs of contiguous memory from the page

frametable referred to by BufferHandle. Note that tmmanSGBufferFirstBlock functions

should be called at least once prior to calling this function.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 415

14

tmmanSGBufferCopy

TMStatus tmmanSGBufferCopy(
 UInt32 BufferHandle,
 UInt32 Offset,
 UInt32 Address,
 UInt32 Size,
 UInt32 Direction
);

Parameters

BufferHandle Handle to the buffer returned by tmmanSGBuffer-
Open.

Offset Offset from the beginning of memory where the
copying has to start.

Address Pointer to the buffer on the target processor
where it will be copied to/from.

Size Number of bytes to copy.

Direction Direction of copy. For example, if TRUE, copy
from host memory to target memory; if FALSE,
copy from target to host memory.

Return Codes

statusInvalidHandle Handle to the object is corrupted.

statusSGBufferOffsetOutOfRange The offset supplied to this function is out of range
of the page-locked host buffer.

statusSGBufferSizeOutOfRange The size passed to this function is greater than the
amount of page-locked memory available from
the given offset.

statusUnsupportedOnThisPlatform If this function is called on the host.

Description

The function copies the contents of the page-locked memory on the host to/from

another block of memory on the target. It uses the C run time routine memcpy to per-

form the actual copying operation. If the caller needs the copying to be done via DMA

transfer, then the tmmanSGBufferFirstBlock and tmmanSGBufferNextBlock should be

used instead.

Chapter 14: TriMedia Manager API for Windows

416 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TMManager Debugging Functions

This section presents the debugging TMManager functions.

Name Page

tmmanDebugDPBuffers 417

tmmanDebugHostBuffers 418

tmmanDebugTargetBuffers 419

tmmanDebugPrintf 420

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 417

14

tmmanDebugDPBuffers

TMStatus tmmanDebugDPBuffers(
 UInt32 DSPHandle,
 UInt8 **FirstHalfPtr,
 UInt32 *FirstHalfSizePtr,
 UInt8 **SecondHalfPtr,
 UInt32 *SecondHalfSizePtr
);

Parameters

DSPHandle Handle to the DSP returned by tmmanDSPOpen.

FirstHalfPtr Address of the memory location where the
pointer to the first half of the buffer will be
stored.

FirstHalfSizePtr Address of the memory location where the size of
the first half buffer will be stored.

SecondHalfPtr Address of the memory location where the
pointer to the second half of the buffer will be
stored.

SecondHalfSizePtr Address of the memory location where the size of
the second half buffer will be stored.

Return Codes

statusInvalidHandle Handle to the object is corrupted.

statusDebugNoPeerDebugInformation
This function scans through the entire SDRAM to
search for a magic header that identifies valid
debug information. This error code denotes that
the magic header does not exist or had been cor-
rupted.

statusUnsupportedOnThisPlatform If this function is called on the host.

Description

This function retrieves pointer to the circular wrap around buffers, where the TriMedia

processor dumps debug messages. This function is current callable only from the host

and it retrieves debug information generated by the TriMedia processor. Debug informa-

tion printed via the DP macros are retrieved via this function. See Debug Buffer Pointers

on page 362.

Chapter 14: TriMedia Manager API for Windows

418 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanDebugHostBuffers

TMStatus tmmanDebugHostBuffers(
 UInt8 **FirstHalfPtr,
 UInt32 *FirstHalfSizePtr,
 UInt8 **SecondHalfPtr,
 UInt32 *SecondHalfSizePtr
);

Parameters

FirstHalfPtr Address of the memory location where the
pointer to the first half of the buffer will be
stored.

FirstHalfSizePtr Address of the memory location where the size of
the first half buffer will be stored.

SecondHalfPtr Address of the memory location where the
pointer to the second half of the buffer will be
stored.

SecondHalfSizePtr Address of the memory location where the size of
the second half buffer will be stored.

Return Codes

statusNotImplemented This function will be implemented in a future
release. Currently all TMMan (host) debug mes-
sages are printed to the host debugger (WinDBG
or NTIce).

statusUnsupportedOnThisPlatform If this function is called on the target.

Description

This function retrieves pointer to the circular wrap around buffers, where the host pro-

cessor dumps debug messages. This function is current callable only from the host and it

retrieves debug information generated by the host component of TMMan. The are no

application callable functions that can dump data into these buffers. TMMan(host) uses

this buffer to print internal debug information. See Debug Buffer Pointers on page 362.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 419

14

tmmanDebugTargetBuffers

TMStatus tmmanDebugTargetBuffers(
 UInt32 DSPHandle,
 UInt8 **FirstHalfPtr,
 UInt32 *FirstHalfSizePtr,
 UInt8 **SecondHalfPtr,
 UInt32 *SecondHalfSizePtr
);

Parameters

DSPHandle Handle to the DSP returned by tmmanDSPOpen.

FirstHalfPtr Address of the memory location where the
pointer to the first half of the buffer will be
stored.

FirstHalfSizePtr Address of the memory location where the size of
the first half buffer will be stored.

SecondHalfPtr Address of the memory location where the
pointer to the second half of the buffer will be
stored.

SecondHalfSizePtr Address of the memory location where the size of
the second half buffer will be stored.

Return Codes

statusInvalidHandle Handle to the object is corrupted.

statusDebugNoPeerDebugInformation
This function scans through the entire SDRAM
to search for a magic header that identifies valid
debug information. This error code denotes that
the magic header do not exist or has been
corrupted.

statusUnsupportedOnThisPlatform If this function is called on the target.

Description

This function retrieves pointer to the circular wrap around buffers, where the target pro-

cessor dumps debug messages. This function is current callable only from the host and it

retrieves debug information generated by the target component of TMMan. Applications

running on the target can call the tmmanDebugPrintf function to print information into

these buffers. TMMan(target) uses this buffer to print internal debug information. See

Debug Buffer Pointers on page 362.

Chapter 14: TriMedia Manager API for Windows

420 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tmmanDebugPrintf

UInt32 tmmanDebugPrintf(
 UInt8 *Format,
 ...
);

Parameters

Format printf style format specifier.

... printf style arguments.

Return

Number of items printed.

Description

This function is used to print formatted strings via the debugging subsystem of TMMan.

The implementation of this function is platform specific. On the host this functions

prints out strings to the debug windows. On the target this function prints strings to the

debug trace buffers. The maximum length of the string can be 1024 bytes. Applications

on the TriMedia processor should use the DP macros to print debugging information.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 421

14

TMManager C Runtime Server

This section describes the structures and functions of the tmcrt.h header file.

Name Page

tagCRunTimeParameterBlock 422

cruntimeCreate 424

cruntimeDestroy 425

cruntimeInit 426

cruntimeExit 426

Chapter 14: TriMedia Manager API for Windows

422 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

tagCRunTimeParameterBlock

typedef struct tagCRunTimeParameterBlock{
 UInt32 OptionBitmap;
 UInt32 StdInHandle;
 UInt32 StdOutHandle;
 UInt32 StdErrHandle;
 UInt32 WindowSize;
 UInt32 CRTThreadCount;
 UInt32 SynchronizationObject;
 UInt32 VirtualNodeNumber;
} CRunTimeParameterBlock;

Fields

OptionBitmap Options Flags (see Table 1 following).

StdInHandle Handle to the standard input device. Not inter-
preted if constCRunTimeFlagsNoConsole is set.
Has to be a valid Win32 handle, not a FILE*, and
not a file handle returned by open.

StdOutHandle Handle to the standard output device. Has to be a
valid Win32 handle, not a FILE*, and not a file
handle returned by open.

StdErrHandle Handle to the standard input device. Has to be a
valid Win32 handle, not a FILE*, and not a file
handle returned by open.

WindowSize Number of lines in the console window. Inter-
preted only if constCRunTimeFlagsUseWindowSize
is set.

CRTThreadCount Number of threads that are created to serve this
node. Currently not used.

SynchronizationObject Handle to the Win32 Event that is signalled when
the target exits normally. Interpreted only if
constCRunTimeFlagsUseSynchObject is set.

VirtualNodeNumber Should be 0 for the first call to cruntimeCreate in
a process context. The value of this parameter
should be incremented for each subsequent call.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 423

14

Table 1 Options Flags

Flag Description

constCRunTimeFlagsIgnoreParams
0x0001

Ignore all fields of the CRunTimeParameterBlock.

constCRunTimeFlagsAllocConsole
0x0002

Create a new console. This has to be used by Win-
dows GUI applications only.

constCRunTimeFlagsNoConsole
0x0004

stdXXX should be ignored. No console windows
will popup.

constCRunTimeFlagsUseWindowSize
0x0008

interpret the WindowSize field of the CRunTimePa-
rameterBlock structure.

constCRunTimeFlagsUseSynchObject
0x0010

Signal the Event whose handle is in Synchroniza-
tionObject—when target completes execution.

constCRunTimeFlagsNonInteractive
0x0020

TMCRT prints some status messages to stdout, this
flag disables write to stdout and reads from stdin.
So stdin / stdout /stderr accesses are performed
only when requested by the target application.

Chapter 14: TriMedia Manager API for Windows

424 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

cruntimeCreate

UInt32 cruntimeCreate(
 UInt32 DSPNumber,
 UInt32 ArgumentCount,
 UInt8 *ArgumentVector[],
 CRunTimeParameterBlock *Parameters,
 UInt32* CRTHandlePointer);

Parameters

DSPNumber DSP Number that this server needs to serve.
Should be the same value that is passed to
tmmanDSPOpen.

ArgumentCount Should include that target image name.

ArgumentVector[] Pointer to an array of pointers pointing to argu-
ments. The first argument has to be the name of
the target executable.

Parameters Pointer to a CRunTimeParameterBlock structure
defining how the server should behave.

CRTHandlePointer Address of the memory location where the handle
to this instance of the server will be stored.

Returns

True If the function succeeds.

False If the functions fails, which may be due to one of
the following reasons:

• Server is already running for this node.

• Node could not be opened.

• The Win32 event creation failed.

Description

Allocates resources for the specific TriMedia processor. This function has to be called

once for every TriMedia processor that TMCRT needs to serve.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 425

14

cruntimeDestroy

Bool cruntimeDestroy (
 UInt32 CRTHandle,
 UInt32 *ExitCodePointer);

Parameters

CRTHandle Handle to the C Runtime server instance that has
to be closed.

ExitCodePointer Address of the memory location where the exit
code for this node will be stored. The exit code is
valid only if the target has exited normally. Oth-
erwise the target execution has been terminated
abnormally and the exit code is invalid.

Returns

True Target has exited normally.

False If the functions fails, which may be due to one of
the following reasons:

• Target execution has been stopped.

• Abnormal Termination.

• Exit Code is invalid.

Description

Closes the server instance for this instance of the TriMedia processor.

Chapter 14: TriMedia Manager API for Windows

426 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

cruntimeInit

Bool cruntimeInit (void);

Parameters

None.

Returns

True Success.

False Thread creation failed.

Description

Initializes the C Run Time server to serve multiple nodes.

cruntimeExit

void cruntimeExit (void);

Parameters

None.

Returns

Node.

Description

Terminates all the C Runtime Server threads.

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 427

14

TriMedia Manager Registry Entries

The TriMedia Manager reads all its initialization settings from the Windows Registry. The

settings are read from the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\PhilipsSemiconductors\TriMedia\TMMan

Table 2 describes the initialization settings which apply to all TriMedia devices installed

in the system.

Table 2 Initialization Settings

Name Type Default Description

HostTraceBufferSize REG_DWORD 0x1000 Controls the size of the host debug
trace buffer. This parameter is not
used currently.

HostTraceLevelBitmap REG_DWORD 0x00000001 Controls which internal (TMMan
host component) debug levels are
enabled. There are 32 different lev-
els.
0x00000001—All failure conditions
are enabled.
0xfffffffff—All levels are enabled.

HostTraceType REG_DWORD 0 Controls the destination of internal
(TMMan host component) debug
messages. Currently the only valid
destination is the kernel debugger.
0: constTMManDebugTypeNULL
2: constTMManDebugTypeOutput
To view the TMMan debug output a
Windows kernel mode debugger
like SoftICE or WinDBG or WDEB386
is required.

TargetTraceBufferSize REG_DWORD 0x1000 Controls the size of the target
debug trace buffer. This parameter
is for TMMan’s internal use and
does not affect the size of the DP
buffer.

TargetTraceLevelBit-
map

REG_DWORD 0x00000001 Controls which internal (TMMan
target component) debug levels
are enabled. There are 32 different
levels.
0x00000001—All failure conditions
are enabled.
0xfffffffff—All levels are enabled.

Chapter 14: TriMedia Manager API for Windows

428 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

TargetTraceType REG_DWORD 0 Controls the destination of internal
(TMMan target component) debug
messages. Currently the only valid
destination is the trace buffer.
0: constTMManDebugTypeNULL
1: constTMManDebugTypeTrace
The trace buffer can be examined
via the TMMon “DT” command.

MemorySize REG_DWORD 0x10000 Controls the amount of page
locked contiguous memory allo-
cated at startup for shared memory
allocations. Note that this type of
memory is a very expensive system
resource and should be used spar-
ingly.

MailboxCount REG_DWORD 0x40 Controls the number of inter-pro-
cessor mailboxes that are allo-
cated. Increase this parameter if the
peak packet transfer rate is very
high, to prevent packets from
being dropped.

ChannelCount REG_DWORD 0x10 Controls the number of inter-pro-
cessors channels that can be allo-
cated simultaneously.

VIntrCount REG_DWORD 0x04 Controls the number of inter-pro-
cessor interrupt channels that can
be allocated simultaneously.

MessageCount REG_DWORD 0x10 Controls the number of inter-pro-
cessor messages that can be allo-
cated simultaneously. Note that the
number of messages cannot
exceed the number of inter- pro-
cessor channels.

EventCount REG_DWORD 0x10 Controls the number of inter-pro-
cessor events that can be allocated
simultaneously.

StreamCount REG_DWORD 0x10 Controls the number of streams
that can be allocated simulta-
neously. This parameter is not used
currently.

Table 2 Initialization Settings

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 429

14

NameSpaceCount REG_DWORD 0x40 Controls the number of name space
entries that can be allocated simul-
taneously. Note that some compo-
nents like messages use multiple
name space entries for a single
instance.

MemoryCount REG_DWORD 0x40 Controls the number of shared
memory blocks that can be allo-
cated simultaneously.

SGBufferCount REG_DWORD 0x20 Controls the number of scatter
gather buffers that can be allocated
simultaneously.

SpeculativeLoadFix REG_DWORD 0 Controls the enabling/disabling of
the PCI memory apertures on the
TriMedia device.
1: PCI aperture disabled. Specula-
tive loads generated by the com-
piler/scheduler will not generate
PCI bus accesses. TriMedia needs to
perform accesses to memory on
the PCI bus via the PCI device
library (libpci).
0: PCI aperture is enabled. Specula-
tive loads may generate PCI bus
transactions. On some Pentium II
PCI chipsets this can cause a bus
lockup.

PCIInterruptNumber REG_DWORD 0 Controls the PCI interrupt used by
the TriMedia device to interrupt the
host. Note this is not a software-
controlled value. This value of this
key has to match the interrupt pin
routing on the TriMedia board.
0: PCI INT#A
1: PCI INT#B
2: PCI INT#C
3: PCI INT#D

MMIOInterruptNumber REG_DWORD 28 Controls the interrupt number
(IPENDING bit) that is set by the
host to interrupt the TriMedia
device.

Table 2 Initialization Settings

Chapter 14: TriMedia Manager API for Windows

430 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

MapSDRAM REG_DWORD 1 Controls the SDRAM mapping state
during initialization. Some systems
run out of Virtual Address Space
(Page Tables Entries) while map-
ping the SDRAM when multiple Tri-
Media devices are plugged in the
system. As a result of this TMMan
cannot activate all the TriMedia
Devices in the system. This flag has
been introduced tp work around
this problem. When this flag is 0 the
user application should wrap all
accesses to SDRAM with calls to
tmmanMapSDRAM and tmman-
UnmapSDRAM.
0: Disables automatic SDRAM
mapping
1: Enables automatic SDRAM
mapping.

TMRunWindowSize REG_DWORD 25 Controls the size of the TMRun Win-
dow. This value indicates the num-
ber of lines that the TMRun
windows will have when spawned
from TMMon or TMGMon.

DefaultEndianness REG_DWORD 1 Controls the expected endianess of
TriMedia executables.
1: Little Endian (Intel format)
0: Big Endian (Alien format)

TMGMonDDraw REG_DWORD 1 Controls TMGMon’s usage of Direct
Draw APIs for retrieving the VGA
Frame Buffer Information.
0: DirectDraw APIs will not be used.
1: Direct Draw APIs will be used.

Table 2 Initialization Settings

Chapter 14: TriMedia Manager API for Windows

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part A 431

14

In addition to reading the above keys, TMMan also reads device specific subkeys. The set-

tings from these subkeys apply to individual devices rather than all of them. These sub-

keys are called “DeviceX”, where X is the number of the TriMedia device. The following

values are read from the DeviceX subkey:

TMCRTDebug REG_DWORD 0 Controls the debug output of
TMCRT.
0: Disabled.
1: Enabled.
TMCRT prints all its output via
Win32 function OutputDebug-
String.

TCSPath REG_SZ NULL appshell.out is loaded from the
directory formed by appending
lib\el\WinNT or lib\eb\WinNT to
TCSPath. This is required for run-
ning dynamic files (*.app) from
tmrun, tmmon or tmgmon. If this
entry is not there, then appshell.out
will be loaded from the current
directory.

DLLPath KEY NULL Contains values for the TriMedia
Dynamic Link Libraries (DLLs)
search paths used by the target
dynamic loader. For example:
0: c:\trimedia\bin
1: c:\TriMedia\bin\lib
A maximum of 32 different values
can be specified.

Name Type Default Description

ClockSpeed REG_DWORD 100,000,000 Sets the clock frequency that proc-
GetCapabilities returns on the tar-
get.

CacheOption REG_DWORD 2 This value is passed to the function
TMDwnLdr_relocate. It controls the
way the downloader deals with the
caching. Look at TMDownLoader.h
for more info. A value of 2 indicates
TMDwnLdr_LeaveCachingTo-
Downloader.

SystemBaseAddress REG_DWORD 0x10000000

SDRAMBaseAddress REG_DWORD 0x00000000

MMIOBaseAddress REG_DWORD 0xEF000000

Table 2 Initialization Settings

Chapter 14: TriMedia Manager API for Windows

432 Book 5—System Utilities, Part A ©1999 Philips Semiconductors 10/08/99

Figure 19 Registry Editor

Configuration settings for the ref3 card have to be specified in the Windows registry for

SystemBaseAddress (default 0x10000000), SDRAMBaseAddress (default 0x00000000),

and MMIOBaseAddress (default 0xEF000000). They must be defined as DWORD values

under

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 5—System Utilities
	Support Libraries
	1: Utility Functions, TriMedia
	TriMedia C Library API Function Descriptions
	tmAssert
	_dcball
	_dclr
	_dlock
	_cache_copyback
	_cache_invalidate
	_cache_malloc
	_cache_free
	_add_free
	_long_udiv

	TriMedia Types API Overview
	TriMedia Types
	tmVersion_t

	tmprof Profiler
	tmprof API Functions
	profileInit
	profileStart
	profileStop
	profileFlush
	profileDtrees
	profileArgs

	AppModel Functions
	AppModel_suspend_scheduling
	AppModel_resume_scheduling

	Mutual Exclusion Semaphores
	AppMut_Mutex
	AppMut_create
	AppMut_delete
	AppMut_cast
	AppMut_lock
	AppMut_unlock
	AppMut_attempt_lock

	OS-Independent Semaphores
	AppSem_Semaphore
	AppSem_create
	AppSem_delete
	AppSem_cast
	AppSem_p
	AppSem_v
	AppSem_attempt_p

	2: Registry Manager API, TriMedia
	Introduction
	Why Use the Registry
	Package-Oriented Data
	Exploring a Registry

	Using the Registry API
	Limitations

	Demonstration Program
	AddEntryTest
	QueryEntryTest
	RemoveTest
	FindTest

	Registry API Data Structures
	tsaRegEntryClass_t
	tsaRegEntryDataType_t
	tsaRegDataEntry_t
	tsaRegEntryAdd_t
	tsaRegFind_t

	Registry API Functions
	tsaRegAddEntry
	tsaRegAddDirectory
	tsaRegRemoveEntry
	tsaRegQuery
	tsaRegFindFirstEntry
	tsaRegFindNextEntry

	3: Component Manager API, TriMedia
	Overview
	Advanced Features
	Components With “Required” Flag
	Disabling Components
	Symbol Qualifiers

	Example: Audio In on a Daughter Board
	General Rules About Creating a Dependency Tree
	The Activation Function
	How to Implement a New Component
	Linking a Component Into an Application
	Debugging a New Component (Example Program)

	Macros
	compInputQualifier_t
	TSA_COMP_DEF_IO_COMPONENT
	TSA_COMP_DEF_I_COMPONENT
	TSA_COMP_DEF_O_COMPONENT
	TSA_COMP_DEF_DATA_PROP
	TSA_COMP_BUILD_ARG_LIST_1
	TSA_COMP_BUILD_ARG_LIST_2
	TSA_COMP_BUILD_ARG_LIST_3
	TSA_COMP_BUILD_ARG_LIST_1_M
	TSA_COMP_BUILD_ARG_LIST_2_M
	TSA_COMP_BUILD_ARG_LIST_3_M

	4: Clock Support API
	Clock Support Overview
	Clock Support API Data Structures
	tsaClockFunc_t
	tsaClockCapabilities_t
	tsaClockInstanceSetup_t

	Clock Support API Functions
	tsaClockGetCapabilities
	tsaClockOpen
	tsaClockClose
	tsaClockGetInstanceSetup
	tsaClockInstanceSetup
	tsaClockStart
	tsaClockStop
	tsaClockGetTime
	tsaClockSetTime
	tsaClockSetAlarm
	tsaClockTimeDiff
	tsaClockTimeAdd
	tsaClockTimeSub
	tsaClockTimeDiv
	tsaClockTimeMul

	5: Stimer (TSA Timer) API
	TSA Timer API Overview
	TSA Timer Errors
	TSA Timer Data Structures
	tsaTimerCapabilites_t
	tsaTimerFunc_t
	tsaTimerInstanceSetup_t
	tsaTimerAlarmSetup_t

	TSA Timer Functions
	tsaTimerGetCapabilities
	tsaTimerOpen
	tsTimerClose
	tsaTimerGetInstanceSetup
	tsaTimerInstanceSetup
	tsaTimerStart
	tsaTimerStop
	tsaTimerCreateAlarm
	tsaTimerDestroyAlarm
	tsaTimerSetupAlarm
	tsaTimerStartAlarm
	tsaTimerStopAlarm

	6: Memory Manager API, TriMedia
	Introduction
	Memory Management Trade-Offs

	Overview
	Memory Fragmentation
	Heap Partitioning
	Memory Units

	Allocation Performance
	Additional Functionality

	The “malloc” Hierarchy
	Leaving TM-memman in Place

	The TriMedia Memspace Manager
	Memspaces
	API Summary

	Allocation and Deallocation
	Memspace Organization
	Summary of Memspace API (Allocation/Deallocation)

	Overview of Debugging Features
	Consistency Checking of Internal Administration.
	Provoking Errors on Use of Stale Memory Blocks
	Tracking Allocated Memory
	Examples

	Redirecting Calls to malloc
	Summary of Memspace API (Debugging)

	TriMedia Memory Manager API Data Structures
	memspSpaceInfo
	memspSystemSpace
	memspBlockProperty

	TriMedia Memory Manager API Functions
	memspCreate
	memspDelete
	memspMalloc
	memspDebugMalloc
	memspFree
	memspRealloc
	memspFastFree
	memspGetInfo
	memspPrintGuarded
	memspCheck
	memspTraverseSpaces

	7: PIC (Programmable Interrupt Controller) API
	PIC API Overview
	Board Support Interface
	Debugging PIC ISRs

	PIC API Data Structures
	tsaPICSource_t
	tsaPICCapabilities_t
	tsaPICInstanceSetup_t

	PIC API Functions
	tsaPICGetCapabilities
	tsaPICOpen
	tsaPICInstanceSetup
	tsaPICStart
	tsaPICStop
	tsaPICClose

	8: File I/O Drivers API, TriMedia
	Introduction
	File I/O Function Types
	IOD_RecogFunc
	IOD_InitFunc
	IOD_TermFunc
	IOD_OpenFunc
	IOD_StatFunc
	IOD_OpenDllFunc
	IOD_CloseFunc
	IOD_ReadFunc
	IOD_WriteFunc
	IOD_SeekFunc
	IOD_IsattyFunc
	IOD_FstatFunc
	IOD_FcntlFunc
	IOD_SyncFunc
	IOD_FSyncFunc
	IOD_UnlinkFunc
	IOD_LinkFunc
	IOD_MkdirFunc
	IOD_RmdirFunc
	IOD_AccessFunc
	IOD_OpendirFunc
	IOD_ClosedirFunc
	IOD_RewinddirFunc
	IOD_ReaddirFunc

	File I/O Driver Control Functions
	IOD_install_fsdriver
	IOD_install_driver
	IOD_uninstall_driver
	IOD_lookup_driver
	IOD_lookup_dll
	IOD_sync

	File I/O Data Structures
	UID_Driver_t

	9: Operating System Wrapper (tmos.h)
	Introduction
	tmosMain
	tmosExit
	tmosInit

	Tasks
	tmosTaskChangePriority
	tmosTaskCreate
	tmosTaskDestroy
	tmosTaskIdent
	tmosTaskStart
	tmosTaskSuspend
	tmosTaskResume

	Queues
	tmosQueueCreate
	tmosQueueDestroy
	tmosQueueReceive
	tmosQueueSend
	tmosQueueSendUrgent

	Semaphores
	tmosSemaphoreCreate
	tmosSemaphoreDestroy
	tmosSemaphoreP
	tmosSemaphoreV

	Timer
	tmosTimSleep

	10: Flash File System API, TriMedia
	Introduction
	Flash File System
	Flash Basics
	Generic Library
	Flash Event Handling
	Formatting Flash
	Copying Files Onto Flash
	Boot Images
	Flash Assumptions
	Flash Manager Properties
	Update Safety Properties
	Flash Manager Space Overhead and Limitations
	Sample Flash Performance Figures

	Dynamic Libraries on Flash
	Unimplemented Functionality
	Flash File System Hardware Interface
	Using the Flash File System with the BSP
	Flash File System Driver Specification
	Flash Address Space
	Sample Driver

	Flash Driver Boot Specification

	Standalone Flash-Based Systems
	Role of the Boot Image
	Use of the Dynamic Loader
	Safe Upgrading Basics
	Update Scheme 1
	Update Scheme 2

	TriMedia Flash File System API Data Structures
	EventHandler

	TriMedia Flash File System API Functions
	FlashUtil_init_filesystem
	FlashUtil_put_bootimage
	Flash_boot

	Flash Driver API
	FLASH_block_erase
	FLASH_init
	FLASH_write
	FLASH_read
	FLASH_block_read
	FLASH_block_write

	11: Compression API, General Purpose
	Licensing Issues
	Overview
	Zlib Statistics
	Endian Independence

	Compression Tools
	tmSEI: Self-Extracting Load Images
	Sample Performance
	P1
	P2
	tmSEA: Self-Extracting Archives
	tmWRB: Boot Image Writing

	Zlib API Data Structures
	z_stream

	Zlib API Functions
	Basic Compression and Decompression Functions
	zlibVersion
	deflateInit
	deflate
	deflateEnd
	inflateInit
	inflate
	inflateEnd

	High-Level Compression and Decompression Functions
	compress
	compress2
	uncompress

	Advanced Functions
	deflateInit2
	deflateSetDictionary
	deflateCopy
	deflateReset
	deflateParams
	inflateInit2
	inflateSetDictionary
	inflateSync
	inflateReset

	File Utility Functions
	gzopen
	gzdopen
	gzsetparams
	gzread
	gzwrite
	gzprintf
	gzputs
	gzgets
	gzputc
	gzgetc
	gzflush
	gzseek
	gzrewind
	gztell
	gzeof
	gzclose
	gzerror

	Checksum Functions
	adler32
	crc32

	12: Downloader API, TriMedia
	Downloader Library
	Downloader API Description
	Examples of Downloader Use
	Phases of Downloading
	Auxiliary Functions
	Simple Download Example
	Multiprocessor Booting

	Downloader API Structures and Enumerations
	TMDwnLdr_Status
	TMDwnLdr_Caching
	TMDwnLdr_Symbol_Scope
	TMDwnLdr_Symbol_Type
	TMDwnLdr_Symbol_Traversal_Order
	TMDwnLdr_CachingSupport
	TMDwnLdr_Section_Rec

	Downloader API Functions
	TMDwnLdr_create_shared_section_table
	TMDwnLdr_unload_shared_section_table
	TMDwnLdr_load_object_from_file
	TMDwnLdr_load_object_from_mem
	TMDwnLdr_load_object_from_driver
	TMDwnLdr_get_image_size
	TMDwnLdr_relocate
	TMDwnLdr_multiproc_relocate
	TMDwnLdr_get_memory_image
	TMDwnLdr_patch_value
	TMDwnLdr_resolve_symbol
	TMDwnLdr_get_value
	TMDwnLdr_unload_object
	TMDwnLdr_get_section
	TMDwnLdr_traverse_sections
	TMDwnLdr_get_endian
	TMDwnLdr_load_symbtab_from_object
	TMDwnLdr_get_address
	TMDwnLdr_get_enclosing_symbol
	TMDwnLdr_traverse_symbols
	TMDwnLdr_unload_symboltable
	TMDwnLdr_get_last_error

	13: Dynamic Linking API, TriMedia
	Overview
	Dynamic Linking API Types
	DynLoad_Status
	DynLoad_Code_Segment_Handle
	DynLoad_MallocFun
	DynLoad_FreeFun
	DynLoad_ErrorFun

	Dynamic Linking API Functions
	DynLoad_load_application
	DynLoad_unload_application
	DynLoad_bind_dll
	DynLoad_unbind_dll
	DynLoad_unload_dll
	DynLoad_unload_all
	DynLoad_bind_codeseg
	DynLoad_unbind_codeseg
	DynLoad_swap_mm
	DynLoad_swap_stub_error_handler

	14: Manager API for Windows
	Introduction
	Implementation Notes
	Synchronization Handle
	Win95 Kernel Mode
	WinNT/98 KernelMode

	Object Names
	Scatter Gather Buffer Locking
	Debug Buffer Pointers
	Status Codes
	SDRAM Mapping
	Speculative Load Fix
	Big-Endian Execution
	WinCE Issues
	Synchronization Flags
	Porting Guidelines
	Inter-processor Messaging and Event API
	Object ID
	C Run Time
	Argument Passing
	Data Type Changes
	Shared Memory Allocation
	Scatter Gather Locking
	Dynamic Task Downloading
	Get/Set Parameters

	TMManager Data Structures
	tagtmmanPacket
	tagtmmanVersion
	tagtmmanMemoryBlock
	tagtmmanDSPInfo

	TMManager General Functions
	tmmanGetErrorString
	tmmanNegotiateVersion
	tmmanMappedToPhysical
	tmmanPhysicalToMapped
	tmmanValidateAddressAndLength
	tmmanTranslateAdapterAddress
	tmmanDSPGetNum
	tmmanDSPGetInfo
	tmmanDSPGetStatus
	tmmanDSPMapSDRAM
	tmmanDSPUnmapSDRAM
	tmmanDSPGetEndianess
	tmmanDSPOpen
	tmmanDSPClose
	tmmanDSPLoad
	tmmanDSPStart
	tmmanDSPStop
	tmmanDSPReset

	TMManager Message Interface Functions
	tmmanMessageCreate
	tmmanMessageDestroy
	tmmanMessageSend
	tmmanMessageReceive

	TMManager Event Functions
	tmmanEventCreate
	tmmanEventSignal
	tmmanEventDestroy
	tmmanSharedMemoryCreate
	tmmanSharedMemoryDestroy
	tmmanSharedMemoryOpen
	tmmanSharedMemoryClose

	TMManager Buffer Locking Functions
	tmmanSGBufferCreate
	tmmanSGBufferDestroy
	tmmanSGBufferOpen
	tmmanSGBufferClose
	tmmanSGBufferFirstBlock
	tmmanSGBufferNextBlock
	tmmanSGBufferCopy

	TMManager Debugging Functions
	tmmanDebugDPBuffers
	tmmanDebugHostBuffers
	tmmanDebugTargetBuffers
	tmmanDebugPrintf

	TMManager C Runtime Server
	tagCRunTimeParameterBlock
	cruntimeCreate
	cruntimeDestroy
	cruntimeInit
	cruntimeExit

	TriMedia Manager Registry Entries

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

