

Version 2.0 beta

AB

Book 5—System Utilities

Part C:

System Device Libraries

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part C

iii

Book 5—System Utilities
Part C: System Device Libraries

Table of Contents

Chapter 19 TMBoard API

Board Support API Overview.. 12

Why BSP? .. 12

Components of a Board Support Package ... 13

The Core Board Library.. 13

The Board Initialization Function... 13

The Board’s Component Export Macro ... 13

How a Board Support Package is Initialized .. 14

How a Board Support Package is Delivered .. 14

How To Support a New Board ... 14

Files That Make Up the BSP.. 15

Minimum Requirement for a BSP .. 15

Role of the Activation Function.. 15

Assignment of boardID ... 16

Creating Support for Audio and Video.. 16

Creating Support for Non-Standard Board Components................................... 16

TMBoard API Data Structures ... 17

boardAIParam_t.. 18

boardAIConfig_t ... 19

boardAOParam_t.. 21

boardAOConfig_t ... 22

boardVIConfig_t ... 24

boardVIParam_t .. 29

boardVIAdapterEntry_t.. 30

boardVIDec_t... 31

boardVOConfig_t ... 32

boardSSIParam_t.. 34

boardSSIConfig_t ... 35

boardSPDOParam_t .. 36

boardSPDOConfig_t.. 37

boardTPConfig_t .. 38

hdvoImageOutputMode_t ... 39

boardHDVOConfig_t... 40

boardConfig_t (obsolete) .. 41

Table of Contents

iv

Book 5—System Utilities, Part C

©1999 Philips Semiconductors 10/08/99

boardPICIntCaps_t... 43

boardPICConfig_t... 45

boardUartParam_t ... 46

boardUartConfig_t... 47

boardIRParam_t .. 48

boardIRConfig_t.. 49

boardFlashConfig_t... 50

TMBoard API Functions ... 51

tsaBoardRegisterAO .. 53

tsaBoardRegisterSPDO... 54

tsaBoardRegisterAI .. 55

tsaBoardRegisterVO .. 56

tsaBoardRegisterVI... 57

tsaBoardRegisterSSI... 58

tsaBoardRegisterTP.. 59

tsaBoardRegisterHDVO .. 60

tsaBoardRegisterGPIO .. 61

tsaBoardRegisterPIC.. 62

tsaBoardRegisterUart.. 63

tsaBoardRegisterIR... 64

tsaBoardRegisterFlash .. 65

tsaBoardRegisterBoard... 66

tsaBoardGetAO ... 67

tsaBoardGetSPDO .. 68

tsaBoardGetAI.. 69

tsaBoardGetVO.. 70

tsaBoardGetVI.. 71

tsaBoardGetSSI.. 72

tsaBoardGetTP... 73

tsaBoardGetHDVO ... 74

tsaBoardGetGPIO ... 75

tsaBoardGetPIC ... 76

tsaBoardGetUart ... 77

tsaBoardGetIR.. 78

tsaBoardGetFlash ... 79

tsaBoardGetBoard.. 80

boardGetConfig (obsolete)... 81

boardGetID (obsolete).. 82

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part C

v

Chapter 20 Exceptions API

Overview... 84

Exceptions API Data Structures.. 86

excHandler.. 87

excException_t.. 88

excCapabilities_t .. 89

excInstanceSetup_t ... 90

Exceptions API Functions .. 91

excGetCapabilities ... 92

excInstanceSetup ... 93

excGetInstanceSetup.. 94

excOpen... 95

excClose ... 96

Chapter 21 TriMedia Interrupts API

Overview... 98

Examples ..100

TMInterrupts API Data Structures..102

intInterrupt_t ...103

intPriority_t...104

intCapabilities_t..105

intSetup_t ...106

intInstanceSetup_t ..107

TMInterrupts API Functions ..108

intGetCapabilities...109

intSetup ...110

intGetSetup ..111

intInstanceSetup ..112

intGetInstanceSetup ...113

intOpen ..114

intClose ..114

intSetPriority ..115

intSetIEN ..116

intClearIEN ..117

intRestoreIEN ...118

intClear ...119

intRaise...120

Table of Contents

vi

Book 5—System Utilities, Part C

©1999 Philips Semiconductors 10/08/99

intGetPending ...121

intRaise_M ..122

Chapter 22 TMIntPins API

PCI Interrupt Pins API Overview...124

EXAMPLE ..124

PCI Interrupt Pins API Data Structures..125

pinInterruptPin_t..126

pinCapabilities_t...126

pinInstanceCapabilities_t..127

pinInstanceSetup_t ...127

PCI Interrupt Pins API Functions ..128

pinGetCapabilities ...129

pinGetInstanceCapabilities...130

pinInstanceSetup ...131

pinGetInstanceSetup ..132

pinOpen...133

pinClose ...134

pinGet...135

pinSet..136

Chapter 23 TMProcessor API

Overview...138

TMProcessor API Data Structures ..138

procDevice_t..139

procRevision_t...140

procCapabilities_t ..141

TMProcessor API Functions...142

procGetCapabilities...142

Chapter 24 Semaphore API

Semaphore API Overview ...144

Example ..144

Semaphore API Functions ...144

semdevGet..145

semdevRelease..146

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part C

vii

Chapter 25 Timers API

Timers API Overview ..148

Example ..148

Timers API Data Structures ...149

timSource_t ..150

timCapabilities_t ..151

timInstanceCapabilities_t ...151

timInstanceSetup_t ...152

Timers API Functions..153

timGetCapabilities ...154

timGetInstanceCapabilities ..155

timInstanceSetup ...156

timGetInstanceSetup..157

timOpen...158

timClose...159

timGetTimerValue ..160

timSetTimerValue...161

timStart ..162

timStop...162

timToCycles...163

timFromCycles...164

Chapter 26 DMA API

DMA API Overview ...166

Demonstration Programs ...166

DMA API Data Structure Descriptions ..167

dmaFunc_t..168

dmaDirection_t...168

dmaMode_t..168

dmaDescription_t ..169

dmaRequest_t ...170

dmaCapabilities_t ..171

dmaSetup_t..171

DMA API Function Descriptions...172

dmaGetCapabilities...173

dmaSetup..174

dmaGetSetup ..174

dmaOpen ..175

Table of Contents

viii

Book 5—System Utilities, Part C

©1999 Philips Semiconductors 10/08/99

dmaClose...176

dmaDispatch..177

Chapter 27 IIC API

IIC API Overview..180

Entry Points ..180

Demonstration Program..180

Using the IIC API..181

IIC API Data Structures ...181

iicCapabilities_t...182

iicSetup_t ..182

iicDirection_t..183

iicType_t...183

iicMode_t ..184

iicFunc_t...184

iicRequest_t..185

IIC API Functions ...187

iicGetCapabilities..188

iicOpen ...188

iicClose ...189

iicSetup ..189

iicDispatch ..190

iicWriteReg..191

iicReadReg ..192

Chapter 28 PCI-External I/O (PCI-XIO) API

Introduction...196

XIO Operation..196

XIO Example Program ..197

XIO API Data Structures ...198

xioCapabilities_t ...199

xioInstanceSetup_t..200

XIO API Functions ...201

xioGetCapabilities ..202

xioInstanceSetup..202

xioOpen ...203

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part C

ix

xioClose..203

xioRead Macro...204

xioWrite Macro ..204

Chapter 29 PCI API

Overview...206

How to Use the PCI Library ..206

PCI API Functions ..206

pciAddressFind..207

pciConfigRead ...208

pciConfigWrite...209

pciIOReadUInt8...210

pciIOWriteUInt8 ..210

pciMemoryReadUInt32..211

pciMemoryWriteUInt32 ...211

pciMemoryReadUInt16..212

pciMemoryWriteUInt16 ...212

pciMemoryReadUInt8 ..213

pciMemoryWriteUInt8..213

pciMemoryCopy ...214

Table of Contents

x

Book 5—System Utilities, Part C

©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99

 Book 5—System Utilities, Part

C

11

19

Chapter 19

TMBoard API

Note

For a general overview of TriMedia device libraries, see Chapter 5,

Device Li-
braries

, of Book 3,

Software Architecture

, Part A.

(The Board Support interface was enhanced significantly for TCS v2.0 beta.)

Topic Page

Board Support API Overview 12

TMBoard API Data Structures 17

TMBoard API Functions 51

Chapter 19: TMBoard API

12

Book 5—System Utilities, Part

C ©1999 Philips Semiconductors 10/08/99

Board Support API Overview

The TriMedia Board Support API is used to install handlers, or drivers for the parts of the

TriMedia software that rely on hardware off of the chip. Since this hardware is not on the

chip, it must be “on the board” instead. Things that fall into this category include sys-

tem reset, audio, video and telecom hardware. The software layer that describes the

interface between the software on chip and any peripherals on the board is known as the

Board Support Package, or BSP.

A complete BSP uses the services of the TriMedia Registry and the TriMedia Component

Manager (see Part A, Chapter 2 and Chapter 3 respectively), and it is not limited to the

functions in this library. But for historical reasons, the components most closely related

to on-chip TriMedia peripherals are managed though this board library.

Figure 1

BSP Hides Hardware Details

Note

The device libraries and board support packages form a software layer that
is below the traditional device driver. An engineer could use the BSP to con-
struct a device driver in the tradition of UNIX and pSOS. In the TSSA model,
the device drivers that reside above the device library are the renderers and
digitizers.

Why BSP?

The BSP allows you to change the board’s design without affecting the software that has

already been developed. If you decide to change the board’s design, you would only have

to change the implementation of the functions described in this chapter.

For example, the IREF board uses the

Analog Devices AD1847

 as an audio codec. If you

want to use a different device, the code that you would need to change is the BSP. This

mechanism is implemented through a table of function pointers that can be retrieved

from the registry. This table is used by the device libraries, and not directly by applica-

tions.

Hardware

Board Support Package

Video Drivers Audio Drivers Telecom Drivers

Your Application

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99

 Book 5—System Utilities, Part

C

13

19

Components of a Board Support Package

A BSP has three components:

■

Core board library

■

Board initialization function

■

Component export macro

The Core Board Library

Through a number of functions, the core board library provides upper layers of software

with information about the existing board. To an application, the most important of

these is as shown below:

This function can be called by libraries or applications that want to know on what board

they are running. On success, the board ID will be as specified in the EEPROM used to

boot the TriMedia. At system bootup, the board ID is read from the EEPROM and soft-

ware is chosen to support the identified board. When you call

tsaBoardGetBoard

, the

board ID and name (as determined at bootup) are returned.

In addition, a collection of functions is used to support existing TriMedia hardware

peripherals that require off-chip support. These functions come in register/get pairs. For

each peripheral, the

register

 function is to be called as part of the board’s initialization

sequence. The

get

 function is used by the corresponding TriMedia device library. For

backward compatibility, the obsolete function

boardGetID

 is retained. New code should

use

tsaBoardGetBoard

 instead.

The core of the board library can be considered to also include TriMedia’s Registry and

Component Manager. Users do not modify the core of the board library.

The Board Initialization Function

Each supported board will export an initialization function. This code will be called by

the component manager before program startup. The initialization function uses the

registry to inform the system of the capabilities of a given board. An example of a board

initialization function is described below.

The Board’s Component Export Macro

For the component manager to find the support package for your board, you must

include the macro

TSA_COMP_DEF_O_COMPONENT

 with appropriate parameters. This

macro causes symbols to be exported so that the component manager can find your

board as a component.

tsaBoardGetBoard(UInt32 *pID, Char **pboardName);

Chapter 19: TMBoard API

14

Book 5—System Utilities, Part

C ©1999 Philips Semiconductors 10/08/99

How a Board Support Package is Initialized

The BSP identifies itself to the component manager using the macro referenced above. At

boot time, and before

main

 is called, the component manager initializes each compo-

nent. Boards include a detect function, and this is called to decide whether the current

BSP matches the board. The decision is based upon the board ID given in the EEPROM.

If the board ID matches, this BSP is accepted, and the audio, video and telecom libraries

are free to use the information provided by the BSP.

How a Board Support Package is Delivered

The standard device library is delivered in the archive libdev.a. The archive contains a

number of files that are BSP specific:

■

tmBoard.o—The core board library functions.

■

6ch.o, ad1847.o, tda1315.o—Routines used to support common audio I/O.

■

saa7111.o, saa7112.o, saa7113.o, saa7125.o, saa7182.o, saa7185.o, st7545.o, voSup-

port.o—routines that support common video I/O.

These routines are referred to as the

common

 portion of the BSP. They are routines used

by more than one board.

Also in the library directory are object files supporting a specific set of boards:

■

libBSPiref.o—the traditional reference board.

■

libBSPdtv_ref2.o, libBSPdtv_ref3.o, libBSPdtv_ref4.o, libBSPnim.o—reference boards

used by Philips DTV.

■

libBSPdebug_tm1000.o, libBSPdebug_tm1100.o—boards used within Philips to debug

hardware.

Of these, the IREF and the DTV_REF2 board are linked with user programs by default,

using the tmconfig file. Support for other boards can be added to an application simply

by adding the required object file to the program’s link line. Object files are used instead

of archive files because the chaining mechanism used by the component manager

requires it. Each BSP should be provided as a single object file. No header file is required.

How To Support a New Board

Any time that new hardware functionality is provided, a system designer must also cre-

ate a board support package to serve as the lowest level of interface to the board. This

chapter will describe the BSP for the DTV reference board, as an example. The DTV board

is used instead of the IREF because it is slightly more complex, and as a result, illustrates

more concepts.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99

 Book 5—System Utilities, Part

C

15

19

Files That Make Up the BSP

The support for the DTV REF2 board resides in two C files. Any number of source files

could be used, including one. It is advantageous to use only one C file, as all functions

can be declared static, thereby reducing name space pollution. A BSP is not required to

export any symbols, except for a hidden symbol that is exported by the component

manager macro. In the past, each board support package was required to provide an

header file describing its exports. When using the component manager, this is no longer

the case. Also of interest is the makefile, in particular because of the way that it can com-

bine several object files into a single object file. To do this, the linker is invoked using a

rule as follows:

Note that a BSP can also be delivered as a DLL, and that all of the default BSP’s are pro-

vided in both debuggable (end with _g), and stripped versions.

In the DTV BSP, the functionality is split between audio and everything else.

Minimum Requirement for a BSP

A BSP must export an output using the component manager macro, as in this example:

The first argument is the name of the board, and it is treated as a string. This name is

returned by the

tsaBoardGetBoard

 function, and it is printed by the function in the

tmHelp

 package. The second argument tells the component manager that the output

symbol is to be called “bsp/boardID.” The third argument is the name of the activation

function that will be called to initialize this component.

Hence, the minimum requirement is the export of the bsp/boardID symbol, and the acti-

vation function.

Role of the Activation Function

The activation function must first check the board to determine whether this is the cor-

rect activation function for this board. Usually, this is done by reading the EEPROM. If

the board ID does not match what is expected (as defined in tmBoardID.h), the activa-

tion function returns False, and the component manager can try another component.

The activation function will then run any code necessary to bring the board out of reset.

On many TriMedia boards, this includes writing to an IIC location to raise a hardware

reset pin. Finally, the activation function registers the various features of the board. At

the least, this includes things like the audio and video, but it also should include things

like UARTs, or hardware MPEG decoders that are on the board and that require software

support.

libBSPdtv_ref2.o : dtv_ref2_audio.o philips_dtv_ref2.o
 tmld dtv_ref2_audio.o philips_dtv_ref2.o Ðo libBSPdtv_ref2.o

TSA_COMP_DEF_O_COMPONENT(
 Philips_dtv_ref2,
 TSA_COMP_BUILD_ARG_LIST_1("bsp/boardID"),
 dtv_ref2_board_activate);

Chapter 19: TMBoard API

16

Book 5—System Utilities, Part

C ©1999 Philips Semiconductors 10/08/99

Assignment of boardID

The board ID is a unique 8-bit number that is used to identify your board to supporting

software. It is stored in the boot EEPROM, at locations 1 and 2. The term

relatively

 is used

because a number of things influence the choice of a board ID. Systems are actually iden-

tified by the combination of the board ID and the vendor ID, which is stored in locations

3 and 4. If the vendor is not Philips Semiconductors, then the 0x1131 vendor ID is incor-

rect. Change that to reflect the correct vendor, and then the assignment of board IDs is

up to you.

If your board is being built by Philips, then you can ask whether this board will be pub-

licly available in open PCI systems. If not, you may as well just choose a rather arbitrary

ID, as your group of engineers are the only people who will see it. Choose an ID from the

range above

BOARD_VERSION_RESERVED_FOR_PRIVATE_USE_BASE

.

If your board is being built by Philips and it will be publicly available, it is probably

appropriate to contact the TriMedia developers and have us assign a range of IDs.

Creating Support for Audio and Video

Device library components such as audio and video that make use of the board support

package call the

tsaBoardRegister

XX

 functions to tell the system about the functions that

support a given component. In general, there are functions for initialization, termina-

tion, and control. More information is given in the API descriptions beginning on page

17. More information about the audio BSP can be found in Chapter 2 of Book 6. The SDE

disk includes the source for a number of board support packages. These are provided so

you can use them as examples.

Creating Support for Non-Standard Board Components

An examination of the

tsaBoardRegister

XX

 functions will show you that all they do is

add keys to the registry. Using bsp/yourComponent as the path, you can follow this

example and add your own keys to the registry. Then, just make sure that your applica-

tion code uses the registry to retrieve the board support functions.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99

 Book 5—System Utilities, Part

C

17

19

TMBoard API Data Structures

This section describes the TMBoard API data structures. Component-specific structures

are defined in component-specific header files. For example,

boardAIParam_t

 is defined

in tmAIboard.h.

Name Page

boardAIParam_t 18

boardAIConfig_t 19

boardAOParam_t 21

boardAOConfig_t 22

boardVIConfig_t 24

boardVOConfig_t 32

boardSSIParam_t 34

boardSSIConfig_t 35

boardSPDOParam_t 36

boardSPDOConfig_t 37

boardTPConfig_t 38

hdvoImageOutputMode_t 39

boardHDVOConfig_t 40

boardConfig_t (obsolete)

A

A. This structure should not be used in new code and is being maintained for compatibility purposes
only. Instead, use

tsaBoardGet*

 functions to retrieve this information.

41

boardPICIntCaps_t 43

boardPICConfig_t 45

boardUartParam_t 46

boardUartConfig_t 47

boardIRParam_t 48

boardIRConfig_t 49

boardFlashConfig_t 50

Chapter 19: TMBoard API

18

Book 5—System Utilities, Part

C ©1999 Philips Semiconductors 10/08/99

boardAIParam_t

typedef struct {
 tmAudioTypeFormat_t audioTypeFormat;
 UInt32 audioSubtypeFormat;
 UInt32 audioDescription;
 Float sRate;
 Int size;
 tmAudioAnalogAdapter_t input;
} boardAIParam_t;

Fields

audioTypeFormat

The audio type as defined in tmAvFormats.h, usu-
ally

atfLinearPCM

.

audioSubtypeFormat The audio subtype formal as defined in tmAvFor-
mats.h, for instance a common one is
apfStereo16.

audioDescription Additional description fo the audio data.

sRate Sample rate [Hertz].

size Used to set the size register in the audio output
section.

input Input of the type tmAudioAnalogAdapter_t. (See
Chapter 4 of Book 3, Software Architecture, Part A.)

Description

Used by the tmAI device library to initialize the board component of the audio-in sys-

tem. It allows you to choose between multiple inputs (or outputs) on the same board.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 19

19

boardAIConfig_t

typedef struct{
 Char codecName[DEVICE_NAME_LENGTH];
 tmLibdevErr_t (*initFunc)(pboardAIParam_t param);
 tmLibdevErr_t (*termFunc)(void);
 tmLibdevErr_t (*startFunc)(void);
 tmLibdevErr_t (*stopFunc)(void);
 tmLibdevErr_t (*setSRate)(Float sRate);
 tmLibdevErr_t (*getSRate)(Float *sRate);
 tmLibdevErr_t (*setVolume)(Int lGain, Int rGain);
 tmLibdevErr_t (*getVolume)(Int *lGain, Int *rGain);
 tmLibdevErr_t (*setInput)(tmAudioAnalogAdapter_t input);
 tmLibdevErr_t (*getInput)(tmAudioAnalogAdapter_t *input);
 tmLibdevErr_t (*configFunc)(UInt32 subAddr, Pointer value);
 tmLibdevErr_t (*getFormat)(tmAudioFormat_t *format);
 UInt32 audioTypeFormats;
 UInt32 audioSubtypeFormats;
 UInt32 audioAdapters;
 intInterrupt_t intNumber;
 UInt32 mmioBase;
 Float maxSRate;
 Float minSRate;
 UInt32 gpioFirstPin;
 UInt32 gpioLastPin;
} boardAIConfig_t;

Fields

codecName Codec name, in human-readable form.

initfunc This is the function called in aiInstanceSetup. On
success, it must leave the audio input system
“stopped” but otherwise ready for action. Board-
and/or codec-specific actions, such as setting IIC
control bits or initializing codec registers, are per-
formed. The function takes one input parameter,
a structure used to initialize the codec. It has
fields audioTypeFormat and audioSubtypeFormat.
It sets the minimum and maximum sample rates
supported by the codec.

termfunc This is called in aiClose. It should leave the audio
input system shut down.

startFunc Called from aiStart.

stopFunc Called from aiStop.

setSRate Called from aiSetSRate. It takes one parameter
sRate and sets the sample rate of the codec to that
value.

Chapter 19: TMBoard API

20 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

getSRate Called from aiGetSRate. It sets one parameter
sRate to the current sample rate of the codec.

setVolume Called from aiSetVolume. It takes two parameters,
lgain and rgain, which are the new left and right
speaker volume settings.

setInput Called from aiSetInput. It takes one input parame-
ter input which is the audio input source, such as
aaaMicInput.

configFunc Called from aiConfigure, and it is a “backdoor” to
support features not foreseen in the API. It takes
two parameters which could be the IIC address
and value for codec specific settings.

getFormat Used to report the format of the incoming audio.
This is to be used with digital input (like S/PDIF)
where the format of the incoming data is not
known in advance.

audioTypeFormats This is an OR’d bitmask of audio types
(audioTypeFormats_t) supported by the codec. It
is initialized by the board’s initialization function
and is reported by the aiGetCapabilities function.

audioSubtypeFormats This is an OR’d bitmask of audio subtypes
(audioSubTypeFormats_t) supported by the codec.
It is initialized by the board’s init function and is
reported by the aiGetCapabilities function.

audioAdapters Which audio input adapters are available (an
OR’d combination of tmAudioAnalogAdapter_t).

intNumber Because multiple audio inputs are supported, this
field tells the software which interrupt to use.

mmioBase Because multiple audio inputs are supported, this
field tells the software which set of MMIO regis-
ters to use.

maxSRate Maximum sample rate.

minSRate Minimum sample rate.

gpioFirstPin, gpioLastPin On chips that support GPIO functionality, these
two fields identify the pins used by this device.

Description

A struct of this type describes the capabilities of the audio input subsystem to the tmAI

device library.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 21

19

boardAOParam_t

typedef struct {
 tmAudioTypeFormat_t audioTypeFormat;
 UInt32 audioSubtypeFormat;
 UInt32 audioDescription;
 Float srate;
 Int size;
 tmAudioAnalogAdapter_t output;
} boardAOParam_t;

Fields

audioTypeFormat This is an OR’d bitmask of audio types
(audioTypeFormats_t) supported by the codec. It
is initialized by the board’s init function and is
reported by the aiGetCapabilities function.

audioSubtypeFormat This is an OR’d bitmask of audio subtypes
(audioSubTypeFormats_t) supported by the codec.
It is initialized by the board’s init function and is
reported by the aiGetCapabilities function.

audioDescription Additional description of the audio data.

srate Sample rate [Hertz].

size Number of samples in buffer.

output The output.

Description

Structures of this type are used by the tmAO device library to initialize the board compo-

nent of the audio out system.

Chapter 19: TMBoard API

22 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

boardAOConfig_t

typedef struct{
 Char codecName[DEVICE_NAME_LENGTH];
 tmLibdevErr_t (*initFunc)(pboardAOParam_t setup);
 tmLibdevErr_t (*termFunc)(void);
 tmLibdevErr_t (*startfunc)(void);
 tmLibdevErr_t (*stopfunc)(void);
 tmLibdevErr_t (*setSRate)(Float sRate);
 tmLibdevErr_t (*getSRate)(Float *sRate);
 tmLibdevErr_t (*setVolume)(Int lgain, Int rgain);
 tmLibdevErr_t (*getVolume)(Int *lGain, Int *rGain);
 tmLibdevErr_t (*setOutput)(tmAudioAnalogAdapter_t output);
 tmLibdevErr_t (*getOutput)(tmAudioAnalogAdapter_t *output);
 tmLibdevErr_t (*configFunc)(UInt32 subAddr, Pointer value);
 UInt32 audioTypeFormats;
 UInt32 audioSubtypeFormats;
 UInt32 audioAdapters;
 intInterrupt_t intNumber;
 UInt32 mmioBase;
 Float minSRate;
 UInt32 gpioFirstPin;
 UInt32 gpioLastPin;
} boardAOConfig_t;

Fields

codecName Name of the codec in human-readable format.

initfunc This is the function called in aoInstanceSetup. On
success, it must leave the audio input system
“stopped” but otherwise ready for action. Board
and/or codec specific actions like setting IIC con-
trol bits or initializing codec registers are per-
formed. The function takes one input parameter.
This is a structure used to initialize the codec. It
has fields audioTypeFormat and audioSubtypeFor-
mat, and it sets the minimum and maximum
sample rates supported by the codec.

termFunc Called from aiClose. It should leave the audio
input system shut down.

startfunc Called from aoStart.

stopfunc Called from aoStart.

setSRate Called from aiSetSRate.It takes one parameter
sRate, and sets the sample rate of the codec to
that value.

getSRate Called from aoGetSRate. It sets one parameter
sRate to the current sample rate of the codec.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 23

19

setVolume Called from aoSetVolume. It takes two parame-
ters, lgain and rgain, which are the new left and
right speaker volume settings.

getVolume Called from aoGetVolume.

setOutput Called from aoSetInput. It takes one input param-
eter input which is the audio input source, such
as aaaMicInput.

getOutput Called from aoGetInput.

configFunc Called from aoConfigure, and it is a backdoor to
support features not foreseen in the API. It takes
two parameters which could be the IIC address
and value for codec specific settings.

audioTypeFormats This is an OR’d bitmask of audio types
(audioTypeFormats_t) supported by the codec. It
is initialized by the board’s init function and is
reported by the aoGetCapabilities function.

audioSubtypeFormats This is an OR’d bitmask of audio subtypes
(audioSubTypeFormats_t) supported by the codec.
It is initialized by the board’s init function and is
reported by the aoGetCapabilities function.

audioAdapters Which audio input adapters are available (an
OR’d combination of tmAudioAnalogAdapter_t).

intNumber Because multiple audio inputs are supported, this
field tells the software which interrupt to use.

mmioBase Because multiple audio inputs are supported, this
field tells the software which set of MMIO regis-
ters to use.

minSRate Minimum sample rate.

gpioFirstPin, gpioLastPin On chips that support GPIO functionality, these
two fields identify the pins used by this device.

Description

A structure of this type is used to describe the capabilities of the audio output subsystem

to the tmAO device library.

Chapter 19: TMBoard API

24 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

boardVIConfig_t

typedef struct{
 Char codecName[DEVICE_NAME_LENGTH];
 tmLibdevErr_t (*init_func)(pboardVIParam_t params);
 tmLibdevErr_t (*term_func)();
 tmLibdevErr_t (*GetStandard)(
 tmVideoAnalogStandard_t *standard);
 tmLibdevErr_t (*setHue)(UInt val);
 tmLibdevErr_t (*setSaturation)(UInt val);
 tmLibdevErr_t (*setBrightness)(UInt val);
 tmLibdevErr_t (*setContrast)(UInt val);
 tmLibdevErr_t (*Configure)(UInt32 subaddr, UInt32 value);
 intInterrupt_t intNumber;
 UInt32 mmioBase;
 UInt32 gpioFirstPin;
 UInt32 gpioLastPin;
 tmVideoCapabilitiesFlags_t capFlags;
 tmVideoRGBYUVFormat_t outputFormats;
 tmLibdevErr_t (*getVSyncFallingEdge)(
 pboardVIDec_t pVD,
 UInt *lineNumber);
 tmLibdevErr_t (*getSlicedData)(
 pboardVIDec_t pVD,
 UInt8 *Y,
 UInt8 *U,
 UInt8 *V,
 tmVideoDataService_t service,
 UInt size,
 UInt8 *data,
 UInt8 *dataSize);
 tmLibdevErr_t (*getStatus)(
 pboardVIDec_t pVD,
 tmVideoStatusType_t type,
 UInt *state);
 tmLibdevErr_t (*getSupportedDataServices)(
 tmVideoDataService_t fieldOne[],
 tmVideoDataService_t fieldTwo[],
 UInt8 tblSize);
 tmLibdevErr_t (*setDataServices)(
 pboardVIDec_t pVD,
 tmVideoDataService_t fieldOne[],
 tmVideoDataService_t fieldTwo[],
 UInt8 tblSize);
 tmLibdevErr_t (*enableSlicing)(
 pboardVIDec_t pVD,
 Bool enable);
 tmLibdevErr_t (*setSlicerVideoStandard)(
 pboardVIDec_t pVD,
 tmVideoAnalogStandard_t standard);

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 25

19

 tmLibdevErr_t (*getSlicerVideoStandard)(
 pboardVIDec_t pVD,
 tmVideoAnalogStandard_t *standard);
 tmLibdevErr_t (*toggleFieldID)(
 pboardVIDec_t pVD, Bool toggle);
 tmLibdevErr_t (*setSlicerInput)(
 pboardVIDec_t pVD, UInt num);
 tmLibdevErr_t (*getSlicerInput)(
 pboardVIDec_t pVD, UInt *num);
 tmLibdevErr_t (*setVideoColor)(
 pboardVIDec_t pVD,
 tmVideoColor_t color, UInt val);
 tmLibdevErr_t (*getVideoColor)(
 pboardVIDec_t pVD,
 tmVideoColor_t color, UInt *val);
 tmLibdevErr_t (*setAnalogInput)(
 pboardVIDec_t pVD, UInt num);
 tmLibdevErr_t (*getAnalogInput)(
 pboardVIDec_t pVD, UInt *num);
 tmLibdevErr_t (*setStandard)(
 pboardVIDec_t pVD,
 tmVideoAnalogStandard_t standard);
 tmLibdevErr_t (*setSourceType)(
 pboardVIDec_t pVD,
 tmVideoSourceType_t type);
 tmLibdevErr_t (*getSourceType)(
 pboardVIDec_t pVD,
 tmVideoSourceType_t *type);
 tmLibdevErr_t (*setOutputFormat)(
 pboardVIDec_t pVD,
 tmVideoRGBYUVFormat_t format);
 tmLibdevErr_t (*getOutputFormat)(
 pboardVIDec_t pVD,
 tmVideoRGBYUVFormat_t *format);
 tmLibdevErr_t (*setAcquisitionWnd)(
 pboardVIDec_t pVD,
 UInt beginX, UInt beginY,
 UInt endX, UInt endY);
 tmLibdevErr_t (*getAcquisitionWnd)(
 pboardVIDec_t pVD,
 UInt *beginX, UInt *beginY,
 UInt *endX, UInt *endY);
 tmLibdevErr_t (*getDefaultAcquisitionWnd)(
 pboardVIDec_t pVD,
 UInt *beginX, UInt *beginY,
 UInt *endX, UInt *endY);
 tmLibdevErr_t (*setOutputSize)(
 pboardVIDec_t pVD,
 UInt width, UInt height);
 tmLibdevErr_t (*setInterlaceMode)(

Chapter 19: TMBoard API

26 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

 pboardVIDec_t pVD, Bool interlace);
 tmLibdevErr_t (*disableDecoder)(
 pboardVIDec_t pVD, Bool disable);
 tmLibdevErr_t (*enablePowerSaveMode)(
 pboardVIDec_t pVD, Bool enable);
 tmLibdevErr_t (*getGPIOCount)(
 pboardVIDec_t pVD, UInt *num);
 tmLibdevErr_t (*setGPIOState)(
 pboardVIDec_t pVD,
 UInt pin, Bool state);
 tmLibdevErr_t (*getGPIOState)(
 pboardVIDec_t pVD,
 UInt pin, Bool *state);
 tmLibdevErr_t (*openVBI)(
 pboardVIDec_t pVD,
 UInt sampleFreq, UInt startLine,
 UInt numLines);
 tmLibdevErr_t (*enableVBI)(
 pboardVIDec_t pVD, Bool enable);
 tmLibdevErr_t (*setVBIMode)(
 pboardVIDec_t pVD,
 tmVideoVBIMode_t mode);
 tmLibdevErr_t (*setSlicerMode)(
 pboardVIDec_t pVD,
 tmVideoSlicerMode_t mode);
 tmLibdevErr_t (*closeVBI)(
 pboardVIDec_t pVD);
 tmLibdevErr_t (*getSlicerLineFlags)(
 pboardVIDec_t pVD,
 Bool fieldOne[], Bool fieldTwo[],
 UInt8 tblSize);
 boardVIDec_t vDec;
} boardVIConfig_t;

Members

codecName Name of the codec, in human-readable form.

init_func Called from viInstanceSetup to configure board
hardware. After successful completion, the video
in hardware should be stopped and ready for
action. Setting of device-specific MMIO registers
and decoder-specific registers (over IIC, for exam-
ple) happens here.

term_func Called from viClose. Should shut down VI hard-
ware.

GetStandard Called from viGetStandard to retrieve current
video standard.

setHue Called from viSetHue.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 27

19

setSaturation Called from viSetSaturation.

setBrightness Called from viSetBrightness.

setContrast Called from viSetContrast.

Configure A “backdoor” to support unforeseen features.

standards OR’d supported standards.

adapters OR’d supported adapter types

intNumber Because multiple video inputs are supported, this
field tells the software which interrupt to use.

mmioBase Because multiple video inputs are supported, this
field tells the software which set of MMIO regis-
ters to use.

gpioFirstPin On chips that support GPIO functionality, this
describes the first pin used by this device.

gpioLastPin On chips that support GPIO functionality, this
describes the first pin used by this device.

capFlags Capabilities of connected video decoder device.

outputFormats List of supported output formats.

getVSyncFallingEdge Returns the line number where falling edge of
vertical sync happens. This is important to deter-
mine the active video area.

getSlicedData Returns sliced data according to requested service.

getStatus Retrieves status information of the decoder chip.

getSupportedDataServices Retrieves the decoder’s hardware slicing capabili-
ties for each VBI line.

setDataServices Sets the decoder’s hardware slicing for each VBI
line.

enableSlicing Enables the decoder’s hardware slicer.

setSlicerVideoStandard Sets analog video standard for the decoder’s VBI
slicer.

getSlicerVideoStandard Returns current analog video standard used by
the hardware slicer.

toggleFieldID Toggles field ID to correct field assignment.

setSlicerInput Sets the analog input for the VBI slicer.

getSlicerInput Returns current analog input of the VBI slicer.

setVideoColor Changes color settings for Brightness, Contrast,
Saturation, or Hue.

getVideoColor Retrieves value of current color settings for
Brightness, Contrast, Saturation, or Hue.

setAnalogInput Sets the analog input port.

getAnalogInput Returns currently used analog input port.

Chapter 19: TMBoard API

28 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

setStandard Sets the analog video standard.

setSourceType Sets video source type: TV, video, or camera.

getSourceType Retrieves current video source type settings.

setOutputFormat Sets output format: YUV, RGB, ...

getOutputFormat Retrieves current output format: YUV, RGB, ...

setAcquisitionWnd Sets the video acquisition window.

getAcquisitionWnd Retrieves the current acquisition window.

getDefaultAcquisitionWnd Retrieves default window according to selected
analog standard.

setOutputSize Set output video size.

setInterlaceMode Set the decoder’s scaler to interlaced or field
mode.

disableDecoder Disables decoder, if supported.

enablePowerSaveMode Enables the decoder’s power save mode, if sup-
ported.

getGPIOCount Returns the number of GPIO pins provided by the
video decoder.

setGPIOState Sets the state of a video decoder’s GPIO pin.

getGPIOState Returns current state of a video decoder’s GPIO
pin.

openVBI Initializes VBI support of decoder for SW slicing.

enableVBI Enables the decoder’s VBI feature to support SW
slicing.

setVBIMode Sets the decoder’s VBI mode.

setSlicerMode Sets the decoder’s VBI slicer mode.

closeVBI Close the SW decoding of the VBI decoder.

getSlicerLineFlags Get an indication for each VBI line if a specified
data service was found or not.

vDec Describes configuration data of the video
decoder’s instance. Currently it contains the
decoder’s IIC address, the number of supported
video adapters and a list mapping the video
adapters to input modes. It also contains instance
information that the decoder uses internally.

Description

A structure of this type describes the capabilities of a video input subsystem of the TriMe-

dia Video In Device Library.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 29

19

boardVIParam_t

typedef struct {
 tmVideoAnalogStandard_t videoStandard;
 tmVideoAnalogAdapter_t adapterType;
 UInt32 mmioBase;
 UInt adapterInstance;
} boardVIParam_t, *pboardVIParam_t;

Members

videoStandard Defines the video analog standard to be expected
on the video input interface. If set to vasNone the
implementation tries to automatically detect the
standard.

adapterType Selects the adapter type to be CVBS or S-Video. If
set to vaaNone, the default adapter will be used.

mmioBase Because multiple video inputs are supported, this
field tells the software which base address to use
for the video input interface.

adapterInstance If a board provides more then one CVBS or S-
Video adapters this field selects the adapter’s
instance to use.

Description

A structure of this type is passed to the InstanceSetup function of the Video In device

library to select a specific video input.

Chapter 19: TMBoard API

30 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

boardVIAdapterEntry_t

typedef struct {
 tmVideoAnalogAdapter_t adapterType;
 UInt instNum;
 UInt decInput;
} boardVIAdapterEntry_t, *pboardVIAdapterEntry_t;

Members

adapterType Selects the adapter type to be CVBS or S-Video.

instNum Specifies an instance number for this adapter.

decInput Selects the analog input mode mapping for the
specified adapter and instance.

Description

Structure mapping video input adapters to decoder inputs.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 31

19

boardVIDec_t

typedef struct {
 UInt slaveAddr;
 UInt numAdapters;
 pboardVIAdapterEntry_t adapterTable;
 tmVideoAnalogStandard_t currentStandard;
} boardVIDec_t, *pboardVIDec_t;

Members

slaveAddr IIC slave address of the decoder.

numAdapters Number of supported adapters.

adapterTable Points to a table mapping the adapters instances
to decoder inputs.

currentStandard Stores the current video standard. Only used
internally

Description

Structure describes configuration data of the video decoder’s instance. It contains the

decoder’s IIC address, the number of supported video adapters and a list mapping the

video adapters to input modes. It also contains instance information that the decoder

uses internally.

Chapter 19: TMBoard API

32 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

boardVOConfig_t

typedef struct{
 Char codecName[DEVICE_NAME_LENGTH];
 tmLibdevErr_t (*init_func)(pboardVOParam_t params);
 tmLibdevErr_t (*term_func)(void);
 tmLibdevErr_t (*setHue)(UInt val);
 tmLibdevErr_t (*setSaturation)(UInt val);
 tmLibdevErr_t (*setBrightness)(UInt val);
 tmLibdevErr_t (*setContrast)(UInt val);
 tmLibdevErr_t (*Configure)(UInt32 subaddr, UInt32 value);
 UInt32 standards;
 UInt32 adapters;
 intInterrupt_t intNumber;
 UInt32 mmioBase;
} boardVOConfig_t;

Fields

codecName Name of the codec in human-readable format.

init_func Called from voInstanceSetup to configure the
board hardware. After successful completion, the
video-out hardware should be ready for action of
device specific MMIO board and/or decoder spe-
cific register initialization.

term_func Called from voClose. It should shut down the
video-out hardware.

SetHue Called from voSetHue. It sets the hue of the
video-out encoder to value: val.

SetSaturation Called from voSetSaturation. It sets the saturation
of the video-out encoder to value: val.

SetBrightness Called from viSetBrightness. It sets the brightness
of the video-out encoder to value: val.

SetContrast Called from viSetContrast. It sets the contrast of
the video-out encoder to value: val.

Configure This is a backdoor to support features not fore-
seen in the initial design.

standards This is a bitmask of OR’ed
tmVideoAnalogStandard_t supported by the
codec. It is initialized by the board’s init function
and is reported by voGetCapabilities.

adapters This is an OR’d bitmask of type
tmVideoAnalogStandard_t supported by the
codec. It is initialized by the board’s init function
and is reported by voGetCapabilities.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 33

19

Description

A structure of this type describes the capabilities of the video output subsystem of the

TriMedia Video-Out Device Library.

Chapter 19: TMBoard API

34 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

boardSSIParam_t

typedef struct {
 UInt8 interruptLevelSelect;
 void *configBuffer;
 UInt32 configBufferLength;
} boardSSIParam_t;

Fields

interruptLevelSelect This value is passed in with ssiInstanceSetup, it is
the interrupt level at which the interrupt service
routine gets invoked.

configBuffer This is a pointer to a buffer for anything else the
board code needs.

configBufferLength The buffer length.

Description

This is a parameter structure for communication between the telecom AFE and SSI device

library. A structure of this type is passed to the SSI's init_func by ssiInstanceSetup.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 35

19

boardSSIConfig_t

typedef struct{
 Char afeName[DEVICE_NAME_LENGTH];
 tmLibdevErr_t (*init_func)(boardSSIParam_t *param);
 tmLibdevErr_t (*termFunc) (void);
 tmLibdevErr_t (*afe_Hook) (Bool offHook);
 mLibdevErr_t (*Configure)(boardSSIParam_t *param);
 tmSSIAnalogConnection_t connectionFlags;
 void *reserved;
} boardSSIConfig_t;

Fields

afeName This is the analog front end’s name in human-
readable text.

initFunc This function is called in ssiInstanceSetup. It sets
any non-default values of MMIO registers, takes
the AFE out of reset (using IIC, for example) and
leaves the AFE stopped and ready. Because an AFE
like the 7545 cannot be left in “stopped” mode,
configuration for the st7545 is left to an applica-
tion.

termFunc This function is called in ssiClose. It will leave the
SSI hardware shut down.

afe_Hook Currently reserved. Hook control is left to the
application.

Configure This is a backdoor to support features not fore-
seen in the initial design.

connectionFlags This is used to report a list of supported connec-
tions in ssiGetCapabilities.

reserved Reserved for future expansion.

Description

This structure is used in the boardConfig_t to describe the telecom interface on board.

Chapter 19: TMBoard API

36 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

boardSPDOParam_t

typedef struct {
 tmAudioTypeFormat_t audioTypeFormat;
 UInt32 audioSubtypeFormat;
 UInt32 audioDescription;
 Float sRate;
 Int size;
 tmAudioAnalogAdapter_t output;
} boardSPDOParam_t, *pboardSPDOParam_t;

Fields

audioTypeFormat Audio type.

audioSubtypeFormat Audio subtype.

audioDescription Additional description of the audio data.

sRate Sample rate in Hz.

size Size of buffers, in samples.

output Output.

Description

Structures of this type are used by the tmSPDO device library to initialize the board com-

ponent of the S/PDIF out system.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 37

19

boardSPDOConfig_t

typedef struct{
 Char codecName[DEVICE_NAME_LENGTH];
 tmLibdevErr_t (*initFunc) (pboardSPDOParam_t setup);
 tmLibdevErr_t (*termFunc) (void);
 tmLibdevErr_t (*startFunc) (void);
 tmLibdevErr_t (*stopFunc) (void);
 tmLibdevErr_t (*setSRate) (Float sRate);
 tmLibdevErr_t (*getSRate) (Float *sRate);
 tmLibdevErr_t (*configFunc)(UInt32 subAddr, Pointer value);
 UInt32 audioTypeFormats;
 UInt32 audioSubtypeFormats;
 UInt32 audioAdapters;
 intInterrupt_t intNumber;
 UInt32 mmioBase;
 Float maxSRate;
 Float minSRate;
} boardSPDOConfig_t;

Fields

codecName Codec name, in human-readable format.

initFunc Function called in spdoInstanceSetup. On suc-
cess, must leave the S/PDIF output system
“stopped” but otherwise ready for action. MMIO
setup will be done, as well as other board or
codec-specific actions, such as the setting of IIC
control bits or the initialization of codec registers.

termFunc Called in spdoClose. Should leave S/PDIF output
system shut down.

startFunc Called from spdoStart.

stopFunc Called from spdoStop.

setSRate Called from spdoSetSRate.

getSRate Called from spdoGetSRate. Should return an
accurate value from the hardware.

configFunc Reserved to support features not forseen in the
initial design.

Description

A structure of this type is used to describe the capabilities of the S/PDIF output sub-

system to the tmSPDO device library.

Chapter 19: TMBoard API

38 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

boardTPConfig_t

typedef struct {
 Char codecName[DEVICE_NAME_LENGTH];
 tmLibdevErr_t (*initFunc) (void);
 tmLibdevErr_t (*termFunc) (void);
 tmLibdevErr_t (*configFunc) (UInt32 address, UInt32 value);
 Bool onlySampleDvalidBytes;
 Bool sampleOnNegativeEdge;
 intInterrupt_t intNumber;
 UInt32 mmioBase;
} boardTPConfig_t;

Fields

codecName Codec name, in human-readable format.

initFunc Initialization function.

Description

Describes and controls the Transport Block on TM-2xxx processors.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 39

19

hdvoImageOutputMode_t

typedef enum {
 /* the following are YUV only */
 hdvoImageOutput_8b_YUV422 = 0x00000001,
 hdvoImageOutput_10b_YUV422 = 0x00000002,
 hdvoImageOutput_16b_YUV422 = 0x00000004,
 hdvoImageOutput_20b_YUV422 = 0x00000008,
 hdvoImageOutput_24b_YUV422 = 0x00000010,
 hdvoImageOutput_30b_YUV422 = 0x00000020,
 /* the following can be RGB or YUV */
 hdvoImageOutput_8b_444 = 0x00000040,
 hdvoImageOutput_10b_444 = 0x00000080,
 hdvoImageOutput_24b_444 = 0x00000100,
 hdvoImageOutput_30b_444 = 0x00000200
} hdvoImageOutputMode_t;

Description

Describes and controls the HDVO Block on TM-2xxx processors.

Chapter 19: TMBoard API

40 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

boardHDVOConfig_t

typedef struct {

 Char codecName[DEVICE_NAME_LENGTH];
 tmLibdevErr_t (*initFunc)(
 tmVideoAnalogStandard_t standard,
 tmVideoAnalogAdapter_t adapterType,
 tmVideoTypeFormat_t videoType,
 hdvoImageOutputMode_t videoSubtype,
 UInt32 description);
 tmLibdevErr_t (*termFunc)(void);
 tmLibdevErr_t (*configFunc)(
 UInt32 address,
 UInt32 value);
 UInt32 standards;
 UInt32 adapters;
 tmVideoTypeFormat_t videoType;
 hdvoImageOutputMode_t videoSubtype;
 UInt32 description;
 intInterrupt_t intNumber;
} boardHDVOConfig_t;

Fields

codecName Name of the codec in human-readable format.

initFunc Initialization function.

standards OR’d supported standards.

adapters OR’d supported adapter types.

videoType OR’d supported video types.

videoSubtype OR’d supported video subtypes.

description OR’d supported video flags.

intNumber Number of the interrupt.

Description

Describes and controls the HDVO Block on TM-2xxx processors.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 41

19

boardConfig_t (obsolete)

typedef struct{
 boardAIConfig_t *aibc;
 boardAOConfig_t *aobc;
 boardVIConfig_t *vibc;
 boardVOConfig_t *vobc;
 boardSSIConfig_t *ssibc;
 void (*board_init_func)(void);
 Int32 (*board_detect_func)(void);
 void *reserved;
 UInt32 ID;
} boardConfig_t;

Fields

aibc Pointer to the description of the audio input.

aobc Pointer to the description of the audio output.

vibc Pointer to the description of the video input.

vobc Pointer to the description of the video output.

ssibc Pointer to the description of the synchronous
serial port connections.

board_init_func This function is called to initialize the board
peripherals, and then to take the board out of
reset.

board_detect_func This function returns zero if the actual hardware
matches this board description. The hardware
should be identified using the subsystem ID con-
tained in the EEPROM and copied to the PCI con-
figuration field.

reserved Reserved for future expansion.

ID The ID field is uniquely defined by the program-
mer implementing the board support package. It
should be entered in tmBoardID.h. That file con-
tains some guidelines for the choice of an ID.

Description

From the perspective of the device libraries, a structure of boardConfig_t completely

describes the off chip hardware. A board support file (such as philips_iref.c) must be cre-

ated and for each supported board. Default versions are contained in the standard lib-

dev.a. You can override the standard configuration in his local code, or you can replace

the structures in libdev.a.

Chapter 19: TMBoard API

42 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

Important
This structure should not be used in new code and is being maintained for
compatibility purposes only. Instead, use tsaBoardGet* functions to re-
trieve this information.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 43

19

boardPICIntCaps_t

typedef struct boardPICIntCaps {
 intInterrupt_t interrupt;
 Bool levelTriggered;
 intPriority_t priority;
 UInt32 numSources;
 tsaPICSource_t *sourceTable;
 tmLibdevErr_t (*initFunc)(UInt32 source);
 tmLibdevErr_t (*termFunc)(UInt32 source);
 Bool (*sourceDetectFunc)(UInt32 *source);
 tmLibdevErr_t (*startFunc)(UInt32 source);
 tmLibdevErr_t (*stopFunc)(UInt32 source);
 tmLibdevErr_t (*ackFunc)(UInt32 source);
} boardPICIntCaps_t, *pboardPICIntCaps_t;

Fields

interrupt TriMedia interrupt number used for this
interrupt.

levelTriggered Indicates in which mode the interrupt must be
used by the PIC device library. True: level trig-
gered, False: edge triggered.

priority Priority that must be used for the interrupt.

numSources Number of sources that are supported by this
interrupt.

sourceTable Array (size: numSources) that contains the sources
that are supported by the interrupt.

initFunc This function is called in tsaPICInstanceSetup. It
does the basic initiallization of the external hard-
ware for this interrupt. On success it must leave
the hardware in a state that interrupt sources can
be enabled.

termFunc This function gets called in tsaPICClose. It should
shut down the external hadware used by the
interrupt.

sourceDetectFunc This function is called in the PIC interrupt service
routine. If it returns True it detected the source for
the interrup and writes the index of the detected
source in sourceTable to the function’s parameter
source. In the case that it returns False there is no
more pending interrupt source.

startFunc Enables the selected interrupt source. The param-
eter source is the index to the source in source-
Table.

Chapter 19: TMBoard API

44 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

stopFunc Disables the selected interrup source. The parame-
ter source is the index to the source in source-
Table.

ackFunc Acknowledges the interrupt source. The parame-
ter source is the index to the source in source-
Table.

Description

An array of structures of this type is used in boardPICConfig_t to describe the capabilities

of the supported interrupts to the PIC device library.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 45

19

boardPICConfig_t

typedef struct boardPICConfig {
 Char picName[DEVICE_NAME_LENGTH];
 UInt32 numSupportedInterrupts;
 pboardPICIntCaps_t intCaps;
} boardPICConfig_t, *pboardPICConfig_t;

Fields

picName Name for the PIC hardware.

numSupportedInterrupts Number of supported interrupts.

intCaps Array of interrupt capabilities.

Description

This structure describes capabilities of the interrupts supported on the board.

Chapter 19: TMBoard API

46 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

boardUartParam_t

typedef struct {
 tsaUartBaud_t baudRate;
 Int numDataBits;
 Int numStopBits;
 tsaUartParity_t parity;
 Bool enableModemInt;
}boardUartParam_t, *pboardUartParam_t;

Fields

baudRate Baudrate.

numDataBits Number of data bits.

numStopBit Number of stop bits.

parity Parity mode.

enableControlInt This flag indicates if the control interrupt must be
enabled. True: enable control interrupt, False:
don’t enable control interrupt.

Description

A structure of this type is passed to the UART init function and describes the required

setup.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 47

19

boardUartConfig_t

typedef struct {
 Char name[DEVICE_NAME_LENGTH];
 tmLibdevErr_t (*initFunc)(unitSelect_t portID,
 pboardUartParam_t param);
 tmLibdevErr_t (*termFunc)(unitSelect_t portID);
 tmLibdevErr_t (*readDataFunc)(unitSelect_t portID,
 Address data);
 tmLibdevErr_t (*setTxIntFunc)(unitSelect_t portID,
 Bool enable);
 tmLibdevErr_t (*writeDataFunc)(unitSelect_t portID,
 Char data);
 tmLibdevErr_t (*setRxIntFunc)(unitSelect_t portID,
 Bool enable);
 Bool (*getEventFunc)(unitSelect_t portID,
 UInt32 *event);
 tmLibdevErr_t (*configFunc)(unitSelect_t portID,
 UInt32 command, Pointer value);
 UInt32 baudRates;
} boardUartConfig_t, *pboardUartConfig_t;

Fields

name Name of the UART.

initFunc Called by the tsaUartInstanceSetup function. On
success it should leave the hardware in a state so
that the application can start to transmit or
receive data.

termFunc Called by tsaUartClose to shut down the UART
hardware for the selected port.

readDataFunc Called by the UART device library to read one
received character.

setTxIntFunc Called by the UART device library to enable/dis-
able the transmit interrupt.

writeDataFunc Called by the UART device library to send one
character.

setRxIntFunc Called by the UART device library to enable/dis-
able the receive interrupt.

getEventFunc Called by the UART interrupt service routine to
get the event that triggered the interrupt.

configFunc Used in the UART device library to configure the
UART.

baudRates Supported baudrates.

Chapter 19: TMBoard API

48 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

Description

A structure of this type is used to describe the capabilities of the UART hardware.

boardIRParam_t

typedef struct{
 tsaIRDevice_t device;
} boardIRParam_t, *pboardIRParam_t;

Fields

device Device type that wil be used.

Description

A structure of this type is passed to the flash init function and describes the required

setup.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 49

19

boardIRConfig_t

typedef struct {
 Char irName[DEVICE_NAME_LENGTH];
 tmLibdevErr_t (*initFunc)(pboardIRParam_t params);
 tmLibdevErr_t (*termFunc)(void);
 tmLibdevErr_t (*startFunc)(void);
 tmLibdevErr_t (*stopFunc)(void);
 tmLibdevErr_t (*configFunc)(UInt32 command, Pointer value);
 void (*getEventFunc)(tsaIREvent_t *event,
 UInt32* value);
 UInt32 supportedDevices;
} boardIRConfig_t, * pboardIRConfig_t;

Fields

irName Name of the IR hardware.

initFunc This function gets called in the tsaIRInstance-
Setup function and on success should leave the IR
hardware in a state that IR reception can be
started.

termFunc This function gets called in tsaIRClose it shuts
down the IR hardware.

startFunc Gets called in tsaIRStart and starts IR reception.

stopFunc Gets called in tsaIRStop and stops infrared recep-
tion.

configFunc Gets called in tsaIRConfig. This function can be
used to configure the IR device. It can also be used
to support features not implemented in the cur-
rent IR device library since the config command
and value are passed directly to this function
without interpretation in the device library.

getEventFunc This function gets called in the device library’s
interrupt handler to get the event that caused the
IR interrupt.

supportedDevices Supported IR devices.

Description

This structure describes capabilities of the IR hardware supported on the board.

Chapter 19: TMBoard API

50 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

boardFlashConfig_t

typedef struct boardFlashConfig{
 Char flashName[DEVICE_NAME_LENGTH];
 tmLibdevErr_t (*initFunc)(void);
 tmLibdevErr_t (*readWordFunc) (UInt32 address, UInt32 *data);
 tmLibdevErr_t (*writeWordFunc)(UInt32 address, UInt32 data);
 tmLibdevErr_t (*readBlockFunc)(UInt32 address, UInt32 *data,
 UInt32 numberOfWords);
 tmLibdevErr_t (*writeBlockFunc)(UInt32 address, UInt32 *data,
 UInt32 numberOfWords);
 tmLibdevErr_t (*eraseSectorFunc)(UInt32 sectorNumber);
 tmLibdevErr_t (*eraseAllFunc)(void);
 UInt32 flashSize;
 UInt32 numberOfSectors;
 UInt32 sectorSize;
 UInt32 erasedWord;
} boardFlashConfig_t, *pboardFlashConfig_t;

Fields

flashName Name of the flash hardware.

initFunc This function initializes the flash. It can only be
called once. If it returns an error the flash might
allready be in used by another component and
can not be used by the current caller (e.g. flash file
system and flash device library are sharing the
same board interface).

readWordFunc Read one word from flash.

writeWordFunc Write one word to flash.

readBlockFunc Read a block of words from flash.

writeBlockFunc Write a block of words to flash.

eraseSectorFunc Erase a flash sector.

eraseAllFunc Erase the complete flash.

flashSize Flash size.

numberOfSectors Number of flash sectors.

sectorSize Size of one flash sector.

erasedWord Value that you read from flash after it has been
erased.

Description

This structure describes capabilities of the flash hardware supported on the board.

Note: The size of one word is 32 bits (4 bytes). All addresses and size values are based on

a 32-bit word.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 51

19

TMBoard API Functions

This section presents the TMBoard API functions.

Name Page

tsaBoardRegisterAO 53

tsaBoardRegisterSPDO 54

tsaBoardRegisterAI 55

tsaBoardRegisterVO 56

tsaBoardRegisterVI 57

tsaBoardRegisterSSI 58

tsaBoardRegisterTP 59

tsaBoardRegisterHDVO 60

tsaBoardRegisterGPIO 61

tsaBoardRegisterPIC 62

tsaBoardRegisterUart 63

tsaBoardRegisterIR 64

tsaBoardRegisterFlash 65

tsaBoardRegisterBoard 66

tsaBoardGetAO 67

tsaBoardGetSPDO 68

tsaBoardGetAI 69

tsaBoardGetVO 70

tsaBoardGetVI 71

tsaBoardGetSSI 72

tsaBoardGetTP 73

tsaBoardGetHDVO 74

tsaBoardGetGPIO 75

tsaBoardGetPIC 76

tsaBoardGetUart 77

tsaBoardGetIR 78

tsaBoardGetFlash 79

Chapter 19: TMBoard API

52 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardGetBoard 80

boardGetConfig (obsolete)A 81

boardGetID (obsolete)A 82

A. These functions should not be used in new code and are being maintained for compatibility
purposes only. Use tsaBoardGet* instead.

Name Page

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 53

19

tsaBoardRegisterAO

extern tmLibdevErr_t tsaBoardRegisterAO(
 UInt32 unitNumber,
 boardAOConfig_t *AOconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions.

AOconfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
headers. This pointer must point to a static vari-
able or to a malloc’d variable, since only the value
of the pointer is copied in the registry, and not
the content of the structure itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit has already been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

54 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardRegisterSPDO

extern tmLibdevErr_t tsaBoardRegisterSPDO(
 UInt32 unitNumber,
 boardSPDOConfig_t *SPDOconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions.

SPDOconfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
headers. This pointer must point to a static vari-
able or to a malloc’d variable, since only the value
of the pointer is copied in the registry, and not
the content of the structure itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit has already been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 55

19

tsaBoardRegisterAI

extern tmLibdevErr_t tsaBoardRegisterAI(
 UInt32 unitNumber,
 boardAIConfig_t *AIconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions.

AIconfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
headers. This pointer must point to a static vari-
able or to a malloc’d variable, since only the value
of the pointer is copied in the registry, and not
the content of the structure itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit has already been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

56 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardRegisterVO

extern tmLibdevErr_t tsaBoardRegisterVO(
 UInt32 unitNumber,
 boardVOConfig_t *VOconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions.

VOconfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
headers. This pointer must point to a static vari-
able or to a malloc’d variable, since only the value
of the pointer is copied in the registry, and not
the content of the structure itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit has already been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 57

19

tsaBoardRegisterVI

extern tmLibdevErr_t tsaBoardRegisterVI(
 UInt32 unitNumber,
 boardVIConfig_t *VIconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions.

VIconfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
headers. This pointer must point to a static vari-
able or to a malloc’d variable, since only the value
of the pointer is copied in the registry, and not
the content of the structure itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit has already been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

58 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardRegisterSSI

extern tmLibdevErr_t tsaBoardRegisterSSI(
 UInt32 unitNumber,
 boardSSIConfig_t *SSIconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions.

SSIconfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
headers. This pointer must point to a static vari-
able or to a malloc’d variable, since only the value
of the pointer is copied in the registry, and not
the content of the structure itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit has already been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 59

19

tsaBoardRegisterTP

extern tmLibdevErr_t tsaBoardRegisterTP(
 UInt32 unitNumber,
 boardTPConfig_t *TPconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions.

TPconfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
headers. This pointer must point to a static vari-
able or to a malloc’d variable, since only the value
of the pointer is copied in the registry, and not
the content of the structure itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit has already been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

60 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardRegisterHDVO

extern tmLibdevErr_t tsaBoardRegisterHDVO(
 UInt32 unitNumber,
 boardHDVOConfig_t *HDVOconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions.

HDVOconfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
headers. This pointer must point to a static vari-
able or to a malloc’d variable, since only the value
of the pointer is copied in the registry, and not
the content of the structure itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit has already been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 61

19

tsaBoardRegisterGPIO

extern tmLibdevErr_t tsaBoardRegisterGPIO(
 UInt32 unitNumber,
 boardGPIOConfig_t *GPIOconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions.

GPIOconfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
headers. This pointer must point to a static vari-
able or to a malloc’d variable, since only the value
of the pointer is copied in the registry, and not
the content of the structure itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit has already been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

62 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardRegisterPIC

extern tmLibdevErr_t tsaBoardRegisterPIC(
 UInt32 unitNumber,
 boardPICConfig_t *picConfig
);

Parameters

unitNumber This corresponds with the unit number which is
specified with the devOpenM function.

picConfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
or tsaDevboard.h headers. This pointer must
point to a static variable or to a malloc’d variable,
since only the value of the pointer is copied in
the registry, and not the content of the structure
itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit already has been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 63

19

tsaBoardRegisterUart

extern tmLibdevErr_t tsaBoardRegisterUart(
 UInt32 unitNumber,
 boardUartConfig_t *uartConfig
);

Parameters

unitNumber This corresponds with the unit number which is
specified with the devOpenM function.

uartConfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
or tsaDevboard.h headers. This pointer must
point to a static variable or to a malloc’d variable,
since only the value of the pointer is copied in
the registry, and not the content of the structure
itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit already has been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

64 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardRegisterIR

extern tmLibdevErr_t tsaBoardRegisterIR(
 UInt32 unitNumber,
 boardIRConfig_t *irConfig
);

Parameters

unitNumber This corresponds with the unit number which is
specified with the devOpenM function.

irConfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
or tsaDevboard.h headers. This pointer must
point to a static variable or to a malloc’d variable,
since only the value of the pointer is copied in
the registry, and not the content of the structure
itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit already has been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 65

19

tsaBoardRegisterFlash

extern tmLibdevErr_t tsaBoardRegisterFlash(
 UInt32 unitNumber,
 boardFlashConfig_t *flashConfig
);

Parameters

unitNumber This corresponds with the unit number which is
specified with the devOpenM function.

flashConfig Pointer to the board configuration of this device.
These structures are defined in the tmdevboard.h
or tsaDevboard.h headers. This pointer must
point to a static variable or to a malloc’d variable,
since only the value of the pointer is copied in
the registry, and not the content of the structure
itself.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TSA_BOARD_ERR_UNIT_EXISTS The unit already has been registered.

TMLIBDEV_OK Success.

Chapter 19: TMBoard API

66 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardRegisterBoard

extern tmLibdevErr_t tsaBoardRegisterBoard(
 UInt32 ID,
 Char *boardName
);

Parameters

ID Board ID, as read from the EEPROM of the board.

boardName Pointer to a null-terminated string describing the
board. The string length should be 32 characters
or less (e.g.,“Philips Iref”).

Return Codes

TMLIBDEV_OK Success

TSA_BOARD_ERR_BOARD_NAME_TOO_LONG
The board name is too long (more than 32 char-
acters.

Description

Creates two new entries in the registry: bsp/boardID and bsp/boardName. These entries

contain the parameters ID and boardName. The ID number and the boardName need not

be statically allocated or malloc’d. The registry makes its own copy.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 67

19

tsaBoardGetAO

extern tmLibdevErr_t tsaBoardGetAO(
 UInt32 unitNumber,
 boardAOConfig_t **AOconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions

AOconfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tmdev-
board.h headers.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The passed unitNumber is not in the valid range
of unit numbers (0–99), or when there is no regis-
tered device for this unit.

TMLIBDEV_OK Success.

Description

The returned structure should be considered as read-only, since this actually points to

the system value of the structure.

Chapter 19: TMBoard API

68 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardGetSPDO

extern tmLibdevErr_t tsaBoardGetSPDO(
 UInt32 unitNumber,
 boardSPDOConfig_t **SPDOconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions

SPDOconfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tmdev-
board.h headers.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The passed unitNumber is not in the valid range
of unit numbers (0–99), or when there is no regis-
tered device for this unit.

TMLIBDEV_OK Success.

Description

The returned structure should be considered read-only, since it actually points to the sys-

tem value of the structure.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 69

19

tsaBoardGetAI

extern tmLibdevErr_t tsaBoardGetAI(
 UInt32 unitNumber,
 boardAIConfig_t **AIconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions

AIconfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tmdev-
board.h headers.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The passed unitNumber is not in the valid range
of unit numbers (0–99), or when there is no regis-
tered device for this unit.

TMLIBDEV_OK Success.

Description

The returned structure should be considered as read-only, since this actually points to

the system value of the structure.

Chapter 19: TMBoard API

70 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardGetVO

extern tmLibdevErr_t tsaBoardGetVO(
 UInt32 unitNumber,
 boardVOConfig_t **VOconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions

VOconfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tmdev-
board.h headers.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The passed unitNumber is not in the valid range
of unit numbers (0–99), or when there is no regis-
tered device for this unit.

TMLIBDEV_OK Success.

Description

The returned structure should be considered as read-only, since this actually points to

the system value of the structure.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 71

19

tsaBoardGetVI

extern tmLibdevErr_t tsaBoardGetVI(
 UInt32 unitNumber,
 boardVIConfig_t **VIconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions

VIconfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tmdev-
board.h headers.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The passed unitNumber is not in the valid range
of unit numbers (0–99), or when there is no regis-
tered device for this unit.

TMLIBDEV_OK Success.

Description

The returned structure should be considered as read-only, since this actually points to

the system value of the structure.

Chapter 19: TMBoard API

72 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardGetSSI

extern tmLibdevErr_t tsaBoardGetSSI(
 UInt32 unitNumber,
 boardSSIConfig_t **SSIconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions

SSIconfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tmdev-
board.h headers.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The passed unitNumber is not in the valid range
of unit numbers (0–99), or when there is no regis-
tered device for this unit.

TMLIBDEV_OK Success.

Description

The returned structure should be considered as read-only, since this actually points to

the system value of the structure.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 73

19

tsaBoardGetTP

extern tmLibdevErr_t tsaBoardGetTP(
 UInt32 unitNumber,
 boardTPConfig_t **TPconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions

TPconfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tmdev-
board.h headers.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The passed unitNumber is not in the valid range
of unit numbers (0–99), or when there is no regis-
tered device for this unit.

TMLIBDEV_OK Success.

Description

The returned structure should be considered as read-only, since this actually points to

the system value of the structure.

Chapter 19: TMBoard API

74 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardGetHDVO

extern tmLibdevErr_t tsaBoardGetHDVO(
 UInt32 unitNumber,
 boardHDVOConfig_t **HDVOconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions

HDVOconfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tmdev-
board.h headers.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The passed unitNumber is not in the valid range
of unit numbers (0–99), or when there is no regis-
tered device for this unit.

TMLIBDEV_OK Success.

Description

The returned structure should be considered as read-only, since this actually points to

the system value of the structure.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 75

19

tsaBoardGetGPIO

extern tmLibdevErr_t tsaBoardGetGPIO(
 UInt32 unitNumber,
 boardGPIOConfig_t **GPIOconfig
);

Parameters

unitNumber This corresponds to the unit number which is
specified with the devOpenM functions

GPIOconfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tmdev-
board.h headers.

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The passed unitNumber is not in the valid range
of unit numbers (0–99), or when there is no regis-
tered device for this unit.

TMLIBDEV_OK Success.

Description

The returned structure should be considered as read-only, since this actually points to

the system value of the structure.

Chapter 19: TMBoard API

76 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardGetPIC

extern tmLibdevErr_t tsaBoardGetPIC(
 UInt32 unitNumber,
 boardPICConfig_t **picConfig
);

Parameters

unitNumber This corresponds with the unit number which is
specified with the devOpenM function.

picConfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tsaDev-
Board.h headers (or tmdevboard.h).

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TMLIBDEV_OK Success.

Description

The returned structure should be considered read-only, because it actually points to the

system value of the structure.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 77

19

tsaBoardGetUart

extern tmLibdevErr_t tsaBoardGetUart(
 UInt32 unitNumber,
 boardUartConfig_t **uartConfig
);

Parameters

unitNumber This corresponds with the unit number which is
specified with the devOpenM function.

uartConfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tsaDev-
Board.h headers (or tmdevboard.h).

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TMLIBDEV_OK Success.

Description

The returned structure should be considered as read-only, since this actually points to

the system value of the structure.

Chapter 19: TMBoard API

78 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardGetIR

extern tmLibdevErr_t tsaBoardGetIR(
 UInt32 unitNumber,
 boardIRConfig_t **irConfig
);

Parameters

unitNumber This corresponds with the unit number which is
specified with the devOpenM function.

irConfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tsaDev-
Board.h headers (or tmdevboard.h).

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TMLIBDEV_OK Success.

Description

The returned structure should be considered read-only, because it actually points to the

system value of the structure.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 79

19

tsaBoardGetFlash

extern tmLibdevErr_t tsaBoardGetFlash(
 UInt32 unitNumber,
 boardFlashConfig_t **flashConfig
);

Parameters

unitNumber This corresponds with the unit number which is
specified with the devOpenM function.

flashConfig Pointer to a pointer to a boarddevConfig_t struc-
ture. This structure is defined in the tsaDev-
Board.h headers (or tmdevboard.h).

Return Codes

TSA_BOARD_ERR_INVALID_UNIT_NUMBER
The unit number is not in a valid range (0–99).

TMLIBDEV_OK Success.

Description

The returned structure should be considered as read-only, since this actually points to

the system value of the structure.

Chapter 19: TMBoard API

80 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

tsaBoardGetBoard

extern tmLibdevErr_t tsaBoardGetBoard(
 UInt32 *pID,
 Char **pboardName
);

Parameters

pID Pointer to a buffer that receives the board ID.

pboardName Pointer to a pointer to a string that receives the
board name.

Return Codes

TMLIBDEV_OK Success.

TSA_BOARD_ERR_GETBOARDCONFIG_FAILED
The function was unable to read the board ID or
the boardName from the registry. pID, and
pboardName get assigned default values.

Description

Returns, in pID and in pBoardName, the board ID and a small string describing the actual

board (e.g., “Philips Iref”). The function reads these values from the entries bsp/boardID

and bsp/boardName in the registry. This assumes that a call to tsaBoardRegisterBoard

was successful. The boardName variable should be considered read only, because the

actual returned value points directly to the content of the registry.

Chapter 19: TMBoard API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 81

19

boardGetConfig (obsolete)

tmLibdevErr_t boardGetConfig(
 boardConfig_t *bc
)

Parameters

bc Pointer to the board configuration struct to fill.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION One of the boards defined in boardcfg.c did not
have a detect function.

Description

This function is called by the device libraries in order to retrieve pointers to the data

used for initialization and configuration. On successful completion, the parameter bc

points to a board config structure which describes this board. Application code should

not have to call this function, as the device library should handle all access to the board

support package.

Operational Details: if the board has not yet been initialized, step through the

_board_config_array calling each board_detect_func in turn until one of them returns

zero. The board_init_func for this board is then called. Finally, the address of the

boardConfig_t structure for the detected board is returned. If none of the detect func-

tions succeed, the first one in the list is returned as a default.

IMPORTANT
This function should not be used in new code and is being maintained for
compatibility purposes only. Use tsaBoardGet* instead.

Chapter 19: TMBoard API

82 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

boardGetID (obsolete)

tmLibdevErr_t boardGetID(
 UInt *ID
);

Parameters

ID Pointer to variable to be filled with ID value.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION One of the boards defined in boardcfg.c did not
have a detect function.

Description

This function is called by an application in order to retrieve the ID of the current board.

Valid IDs are defined in tmBoardID.h.

If the board has not yet been initialized, step through the _board_config_array calling

each board_detect_func in turn until one of them returns zero. The board_init_func for

this board is then called. Finally, the contents of the ID field in the boardConfig_t for the

detected board is returned. If none of the detect functions succeed, the ID of the first

board in the list is returned as a default.

IMPORTANT
This function should not be used in new code and is being maintained for
compatibility purposes only. Use tsaBoardGet* instead.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 83

20

Chapter 20

Exceptions API

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device Li-
braries, of Book 3, Software Architecture, Part A.

Topic Page

Overview 84

Exceptions API Data Structures 86

Exceptions API Functions 91

Chapter 20: Exceptions API

84 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

Overview

An exception (for example, DBZ and OVF) is special-event processing which occurs

under the conditions described in the appropriate TriMedia data book (Section 3.4.2,

EXC (Exceptions)).

Exceptions are modeled according to the general TriMedia device model. That is, each

exception is considered an “instance” which must be “opened” before it can be used,

and must be “closed” when no longer used, to make it available for other software com-

ponents.

Opening an exception means that the requested exception is reserved for use by the

caller. A failure to open indicates that particular exception is currently in use, and there-

fore reserved, by other software. Using an exception means that an exception handler is

provided, together with an enabling flag, so that later exceptions can be caught and pro-

cessed.

New values for the “instance setup” parameters can be set using the function exc-

InstanceSetup, while the ones currently in use can be obtained using function excGet-

InstanceSetup.

The handler for a particular exception may be any C function with a prototype accord-

ing to type excHandler (see type definitions), or NULL. Contrary to interrupt handlers,

exception handlers must not be compiled with a handler pragma. (Do not use the

TCS_exception_handler.) In case the current handler for a particular exception is not

equal to NULL, the enable flag fully determines whether the corresponding exception

instance is enabled in the PCSW. If the flag is equal to TRUE, an occurrence of the excep-

tion will cause the handler to be called with the parameter values dpc and spc as

described in the TriMedia data book(s), after clearing the exception’s pending flag. If the

flag is equal to FALSE, the handler is installed, but exceptions are kept pending until it is

enabled by a later call to excInstanceSetup. The handler may also be NULL. In this case,

the enabled flag is overruled, and the corresponding exception is not enabled. This can

be used for keeping a particular exception reserved without actually installing a handler.

Note
Integer division is implemented with a call to the floating point division
hardware. This may raise the sticky “INX” exception bit. Integer division nei-
ther uses nor clears this bit. This issue must be addressed by any developer
wishing to use the floating point exceptions.

The following can be used to install and enable a divide-by-zero handler:

#include "tm1/tmExceptions.h"
static void DBZHandler(UInt32 dpc, UInt32 spc){
 printf("DBZHandler: zero divide\n");
}
excInstanceSetup_t setup;

setup.enabled = True;
setup.handler = DBZHandler;

Chapter 20: Exceptions API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 85

20

See also the full example in $(TCS)/examples/peripherals/exceptions.

IMPORTANT
Contrary to interrupt handlers, exception handlers must NOT be compiled
using any particular pragma. tmException contains an internal exception
handler (a “real one”) which dispatches the user provided handlers, calling
them as “normal” C functions.

Note
The exceptions are automatically acknowledged before calling the handler,
and their pending flags are cleared.

if(excOpen(excDBZ) != 0) { error(); }
if(excInstanceSetup(excDBZ, &setup != 0)) { error(); }

Chapter 20: Exceptions API

86 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

Exceptions API Data Structures

The following sections present the Exceptions API device library data structures. They are

contained in the file tmExceptions.h.

Name Page

excHandler 87

excException_t 88

excCapabilities_t 89

excInstanceSetup_t 90

Chapter 20: Exceptions API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 87

20

excHandler

typedef void (*excHandler) (
 UInt32 dpc,
 UInt32 spc
);

Fields

dpc Destination Program Counter. The intended des-
tination address of the successful jump. (See Tri-
Media data book(s), Sec. 3.4.2, EXC (Exceptions)).

spc Source Program Counter.

Description

This is a callback function prototype for an exception handler. It is used as a field in the

struct excInstanceSetup_t.

Chapter 20: Exceptions API

88 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

excException_t

typedef enum{
 excDBZ = 0,
 excINX = 1,
 excUNF = 2,
 excOVF = 3,
 excINV = 4,
 excIFZ = 5,
 excOFZ = 6,
 excTFE = 26,
 excRSE = 13,
 excWBE = 14,
 excMSE = 15
} excException_t;

Description

This enum is used to select the particular exception. It is used as a field in the struct

excInstanceSetup_t, and as a parameter in the functions excGetInstanceSetup, excOpen

and excClose.

Chapter 20: Exceptions API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 89

20

excCapabilities_t

typedef struct excCapabilities_t{
 tmVersion_t version;
 Int numSupportedInstances;
 Int numCurrentInstances;
} excCapabilities_t, *excCapabilities_t;

Fields

version This allows the application software to identify
and support possible changes to the interface.

numSupportedInstances Number of supported instances, currently 16, one
for each exception handled.

numCurrentInstances Number of instances open, incremented when a
new instance is allocated, decremented as each is
closed.

Description

This struct will hold the capabilities data of the Exception Handler. It is used as a param-

eter for the function excGetCapabilities.

Chapter 20: Exceptions API

90 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

excInstanceSetup_t

typedef struct {
 Bool enabled;
 excHandler handler;
} excInstanceSetup_t, *pexcInstanceSetup_t;

Fields

enabled Control flag.

handler Installed handler, or NULL.

Description

This struct provides the handler addresses and flag control. It is used as a parameter in

the functions excInstanceSetup and excGetInstanceSetup.

Chapter 20: Exceptions API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 91

20

Exceptions API Functions

This section presents the Exceptions API device library functions.

Name Page

excGetCapabilities 92

excInstanceSetup 93

excGetInstanceSetup 94

excOpen 95

excClose 96

Chapter 20: Exceptions API

92 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

excGetCapabilities

tmLibdevErr_t excGetCapabilities(
 pexcCapabilities_t *cap
);

Parameters

cap Pointer to the struct of type excCapabilities_t
where the data is placed.

Return Codes

TMLIBDEV_OK Success (always returned).

TMLIBDEV_ERR_NULL_PARAMETER Asserts, in the debug version of the device library,
when cap is NULL.

Description

The function excGetCapabilities is used to retrieve global capabilities from a static vari-

able.

Chapter 20: Exceptions API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 93

20

excInstanceSetup

tmLibdevErr_t excInstanceSetup(
 excException_t instance,
 excInstanceSetup_t *setup
);

Parameters

instance Instance is an enum used to select the particular
exception.

setup Pointer to a struct holding handler pointer and
control flag.

Return Codes

TMLIBDEV_OK Success (always returned).

TMLIBDEV_ERR_NOT_OWNER Is asserted by the debug version of the device
library if instance does not match the owner or if
an incorrectly sized struct is passed.

Description

The function excInstanceSetup is used to set and change instance parameters. It disables

interrupts, copies the value of setup in a static array variable (for internal use only),

restores interrupts.

Chapter 20: Exceptions API

94 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

excGetInstanceSetup

tmLibdevErr_t excGetInstanceSetup(
 excException_t Instance,
 excInstanceSetup_t *setup
);

Parameters

instance Instance is an enum used to select the particular
exception.

setup Pointer to buffer receiving returned parameters.

Return Codes

TMLIBDEV_OK Success (always returned).

TMLIBDEV_ERR_NULL_PARAMETER Is asserted by the debug version of the device
library if setup is NULL.

TMLIBDEV_ERR_NOT_OWNER Is asserted by the debug version of the device
library if instance does not match the owner.

Description

The function retrieves instance parameters.

Chapter 20: Exceptions API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 95

20

excOpen

tmLibdevErr_t excOpen(
 excException_t instance
);

Parameters

instance Instance is an enum used to select the particular
exception.

Return Codes

TMLIBDEV_OK Success (always returned).

TMLIBDEV_ERR_NULL_PARAMETER Is asserted by the debug version of the device
library if instance is NULL.

Description

The function excOpen is used to reserve the use of a specified exception.

Chapter 20: Exceptions API

96 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

excClose

tmLibdevErr_t excClose(
 excException_t instance
);

Parameters

instance Instance is an enum used to select the particular
exception.

Return Codes

TMLIBDEV_OK Success (always returned).

TMLIBDEV_ERR_NOT_OWNER Is asserted by the debug version of the device
library if instance does not match the owner.

Description

The function deallocates the exception instance and uninstalls its handler when it has

one.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 97

21

Chapter 21

TriMedia Interrupts API

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device Li-
braries, of Book 3, Software Architecture, Part A.

Topic Page

Overview 98

TMInterrupts API Data Structures 102

TMInterrupts API Functions 108

Chapter 21: TriMedia Interrupts API

98 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

Overview

Interrupts are modeled according to the general TriMedia device model, that is, each

interrupt (e.g. intAUDIOIN, intIIC) is considered an instance which must be opened

before it can be used, and must be closed when no longer used, to make it available for

other software components. Opening either succeeds, which means that the requested

interrupt is reserved for use by the caller, or it fails, indicating that it is currently in use

by other software.

Using an interrupt here means that an interrupt handler is provided, together with an

interrupt level, an enabling flag, and whether the interrupt is edge- or level triggered.

New values for these instance setup parameters can be set using function intInstance-

Setup, while the ones currently in use can be obtained using function intGetInstance-

Setup. The handler for a particular interrupt may be any C function with prototype

according to type intHandler (see type definitions), or Null. Interrupt handlers must con-

tain a handler pragma either TCS_handler or TCS_interruptible_handler in their function

bodies. These pragmas cause the generation of specific function prologue and epilogue

code which are required for interrupt handlers. The difference between TCS_handler and

TCS_interruptible_handler is that TCS_handler clears PCSW.IEN at the beginning of the

handler, to be restored at the end, and hence runs with interrupts disabled. A

TCS_handler is fully equivalent to a TCS_interruptible_handler which starts with a call to

intClearIEN and ends with a call to intSetIEN.

In case the current handler for a particular interrupt is not equal to Null, the following

determines whether the corresponding interrupt instance is enabled in MMIO.IMASK:

■ the setup parameter enabled

■ the setup parameter priority

■ the global interrupt priority value (to be set using intSetup).

The interrupt will be enabled in MMIO.IMASK if enabled is equal to True, and if the

interrupt's priority is larger than, or equal to the global interrupt priority value.

By this, tmInterrupts emulates an interrupt priority, or interrupt level mechanism in

which a global interrupt priority, or interrupt level can be set at any time (using function

intSetPriority), which causes all interrupts with a lower level/priority to be masked in the

IMASK. Interrupts can be assigned a new priority at any time using function intInstanc-

eSetup, and the global priority value can be changed at any time using function int-

Setup; this will automatically cause a corresponding, proper update of the IMASK.

If the interrupt is enabled in MMIO.IMASK (and if the interrupts are globally enabled,

see further), then occurrence of the interrupt causes the handler to be invoked. If not,

then occurred interrupts are kept pending until they get enabled. Note that the interrupt

pending condition (MMIO.IPENDING) is automatically cleared by the hardware only for

edge-triggered interrupts; level triggered interrupts must be cleared by means of an

explicit acknowledge of the corresponding device.

Chapter 21: TriMedia Interrupts API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 99

21

The handler may also be Null. In this case the enabled flag is overruled, and the corre-

sponding interrupt is not enabled. This can be used for keeping a particular interrupt

reserved without actually installing a handler.

In contrast to intInstanceSetup, which set instance specific properties, functions intSetup

sets properties which affect all interrupts: the global interrupt enable bit (IEN), and the

global interrupt priority level.

Interrupts can be globally enabled, or disabled using functions intSetup, or the shortcuts

intSetIEN, intClearIEN, and intRestoreIEN. Actually, these functions interface to the

PCSW.IEN bit. intClearIEN massively disables all interrupts of priorities intPRIO_0. Inter-

rupts of priority 7 can only be masked by explicitly clearing its enabled flag using intInt-

stanceSetup. The following points should be considered:

1. Since a lot of software assumes that all interrupts can be disabled by intClearIEN (i.e.

by disabling the interrupts), the handlers at priority 7 (NMI handlers, or Non

Maskable Interrupt handlers) must only be used in exceptional situations, and with a

lot of consideration.

2. Disabling the interrupts, by either intClearIEN or in TCS_handlers, should be per-

formed for durations of at most a few tenths of microseconds in order to maintain

real time response on time critical devices.

3. Similarly, changing the global priority to a value different from intPRIO_0, should

not be performed for a longer amount of time, because this also can disable inter-

rupts.

4. The global interrupt level, and the PCSW.IEN are considered as part of the task con-

text by some real time operating systems (notably pSOS). This means in case of task

switching while during a condition of disabled interrupts or changed priority, a new

task might become active with a different priority, or enabled interrupts. Changing

the priority, or disabling interrupts should hence be performed only during small crit-

ical sections in which it is guaranteed that no scheduling takes place. Scheduling can

be caused by the following: some pSOS calls (see psos reference manual), even for

non-preemptive tasks, even with interrupts disabled; a system time tick, when inter-

rupts are enabled, and when the current task is preemptive. The pSOS functions

ienter and ireturn, which are intended for use in interrupt handlers, effectively cause

non-preemptiveness for the duration of the handler. These calls must be used in criti-

cal interrupt handlers, in order to prevent an involuntary context switch during the

handler due to, for instance, a system timer tick. <8bat>u

5. Printing, or allocating system resources (malloc) is generally not a good idea in inter-

rupt handlers.

6. Any interrupt handler operating in level triggered mode must acknowledge the inter-

rupt before it terminates or before it reenables the interrupts. In particular, the han-

dler can never be a TCS_interruptible handler, unless it is able to acknowledge the

interrupt at its very start without doing function calls.

Chapter 21: TriMedia Interrupts API

100 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

Examples

The following can be used to install and enable a video in interrupt handler. The handler

has prio 4, and hence it raises the global level to its own level during its execution to pre-

vent less important interrupts to come through. The level is restored at the end. Note

that this priority changing must be embraced by ienter/ireturn to prevent a timer con-

text switch during the time the priority level is modified. Also, the handler must (ini-

tially) be non-interruptible, otherwise it can be interrupted by a lower priority interrupt

before it had the opportunity to raise the global interrupt level. When setup in this way,

interrupts can be enabled in the part of the handler which is marked with a “...” using

function intSetIEN, without the danger of a lower priority interrupt becoming serviced

before the VINHandler has completed.

Note that this protocol is only necessary when we want to set the interrupt enable bit

(IEN) at some point during execution of the handler (to allow higher priority interrupts

to be serviced); otherwise, when this is not an issue, only the TCS_handler pragma suf-

fices, and neither the ienter/ireturn nor the intSetPriority is necessary.

At the end of the example, the interrupt is given up using an intClose; this implicitly

deinstalls the handler and disables the interrupt.

The following illustrates how an individual setup parameter e.g. the interrupt priority

can be modified.

The following illustrates how interrupts can be temporarily disabled, even when it is not

known whether this already was the case:

#include "tm1/tmInterrupts.h"
static void VINHandler(){
 #pragma TCS_handler /* ÐÐ IEN automatically cleared */
 intPriority_t saved_prio;
 ienter();
 saved_prio = intSetPriority(intPRIO_4);
 ...
 intSetPriority(saved_prio);
 ireturn();
}
intInstanceSetup_t setup;
setup.enabled = True;
setup.handler = VINHandler;
setup.level_triggered = True;
setup.priority = intPRIO_4;
if(intOpen(intVIDEOIN) != 0) { error(); }
if(intInstanceSetup(intVIDEOIN, &setup) != 0) { error(); }
if(intClose(intVIDEOIN) != 0) { error(); }

#include "tm1/tmInterrupts.h"
intInstanceSetup_t setup;
if(intGetInstanceSetup(intVIDEOIN, &setup != 0) { error();}
setup.priority = intPRIO_2;
if(intInstanceSetup (intVIDEOIN, &setup != 0) { error();}

#include "tm1/tmInterrupts.h"
Int ien;
ien= intClearIEN();
{

Chapter 21: TriMedia Interrupts API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 101

21

See also the full example in $(TCS)/examples/peripherals/interrupts

IMPORTANT
Interrupt handlers must be compiled using handler pragma TCS_handler or
TCS_interruptible_handler.

 counter++;
}
intRestoreIEN(ien);

Chapter 21: TriMedia Interrupts API

102 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

TMInterrupts API Data Structures

This section describes the TMInterrupts API data structures.

Name Page

intInterrupt_t 103

intPriority_t 104

intCapabilities_t 105

intSetup_t 106

intInstanceSetup_t 107

Chapter 21: TriMedia Interrupts API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 103

21

intInterrupt_t

typedef enum {
 intINT_0, intINT_1, intINT_2, intINT_3,
 intINT_4, intINT_5, intINT_6, intINT_7,
 intINT_8, intINT_9, intINT_10, intINT_11,
 intINT_12, intINT_13, intINT_14, intINT_15,
 intINT_16, intINT_17, intINT_18, intINT_19,
 intINT_20, intINT_21, intINT_22, intINT_23,
 intINT_24, intINT_25, intINT_26, intINT_27,
 intINT_28, intINT_29, intINT_30, intINT_31,

 intTRI_USERIRQ = intINT_4,
 intTIMER1 = intINT_5,
 intTIMER2 = intINT_6,
 intTIMER3 = intINT_7,
 intSYSTIMER = intINT_8,
 intVIDEOIN = intINT_9,
 intVIDEOOUT = intINT_10,
 intAUDIOIN = intINT_11,
 intAUDIOOUT = intINT_12,
 intICP = intINT_13,
 intVLD = intINT_14,
 intV34 = intINT_15,
 intPCI = intINT_16,
 intIIC = intINT_17,
 intJTAG = intINT_18,
 intTHERM = intINT_20,
 intHOSTCOMM = intINT_28,
 intAPP = intINT_29,
 intDEBUGGER = intINT_30,
 intRTOS = intINT_31
} intInterrupt_t;

Description

These are the possible interrupt sources. You can use the numeric, or the symbolic

names. This enum is used as a parameter for the following functions:

intInstanceSetup intOpen intClear intRaise

intGetInstanceSetup intClose intGetPending intRaise_M

Chapter 21: TriMedia Interrupts API

104 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

intPriority_t

typedef enum {
 intPRIO_0,
 intPRIO_1,
 intPRIO_2,
 intPRIO_3,
 intPRIO_4,
 intPRIO_5,
 intPRIO_6,
 intPRIO_NMI
} intPriority_t;

Description

These are the legal values for interrupt priority. This enum is used as a field by the struc-

tures intSetup_t and intInstanceSetup_t, and as a parameter by the function intSet-

Priority.

Chapter 21: TriMedia Interrupts API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 105

21

intCapabilities_t

typedef struct {
 tmVersion_t version;
 Int numCurrentInstances;
} intCapabilities_t, *pintCapabilities_t;

Fields

version This contains the version information for this
library. Backward and forward compatibilities can
be maintained if software inspects this version
and responds accordingly.

numSupportedInstances The number of instances supported. This value is
the same as the number of interrupts.

numCurrentInstances The number of instances (interrupts) currently
open.

Description

This structure is used as a parameter by the function intGetCapabilities.

Chapter 21: TriMedia Interrupts API

106 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

intSetup_t

typedef struct{
 Bool enabled;
 intPriority_t priority;
} intSetup_t, *pintSetup_t;

Fields

enabled Global interrupt enable flag.

priority Global interrupt level.

Description

This structure is used as a parameter by the functions intSetup and intGetSetup.

Chapter 21: TriMedia Interrupts API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 107

21

intInstanceSetup_t

typedef struct {
 Bool enabled;
 intHandler_t handler;
 intPriority_t priority;
 Bool level_triggered;
} intInstanceSetup_t, *pintInstanceSetup_t;

Fields

enabled This field defines if the interrupt should be
enabled in IMASK (See comments in header for
meaning when handler == Null).

handler Installed handler, or null.

priority Handler priority.

level_triggered Triggering mode.

Description

This structure is used as a parameter for the functions intInstanceSetup and intGet-

InstanceSetup.

Chapter 21: TriMedia Interrupts API

108 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

TMInterrupts API Functions

This section presents the TMInterrupts API functions.

Name Page

intGetCapabilities 109

intSetup 110

intGetSetup 111

intInstanceSetup 112

intGetInstanceSetup 113

intOpen 114

intClose 114

intSetPriority 115

intSetIEN 116

intClearIEN 117

intRestoreIEN 118

intClear 119

intRaise 120

intGetPending 121

intRaise_M 122

Chapter 21: TriMedia Interrupts API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 109

21

intGetCapabilities

tmLibdevErr_t intGetCapabilities(
 pintCapabilities_t *cap
);

Parameters

cap Pointer to a pointer of type intCapabilities_t.

Return Codes

TMLIBDEV_OK Success (always returned).

TMLIBDEV_ERR_NULL_PARAMETER Asserts, in the debug version of the device library,
when cap is null.

Description

The function retrieves global capabilities from a static variable (for internal use only).

Chapter 21: TriMedia Interrupts API

110 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

intSetup

tmLibdevErr_t intSetup(
 intSetup_t *setup
);

Parameters

setup Pointer to a struct containing setup data.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NULL_PARAMETER Asserted by the debug version of the device
library if the setup parameter is null.

INT_ERR_STRUCT_CHANGED Asserted by the debug version of the device
library if the intInstanceSetup_t data structure has
been modified in the header file without a corre-
sponding change in the library source.

Description

This function is used to set or to change global parameters. It modifies the current prior-

ity, and modifies the IEN flag according to setup–>enabled.

Chapter 21: TriMedia Interrupts API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 111

21

intGetSetup

tmLibdevErr_t intGetSetup(
 intSetup_t *setup
);

Parameters

setup Pointer to structure where the data is to placed.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NULL_PARAMETER Asserted by the debug version of the device
library if the setup parameter is null.

INT_ERR_STRUCT_CHANGED Asserted by the debug version of the device
library if the intInstanceSetup_t data structure has
been modified in the header file without a corre-
sponding change in the library source.

Description

This function retrieves global parameters. It disables the interrupts, gets the value of IEN,

the current priority, and restores interrupts.

Chapter 21: TriMedia Interrupts API

112 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

intInstanceSetup

tmLibdevErr_t intInstanceSetup(
 intInterrupt_t instance,
 intInstanceSetup_t *setup
);

Parameters

instance Instance value.

setup Pointer to structure containing the data.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The specified interrupt instance has not been
opened. It is asserted by the debug version of the
device library if the specified instance has not
been opened.

TMLIBDEV_ERR_NULL_PARAMETER Asserted by the debug version of the device
library if the setup parameter is NULL.

INT_ERR_STRUCT_CHANGED Asserted by the debug version of the device
library if the intInstanceSetup_t data structure has
been modified in the header file without a corre-
sponding change in the library source.

Description

This function is used to set or change instance parameters.

Chapter 21: TriMedia Interrupts API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 113

21

intGetInstanceSetup

tmLibdevErr_t intGetInstanceSetup(
 intInterrupt_t instance,
 intInstanceSetup_t *setup
);

Parameters

instance Instance value.

setup Pointer to structure in which to place the data.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OWNER Asserted by the debug version of the device
library if the specified instance has not been
opened.

TMLIBDEV_ERR_NULL_PARAMETER Asserted by the debug version of the device
library if the setup parameter is null.

INT_ERR_STRUCT_CHANGED Asserted by the debug version of the device
library if the intInstanceSetup_t data structure has
been modified in the header file without a corre-
sponding change in the library source.

Description

This function retrieves instance parameters.

Chapter 21: TriMedia Interrupts API

114 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

intOpen

tmLibdevErr_t intOpen(
 intInterrupt_t interrupt
);

Parameters

interrupt Interrupt number.

Return Codes

TMLIBDEV_OK Success.

INT_ERR_ALREADY_OPEN Returned if the interrupt is currently open.

Description

This function reserves the use of the specified interrupt.

intClose

tmLibdevErr_t intClose(
 intInterrupt_t instance
);

Parameters

instance Interrupt number.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OWNER Asserted by the debug version of the device
library if the specified instance has not been
opened.

Description

This function deallocates the interrupt instance and uninstalls its handler when it has

one. It disables the interrupt if it is enabled.

Chapter 21: TriMedia Interrupts API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 115

21

intSetPriority

intPriority_t intSetPriority(
 intPriority_t priority
);

Parameters

priority Interrupt priority.

Return

The function returns the previous global priority. This function always completes suc-

cessfully.

Description

The function sets the global interrupt priority, or interrupt level. The same result can also

be achieved using the function intSetup.

The function returns the previous global priority.

Chapter 21: TriMedia Interrupts API

116 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

intSetIEN

UInt intSetIEN(void);

Parameters

None.

Return

The function returns the previous PCSW. The previous setting of the global interrupt

enabling bit can be extracted from this. The return value can also be passed unmodified

to the intRestoreIEN function to restore the global interrupt enabling bit.

The function always completes successfully.

Description

This function sets the global enabling bit and returns the previous PCSW. This function

gets the state of the PCSW, and writes IEN to the IEN flag of the PCSW.

You can also use the intSET_IEN macro in place of the intSetIEN function. The advantage

is less overhead. Following is a definition of the intSET_IEN macro:

/* Note: intSET_IEN and intCLEAR_IEN can only be used in the form
 * "x = intSET_IEN();" */
#define intIEN 0x400
#define intSET_IEN() ((readpcsw()&intIEN)!=0); writepcsw(intIEN,intIEN);

Chapter 21: TriMedia Interrupts API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 117

21

intClearIEN

UInt intClearIEN(void);

Parameters

None.

Return Codes

The function returns the previous PCSW. The previous setting of the global interrupt

enabling bit can be extracted from this. The return value can also be passed unmodified

to the intRestoreIEN function to restore the global interrupt enabling bit to its previous

state.

Description

This function clears the global enabling bit and returns the previous PCSW. This func-

tion gets the state of the PCSW, and writes 0 to the IEN flag of the PCSW.

You can also use the intCLEAR_IEN macro in place of the intClearIEN function. The advan-

tage is less overhead. Following is a definition of the intCLEAR_IEN macro:

/* Note: intSET_IEN and intCLEAR_IEN can only be used in the form of
 "x = intSET_IEN();" */
#define intIEN 0x400
#define intCLEAR_IEN() ((readpcsw()&intIEN)!=0); writepcsw(0,intIEN);

Chapter 21: TriMedia Interrupts API

118 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

intRestoreIEN

void intRestoreIEN(
 UInt ien
);

Parameters

ien Interrupt enable information.

Return

Nothing is returned.

Description

This function restores the specified interrupt enabling, which might have been returned

by a previous call to intSetIEN or intClearIEN. It writes the IEN flag from the PCSW

according to the value given by the caller.

You can also use the intRESTORE_IEN macro in place of the intRestoreIEN function. The

advantage is less overhead. Following is a definition of the intRESTORE_IEN macro:

/* Note: intSET_IEN and intCLEAR_IEN can only be used in the form
 "x = intSET_IEN();" */
#define intIEN 0x400
#define intRESTORE_IEN(ien) writepcsw(mux(ien,intIEN,0),intIEN);

Chapter 21: TriMedia Interrupts API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 119

21

intClear

tmLibdevErr_t intClear(
 intInterrupt_t instance
);

Parameters

instance Interrupt number.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OWNER Asserted by the debug version of the device
library if the specified instance has not been
opened.

Description

This function clears an interrupt that may or may not be pending. This calls the macro

intAckCLEAR, and it is compiled with #pragma TCS_atomic. It was used to circumvent

hardware bug 21388 present in TM-1000 (but not in TM-1100).

Chapter 21: TriMedia Interrupts API

120 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

intRaise

tmLibdevErr_t intRaise(
 intInterrupt_t instance
);

Parameters

instance Interrupt number.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OWNER Asserted by the debug version of the device
library if the specified instance has not been
opened.

Description

This function causes a software interrupt to be raised on the current node. This calls the

macro intAckPending.

Chapter 21: TriMedia Interrupts API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 121

21

intGetPending

tmLibdevErr_t intGetPending(
 intInterrupt_t instance,
 Bool *pending
);

Parameters

instance Interrupt number.

pending Pointer in which to return the pending status.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OWNER Asserted by the debug version of the device
library if the specified instance has not been
opened.

TMLIBDEV_ERR_NULL_PARAMETER Asserted by the debug version of the device
library if a null pending argument is presented.

Description

This function inspects whether the specified interrupt is pending. It sets *pending to 1 if

an interrupt is pending, according to the macro intCheckPENDING, and 0 otherwise.

Chapter 21: TriMedia Interrupts API

122 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

intRaise_M

tmLibdevErr_t intRaise_M(
 UInt node_number,
 intInterrupt_t instance
);

Parameters

node_number Number of node whose instance to raise.

instance Interrupt number.

Return Codes

TMLIBDEV_OK Always returned.

INT_ERR_INVALID_NODE Asserted by the debug version of the device
library if the argument node number is greater
than or equal to the number of nodes.

Description

This function causes a software interrupt to be raised on the current (or another) node.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 123

22

Chapter 22

TMIntPins API

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device Li-
braries, of Book 3, Software Architecture, Part A.

Topic Page

PCI Interrupt Pins API Overview 124

PCI Interrupt Pins API Data Structures 125

PCI Interrupt Pins API Functions 128

Chapter 22: TMIntPins API

124 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

PCI Interrupt Pins API Overview

The TriMedia processor includes four pins called intA through intD. IntA is generally

assigned to be the interrupt allocated to the PCI bus.TriMedia’s PCI configuration regis-

ters specify this. The other three pins can be used as general purpose I/O. Figure 10-9 in

the TriMedia data book shows the logic used for these pins in schematic form. These pins

are open drain and must be pulled up for proper operation. Please note that early TM

IREF boards incorrectly connected all of these pins to the PCI bus, leading to dangerous

results.

The PCI interrupt pins are modeled according to the general TriMedia device model, that

is, each interrupt (for example, pinPin_A, pinPin_D) is considered an instance which

must be opened (by calling the pinOpen function) before it can be used, and must be

closed (by calling the pinClose function) when it to be used no longer, to make it avail-

able for other software components. If the request to open succeeds, it means that the

requested interrupt pin is reserved for use by the caller. If it fails, it means that it is cur-

rently in use by other software.

Using an interrupt pin means that the pin is used for reading values from peripherals

connected to the pin, or for writing values to such a peripheral. Optionally, an interrupt

handler with priority can be specified using function pinInstanceSetup. When no inter-

rupt handler is required, a null handler can be provided. A non-null handler will be

automatically installed using the tmInterrupt library. Conversely, associated interrupt

handlers will be automatically uninstalled for interrupt pins when the pins are closed.

The pinInstanceSetup function can be repeatedly used for modifying one or more of the

pin's set up fields. When only a few of the fields are to be changed, usually a call to the

pinGetInstanceSetup function is necessary to get the current value of the other fields.

After the pin has been set up, the action functions for getting or setting the value can be

called for operating the pin.

IMPORTANT:
Interrupt handlers must be compiled using handler pragma TCS_handler or
TCS_interruptible_handler. Read also the notes in tmInterrupts.h.

NOTE:
Any interrupt handler associated with an interrupt pin operates in level trig-
gered mode. This means that the handler must acknowledge the interrupt
before it terminates or before it enables the interrupts. In particular, the han-
dler can never be a TCS_interruptible handler, UNLESS it is able to acknowl-
edge the interrupt at its very start without doing function calls.

EXAMPLE

The following code can be used to output a value to an interrupt pin, or to read from it.

In the second part, it is set up to trigger an interrupt on receiving a FALSE to TRUE tran-

sition on the pin. Such a transition can be made either in software, using pinSet, or by

an actual voltage transition on the pin itself. However, when expecting real pin signals,

Chapter 22: TMIntPins API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 125

22

the software setting of the pin should be FALSE (which is the initial value after pinOpen),

otherwise this software setting will mask the hardware setting. In general, it is a good

idea to leave open_collector to True, and use a pullup device when the pin signal is used

as output.

See also the full example in $(TCS)/examples/peripherals/intpins.

PCI Interrupt Pins API Data Structures

This section presents the PCI Interrupt Pins device library API data structures.

#include Òtm1/tmIntPins.hÓ
static void Handler(){
 #pragma TCS_handler

}
Bool value;
pinInstanceSetup_t setup;

setup.open_collector = True;
setup.handler = Null;
setup.priority = intPRIO_0;

if(pinOpen(pinPin_B) != 0) {error();}
if(pinInstanceSetup(pinPin_B, &setup!= 0)) {error();}

pinSet(pinPin_B, False);
pinSet(pinPin_B, True);
pinGet(pinPin_B, &value);
...

if(pinGetInstanceSetup(pinPin_B, &setup!= 0)) {error();}

setup.handler = Handler;

Name Page

pinInterruptPin_t 126

pinCapabilities_t 126

pinInstanceCapabilities_t 127

pinInstanceSetup_t 127

Chapter 22: TMIntPins API

126 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

pinInterruptPin_t

typedef enum {
 pinPin_A,
 pinPin_B,
 pinPin_C,
 pinPin_D
} pinInterruptPin_t;

Description

This enum defines the interrupt selection. It is used as a parameter type in the following

functions:

pinInstanceSetup pinOpen pinGet pinGetInstanceCapabilities

pinGetInstanceSetup pinClose pinSet

pinCapabilities_t

typedef struct {
 tmVersion_t version;
 Int numSupportedInstances;
 Int numCurrentInstances;
} pinCapabilities_t, *ppinCapabilities_t;

Fields

version version allows the application software to identify
and support possible changes to the interface.

numSupportedInstance Number of supported instances, currently four,
one for each intPin.

numCurrentInstances Number of instances open, incremented when a
new instance is allocated, decremented as each is
closed.

Description

This structure is used in the function pinGetCapabilities.

Chapter 22: TMIntPins API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 127

22

pinInstanceCapabilities_t

typedef struct {
 intInterrupt_t interrupt;
} pinInstanceCapabilities_t, *ppinInstanceCapabilities_t;

Fields

interrupt The ID of the interrupt used by this pin (that is,
intA gets zero, as per table 3-9 in the TriMedia
databook).

Description

This structure is used by the function pinGetInstanceCapabilities.

pinInstanceSetup_t

typedef struct {
 Bool open_collector;
 intHandler_t handler;
 intPriority_t priority;
} pinInstanceSetup_t, *ppinInstanceSetup_t;

Fields

open_collector If open_collector is true, the IE bit corresponding
to this int pin is enabled. See table 10-18 in the
TriMedia databook.

handler The handler is an interrupt service routine.

priority Priority for the (optional) interrupt handler.

Description

This structure is used as a parameter by the function pinInstanceSetup.

Chapter 22: TMIntPins API

128 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

PCI Interrupt Pins API Functions

This section presents the PCI Interrupt Pins API functions.

Name Page

pinGetCapabilities 129

pinGetInstanceCapabilities 130

pinInstanceSetup 131

pinGetInstanceSetup 132

pinOpen 133

pinClose 134

pinGet 135

pinSet 136

Chapter 22: TMIntPins API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 129

22

pinGetCapabilities

tmLibdevErr_t pinGetCapabilities(
 ppinCapabilities_t *cap
);

Parameters

cap Pointer to a variable in which to return a pointer
to the data.

Return Codes

TMLIBDEV_OK Success (always returned).

BOARD_ERR_NULL_FUNCTION In the debug version of the library, this assertion
is triggered if cap is null.

Description

Provided so that a system resource controller can find out about the SSI library before

installing it, and it fills in the address of a static capabilities structure. The cap pointer is

valid until the pin library is unloaded.

Chapter 22: TMIntPins API

130 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

pinGetInstanceCapabilities

tmLibdevErr_t pinGetInstanceCapabilities(
 pinInterruptPin_t instance,
 pinInstanceCapabilities_t *cap
);

Parameters

instance Instance value.

cap Pointer to struct of type pinInstanceCapabilities_t
where data is to be placed.

Return Codes

TMLIBDEV_OK Success (always returned).

TMLIBDEV_ERR_NOT_OWNER In the debug version of the library, this assertion
is triggered if the instance does not match the
owner.

BOARD_ERR_NULL_FUNCTION In the debug version of the library, this assertion
is triggered if cap is null.

PIN_ERR_STRUCT_CHANGED In the debug version of the library, this assertion
is triggered if the size of the struct, pinInstance-
Capabilities_t has changed.

Description

This function is used to retrieve instance capabilities.

Chapter 22: TMIntPins API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 131

22

pinInstanceSetup

tmLibdevErr_t pinInstanceSetup(
 pinInterruptPin_t instance,
 pinInstanceSetup_t *setup
);

Parameters

instance Instance value.

setup Pointer to struct of type pinInstanceSetup_t where
data is placed by caller.

Return Codes

TMLIBDEV_OK Success (always returned).

TMLIBDEV_ERR_NOT_OWNER In the debug version of the library, this assertion
is triggered if the instance does not match the
owner.

BOARD_ERR_NULL_FUNCTION In the debug version of the library, this assertion
is triggered if setup is null.

Description

This function is used to set up an interrupt pin. The setup structure specifies input/out-

put mode, and an optional interrupt handler.

Chapter 22: TMIntPins API

132 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

pinGetInstanceSetup

tmLibdevErr_t pinGetInstanceSetup(
 pinInterruptPin_t instance,
 pinInstanceSetup_t *setup
);

Parameters

instance Instance value.

setup Pointer to a variable in which to return a pointer
to the data.

Return Codes

TMLIBDEV_OK Success (always returned).

TMLIBDEV_ERR_NOT_OWNER In the debug version of the library, this assertion
is triggered if the instance does not match the
owner.

BOARD_ERR_NULL_FUNCTION In the debug version of the library, this assertion
is triggered if setup is null.

Description

The function disables interrupts, retrieves the data from the static variable to *setup,

then restores interrupts.

Chapter 22: TMIntPins API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 133

22

pinOpen

tmLibdevErr_t pinOpen(
 pinInterruptPin_t pin
);

Parameters

pin Pin to be opened.

Return Codes

TMLIBDEV_OK Success.

PIN_ERR_ALREADY_OPEN The pin has already been opened.

PIN_ERR_ISR_INSTALLATION_FAILED Returned if ISR installation failed.

Description

This function reserves the use of a specified interrupt pin.

Chapter 22: TMIntPins API

134 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

pinClose

tmLibdevErr_t pinClose(
 pinInterruptPin_t instance
);

Parameters

instance Instance value.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OWNER In the debug version of the library, this assertion
is triggered if the instance does not match the
owner.

Description

This function deallocates the pin instance and uninstall its handler when it has one.

Chapter 22: TMIntPins API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 135

22

pinGet

tmLibdevErr_t pinGet(
 pinInterruptPin_t instance,
 Bool *value
);

Parameters

instance Instance value.

value Pointer to a variable in which to return the pin’s
state.

Return Codes

TMLIBDEV_OK Success (always returned).

BOARD_ERR_NULL_FUNCTION In the debug version of the library, this assertion
is triggered if value is null.

TMLIBDEV_ERR_NOT_OWNER In the debug version of the library, this assertion
is triggered if the instance does not match the
owner.

Description

According to the result of the macro punchiest, return 1 or 0.

Chapter 22: TMIntPins API

136 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

pinSet

tmLibdevErr_t pinSet(
 pinInterruptPin_t instance,
 Bool value
);

Parameters

instance Instance value.

value New value for pin (low if False).

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OWNER In the debug version of the library, this assertion
is triggered if the instance does not match the
owner.

Description

According to value, the function will call pinEnableINT or pinDisableINT.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 137

23

Chapter 23

TMProcessor API

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device Li-
braries, of Book 3, Software Architecture, Part A.

Topic Page

Overview 138

TMProcessor API Data Structures 138

TMProcessor API Functions 142

Chapter 23: TMProcessor API

138 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

Overview

The tmProcessor API is not in line with the other device library APIs. It can only be used

to get general information about the current TM processor the program is running

on.The only function, procGetCapabilities, returns the following information about the

TM processor on which the current program is running.

■ The version of the processor in the TriMedia architecture family.

■ The revision of the processor.

■ The clock frequency on which the processor operates.

■ The assigned node number for this processor (to be used in case this processor is part

of a multi-processor system).

■ The total number of TM processors in this system.

■ The type of the host.

TMProcessor API Data Structures

This section presents the TMProcessor API data structures.

Name Page

procDevice_t 139

procRevision_t 140

procCapabilities_t 141

Chapter 23: TMProcessor API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 139

23

procDevice_t

typedef enum {
 PROC_DEVICE_UNKNOWN = 0,
 PROC_DEVICE_TM1000 = 1,
 PROC_DEVICE_TM1100 = 2
} procDevice_t;

Fields

PROC_DEVICE_UNKNOWN Used in case the exact device is not known.

PROC_DEVICE_TM1000 The first member of the TriMedia family.

PROC_DEVICE_TM1100 An extended version of the TM-1000, with an
extended Video Out unit, support for XIO, and
much more. See the Databook for details.

Description

This type is an enumeration type with values for the different members of the family of

TriMedia processors. In general, different family members can have different instruction

sets and different sets of MMIO registers.

Chapter 23: TMProcessor API

140 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

procRevision_t

typedef enum {
 PROC_REVISION_UNKNOWN = 0,
 PROC_REVISION_CTC = 1,
 PROC_REVISION_1_0 = 2,
 PROC_REVISION_1_1 = 3,
 PROC_REVISION_1_0S = 4,
 PROC_REVISION_1_1S = 5,
 PROC_REVISION_1_2 = 6,
 PROC_REVISION_1_3 = 7
} procRevision_t;

Fields

PROC_REVISION_UNKNOWN Used when the revision is not known.

PROC_REVISION_CTC CPU Test Chip, all versions. These chips are not
supported by the libraries and tools.

PROC_REVISION_1_xx Different revisions of a processor. The ‘S’ stands
for shrink version.

Description

This enumeration type is available to hold the exact revision of the chip. Although dif-

ferent revisions are compatible, small differences may exist that influence the perfor-

mance of the processor.The chronological order of tapeout of the revisions is the same as

the order of the corresponding enumeration fields.

Chapter 23: TMProcessor API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 141

23

procCapabilities_t

typedef struct{
 tmVersion_t version;
 procDevice_t deviceID;
 procRevision_t revisionID;
 UInt cpuClockFrequency;
 UInt32 nodeNumber;
 UInt32 numberOfNodes;
 tmHostType_t hostID;
} procCapabilities_t, *pprocCapabilities_t;

Fields

version Version of this library component.

deviceID The member of the TriMedia family the program
is running on.

revisionID Holds information about the exact revision of the
device. It may be needed to work around hard-
ware bugs in earlier versions of a chip.

cpuClockFrequency Clock frequency of the processor [Hz].

nodeNumber In case of a system with multiple TM's, a unique
identification for the several processors is pro-
vided with the field nodeNumber. It can be used
in communication with other TM processors as
well as with a possible host processor. For more
information on the nodeNumber, refer to tmld
Options in Chapter 11 of Book 4, Software Tools,
Part B.

numberOfNodes Holds the number of TriMedia processors in the
current system.

hostID Gives information about the possible host proces-
sor. Value tmNoHost indicates a stand alone sys-
tem. tmTmSimHost indicates this program is run
on a simulator tm(t)sim. tmWin32Host and
tmMacHost are used when the the TriMedia is a
co-processor in a Win32 or MacOS system respec-
tively. Finally, tmInvalidHost is used when the
host is unknown.

Description

Holds all information about the current TM processor. A pointer to a global instance of

this type is set by the function procGetCapabilities. Next to a field version of type

tmVersion_t that tells the user the exact version of this library component.

Chapter 23: TMProcessor API

142 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

TMProcessor API Functions

This section presents the TMProcessor API functions. There is only one.

procGetCapabilities

tmLibdevErr_t procGetCapabilities(
 pprocCapabilities_t *cap
);

Parameters

cap Pointer that a variable in which to return a
pointer to the capabilities data.

Return Codes

TMLIBDEV_OK Always returned.

Description

The function gets the capabilities of this processor. The function has no discernable side-

effects.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 143

24

Chapter 24

Semaphore API

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device Li-
braries, of Book 3, Software Architecture, Part A.

Topic Page

Semaphore API Overview 144

Semaphore API Functions 144

Chapter 24: Semaphore API

144 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

Semaphore API Overview

The TriMedia processor includes a semaphore device which is designed to facilitate inter-

processor communication. This is described in chapter 18 of the TriMedia data book(s).

This library provides an interface to that semaphore.

Semaphore provides the synchronization functions, smdevGet and smdevRelease. These

functions identify their semaphores using a node number, thereby implicitly knowing

that each node has only one semaphore device. The functions solve the following prob-

lems:

■ They construct a unique 12-bit ID from the current node number (assigned by the

downloader).

■ They take care of endian swapping at semaphore access in case the BUI_CTL.SE is not

equal to PCSW.BSX (in other words: if the current TM-1 endianness differs from the

endianness from the host).

■ They implement the proper spinning protocol described in the data book.

The TriMedia semaphore devices currently do NOT conform to the TriMedia device

model. The reason for this is that, contrary to other devices, the semaphores are

intended for being used across different nodes in a multi-TM-1 system; that is, a particu-

lar semaphore on one particular node is allocated for a particular kind of synchroniza-

tion, and each node which wants to synchronize accesses this semaphore over the PCI.

Example

The following can be used to protect incrementing a counter variable in shared memory

which is used by multiple TM1’s in a multiprocessor system:

Semaphore API Functions

This section presents the Semaphore API device library functions.

#define THE_SEMDEV 0
UInt *shared_counter;
semdevGet(THE_SEMDEV,True);
{
 (*shared_counter)++;
}
semdevRelease(THE_SEMDEV);

Name Page

semdevGet 145

semdevRelease 146

Chapter 24: Semaphore API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 145

24

semdevGet

tmLibdevErr_t semdevGet(
 UInt node_number,
 Bool wait
);

Parameters

node_number Node of semaphore to claim.

wait When wait is True, the function will “busy wait”
until the semaphore can be acquired. Otherwise
the function makes only one attempt and
SEM_ERR_NOT_ACQUIRED is returned if the
attempt failed.

Return Codes

TMLIBDEV_OK Success.

SEM_ERR_NOT_ACQUIRED See wait above.

Description

This function will attempt to acquire the semaphore device on the specified node.

Implementation Notes

See the appropriate TriMedia data book. This function uses the current node number as

base for the 12-bit ID.

Chapter 24: Semaphore API

146 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

semdevRelease

tmLibdevErr_t semdevRelease(
 UInt node_number
);

Parameters

node_number Node of semaphore to be freed.

Return Codes

TMLIBDEV_OK Success.

SEM_ERR_NOT_ACQUIRED Returned if the node number is invalid.

Description

This function releases the semaphore device on the specified node.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 147

25

Chapter 25

Timers API

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device Li-
braries, of Book 3, Software Architecture, Part A.

Topics Page

Timers API Overview 148

Timers API Data Structures 149

Timers API Functions 153

Chapter 25: Timers API

148 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

Timers API Overview

The TriMedia timers are modeled according to the general TriMedia device model, that

is, each of the three timers is considered an “instance” which must be “opened” before it

can be used, and must be “closed” when no longer used, to make it available for other

software components. Opening either succeeds, which means that an (anonymous)

unused timer has been reserved for use by the caller, or it fails, indicating that all timers

are currently in use by other software.

“Using” a timer here means that the timer is configured to get its events from a specific

source, followed by monitoring the events via the timer’s value, either by polling, or by

awaiting an associated interrupt. See details in the appropriate TriMedia data book.

Opened timers can be set up to relatively constant settings, which are modulus, prescale,

source and optional interrupt handler with interrupt priority. When no interrupt han-

dler is required a null handler can be provided, otherwise the handler will be automati-

cally installed using the tmInterrupt library. Conversely, interrupt handlers will be

automatically uninstalled for timers which are closed.

The timInstanceSetup function can be repeatedly used to modify one or more of the

timer’s parameters; any changes will be correctly updated in MMIO. When only a few of

the parameters are to be changed, usually a call to the timGetInstanceSetup function is

necessary to get the current value of the other parameters.

After the timer has been set up, the action functions for getting or setting the value, or

for starting/stopping it can be called for “operating” the timer.

IMPORTANT
Interrupt handlers must be compiled using handler pragma TCS_handler or
TCS_interruptible_handler. Read also notes in tmInterrupts.h.

Example

Use the following to set up a timer that generates an interrupt every 10 µs.

#include "tm1/tmTimers.h"

 static void Handler(){
 #pragma TCS_handler

}

Int timer;
timInstanceSetup_t setup;
UInt32 cycles;
UInt32 ten_us_in_nano_seconds = 10000;

timToCycles(ten_us_in_nano_seconds, &cycles);

setup.source = timCLOCK;
setup.prescale = 1;
setup.modulus = cycles;
setup.handler = Handler;

Chapter 25: Timers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 149

25
See also the full example in $(TCS)/examples/peripherals/timers.

Timers API Data Structures

This section presents the Timers data structures. They are contained in the file

tmTimers.h.

setup.priority = intPRIO_4;
setup.running = True;

if(timOpen(&timer) != 0) { error(); }
if(timInstanceSetup(timer, &setup) != 0) { error(); }

Name Page

timSource_t 150

timCapabilities_t 151

timInstanceCapabilities_t 151

timInstanceSetup_t 152

Chapter 25: Timers API

150 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

timSource_t

typedef enum {
 timCLOCK,
 timPRESCALE,
 timTRI_TIMER_CLK,
 timDATABREAK,
 timINSTBREAK,
 timCACHE1,
 timCACHE2,
 timVI_CLK,
 timVO_CLK,
 timAI_WS,
 timAO_WS,
 timV34_RXFSX,
 timV34_IO2
} timSource_t;

Fields

timCLOCK Source Name: CPU clock.

timPRESCALE Source Name: prescaled CPU clock.

timTRI_TIMER_CLK Source Name: external clock pin.

timDATABREAK Source Name: data breakpoints.

timINSTBREAK Source Name: instruction breakpoints.

timCACHE1 Source Name: cache event 1.

timCACHE2 Source Name: cache event 2.

timVI_CLK Source Name: video in clock pin.

timVO_CLK Source Name: video out clock pin.

timAI_WS Source Name: audio in word strobe pin.

timAO_W Source Name: audio out word strobe pin.

timV34_RXFSX Source Name: V34 receive frame sync pin.

timV34_IO2 Source Name: V34 transmit frame sync pin.

Description

This enum differentiates among the various timer sources. It is used in the struct

timInstanceSetup_t.

Chapter 25: Timers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 151

25

timCapabilities_t

typedef struct{
 tmVersion_t version;
 Int numSupportedInstances;
 Int numCurrentInstances;
} timCapabilities_t, *ptimCapabilities_t;

Fields

version Contains the version information for this library.
Backward and forward compatibilities can be
maintained if software inspects this version and
responds accordingly.

numSupportedInstances The number of instances supported. This value is
the same as the number of timers.

numCurrentInstances The number of instances (timers) currently open.

Description

This struct is used as a parameter in the function timGetCapabilities.

timInstanceCapabilities_t

typedef struct {
 intInterrupt_t interrupt;
} timInstanceCapabilities_t, *ptimInstanceCapabilities_t;

Fields

interrupt Enum which specifies 32 interrupt names, defined
in tmInterrupts.h.

Description

This struct is used in the function timGetInstanceCapabilities.

Chapter 25: Timers API

152 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

timInstanceSetup_t

typedef struct{
 timSource_t source;
 UInt32 prescale;
 UInt32 modulus;
 intHandler_t handler;
 intPriority_t priority;
 Bool running;
} timInstanceSetup_t, *ptimInstanceSetup_t;

Fields

source This is the enum which selects timer sources.

prescale Range: 1 to 32,768.

modulus Amount to compare value against.

handler Handler callback function, defined in tmInter-
rupts.h.

priority Enum which specifies 8 interrupt levels, defined
in tmInterrupts.h.

running Timer: running = True, stopped = False.

Description

This struct is used as a parameter in the functions timInstanceSetup and timGetInstance-

Setup.

Chapter 25: Timers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 153

25

Timers API Functions

This section presents the Timers API functions.

Name Page

timGetCapabilities 154

timGetInstanceCapabilities 155

timInstanceSetup 156

timGetInstanceSetup 157

timOpen 158

timClose 159

timGetTimerValue 160

timSetTimerValue 161

timStart 162

timStop 162

timToCycles 163

timFromCycles 164

Chapter 25: Timers API

154 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

timGetCapabilities

tmLibdevErr_t timGetCapabilities(
 timCapabilities_t *cap
);

Parameters

cap Pointer to a structure in which to return capabilti-
ies data.

Return Codes

TMLIBDEV_OK Success (always returned).

TMLIBDEV_ERR_NULL_PARAMETER Is asserted by the debug version of the device
library if the capabilities parameter, cap, is null.

Description

This function returns global capabilities.

Chapter 25: Timers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 155

25

timGetInstanceCapabilities

tmLibdevErr_t timGetInstanceCapabilities(
 Int instance,
 ptimInstanceCapabilities_t *cap
);

Parameters

instance Instance value.

cap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if this instance (timer) has not been
opened. Is asserted by the debug version of the
device library if this instance (timer) has not been
opened.

TMLIBDEV_ERR_NULL_PARAMETER Is asserted by the debug version of the device
library if the capabilities parameter, cap, is NULL.

Description

This function returns the capabilities of the specified instance.

Chapter 25: Timers API

156 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

timInstanceSetup

tmLibdevErr_t timInstanceSetup(
 Int instance,
 timInstanceSetup_t *setup
);

Parameters

instance Instance value.

setup Pointer to setup data.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if this instance (timer) has not been
opened. Is asserted by the debug version of the
device library if this instance (timer) has not been
opened.

TMLIBDEV_ERR_NULL_PARAMETER Asserted by the debug version of the device
library if the setup parameter is null.

Description

This function will set or change the instance parameters.

Chapter 25: Timers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 157

25

timGetInstanceSetup

tmLibdevErr_t timGetInstanceSetup(
 Int instance,
 timInstanceSetup_t *setup
);

Parameters

instance Instance value.

setup Pointer to a structure in which to return setup
data.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OWNER Asserted by the debug version of the device
library if this instance (timer) has not been
opened.

TMLIBDEV_ERR_NULL_PARAMETER Asserted by the debug version of the device
library if the setup parameter is NULL.

Description

This function returns the instance parameters.

Chapter 25: Timers API

158 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

timOpen

tmLibdevErr_t timOpen(
 Int *instance
);

Parameters

instance Instance value.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NO_MORE_INSTANCES Returned if the maximum number of instances
(timer) have been opened.

TMLIBDEV_ERR_NULL_PARAMETER Is asserted by the debug version of the device
library if the instance pointer argument is null.

Description

This function assigns a unique timer instance for the caller.

Chapter 25: Timers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 159

25

timClose

tmLibdevErr_t timClose(
 Int instance
);

Parameters

instance Instance value.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OWNER Asserted by the debug version of the device
library if this instance (timer) has not been
opened.

Description

This function deallocates the timer instance and uninstalls its handler when it has one.

Chapter 25: Timers API

160 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

timGetTimerValue

tmLibdevErr_t timGetTimerValue(
 Int instance,
 UInt32 *value
);

Parameters

instance Instance value.

value Pointer to location to place returned timer value.

Return Codes

TMLIBDEV_OK Success (always returned).

TMLIBDEV_ERR_NOT_OWNER Is asserted by the debug version of the device
library if the specified instance (timer) has not
been opened.

TMLIBDEV_ERR_NULL_PARAMETER Is asserted by the debug version of the device
library if the value parameter is null.

Description

This function retrieves the current timer value.

Chapter 25: Timers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 161

25

timSetTimerValue

tmLibdevErr_t timSetTimerValue(
 Int instance,
 UInt32 value
);

Parameters

instance Instance value.

value New timer value.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OWNER Asserted by the debug version of the device
library if the specified instance (timer) has not
been opened.

Description

This function sets or changes a timer value.

Chapter 25: Timers API

162 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

timStart

tmLibdevErr_t timStart(
 Int instance
);

Parameters

instance Instance value.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OWNER Asserted by the debug version of the device
library if the specified instance (timer) has not
been opened.

Description

This function starts the timer instance. This function is redundant, since its effects can

also be achieved using the function timInstanceSetup.

timStop

tmLibdevErr_t timStop(
 Int instance
);

Parameters

instance Instance value.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OWNER Asserted by the debug version of the device
library if the specified instance (timer) has not
been opened.

Description

This function stops the timer instance. This function is redundant, since its effects can

also be achieved using the function timInstanceSetup.

Chapter 25: Timers API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 163

25

timToCycles

tmLibdevErr_t timToCycles(
 UInt32 nanoseconds,
 UInt32 *cycles
);

Parameters

nanoseconds Nanoseconds quantity.

cycles Pointer to a variable in which to place the result.

Return Codes

TMLIBDEV_OK Success.

TIM_ERR_OVERFLOW Returned if the number of cycles calculated can-
not be represented in 64 bits.

TMLIBDEV_ERR_NULL_PARAMETER Is asserted by the debug version of the device
library if the cycles pointer argument is null.

Description

This function converts nanoseconds to cycles.

Chapter 25: Timers API

164 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

timFromCycles

tmLibdevErr_t timFromCycles(UI
 UInt32 cycles,
 UInt32 *nanoseconds
);

Parameters

cycles Cycles quantity.

nanoseconds Pointer to a variable in which to place the result.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NULL_PARAMETER Asserted by the debug version of the device
library if the nanoseconds argument is null.

Description

This function converts cycles to nanoseconds.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 165

26
Chapter 26

DMA API

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device Li-
braries, of Book 3, Software Architecture, Part A.

Topic Page

DMA API Overview 166

Demonstration Programs 166

DMA API Data Structure Descriptions 167

DMA API Function Descriptions 172

Chapter 26: DMA API

166 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

DMA API Overview

The DMA device library is designed to support users who wish to move large blocks of

data across the PCI bus. It provides a set of functions to access the DMA operation of the

TriMedia PCI interface, which can operate as an autonomous DMA engine, executing

block-transfer operations at maximum PCI bandwidth. The interface supports synchro-

nous or asynchronous transfers. The user can specify a transfer as simple as a single

address and size, or more complex transactions can be dispatched. This can be useful to

support scatter-gather DMA or the transfer of a video image.

Note
See the appropriate TriMedia data book for details on the DMA transfer
mechanism.

Unlike device libraries such as the Audio In/Out API and Video In/Out API, the DMA

device library does not operate as an exclusive device driver. More than one task can

make a DMA request. All DMA requests are queued and executed by the DMA using a

deadline-based priority mechanism.

The TriMedia device libraries are designed to be used to create device drivers. Whereas

device drivers are operating-system specific, the device libraries are generic. And whereas

device drivers specify a data transfer mechanism, the device libraries leave the data trans-

fer mechanism to the user.

The example applications show how the DMA device library can be used on its own

without a traditional device-driver structure. In a given operating system, it may or may

not be useful to create a standard device driver for this peripheral. However, if you decide

to create a device driver, the DMA API should be very helpful.

WARNING
Because of a hardware bug in some engineering samples of the TM1000,
DMA is not guaranteed to work on any chip earlier than the TM1000 version
S1.1 (TM1s 1.1). This is the standard production release.

Demonstration Programs

The DMA API includes a demonstration program, dmaTest, which is located in the

peripherals/examples/dma directory. The program demonstrates the use of DMA APIs to

perform data transfer between PCI and SDRAM.

Chapter 26: DMA API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 167

26

DMA API Data Structure Descriptions

This section presents the DMA device library data structs.The DMA API is contained in

the TriMedia device library, libdev.a. To use the DMA API, you must include the

tmDMA.h file. The library libdev.a will be linked automatically.

Name Page

dmaFunc_t 168

dmaDirection_t 168

dmaMode_t 168

dmaDescription_t 169

dmaRequest_t 170

dmaCapabilities_t 171

dmaSetup_t 171

Chapter 26: DMA API

168 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

dmaFunc_t

typedef void (*dmaFunc_t)(pdmaRequest_t);

Description

This is for the user to provide callback function addresses. It is used as a field in the struct

dmaRequest_t.

dmaDirection_t

typedef enum {
 dmaPCI_TO_SDRAM
} dmaDirection_t;

Description

This enum is used to provide direction data to the struct dmaDescription_t.

dmaMode_t

typedef enum {
 dmaAsynchronous,
 dmaSynchronous,
 dmaSynchronous_By_Polling
} dmaMode_t;

Description

This enum is used by the struct dmaRequest_t to specify the DMA mode.

■ In dmaAsynchronous mode, the dispatch function returns immediately and DMA

completion is signaled by a completion function, or by polling a flag.

■ In dmaSynchronous mode, the calling task is blocked, but in a multitasking environ-

ment other tasks may continue. This is implemented using the same appModel

framework used by fread and others.

■ In dmaSynchronous_By_Polling mode, the dmaDispatch function spins in a loop

waiting for the transaction to complete.

Chapter 26: DMA API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 169

26

dmaDescription_t

typedef struct dmaDescription_t {
 dmaDirection_t direction;
 Bool write_and_invalidate;
 UInt length;
 UInt nr_of_transfers;
 Pointer source;
 Pointer destination;
 UInt source_stride;
 UInt destination_stride;
} dmaDescription_t, *pdmaDescription_t;

Fields

direction Data movement direction (DMA Write or Read).

write_and_invalidate Corresponds to the T bit described in section
10.6.15 of the databook. If True, a PCI “write and
invalidate” transaction is requested.

length Number of bytes to be transferred (Must be a mul-
tiple of 4, maximum of 64M.

nr_of_transfers A single DMA request can consist of a number of
transfers. For example, during the transfer of a
video screen, each line would be a separate trans-
fer.

source Source address.

destination Destination address.

source_stride Distance between the source addresses. For each
transfer, the source address is incremented by this
value.

destination_stride Distance between the destination addresses. For
each transfer, the destination address is incre-
mented by this value.

Description

This struct is used by the struct dmaRequest_t to specify the above data.

Chapter 26: DMA API

170 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

dmaRequest_t

typedef struct dmaRequest_t{
 dmaFunc_t slack_function;
 dmaFunc_t completion_function;
 Pointer data;
 UInt nr_of_descriptions;
 dmaMode_t mode;
 UInt priority;
 volatile Bool done;
 Int nrof_retries;
 Pointer requester;
 pdmaRequest_t link;
 volatile UInt current_description;
 dmaDescription_t descriptions[1];
} dmaRequest_t;

Fields

slack_function This (optional) user-specified function is called in
dmaDispatch. Designed to allow user controlled
processing to happen while the DMA is taking
place.

completion_function This (optional) user-specified function called in
interrupt context to signal the completion of this
DMA request.

data Additional information to be used by slack or
completion function.

nr_of_descriptions Total number of dmaDescription_t structures
which make up this request.

mode Specifies the DMA mode. Refer to dmaMode_t on
page 168 for more information.

priority Request priority (an integer). See description of
dmaRequest for more details.

done The DMA handler sets this field to 1 on comple-
tion of the transaction. You must clear this field
before making a request.

nrof_retries Set during operation of dmaDispatch. Incre-
mented on every target or master abort.

requester Scratch data for use by dmaDispatch only.

link Scratch data for use by dmaDispatch only.

current_description Scratch data for use by dmaDispatch only.

descriptions Head of a linked list of dmaDescription_t struc-
tures that describe the transfer to be performed.

Chapter 26: DMA API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 171

26

Description

This struct is used by the function dmaDispatch to provide DMA data.

dmaCapabilities_t

typedef struct {
 tmVersion_t version;
 Int numSupportedInstances;
 Int numCurrentInstances;
} dmaCapabilities_t, *pdmaCapabilities_t;

Fields

version Version of the DMA library module.

numSupportedInstances Maximum number of instances supported by the
DMA library (currently –1, meaning no limit).

numCurrentInstances Number of instances currently open.

Description

A pointer to this structure is returned by the dmaGetCapabilities function.

dmaSetup_t

typedef struct{
 intPriority_t priority;
} dmaSetup_t, *pdmaSetup_t;

Fields

priority Interrupt priority to be used for the DMA comple-
tion interrupt. Use priority zero unless you under-
stand the interrupt priority mechanism and have
a reason to raise the priority.

Description

This structure is used by the functions dmaSetup and dmaGetSetup to set the DMA com-

pletion interrupt priority.

Chapter 26: DMA API

172 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

DMA API Function Descriptions

This section presents the DMA library API functions.

Name Page

dmaGetCapabilities 173

dmaSetup 174

dmaGetSetup 174

dmaOpen 175

dmaClose 176

dmaDispatch 177

Chapter 26: DMA API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 173

26

dmaGetCapabilities

tmLibdevErr_t dmaGetCapabilities(
 pdmaCapabilities_t *cap
);

Parameters

cap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBDEV_OK Always returned.

Description

Provided so that a system resource controller can find out about the DMA library before

installing it. In addition, this function fills in the address of a static capabilities structure.

The cap pointer is valid until the DMA library is unloaded.

Chapter 26: DMA API

174 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

dmaSetup

tmLibdevErr_t dmaSetup(
 dmaSetup_t *setup
);

Parameters

setup Pointer to a structure holding new parameters.

Return Codes

TMLIBDEV_OK Always returned.

Description

Sets the interrupt priority.

This disables interrupts, get properties of the dma interrupt via intGetInstanceSetup,

then change the priority with intInstanceSetup, then restore interrupts. In debug mode,

this function can assert on a null setup pointer. Use is optional.

dmaGetSetup

tmLibdevErr_t dmaGetSetup(
 dmaSetup_t *setup
);

Parameters

setup Pointer to a structure in which to return setup
data.

Return Codes

TMLIBDEV_OK Always returned.

Description

Determines the global setup which currently contains the interrupt priority. In debug

mode, this function can assert on a null setup pointer.

Chapter 26: DMA API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 175

26

dmaOpen

tmLibdevErr_t dmaOpen(
 Int *instance
);

Parameters

instance Pointer (returned) to instance data.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assertion
is triggered if setup is null.

DMA_ERR_ISR_INSTALLATION_FAILED Returned if interrupt installation failed.

Description

This function assigns a unique instance for the caller. If no DMA interrupt was previ-

ously setup, it opens an interrupt with intOpen, and sets it up with intInstanceSetup.

Then, this function enables DMA interrupts by setting the BIU_CTL register (refer to the

PCI chapter in the data book).

In debug mode, this function can assert on a null setup pointer.

Chapter 26: DMA API

176 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

dmaClose

tmLibdevErr_t dmaClose(
 Int instance
);

Parameters

instance Instance value.

Return Codes

TMLIBDEV_OK Always returned.

TMLIBDEV_ERR_NOT_OPEN In the debug version of the library, this assertion
is triggered if dmaOpen call has not been made.

Description

This function deallocates the specified instance. If this is the last instance, the interrupt

service routine opened by dmaOpen is shut down.

Chapter 26: DMA API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 177

26

dmaDispatch

tmLibdevErr_t dmaDispatch(
 Int instance,
 pdmaRequest_t dma_request
);

Parameters

instance Instance value.

dma_request Pointer to the struct containing data for the dis-
patch function.

Return Codes

TMLIBDEV_OK Success (always returned).

TMLIBDEV_ERR_NOT_OPEN In the debug version of the library, this assertion
is triggered if dmaOpen call has not been made.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assertion
is triggered if dma_request is null.

Description

This function allows users to initiate DMA requests using the TriMedia DMA hardware. It

can be used in synchronous or asynchronous modes. If no requests are pending, this call

immediately initiates a request at the hardware. If other requests are pending, this

request is added to a queue using a deadline priority mechanism.

The DMA request structure may specify a number DMA transfers. Each DMA transfer is

described as in Chapter 10 of the TM-1 Data Book: a source and destination address and

a direction (only DMA between PCI and SDRAM are possible on the TM-1). It is assumed

(and therefore not checked) that the provided addresses and the specified direction are

consistent. A DMA description (see type above) describes a number of transfers of the

same size, from/to a number of equally spaced source and destination start addresses

(strides). The source and destination strides are described by two independent fields,

which may be different. A DMA request contains a number of such descriptions which

are passed to the DMA handler to be executed in order of increasing index in the descrip-

tions array. Immediately after the descriptions are passed, this function executes the

specified callback slack_function (when present), and upon completion the DMA han-

dler sets the “done” field and calls the callback completion function (when present).

Because of this, DMA transfers can be requested in either of the following modes:

1. Asynchronous mode (field mode = dmaAsynchronous).

After issuing the request, it is the responsibility of the caller to monitor the “done”

field for completion. Both slack function and completion function callbacks may be

Chapter 26: DMA API

178 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

specified, and the return value of dmaDispatch is unspecified. A custom synchroniza-

tion mechanism may be built using the callback completion_ function.

2. Synchronous mode (field mode = dmaSynchronous or dmaSynchronous_By_Polling).

dmaDispatch will not return before all requested DMA transfers have completed. In

principle, in case of dmaSynchronous and when a multitasking operating system

(like pSOS) is running, this is implemented by performing a true context switch.

When no such OS is running or when the mode is dmaSynchronous_By_Polling, this

synchronization is achieved by polling. Note that both the polling and the context

switching is performed implicitly/automatically by this function.

Synchronization is convenient to use, but might waste cycles in scheduling or polling

for completion. In order to prevent this, the slack_function callback can be used to do

some unrelated user actions (probably setting up the next DMA data), giving the DMA

request the opportunity to complete. The DMA transfer might be still in progress after

the slack_function callback has completed. This might be an indication that this

slack_function callback did not have enough work to do, but it might also be that the

current request got stalled due to DMA requests by other tasks in a multitasking environ-

ment. In any case, such misses can be monitored using the return value of dmaDispatch.

A too-quick slack_function callback might be enlarged, or context switching might be

prevented by waiting for the ‘done’ field to be raised just before completion, or one

might simply live with a context switch (and the attendant loss of time).

A priority can be assigned to each DMA transfer request. DMA processing is performed

by repeatedly selecting the DMA description which has the highest priority in the cur-

rently available set. This means that an issued request will automatically suspend any

currently processing DMA request with a lower priority after completion of its current

DMA description (that is, processing of a DMA description will never be suspended).

The priority values can be selected from the entire integer range, and hence priorities

can be selected as deadlines, i.e. the priority of each DMA request can then be selected as

being the moment in time at which completion of the request is required. The DMA

library then will schedule the requests in a closest-deadline-first fashion (since lower val-

ues are higher priorities). The timescale can be freely chosen, and when a microsecond

scale is sufficient, the ANSI clock function can be used.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 179

27

Chapter 27

IIC API

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device Li-
braries, of Book 3, Software Architecture, Part A.

Topic Page

IIC API Overview 180

Demonstration Program 180

Using the IIC API 181

IIC API Data Structures 181

IIC API Functions 187

Chapter 27: IIC API

180 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

IIC API Overview

This chapter describes the interface to the IIC portion of the TriMedia device library. The

IIC library allows users to read and write data over the IIC bus by offering a simple high

level API. Synchronous and asynchronous transfers are possible. Also, subaddressing is

supported in a convenient way.

The IIC library is implemented in line with the other device libraries. Before starting up a

transfer with iicDispatch, an instance needs to be obtained with a call to iicOpen; after

use the instance is returned with iicClose.

The functions iicReadReg and iicWriteReg are still available to read or write one byte, but

they are no more than wrappers around a sequence iicOpen, iicDispatch and iicClose.

Due to limitations of the hardware, transfers of certain sizes are not possible on some

version of the TM-1000 and TM-1100 (see description of iicDispatch). Also, the TM-1000

will spend a lot of time in the IIC ISR when doing a transfer. This may influence the real-

time behavior of the application.

Entry Points

■ iicDispatch: Initiates a possibly asynchronous IIC transfer.

■ iicReadReg: Synchronously performs a single byte IIC read.

■ iicWriteReg: Synchronously performs a single byte IIC write.

The libraries work around a number of hardware bugs in the IIC interface. As a result of

these, a number of operations are disallowed. These include 2 byte reads, 4n+1 byte

reads, and writes of more than 4 bytes. But transactions supported by the library work

with complete reliability.

If it is necessary to work around these limitations, several approaches are available. One

is to use the TM-1100 when these limitations are removed by hardware updates. A sec-

ond is to use the software to write directly to the IIC clock and data pins, thereby execut-

ing a “bit-bang” implementation of the IIC protocol.

Demonstration Program

The TriMedia software development kit includes the iic test demonstration program, at

TCS/examples/peripherals/iictest. This demonstrates the use of the API, and it can be

used to read and write arbitrary IIC addresses. The source code for this demonstration

program is provided, as is the source for the library. You can easily modify and rebuild

the test program. The library source is provided for reference.

Chapter 27: IIC API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 181

27

Using the IIC API

Two versions of the device library are provided. The debug version is linked to the exam-

ple as a default. It checks more error conditions, and it allows you to step through code

with the debugger.

IIC API Data Structures

This section presents the IIC API data structures.

Name Page

iicCapabilities_t 182

iicSetup_t 182

iicDirection_t 183

iicType_t 183

iicMode_t 184

iicFunc_t 184

iicRequest_t 185

Chapter 27: IIC API

182 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

iicCapabilities_t

typedef struct iicCapabilities_t{
 tmVersion_t version;
 Int32 numSupportedInstances;
 Int32 numCurrentInstances;
 Int32 largestTransfer;
} iicCapabilities_t, *piicCapabilities_t;

Fields

version Version of the iic library.

numSupportedInstances Always –1, meaning no limit.

numCurrentInstances Number of instance at any moment in time.

largestTransfer Maximum number of bytes that can be trans-
ferred in one transaction.

Description

Used by iicGetCapabilities.

iicSetup_t

typedef struct iicSetup_t {
 intPriority_t interruptPriority;
} iicSetup_t, *piicSetup_t;

Fields

interruptPriority Priority of IIC interrupt. The default is zero.

Description

Used by iicSetup. Errors codes can be found in tmLibdevErr.h. Standard AV formats can

be found in tmAvFormats.h.

Chapter 27: IIC API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 183

27

iicDirection_t

typedef enum {
 IIC_READ = 1,
 IIC_WRITE = 0
} iicDirection_t;

Description

Direction of transfer on IIC bus.

iicType_t

typedef enum {
 IIC_SIMPLE,
 IIC_SUBADDRESS
} iicType_t;

Fields

IIC_SIMPLE Simple datatransfer to/from slave.

IIC_SIMPLE Simple datatransfer to/from subaddress of slave.

Description

There are two types of transfers. Simple transfers place one 8-bit (7 bits + R/W) on the

bus, and data transfer follows. Subaddress transfers write an extra 8-bit subaddress to the

slave before doing the data transfer. Many IIC peripherals support this.

Chapter 27: IIC API

184 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

iicMode_t

typedef enum {
 IIC_Asynchronous,
 IIC_Synchronous,
 IIC_Synchronous_By_Polling
} iicMode_t;

Fields

IIC_Asynchronous Returns immediately after dispatch.

IIC_Synchronous Returns when done. Allows task switching.

IIC_Synchronous_By_Polling Returns when done. Allows no task switching.

Description

The mode of the data transfer determines what happens when the the DSPCPU is wait-

ing for the IIC data transfer to finish. In the asynchronous case, the DSPCPU will not

wait at all. In the synchronous case, the current task will wait until the transfer is fin-

ished, but other tasks can continue.

In the polling mode, the DSPCPU polls continuously to check for completion of the

transfer. Since the polling mode is implemented with a timeout after 30,000 microsec-

onds, this mode is saver when the slave is not well behaved. On the other hand, for

extremely slow slaves that cannot handle a (large) transfer within this timeout, this

mode cannot be used.

iicFunc_t

typedef void (*iicFunc_t) (
 piicRequest_t;
);

Fields

piicRequest_t Passed to the completion function.

Description

iicFunc_t is the type of a completion function as it is passed by the user in the request

struct iicRequest_t. A pointer to the request struct itself is passed as the only parameter to

the completion function.

Chapter 27: IIC API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 185

27

iicRequest_t

typedef struct iicRequest_t {
 UInt16 address;
 UInt8 subaddress;
 UInt8 numRetries;
 UInt8 waitBeforeRetry;
 UInt8 *data;
 iicMode_t mode;
 iicType_t type;
 iicFunc_t completion_function;
 volatile Bool done;
 UInt32 errorCode;
 UInt32 userdata;
 UInt32 index;
 piicRequest_t link;
 Pointer requester;
} iicRequest_t, *piicRequest_t;

Fields

direction Read or write.

byteCount Number of bytes to read or write (excluding possi-
ble subaddress byte).

address IIC address of slave, last bit ignored.

subaddress IIC address, used when type is IIC_SUBADDRESS.

numRetries Number of times the transaction is retried after
failure.

waitBeforeRetry Number of microseconds waited before a retry.

data Buffer that contains the bytes that are written to
slave, or (in case of a read), buffer that is filled
with bytes read from slave.

mode Synchronous, polling, or asynchronous transfer
mode.

type Simple or subaddress transaction.

completion_function Function executed after the transaction is com-
pleted (this function is called from an ISR, so the
restrictions that apply to ISRs also apply to this
function).

done Boolean that is set to True when the transaction is
completed, especially useful for asynchronous
transactions.

Chapter 27: IIC API

186 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

errorCode When the transaction is completed successfully,
this field is set to TMLIBDEV_OK; other values indi-
cate an error condition as defined in tmLibdev-
Err.h.

userdata Extra field that can be used by the completion
function.

index Used internally.

link Used internally.

requester Used internally.

Description

This structure is is the fundamental description of an IIC transaction. It is used by iic-

Dispatch.

Chapter 27: IIC API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 187

27

IIC API Functions

This section describes the TriMedia IIC API functions.

Name Page

iicGetCapabilities 188

iicOpen 188

iicClose 189

iicSetup 189

iicDispatch 190

iicWriteReg 191

iicReadReg 192

Chapter 27: IIC API

188 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

iicGetCapabilities

extern tmLibdevErr_t iicGetCapabilities(
 piicCapabilities_t *pcap
);

Parameters

pcap Pointer to a variable in which to return a pointer
to the capabilities data.

Return Codes

TMLIBDEV_OK Returned on success.

Description

Copies the address of the iicCapabilities_t structure to describe the capabilities of the IIC

device library.

iicOpen

extern tmLibdevErr_t iicOpen(
 Int *instance
);

Parameters

instance Pointer (returned) to instance variable.

Return Codes

TMLIBDEV_OK Success.

Description

When called for the first time, this function sets up the IIC device and installs the IIC

interrupt service routine.

Chapter 27: IIC API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 189

27

iicClose

extern tmLibdevErr_t iicClose(
 Int instance
);

Parameters

instance Instance variable assigned at iicOpen.

Return Codes

TMLIBDEV_OK Returned on success.

Description

An internal reference count is decremented. If this is the last open instance number, the

ISR is deinstalled (intClose) and the device is shut down.

iicSetup

extern tmLibdevErr_t iicSetup(
 piicSetup_t setup
);

Parameters

setup Pointer to iicSetup_t structure.

Return Codes

TMLIBDEV_OK Success.

IIC_ERR_INIT_REQUIRED Returned if open has not been called.

(other) Various errors are returned if setup fails.

Description

Changes the setup of the IIC device as indicated by the values of the fields of the

iicSetup_t structure.

Chapter 27: IIC API

190 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

iicDispatch

extern tmLibdevErr_t iicDispatch(
 Int instance,
 piicRequest_t request
);

Parameters

instance Instance variable assigned at open.

request Pointer to iicRequest_t structure.

Return Codes

TMLIBDEV_OK Returned on success.

IIC_ERR_BAD_ADDRESS Address greater than 255.

IIC_ERR_BAD_COUNT Some transfer sizes not yet supported (see below).

IIC_ERR_TIMEOUT TriMedia IIC internal error.

IIC_ERR_ADDRESS_NACK Address not acknowledged by slave.

IIC_ERR_DATA_NACK Data not acknowledged by slave.

Description

This function initiates an IIC transfer. Because several parameters of the transfer can be

set in the iicRequest_t struct (especially numRetries and waitBeforeRetry) the transfer can

be tuned to the timing characteristics of the slave. Therefore this function better suited

for time critical code than iicReadReg and iicWriteReg.

In case of an asynchronous transfer, the transfer will be started as soon as all previous

requests are dealt with, and the function will return immediately. The iicRequest_t struct

cannot be reused or freed until the transfer is finished (indicated by the done field being

set to True). In case of a transfer in synchronous or polling mode, the function returns as

soon as the transfer is completed. Clock stretching is always enabled.

Implementation Notes

Because of limitations of the hardware, it is not always possible to transfer a specific

number of bytes.

For TM-1000 1.1s, the following bytecounts will result in a IIC_ERR_BAD_COUNT:

Read: 2, 5, 9, 13, . . . 4n+1, . . . 251, 252, 253, . . .

Write: 5, 6, 7, 8, . . .

For TM-1100 1.2, the following bytecounts will result in a IIC_ERR_BAD_COUNT:

Write: 5, 9, 13, . . . 4n+1, . . .

Chapter 27: IIC API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 191

27

iicWriteReg

extern tmLibdevErr_t iicWriteReg(
 UInt address,
 Int subaddress,
 UInt value
);

Parameters

address IIC address, 8 bits, low bit is R/W.

subaddress Subaddress used for offset addressing, –1 when
not used.

value Value (byte) to be written.

Return Codes

TMLIBDEV_OK Returned on success.

IIC_ERR_BAD_ADDRESS Bad parameter.

IIC_ERR_TIMEOUT The transaction could not be completed within
300 µs, probably due to an extremely slow slave.

IIC_ERR_ADDRESS_NACK Address not acknowledged by slave.

IIC_ERR_DATA_NACK Data not acknowledged by slave.

Description

Synchronously performs a single byte IIC write. Writes the data at the given address and

subaddress. Setting subaddress to a positive number causes a subaddress cycle to be per-

formed. This function calls iicOpenand iicDispatchin synchronous mode. The instance

opened by iicOpen is closed by iicClose. It is provided for backward compatibility with

the old interface.

Note
Because of a hardware bug in the tm1100’s I2C block , consecutive reads
from or writes to non-existent I2C addresses may appear to succeed, while
they actually do not. To prevent this from happening, you should use the
function iicDispatch instead of iicWriteReg when reading from or writing
to a non-existing address. Make sure that the numRetries field is set to 0,
and that a existing I2C address is used in the following I2C transaction if the
iicDispatch call returns a value other than TMLIBDEV_OK. See , following, for
a demonstration of the workaround.

Chapter 27: IIC API

192 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

iicReadReg

extern tmLibdevErr_t iicReadReg(
 UInt address,
 Int subaddress,
 UInt value
);

Parameters

address IIC address, 8 bits, low bit is R/W.

subaddress Subaddress used for offset addressing,-1 when not
used.

value Address of (byte) to be written.

Return Codes

TMLIBDEV_OK Returned on success.

IIC_ERR_BAD_ADDRESS Bad parameter.

IIC_ERR_TIMEOUT The transaction could not be completed within
300 µs, probably due to an extremely slow slave.

IIC_ERR_ADDRESS_NACK Address not acknowledged by slave.

IIC_ERR_DATA_NACK Data not acknowledged by slave.

Description

Synchronously performs a single byte IIC read. Reads the data at the given address and

subaddress. Setting subaddress to a positive number causes a subaddress cycle to be per-

formed. This function calls iicOpen and iicDispatch in synchronous mode. It is provided

for backward compatibility with the old interface.

Note
Because of a hardware bug in the tm1100’s I2C block , consecutive reads
from or writes to non-existent I2C addresses may appear to succeed, while
they actually do not. To prevent this from happening, you should use the
function iicDispatch instead of iicReadReg [iicWriteReg] when reading
from or writing to a non-existing address. Make sure that the numRetries
field is set to 0, and that an existing I2C address is used in the following I2C
transaction if the iicDispatch call returns a value other than TMLIBDEV_OK.
See , following, for a workaround.

Chapter 27: IIC API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 193

27

#include<tm1/tmIIC.h>

#define IIC_EEPROM_ADDRESS 0xA0 /* address of boot eeprom on IREF */
#define IIC_MAX_ADDRESS 0xFF
#define EESIZE 16

Int Instance = 0;
Int Byte0 = Ð1;

void
read_eeprom(void){
 int i;
 iicRequest_t req;
 tmLibdevErr_t err;
 UInt8 data[EESIZE] = {8};

 req.direction = IIC_READ;
 req.byteCount = EESIZE;
 req.address = IIC_EEPROM_ADDRESS;
 req.subaddress = 0;
 req.numRetries = 5;
 req.waitBeforeRetry = 100;
 req.data = data;
 req.mode = IIC_Synchronous_By_Polling;
 req.type = IIC_SUBADDRESS;
 req.completion_function = Null;

 err = iicDispatch(Instance, &req);

 printf("Read from EEPROM:\n");
 printf("err = %08x\n", err);
 for (i = 0; i<EESIZE; i++) {
 printf("%02x ", data[i]);
 }
 printf("\n");

 if (Byte0 == Ð1) Byte0 = data[0];
}
void
recover(void){
 int i;
 tmLibdevErr_t err;
 UInt data;

 for(i = 0; i<100; i++){
 err = iicReadReg(IIC_EEPROM_ADDRESS, 0, &data);
 if(err == TMLIBDEV_OK && data == Byte0){
 printf("Recovered after %d times\n", i);
 return;
 }
 }
 printf("Cannot recover\n");
}
Bool
try(UInt address){
 iicRequest_t req;
 tmLibdevErr_t err;
 UInt8 data;

 req.direction = IIC_READ;
 req.byteCount = 1;
 req.address = address;

Chapter 27: IIC API

194 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

Figure 2 Workaround Code

 req.subaddress = 0;
 req.numRetries = 0;
 req.waitBeforeRetry = 100;
 req.data = &data;
 req.mode = IIC_Synchronous_By_Polling;
 req.type = IIC_SIMPLE;
 req.completion_function = Null;

 err = iicDispatch(Instance, &req);

 printf("address 0x%x\n", address);
 printf("err = %08x\n", err);
 printf("%02x ", data);
 printf("\n");

 if(err != TMLIBDEV_OK) recover();

 read_eeprom();
 return (err == TMLIBDEV_OK);
}
main(){
 int i;
 Bool addresses_ok[IIC_MAX_ADDRESS];
 iicOpen(&Instance);
 read_eeprom();

 for(i=0; i<IIC_MAX_ADDRESS; i+=2){
 addresses_ok[i] = try(i);
 }
 iicClose(Instance);

 printf("===\n");
 printf("On this board the following addresses are used:\n");
 for (i=0; i<IIC_MAX_ADDRESS; i+=2){
 if (addresses_ok[i]) printf("%02x ", i);
 }
 printf("\n===\n");
}

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 195

28

Chapter 28

PCI-External I/O (PCI-XIO) API

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device Li-
braries, of Book 3, Software Architecture, Part A.

Topic Page

Introduction 196

XIO Operation 196

XIO Example Program 197

XIO API Data Structures 198

XIO API Functions 201

Chapter 28: PCI-External I/O (PCI-XIO) API

196 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

Introduction

The External I/O (XIO) Bus Interface allows the TM-1100 to communicate with external

devices. The XIO Bus provides a 16-bit parallel interface to devices such as flash EPROMs.

It is modeled on the 68000 processor bus interface and is compatible with existing chips

which have 68000 (68K) compatible I/O interfaces. Programmable operating modes

allow these control signals to emulate other bus protocols such as x86, ISA bus, PCMCIA,

and IDE controller.

The XIO Bus interface provides the following features:

■ Simple 8-bit bus for ROM and flash EPROM I/O with control compatibility for 68K

and x86 peripheral devices (x86, ISA, PCMCIA, IEEE1284 EPP and IDE devices).

■ 16 Mb address range (24 bits of byte addressing).

■ Programmable clock speed: 33 MHz PCI (external) or derived from bus clock (inter-

nal).

■ PCI transfers of 8-bit data between the CPU and external devices.

■ Automatic programmable wait state transfer timing.

XIO Operation

The TM-1100 communicates with XIO Bus devices using MMIO transfers. An address

register provides the XIO Bus address for the transfer, and a data register sends data to or

receives data from the addressed device. The data register also includes control and sta-

tus bits to minimize the number of MMIO actions necessary to transfer data to or from

the XIO bus. Transfers can be 8-bit or 16-bit. 16-bit transfers can be big or little endian.

The XIO Bus controller provides address register auto increment. When active, the XIO

bus address is incremented after each XIO bus transfer, in preparation for the next trans-

fer. After initialization, transfers can be performed by MMIO reads and writes of the data

register only. This minimizes the number of MMIO operations required per XIO bus

transfer, reducing the transfer overhead for bulk transfers such as block moves from flash

EPROM.

The XIO Bus provides Programmable Chip Selects (PCS). The PCS feature allows glueless

(i.e., no external “glue” logic required) interfaces to XIO Bus devices. Each PCS provides

several useful features:

■ Programmable automatic wait state generation for I/O transfer timing. Read and write

wait states are separately selectable.

■ Selectable 8-bit or 16-bit bus width. The 8-bit bus mode allows glueless connection of

8-bit devices such as flash EPROMs.

Chapter 28: PCI-External I/O (PCI-XIO) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 197

28

■ Selectable bus type. This allows the selected device to be a 68K, x86/ISA, PCMCIA, or

IDE device. The bus type selected determines the function and timing of the variable

control lines when the PCS is active.

Figure 3 Partial TM-1100 Chip Block Diagram

XIO Example Program

The example program xiotest sets up two buffer areas, one for read and one for write. It

compares the XIO output with a reference data to check the correctness of the library. It

gives example code on how to set up the XIO initially and provide an ISR to handle the

XIO interrupt.

CCIR 601
Digital
Video Out

SDRAM Highway

XIO Bus Controls

SDRAM: 32-bit data

MMITM-1100

Video Out

VLD Assist

IIC Interface

Synchronous
Serial Interface

Image
Co-Processor

Video In

Audio In

Audio Out

DSPCPU

400 MIPS
2.5 GOPS

I-cache

D-cache

PCI-XIO Bus AD[31:0] PCI-XIO Bus Controls

PCI I/O DeviceXIO I/O Device
Glueless Flash

EPROM Interface

PCI and External I/O (PCI-XIO) Bus Interface

Digital
Camera,

DMSD, or
Raw Video

Serial
Digital
Audio

IIC Bus

V.34 Modem

JTAG

Clock

Chapter 28: PCI-External I/O (PCI-XIO) API

198 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

XIO API Data Structures

This section presents the XIO device library data structures. These data structures are

defined in the tmXIO.h header file.

Name Page

xioCapabilities_t 199

xioInstanceSetup_t 200

Chapter 28: PCI-External I/O (PCI-XIO) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 199

28

xioCapabilities_t

typedef struct {
 tmVersion_t version;
 Int32 numSupportedInstances;
 Int32 numCurrentInstances;
} xioCapabilities_t, *pxioCapabilities_t;

Fields

version Version of this device library.

numSupportedInstances Number of users that can access this simulta-
neously (currently 1).

numCurrentInstances Number of current users

Description

Used by the function XIOGetCapabilities.

Chapter 28: PCI-External I/O (PCI-XIO) API

200 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

xioInstanceSetup_t

typedef struct {
 UInt ct1Address;
 UInt waitStates;
 UInt busEnable;
 UInt internalClockEnable;
 UInt clockFreqDivider;
} xioInstanceSetup_t, *pxioInstanceSetup;

Fields

ct1Address XIO address space.

waitStates The XIO Bus controller has an automatic wait
state generator to allow for read and write cycle
times of devices on the XIO bus.

busEnable Enable XIO Bus operation. Value: 0 or 1.

internalClockEnable Enable internal clock. When this bit is set, the
clock pin becomes an output. Value: 0 or 1.

clockFreqDivider This field defines the clock frequency:

Description

An instance of this type is passed to the xioInstanceSetup function.

Clock
Value

TM-1100
Clocks

PCI-XIO
Clock

period [ns]

Frequency
[MHz]

0 1 10 100.000

1 2 20 50.000

2 3 30 33.333

3 4 40 25.000

...

30 31 310 3.230

31 32 320 3.125

Chapter 28: PCI-External I/O (PCI-XIO) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 201

28

XIO API Functions

This section presents the XIO API device library functions.

Name Page

xioGetCapabilities 202

xioInstanceSetup 202

xioOpen 203

xioClose 203

xioRead Macro 204

xioWrite Macro 204

Chapter 28: PCI-External I/O (PCI-XIO) API

202 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

xioGetCapabilities

tmLibdevErr_t xioGetCapabilities(
 pxioCapabilities_t *cap
);

Parameters

cap Pointer to the xioCapabilities_t structure.

Return Codes

TMLIBDEV_OK Success (always returned).

Description

Sets the provided pointer to global capabilities.

xioInstanceSetup

tmLibdevErr_t xioInstanceSetup(
 Int Instance,
 xioInstanceSetup_t *xioSetup
);

Parameters

Instance Owner instance.

xioSetup Pointer to XIOInstanceSetup_t structure.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Asserts in the debug version if an incorrect
instance is passed.

TMLIBDEV_ERR_NULL_PARAMETER Asserts in the debug version if a NULL xioSetup
parameter is passed.

Description

This function validates the owner, initializes the registers, resets the XIO and installs the

interrupt handler.

Chapter 28: PCI-External I/O (PCI-XIO) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 203

28

xioOpen

tmLibdevErr_t xioOpen(
 Int *instance
);

Parameters

instance Instance pointer.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Asserted in debug version if a NULL instance
pointer is passed.

XIO_ERR_INVALID_PROCESSOR Returned if the TriMedia DSPCPU cannot support
the XIO interface.

Description

Opens an instance of the XIO device.

xioClose

tmLibdevErr_t xioClose(
 Int instance
);

Parameters

instance Device Library instance.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Will assert in the debug version if an incorrect
instance is passed.

Description

This function shuts down the device and uninstalls the interrupts.

Chapter 28: PCI-External I/O (PCI-XIO) API

204 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

xioRead Macro

xioRead(
 unsigned long xio_addr,
 unsigned long value
)

Parameters

xio_addr Address from which to read.

value Value at the XIO address.

Return Codes

TMLIBDEV_OK Success.

Description

Read a value from the specified XIO address.

This macro is provided as a convenience. It is defined in include/tm1/tmXIO.h.

xioWrite Macro

xioWrite(
 unsigned long xio_addr,
 unsigned long value
)

Parameters

xio_addr Address to which to write.

value Value to write.

Return Codes

TMLIBDEV_OK Success.

Description

Write a value to the specified XIO address.

This macro is provided as a convenience to the user. It is defined in include/tm1/tmXIO.h.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 205

29

Chapter 29

PCI API

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device Li-
braries, of Book 3, Software Architecture, Part A.

Topic Page

Overview 206

PCI API Functions 206

Chapter 29: PCI API

206 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

Overview

This library provides the TriMedia an easy access to the PCI bus. This includes reading,

writing, or copying data in 8-, 16-, or 32-bit wide chunks to PCI config space, PCI mem-

ory, or I/O space. If you want to have a deeper understanding of the PCI bus, read the

PCI bus specification before using this library. This spec can ordered from the PCI Special

Interest Group (http://www.pcisig.com).

How to Use the PCI Library

Any program that uses the PCI library should include <tm1/tmPCI.h>. The PCI library is

contained in libdev.a, and therefore no additional parameter is to be given to tmcc dur-

ing the linking phase. Great care should be taken when using this library, since this

library allows a developer to write to or read from any part of the PCI space, and this

could lead to system hangs if not used appropriately.

PCI API Functions

This section describes the functions used in the PCI API.

Name Page

pciAddressFind 207

pciConfigRead 208

pciConfigWrite 209

pciIOReadUInt8 210

pciIOWriteUInt8 210

pciMemoryReadUInt32 211

pciMemoryWriteUInt32 211

pciMemoryReadUInt16 212

pciMemoryWriteUInt16 212

pciMemoryReadUInt8 213

pciMemoryWriteUInt8 213

pciMemoryCopy 214

Chapter 29: PCI API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 207

29

pciAddressFind

pciAddressFind (
 unsigned id,
 unsigned *CmdStatusAddrPointer
);

Parameters

id The id of the device to be found.

CmdStatusAddrPointer Pointer to a buffer that will contain the address of
the device in the PCI space.

Return Codes

TMLIBDEV_OK Success.

PCI_ERR_ADDRESS_FIND Unable to find a device with such an ID.

Description

This function tries to find in the list of the devices that are present on the PCI bus, a

device that has the id, and returns its address device in the PCI space.

Chapter 29: PCI API

208 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

pciConfigRead

pciConfigRead (
 UInt32 address,
 UInt32 *data
);

Parameters

address Address in the PCI configuration space from
which this function should read.

data Pointer to a buffer that will hold the data pointed
by address on Success.

Return Codes

TMLIBDEV_OK Success.

PCI_ERR_CONFIG_READ The request timed out.

Description

This function reads a 32-bit value from the PCI configuration space and returns it in

data.

Chapter 29: PCI API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 209

29

pciConfigWrite

pciConfigWrite (
 UInt32 address,
 UInt32 data
);

Parameters

address Address in the PCI configuration space to which
this function should write.

data Data to be written at address.

Return Codes

TMLIBDEV_OK Success.

PCI_ERR_CONFIG_WRITE The request timed out.

Description

This function writes a 32-bit value in the PCI configuration space at the address specified

by address.

Chapter 29: PCI API

210 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

pciIOReadUInt8

pciIOReadUInt8 (
 UInt32 address,
 UInt32 *data
);

Parameters

address Address in the PCI I/O space to read from.

data Buffer that will receive the value contained at
address.

Return Codes

TMLIBDEV_OK Success (always returned).

Description

This function reads a 8-bit value from the PCI I/O space specified by address.

pciIOWriteUInt8

pciIOWriteUInt8 (
 UInt32 address,
 UInt32 data
);

Parameters

address Address in the PCI I/O space to write to.

data Data to be written to address.

Return Codes

TMLIBDEV_OK Success (always returned).

Description

This function writes a 8-bit value in the PCI I/O space specified by address.

Chapter 29: PCI API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 211

29

pciMemoryReadUInt32

pciMemoryReadUInt32 (
 UInt32 *address,
 UInt32 *data
);

Parameters

address Address in the PCI memory to read from.

data Pointer to a buffer that will receive the data read
at address.

Return Codes

TMLIBDEV_OK Success (always returned).

Description

This function reads a 32-bit value in the PCI memory space specified by address.

pciMemoryWriteUInt32

pciMemoryWriteUInt32 (
 UInt32 *address,
 UInt32 data
);

Parameters

address Address in the PCI memory space to write to

data Data to be written at address.

Return Codes

TMLIBDEV_OK Success (always returned).

Description

This function writes a 32-bit value in the PCI memory space at the address specified by

address.

Chapter 29: PCI API

212 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

pciMemoryReadUInt16

pciMemoryReadUInt16 (
 UInt16 *data
);

Parameters

address Address in the PCI memory space to read from.

data Pointer to a buffer that is filled with the value
pointed by address.

Return Codes

TMLIBDEV_OK Success (always returned).

Description

This function reads a 16-bit value from the PCI memory space at address.

pciMemoryWriteUInt16

pciMemoryWriteUInt16 (
 UInt16 *address,
 UInt16 data
);

Parameters

address Address in the PCI memory space to write to.

data Data to be written at address.

Return Codes

TMLIBDEV_OK Success (always returned).

Description

This function writes a 16-bit value in the PCI memory space at the address specified by

address.

Chapter 29: PCI API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part C 213

29

pciMemoryReadUInt8

pciMemoryReadUInt8 (
 UInt8 *address,
 UInt8 *data
);

Parameters

address Address in the PCI memory space to read from.

data Pointer to a buffer that is filled with the value
pointed by address.

Return Codes

TMLIBDEV_OK Success (always returned).

Description

This function reads a 8-bit value from the PCI memory space at address.

pciMemoryWriteUInt8

pciMemoryWriteUInt8(
 UInt8 *address,
 UInt8 data
);

Parameters

address Address in the PCI memory space to which to
write.

data Data to be written at address.

Return Codes

TMLIBDEV_OK Success (always returned).

Description

This function writes a 8-bit value in the PCI memory space at address.

Chapter 29: PCI API

214 Book 5—System Utilities, Part C ©1999 Philips Semiconductors 10/08/99

pciMemoryCopy

pciMemoryCopy (
 UInt8 *destination,
 UInt8 *source,
 UInt32 length
);

Parameters

destination Address to which the data is to be copied.

source Address from which the data is to be copied.

length Number of bytes to be copied.

Return Codes

TMLIBDEV_OK Success.

PCI_ERR_SDRAM_RANGE Invalid destination-source combination.

(other) Various error codes may be returned from the
DMA library (dmaOpen, dmaDispatch).

Description

This function copies length bytes from source to destination. One should be in SDRAM,

the other should be in the PCI memory space. PCI-to-PCI and SDRAM-to-SDRAM are

combinations that are not allowed. SDRAM-to-SDRAM should be performed with a

memcpy, and a PCI-to-PCI copy should be done by buffering in SDRAM.

The addresses destination and source must be aligned on a 4-byte boundary.

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 5—System Utilities
	System Device Libraries
	19: TMBoard API
	Board Support API Overview
	Why BSP?
	Components of a Board Support Package
	The Core Board Library
	The Board Initialization Function
	The Board’s Component Export Macro
	How a Board Support Package is Initialized
	How a Board Support Package is Delivered

	How To Support a New Board
	Files That Make Up the BSP
	Minimum Requirement for a BSP
	Role of the Activation Function
	Assignment of boardID
	Creating Support for Audio and Video
	Creating Support for Non-Standard Board Components

	TMBoard API Data Structures
	boardAIParam_t
	boardAIConfig_t
	boardAOParam_t
	boardAOConfig_t
	boardVIConfig_t
	boardVIParam_t
	boardVIAdapterEntry_t
	boardVIDec_t
	boardVOConfig_t
	boardSSIParam_t
	boardSSIConfig_t
	boardSPDOParam_t
	boardSPDOConfig_t
	boardTPConfig_t
	hdvoImageOutputMode_t
	boardHDVOConfig_t
	boardConfig_t (obsolete)
	boardPICIntCaps_t
	boardPICConfig_t
	boardUartParam_t
	boardUartConfig_t
	boardIRParam_t
	boardIRConfig_t
	boardFlashConfig_t

	TMBoard API Functions
	tsaBoardRegisterAO
	tsaBoardRegisterSPDO
	tsaBoardRegisterAI
	tsaBoardRegisterVO
	tsaBoardRegisterVI
	tsaBoardRegisterSSI
	tsaBoardRegisterTP
	tsaBoardRegisterHDVO
	tsaBoardRegisterGPIO
	tsaBoardRegisterPIC
	tsaBoardRegisterUart
	tsaBoardRegisterIR
	tsaBoardRegisterFlash
	tsaBoardRegisterBoard
	tsaBoardGetAO
	tsaBoardGetSPDO
	tsaBoardGetAI
	tsaBoardGetVO
	tsaBoardGetVI
	tsaBoardGetSSI
	tsaBoardGetTP
	tsaBoardGetHDVO
	tsaBoardGetGPIO
	tsaBoardGetPIC
	tsaBoardGetUart
	tsaBoardGetIR
	tsaBoardGetFlash
	tsaBoardGetBoard
	boardGetConfig (obsolete)
	boardGetID (obsolete)

	20: Exceptions API
	Overview
	Exceptions API Data Structures
	excHandler
	excException_t
	excCapabilities_t
	excInstanceSetup_t

	Exceptions API Functions
	excGetCapabilities
	excInstanceSetup
	excGetInstanceSetup
	excOpen
	excClose

	21: TM Interrupts API
	Overview
	Examples

	TMInterrupts API Data Structures
	intInterrupt_t
	intPriority_t
	intCapabilities_t
	intSetup_t
	intInstanceSetup_t

	TMInterrupts API Functions
	intGetCapabilities
	intSetup
	intGetSetup
	intInstanceSetup
	intGetInstanceSetup
	intOpen
	intClose
	intSetPriority
	intSetIEN
	intClearIEN
	intRestoreIEN
	intClear
	intRaise
	intGetPending
	intRaise_M

	22: TMIntPins API
	PCI Interrupt Pins API Overview
	EXAMPLE

	PCI Interrupt Pins API Data Structures
	pinInterruptPin_t
	pinCapabilities_t
	pinInstanceCapabilities_t
	pinInstanceSetup_t

	PCI Interrupt Pins API Functions
	pinGetCapabilities
	pinGetInstanceCapabilities
	pinInstanceSetup
	pinGetInstanceSetup
	pinOpen
	pinClose
	pinGet
	pinSet

	23: TMProcessor API
	Overview
	TMProcessor API Data Structures
	procDevice_t
	procRevision_t
	procCapabilities_t

	TMProcessor API Functions
	procGetCapabilities

	24: Semaphore API
	Semaphore API Overview
	Example

	Semaphore API Functions
	semdevGet
	semdevRelease

	25: Timers API
	Timers API Overview
	Example

	Timers API Data Structures
	timSource_t
	timCapabilities_t
	timInstanceCapabilities_t
	timInstanceSetup_t

	Timers API Functions
	timGetCapabilities
	timGetInstanceCapabilities
	timInstanceSetup
	timGetInstanceSetup
	timOpen
	timClose
	timGetTimerValue
	timSetTimerValue
	timStart
	timStop
	timToCycles
	timFromCycles

	26: DMA API
	DMA API Overview
	Demonstration Programs

	DMA API Data Structure Descriptions
	dmaFunc_t
	dmaDirection_t
	dmaMode_t
	dmaDescription_t
	dmaRequest_t
	dmaCapabilities_t
	dmaSetup_t

	DMA API Function Descriptions
	dmaGetCapabilities
	dmaSetup
	dmaGetSetup
	dmaOpen
	dmaClose
	dmaDispatch

	27: IIC API
	IIC API Overview
	Entry Points

	Demonstration Program
	Using the IIC API
	IIC API Data Structures
	iicCapabilities_t
	iicSetup_t
	iicDirection_t
	iicType_t
	iicMode_t
	iicFunc_t
	iicRequest_t

	IIC API Functions
	iicGetCapabilities
	iicOpen
	iicClose
	iicSetup
	iicDispatch
	iicWriteReg
	iicReadReg

	28: PCI-XIO API
	Introduction
	XIO Operation
	XIO Example Program
	XIO API Data Structures
	xioCapabilities_t
	xioInstanceSetup_t

	XIO API Functions
	xioGetCapabilities
	xioInstanceSetup
	xioOpen
	xioClose
	xioRead Macro
	xioWrite Macro

	29: PCI API
	Overview
	How to Use the PCI Library

	PCI API Functions
	pciAddressFind
	pciConfigRead
	pciConfigWrite
	pciIOReadUInt8
	pciIOWriteUInt8
	pciMemoryReadUInt32
	pciMemoryWriteUInt32
	pciMemoryReadUInt16
	pciMemoryWriteUInt16
	pciMemoryReadUInt8
	pciMemoryWriteUInt8
	pciMemoryCopy

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

