

Version 2.0 beta

AB

Book 5—System Utilities

Part D:

MPEG System Components

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part D

iii

Book 5—System Utilities
Part D: MPEG System Components

Table of Contents

Chapter 30 MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

DemuxMpegTS API Overview .. 8

Limitations ..8

Clock Recovery ..9

DemuxMpegTS Inputs and Outputs ... 10

Overview .. 10

Inputs ... 11

Outputs ... 12

Audio and Video Outputs... 13

Non-AV outputs.. 14

DemuxMpegTS Errors .. 15

DemuxMpegTS Progress ... 16

DemuxMpegTS Configuration.. 17

DemuxMpegTS API Data Structures ... 18

tmalDemuxMpegTSInstanceSetup_t.. 19

tmolDemuxMpegTSInstanceSetup_t ... 19

tmalDemuxMpegTSCapabilities_t ... 19

tmalDemuxMpegTSConfig_t ... 20

tmalDemuxMpegTSErrorFlags_t .. 22

tmalDemuxMpegTSProgressDescription_t.. 26

tmalDemuxMpegTSProgressFlags_t... 27

tmalDemuxMpegTSRedirectedOutputFormat_t ... 28

tmalDemuxMpegTSSectionCallBack_t .. 29

tmalDemuxMpegTSControlArgs_t .. 30

DemuxMpegTS API Functions.. 32

tmolDemuxMpegTSOpen... 33

tmolDemuxMpegTSInstanceSetup ... 34

tmolDemuxMpegTSGetInstanceSetup .. 36

tmolDemuxMpegTSStart .. 37

tmolDemuxMpegTSStop... 38

tmolDemuxMpegTSClose ... 39

tmolDemuxMpegTSChangeVideoPid .. 40

Table of Contents

iv

Book 5—System Utilities, Part D

©1999 Philips Semiconductors 10/08/99

tmolDemuxMpegTSChangeMainAudioPid.. 41

tmolDemuxMpegTSChangeSecondaryAudioPid... 42

tmolDemuxMpegTSChangePcrPid.. 43

tmolDemuxMpegTSChangeToNewPids .. 44

tmolDemuxMpegTSAddRedirectedPid ... 45

tmolDemuxMpegTSRemoveRedirectedPid ... 47

tmalDemuxMpegTSCRCValue ... 48

Chapter 31 MPEG Program Stream Demultiplexer

DemuxMpegPS API Overview .. 50

Limitations ... 50

DemuxMpegPS Inputs and Outputs ... 51

Overview .. 51

Inputs... 52

Outputs ... 52

DemuxMpegPS Errors .. 53

DemuxMpegPS Progress ... 53

DemuxMpegPS API Data Structures ... 53

tmolDemuxMpegPSInstanceSetup_t, tmalDemuxMpegPSInstanceSetup_t 54

tmolDemuxMpegPSCapabilities_t, tmalDemuxMpegPSCapabilities_t..................... 55

tmalDemuxMpegPSCommand_t... 56

tmalDemuxMpegPSProgressFlags_t... 58

tmalDemuxMpegPSStreamInfo_t .. 59

tmalDemuxMpegPSInfo_t .. 60

DemuxMpegPS API Functions.. 61

tmolDemuxMpegPSGetCapabilities, tmalDemuxMpegPSGetCapabilities............... 62

tmolDemuxMpegPSOpen, tmalDemuxMpegPSOpen ... 63

tmolDemuxMpegPSInstanceSetup, tmalDemuxMpegPSInstanceSetup 64

tmolDemuxMpegPSGetInstanceSetup, tmalDemuxMpegPSGetInstanceSetup.... 65

tmolDemuxMpegPSStart, tmalDemuxMpegPSStart... 66

tmolDemuxMpegPSStop, tmalDemuxMpegPSStop ... 67

tmolDemuxMpegPSClose, tmalDemuxMpegPSClose.. 68

tmolDemuxMpegPSInstanceConfig.. 69

tmalDemuxMpegPSInstanceConfig.. 70

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 5—System Utilities, Part D

v

Chapter 32 VdigVIRaw API

VdigVIRaw API Overview... 72

VdigVIRaw Inputs and Outputs .. 72

Overview .. 72

Inputs... 72

Outputs ... 72

VdigVIRaw Errors ... 73

VdigVIRaw Progress .. 74

VdigVIRaw Configuration ... 74

VdigVIRaw API Data Structures.. 74

tmolVdigVIRawInstanceSetup_t... 75

tmolVdigVIRawCapabilities_t .. 76

tmolVdigVIRawError_t.. 77

tmolVdigVIRawProgress_t .. 78

VdigVIRaw API Functions .. 79

tmolVdigVIRawGetCapabilities ... 80

tmolVdigVIRawGetCapabilitiesM ... 81

tmolVdigVIRawOpen .. 82

tmolVdigVIRawOpenM .. 83

tmolVdigVIRawClose... 84

tmolVdigVIRawGetInstanceSetup.. 85

tmolVdigVIRawInstanceSetup... 86

tmolVdigVIRawStart .. 87

tmolVdigVIRawStop .. 88

Table of Contents

vi

Book 5—System Utilities, Part D

©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99

 Book 5—System Utilities, Part D

7

30

Chapter 30

MPEG Transport Stream Demultiplexer

(DemuxMpegTS) API

Note

This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Topic Page

DemuxMpegTS API Overview 8

DemuxMpegTS Inputs and Outputs 10

DemuxMpegTS Errors 15

DemuxMpegTS Progress 16

DemuxMpegTS Configuration 17

DemuxMpegTS API Data Structures 18

DemuxMpegTS API Functions 32

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

8

Book 5—System Utilities, Part D

©1999 Philips Semiconductors 10/08/99

DemuxMpegTS API Overview

The DemuxMpegTS module is an MPEG-2 demultiplexer module for MPEG-2 transport

streams (see ISO/IEC 13818-1). The DemuxMpegTS component adheres to the standard

TSSA component API.

The demultiplexer receives one MPEG-2 transport stream at a time. A transport stream

consists of fixed-length packets of 188 bytes. Each packet has a header that contains a

sync byte, an error indicator, and a packet identifier (PID) that identifies the stream to

which the packet belongs, and other data. The demultiplexer scans the incoming trans-

port stream for a sync byte and then starts decoding the stream. The demultiplexer can

extract PIDs and send them to queues.

A transport stream can consist of multiple MPEG-2 programs, each described by a PMT

(see the MPEG-2 standard). Each program usually consists of one or more audio PIDs and

a video PID. The demultiplexer can extract more than one of these programs, and redi-

rect the audio and video data to specified queues. The PIDs in certain programs refer to a

system clock. The information necessary to re-generate this clock at the decoder’s side is

included in a PID that contains the Program Clock Reference (PCR). The demultiplexer

extracts the timestamp information and maintains such a reference clock for each pro-

gram. Audio and video decoders can inspect the re-generated clock and compare the

timestamps of the decoded data in order to decide whether to present the decoded data.

This comparison is required to obtain Audio Video synchronization (A/V sync).

The audio and video PIDs in a transport stream are MPEG-2 Packetized Elementary

Streams (PES). The PES, an abstraction layer on top of the Elementary Stream (ES), is

implemented with a header attached to an ES packet. The most important fields of this

headers are the relation to the system clock. There can be two timestamps in such a PES

header:

■

The Presentation Timestamp (PTS) that specifies the time at which the data are to be

presented.

■

The Decoding Timestamp (DTS) that specifies the time at which the data are decoded.

The demultiplexer conforms to the standard TSSA interface: it has the standard error and

progress reporting and its configuration can be modified through the control queue.

Limitations

The demultiplexer parses large amounts of data. Typically, the data rates are on the order

of a few megabytes per second. To do its job efficiently, the demultiplexer does not copy

the data. Instead, it passes pointers to buffers that hold the incoming bitstream as TSSA

‘full’ packets to the audio and video components. The demultiplexer must see all these

packets returned (as TSSA ‘empty’ packets) before it can tag the input packet as empty.

Once an input packet is tagged as empty, it will be returned to the empty input queue.

When one of the audio or video components holds on to the full packets too long, the

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99

 Book 5—System Utilities, Part D

9

30

demultiplexer pipeline stops, simply because the demultiplexer does not return empty

packets to its input queue anymore. The requirement that the downstream components

send the packets back as soon as possible is a limitation that holds only for the audio and

video outputs. The other outputs get copies of the data. This should not be a problem

since the data rates are much lower.

Note 1

Downstream audio and video decoders must send empty packets back to
the demultiplexer as soon as possible.

Note 2

Although the demultiplexer has an application layer (see TSSA) it is primari-
ly accessed through the tmol layer. The tmal layer is therefore not docu-
mented.

Features

■

The demultiplexer prefetches data into the cache before sending it to the audio and

video decoders.

■

The DemuxMpegTS component is re-entrant. Multiple instances can be running at

the same time.

■

The demultiplexer can dynamically create additional outputs (see RC-5 Inputs and

Outputs). This means that handling certain private data streams in a later develop-

ment stage is possible, without changes to the demultiplexer.

■

The demultiplexer has plug-ins for determining whether data must be sent to a queue

that is not an audio/video queue. These plug-ins can help implement section filters.

■

The demultiplexer can extract up to 4 programs (each containing video, audio, sec-

ondary audio and clock reference).

■

The demultiplexer manages its own memory.

■

The demultiplexer input can either be connected to a generic file reader or DMA-like

device or handle the TM-2

xxx

 transport block output.

Clock Recovery

The demultiplexer maintains clocks for all the selected PCR PIDs that are requested. The

clock maintained internally is a 27 MHz clock, and the clock that is exposed through a

clockHandle is a 90 kHz clock derived from that 27 MHz clock. The PCRs are extracted

from the bitstream and then converted to the TriMedia clock. Using this mechanism, the

decoder clock at the TriMedia processor is maintained at the same frequency as the refer-

ence clock in the encoder.

Although the frequency is the same as the encoder clock, the value is not. Rather than

adjusting the value of the clock, offsets are added to the PTSs sent to the audio and video

packets. This means that the regenerated clock cannot be directly inspected for times-

tamps other than the ones that are extracted by the demultiplexer (such as the audio

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

10

Book 5—System Utilities, Part D

©1999 Philips Semiconductors 10/08/99

and video PTSs and DTSs). There are two offsets maintained by the demultiplexer. The

first is the one that is the offset to the original PCR, to adjust for the value not being like

the value of the eoncoder’s clock. The second is an offset that is added to the PTSs to

allow the software audio or video decoders to do their work. Basically, the demultiplexer

tries to keep the time between PCR and PTS in a certain range over all bitstreams. With

the instance setup variables, an application can change this offset, and so tune the num-

ber of buffers needed in the system. This last offset is not modified frequently (for correct

execution, it should be modified only at bitstream change or startup) since changing this

offset is clearly audible and visible.

The demultiplexer sends out the offsets for packets that are not audio and video packets.

The timestamps in those packets contain the two offsets. Subtracting the offset in the

time.ticks

 from the actual regenerated clock value from the clockHandle will result in the

absolute value of the encoders’ clock. (See

Outputs on page

80.)

DemuxMpegTS Inputs and Outputs

Overview

Figure 5 shows the input and outputs of the demultiplexer. The one data input is the

MPEG-2 transport stream. The AV outputs are grouped in sets of 3 queues, one for video,

one for main audio and one for secondary audio. Each of these might or might not be

active. A control input can be used to redirect audio/video elementary streams, PSI data

or other private data to certain queues. Other outputs are the error report and progress

reports in which the demultiplexer reports some status. All outputs are TSSA bidirec-

tional queues.

Figure 1

Overview of the Demultiplexer

DVB / ATSC
MPEG2 Transport

Stream

Control

Demultiplexer

PSI (PAT, PMT, ...)

MPEG2 Video ES 1

Main Audio ES 1

Private Data

Secondary Audio ES 1

Main Audio ES 2

MPEG2 Video ES 2

Secondary Audio ES 2

Progress ReportsError Reports

DemuxMpegTS

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99

 Book 5—System Utilities, Part D

11

30

Inputs

The demultiplexer takes one input. That is the MPEG-2 transport stream. This stream is

normally retrieved from the Video-In peripheral or the Transport Stream Input block for

the TM-2

xxx

 family, but can be read over PCI or coming in over 1394 also. The demulti-

plexer expects input in large buffers. It makes no assumptions about the position of the

sync byte (unless coming from the transport block where sync byte position is guaran-

teed) or about buffer sizes.

The incoming packets are of type

tmAvPackets_t

. From the format of the packet, it is

determined what fields are expected to be set. The capability format for the input

descriptor is set to

For packets with the

dataSubtype

 field set to

tsfStandard

, the data stream is expected to

be a digitized MPEG-2 transport stream, packets of 188 bytes with appropriate sync

bytes, as described in ISO/IEC 1318-1. The following fields are expected to be set:

time.hiTicks

 The start timestamp which is the time stamp of
the TriMedia clock (

cycles

 custom_op) at the start
of buffer capture (or the end of the previous
buffer capture).

time.ticks

 contains the end timestamp which is the time
stamp of the TriMedia CPU clock (

cycles

custom_op) at the end of the buffer capture.

These fields must be set in order to do clock recovery. (For file-based inputs over PCI, this

information cannot be accurate and therefore clock recovery will not be accurate.)

For packets with the

dataSubtype

 field set to

tsfTM2TimeStamped

, the data stream is

expected to be a digitized MPEG-2 transport stream with packets of 192 bytes. The last

four bytes contain an error bit and a timestamp as described in the TM-2

xxx

 Transport

Stream Block description.

For packets with the

dataSubtype

 field set to

tsfStandard204

, the data stream is expected

to be a digitized MPEG-2 transport stream with packets of 204 bytes, like they are being

used in the Japanese BS digital standard.

Note

For correct clock recovery for Video-In or PCI-based transport stream inputs,
the time structure in the tmAvHeader of the tmAvPacket must be set to ap-
propriate time stamps.

tmAvFormat_t tpInFormat = {
 sizeof(tmAvFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcSystem, /* dataClass */
 stfMPEG2Transport, /* dataType */
 tsfStandard | tsfTM2TimeStamped | tsfStandard204, /* dataSubtype */
 0 /* description */
};

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

12

Book 5—System Utilities, Part D

©1999 Philips Semiconductors 10/08/99

The input descriptor has index 0. See

tmalDefaultCapabilities_t

.

Outputs

The demultiplexer acts on requests from the application environment to produce out-

puts. There can be requests for AV outputs and request for other PIDs that have, for

instance, PSI information (PAT and PMT). The AV PIDs are requested through a set of

interface routines that has an index as parameter that is taken as an offset. The offset is

relative to one of the following base outputDescriptor indices:

DEMUXMPEGTS_VIDEO_OUTPUT

DEMUXMPEGTS_AUDIO_OUTPUT

DEMUXMPEGTS_SECONDARY_AUDIO_OUTPUT

You may view the index as a program identifier, and request a group of one video, one

PCR, one audio and one secondary audio PIDs to be redirected to index 1, which, for

instance, would redirect the video PID to the outputDescriptor at index

DEMUXMPEGTS_VIDEO_OUTPUT1.

You can pass a queue together with a PID. The demultiplexer will redirect copies

1

 of the

data of that PID to that queue. You can request any PID to be redirected, but each PID,

including the audio and video PIDs, can be redirected to one queue only. You can

request elementary stream packets for audio and video PIDs, raw transport packets, or

you can instruct the demux to assemble MPEG-2 sections. For redirected sections, you

can request the demultiplexer to perform the CRC. You must insert empty packets with

pre-allocated buffers in the queue. The pre-allocated buffers must be large enough for the

unit (transport packets of 188 bytes or the maximum section size) that is to be redirected

to this queue, because the demultiplexer copies the data into the packet.

For redirected MPEG-2 sections, a callback function can be supplied as a filter that tells

the demultiplexer whether or not to pass the data to the queue. This is useful for DVB

section filtering. The demultiplexer assembles the section (with optionally a CRC),

checks through the callback whether this section needs to be passed along, and then

sends or discards the section.

As mentioned previously, non-audio and non-video packets have a time stamp that is

not a real timestamp but rather two offsets. These two offsets are used within the demul-

tiplexer to offset the PTSs from the PCR clock. (See

Non-AV outputs

on page 14.)

For details of how to request extra outputs, see

tmolDemuxMpegTSAddRedirectedPid

.

Every output you do not want can be left unused. When an output is not needed, such

as private data, you can simply not create the IODescriptor and not overwrite the output

in the array of outputDescriptors. However, all audio and video outputs and other

queues that will be used must be fully initialized during instance setup. The demulti-

#define DEMUXMPEGTS_INPUT 0

1. Note that the audio and video outputs of the demultiplexer contain pointers to data and not actual copies.
You can request audio and video data explicitly by the redirection method, but you must consider that this
will take a large number of cycles when the HD video stream is copied.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99

 Book 5—System Utilities, Part D

13

30

plexer requires all audio and video empty packets to be resident in the queue at the call

to

tmolDemuxMpegTSStart

. It is not possible to install IODescriptors at run-time and

then call instance setup again. It is also not possible to create more audio and video

empty packets on-the-fly.

Before the demultiplexer sends data pointers along (for the audio and video outputs of

the demultiplexer) it prefetches the data. Components can assume the data is in the

cache on arrival of the packets.

The output descriptor assignment is:

Note

The demultiplexer requires all queues and clockHandles that are used to be
initialized (non-null and queues with empty packets inserted) at instance
setup.

Audio and Video Outputs

The audio and video outputs of the demultiplexer have the default

tmAvPacket_t

 struc-

ture with the following field set in the header (

tmAvHeader_t

):

flags

The

avhValidTimestamp

 bit is set when a valid presentation times-
tamp (PTS) is attached to this packet. The

avhValidDts

 bit is set
when the timestamp of the header contains a valid decoding
timestamp (DTS). This packet will have no data (number of buff-
ers set to 0) and the DTS applies to the next packet with a valid
PTS (

avhValidTimestamp

 bit set).

time.ticks

The lower 32 bits of the PTS timestamp as stored in the PES header
of the audio/video PID. (See the MPEG-2 standard.)

time.hiTicks

The 33rd bit of the PTS timestamp as stored in the PES header of
the audio/video PID. Currently the software sets this bit to 0; only
32 bits of the timestamp are used.

The demultiplexer does not analyze the PMT. It does not know to what elementary

stream it will send, for instance, the audio queue. Since TSSA requires formats to be

installed on the IODescriptors, it is the responsibility of the application to install the cor-

rect format on the queue. In the case of audio, this might be, for instance, AC3 data or

MPEG-1 level 2 audio.

#define DEMUXMPEGTS_VIDEO_OUTPUT 0
#define DEMUXMPEGTS_VIDEO_OUTPUT0 0
#define DEMUXMPEGTS_VIDEO_OUTPUT1 1
#define DEMUXMPEGTS_VIDEO_OUTPUT2 2
#define DEMUXMPEGTS_VIDEO_OUTPUT3 3
#define DEMUXMPEGTS_AUDIO_OUTPUT 4
 and similar to video OUTPUT0...OUTPUT3
#define DEMUXMPEGTS_SECONDARY_AUDIO_OUTPUT 8
 and similar to video OUTPUT0...OUTPUT3
#define DEMUXMPEGTS_PSI_OUTPUT 12
#define DEMUXMPEGTS_PRIVATE_DATA_OUTPUT 13

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

14

Book 5—System Utilities, Part D

©1999 Philips Semiconductors 10/08/99

The output capability format for the audio output is:

The output capability format for the video output is:

Non-AV outputs

Dynamically redirected outputs can be of two types: MPEG-2 sections and raw transport

packets. The dynamically redirected outputs with section type are similar to PSI sections

sent to the PSI output of the demultiplexer, whereas the redirected outputs of transport

packet type are similar to private data from the adaptation field sent to the private data

output of the demultiplexer.

The non-AV outputs copy data into pre-allocated buffers. Your buffers must be big

enough to hold the maximum length output. For demuxMpegTSTransport packets, the

maximum length is 188 bytes, but for the PSI sections (PAT and PMT and other sections)

the maximum length is usually 1024 bytes. When PSIP (ATSC) sections are requested,

these buffers must be 4096 bytes. You must supply a sufficient number of packets in the

empty queue and make sure that the scheduling of tasks allows non AV-packets to be

processed in a timely manner. The demultiplexer will block on an empty non AV-empty-

queue but will timeout after 1 OS clock tick. Data will be lost if your application does not

prevent this from happening.

The non-AV outputs of the demultiplexer have the default

tmAvPacket_t

 structure with

the following field set in the header (

tmAvHeader_t

):

userSender

The PID number for which this section is
retrieved. Together with the

table_id

 from the sec-
tion, this should determine the type of the
packet. If you are using a callback function, the
returned

userDataOutput

 value is put in the

userSender

 field.

tmAvFormat_t audioFormat = {
 sizeof(tmAvFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcAudio, /* dataClass */
 atfAC3 | atfMPEG, /* dataType */
 amfGeneric, /* dataSubtype */
 0 /* description */
};

tmAvFormat_t videoFormat = {
 sizeof(tmAvFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcVideo, /* dataClass */
 vtfMPEG, /* dataType */
 vmfMPEG2, /* dataSubtype */
 0 /* description */
};

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99

 Book 5—System Utilities, Part D

15

30

time.hiTicks

 An offset that the demultiplexer adds to the PTSs
to correct for the software audio and video decod-
ers. See the instance setup variables

decodersPcr-
ShiftLow

 and

decodersPcrShiftHigh

.

time.ticks

 An offset that, when subtracted from the regener-
ated clock value, would result in the actual PCR
value.

More information can be found under

Clock Recovery

 on page 9.

The output format for these outputs are:

DemuxMpegTS Errors

The demultiplexer handles all bitstream errors. It reports and handles transmission errors

and MPEG-2 standard violations. Mostly, these errors cause skipping of data. It is

expected that downstream components handle erroneous data as well.

System errors such as memory allocation or OS errors are reported as system failures and

the system must take appropriate action.

The description on page 93 has more information regarding error codes.

The demultiplexer error function is a standard TSSA error function, and is installed as a

callback function during instance setup. The type of the function is given below. The

field

args->errorCode

 can be cast to the type

tmalDemuxMpegTSErrorFlags_t

, and the

args–>description

 value, when set and not explicitly explained, can be interpreted as line

number.

Note

Downstream audio and video decoders must handle bitstream errors as well
as the demultiplexer and must not stall the pipeline.

tmAvFormat_t demuxDataFormat = {
 sizeof(tmAvFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcGeneric, /* dataClass */
 avdtGeneric, /* dataType */
 avdsGeneric, /* dataSubtype */
 0 /* description */
};

tmLibappErr_t
DemuxMpegTSError(Int instId, UInt32 flags, ptsaErrorArgs_t args)

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

16 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

DemuxMpegTS Progress

The demultiplexer has 5 progress reports.

1. A request to change the audio-out and video-out clock frequencies. The demulti-

plexer regenerates the 27 MHz clock of the encoder through the PCR (Program Clock

Reference). It can happen that, when the TriMedia processor’s clock and the encoder’s

clock do not exactly match in frequency, the demultiplexer requests to change the

audio and video clocks in order not to run ahead or behind. The two clocks that must

be adjusted are the Audio-Out peripheral clock, through the audio renderer, and the

Video-Out clock. Alternatively, the audio and video decoders can lock their clocks

directly to the PCR, in which case this progress report need not be used.

2. A progress report to indicate that a discontinuity signalled on one of the non-AV

PIDs. This indicates a discontinuity as stated in the MPEG-2 standard section 2.4.3.5.

3. A progress report for timeouts that occurred on the input queue, that is, an underrun

has occurred on the TSSA full input queue. This condition is reported only when the

demultiplexer does not have all the input buffers in its possession. The input stalled

for an unknown reason. The system can take appropriate action.

4. A lost sync progress report. The demultiplexer expects sync at certain positions in the

bitstream and when it cannot find one, it reports the fact. This error can occur

because of a data error or because of other failures in the system. The demultiplexer

then starts looking for a new sync byte itself.

5. A progress report that reports the change in offset that is added to the PTS values.

This offset is determined via decodersPcrShiftLow and decodersPcrShiftHigh, and ide-

ally should be set by the demultiplexer only once for each bitstream. With these off-

sets the number of buffers needed in the system can be tuned. But sometimes

adjustments may be necessary and these adjustments are probably visible and audi-

ble. This progress report indicates such an action taken by the demux and also reports

the new offset to the application.

More information can be found under tmalDemuxMpegTSProgressFlags_t on page 98.

The progress report function is a standard TSSA callback function installed during

instance setup. The type of the function is given below. The args–>progressCode argu-

ment can be cast to the type tmalDemuxMpegTSProgressFlags_t and the args–>descrip-

tion value is described in the tmalDemuxMpegTSProgressFlags_t data structure.

tmLibappErr_t
DemuxMpegTSProgress(Int instId, UInt32 flags, ptsaProgressArgs_t args)

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 17

30

DemuxMpegTS Configuration

The demultiplexer handles the following requests through a control queue:

1. The default TSSA function status.

2. Change the PCR PID for a certain index (as in index of the group of outputDescrip-

tors, as discussed under Outputs on page 80).

3. Change the video, audio, or secondary audio PID for a certain index (0 ≤ index <

DEMUXMPEGTS_NROF_AV_OUTPUTS).

4. Add or delete redirection of a certain PID. (See RC-5 Inputs and Outputs.)

At the OL layer, this control is provided by a functional interface that communicates

with the AL layer through a synchronous control queue. More information on the con-

trol functions can be found in the description of the following functions:

tmolDemuxMpegTSChangeVideoPid,

tmolDemuxMpegTSChangePcrPid,

tmolDemuxMpegTSChangeMainAudioPid,

tmolDemuxMpegTSChangeSecondaryAudioPid,

tmolDemuxMpegTSChangeToNewPids

tmolDemuxMpegTSAddRedirectedPid,

tmolDemuxMpegTSRemoveRedirectedPid.

More information on which parameters must be passed to the queue can be found under

tmalDemuxMpegTSControlArgs_t on page 30.

Note
The control functions are synchronous. Do not call them from the installed
error function. Calling them from the progress function or from within the
section filter is permissible.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

18 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

DemuxMpegTS API Data Structures

This section presents the DemuxMpegTS component data structures.

Name Page

tmalDemuxMpegTSInstanceSetup_t, tmolDemuxMpegTSInstanceSetup_t 19

tmalDemuxMpegTSCapabilities_t 19

tmalDemuxMpegTSConfig_t 20

tmalDemuxMpegTSErrorFlags_t 22

tmalDemuxMpegTSProgressDescription_t 26

tmalDemuxMpegTSProgressFlags_t 27

tmalDemuxMpegTSRedirectedOutputFormat_t 28

tmalDemuxMpegTSSectionCallBack_t 29

tmalDemuxMpegTSControlArgs_t 30

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 19

30

tmalDemuxMpegTSInstanceSetup_t

typedef struct tmalDemuxMpegTSInstance {
 ptsaDefaultInstanceSetup_t defaultSetup;
 ptmalDemuxMpegTSConfig_t demuxConfig;
} tmalDemuxMpegTSInstanceSetup_t, *ptmalDemuxMpegTSInstanceSetup_t;

tmolDemuxMpegTSInstanceSetup_t

typedef tmalDemuxMpegTSInstance tmolDemuxMpegTSInstance;
typedef ptmalDemuxMpegTSInstance ptmolDemuxMpegTSInstance;

Fields

defaultSetup See TSSA documentation.

demuxConfig See tmalDemuxMpegTSConfig_t on page 90.

Description

The data structure passed to tmolDemuxMpegTSInstanceSetup or tmalDemuxMpegTS-

InstanceSetup to describe the input and output connections and other initial values.

tmalDemuxMpegTSCapabilities_t

typedef struct tmalDemuxMpegTSCapabilities{
 ptsaDefaultCapabilities_t defaultCaps;
} tmalDemuxMpegTSCapabilities_t, *ptmalDemuxMpegTSCapabilities_t;

Fields

defaultCaps See TSSA documentation.

Description

For input and output descriptors, see RC-5 Inputs and Outputs on page 60. The text sec-

tion of the demultiplexer is about 50 kb and the data required for a single instance is

about 30 kb.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

20 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmalDemuxMpegTSConfig_t

typedef struct tmalDemuxMpegTSConfig {
 UInt32 nrofInputBuffers;
 UInt32 inputBufferSize;
 UInt32 ticksPerSecond;
 Bool ignoreSoftError;
 Float incomingDataRate;
 UInt32 decodersPtsShiftLow;
 UInt32 decodersPtsShiftHigh;
 ptsaClockHandle_t clockHandles[DEMUXMPEGTS_NROF_AV_OUTPUTS];
} tmalDemuxMpegTSConfig_t, *ptmalDemuxMpegTSConfig_t;

Fields

nrofInputBuffers Number of input buffers between the input pro-
ducer (e.g., video-in or TM-2xxx transport block)
and the demultiplexer.

inputBufferSize Size of the input buffer (must be the same for all
buffers).

ticksPerSecond Number of ticks per second the OS clocks pro-
vides (for pSOS, this is KC_TICKS2SEC). Together
with inputBufferSize, this value is used to calcu-
late a datain timeout.

ignoreSoftError Ignores soft errors (MPEG-2 standard violations),
such as reserved bits not matching the specified
values, etc. See tmalDemuxMpegTSErrorFlags_t.

incomingDataRate A value for calculating when to send the
DEMUXMPEGTS_NO_INCOMING_DATA progress
report. Cannot be changed on-the-fly.

decodersPtsShiftLow, decodersPtsShiftHigh
The lower and upper bounds of the difference,
between the PCR and the PTSs, the demultiplexer
must keep. This shift is required to correct for
software decoder delays in the system and to keep
the number of buffers of audio/video elementary
stream data nearly constant over a diversity of
input streams. (The value is specified in number
of ticks of the MPEG-2 90 kHz clock.)

clockHandles Array of clock handles. At least clockHandles[0]
must be set to a valid TSA clock handle as nor-
mally would be used in the defaultSetup’s clock-
Handle. Since the demultiplexer uses more than
one clock handle, it does not use the clock handle
from the tsaDefaultInstanceSetup_t. A valid clock
handle must be set for each index used (that is, a

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 21

30

valid pcrPid is set) during the lifetime of this
demultiplexer’s instance. Note that the regener-
ated clock is a 90 kHz clock, but the value of this
clock may not be close to the value of the actual
PCR values. The PTSs passed to the audio and
video channels simply have offsets from the
regenerated clock and can also not be close to the
actual PTS values.

Description

Controls the demultiplexer’s task-level instance setup and is used by the tmolDemux-

MpegTSInstanceSetup function. These fields cannot be changed after instance setup,

because instance setup for the demultiplexer can be called only once for each instance.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

22 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmalDemuxMpegTSErrorFlags_t

The abbreviation Err_base is used here to stand for Err_base_DEMUXMPEGTS, which is

0x11050000.

typedef enum { /* Fatal errors */
 DEMUXMPEGTS_ERR_INVALID_NROF_BUFFERS = Err_base + 0x0001,
 DEMUXMPEGTS_ERR_INVALID_BUFFER_SIZE = Err_base + 0x0002,
 DEMUXMPEGTS_ERR_INVALID_OS_CLOCK_TICK_VALUE = Err_base + 0x0003,
 DEMUXMPEGTS_ERR_INVALID_CLOCK_HANDLE = Err_base + 0x0004,
 DEMUXMPEGTS_ERR_NONE_SECTION_LENGTH = Err_base + 0x0005,
 DEMUXMPEGTS_ERR_BUFFERS_DATA_FIELD_NON_ZERO = Err_base + 0x0101,
 DEMUXMPEGTS_ERR_DATA_FIELD_ZERO = Err_base + 0x0102,
 DEMUXMPEGTS_ERR_INVALID_QUEUE_INDEX = Err_base + 0x0103,
 DEMUXMPEGTS_ERR_INVALID_BUFFERS_IN_USE = Err_base + 0x0104,
 DEMUXMPEGTS_ERR_TM2_INPUT_EXPECTED = Err_base + 0x0105,
 DEMUXMPEGTS_ERR_NO_OUTPUTDESCRIPTOR = Err_base + 0x0106,
 DEMUXMPEGTS_ERR_PCR_SHIFT_RANGE_TOO_SMALL = Err_base + 0x0107,
 DEMUXMPEGTS_ERR_INTERNAL_ERROR = Err_base + 0x011F,
/*Non-fatal errors. Demultiplexer just reports them.
 *Data can be lost at the point of error. */
 DEMUXMPEGTS_ERR_PID_NOT_FOUND = Err_base + 0x0201,
 DEMUXMPEGTS_ERR_INVALID_COMMAND = Err_base + 0x0202,
 DEMUXMPEGTS_ERR_NO_EMPTY_PACKET = Err_base + 0x0203,
 DEMUXMPEGTS_ERR_INVALID_REQUESTED_PID = Err_base + 0x0204,
 DEMUXMPEGTS_PES_HEADER_LENGTH_TOO_LONG = Err_base + 0x0205,
 DEMUXMPEGTS_PES_DATA_LENGTH_TOO_LONG = Err_base + 0x0206,
 DEMUXMPEGTS_PES_INVALID_STARTCODE = Err_base + 0x0207,
 DEMUXMPEGTS_PES_TIME_STAMP_MARKER_BITS = Err_base + 0x0208,
 DEMUXMPEGTS_CONTINUITY_COUNTER_MISMATCH = Err_base + 0x0209,
 DEMUXMPEGTS_ERROR_IN_PACKET = Err_base + 0x0210,
 DEMUXMPEGTS_ADAPTATION_FIELD_LENGTH_TOO_LONG = Err_base + 0x0211,
 DEMUXMPEGTS_ADAPTATION_FIELD_LENGTH_MISMATCH = Err_base + 0x0212,
 DEMUXMPEGTS_PRIVATE_DATA_LENGTH_TOO_HIGH = Err_base + 0x0213,
 DEMUXMPEGTS_SECTION_SIZE_TOO_LONG = Err_base + 0x0214,
 DEMUXMPEGTS_TIME_STAMP_MARKER_BITS = Err_base + 0x0215,
/*Non-fatal Soft Errors. Can be ignored with flag passed to
 *instance setup. See ignoreSoftError */
 DEMUXMPEGTS_DEMUX_ADAPTATION_RESERVED_BITS = Err_base + 0x0400,
} tmalDemuxMpegTSErrorFlags_t;

Fields

(Fatal errors by the demultiplexer)

DEMUXMPEGTS_ERR_INVALID_NROF_BUFFERS
During instance setup, nrofInputBuffers ≤ 0. Trig-
gered as assert.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 23

30

DEMUXMPEGTS_ERR_INVALID_BUFFER_SIZE
During instance setup, inputBufferSize ≤ 0, or the
value is so small that the demultiplexer cannot
find a number of correctly spaced sync bytes in
one buffer. Typically, 3 sync bytes must be 188
bytes apart in order to determine synchroniza-
tion. These are expected to fall within one buffer.
Triggered as assert.

DEMUXMPEGTS_ERR_INVALID_CLOCK_TICK_VALUE
During instance setup, the demultiplexer is
passed a value ≤ 0. Triggered as assert.

DEMUXMPEGTS_ERR_INVALID_CLOCK_HANDLE
(1) During instance setup, the demultiplexer was
not passed a valid clock handle in the demuxCon-
fig.clockHandle[0], (2) the defaultSetup.clockHan-
dle was set to a value other than Null, or (3) a
ChangePcrPid was requested with an index for
which no clockHandle was provided at instance
setup. Triggered as assert for instance setup, and
returned as a function value for ChangePcrPid.

DEMUXMPEGTS_ERR_NONE_SECTION_LENGTH
A buffer was passed for a redirected PID of type
demuxMpegTSTransport. The packets in the
queue have an allocated data buffer that is too
small to copy the data. Packets must have buffers
of at least
DEMUXMPEGTS_MAX_NONE_SECTION_LENGTH
(188) bytes.

DEMUXMPEGTS_ERR_BUFFERS_NON_ZERO
During initialization, you probably passed data
pointers for the A/V Packets. The demultiplexer
sends pointers, and expects the data pointers to
be null. Triggered as assert.

DEMUXMPEGTS_ERR_DATA_FIELD_ZERO There is no memory allocated for the PSI or pri-
vate data or extra requested PID packets. When
putting packets in non-audio/video queues, you
must allocate memory and supply sufficient pack-
ets. Triggered as assert.

DEMUXMPEGTS_ERR_INVALID_QUEUE_INDEX
(1) A queue index exceeded the maximum num-
ber of output queues of the demultiplexer for
AddRedirectedPid, or (2) an invalid index was
used in one of the ChangexxxPid functions. Non-
fatal return value.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

24 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

DEMUXMPEGTS_ERR_INVALID_BUFFERS_IN_USE
The demultiplexer does not handle more than
one buffer per packet in its input queue. Triggered
as assert.

DEMUXMPEGTS_ERR_TM2_INPUT_EXPECTED
Although the format of an input packet indicated
a TM-2xxx Transport Stream Block input type (the
subType of the format was tsfTM2TimeStamped),
the timestamp is placed unaligned, so probably
the format is wrong.

DEMUXMPEGTS_NO_OUTPUTDESCRIPTOR A PID was redirected to a queue for which there
was no output descriptor installed.

DEMUXMPEGTS_ERR_PCR_SHIFT_RANGE_TOO_SMALL
The gap between decodersPtsShiftHigh and
decodersPtsShiftLow should be at least 3000 ticks.
There must be a gap big enough to allow a varia-
tion in the bitstream without constantly updating
the software decoder delay offset, since modifying
this offset is audible and visible.

DEMUXMPEGTS_ERR_INTERNAL_ERROR An internal error of unspecified origin occurred.
Contact the vendor. Triggered as assert.

The following are non-fatal errors reported by the demultiplexer. Some of these occur

because of errors in the bitstream. Some data may be lost because of the error.

DEMUXMPEGTS_ERR_PID_NOT_FOUND A PID that is requested for redirection could not
be found during a call to RemoveRedirectedPid.

DEMUXMPEGTS_ERR_INVALID_COMMAND An unknown command is passed through the
control queue. Non-fatal return value.

DEMUXMPEGTS_ERR_NO_EMPTY_PACKET The demultiplexer could not get an empty packet
for the PSI or requested outputs. Data will be lost.
The third argument to the error report function is
the queue index for which the error occurred.

DEMUXMPEGTS_ERR_INVALID_REQUESTED_PID
(1) A PID is already allocated to another queue
when adding a user-requested redirection of a
PID, or (2) the PID can not be found when delet-
ing a user-requested PID. Non-fatal return value.

DEMUXMPEGTS_PES_HEADER_LENGTH_TOO_LONG
PES header length is longer than the maximum
allowed length. The packet is discarded and PES
header parsing is re-initialized.

DEMUXMPEGTS_PES_DATA_LENGTH_TOO_LONG
Data too long for the PRIVATE_STREAM_2 or
PADDING_STREAM stream types. The packet dis-
carded.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 25

30

DEMUXMPEGTS_PES_TIME_STAMP_MARKER_BITS
Invalid marker bits in the PTS or DTS. Timestamp
made invalid.

DEMUXMPEGTS_CONTINUITY_COUNTER_MISMATCH
A continuity counter error occurred. (These are
not the duplicate packets.)

DEMUXMPEGTS_ERROR_IN_PACKET The error bit in the packet was set. The packet is
discarded.

DEMUXMPEGTS_ADAPTATION_FIELD_LENGTH_TOO_LONG
Adaptation field length is longer than 187 bytes.

DEMUXMPEGTS_ADAPTATION_FIELD_LENGTH_MISMATCH
The bytes read by the adaptation field parser do
not match the specified length. Adaptation field
is discarded.

DEMUXMPEGTS_ADAPTATION_RESERVED_BITS
The reserved bits values do not match the values
specified by the standard.

DEMUXMPEGTS_PRIVATE_DATA_LENGTH_TOO_HIGH
Private data longer than 184 bytes.

DEMUXMPEGTS_SECTION_SIZE_TOO_LONG
A section-specified length exceeds 1024 bytes.
The TSSA standard allows 1021 maximum.

DEMUXMPEGTS_TIME_STAMP_MARKER_BITS
Marker bits in a timestamp are invalid (timestamp
for the splice points).

Description

The demultiplexer expects the application to handle system errors. Non-fatal errors can

be ignored or you can use them to re-tune the incoming frequency or start error conceal-

ment in the video decoder. The demultiplexer handles the errors internally, such that it

continues to parse the transport stream the best way possible. Decoder and other compo-

nents that get data from the demultiplexer must also be able to handle erroneous data.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

26 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmalDemuxMpegTSProgressDescription_t

typedef struct tmalDemuxMpegTSProgressDescription {
 UInt32 size;
 union {
 struct {
 UInt32 index;
 Float new27MHzFrequency;
 } newClockFrequency;
 UInt32 pid;
 struct {
 UInt32 index;
 UInt32 offset;
 } newOffset;
 } args;
} tmalDemuxMpegTSProgressDescription_t,
*ptmalDemuxMpegTSProgressDescription_t;

Fields

size The size of the structure as required by tsa.

newClockFrequency Structure used when progress code is
DEMUXMPEGTS_NEW_CLOCK_FREQUENCY.

 index Index to which the progress report applies.
(0 ≤ index < DEMUXMPEGTS_NROF_AV_OUTPUTS)

 new27MHzFrequency The new 27 MHz clock frequency.

pid Used when the progress code is
DEMUXMPEGTS_DISCONTINUITY.

newOffset Structure used when progress code is
DEMUXMPEGTS_NEW_PTS_OFFSET.

 index Index to which the progress report applies.
(0 ≤ index < DEMUXMPEGTS_NROF_AV_OUTPUTS)

 offset The new offset, which is added to each PTS sent
to audio and video decoders and copied to
time.hiTicks of other packets sent out. See Non-AV
outputs on page 14 and Clock Recovery on page 9.

Description

This structure is passed as the description field of the tsaProgressArgs_t.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 27

30

tmalDemuxMpegTSProgressFlags_t

typedef enum {
 DEMUXMPEGTS_NEW_CLOCK_FREQUENCY = 0x00000001,
 DEMUXMPEGTS_DISCONTINUITY = 0x00000002,
 DEMUXMPEGTS_NO_INCOMING_DATA = 0x00000004,
 DEMUXMPEGTS_LOST_SYNC = 0x00000008
} tmalDemuxMpegTSProgressFlags_t;

Fields

DEMUXMPEGTS_NEW_CLOCK_FREQUENCY The demultiplexer’s clock recovery module has
found that the frequency of the audio and video
decoders needs to be adjusted to operate correctly.

In args.description, use the newClockFrequency
field of tmalDemuxMpegTSProgressDescription_t.

Action: The controlling application must adjust
the frequencies of the audio and video decoder
clocks appropriately. This usually means that the
audio frequency in audio out is set to
48 kHz × args / 27 MHz and the video decoder
clock is sped up or slowed down similarly. Some
applications might ignore this report and adjust
the output clocks based on the PCR and PTS dif-
ferences.

DEMUXMPEGTS_DISCONTINUITY A discontinuity is signalled in the adaptation field
of a redirected PID. This PID is not an audio or
video PID and is possibly a PMT PID signalling a
version number discontinuity according to the
MPEG-2 standard section 2.4.3.5.

In args.description, use tmalDemuxMpegTSPro-
gressDescription_t to get the PID.

Action: None is expected by the demultiplexer.

DEMUXMPEGTS_NO_INCOMING_DATA
A timeout on the input queue occurred. The time-
out is set to

All of these variables are instance variables and
can be set by the user. The demultiplexer only
reports this error when it does not have all the
input buffers, so there is something wrong at the
input.

Action: inspect the system for errors. Either the
program has ended or we have lost data.

1 +
ticksPerSecond

incomingDataRate / inputBufferSize

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

28 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

DEMUXMPEGTS_LOST_SYNC The demultiplexer must start looking for a sync
byte because it did not occur at the expected loca-
tion in the data.

Action: ignore this or start error concealment.

tmalDemuxMpegTSRedirectedOutputFormat_t

typedef enum {
 demuxMpegTSTransport,
 demuxMpegTSSection,
 demuxMpegTSSectionCRC
} tmalDemuxMpegTSRedirectedOutputFormat_t;

Fields

demuxMpegTSTransport Request MPEG-2 transport packets.

demuxMpegTSSection Request MPEG-2 sections, no CRC. PID is stored
in userSender field.

demuxMpegTSSectionCRC Request MPEG-2 sections, with CRC. When CRC
does not match, section is discarded. PID is stored
in userSender field.

Description

Enumerates the type of data that will be put in the dynamically redirected outputs of the

demultiplexer. Extra redirected outputs can be requested by calling tmolDemuxMpegTS-

AddRequestedPid.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 29

30

tmalDemuxMpegTSSectionCallBack_t

typedef Bool (*tmalDemuxMpegTSSectionCallBack_t)(
 UInt32 pid,
 UInt8 *section,
 UInt32 sectionLength,
 void *userData,
 UInt32 *userOutData
);

Fields

pid The PID for which this section was found.

section Pointer to the start of the MPEG section (first byte
is table ID). Section is CRC’d when the format is
demuxMpegTSSectionCRC.

sectionLength Length of the section (not the section_length field
as specified by MPEG-2 but the actual number of
bytes in the whole section).

userData Pointer passed with the request for redirection of
this PID. (This field can be used to store, for
instance, section filter data.)

userOutData Pointer to an arbitrary value that you can set. This
value is passed in the userSender field of the
packet that will be sent to the queue. Normally,
this field is used to pass on the PID (for sections or
data is not filtered with a callback function). You
can encode the PID when neccessary.

Description

This function can be passed to the demultiplexer on request of a non-audio/video PID

redirection. When the function passed is not Null, the function is called before the sec-

tion is passed to the queue. With this callback function, the application can implement

DVB section filtering.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

30 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmalDemuxMpegTSControlArgs_t

typedef struct tmalDemuxMpegTSControlArgs {
 union {
 struct {
 UInt32 pcrPid;
 UInt32 videoPid;
 UInt32 mainAudioPid;
 UInt32 secondaryAudioPid;
 UInt32 index;
 } changePids;
 struct {
 UInt32 pid;
 UInt32 queueIndex;
 UInt32 clockIndex;
 tmalDemuxMpegTSRedirectedOutputFormat_t format;
 tmalDemuxMpegTSSectionCallBack_t callback;
 } addRedirectedPid;
 struct {
 UInt32 pid;
 } removeRedirectedPid;
 } args;
} tmalDemuxMpegTSControlArgs_t, *ptmalDemuxMpegTSControlArgs_t;

Fields

changePids Used when the control command is
TMAL_demuxMpegDEMUXMPEGTS_CHANGE_PIDS. The
fields are set to be set to the requested PID numbers.
Each unused PID is to be set to DEMUXMPEGTS_NO_PID.
Refer also to these functions:

tmolDemuxMpegTSChangeVideoPid
tmolDemuxMpegTSChangeMainAudioPid
tmolDemuxMpegTSChangeSecondaryAudioPid
tmolDemuxMpegTSChangePcrPid
tmolDemuxMpegTSChangeToNewPids

addRedirectedPid Used when the control command is
TMAL_DEMUXMPEGTS_ADD_PID_REDIRECTION. The
parameters are as follows:

pid: the PID for which extra information is requested.

queueIndex: the index in the queue in which you want
the demultiplexer to put the data. Should be less than

DEMUXMPEGTS_MAX_NROF_REQUESTED_QUEUES + the
number of default outputs of the demultiplexer.

clockIndex: the clock index for which the offsets must be
entered, in the packet->header->time fields. See Outputs
on page 80.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 31

30

format: the format in which the extra data is requested.
See tmalDemuxMpegTSRedirectedOutputFormat_t.

callBack: when not Null, this field points to callback
function that is called (when format is
demuxMpegTSSection or demuxMpegTSSectionCRC)
before sending the section to the queue.

removeRedirectedPid Used when the control command is
TMAL_DEMUXMPEGTS_REMOVE_REDIRECTED_PID. pid is
the previously redirected PID that should no longer be
redirected.

Description

This is the data structure used to pass commands from the tmol layer to the tmal layer.

You normally call the tmol layer functions, which have a functional interface. This data

is then put into the tmalDemuxMpegTSControl_t structure which is then passed to the

control queue.

These commands can be invoked by calls to the functions:

tmolDemuxMpegTSChangeVideoPid

tmolDemuxMpegTSChangeMainAudioPid

tmolDemuxMpegTSChangeSecondaryAudioPid

tmolDemuxMpegTSChangeToNewPids

tmolDemuxMpegTSAddRedirectedPid

tmolDemuxMpegTSRemoveRedirectedPid

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

32 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

DemuxMpegTS API Functions

This section presents the DemuxMpegTS component functional interface.

Name Page

tmolDemuxMpegTSOpen 33

tmolDemuxMpegTSInstanceSetup 34

tmolDemuxMpegTSGetInstanceSetup 36

tmolDemuxMpegTSStart 37

tmolDemuxMpegTSStop 38

tmolDemuxMpegTSClose 39

tmolDemuxMpegTSChangeVideoPid 40

tmolDemuxMpegTSChangeMainAudioPid 41

tmolDemuxMpegTSChangeSecondaryAudioPid 42

tmolDemuxMpegTSChangePcrPid 43

tmolDemuxMpegTSChangeToNewPids 44

tmolDemuxMpegTSAddRedirectedPid 45

tmolDemuxMpegTSRemoveRedirectedPid 47

tmalDemuxMpegTSCRCValue 48

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 33

30

tmolDemuxMpegTSOpen

extern tmLibappErr_t tmolDemuxMpegTSOpen(
 Int *instance
);

Parameters

instance Pointer (returned) to the opened instance.

Return Codes

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation failed.

TMLIBAPP_OK Success.

The function can also return any code produced by tsaDefaultOpen.

Description

Opens an instance of the demultiplexer. (Refer to the documentation on tmol.) It calls

tsaDefaultOpen and thus indirectly, tmalDemuxMpegTSOpen.

The function creates a demultiplexer task with no preemption and no time slicing. This

means that the demultiplexer runs until it blocks on one of it input queues.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

34 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolDemuxMpegTSInstanceSetup

extern tmLibappErr_t tmolDemuxMpegTSInstanceSetup(
 Int instance,
 ptmolDemuxMpegTSInstanceSetup_t setup
);

Parameters

instance Instance, returned by tmolDemuxMpegTSOpen.

setup Pointer to the demultiplexer’s setup data struc-
ture. See tmolDemuxMpegTSInstanceSetup_t.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE
The instance is not open. Triggered as an assert.

TMLIBAPP_ERR_ALREADY_SETUP The instance is already set up. Triggered as an
assert.

DEMUXMPEGTS_ERR_INVALID_NROF_BUFFERS
nrofInputBuffers ≤ 0. Triggered as an assert.

DEMUXMPEGTS_ERR_INVALID_BUFFER_SIZE
inputBufferSize ≤ 0. Triggered as an assert.

DEMUXMPEGTS_ERR_INVALID_CLOCK_TICK_VALUE
 ticksPerSecond ≤ 0. Triggered as an assert.

DEMUXMPEGTS_ERR_INVALID_CLOCK_HANDLE
During instance setup, the demultiplexer was not
passed a valid clock handle. Triggered as an assert.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory could not be allocated.

TMLIBAPP_ERR_NULL_DATAINFUNC The datain function is not specified. Triggered as
an assert.

TMLIBAPP_ERR_NULL_DATAOUTFUNC The dataout function is not specified. Triggered as
an assert.

TMLIBAPP_ERR_NULL_PROGRESSFUNC The progress function is not specified. Triggered
as an assert.

TMLIBAPP_ERR_NULL_ERRORFUNC The error function is not specified. Triggered as an
assert.

TMLIBAPP_ERR_NULL_ERRORFUNC Either the input or output descriptors are Null.
Triggered as an assert.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

The function can also return any error code produced by tsaDefaultInstanceSetup.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 35

30

Description

Sets up the instance previously opened by tmolDemuxMpegTSOpen. Memory is allocated

to store runtime instance data. The instance is marked as setup. You should call tmolDe-

muxMpegTSInstanceSetup only once for each instance. The clock handle for index 0 is

initialized to a tsaClock_t instance running at 90 kHz. This clock will be locked to the

tuned program’s PCR.

Because the demultiplexer does not copy data, it needs some extra information about its

environment: the number of input buffers (used for copying cross input buffer packets),

the input buffer size, and OS clock ticks (used for calculating a timeout on the datain

function).

All instance variables extracted (video PID etc.) are set to unknown. After a successful call

to tmolDemuxMpegTSInstanceSetup, the instance is ready to be started.

Note
The clock instance is initialized in this tmolDemuxMpegTSInstanceSetup
function. Thus, other components that inspect the same clock, such as the
closed captioning decoder or the video and audio decoders, might need to
be started later or they should not depend on getting an initialized
tsaClock_t instance.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

36 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolDemuxMpegTSGetInstanceSetup

extern tmLibappErr_t tmolDemuxMpegTSInstanceSetup(
 Int instance,
 ptmolDemuxMpegTSInstanceSetup_t *setup
);

Parameters

instance Instance, as returned by tmolDemuxMpegTSOpen.

setup Pointer to variable in which to return a pointer to
the demultiplexer’s setup data structure. See page
105.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

Description

This function, used during initialization of the demultiplexer, returns the default set-

tings for the demultiplexer instance. The instance setup can then be further initialized

by your application, which normally defines all the queues and the progress and error

functions and then passes the fully configured setup structure to tmolDemuxMpegTS-

InstanceSetup.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 37

30

tmolDemuxMpegTSStart

extern tmLibappErr_t tmolDemuxMpegTSStart(
 Int instance
);

Parameters

instance Instance, as returned by tmolDemuxMpegTSOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

TMLIBAPP_ERR_NOT_SETUP The instance is not set up with tmolDemuxMpeg-
TSInstanceSetup. Triggered by tmAssert.

TMLIBAPP_ERR_ALREADY_STARTED The instance is already started. Triggered by
tmAssert.

Description

Starts the previously opened and set up instance of the demultiplexer. The function

expects that the empty queues of the audio and video outputs contain empty packets.

Then the demultiplexer starts waiting for input data from the input queue.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

38 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolDemuxMpegTSStop

extern tmLibappErr_t tmolDemuxMpegTSStop(
 Int instance
);

Parameters

instance Instance, as returned by tmolDemuxMpegTSOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

TMLIBAPP_ERR_NOT_SETUP The instance is not set up with tmolDemuxMpeg-
TSInstanceSetup. Triggered by tmAssert.

Description

The function calls tsaDefaultStop, which stops the demultiplexer. After the demulti-

plexer stops, its main loop exits. More information on stop functions can be found in

the TSSA documentation.

Once stopped, the demultiplexer cannot be set up again.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 39

30

tmolDemuxMpegTSClose

extern tmLibappErr_t tmolDemuxMpegTSClose(
 Int instance
);

Parameters

instance Instance, as returned by tmolDemuxMpegTSOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE
The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

TMLIBAPP_ERR_NOT_STOPPED The instance is not stopped before closing. Trig-
gered by tmAssert.

The function can also return any code produced by tsaDefaultClose.

Description

Closes a (stopped) instance of the demultiplexer.

Note
The clock handles created by the demultiplexer are destroyed and can no
longer be used by other components.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

40 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolDemuxMpegTSChangeVideoPid

extern tmLibappErr_t tmolDemuxMpegTSChangeVideoPid(
 Int instance,
 UInt32 newVideoPid,
 UInt32 index
);

Parameters

instance Instance, as returned by tmolDemuxMpegTSOpen.

newVideoPid The PID from which the demultiplexer must
extract data. This data will go in elementary
stream form to the video output of the demulti-
plexer.

index The relative index from
DEMUXMPEGTS_VIDEO_OUTPUT of the queue to
which this PID should go.

(0 ≤ index < DEMUXMPEGTS_NROF_AV_OUTPUTS)

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE
The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

TMLIBAPP_ERR_NOT_SETUP The instance is not set up with tmolDemuxMpeg-
TSInstanceSetup. Triggered by tmAssert.

DEMUXMPEGTS_ERR_INVALID_QUEUE_INDEX
The index ³
DEMUXMPEGTS_NROF_AV_OUTPUTS.

DEMUXMPEGTS_ERR_NO_OUTPUTDESCRIPTOR
No IODescriptor is installed for this
DEMUXMPEGTS_VIDEO_OUTPUT + index.

Description

This function prepares and sends a command to the demultiplexer task, which then syn-

chronously reacts on it. The command is sent with default priority.

Upon receipt of the command, the demultiplexer task stops producing packets from the

current PID and starts extracting packets of the requested video PID. If the PIDs are the

same, the command has no effect and does not cause any loss of data.

Note
This function may schedule the current task out.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 41

30

tmolDemuxMpegTSChangeMainAudioPid

extern tmLibappErr_t tmolDemuxMpegTSChangeMainAudioPid(
 Int instance,
 UInt32 newAudioPid,
 UInt32 index
);

Parameters

instance Instance, as returned by tmolDemuxMpegTSOpen.

newAudioPid The PID from which the demultiplexer must
extract data. This data will go in elementary
stream form to the main audio output of the
demultiplexer.

index The relative index from
DEMUXMPEGTS_MAIN_AUDIO_OUTPUT of the
queue to which this PID should go.

(0 ≤ index < DEMUXMPEGTS_NROF_AV_OUTPUTS)

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

TMLIBAPP_ERR_NOT_SETUP The instance is not set up with tmolDe-
muxMpegTSInstanceSetup. Triggered by tmAssert.

DEMUXMPEGTS_ERR_INVALID_QUEUE_INDEX
The index ≥ DEMUXMPEGTS_NROF_AV_OUTPUTS.

DEMUXMPEGTS_ERR_NO_OUTPUTDESCRIPTOR
No IODescriptor is installed for this
DEMUXMPEGTS_AUDIO_OUTPUT + index.

Description

This function prepares and sends a command to the demultiplexer task, which then syn-

chronously reacts on it. The command is sent with default priority.

Upon receipt of the command, the demultiplexer task stops producing packets from the

current PID and starts extracting packets of the requested audio PID. If the PIDs are the

same, the command has no effect and will not cause any loss of data.

Note
This function may schedule the current task out.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

42 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolDemuxMpegTSChangeSecondaryAudioPid

extern tmLibappErr_t tmolDemuxMpegTSChangeSecondaryAudioPid(
 Int instance,
 UInt32 newAudioPid,
 UInt32 index
);

Parameters

instance Instance, as returned by tmolDemuxMpegTSOpen.

newAudioPid The PID from which the demultiplexer must
extract data. This data will go in elementary
stream form to the secondary audio output of the
demultiplexer.

index The relative index from
DEMUXMPEGTS_SECONDARY_AUDIO_OUTPUT of
the queue to which this PID should go.

(0 ≤ index < DEMUXMPEGTS_NROF_AV_OUTPUTS)

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

TMLIBAPP_ERR_NOT_SETUP The instance is not set up with tmolDemuxMpeg-
TSInstanceSetup. Triggered by tmAssert.

DEMUXMPEGTS_ERR_INVALID_QUEUE_INDEX
The index ≥ DEMUXMPEGTS_NROF_AV_OUTPUTS.

DEMUXMPEGTS_ERR_NO_OUTPUTDESCRIPTOR
No IODescriptor is installed for this
DEMUXMPEGTS_SECONDARY_AUDIO_OUTPUT +
index.

Description

This function prepares and sends a command to the demultiplexer task, which then syn-

chronously reacts on it. The command is sent with default priority.

Upon receipt of the command, the demultiplexer task stops producing packets from the

current PID and starts extracting packets of the requested secondary audio PID. If the

PIDs are the same, the command has no effect and will not cause any loss of data.

Note
This function may schedule the current task out.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 43

30

tmolDemuxMpegTSChangePcrPid

extern tmLibappErr_t tmolDemuxMpegTSChangePcrPid(
 Int instance,
 UInt32 newPcrPid,
 UInt32 index
);

Parameters

instance Instance, as returned by tmolDemuxMpegTSOpen.

newPcrPid The PID from which the demultiplexer must
extract the PCR.

index The relative index from
DEMUXMPEGTS_SECONDARY_AUDIO_OUTPUT of
the queue to which this PID should go.

(0 ≤ index < DEMUXMPEGTS_NROF_AV_OUTPUTS)

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

TMLIBAPP_ERR_NOT_SETUP when the instance is not set up with tmolDemux-
MpegTSInstanceSetup. Triggered by tmAssert.

DEMUXMPEGTS_ERR_INVALID_QUEUE_INDEX
The index ≥ DEMUXMPEGTS_NROF_AV_OUTPUTS.

DEMUXMPEGTS_ERR_INVALID_CLOCK_HANDLE
No clock handle was installed for this index at
instance setup time.

Description

The PCR belongs to a certain PID and you can select the PID from which the PCR needs

to be taken. Normally, the PCR’s PID is specified in the PMT for a program. Artifacts can

occur when the PCR and the audio/video PID’s decoders have no relation.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

44 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolDemuxMpegTSChangeToNewPids

extern tmLibappErr_t tmolDemuxMpegTSChangeToNewPids(
 Int instance,
 UInt32 newPcrPid,
 UInt32 newVideoPid,
 UInt32 newMainAudioPid,
 UInt32 newSecondaryAudioPid,
 UInt32 index
);

Parameters

instance Instance, as returned by tmolDemuxMpegTSOpen.

newPcrPid The PID from which the demultiplexer must
extract the PCR.

newVideoPid The PID from which the demultiplexer must
extract the video PES.

newMainAudioPid The PID from which the demultiplexer must
extract the main audio PES.

newSecondaryAudioPid The PID from which the demultiplexer must
extract the secondary audio PES.

index The relative index from
DEMUXMPEGTS_VIDEO_OUTPUT of the queue to
which this PID should go.

(0 ≤ index < DEMUXMPEGTS_NROF_AV_OUTPUTS)

Return Codes

TMLIBAPP_OK Success.

The function can return any code produced by these functions:

tmolDemuxMpegTSChangeVideoPid

tmolDemuxMpegTSChangeSecondaryAudioPid

tmolDemuxMpegTSChangeMainAudioPid

tmolDemuxMpegTSChangePcrPid

Description

For each of the four input PIDs not set to DEMUXMPEGTS_NO_PID, the demultiplexer

sets the selected PID for the PCR, video, main audio and secondary audio to the

requested PID. The requests are honored whether the PIDs exist in the bitstream or not.

Note
This function may schedule the current task out.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 45

30

tmolDemuxMpegTSAddRedirectedPid

extern tmLibappErr_t tmolDemuxMpegTSAddRedirectedPid(
 Int instance,
 UInt32 pid,
 UInt32 queueIndex,
 UInt32 clockIndex,
 tmalDemuxMpegTSRedirectedOutputFormat_t format,
 Pointer userData,
 tmalDemuxMpegTSSectionCallBack_t callBack
);

Parameters

instance Instance, as returned by tmolDemuxMpegTSOpen.

pid The PID that must be redirected.

queueIndex An index, in the outputDescriptors array, of the demul-
tiplexer’s instance. Queues must be attached to this
queueIndex’s entry. Note that user-requested queues
start after the default outputs of the demultiplexer.

clockIndex The index from which the clock offsets must be taken
and put into packet->header->time. See Outputs on page
80 and tmalDemuxMpegTSConfig_t.

format Request transport packets, MPEG-2 sections or MPEG-2
sections with CRC. See tmalDemuxMpegTSRedirected-
OutputFormat_t on page 99.

userData Arbitrary pointer that will be passed back to the applica-
tion when the callBack function is called.

callback The callback function that, when not Null, is called for
each section of this PID before the section is passed to
the queue. For arguments to the callback function, refer
to the tmalDemuxMpegTSSectionCallBack_t. Note that
for sections that have the callback function installed,
the userSender field of the tmAvPacket_t is not the regu-
lar PID number, but a value that the callBack specifies. It
is allowed to call other tmol control functions (such as
another AddRedirectPid or RemoveRedirectedPid, but
not the ‘close’ or ‘stop’ functions) from within the call-
back function.

Return Codes

TMLIBAPP_OK Success.

DEMUXMPEGTS_ERR_INVALID_QUEUE_INDEX
The queue index exceeds the maximum number of
queues that can be used for redirection. See RC-5 Inputs

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

46 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

and Outputs on page 60. The maximum number is
DEMUXMPEGTS_MAX_NROF_REQUESTED_QUEUES + the
number of default outputs of the demultiplexer.

DEMUXMPEGTS_ERR_INVALID_REQUESTED_PID
The PID was already requested.

DEMUXMPEGTS_ERR_INVALID_QUEUE_INDEX
The requirement that 0 ≤ clockIndex <
DEMUXMPEGTS_NROF_AV_OUTPUTS is violated.

TMLIBAPP_ERR_MEMALLOC_FAILED
Memory allocation failed.

TMLIBAPP_ERR_INVALID_INSTANCE
The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

TMLIBAPP_ERR_NOT_SETUP The instance is not set up with tmolDemuxMpegTS-
InstanceSetup. Triggered by tmAssert.

Description

Dynamically add a redirection of packets of the specified PID. The caller provides the PID

and a queue index. This queue index should lie in the outputDescriptors of the demulti-

plexer’s instance and should be a fully initialized InOutDescriptor. (See Outputs on page

80. The caller ensures that the empty queue has a sufficient number of packets and that

buffers are pre-allocated. Packets are standard tmAvFormat_t packets already set by tmol-

GetInstanceSetup.

You can direct multiple PIDs to the same queue index.

A PID cannot be redirected to multiple queues.

You can direct multiple requested PIDs to the same PSI and private data queue indices.

Output can be requested in the form of transport packets (188 bytes) or MPEG-2 sec-

tions. Specify the form with the tmalDemuxMpegTSRedirectedOutputFormat_t enumera-

tion type. When sections are requested, the pre-allocated buffers should be big enough

to handle maximum size sections (or the data will be discarded). An optional CRC is per-

formed on the section. If the CRC does not match, the section is discarded. Optionally, a

callback function can be installed. See tmalDemuxMpegTSSectionCallBack_t.

For section output, the PID for which the section is redirected is stored in the userSender

field of the header of the tmAvFormat packet.

Note
This function may schedule the current task out.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 47

30

tmolDemuxMpegTSRemoveRedirectedPid

extern tmLibappErr_t tmolDemuxMpegTSRemoveRedirectedPid(
 Int instance,
 UInt32 pid
);

Parameters

instance Instance, as returned by tmolDemuxMpegTSOpen.

pid The PID for which to stop redirection. Your appli-
cation is responsible for de-allocating the queues
when this PID is the last PID to be redirected on
this queue’s index.

Return Codes

TMLIBAPP_OK Success.

DEMUXMPEGTS_ERR_PID_NOT_FOUND The PID is not known to the demultiplexer and
was probably not requested previously by tmol-
DemuxMpegTSAddRedirectedPid.

DEMUXMPEGTS_ERR_INVALID_REQUESTED_PID
The PID was not successfully requested with a call
to tmolDemuxMpegTSAddRedirectedPid.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

TMLIBAPP_ERR_NOT_SETUP The instance is not set up with tmolDemuxMpeg-
TSInstanceSetup. Triggered by tmAssert.

Description

Remove a previously redirected PID with a call to tmolDemuxMpegTSAddRedirectedPid.

Note
This function may schedule the current task out.

Chapter 30: MPEG Transport Stream Demultiplexer (DemuxMpegTS) API

48 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmalDemuxMpegTSCRCValue

extern UInt32 tmalDemuxMpegTSCRCValue(
 UInt8 *packet,
 Int len
);

Parameters

packet Address of the section. Usually, this is a pointer to
the table ID.

len Number of bytes to be taken into account for the
CRC. Typically, this is

section length + 3 Ð 4

Section length is stored in the packet. The value 3
is the number of bytes before the section length.
The value 4 is the number of bytes in the CRC
value itself. See the MPEG-2 standard for more
detail on the CRC.

Return Codes

The CRC value of the packet section.

Description

Calculates the CRC value for an MPEG-2 section. Returns the CRC value which is then to

be checked against the CRC value stored in the packet.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 49

31

Chapter 31

MPEG Program Stream Demultiplexer

Note
This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Topic Page

DemuxMpegPS API Overview 50

DemuxMpegPS Inputs and Outputs 51

DemuxMpegPS Errors 53

DemuxMpegPS Progress 53

DemuxMpegPS API Data Structures 53

DemuxMpegPS API Functions 61

Chapter 31: MPEG Program Stream Demultiplexer

50 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

DemuxMpegPS API Overview

The DemuxMpegPS component is a software TSSA Mpeg program stream demultiplexer.

It accepts MPEG2 program streams as described in ISO/IEC 13818-1, Recommendation

H.222.0 and MPEG1 system streams as described in ISO/IEC 11172-1.

If the stream is a program or a system stream, the DemuxMpegPS component looks for a

pack start code and extracts the system clock reference from the pack header. The demul-

tiplexer will report the system reference clock, using the progress function.

DemuxMpegPS extracts the stream IDs for the following data types: Mpeg audio stream,

private AC3 audio streams, private PCM audio streams, private Subpic streams, and

Mpeg video streams. This information is stored in a table, that gets updated each time a

new stream ID is found, and a progress report is sent to notify the application, with this

table. The application can either pre-determine what elementary streams need to be send

to the audio and video decoders, or can select streams during execution, using the infor-

mation from the progress report. This can be done with the tmalDemuxMpegPSInstance-

Config function. In the latter case the beginning part of the bitstream may be lost for the

decoders. After being given the audio and video stream IDs, the demultiplexer looks for

corresponding PES start codes, and parses the PES packets. The audio elementary stream

with the given stream ID will be sent on the DEMUXMPEGPS_AUDIO_OUTPUT queue. The

other audio PES will be ignored, since only one stream ID per output queue can be

selected. Similarly, the video will go to the DEMUXMPEGPS_AUDIO_OUTPUT queue.

The stream IDs reported to the application are:

1. ISO/IEC 13818-2 or ISO/IEC 11172-2 video stream

2. ISO/IEC 13818-3 or ISO/IEC 11172-3 audio stream.

3. Private_Stream_1, if the sub stream ID is an audio stream ID (AC-3 or PCM)

DemuxMpegPS reports it as audio stream. If the sub stream ID is a sub-picture,

DemuxMpegPS reports it as sub-picture.

Before DemuxMpegPS sends the packet in the output queue, it attached the PTS and DTS

information, extracted from the PES header. This timestamp uses the time field of the

packet header, and avhValidTimestamp will be set. DTS information is passed attached to

an empty packet, and applies to the next packet. For the DTS avhValidTimestamp as well

as avhValidDts are set.

For the extracted elementary streams, DemuxMpegPS does not copy the data, when

sending the packets, but sends a pointer on the data. It is the responsibilities of the

downstream components to return the packets fast enough.

Limitations

The application is responsible for reconnecting the downstream components before

DemuxMpegPS is told to start sending output to its queues. DemuxMpegPS does not

Chapter 31: MPEG Program Stream Demultiplexer

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 51

31

install formats on its output queues. Also, the formats need to be installed before output

is requested.

The application needs to control the system clock. The reason is that DemuxMpegPS is

likely to be attached to a file reader, in which case there is no encoder clock to regener-

ate, and the system runs at a 90KHz clock of the decoder. In these situations, the audio is

usually taken as clock master, that is, the audio system determines the clock value, and

the clock frequency is constant. Since DemuxMpegPS does not know about any audio

system, it leaves this clock regeneration to the application. An example is given in

exolDemuxMpegPS. In the case of streaming data, for instance when VdigVIRaw is used

to get input, the application needs to regenerate the encoder’s 90 kHz clock and likely

the frequency of audio and video hardware needs to be adjusted in order to circumvent

underruns or overruns in audio.

DemuxMpegPS Inputs and Outputs

Overview

An overview of the inputs and output of the MPEG demultiplexer is depicted in Figure 5.

There is one input, which might be an MPEG2 program stream or MPEG1 system stream.

Next to the error and progress reports, there are three stream outputs: the demultiplexed

audio elementary stream, the demultiplexed video elementary stream and the sub-pic-

ture video elementary stream.

Figure 2 Overview of the Demultiplexer

Control

Extracted audio
elementary stream

Extracted video
elementary stream

Extracted video
elementary stream
(sub-picture)

DemuxMpegPS

MPEG
Demux.

Progress ReportsError Reports

MPEG
Program

Stream

Chapter 31: MPEG Program Stream Demultiplexer

52 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

Inputs

The capability format for the input descriptor is set to

The incoming packets are tmAvPackets, which have the format set to one above.

Outputs

The demultiplexer parses the program stream, decodes the pack header, There are three

outputs, the first one being the extracted video elementary stream, which has its capabil-

ity format set to:

The second output is the extracted audio elementary stream, which has its capability for-

mat set to:

The third output is the video elementary stream for the sub picture. Its capability format

is set to:

tmAvFormat_t tpFormat = {
 sizeof(tmAvFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcSystem, /* dataClass */
 stfMPEG1System | stfMPEG2Program /* dataType */
 avdsNone /* dataSubtype */
 0 /* description */
};

#define DEMUXMPEGPS_INPUT 0

tmAvFormat_t videoFormat = {
 sizeof(tmAvFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcVideo, /* dataClass */
 vtfMPEG, /* dataType */
 vdfNone, /* dataSubtype */
 0 /* description */
};

tmAvFormat_t audioFormat = {
 sizeof(tmAvFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcAudio, /* dataClass */
 atfAC3 | atfMPEG, /* dataType */
 atfMPEG1_Layer1 | atfMPEG1_Layer2 |
 atfMPEG1_Layer3 | atfMPEG2 | apfGeneric /* dataSubtype */
 0 /* description */
};

tmAvFormat_t subpicFormat = {
 sizeof(tmAvFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcVideo, /* dataClass */
 vtfMPEG, /* dataType */
 vdfNone, /* dataSubtype */
 0 /* description */
};

Chapter 31: MPEG Program Stream Demultiplexer

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 53

31

The output descriptor assignment is:

DemuxMpegPS Errors

There is a limited number of error reports produced by DemuxMpegPS. Some reports

have the tsaErrorFlagsFatal set which should lead to termination of the instance.

DEMUXMPEGPS_ERR_IO_FAILED Some Dataout or Datain function failed. The error
code of the failing OS call may also be reported.

DemuxMpegPS Progress

There is one progress report produced by DemuxMpegPS. When DemuxMpegPS has seen

new stream types in the stream, it calls the progress function with the flags set to

DEMUXMPEGPS_STREAM_INFO. This reports contains the stream information in the

description field of the progress argument to the application. The data structure used for

the stream information is tmalDemuxMpegPSStreamInfo_t.

DemuxMpegPS will also report to the application when it reaches an End Of Stream start

code, or an End Of Sequence start code. In that case, the progress function will be called,

using the DEMUXMPEGPS_END_OF_STREAM flag.

DemuxMpegPS API Data Structures

This section describes the DemuxMpegPS component data structures.

#define DEMUXMPEGPS_VIDEO_OUTPUT 0
#define DEMUXMPEGPS_AUDIO_OUTPUT 1
#define DEMUXMPEGPS_SUBPIC_OUTPUT 2

tmLibappErr_t
DemuxMpegPSError(Int instId, UInt32 flags, ptsaErrorArgs_t args)

Name Page

tmolDemuxMpegPSInstanceSetup_t, tmalDemuxMpegPSInstanceSetup_t 54

tmolDemuxMpegPSCapabilities_t, tmalDemuxMpegPSCapabilities_t 55

tmalDemuxMpegPSCommand_t 56

tmalDemuxMpegPSProgressFlags_t 58

tmalDemuxMpegPSStreamInfo_t 59

tmalDemuxMpegPSInfo_t 60

Chapter 31: MPEG Program Stream Demultiplexer

54 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolDemuxMpegPSInstanceSetup_t, tmalDemuxMpegPSInstanceSetup_t

typedef struct{
 ptsaDefaultInstanceSetup_t defaultSetup;
 UInt32 numberOfInputPackets;
 tsaTimeSleepFunc_t TimSleep;
 tmAudioTypeFormat_t audio_type;
 tmVideoTypeFormat_t video_type;
 Bool subpic_on;
 UInt32 audio_stream_id;
 UInt32 video_stream_id;
 UInt32 subpic_stream_id;
} tmalDemuxMpegPSInstanceSetup_t, *ptmalDemuxMpegPSInstanceSetup_t;

typedef tmalDemuxMpegPSInstanceSetup_t
 tmolDemuxMpegPSInstanceSetup_t;

typedef ptmalDemuxMpegPSInstanceSetup_t
 ptmolDemuxMpegPSInstanceSetup_t;

Fields

defaultSetup See TSSA documentation.

numberOfInputPackets Number of input packets. For buffer management
purposes, DemuxMpegPS needs to know the
number of input buffers. It cannot be changed
on-the-fly.

TimSleep Time sleep function, tmosTimSleep, by default.

audio_type Type of the requested audio_stream_id.

video_type Type of the requested video_stream_id.

subpic_on When true DemuxMpegPS extracts the requested
subpic_stream_id.

audio_stream_id Stream ID of the audio stream the application
wants DemuxMpegPS to pass to the audio output.
DEMUXMPEGPS_NO_PID if no stream is requested.

video_stream_id Stream ID of the video stream the application
wants DemuxMpegPS to pass to the video output.
DEMUXMPEGPS_NO_PID if no stream is requested.

subpic_stream_id Stream ID of the sub picture stream the applica-
tion wants DemuxMpegPS to pass to the sub pic-
ture output. DEMUXMPEGPS_NO_PID if no stream
is requested.

Chapter 31: MPEG Program Stream Demultiplexer

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 55

31

Description

Data structure passed to tmolDemuxMpegPSInstanceSetup and tmalDemuxMpegPS-

InstanceSetup to describe the input and output connections and the initial stream IDs

and stream types.

tmolDemuxMpegPSCapabilities_t, tmalDemuxMpegPSCapabilities_t

typedef struct {
 ptsaDefaultCapabilities_t defaultCaps;

} tmalDemuxMpegPSCapabilities_t, *ptmalDemuxMpegPSCapabilities_t;

typedef tmalDemuxMpegPSCapabilities_t
 tmolDemuxMpegPSCapabilities_t;

typedef ptmalDemuxMpegPSCapabilities_t
 ptmolDemuxMpegPSCapabilities_t;

Fields

defaultCaps See TSSA documentation.

Chapter 31: MPEG Program Stream Demultiplexer

56 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmalDemuxMpegPSCommand_t

typedef enum {

 DEMUXMPEGPS_SELECT_MPEG_AUDIO_ID tsaCmdUserBase + 0x2,
 DEMUXMPEGPS_SELECT_AC3_AUDIO_ID tsaCmdUserBase + 0x3,
 DEMUXMPEGPS_SELECT_PCM_AUDIO_ID tsaCmdUserBase + 0x4,
 DEMUXMPEGPS_SELECT_MPEG_VIDEO_ID tsaCmdUserBase + 0x5,
 DEMUXMPEGPS_SELECT_SUBPIC_ID tsaCmdUserBase + 0x6,
 DEMUXMPEGPS_REPORT_AUDIO tsaCmdUserBase + 0x7,
 DEMUXMPEGPS_REPORT_VIDEO tsaCmdUserBase + 0x8,
 DEMUXMPEGPS_DVD_SUBPIC_ON tsaCmdUserBase + 0x9,
 DEMUXMPEGPS_DVD_SUBPIC_OFF tsaCmdUserBase + 0xa,
 } tmalDemuxMpegPSCommand_t;

Fields

DEMUXMPEGPS_SELECT_MPEG_AUDIO_ID
Set the mpeg audio extracted stream ID to
args–>parameter.

DEMUXMPEGPS_SELECT_AC3_AUDIO_ID Set the ac3 audio extracted stream ID to
args–>parameter.

DEMUXMPEGPS_SELECT_PCM_AUDIO_ID Set the linear PCM audio extracted stream ID to
args–>parameter.

DEMUXMPEGPS_SELECT_MPEG_VIDEO_ID
Set the video extracted stream ID to
args–>parameter.

DEMUXMPEGPS_SELECT_SUBPIC_ID Set the sub picture extracted stream ID to
args–>parameter.

DEMUXMPEGPS_REPORT_AUDIO Report information about the audio stream that is
being demultiplexed. DemuxMpegPS will report
what type of audio data (Mpeg, Ac3 or PCM), and
which stream ID or sub-stream ID is currently
selected.

DEMUXMPEGPS_REPORT_VIDEO Report which Mpeg video stream is selected.

DEMUXMPEGPS_DVD_SUBPIC_ON Not implemented yet.

DEMUXMPEGPS_DVD_SUBPIC_OFF By default, this mode is taken.

Description

These commands can be passed as command in a ptsaControlArgs_t structure that is

passed to tmolDemuxMpegPSInstanceConfig. The parameter of the ptsaControlArgs_t

structure is used to pass the argument, if required. When selecting a stream ID, parame-

ter will contain the value of the selected stream ID.

When you select the DEMUXMPEGPS_REPORT_AUDIO or DEMUXMPEGPS_REPORT_VIDEO

commands, parameter of the ptsaControlArgs_t structure is used to return a pointer on a

Chapter 31: MPEG Program Stream Demultiplexer

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 57

31

tmalDemuxMpegPSInfo_t structure, which contains the following information: audio or

video data type, and stream ID.

DemuxMpegPS keeps track of the different stream IDs it extracts from the program

stream, and stores them in a two-dimensional table. Each time this table gets updated

with a new stream ID, DemuxMpegPS reports it to the application, and sends a copy of

the table to the application. Sizes of the table are determined by the following two con-

stants:

When DemuxMpegPS receives a command from the user to select a specific stream ID, it

will check if the stream ID selected by the user is a valid one, but the user is responsible

for reconnecting the appropriate downstream components and installing the appropri-

ate formats if necessary.

#define DEMUXMPEGPS_NROF_DATATYPES 5
#define DEMUXMPEGPS_NROF_PIDS 4

Chapter 31: MPEG Program Stream Demultiplexer

58 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmalDemuxMpegPSProgressFlags_t

typedef enum {
 DEMUXMPEGPS_STREAM_INFO 0x0001,
 DEMUXMPEGPS_END_OF_STREAM 0x0002,
} tmalDemuxMpegPSProgressFlags_t;

Fields

DEMUXMPEGPS_STREAM_INFO When DemuxMpegPS finds some new stream IDs
during the run, it will report it to the application
using this progress flag. The stream IDs given at
InstanceSetup are not reported.

DEMUXMPEGPS_END_OF_STREAM When DemuxMpegPS finds an End of Stream
start code, or an End of Sequence start code, it
will report it to the application using this progress
flag.

Description

Used in progress reports, as the progress code.

Chapter 31: MPEG Program Stream Demultiplexer

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 59

31

tmalDemuxMpegPSStreamInfo_t

typedef struct {
 tmAudioTypeFormat_t AudioType,
 tmVideoTypeFormat_t VideoType,
 Int32 pid_table[DEMUXMPEGPS_NROF_DATATYPES]
 [DEMUXMPEGPS_NROF_PIDS]
} tmalDemuxMpegPSStreamInfo_t;

Fields

AudioType Can be atfNone, atfMpeg, atfAc3, atfLinearPCM
depending on what DemuxMpegPS extracts from
the bitstream. Those flags will be OR’ed if the
stream contains audio data of different types.

VideoType Can be vtfMpeg or vtfNone, whether
DemuxMpegPS recognizes video data in the
stream or not.

pid_table Contains the different stream IDs for the follow-
ing types of streams: Mpeg audio stream, Mpeg
video stream, AC3 private stream, PCM private
stream, Subpic private stream. In the case of pri-
vate streams, since the stream ID is identical for
different types of private streams, the sub-stream
ID is stored in this table instead of the stream ID.

Description

This data structure is used in DEMUXMPEGPS_STREAM_INFO progress report.

Chapter 31: MPEG Program Stream Demultiplexer

60 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmalDemuxMpegPSInfo_t

typedef struct {
 Int32 dataType,
 Int32 streamId
} tmalDemuxMpegPSInfo_t;

Fields

dataType Will be set to atfNone, atfMpeg, atfAc3 or atf-
LinearPCM depending on the type of audio stream
currently selected by DemuxMpegPS. Will be set
to vtfMpeg if a video stream is selected, vtfNone
else.

streamId Stream ID or sub-stream ID of the currently
selected video or audio stream.

Description

This data structure is used when the user calls tmalDemuxMpegPSInstanceConfig with

DEMUXMPEGPS_REPORT_AUDIO or DEMUXMPEGPS_REPORT_VIDEO, set as

args->command. In return, args->parameters will point to a tmalDemuxMpegPSInfo_t

structure that contains the information about the audio or video stream currently

selected.

Chapter 31: MPEG Program Stream Demultiplexer

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 61

31

DemuxMpegPS API Functions

This section presents the DemuxMpegPS component functional interface.

Name Page

tmolDemuxMpegPSGetCapabilities, tmalDemuxMpegPSGetCapabilities 62

tmolDemuxMpegPSOpen, tmalDemuxMpegPSOpen 63

tmolDemuxMpegPSInstanceSetup, tmalDemuxMpegPSInstanceSetup 64

tmolDemuxMpegPSGetInstanceSetup, tmalDemuxMpegPSGetInstanceSetup 65

tmolDemuxMpegPSStart, tmalDemuxMpegPSStart 66

tmolDemuxMpegPSStop, tmalDemuxMpegPSStop 67

tmolDemuxMpegPSClose, tmalDemuxMpegPSClose 68

tmolDemuxMpegPSInstanceConfig 69

tmalDemuxMpegPSInstanceConfig 70

Chapter 31: MPEG Program Stream Demultiplexer

62 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolDemuxMpegPSGetCapabilities, tmalDemuxMpegPSGetCapabilities

extern tmLibappErr_t tmolDemuxMpegPSGetCapabilities(
 ptmolDemuxMpegPSCapabilities_t *cap
);

extern tmLibappErr_t tmalDemuxMpegPSGetCapabilities(
 ptmolDemuxMpegPSCapabilities_t *cap
);

Parameters

cap Pointer to the capabilities structure pointer.

Return Codes

TMLIBAPP_OK Success.

Description

This function fills in the pointer of a static structure, tmolDemuxMpegPSCapabilities_t,

tmalDemuxMpegPSCapabilities_t maintained by the demultiplexer, to describe the capa-

bilities and requirements of this library.

Chapter 31: MPEG Program Stream Demultiplexer

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 63

31

tmolDemuxMpegPSOpen, tmalDemuxMpegPSOpen

extern tmLibappErr_t tmolDemuxMpegPSOpen(
 Int *instance
);

extern tmLibappErr_t tmalDemuxMpegPSOpen(
 Int *instance
);

Parameters

instance Returned instance.

Return Codes

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation failed.

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE When no more instances available.

The function tmolDemuxMpegPSOpen can return any code produced by tsaDefault-

Open.

Description

Opens an instance of the DemuxMpegPS component. The DemuxMpegPS task is created

with preemption. Usually the task should have low priority. The default stack size is set

to 4K.

Chapter 31: MPEG Program Stream Demultiplexer

64 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolDemuxMpegPSInstanceSetup, tmalDemuxMpegPSInstanceSetup

extern tmLibappErr_t tmolDemuxMpegPSInstanceSetup(
 Int instance,
 ptmolDemuxMpegPSInstanceSetup_t setup
);

extern tmLibappErr_t tmalDemuxMpegPSInstanceSetup(
 Int instance,
 ptmolDemuxMpegPSInstanceSetup_t setup
);

Parameters

instance Instance previously opened with tmolDemux-
MpegPSOpen, tmalDemuxMpegPSOpen.

setup Pointer to the demultiplexer’s setup data struc-
ture, see tmolDemuxMpegPSInstanceSetup_t and
tmalDemuxMpegPSInstanceSetup_t.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance opened
with tmolDemuxMpegPSOpen, tmalDe-
muxMpegPSOpen, triggered via tmAssert.

TMLIBAPP_ERR_NOT_STOPPED If the component has not been stopped before
calling tmalVrendVOInstanceSetup.

TMLIBAPP_ERR_NOT_OPEN when the instance is not opened with tmolDe-
muxMpegPSOpen, tmalDemuxMpegPSOpen,
triggered via tmAssert.

TMLIBAPP_ERR_MEMALLOC_FAILED No memory could be allocated for the instance.

TMLIBAPP_ERR_INVALID_SETUP When there is no datainFunc, dataoutFunc, com-
pletion Func, errorFunc, progressFunc...

TMLIBAPP_OK Success.

The function tmolDemuxMpegPSInstanceSetup can return any error code produced by

tsaDefaultInstanceSetup.

Description

The instance previously opened with tmolDemuxMpegPSOpen is set up. Memory is allo-

cated for the internally held buffers that are needed for demultiplexing. tmolDemux-

MpegPSInstanceSetup should be called only once for each instance.

The stream IDs passed in are checked against the IDs given in the MPEG standard. The

valid ones are selected as valid stream ID before demultiplexing starts. Elementary

stream data of these IDs is immediately extracted.

Chapter 31: MPEG Program Stream Demultiplexer

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 65

31

tmolDemuxMpegPSGetInstanceSetup, tmalDemuxMpegPSGetInstanceSetup

extern tmLibappErr_t tmolDemuxMpegPSInstanceSetup(
 Int instance,
 ptmolDemuxMpegPSInstanceSetup_t *setup
);

extern tmLibappErr_t tmalDemuxMpegPSInstanceSetup(
 Int instance,
 ptmolDemuxMpegPSInstanceSetup_t *setup
);

Parameters

instance Instance previously opened with tmolDemux-
MpegPSOpen, tmalDemuxMpegPSOpen.

setup Pointer to a pointer to the DemuxMpegPS setup
data structure.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmolDemuxMpegPSOpen, tmalDe-
muxMpegPSOpen, triggered via tmAssert.

TMLIBAPP_ERR_NOT_OPEN When the instance is not opened with tmolDe-
muxMpegPSOpen, tmalDemuxMpegPSOpen, trig-
gered via tmAssert.

TMLIBAPP_OK On success.

Description

This function is used during initialization of the decoder. It returns the default settings

for the decoder instance. The setup can then be further initialized by the application

which normally is filling all the queues and the progress and error functions and then

passed to tmolDemuxMpegPSInstanceSetup, tmalDemuxMpegPSInstanceSetup.

Chapter 31: MPEG Program Stream Demultiplexer

66 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolDemuxMpegPSStart, tmalDemuxMpegPSStart

extern tmLibappErr_t tmolDemuxMpegPSStart(
 Int instance
);

extern tmLibappErr_t tmalDemuxMpegPSStart(
 Int instance
);

Parameters

instance Instance previously opened with tmolDemux-
MpegPSOpen, tmalDemuxMpegPSOpen.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmolDemuxMpegPSOpen, tmalDe-
muxMpegPSOpen, triggered via tmAssert.

TMLIBAPP_ERR_NOT_OPEN When the instance is not opened, triggered via
tmAssert.

TMLIBAPP_ERR_NOT_SETUP When the instance is not set up with tmolDe-
muxMpegTSInstanceSetup, triggered via tmAssert.

TMLIBAPP_OK On success.

Or, in case of tmolDemuxMpegPSStart, any error code returned by tsaDefaultStart.

Description

The previously opened and set up instance of the decoder is started.

Chapter 31: MPEG Program Stream Demultiplexer

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 67

31

tmolDemuxMpegPSStop, tmalDemuxMpegPSStop

extern tmLibappErr_t tmolDemuxMpegPSStop(
 Int instance
);

Parameters

instance Instance previously opened with tmolDemux-
MpegTSOpen.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmolDemuxMpegTSOpen, triggered via
tmAssert.

TMLIBAPP_ERR_NOT_OPEN When the instance is not opened with tmol-
DemuxMpegTSOpen, triggered via tmAssert.

TMLIBAPP_OK On success.

The function tmolDemuxMpegPSStop can return any error code produced by tsaDefault-

Stop.

Description

After a call to Stop, the DemuxMpegPS instance can be restarted via a call to Start. Stop

does not free the internally claimed memory.

Chapter 31: MPEG Program Stream Demultiplexer

68 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolDemuxMpegPSClose, tmalDemuxMpegPSClose

extern tmLibappErr_t tmolDemuxMpegPSClose(
 Int instance
);

extern tmLibappErr_t tmalDemuxMpegPSClose(
 Int instance
);

Parameters

instance Instance previously opened by tmolDemuxMpeg-
TSOpen.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmolDemuxMpegTSOpen, triggered via
tmAssert.

TMLIBAPP_ERR_NOT_STOPPED When the instance is not stopped before, trig-
gered via tmAssert.

TMLIBAPP_OK On success.

The function tmolDemuxMpegPSClose can return any code produced by tsaDefaultClose.

Description

Closes a stopped DemuxMpegPS instance.

Chapter 31: MPEG Program Stream Demultiplexer

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 69

31

tmolDemuxMpegPSInstanceConfig

extern UInt32 tmolDemuxMpegPSInstanceConfig(
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Parameters

instance Instance previously opened with tmolDemux-
MpegPSOpen.

flags Ignored.

args args–>command is one of the command codes
from tmalDemuxMpegPSCommand_t. When a
parameter is required (value of the stream ID the
application has selected, for instance), it is passed
in args–>parameter. args–>parameter is also used
as a pointer on a tmalDemuxMpegPSInfo_t struc-
ture, when the information about the video/
audio stream currently selected by DemuxMpegPS
is asked for by the application.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmolDemuxMpegPSOpen, triggered via
tmAssert.

TMLIBAPP_ERR_NOT_OPEN When the instance is not opened.

TMLIBAPP_ERR_NOT_SETUP When the instance is not set up with tmolDemux-
MpegPSInstanceSetup, triggered via tmAssert.

TMLIBAPP_OK Success.

Description

See tmalDemuxMpegPSCommand_t for possible control commands.

Chapter 31: MPEG Program Stream Demultiplexer

70 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmalDemuxMpegPSInstanceConfig

extern UInt32 tmalDemuxMpegPSInstanceConfig(
 Int instance,
 ptsaControlArgs_t args
);

Parameters

instance Instance previously opened with tmalDemux-
MpegPSOpen.

args args->command is one of the command codes
from tmalDemuxMpegPSCommand_t.When a
parameter is required (value of the stream ID the
application has selected, for instance), it is passed
in via the args structure args–>parameter.
args–>parameter is also used as a pointer on a
tmalDemuxMpegPSInfo_t structure, when the
information about the video/audio stream cur-
rently selected by DemuxMpegPS is required by
the application.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmalDemuxMpegPSOpen, triggered via
tmAssert.

TMLIBAPP_ERR_NOT_OPEN When the instance is not opened.

TMLIBAPP_ERR_NOT_SETUP When the instance is not set up with tmal-
DemuxMpegPSInstanceSetup, triggered via
tmAssert.

TMLIBAPP_OK Success.

Description

See tmalDemuxMpegPSCommand_t for possible control commands.

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 71

32

Chapter 32

VdigVIRaw API

Note
This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Topic Page

VdigVIRaw API Overview 72

VdigVIRaw API Data Structures 74

VdigVIRaw API Functions 79

Chapter 32: VdigVIRaw API

72 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

VdigVIRaw API Overview

VdigVIRaw is the TSSA abstraction to the Video-In “Raw” interface as specified in the Tri-

Media device libraries. For this reason there is only an tmol layer implemented.

A VdigVIRaw module captures raw 8-bit data from the Video-In peripheral and puts this

in pre-allocated buffers and sends these buffers to its only output.

VdigVIRaw Inputs and Outputs

Overview

There are no TSSA inputs to a VdigVIRaw component and only a single output. The out-

put contains the full captured packets.

Figure 3 Overview of a VdigVIRaw component

Inputs

There are no TSSA-inputs to a VdigVIRaw module. The input is taken from the Video-In

peripheral, thus VdigVIRaw can be seen as a producer of data.

Outputs

The outgoing packets are Video-In captured buffers with raw data, i.e., the Video-In

peripheral is operated in the raw 8-bit data mode.

Packets are time-stamped in the Interrupt Service Routine (ISR). The time-stamps can be

used for clock recovery purposes in for instance an MPEG-2 system. Since the ISR has an

application dependent interrupt latency, the time-stamps are passed through a low pass

filter that averages out the interrupt latency variations. In the ISR, the current value of f

“cycles” is taken. The previous value recorded in the ISR is stored as start-time-stamp in

VdigVIRaw
Any raw

8-bit input
to video-in

Data packets

progress reportserror reports

Chapter 32: VdigVIRaw API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 73

32

the one of the time-stamp fields in the packet. The end-time-stamp is calculated accord-

ing to:

where:

ets end-time-stamp

sts start-time-stamp

nrof Taps number of taps (an instance variable determined by the applicaton)

The output packets follow the default tmAvPackets structure and have the following

fields set in the header:

time.hiTicks Contains the start time stamp which is the time stamp of the TriMe-
dia clock (cycles custom_op) at the start of buffer capture (or the end
of the previous buffer capture).

time.ticks Contains the end time stamp which is the time stamp of the TriMe-
dia cpu clock (cycles custom_op) at the end of the buffer capture.
This value takes into account an averaging filter, of which the num-
ber of taps can be set. The number of taps is the number of capture
times that are averaged.

buffersInuse Set to 1. The VdigVIRaw module does not handle multiple buffers per
packet.

dataSize Set to the pre-allocated data size.

There is one output which can be used with the following manifest constant:

#define VDIGVIRAW_OUTPUT_ID 0

The output format is set to a generic data type, since VdigVIRaw can be used for any

data:

ststatic tmAvFormat_t Format = {
 sizeof(tmAvFormat_t), /* size */
 0, 0, /* hash, referenceCount */
 avdcGeneric, /* dataClass */
 0, 0, 0 /* dataType, subtype, description */
};

VdigVIRaw Errors

There is one error function that can be invoked by the VdigVIRaw component, and it is

invoked when the dataoutFunc returned an error. This usually is a fatal OS error.

The errorFunc is the default TSSA errorFunc and has the following prototype.

tmLibappErr_t
VdigVIRawError(Int instId, UInt32 flags, ptsaErrorArgs_t args)

Σ
ets = sts +

(etsi – stsi)
nrof Taps – 1

i = 0

nrof Taps

Chapter 32: VdigVIRaw API

74 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

VdigVIRaw Progress

There is one progress function from VdigVIRaw, which is invoked when it tries to

retrieve a packet from the empty queue but could not get one. At that point, data will be

lost since the interrupt service routine cannot block on the empty queue. The progress

report is invoked so the application can take appropriate actions.

During instance setup, the application installs the number of buffers that will be lost in a

situation like this. This can be useful when more time is needed to recover from the erro-

neous situation and when the application would rather miss a big gap in its incoming

data than a few smaller ones.

The progress function is the default TSSA progress function with the following proto-

type:

VdigVIRaw Configuration

VdigVIRaw cannot be reconfigured. This function is not supported.

VdigVIRaw API Data Structures

This section presents the tmolVdigVIRaw component data structures.

tmLibappErr_t
VdigVIRawProgress(Int instId, UInt32 flags, ptsaProgressArgs_t args)

Name Page

tmolVdigVIRawInstanceSetup_t 75

tmolVdigVIRawCapabilities_t 76

tmolVdigVIRawError_t 77

tmolVdigVIRawProgress_t 78

Chapter 32: VdigVIRaw API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 75

32

tmolVdigVIRawInstanceSetup_t

typedef struct tmolVdigVIRawInstance {
 ptsaDefaultInstanceSetup_t defaultSetup;
 UInt32 buffersToLose;
 UInt32 nrofTaps;
} tmolVdigVIRawInstanceSetup_t, *ptmolVdigVIRawInstanceSetup_t;

Fields

defaultSetup See TSSA documentation.

buffersToLose The number of buffers that will be lost when the
VdigVIRaw component sees an empty empty-
queue. This value can be set higher to 1 when the
application needs more time to recover from erro-
neous situations and rather misses one big block
of data than a couple of smaller ones. This is
implemented by skipping a number of video-in
interrupts.

nrofTaps The number of taps taken to average out the
timestamps.

Description

Used by tmalDemuxMpegTSInstanceSetup_t.

Chapter 32: VdigVIRaw API

76 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolVdigVIRawCapabilities_t

typedef struct tmolVdigVIRawCapabilities{
 ptsaDefaultCapabilities_t defaultCaps;
} tmolVdigVIRawCapabilities_t, *ptmolVdigVIRawCapabilities_t;

Fields

defaultCaps See TSSA documentation.

Description

A VdigVIRaw instance is not re-entrant, since it is an interrupt service routine.

Chapter 32: VdigVIRaw API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 77

32

tmolVdigVIRawError_t

typedef enum {
 VDIGVIRAW_ERR_INVALID_INTERRUPT_PRIORITY = Err_base_VDigVIRaw+0x01,
 VDIGVIRAW_ERR_BUFFER_ALLOCATION = Err_base_VDigVIRaw+0x02,
 VDIGVIRAW_ERR_ALIGNMENT = Err_base_VDigVIRaw+0x03,
 VDIGVIRAW_ERR_BUFFER_SIZE_ALIGNMENT = Err_base_VDigVIRaw+0x04,
 VDIGVIRAW_ERR_ALLOCATED_BUFFERS = Err_base_VDigVIRaw+0x05,
 VDIGVIRAW_ERR_BUFFER_SIZE = Err_base_VDigVIRaw+0x06,
 VDIGVIRAW_ERR_NOT_ENOUGH_INPUT_BUFFERS = Err_base_VDigVIRaw+0x07,
 VDIGVIRAW_ERR_INVALID_NROF_TAPS = Err_base_VDigVIRaw+0x08
} tmolVdigVIRawError_t;

Fields

VDIGVIRAW_INVALID_INTERRUPT_PRIORITY
The interrupt priority was not set to a value of
type intPriority_t.

VDIGVIRAW_ERR_BUFFER_ALLOCATION One of the empty packets did not have a buffer
allocated.

VDIGVIRAW_ERR_ALIGNMENT One of the empty packets has a buffer allocated
that is not cache-aligned This is a video-in periph-
eral restriction.

VDIGVIRAW_ERR_BUFFER_SIZE_ALIGNMENT
One of the empty packets has a buffer allocated
that does not end at a cache-line boundary. This
is a video-in peripheral restriction.

VDIGVIRAW_ERR_ALLOCATED_BUFFERS The VdigVIRaw module can not handle multiple
buffers per packet.

VDIGVIRAW_ERR_BUFFER_SIZE Not all empty buffers have the same size.

VDIGVIRAW_ERR_NOT_ENOUGH_INPUT_BUFFERS
VdigVIRaw requires at least 3 empty packets, two
in use by the video-in peripheral and one in use
by the component that receives the data from the
queue.

VDIGVIRAW_ERR_INVALID_NROF_TAPS The number of taps for the time-averaging filter is
less than 1 or greater than 128.

Description

Enumerates the errors signalled during setup. Err_base_VdigRIRaw is 0x20010000.

Chapter 32: VdigVIRaw API

78 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolVdigVIRawProgress_t

typedef enum {
 VDIGVIRAW_LOST_BUFFERS = 0x0
 VDIGVIRAW_FULL_BUFFER = 0x1
} tmolVdigVIRawProgress_t;

Fields

VDIGVIRAW_LOST_BUFFERS The VdigVIRaw interrupt handler did not receive
any packets from the empty queue. It will lose
buffers.

VDIGVIRAW_FULL_BUFFER One packet has been sent.

Description

Enumerates progress messages.

Chapter 32: VdigVIRaw API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 79

32

VdigVIRaw API Functions

This section presents the tmolVdigVIRaw component functional interface.

Name Page

tmolVdigVIRawGetCapabilities 80

tmolVdigVIRawGetCapabilitiesM 81

tmolVdigVIRawOpen 82

tmolVdigVIRawOpenM 83

tmolVdigVIRawClose 84

tmolVdigVIRawGetInstanceSetup 85

tmolVdigVIRawInstanceSetup 86

tmolVdigVIRawStart 87

tmolVdigVIRawStop 88

Chapter 32: VdigVIRaw API

80 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolVdigVIRawGetCapabilities

extern tmLibappErr_t tmolVdigVIRawGetCapabilities(
 ptmolVdigVIRawCapabilities_t *capabilities
);

Parameters

capabilities Pointer to a variable in which to return a pointer
to the returned capabilities.

Return Codes

The function returns errors from tmolVdigVIRawGetCapabilitiesM.

Description

This function calls tmolVdigVIRawGetCapabilitiesM for VI unit 0.

Chapter 32: VdigVIRaw API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 81

32

tmolVdigVIRawGetCapabilitiesM

extern tmLibappErr_t tmolTPInMpeg2GetCapabilitiesM(
 ptmolVdigVIRawCapabilities_t *capabilities,
 unitSelect_t viUnit
);

Parameters

capabilities Pointer to a variable in which to return a pointer
to the returned capabilities.

viUnit VI unit to get the capabilities for.

Return Codes

TMLIBAPP_OK Success.

Description

This function fills in the pointer of a static structure, tmolVdigVIRawCapabilities_t, main-

tained by the library, to describe the capabilities and requirements of this library.

The application can specify for which VI unit it wants to get the capabilities. The library

supports up to two VI units.

Chapter 32: VdigVIRaw API

82 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolVdigVIRawOpen

extern tmLibappErr_t tmolVdigVIRawOpen(
 Int *instance
);

Parameters

instance Pointer to returned instance.

Return Codes

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation for the instance parameters
failed.

TMLIBAPP_OK Success.

The function can also return any code produced by tmolDefaultOpen.

Description

The function calls tmolVdigVIRawOpenM to open VI unit 0.

Chapter 32: VdigVIRaw API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 83

32

tmolVdigVIRawOpenM

extern tmLibappErr_t tmolVdigVIRawOpenM(
 Int *instance,
 unitSelect_t viUnit
);

Parameters

instance Returned instance. The instance must be used in
subsequent API calls.

viUnit The video-in unit to connect.

Return Codes

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation for the instance parameters
failed.

TMLIBAPP_OK Success.

The function can return any code produced by tmolDefaultOpen or viOpenM.

Description

This function opens an instance of the VdigVIRaw library. The application can specify

which VI unit will be opened. The library supports up to two units.

Chapter 32: VdigVIRaw API

84 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolVdigVIRawClose

extern tmLibappErr_t tmolVdigVIRawClose(
 Int instance
);

Parameters

instance Instance, as returned by tmolVdigVIRawOpen.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

TMLIBAPP_ERR_NOT_STOPPED The instance is not stopped. Triggered by tmAs-
sert.

TMLIBAPP_OK Success.

The function can also return any code from tmolDefaultClose.

Description

Closes a stopped instance, frees all memory previously claimed by tmolDemuxMpegTS-

Open and tmolDemuxMpegTSInstanceSetup. It returns the two buffers in use by the

video-in peripheral.

Chapter 32: VdigVIRaw API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 85

32

tmolVdigVIRawGetInstanceSetup

extern tmLibappErr_t tmolVdigVIRawGetInstanceSetup(
 Int instance,
 ptmolVdigVIRawInstanceSetup_t *setup
);

Parameters

instance Instance, as returned by tmolVdigVIRawOpen.

setup Pointer to variable in which to return the
instance setup data structure.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered bytmAssert.

TMLIBAPP_OK Success.

Description

Returns the default instance parameters.

Chapter 32: VdigVIRaw API

86 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolVdigVIRawInstanceSetup

extern tmLibappErr_t tmolVdigVIRawInstanceSetup(
 Int instance,
 ptmolVdigVIRawInstanceSetup_t setup
);

Parameters

instance Instance, as returned by tmolVdigVIRawOpen.

setup Pointer to the setup data structure.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not opened, triggered as assert.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation for the averaging filter failed.

VDIGVIRAW_ERR_INVALID_NROF_TAPS The number of taps is less than 1, or greater than
128.

VDIGVIRAW_INVALID_INTERRUPT_PRIORITY
The interrupt priority is not of type intPriority_t.

ATSC_ERR_INVALID_NROF_BUFFERS The value of nrofInputBuffers is less than or equal
to 0. Triggered as assert.

ATSC_ERR_INVALID_BUFFER_SIZE The value of inputBufferSize is less than or equal
to 0. Triggered as assert.

The function can also return any error code produced by tmolDefaultInstanceSetup,

procGetCapabilities, viOpen, or viInstanceSetup.

Description

Sets up the instance and initializes the video-in peripheral.

Chapter 32: VdigVIRaw API

©1999 Philips Semiconductors 10/08/99 Book 5—System Utilities, Part D 87

32

tmolVdigVIRawStart

extern tmLibappErr_t tmolVdigVIRawStart(
 Int instance
);

Parameters

instance Instance, as returned by tmolVdigVIRawOpen.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE
The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

TMLIBAPP_ERR_NOT_SETUP The instance is not set up with tmolDe-
muxMpegTSInstanceSetup. Triggered by tmAssert.

VDIGVIRAW_ERR_BUFFER_ALLOCATION One of the packets does not have a pre-allocated
buffer.

VDIGVIRAW_ERR_ALIGNMENT One of the packets has a buffer that violates the
64-byte alignment restriction.

VDIGVIRAW_ERR_ALLOCATED_BUFFERS One of the packets has multiple buffers.

VDIGVIRAW_ERR_BUFFER_SIZE_ALIGNMENT
The size of the packet is not a multiple of 64 bytes

VDIGVIRAW_ERR_BUFFER_SIZE Not all packets have the same size.

VDIGVIRAW_ERR_NOT_ENOUGH_INPUT_BUFFERS
The number of input packets is less than 3.

TMLIBAPP_OK Success.

The function can return any code produced by tsaDefaultStart, viRawSetup, or viRaw-

Setup.

Description

Starts the previously opened and initialized instance. It is expected that the empty queue

of the instance contains empty packets. These empty packets are checked against align-

ment and other restrictions.

Chapter 32: VdigVIRaw API

88 Book 5—System Utilities, Part D ©1999 Philips Semiconductors 10/08/99

tmolVdigVIRawStop

extern tmLibappErr_t tmolVdigVIRawStop(
 Int instance
);

Parameters

instance Instance, as returned by tmolVdigVIRawOpen.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not a valid instance opened with
tmolDemuxMpegTSOpen. Triggered by tmAssert.

TMLIBAPP_ERR_NOT_SETUP The instance is not set up with tmolDe-
muxMpegTSInstanceSetup. Triggered by tmAssert.

TMLIBAPP_OK On success.

Description

The function calls tmolDefaultStop. More information on stop can be found in the TSSA

documentation.

After a call to stop, the VdigVIRaw instance cannot be set up again. It can be restarted.

When a new instance setup is required, the instance should be closed first.

On stop, there will be two buffers still in use by the video-in peripheral. These are

returned only when the instance is closed.

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 5—System Utilities
	MPEG System Components
	30: MPEG Transport Stream Demux API
	DemuxMpegTS API Overview
	Limitations
	Clock Recovery

	DemuxMpegTS Inputs and Outputs
	Overview
	Inputs
	Outputs
	Audio and Video Outputs
	Non-AV outputs

	DemuxMpegTS Errors
	DemuxMpegTS Progress
	DemuxMpegTS Configuration
	DemuxMpegTS API Data Structures
	tmalDemuxMpegTSInstanceSetup_t
	tmolDemuxMpegTSInstanceSetup_t
	tmalDemuxMpegTSCapabilities_t
	tmalDemuxMpegTSConfig_t
	tmalDemuxMpegTSErrorFlags_t
	tmalDemuxMpegTSProgressDescription_t
	tmalDemuxMpegTSProgressFlags_t
	tmalDemuxMpegTSRedirectedOutputFormat_t
	tmalDemuxMpegTSSectionCallBack_t
	tmalDemuxMpegTSControlArgs_t

	DemuxMpegTS API Functions
	tmolDemuxMpegTSOpen
	tmolDemuxMpegTSInstanceSetup
	tmolDemuxMpegTSGetInstanceSetup
	tmolDemuxMpegTSStart
	tmolDemuxMpegTSStop
	tmolDemuxMpegTSClose
	tmolDemuxMpegTSChangeVideoPid
	tmolDemuxMpegTSChangeMainAudioPid
	tmolDemuxMpegTSChangeSecondaryAudioPid
	tmolDemuxMpegTSChangePcrPid
	tmolDemuxMpegTSChangeToNewPids
	tmolDemuxMpegTSAddRedirectedPid
	tmolDemuxMpegTSRemoveRedirectedPid
	tmalDemuxMpegTSCRCValue

	31: MPEG Demultiplexer API
	DemuxMpegPS API Overview
	Limitations

	DemuxMpegPS Inputs and Outputs
	Overview
	Inputs
	Outputs

	DemuxMpegPS Errors
	DemuxMpegPS Progress
	DemuxMpegPS API Data Structures
	tmolDemuxMpegPSInstanceSetup_t, tmalDemuxMpegPSInstanceSetup_t
	tmolDemuxMpegPSCapabilities_t, tmalDemuxMpegPSCapabilities_t
	tmalDemuxMpegPSCommand_t
	tmalDemuxMpegPSProgressFlags_t
	tmalDemuxMpegPSStreamInfo_t
	tmalDemuxMpegPSInfo_t

	DemuxMpegPS API Functions
	tmolDemuxMpegPSGetCapabilities, tmalDemuxMpegPSGetCapabilities
	tmolDemuxMpegPSOpen, tmalDemuxMpegPSOpen
	tmolDemuxMpegPSInstanceSetup, tmalDemuxMpegPSInstanceSetup
	tmolDemuxMpegPSGetInstanceSetup, tmalDemuxMpegPSGetInstanceSetup
	tmolDemuxMpegPSStart, tmalDemuxMpegPSStart
	tmolDemuxMpegPSStop, tmalDemuxMpegPSStop
	tmolDemuxMpegPSClose, tmalDemuxMpegPSClose
	tmolDemuxMpegPSInstanceConfig
	tmalDemuxMpegPSInstanceConfig

	32: VdigVIRaw API
	VdigVIRaw API Overview
	VdigVIRaw Inputs and Outputs
	Overview
	Inputs
	Outputs

	VdigVIRaw Errors
	VdigVIRaw Progress
	VdigVIRaw Configuration

	VdigVIRaw API Data Structures
	tmolVdigVIRawInstanceSetup_t
	tmolVdigVIRawCapabilities_t
	tmolVdigVIRawError_t
	tmolVdigVIRawProgress_t

	VdigVIRaw API Functions
	tmolVdigVIRawGetCapabilities
	tmolVdigVIRawGetCapabilitiesM
	tmolVdigVIRawOpen
	tmolVdigVIRawOpenM
	tmolVdigVIRawClose
	tmolVdigVIRawGetInstanceSetup
	tmolVdigVIRawInstanceSetup
	tmolVdigVIRawStart
	tmolVdigVIRawStop

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

