

Version 2.0 beta

AB

Book 6—Audio Support Libraries

Part A:

I/O and Control

©1999 Philips Semiconductors 10/08/99

Book 6—Audio Support Libraries, Part A

iii

Book 6—Audio Support Libraries
Part A: I/O and Control

Table of Contents

Chapter 1 TriMedia Audio Overview

Introduction... 14

Device Libraries .. 14

Board Support Package ... 15

Application Libraries .. 17

Architecture ... 17

Filter Graphs .. 18

Modules Types... 19

Renderers ... 19

Digitizers ... 19

Mixers .. 20

Decoders ... 20

Encoders ... 20

Signal Processing Libraries .. 21

Audio Systems ... 21

Chapter 2 Audio Board Support Packages

Introduction... 24

Writing a BSP for Audio.. 24

Parameter Structures ... 24

boardAOParam_t ... 24

boardAIParam_t ... 25

BSP Config Structure .. 25

initFunc ... 26

termFunc .. 26

setSRate / getSRate ... 26

setVolume / getVolume .. 27

getInput / setInput / getOutput / setOutput .. 27

ConfigFunc ... 27

getFormat .. 27

Others .. 28

Table of Contents

iv

Book 6—Audio Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

How Is This Used?.. 28

Chapter 3 Audio Device Library

Audio Device Library Overview.. 30

Demonstration Programs.. 31

Using the Audio Device Library.. 31

Limitations ... 31

Audio Input API Data Structures.. 32

aiCapabilities_t.. 33

aiInstanceSetup_t .. 35

Audio Output API Data Structures... 36

aoCapabilities_t .. 37

aoInstanceSetup_t... 39

Audio Input API Functions .. 40

aiGetCapabilities... 41

aiGetCapabilitiesM... 42

aiGetNumberOfUnits .. 43

aiOpen.. 44

aiOpenM .. 45

aiInstanceSetup .. 46

aiChangeBuffer1 ... 47

aiChangeBuffer2 ... 47

aiClose .. 48

aiStop.. 49

aiStart.. 50

aiSetInput.. 51

aiGetInput ... 52

aiSetVolume ... 53

aiGetVolume... 54

aiSetSampleRate... 55

aiGetSampleRate.. 56

aiGetFormat.. 57

aiConfig.. 58

Audio Output API Functions ... 59

aoGetCapabilities ... 60

aoGetCapabilitiesM ... 61

aoGetNumberOfUnits... 62

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 6—Audio Support Libraries, Part A

v

aoOpen .. 63

aoOpenM... 64

aoInstanceSetup... 65

aoChangeBuffer1 ... 66

aoChangeBuffer2 ... 66

aoClose... 67

aoStop .. 68

aoStart .. 69

aoSetOutput... 70

aoGetOutput.. 71

aoSetVolume.. 72

aoGetVolume ... 73

aoSetSampleRate ... 74

aoGetSampleRate .. 75

aoConfig .. 76

Chapter 4 SPDIF Output Device Library

SPDO API Overview .. 78

Using the SPDO API .. 79

Limitations ... 79

SPDO API Data Structures ... 79

spdoCapabilities_t ... 80

spdoInstanceSetup_t.. 82

SPDO API Functions.. 83

spdoGetCapabilities .. 84

spdoGetCapabilitiesM .. 85

spdoGetNumberOfUnits ... 86

spdoOpen ... 87

spdoOpenM.. 88

spdoInstanceSetup.. 89

spdoClose.. 90

spdoStop ... 91

spdoStart ... 92

spdoSetSampleRate .. 93

spdoGetSampleRate ... 94

spdoConfig ... 95

Table of Contents

vi

Book 6—Audio Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 5 Audio Digitizer (AdigAI) API

Audio Digitizer API Overview ... 98

Audio Digitizer Inputs and Outputs .. 98

Audio Digitizer Errors... 99

Audio Digitizer Progress.. 99

Audio Digitizer Configuration ..100

Audio Digitizer API Data Structures ..101

tmolAdigAICapabilities_t ..102

tmolAdigAIInstanceSetup_t...103

Audio Digitizer API Functions...104

tmolAdigAIGetCapabilities ...105

tmalAdigAIGetCapabilitiesM ...106

tmolAdigAIGetCapabilitiesM ...106

tmalAdigAIGetNumberOfUnits...107

tmolAdigAIGetNumberOfUnits ..107

tmalAdigAIOpen...108

tmolAdigAIOpen ..108

tmalAdigAIOpenM...109

tmolAdigAIOpenM...109

tmolAdigAIGetInstanceSetup..110

tmolAdigAIInstanceSetup...111

tmolAdigAIStart ..112

tmolAdigAIStop ..113

tmolAdigAIInstanceConfig ...114

Chapter 6 Audio Renderer (ArendAO) API

Audio Renderer API Overview..116

Inputs and Outputs ...116

Errors ..116

TMLIBAPP_ERR_UNDERRUN ...117

TMLIBAPP_ERR_HIGHWAY_BANDWIDTH_ERR...117

AR_ERR_BUF_TOO_LARGE ..117

Progress Function ..118

How to Use Audio Renderer ..118

How the Audio Renderer Works ...120

The Silence Buffer..120

Raw Mode and Conservative Mode..120

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 6—Audio Support Libraries, Part A

vii

Formats in the Audio Renderer ..120

Synchronization Overview ...121

AV Sync Details ...121

Other Forms of Sync ...124

Audio Renderer API Data Structures ...125

arMode_t ...126

arConfigParam_t...127

arProgressFlags_t ...128

arSyncMode_t..129

arSyncState_t ...130

tmalArendAOCapabilities_t..131

tmolArendAOCapabilities_t ...131

tmalArendAOInstanceSetup_t ..132

tmolArendAOInstanceSetup_t..132

tmArendAOControlInfo_t..134

Audio Renderer API Functions ...135

tmalArendAOGetCapabilities ..136

tmolArendAOGetCapabilities ..136

tmalArendAOGetCapabilitiesM ..137

tmolArendAOGetCapabilitiesM ..137

Parameters ...137

tmalArendAOGetNumberOfUnits..138

tmolArendAOGetNumberOfUnits..138

tmalArendAOOpen..139

tmolArendAOOpen ...139

tmalArendAOOpenM..140

tmolArendAOOpenM..140

tmalArendAOClose ..141

tmolArendAOClose..141

tmalArendAOInstanceSetup ..142

tmolArendAOInstanceSetup..142

tmalArendAOStart ...143

tmolArendAOStart ...143

tmalArendAOStop..144

tmolArendAOStop ...144

tmalArendAORenderBuffer ..145

tmalArendAOInstanceConfig...146

tmolArendAOInstanceConfig ..146

Table of Contents

viii

Book 6—Audio Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 7 SPDIF Renderer (ArendSpdif) API

SPDIF Audio Renderer API Overview ..148

Supporting SPDIF digital inputs using the audio digitizer: ..148

Inputs and Outputs ...149

Errors ..149

TMLIBAPP_ERR_UNDERRUN ...149

TMLIBAPP_ERR_HIGHWAY_BANDWIDTH_ERR...150

ARENDSP_ERR_INVALID_BUFFER_SIZE...150

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE ..150

Progress Function ..150

How to Use the Audio Renderer ..151

How the Audio Renderer Works ...152

Formats in the Audio Renderer ..152

Synchronization Overview ...152

AV Sync Details ...153

Muting ...156

SPDIF Audio Renderer API Data Structures ...156

arendSpdifConfigParam_t ..157

arendSpdifProgressFlags_t...160

arendSpdifSyncMode_t ...161

arendSpdifSyncState_t...161

tmalArendSpdifChannelStatus_t..162

tmalArendSpdifCapabilities_t ...163

tmolArendSpdifCapabilities_t ...163

tmalArendSpdifInstanceSetup_t..164

tmolArendSpdifInstanceSetup_t..164

tmArendSpdifControlInfo_t ...166

SPDIF Audio Renderer API Functions..167

tmalArendSpdifGetCapabilities ..168

tmolArendSpdifGetCapabilities..168

tmalArendSpdifGetCapabilitiesM ..169

tmolArendSpdifGetCapabilitiesM..169

tmalArendSpdifGetNumberOfUnits..170

tmolArendSpdifGetNumberOfUnits ...170

tmalArendSpdifOpen..171

tmolArendSpdifOpen ...171

tmalArendSpdifOpenM..172

tmolArendSpdifOpenM ...172

tmalArendSpdifClose..173

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 6—Audio Support Libraries, Part A

ix

tmolArendSpdifClose..173

tmalArendSpdifInstanceSetup..174

tmolArendSpdifInstanceSetup..174

tmalArendSpdifStart ...175

tmolArendSpdifStart...175

tmalArendSpdifStop ...176

tmolArendSpdifStop ...176

tmalArendSpdifInstanceConfig...177

tmolArendSpdifInstanceConfig ..177

tmalArendSpdifFormatTemplate..178

tmalArendSpdifFormatBuffer ..179

Chapter 8 Simple Audio Mixer (AmixSimple) API

Simple Audio Mixer API Overview...182

Background ...183

The Files ..183

The AspLpf Component ..184

Simple Audio Mixer Inputs and Outputs ..185

Simple Audio Mixer Progress..185

Simple Audio Mixer Errors...185

Simple Audio Mixer Configuration ..186

Simple Audio Mixer API Data Structures ..187

tmolAmixSimpleCapabilities_t..188

tmolAmixSimpleInstanceSetup_t ..189

Simple Audio Mixer API Functions ..190

tmolAmixSimpleGetCapabilities ..191

tmolAmixSimpleOpen..191

tmolAmixSimpleGetInstanceSetup...192

tmolAmixSimpleInstanceSetup ..193

tmolAmixSimpleStart ...194

tmolAmixSimpleStop..195

tmolAmixSimpleInstanceConfig...196

Chapter 9 Noise Sequencer (NoiseSeq) API

Introduction...198

Spectrum of the Pink Noise ...198

Noise Sequencer Inputs and Outputs ...199

Table of Contents

x

Book 6—Audio Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Noise Sequencer Errors..199

Noise Sequencer Progress...199

Noise Sequencer Configuration ...199

Noise Sequencer AL Layer API Data Structures...201

tmalNoiseSeqCapabilities_t ...202

tmalNoiseSeqInstanceSetup_t..203

tmalNoiseSeqCommands_t..204

tmalNoiseSeqOutChan_t...206

tmalNoiseSeqDirection_t ..207

Noise Sequencer AL Layer API Functions ...208

tmalNoiseSeqGetCapabilities ..209

tmalNoiseSeqOpen ...210

tmalNoiseSeqClose..211

tmalNoiseSeqInstanceSetup..212

tmalNoiseSeqStart ...213

tmalNoiseSeqStop ...214

tmalNoiseSeqInstanceConfig ..215

Noise Sequencer OL Layer API Data Structures ..216

tmolNoiseSeqCapabilities_t...217

tmolNoiseSeqInstanceSetup_t..218

Noise Sequencer OL Layer API Functions...219

tmolNoiseSeqGetCapabilities..220

tmolNoiseSeqOpen ...220

tmolNoiseSeqClose ...221

tmolNoiseSeqGetInstanceSetup ..222

tmolNoiseSeqInstanceSetup..223

tmolNoiseSeqStart...224

tmolNoiseSeqStop...225

tmolNoiseSeqInstanceConfig ..226

Chapter 10 DTV Audio Mixer (AmixDtv) API

DTV Audio Mixer Overview...228

Background ...228

DTV Audio Mixer Inputs and Outputs...228

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 6—Audio Support Libraries, Part A

xi

Operation of the DTV Audio Mixer ..230

Prime Buffer ...230

Delay ..230

Bass Redirection ...231

DTV Audio Mixer Progress ..233

DTV Audio Mixer Errors ...233

DTV Audio Mixer Configuration...234

DTV Audio Mixer API Data Structures...234

tmolAmixDtvCapabilities_t ..235

tmolAmixDtvInstanceSetup_t...236

DTV Audio Mixer API Functions ...238

tmolAmixDtvGetCapabilities ...239

tmolAmixDtvOpen...240

tmolAmixDtvGetInstanceSetup..241

tmolAmixDtvInstanceSetup...242

tmolAmixDtvStart ..243

tmolAmixDtvStop ..243

tmolAmixDtvInstanceConfig ...244

Chapter 11 DTV Audio System (AudSys) API

DTV Audio System Overview..250

Statement of Dolby Compliance ...250

New Features in Version 2 ..250

Programmers Interface ...252

Required Board Support ...252

Related Documents ..252

DTV Audio System Inputs and Outputs..253

DTV Audio System Errors ..253

DTV Audio System Progress..254

DTV Audio System Configuration..254

DTV Audio System Operation...254

Resource Usage ..257

Text Memory ...257

Data Memory ..257

MIPS..257

Table of Contents

xii

Book 6—Audio Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

DTV Audio System API Data Structures..257

Audio System Constants ...258

tsaAudSysStatus_t ...260

tsaAudSysSetup_t ..262

DTV Audio System API Functions ..268

tsaAudSysOpen...269

tsaAudSysClose ...269

tsaAudSysInstanceSetup ...270

tsaAudSysInstanceConfig..271

tsaAudSysStart ..279

tsaAudSysStop...279

©1999 Philips Semiconductors 10/08/99

 Book 6—Audio Support Libraries, Part A

13

1

Chapter 1

TriMedia Audio Overview

Topic Page

Introduction 14

Board Support Package 15

Application Libraries 17

Modules Types 19

Audio Systems 21

Chapter 1: TriMedia Audio Overview

14

Book 6—Audio Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Introduction

The TriMedia application library set provides a rich set of building blocks for coding the

audio portion of a multimedia application. The library defines an architecture and a

framework, making it easier for you to create your own modules. This document pro-

vides an overview of how these blocks are integrated, and how you can use them to

build your own audio systems.

The audio architecture is layered. Each layer encapsulates functionality up to a certain

point. Because the interface to each layer is known and fixed, the implementation of any

layer can be changed without affecting the other layers. A typical stack looks like this:

The boundaries between these layers allow the most complex pieces of code to be reused

in a flexible fashion. Specifically, the operating system independent portion of a signal-

processing library might be used in many contexts. The context described here allows

many such tasks to coexist in the media-processing environment.

Device Libraries

The TriMedia chips include audio input and output devices as peripherals-on-chip. The

device libraries provide a standard interface to these devices. A device library allows you

to open, close, configure, start and stop the audio device(s). These are the names of the

functions:

aiOpen AoOpen

aiClose AoClose

aiInstanceSetup AoInstanceSetup

aiStart AoStart

aiInstanceConfig AoInstanceConfig

aiStop aoStop

The device library does not specify a means of data transfer. Instead, its interface encour-

ages you to install your own interrupt service routine to perform data transfer. When

you examine the AI or AO hardware on TriMedia and compare it to the interface in the

Application (product specific)

Device Libraries (interface to hardware devices)
Board Support Package (circuit board specific code)

Audio system (specific to a class of product)

Application Libraries (encapsulate specific signal processing tasks)
Operating system dependent part
Operating system independent part

Chapter 1: TriMedia Audio Overview

©1999 Philips Semiconductors 10/08/99

 Book 6—Audio Support Libraries, Part A

15

1

device library, you see that the device library provides a high level interface. The board

support package (BSP) handles the lower level interface.

The audio device library is contained in a few files:

■

tmaAI.c and tmAO.c contain the actual implementations.

■

tmAI.h and tmAO.h are the public include files.

■

tmAImmio.h and tmAOmmio.h are a collection of macros given in a standard form

to simplify direct access to the hardware.

■

tmAIboard.h and tmAOboard.h specify the interface between the device library and

the BSP.

The device library is a very thin layer. It does little besides providing a platform-indepen-

dent interface to the hardware. Because the use of the audio hardware is dependent upon

the types of A/D and D/A converters present, the device library depends on a board sup-

port package (BSP) to describe access to the hardware.

Board Support Package

Each of the device library functions has a companion function in the BSP. Library soft-

ware accesses the BSP through a table of function pointers initialized at boot time. The

table depends upon the hardware that is connected and supported. Refer to the software

architecture book for more information.

Calling

aoInstanceSetup

 specifies the operating mode for the audio device. Hence, the

BSP’s audio initialization function is called from

aoInstanceSetup

 so the board can be

configured for the requested operation. A typical example of this operation can be

observed in the initialization function of the BSP for the TM-1300 debug board:

extern tmLibdevErr_t tm1300Debug_AO_Init(boardAOParam_t *param){
 Float val;
 pprocCapabilities_t procCap;
 Int err = TMLIBDEV_OK;
 Float tm1300DebugCPUClock;

/* get the clock frequency of the TriMedia CPU */
 err = procGetCapabilities(&procCap);
 if(err) return err;
 tm1300DebugCPUClock = (Float) procCapÐ>cpuClockFrequency;

/* reset the audio output peripheral */
 aoRESETM(AO_STATUS);

/* Set initial frequency to get AO into a stable state */
 val = paramÐ>sRate * 256.0; /* 256 * sampleRate */
 val = 0.5 + (477218588.0 * (val/tm1300DebugCPUClock)); /* 2**32 / 9 */
 aoSetFREQM(AO_STATUS, ((UInt)val)|0x80000000);

 aoEnableSER_MASTERM(AO_STATUS);
 microsleep(10); /* wait until AO unit stabilized */

Chapter 1: TriMedia Audio Overview

16

Book 6—Audio Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

 if(!(paramÐ>audioTypeFormat & TM1300DEBUG_SUPPORTED_AUDIO_OUT_TYPES))
 return AIO_ERR_UNSUPPORTED_FORMAT;
 if(!(paramÐ>audioSubtypeFormat&TM1300DEBUG_SUPPORTED_AUDIO_OUT_SUBTYPES))
 return AIO_ERR_UNSUPPORTED_FORMAT;

#ifdef __LITTLE_ENDIAN__
 aoEnableLITTLE_ENDIANM(AO_STATUS);
#else
 aoDisableLITTLE_ENDIANM(AO_STATUS);
#endif
 aoMsbFirstM(AO_STATUS);
 aoStartRisingEdgeWSM(AO_STATUS);
 aoSampleRisingCLOCK_EDGEM(AO_STATUS); /* sample on rising edge */
 aoSetSSPOSM(AO_STATUS, 0); /* L & R channel start at bit 0 */
 aoDisableSIGN_CONVERTM(AO_STATUS); /* Disable Sign Convert for MSB */
 aoDisableWS_PULSEM(AO_STATUS); /* word strobe in pulse mode */
 aoDisableTRANS_ENABLEM(AO_STATUS);

 switch (paramÐ>audioSubtypeFormat) {
 case apfStereo16: /* Two channel Audio */
 { /* 64 * 4 * 1 = 256fs */
 DP(("stereo 16 bit\n"));
 aoSetTRANS_MODEM (AO_STATUS, 3);
 aoSetWSDIVM (AO_STATUS, 63);
 aoSetSCKDIVM (AO_STATUS, 3);
 aoSetNR_CHANM (AO_STATUS, 0);
 aoSetLEFTPOSM (AO_STATUS, 0);
 aoSetRIGHTPOSM (AO_STATUS, 32);
 aoSetSIZEM (AO_STATUS, paramÐ>size);
 break;
 }
 case apfStereo32: /* Two channel Audio, 32Ðbit */
 { /* 64 * 4 * 1 = 256 fs */
 DP(("stereo 32 bit\n"));
 aoSetTRANS_MODEM (AO_STATUS, 1);
 aoSetWSDIVM (AO_STATUS, 63);
 aoSetSCKDIVM (AO_STATUS, 3);
 aoSetNR_CHANM (AO_STATUS, 0);
 aoSetLEFTPOSM (AO_STATUS, 0);
 aoSetRIGHTPOSM (AO_STATUS, 32);
 aoSetSIZEM (AO_STATUS, paramÐ>size);
 break;
 }

 /* -- other cases omitted here for clarity -- */

 case apfSevenDotOne16: /* Eight Channel Audio */
 {
 DP(("eight channels 16 bit\n"));
 aoSetTRANS_MODEM (AO_STATUS, 3);
 aoSetWSDIVM (AO_STATUS, 63);
 aoSetSCKDIVM (AO_STATUS, 3);
 aoSetNR_CHANM (AO_STATUS, 3);
 aoSetLEFTPOSM (AO_STATUS, 0);
 aoSetRIGHTPOSM (AO_STATUS, 32);
 aoSetSIZEM (AO_STATUS, paramÐ>size * 4);
 break;
 }

Chapter 1: TriMedia Audio Overview

©1999 Philips Semiconductors 10/08/99

 Book 6—Audio Support Libraries, Part A

17

1

The required register settings are made in the BSP, and a set of MMIO macros simplify

this process. For more information on audio BSPs, refer to Chapter 2.

Application Libraries

Several audio libraries are available to help you construct audio systems on TriMedia.

They share a common architecture, and fall into a number of categories:

Architecture

The audio libraries all conform to the TriMedia Streaming Software Architecture (TSSA)

as described, in great detail, in Book 3,

Software Architecture

, Part B. This means they can

be configured to run as data-driven tasks in their own threads. Although a complete dis-

cussion of the TSSA architecture is complex, several simple points can be made here.

 case apfSevenDotOne32: /* Eight Channel Audio, 32Ðbit */
 {
 DP(("eight channels 32 bit\n"));
 aoSetTRANS_MODEM (AO_STATUS, 1);
 aoSetWSDIVM (AO_STATUS, 63);
 aoSetSCKDIVM (AO_STATUS, 3);
 aoSetNR_CHANM (AO_STATUS, 3);
 aoSetLEFTPOSM (AO_STATUS, 0);
 aoSetRIGHTPOSM (AO_STATUS, 32);
 aoSetSIZEM (AO_STATUS, paramÐ>size * 4);
 break;
 }
 default: /* unsupported subtype */
 return(AIO_ERR_UNSUPPORTED_FORMAT);
 }
/* set sample rate */
 err = tm1300Debug_AO_SetSRate(paramÐ>sRate);
 if(err) return err;
 return TMLIBDEV_OK;
} /* end of tm1300Debug_AO_Init() */

Category Description

Digitizers Data “sources” of audio streams captured from the outside world.

Renderers Data “sinks” where digital audio data is translated to the outside world.

Mixers A catch-all library for many types of audio signal processing.

Decoders Accept a data stream in some compressed format and output PCM data

Encoders Accept a data stream in PCM format and output in some compressed
format.

Signal Processing Code packaged for use in a mixer.

Chapter 1: TriMedia Audio Overview

18

Book 6—Audio Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

There are three important interfaces within the application libraries.

■

The OL layer interface is the most common. Here, the operating system services

(pSOS, by default) run the audio process in its own thread. The thread contains a loop

that runs as long as data are available, unless the application gives a command to

stop processing. The OL layer includes not only the data processing, but also the code

to manage data buffering. The OL layer interface can take advantage of the large body

of standard services to make the buffer management job less tedious. The OL layer

defines the buffer transfer and memory allocation mechanisms in such a way that

components can easily and reliably cooperate.

■

The AL layer is designed to eliminate any dependency on an operating system.

Whereas the key function of the OL layer is the start function, the key function at the

AL layer is the

processData

 function. The

processData

 function does not incorporate

buffer handling; it contains only the signal processing core of the code. Using the AL

interface, you can easily construct a component that calls another component in its

own thread. A system designer can use less buffer memory and thus achieve lower

latency. The AL layer also reduces the overhead associated with tasks and task switch-

ing.

■

Audio signal processing components can use another standardized API; the Audio

Signal Processing (ASP) interface. ASP modules were designed for use in the frame-

work of the type of audio mixers TriMedia-based television receivers use. You can

think of the ASP interface as a special case of the AL layer

processData

 function.

While the typical

processData

 function uses TSA data packets as its input and output,

ASP functions use a buffer structure optimized for use inside a mixer. These subtle dif-

ferences become clearer as you explore the structure of a mixer. The simple mixer (a

demo) illustrates these concepts in use.

No matter which layer or API is used, TriMedia audio processing modules adhere to strict

interface standards. One header file is exported to describe each public interface. Por-

tions of the code that are not designed to be used publicly are hidden. Global variables

and other forms of name-space pollution are assiduously avoided. These are basic con-

cepts to object-oriented code.

Filter Graphs

OL layer TSSA components can be interconnected, creating a filter graph. The arrange-

ment of the filter graph is set up by code that connects the various modules. This might

be application code, and it might be a library module referred to as an audio system.

Chapter 1: TriMedia Audio Overview

©1999 Philips Semiconductors 10/08/99

 Book 6—Audio Support Libraries, Part A

19

1

Modules Types

Whether selecting an existing module or creating a module, it helps to understand the

existing classes of audio processors. Reusing these concepts can greatly speed develop-

ment.

Renderers

Renderer components consume data; as far as software is concerned, renderers have only

input ports. A renderer accepts a data stream and presents a signal to the outside world

through a D/A converter. To date, two audio renderers have been created. These use the

TriMedia AO and SPDIF output ports, respectively, to present their data. Renderers can be

considered TSSA device drivers. They are implemented using interrupt service routines.

The TriMedia audio renderers also have extensive synchronization functionality that can

synchronize audio to video, or audio to any sort of external clock. Much of this func-

tionality is implemented using the TSSA progress function which is called from the inter-

rupt service routine. Regardless of the destination of the audio, the audio renderers share

a similar interface allowing applications to easily redirect their output.

Because the renderers are built upon the device libraries, and because the device libraries

depend on board support packages, it is easy to use the same renderer code on diverse

types of hardware.

The audio renderers are best used through the OL interface. Although

ArendAO

 can be

used at the AL layer, the OL layer is always preferred.

Each of the audio renderers is designed to be operated as a clock master. The software

expects to use the AO DDS (refer to the data book) to support the synchronization

features.

Digitizers

Digitizer components generate data; as far as software is concerned, digitizers have only

output ports. A digitizer accepts a signal from the outside world and generates a TSSA

data stream. The device libraries support the interface to the hardware. To date, the only

audio digitizer available uses the TriMedia AI port. Like renderers, digitizers eventually

rely on the board support package to supply the code used to initialize and control the

hardware. The AI port can be connected to an A/D converter, or it can receive data from

a digital audio input port such as an SPDIF receiver. When used with an SPDIF receiver,

the AI port will run as a clock slave. The rest of the audio system will expect to lock to

the AI clock using a software PLL. This facility is demonstrated in the sample program

exolCopyAudio

.

The

exolCopyAudio

 example also demonstrates how the digitizer can receive an interrupt

from the SPDIF receiver so it can respond to status changes from the digital source. Sup-

port for this facility also resides in the board support package.

Chapter 1: TriMedia Audio Overview

20

Book 6—Audio Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Mixers

In the TriMedia examples, the mixer module contains any form of post processing. The

mixer has an OL layer TSSA interface, so it runs in its own task. The ASP component

standards were developed to facilitate this sort of post processing. The AmixSimple

library is provided with documentation and source code to demonstrate this architec-

ture. The mixer architecture was developed to facilitate exchanging signal processing

modules between projects. A mixer is an example of a component that is likely to be spe-

cific to a class of products. Although it might be possible to create a generic mixer, it has

not been done. Mixer components—tone filters, sample rate converters, and dynamics

processors—can be built for generic use. The ASP interface defines how to do this.

Digitizers and renderers always expect multi-channel audio streams to be interleaved.

However, for the type of processing a mixer performs, it is often useful to work with non-

interleaved streams. Therefore, the mixers each contain a de-interleave phase when data

is received and an interleave phase when data is being prepared for transmission. This

factoring makes sense only when there is enough processing between the de-interleave

and the interleave. It is important to optimize the cache behavior of the code to achieve

maximum efficiency.

Decoders

Decoders receive data in a compressed format such as AC-3 or MPEG audio. They output

normal PCM data. Because psychoacoustic compression algorithms are complex enough

to take a few tens of MIPS, it is efficient and convenient to package them as OL layer

components. The AC-3 and MPEG audio decoders share a number of features in their

TSSA interfaces. They each use a progress function to indicate when a valid bitstream is

acquired. They implement error functions to report on errors found in the bitstream.

The AC-3 decoder has two outputs. The second output can produce a bitstream encoded

to meet the IEC61937 standard for the transmission of compressed audio over an

IEC60938 (SPDIF) connection. TriMedia audio decoders are designed to receive an MPEG

packetized elementary stream (PES). In this case, the PES packets are time-stamped and

the decoder transfers the time stamps to the decoded packets according to MPEG rules.

To date, effective decoders for Dolby Digital (AC-3) and for MPEG-1 layer 2 audio are

readily available. Decoders for MPEG-1 layer 3 and for MPEG-2 AAC are under develop-

ment. A decoder for g.723 is also available as part of the video conferencing stack.

Encoders

Encoders receive PCM audio as an input and produce compressed audio data at their out-

put. An example of an encoder is the MPEG-1 layer 2 encoder that is shipped on the

applications disk. Dolby Digital and MP3 encoders are also available as prototypes.

Chapter 1: TriMedia Audio Overview

©1999 Philips Semiconductors 10/08/99

 Book 6—Audio Support Libraries, Part A

21

1

Signal Processing Libraries

Audio Signal Processing (ASP) libraries provide a convenient way to exchange less com-

plex audio algorithms. They are a variant of the non-streaming AL layer TSSA interface.

The data-driven, thread-based architecture defined by TSSA can be too “heavy” when the

signal processing component in question only requires a few MIPS: the buffering used to

connect TSSA components can require more memory and introduce more latency than

is required. The AL layer’s process data function provides a way to avoid these issues. The

‘process data’ function gives a precedent for a functional interface to the module in

question. Basic TSSA documentation assumes the ‘process data’ function will take TSA

packets as its inputs and outputs. But supporting all the interleaved audio formats

described by TSA leads to a significant portion of code that must be duplicated in each

module. The ASP interface is a variant of the ‘process data’ interface, but does not use

TSA packets. Instead, it uses a structure that allows audio channels to be organized as an

array of pointers to de-interleaved channels.

ASP modules export the same

Open

,

Close

,

InstanceSetup

,

InstanceConfig

 interface com-

mon to all TSA libraries. They show their similarity in the way the

processData

 function

is implemented.

Examples of ASP libraries in use today are the tone control of the DTV mixer, the loud-

ness control of the DTV mixer, and the low-pass filter of the simple mixer example.

Other components such as dynamic range compressors or 3D audio filters could easily be

packaged as ASP modules.

Audio Systems

In practice, some of these components must be interconnected to make a useful audio

system. The code that connects these components is likely to be application-specific, but

the application might represent a class of products. To take advantage of the similarity

between audio systems in related products, the connected filter graph of the audio com-

ponents can be packaged into an “audio system.” This is exactly what has been done for

the digital television product class. The DTV audio system connects the Dolby Digital

decoder to a mixer that supports ProLogic decode, tone, and loudness. The source can be

selected to come from the MPEG demultiplexer, the analog input, or a digital (SPDIF)

input. All the types of control that have been found necessary are incorporated into a

common interface.

This concept is easily extended to other product spaces. The audio system you need

might be unique. The TSSA architecture allows you to construct a system for reuse.

Chapter 1: TriMedia Audio Overview

22 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 23

2
Chapter 2

Audio Board Support Packages

Topio Page

Introduction 24

Writing a BSP for Audio 24

Parameter Structures 24

BSP Config Structure 25

How Is This Used? 28

Chapter 2: Audio Board Support Packages

24 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

The TriMedia device libraries are supported by a board support package. As the software

architecture documentation explains, the BSP allows system designers to change the

audio interface hardware that is connected to TriMedia without adversely affecting the

higher level audio I/O modules. The BSP interface defines the functionality expected of

the hardware. The BSP functions are called by the audio device library.

Writing a BSP for Audio

The best way to start writing a BSP for audio is to copy the BSP from one of the example

boards that is shipped with the TriMedia SDE. The BSP for IREF is one such example. It is

unusual in the way it supports the AD1847 codec. The BSP for the TM-1300 debug board

shows how to support a simple A/D and D/A combination. That may be the most gener-

ally applicable example. The DTV reference board support packages demonstrate how to

handle an SPDIF input.

When you bring up a board, a typical sequence of tests is as follows:

■ iictest.out: Ensure that system recognizes your board and installs your BSP.

■ sine.out: Ensure that the basic interface to the D/A works.

■ sthru.out: Ensure that basic A/D interface works.

■ exolArendAO: Verifies the operation of AO through the renderer.

■ exolCopyAudio: Verifies operation of audio digitizer.

Parameter Structures

The audio BSP interfaces are defined in two header files, namely tmAIboard.h and tmAO-

board.h found in the TCS/include/tm1 directory. Several structures are defined in these

files. This chapter document discusses them.

boardAOParam_t

The boardAOParam_t structure is passed to the AO board initialization function.

typedef struct {
 tmAudioTypeFormat_t audioTypeFormat; /* audio type */
 UInt32 audioSubtypeFormat; /* audio subtype */
 UInt32 audioDescription;
 Float sRate; /* sample rate in Hz */
 Int size; /* #samples in buffers */
 tmAudioAnalogAdapter_t output; /* output select */
} boardAOParam_t, *pboardAOParam_t;

The members of this structure give the AO hardware all it needs to be configured. The

format type and subtype are chosen from those listed in tmAvFormats.h. They are likely

Chapter 2: Audio Board Support Packages

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 25

2

to be something like atfLinearPcm and apfStereo16, respectively, specifying stereo 16-bit

PCM operation. To specify 8-channel 20-bit operation, the type and subtype would be

atfLinearPcm and apfSevenDotOne32, with the description set to 20. When the data sub-

type is 32-bit, the description field specifies the precision of the data. Another data type

that might be supported by common hardware is atf1937. This is appropriate if an SPDIF

transmitter is connected to the IIS interface and is sending audio data encoded according

to the IEC61937 specification.

The use of the sample rate field, given in Hertz, is self-evident. The size field is used to

initialize the size register of the TriMedia processor’s AO hardware. It is written directly

into the size register by the functions that usse this structure.

The output field selects between multiple output devices that might be connected to the

TriMedia processor. This field is not often used for output, but the analogous field in the

input parameter structure is very useful, for instance, to select between a digital and an

analog input.

boardAIParam_t

The analogous structure used for input control is defined in tmAIboard.h:

typedef struct {
 tmAudioTypeFormat_t audioTypeFormat; /* data type */
 UInt32 audioSubtypeFormat; /* data subtype */
 UInt32 audioDescription;
 Float sRate; /* sample rate in Hz */
 Int size; /* #samples in buffers */
 tmAudioAnalogAdapter_t input; /* input */
} boardAIParam_t, *pboardAIParam_t;

This parameter structure is filled in by the aiInstanceSetup (or aoInstanceSetup) funci-

ton. It is passed to the board’s initialization function.

BSP Config Structure

The board support package is used only by the corresponding device library. The device

library accesses the BSP through a function table that must be filled in by the board

designer. For audio, this function “table” is also defined in tmAI/Aoboard.h:

typedef struct {
 Char codecName[DEVICE_NAME_LENGTH];
 tmLibdevErr_t (*initFunc)(pboardAIParam_t param);
 tmLibdevErr_t (*termFunc)(void);

/* called from aiStart(). */
 tmLibdevErr_t (*startFunc)(void);

/* called from aiStop(). */
 tmLibdevErr_t (*stopFunc)(void);

/* called from aiSetSRate(). */
 tmLibdevErr_t (*setSRate)(Float sRate);

/* called from aiGetSRate(). */
/* Should return an accurate value from the hardware. */
 tmLibdevErr_t (*getSRate)(Float *sRate);

Chapter 2: Audio Board Support Packages

26 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

/* called from aiSetVolume() */
 tmLibdevErr_t (*setVolume)(Int lGain, Int rGain);

/* called from aiGetVolume() */
 tmLibdevErr_t (*getVolume)(Int * lGain, Int *rGain);

/* called from aiSetInput() */
 tmLibdevErr_t (*setInput)(tmAudioAnalogAdapter_t input);

/* called from aiGetInput() */
 tmLibdevErr_t (*getInput)(tmAudioAnalogAdapter_t *input);

/* a backdoor to support features not forseen in the initial design */
 tmLibdevErr_t (*configFunc)(UInt32 subAddr, Pointer value);

/* reports the format of the incomming audio. */
/* This is intended to be used with digital input (like S/PDIF) where */
/* the format of the incoming data is not known in advance. */
 tmLibdevErr_t (*getFormat)(tmAudioFormat_t *format);

/* describes the properties of the audio in unit, */
/* this information will be reported by the aiGetCapabilities() function */
 UInt32 audioTypeFormats;
 UInt32 audioSubtypeFormats;
 UInt32 audioAdapters;
 intInterrupt_t intNumber;
 UInt32 mmioBase;
 Float maxSRate;
 Float minSRate;
 UInt32 gpioFirstPin;
 UInt32 gpioLastPin;
} boardAIConfig_t;

initFunc

In the third line of the preceding structure, you can see the init function that is to be

called from InstanceSetup. This function is to prepare all of the audio MMIO registers to

communicate with the audio hardware on the board. The software expects these registers

to be set using the macros defined in tmAImmio.h and tmAOmmio.h. The initialization

function may also write to IIC or XIO locations to take the audio hardware out of reset or

to initialize it in other ways. At the end of the initialization function, the audio input or

output unit is stopped. Transmit or capture are not enabled.

Your application must place the address of this function in the table. The device library

will assert if it the initFunc field is left Null.

termFunc

The termination function (fourth line in the preceding structure) is called from the

device library’s close function. It shuts down the hardware completely.

Your application must place the address of this function in the table. The device library

will assert if it the termFunc field is left Null.

setSRate / getSRate

Different sorts of hardware use different means to set and get the sample rate. These

function pointers allow a board designer to do what is appropriate. Many boards use the

Chapter 2: Audio Board Support Packages

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 27

2

DDSs that are available for AI and AO to implement these functions. However, both AI

and AO might be driven by one DDS. Or perhaps both are driven by the VO DDS.

Another possibility is that the audio codec supports a few selected sample rates and these

are chosen by writing to some external register. All these situations can be accommo-

dated by placing the appropriate code in these functions.

Your application must place the address of these function in the table. The device library

will assert if it the setSRate or getSRate fields are left Null.

setVolume / getVolume

Some codecs include their own volume controls. These functions allow board designers

to accommodate volume control.

These functions are optional. If the board does not support volume control, you can

leave the function pointers Null.

getInput / setInput / getOutput / setOutput

These functions choose between multiple hardware paths when implemented on the

board. More commonly used for the input, one of these functions can, for example,

choose between a microphone and a line input, or an analog input and a digital input.

These functions are optional. You can leave the functions pointers Null.

ConfigFunc

The configuration function allows you to implement features that are not defined in the

standard set. Application-specified configuration commands must have their high bit set

(OR with 0x80000000). The audio renderers, digitizers, and device libraries pass these

commands directly to the hardware to be processed.

Your application must place the address of this function in the table. The device library

will assert if it the configFunc field is left Null.

getFormat

The getFormat function is called when the capabilities of the device are requested. It

returns values to the boardAIConfig_t fields just below the getFormat function pointer.

These include the audio types, subtypes, and adapters that are supported by the current

hardware. Note that each of these data are bit fields that are designed to be OR’d

together to specify a selection of supported formats.

Your application must place the address of this function in the table. The device library

will assert if it the getFormat field is left Null.

Chapter 2: Audio Board Support Packages

28 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Others

The remaining variables set up the audio unit further. The interrupt number and the

MMIO base differentiate between the two AI and AO units that are available on some Tri-

Media variants. The GPIO numbers are used in a similar fashion when the TriMedia vari-

ant supports general-purpose IO. The maximum and minimum sample rates are

specified here.

How Is This Used?

The board support package is designed to be called exclusively by the device library. It

should not be called by other code. The functions declared in the BSP can be declared

static so that they are not visible outside the file where they are defined. The functions

are entered into the config table, and the config table is entered into the registry so that

the device library can find it when it needs it.

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 29

3

Chapter 3

Audio Device Library

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device Li-
braries, of Book 3, Software Architecture, Part A.

Topic Page

Audio Device Library Overview 30

Demonstration Programs 31

Using the Audio Device Library 31

Limitations 31

Audio Input API Data Structures 32

Audio Output API Data Structures 36

Audio Input API Functions 40

Audio Output API Functions 59

Chapter 3: Audio Device Library

30 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Audio Device Library Overview

The Audio Device Library for TriMedia provides a low-0level interface to the audio hard-

ware available on TriMedia. The Audio Device Library is designed to:

■ Control the Audio-in and Audio-out hardware on the TriMedia processor.

■ Control A/D and D/A converters attached to the TriMedia processor.

■ Support the audio renderer, audio digitizer, and other audio systems on the TriMedia

chip.

■ Abstract the differences between the AI and AO units present in the various chips in

the TriMedia family.

Note
See the appropriate TriMedia databook.

The Audio-in and Audio-out device libraries are nearly symmetrical. They provide a rela-

tively simple interface: the device is opened, a few parameters are set, and then, when

audio is started, the audio is serviced by interrupts. The address of the Interrupt Service

Routine (ISR) is passed in with the Instance setup function. A few routines are also pro-

vided to control audio once it is running. These include setting the sample rate, and on

devices which support it in hardware, setting the volume or selecting an input.

The two libraries can be used independently, provided that you are aware of any hard-

ware limitations. For example, in the case of an analog input/output (I/O) device such as

AD1847, both the audio input and output are performed by the same chip. Hence, the

same sample rate is used by both the input and output.

The original TriMedia chips had only one AI and AO unit, and the interface uncon-

sciously reflected this. Since some TriMedia variants now support multiple AI or AO

units, the device library interfaces have been extended to support this. The new func-

tions are postfixed with “M” to identify their applicability to multiple units. The previ-

ous single unit functions are now implemented in terms of these new functions,

defaulting to the first unit for compatibility.

Most of the library functions return zero on success or nonzero error codes. You must

check the error values returned by all of the initialization functions. Many functions

check and report the use of sizes and alignments that the hardware cannot support.

The model implemented here does not mandate any specific data transfer mechanism.

The APIs allow the user to install his own Interrupt Service Routine (ISR).

The TriMedia device libraries are designed to be used to create device drivers. Whereas

device drivers are operating-system specific, the device libraries are generic. And whereas

device drivers specify a data transfer mechanism, the device libraries leave the data trans-

fer mechanism to the user.

The example applications show how the Audio device library can be used on its own

without a traditional device-driver structure. In a given operating system, it may or may

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 31

3

not be useful to create a standard device driver for this peripheral. However, if you decide

to create a device driver, the Audio Device Library should be very helpful.

Demonstration Programs

The Audio Device Library includes several demonstration programs, including sine,

fplay, fplay6, and sthru (found in examples/peripherals/audio), avio (found in examples/

peripherals/avio), and patest (found in examples/peripherals/patest). The audio test pro-

grams demonstrate simple uses of the Audio Device Library. The sine program plays a

sine wave through AO. The fplay program plays a sound file through AO. The fplay6 pro-

gram is a variation of fplay where 6 channel mode is used. The sthru program uses AI

and AO to capture sound from AI and play it out through AO (with option to capture to

file).

Using the Audio Device Library

This version of the API has been tested on the TM-1000 IREF and debug boards, as well as

on DTV reference boards. On the IREF, it is recommended that you use the AD1847 as

master of the IIS port with masterclock provided by the TM-1000 Direct Digital Synthe-

sizer (DDS).

The TriMedia Audio Device Library is contained in the archived device library libdev.a.

To use the Audio Device Library, you must include the tmAI.h and tmAO.h header files.

The libdev.a device library is linked automatically.

Note
While developing programs using the device library, always use the debug
version of the library (libdev_g.a). Numerous error conditions are trapped
using asserts in the debug library.

The Audio Device Library depends upon the Board Support API, which is also included

in libdev.a and is transparent to the user. If you want to change the hardware compo-

nents on the board, see Chapter 2, Audio Board Support Packages.

Limitations

You should be aware of the following hardware and/or software limitations:

■ The modes currently implemented in the Philips IREF board support package are:

— Stereo 16-bit mode

— Six channel, “Five dot one,” 16-bit.

■ The design of the IREF board makes it impossible for six channel output to work

simultaneously with audio input. This could be changed with a different board

design and an appropriate board support package. Similarly, the input and output

Chapter 3: Audio Device Library

32 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

must be set to use the same mode. An attempt to request dissimilar modes for input

and output causes an error to be returned by the Philips IREF board support package.

■ The DTV reference boards support 8-channel operation in both 16- and 32-bit modes.

The DTV boards do not support mono operation.

■ Calculation of the sample rate is based on TriMedia’s cycle clock.The software gets its

definition of this clock from a global variable that is patched when the program is

loaded. On Windows, this value is read from the Windows registry residing in the

Windows directory. It can be set explicitly using the debugger. You must ensure that

the value specified matches your hardware.

■ When setting sample rates, consider the fact that the value for the DDS control regis-

ter is computed in 32-bit math, possibly resulting in inaccuracies because of trunca-

tion. The “GetSampleRate” functions are designed to return the actual sample as set

in hardware.

Audio Input API Data Structures

This section describes the Audio Input API device library data structures. These data

structures are defined in the tmAI.h header file.

Name Page

aiCapabilities_t 33

aiInstanceSetup_t 35

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 33

3

aiCapabilities_t

typedef struct {
 tmVersion_t version;
 Int numSupportedInstances;
 Int numCurrentInstances;
 char codecName[DEVICE_NAME_LENGTH];
 UInt32 audioTypeFormats;
 UInt32 audioSubtypeFormats;
 UInt32 audioAdapters;
 Float minSRate;
 Float maxSRate;
 intInterrupt_t intNumber;
 UInt32 mmioBase;
} aiCapabilities_t, *paiCapabilities_t;

Fields

version Version of the AO (AI) library module so that soft-
ware can identify changes.

numSupportedInstances Number of AO units in the hardware.

numCurrentInstances Number of AO units currently in use.

codecName[DEVICE_NAME_LENGTH] A string giving the name of the codec used for
this unit.

audioTypeFormats An OR’d value of all the audio type formats sup-
ported by this library. Audio type formats are
defined in the file tmAvFormats.h. This will be
updated with values from the board support pack-
age when aiInstanceSetup is called.

audioSubtypeFormats An OR’d value of all the audio subtype formats
supported by this library. Audio subtype formats
are defined in the file tmAvFormats.h. This will be
updated with values from the board support pack-
age when aiInstanceSetup is called.

audioAdapters An OR’d value of all the audio adapters supported
by this library. Audio subtype formats are defined
in the file tmAvFormats.h. This will be updated
with values from the board support package when
aiInstanceSetup is called.

minSRate Lowest supported sample rate.

maxSRate Highest supported sample rate.

intNumber AO interrupt.

mmioBase AO MMIO base address.

Chapter 3: Audio Device Library

34 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Description

A pointer to this structure is returned by the aiGetCapabilities function. It will be

updated with values from the board support package when aiInstanceSetup is called.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 35

3

aiInstanceSetup_t

typedef struct {
 void (*isr)(void);
 intPriority_t interruptPriority;
 Bool overrunEnable;
 Bool hbeEnable;
 Bool buf1fullEnable;
 Bool buf2fullEnable;
 tmAudioTypeFormat_t audioTypeFormat;
 tmAudioAnalogAdapter_t input;
 UInt32 audioSubtypeFormat;
 Float srate;
 Int size;
 Pointer base1;
 Pointer base2;
} aiInstanceSetup_t, *paiInstanceSetup_t;

Fields

isr Interrupt service routine (ISR).

interruptPriority The interrupt priority for the AI ISR installed.

overrunEnable Enable (or disable) the ISR overrun interrupt.

hbeEnable Enable (or disable) the ISR highway bandwidth
error interrupt.

buf1fullEnable Enable (or disable) the ISR buffer1 full interrupt.

buf2fullEnable Enable (or disable) the ISR buffer2 full interrupt.

audioTypeFormats The audio type format selected. Audio type for-
mats are defined in the file tmAvFormats.h.

audioSubtypeFormats The audio subtype format selected.Audio subtype
formats are defined in the file tmAvFormats.h.

input Selects the input source (line in, mic in, digital in,
etc.). The value aaaNone selects the default.

srate Sample rate in Hz.

size Size of buffers, in samples.

base1 Base address of buffer 1.

base2 Base address of buffer 2.

Description

This struct is used by the function aiInstanceSetup to read setup parameters. All fields are

used on initial setup. Bases and size are only updated on the initial setup. ISR, priority

and flags can be updated while running.

Chapter 3: Audio Device Library

36 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Audio Output API Data Structures

This section presents the Audio Output device library data structures. These data struc-

tures are defined in the tmAO.h header file.

Name Page

aoCapabilities_t 37

aoInstanceSetup_t 39

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 37

3

aoCapabilities_t

typedef struct {
 tmVersion_t version;
 Int numSupportedInstances;
 Int numCurrentInstances;
 char codecName[DEVICE_NAME_LENGTH];
 UInt32 audioTypeFormats;
 UInt32 audioSubtypeFormats;
 UInt32 audioAdapters;
 Float minSRate;
 Float maxSRate;
 intInterrupt_t intNumber;
 UInt32 mmioBase;
} aoCapabilities_t, *paoCapabilities_t;

Fields

version Version of the AO (AI) library module. Used by
software to identify changes.

numSupportedInstances Number of units in the hardware.

numCurrentInstances Number of units currently in use.

codecName A string giving the name of the codec installed
(which varies depending on the board used).

audioTypeFormats An OR’d value of all the audio type formats sup-
ported by this library. Audio type formats are
defined in the file tmAvFormats.h. This will be
updated with values from the board support pack-
age when aiInstanceSetup is called.

audioSubtypeFormats An OR’d value of all the audio subtype formats
supported by this library. Audio subtype formats
are defined in the file tmAvFormats.h. This will be
updated with values from the board support pack-
age when aiInstanceSetup is called.

audioAdapters An OR’d value of all the audio adapters supported
by this library. Audio subtype formats are defined
in the file tmAvFormats.h. This will be updated
with values from the board support package when
aiInstanceSetup is called.

minSRate Lowest supported sample rate.

maxSRate Highest supported sample rate.

intNumber AO interrupt.

mmioBase AO MMIO base address.

Chapter 3: Audio Device Library

38 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Description

A pointer to this structure is returned by the aoGetCapabilities function. It is updated

with values from the board support package when aiInstanceSetup is called.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 39

3

aoInstanceSetup_t

typedef struct {
 void (*isr)(void);
 intPriority_t interruptPriority;
 Bool underrunEnable;
 Bool hbeEnable;
 Bool buf1emptyEnable;
 Bool buf2emptyEnable;
 tmAudioTypeFormat_t audioTypeFormat;
 UInt32 audioSubtypeFormat;
 tmAudioAnalogAdapter_t output;
 Float sRate;
 Int size;
 Pointer base1;
 Pointer base2;
} aoInstanceSetup_t, *paoInstanceSetup_t;

Fields

isr Interrupt service routine.

interruptPriority The interrupt priority for the AO ISR installed.

underrunEnable Enable interrupt sources.

hbeEnable Enable HBE interrupt.

buf1fullEnable Enable the ISR when buffer 1 is empty.

buf2fullEnable Enable the ISR when buffer 2 is empty.

audioTypeFormats The audio type format selected. Audio type for-
mats are defined in the file tmAvFormats.h.

audioSubtypeFormats The audio subtype format selected. Audio subtype
formats are defined in the file tmAvFormats.h.

output Selects the output, if multiple are available. The
value aaaNone selects the default.

srate Sample rate in Hz.

size Size of buffers, in bytes, in samples.

base1 Base address of buffer 1.

base2 Base address of buffer 2.

Description

This struct is used by the function aoInstanceSetup to read setup parameters. All fields

are used on initial setup. Bases and size are only updated on the initial setup. ISR, prior-

ity and flags can be updated while running.

Chapter 3: Audio Device Library

40 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Audio Input API Functions

This section presents the Audio Input device library functions.

Name Page

aiGetCapabilities 41

aiGetCapabilitiesM 42

aiGetNumberOfUnits 43

aiOpen 44

aiOpenM 45

aiInstanceSetup 46

aiChangeBuffer1 47

aiChangeBuffer2 47

aiClose 48

aiStop 49

aiStart 50

aiSetInput 51

aiGetInput 52

aiSetVolume 53

aiGetVolume 54

aiSetSampleRate 55

aiGetSampleRate 56

aiGetFormat 57

aiConfig 58

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 41

3

aiGetCapabilities

tmLibdevErr_t aiGetCapabilities(
 paiCapabilities_t *pCap
);

Parameters

pCap Pointer to a pointer to a structure of capabilities
type.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
given if pCAP is NULL.

(other errors) Error codes may be returned from call to board-
GetConfig. See the boardGetConfig API docu-
mentation for possible error codes.

Description

This function fills in the value of a user-supplied pointer variable which will then point

to the single shared capabilities structure for the AI device library. Implemented by a call

to aiGetCapabilitiesM with unitName set to the first unit.

Chapter 3: Audio Device Library

42 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aiGetCapabilitiesM

tmLibdevErr_t aiGetCapabilitiesM(
 paiCapabilities_t *pCap,
 unitSelect_t unitName
);

Parameters

pCap Pointer to a pointer to a structure of capabilities
type.

unitName Select which unit.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
given if pCAP is NULL.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
The selected unit is not supported in hardware.

Description

Used to find out about the AI hardware.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 43

3

aiGetNumberOfUnits

tmLibdevErr_t aiGetNumberOfUnits(
 UInt32 *pNumberOfUnits
);

Parameters

pNumberOfUnits Pointer to an integer describing the number of
audio input units that are supported on the cur-
rent hardware.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
given if pNumberOfUnits is NULL.

Description

Used to find the number of audio input units that are supported on the current hard-

ware.

Chapter 3: Audio Device Library

44 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aiOpen

tmLibdevErr_t aiOpen(
 Int *instance
);

Parameters

instance Pointer to Int to hold instance value assigned on
successful completion of the aiOpen function.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NO_MORE_INSTANCES There are no more free instances.

(other errors) Error codes may be returned from the call to the
intOpen function. See the Interrupt API docu-
mentation for possible error codes.

Description

This function will open an instance of the AI device and assign the instance value. It

opens an interrupt (intAUDIOIN) with intOpen function. Implemented by a call to aiO-

penM with unitName set to the first unit (unit0).

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 45

3

aiOpenM

tmLibdevErr_t aiOpenM(
 Int *instance,
 unitSelect_t unitName
);

Parameters

instance Pointer to Int to hold instance value assigned on
successful completion of the aiOpen function.
Used to access the unit in subsequent calls.

unitName Select which unit.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Can be asserted in debug mode.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
Unit not supported in hardware.

TMLIBDEV_ERR_NO_MORE_INSTANCES No more free instances. Unit not supported in
hardware.

TMLIBDEV_ERR_MEMALLOC_FAILED Memory used for instance variable structure.

Other errors might be returned if the allocation of the interrupt or hardware pins (on

GPIO enabled devices) fail.

Description

This function opens an instance of the AI device and assigns the instance value. It opens

an interrupt (intAUDIOIN) with intOpen function. Implemented by a call to aiOpenM

with unitName set to the first unit (unit0).

Chapter 3: Audio Device Library

46 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aiInstanceSetup

tmLibdevErr_t aiInstanceSetup(
 Int instance,
 paiInstanceSetup_t pSetup
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

pSetup Pointer to setup structure containing setup
parameters.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered
instead of an error code.

AIO_ERR_UNSUPPORTED_FORMAT The requested audio format is not supported by
the AI library.

BOARD_ERR_NULL_FUNCTION The board codec struct for AI is missing an initial-
ization function or the setSRate function.

Other error codes may be returned due to call to boardGetConfig. See the board API for

details. Other error codes may also be returned because of the call to intInstanceSetup.

See the interrupts API for details. Other error codes may also be returned due to call to

the board codec initialization function or the setSRate function. This is specific to the

board codec.

Description

The aiInstanceSetup function performs initialization of the AI hardware. This function

will get the setup function from the board API by boardGetConfig. Then it runs the

appropriate setup function (see board API), setups the AI_CTL MMIO register according

to pSetup. It sets the base and size MMIO registers with aiSetBASE1, aiSetBASE2, and

aiSetSIZE macros, then it setups the interrupt opened by aiOpen with intInstanceSetup.

Upon return, the device is stopped with aiDisableCAP_ENABLE macro, but the device is

ready to go (via aiStart).

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 47

3

aiChangeBuffer1

void aiChangeBuffer1(
 Int instance,
 Pointer buffer
)

Parameters

instance Instance value assigned at the call of the aiOpen
function.

buffer New buffer pointer.

Return Codes

There are no return codes because this function is implemented as a macro.

Description

This function (macro) changes the base address of buffer1.

aiChangeBuffer2

void aiChangeBuffer2(
 Int instance,
 Pointer buffer
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

buffer New buffer pointer.

Return Codes

There are no return codes because this function is implemented as a macro.

Description

This function (macro) changes the base address of buffer2.

Chapter 3: Audio Device Library

48 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aiClose

tmLibdevErr_t aiClose(
 Int instance
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
instance does not match the owner.

TMLIBDEV_ERR_NOT_OWNER In the debug version of the library, this assertion
is triggered if the instance does not match the
owner.

(other error codes) Other error codes might be returned due to the
call to intClose. Please see the Interrupt library API
for the possible returned error codes.

Description

Close the given instance of the AI device, after which the device is free and ready for

allocation. This function shuts down driver by calling the appropriate termination func-

tion from the board API, and interrupt service through MMIO AI_CTL register. Then it

closes with intClose the interrupt intINTAUDIOIN opened by aiOpen.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 49

3

aiStop

tmLibdevErr_t aiStop(
 Int instance
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match the owner. In the
debug version of the library, this assertion is trig-
gered if instance does not match the owner.

Description

This function stops the audio-in capture for the given instance, by calling the

aiDisableCAP_ENABLE macro (see tmAImmio.h).

Chapter 3: Audio Device Library

50 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aiStart

tmLibdevErr_t aiStart(
 Int instance
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
instance does not match the owner.

BOARD_ERR_NULL_FUNCTION If aiSetInput or aiSetVolume was called while
audio is stopped, then aiStart will make calls to
the board codec setInput and setVolume func-
tions. If those functions are missing in the board
codec struct, this error is returned.

(other error codes) If aiSetInput or aiSetVolume was called while
audio is stopped, then aiStart will make calls to
the board codec setInput and setVolume function.
Other error codes may be returned by those board
codec functions.

Description

This function starts the audio in capture for the given instance. It calls the macro

aiEnableCAP_ENABLE, and will adjust the input and the volume when needed with the

appropriate board functions (see board API).

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 51

3

aiSetInput

tmLibdevErr_t aiSetInput(
 Int instance,
 tmAudioAnalogAdapter_t input
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

input Codec input selection.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
instance does not match the owner.

BOARD_ERR_NULL_FUNCTION The board codec struct does not contain a set-
Input function.

(other error codes) Other error codes may be returned by the board
codec setInput function, which is called by aiSet-
Input.

Description

This function is used to set or change codec input selection. This function calls the

appropriate board function (see board API). If the device is stopped, this call is post-

poned until the next aiStart.

Chapter 3: Audio Device Library

52 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aiGetInput

tmLibdevErr_t aiGetInput(
 Int instance,
 tmAudioAnalogAdapter_t *input
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

input Pointer to caller’s struct to be filled.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
instance does not match the owner.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
triggered if the input is NULL.

Description

This function is used to get the current codec input selection.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 53

3

aiSetVolume

tmLibdevErr_t aiSetVolume(
 Int instance,
 Int lgain,
 Int rgain
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

lgain Left channel gain, expressed in 1/100th of a deci-
bel (dB).

rgain Right channel gain, expressed in 1/100th of a
decibel (dB).

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
instance does not match the owner.

BOARD_ERR_NULL_FUNCTION The board codec struct is missing a setVolume
function.

Other error codes may be returned because of the call to the board codec setVolume

function. This is specific to the board codec function used.

Description

This function is used to set or change the audio input gain. This is achieved by calling

the appropriate setVolume function when this function is installed (look at board API). If

the Audio In is stopped, this is postponed until the next aiStart call.

Implementation Notes

For the ad1847 codec on the TriMedia IREF board, valid input volume ranges from 0.0 dB

to +22.5 dB inclusive, in increments of +1.5 dB. This corresponds, for example, to an

lgain value range of 0 to 2250 in increments of 150. Values within the range will be

adjusted down to the lower closest legal value, and values outside of range will result in

non-zero error codes being returned.

Chapter 3: Audio Device Library

54 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aiGetVolume

tmLibdevErr_t aiGetVolume(
 Int instance,
 Int *lgain,
 Int *rgain
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

lgain Pointer to variable in which to return the left
channel gain.

rgain Pointer to variable in which to return the right
channel gain.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
instance does not match the owner.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assertion
is triggered when lgain and/or rgain is Null.

Description

This function is used to get the audio input gain.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 55

3

aiSetSampleRate

tmLibdevErr_t aiSetSampleRate(
 Int instance,
 Float srate
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

srate Sample rate.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
instance does not match the owner.

AIO_ERR_SRATE_TOO_HIGH The requested sample rate is higher than the max-
imum allowed by the chosen codec.

AIO_ERR_SRATE_TOO_LOW The requested sample rate is lower than the mini-
mum allowed by the chosen codec.

BOARD_ERR_NULL_FUNCTION The board codec struct is missing the setSRate
function.

(other error codes) Other error codes may be returned by the board
codec setSRate function, which is board codec
specific.

Description

This function sets or changes the sample rate, by calling the appropriate function Set-

SRate from the board API when this function is installed (see board API).

Chapter 3: Audio Device Library

56 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aiGetSampleRate

tmLibdevErr_t aiGetSampleRate(
 Int instance,
 Float *srate
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

srate Pointer to variable in which to return the sample
rate.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
instance does not match the owner.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assertion
is triggered if srate is NULL.

BOARD_ERR_NULL_FUNCTION The board codec structure is missing the getSRate
function.

(other error codes) Other error codes may be returned by the board
codec function getSRate. This is specific to the
board codec function.

Description

This function gets the current sample rate.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 57

3

aiGetFormat

tmLibdevErr_t aiGetFormat(
 Int instance,
 tmAudioFormat_t *format
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

format Pointer to a format structure in which to return
information about the current format.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
instance does not match the owner.

BOARD_ERR_NULL_FUNCTION The codec does not support Configure.

(other error codes) Other error codes may be returned by the board-
specific codec Configure function.

Description

This routine is provided to support the implementation of digital audio input. It will

return the format of the currently selected audio input. When the digital input has been

selected (using aiSetInput), this function (via the BSP) will query the digital audio input

receiver and report the detected format. In the case of an SPDIF receiver, the sample rate,

the bit depth, and the “non-PCM” data bit may be used to indicate whether this is PCM

audio data or encoded AC-3.

Implementation Notes

Implementation is board specific.

Chapter 3: Audio Device Library

58 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aiConfig

tmLibdevErr_t aiConfig(
 Int instance,
 UInt32 subaddr,
 UInt32 value
);

Parameters

instance Instance value assigned at the call of the aiOpen
function.

subaddr Generic pointer passed to codec Configure rou-
tine.

value Generic pointer passed to codec Configure rou-
tine.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
instance does not match the owner.

BOARD_ERR_NULL_FUNCTION The codec does not support Configure.

(other error codes) Other error codes may be returned by the board-
specific codec Configure function.

Description

This routine is provided to allow for passing of configuration information from the user

program through the device library to the (customized) user board codec routines (look

at board API). The two parameters are passed down to the board codec Configure routine

without any processing. The error code returned will be the return value of the board

codec Configure routine.

Implementation Notes

For the Philips provided boards, the board codecs do not provide a Configure function,

and therefore aiConfig will return an error. The config function is used in the DTV

boards: It is used to talk to the SPDIF decoder.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 59

3

Audio Output API Functions

This section presents the Audio Output device library functions.

Name Page

aoGetCapabilities 60

aoGetCapabilitiesM 61

aoGetNumberOfUnits 62

aoOpen 63

aoOpenM 64

aoInstanceSetup 65

aoChangeBuffer1 66

aoChangeBuffer2 66

aoClose 67

aoStop 68

aoStart 69

aoSetOutput 70

aoGetOutput 71

aoSetVolume 72

aoGetVolume 73

aoSetSampleRate 74

aoGetSampleRate 75

aoConfig 76

Chapter 3: Audio Device Library

60 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aoGetCapabilities

tmLibdevErr_t aoGetCapabilities(
 paoCapabilities_t *pCap
);

Parameters

pCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assertion
is triggered if pCap is NULL.

(other errors) Error codes may be returned from call to board-
GetConfig. See the boardGetConfig API docu-
mentation for the possible error codes.

Description

This function fills in the value of a user-supplied pointer variable which will then point

to the single shared capabilities structure for the AO device library. Implemented by a

call to aoGetCapabilitiesM with unitName set to the first unit (unit0).

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 61

3

aoGetCapabilitiesM

tmLibdevErr_t aoGetCapabilitiesM(
 paoCapabilities_t *pCap,
 unitSelect_t unitName
);

Parameters

pCap Pointer to a pointer to an AO capabilities struc-
ture.

unitName Select which unit.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Can be asserted in debug mode.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
Unit not supported in hardware.

Description

Finds out about the AO hardware.

Chapter 3: Audio Device Library

62 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aoGetNumberOfUnits

tmLibdevErr_t aoGetNumberOfUnits(
 UInt32 *pNumberOfUnits
);

Parameters

pNumberOfUnits Pointer to a variable in which to return the num-
ber of audio output units that are supported on
the current hardware.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
given if pNumberOfUnits is NULL.

Description

Finds the number of audio output units that are supported on the current hardware.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 63

3

aoOpen

tmLibdevErr_t aoOpen(
 Int *instance
);

Parameters

instance Pointer to Int to hold instance value assigned on
successful completion of the aoOpen function.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NO_MORE_INSTANCES There are no more free instances.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assertion
is triggered if the instance is NULL.

(other errors) Error codes may be returned from call to intOpen.
see Interrupt API documentation for possible
error codes.

Description

This function opens an instance of the AO device. It opens the Audio Out interrupt

(intAUDIOOUT) with the intOpen function. Implemented by a call to aoOpenM with

unitName set to the first unit (unit0).

Chapter 3: Audio Device Library

64 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aoOpenM

tmLibdevErr_t aoOpenM(
 Int *instance,
 unitSelect_t unitName
);

Parameters

instance Pointer to instance variable, stored as an integer.
This variable, assigned in open, is used to access
the unit in subsequent calls.

unitName Select which unit.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Can be asserted in debug mode.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
Not supported in hardware.

TMLIBDEV_ERR_NO_MORE_INSTANCES Unit is already in use.

TMLIBDEV_ERR_MEMALLOC_FAILED Memory used for instance variable structure.

Other errors might be returned if the allocation of the interrupt or hardware pins (on

GPIO enabled devices) fail.

Description

This function will open an instance of the selected AO device and assign the instance

value. It opens an interrupt as appropriate for the specified unit with intOpen function.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 65

3

aoInstanceSetup

tmLibdevErr_t aoInstanceSetup(
 Int instance,
 paoInstanceSetup_t pSetup
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

pSetup Pointer to setup structure.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered
instead of an error code.

AIO_ERR_UNSUPPORTED_FORMAT The requested audio format is not supported by
the AO library.

BOARD_NULL_FUNCTION The board codec structure is missing the initial-
ization function or the board codec structure is
missing the setSRate function.

(other error codes) Other error codes may be returned by the call to
boardGetConfig. See the board API documenta-
tion for details.

Other error codes may be returned by the call to
intInstanceSetup. See the interrupts API docu-
mentation for details.

Other error codes may be returned by the call to
the board codec initialization function and the
setSRate function. This is specific to the board
codec.

Description

This function performs initialization of the AO hardware by calling the appropriate

init_func from the board API returned by the boardGetConfig function. It setups the

MMIO registers AO_CTL, AO_BASE1 and AO_BASE2 (aoSetBASE1 and aoSetBASE2 mac-

ros), and AO_SIZE (aoSetSize macro). Then it sets up, when needed, the Interrupt Service

Routine by calling intInstanceSetup.

Upon return, the device is stopped but ready to go (via aoStart).

Chapter 3: Audio Device Library

66 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aoChangeBuffer1

void aoChangeBuffer1(
 Int instance,
 Pointer buffer
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

buffer New buffer pointer.

Return Codes

This function has no return code because it is implemented as a macro.

Description

This function changes the base address of buffer1.

aoChangeBuffer2

void aoChangeBuffer2(
 Int instance,
 Pointer buffer
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

buffer New buffer pointer.

Return Codes

This function has no return code because it is implemented as a macro.

Description

This function changes the base address of buffer2.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 67

3

aoClose

tmLibdevErr_t aoClose(
 Int instance
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner.In the debug
version of the library, this assertion is triggered if
instance does not match the owner.

(other error codes) Other error codes may be returned by the call to
intClose. See the Interrupts API document for
possible return codes.

Other error codes may also be returned by the call
to the board codec termination function
(term_func). Those return values are specific to
the board codec.

Description

This function will close the instance of the AO device by calling the appropriate termina-

tion function from the board API, and close with intClose the interrupt opened by

aoOpen. After this function, the device is free and ready for re-allocation.

Chapter 3: Audio Device Library

68 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aoStop

tmLibdevErr_t aoStop(
 Int instance
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

Return Codes

TMLIBDEV_OK Success. In the debug version of the library, this
assertion is triggered if instance does not match
the owner.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner.

Description

This function stops the audio play of this instance. This is achieved by calling the

aoDisableTRANS_ENABLE macro.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 69

3

aoStart

tmLibdevErr_t aoStart(
 Int instance
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner.In the debug
version of the library, this assertion is triggered if
the instance does not match the owner.

BOARD_ERR_NULL_FUNCTION If aoSetVolume and/or aoSetOutput is called
while audio is stopped, the board codec routines
are called at aoStart time. The error is returned if
the board codec structure is missing the set-
Output or setVolume functions.

(other error codes) If aoSetVolume and/or aoSetOutput is called
while audio is stopped, the board codec routines
are called at aoStart time. other error codes may
be returned by the board codec functions set-
Output and/or setVolume. The return codes in
that case are board codec specific.

Description

The aoStart function starts the audio play of this instance by calling the aoEnable-

TRANS_ENABLE macro. This function will set the volume and the output when needed

(see aoSetVolume and aoSetoutput).

Chapter 3: Audio Device Library

70 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aoSetOutput

tmLibdevErr_t aoSetOutput(
 Int instance,
 tmAudioAnalogAdapter_t output
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

output Codec input selection.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
the instance does not match the owner.

BOARD_ERR_NULL_FUNCTION The board codec structure is missing the set-
Output function.

(other error codes) Other error codes may be returned by the board
codec setOutput function. These are specific to
the board codec.

Description

This function is used to set or change codec output selection. It calls the appropriate

function setOutput from the board API. This call is postponed until aoStart is called if

Audio Out is stopped.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 71

3

aoGetOutput

tmLibdevErr_t aoGetOutput(
 Int instance,
 tmAudioAnalogAdapter_t *output
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

output Pointer to struct to be filled.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
the instance does not match the owner.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assertion
is triggered if the output is NULL.

Description

This function is used to get the current codec output selection.

Chapter 3: Audio Device Library

72 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aoSetVolume

tmLibdevErr_t aoSetVolume(
 Int instance,
 Int lgain,
 Int rgain
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

lgain Left channel gain, expressed in 1/100 of a decibel
(dB).

rgain Right channel gain, expressed in 1/100 of a deci-
bel (dB).

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if instance does not match owner. In
the debug version of the library, this assertion is
triggered if the instance does not match the
owner.

BOARD_ERR_NULL_FUNCTION Returned if the board codec structure is missing
the setVolume function.

(other error codes) Other error codes may be returned due to the call
to the board codec setVolume function, and are
specific to the board codec.

Description

This function is used to set or change the audio output gain. This calls the appropriate

function setVolume from the board API. This call is postponed until aoStart is called if

the Audio Out is stopped.

Implementation Notes

For the ad1847 codec on the TriMedia IREF board, the valid input volume ranges from

0.0 dB to +22.5 dB inclusive, in increments of +1.5 dB. This corresponds to (for example)

lgain value range of 0 to 2250 in increments of 150. Values within the range will be

rounded down to the lower closest legal value, and values outside of range will result in

non-zero error codes being returned.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 73

3

aoGetVolume

tmLibdevErr_t aoGetVolume(
 Int instance,
 Int *lgain,
 Int *rgain
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

lgain Pointer to a variable in which to return the left
channel gain.

rgain Pointer to a variable in which to return the right
channel gain.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner.In the debug
version of the library, this assertion is triggered if
the instance does not match the owner.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assertion
is triggered if lgain and/or rgain is Null.

Description

This function gets the audio output gain.

Chapter 3: Audio Device Library

74 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aoSetSampleRate

tmLibdevErr_t aoSetSampleRate(
 Int instance,
 Float srate
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

srate Sample rate.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match the owner. In the
debug version of the library, this assertion is trig-
gered if the instance does not match the owner.

AIO_ERR_SRATE_TOO_HIGH The requested sample rate is higher than the max-
imum allowed by the board codec chosen.

AIO_ERR_SRATE_TOO_LOW The requested sample rate is lower than the mini-
mum allowed by the board codec chosen.

BOARD_ERR_NULL_FUNCTION The board codec structure is missing the setSRate
function.

(other error codes) Other error codes may be returned due to the call
to the board codec setSRate function, and are spe-
cific to the board codec.

Description

This function sets or changes the sample rate by calling the appropriate function setRate

from the board API.

Chapter 3: Audio Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 75

3

aoGetSampleRate

tmLibdevErr_t aoGetSampleRate(
 Int instance,
 Float srate
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

srate Pointer to Float to hold the data.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match the owner. In the
debug version of the library, this assertion is trig-
gered if instance does not match the owner.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assertion
is triggered if srate is Null.

BOARD_ERR_NULL_FUNCTION The board codec structure is missing the getSRate
function.

(other error codes) Other error codes may be returned by the call to
the board codec getSRate function, and are spe-
cific to the board codec.

Description

This function gets the current sample rate by calling the appropriate function getSRate

from the board API.

Chapter 3: Audio Device Library

76 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

aoConfig

tmLibdevErr_t aoConfig(
 Int instance,
 UInt32 subaddr,
 UInt32 value
);

Parameters

instance Instance value assigned at the call of the aoOpen
function.

subaddr Generic pointer passed to the codec Configure
routine.

value Generic pointer passed to the codec Configure
routine.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER The instance does not match owner. In the debug
version of the library, this assertion is triggered if
instance does not match the owner.

BOARD_ERR_NULL_FUNCTION The codec does not support Configure.

(other error codes) Other error codes may be returned by the board
codec Configure function, and are specific to the
board codec.

Description

This routine is provided to allow for the passing of configuration information from the

user program through the device library to the (customized) user board codec routines

(look at the board API). The two parameters are passed down to the board codec Config-

ure routine without any processing. The error code returned will be the return value of

the board codec Configure routine.

Implementation Notes

For the Philips provided boards, the board codecs do not provide a Configure function,

and therefore aoConfig will return an error. The DTV reference boards use the config

function to communicate with the SPDIF receiver.

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 77

4

Chapter 4

SPDIF Output Device Library

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device Li-
braries, of Book 3, Software Architecture, Part A.

Topic Page

SPDO API Overview 78

Using the SPDO API 79

Limitations 79

SPDO API Data Structures 79

SPDO API Functions 83

Chapter 4: SPDIF Output Device Library

78 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

SPDO API Overview

Some variants of the TriMedia chip (TM-1300, TM-2700) include an SPDIF output unit,

and this hardware block is termed SPDO. S/P DIF is short for Sony/Philips Digital Inter-

face Format. It is a digital audio exchange method. SPDIF is described by the interna-

tional standard IEC60958 (formerly IEC958), which is a superset of the description

provided by AES-3, the standard of the Audio Engineering Society.

The SPDO API described here is a low-level, device library API that controls the SPDO

hardware. As such, it implements the usual Open, InstanceSetup, Start type of interface,

but this level of the interface does not specify the data transfer method.

Note
The SPDO hardware is described in the hardware data books for the
TM-2700 and the TM-1300.

The SPDO device library provides a relatively simple interface: the device is opened, a

few parameters are set, and then, when audio is started, the audio is serviced by inter-

rupts. The address of the Interrupt Service Routine (ISR) is passed in with the InstanceS-

etup function. A few functions are also provided to control audio once it is running.

These include functions that set the sample rate.

Most of the library functions return either zero, on success, or nonzero error codes. You

must check the error values returned by all of the initialization functions. Many func-

tions check and report the use of sizes and alignments that the hardware cannot support.

The model implemented here does not mandate any specific data transfer mechanism.

The APIs allow the user to install his own Interrupt Service Routine (ISR).

The TriMedia device libraries exist to create device drivers. Whereas device drivers are

specific to an operating-system, the device libraries are generic. And whereas device driv-

ers specify a data transfer mechanism, the device libraries leave the data transfer mecha-

nism to the user.

An example shows how the SPDO device library can be used on its own without a tradi-

tional device-driver structure. An SPDO-based audio renderer that is a complete TSSA

device driver will be available in the future.

Chapter 4: SPDIF Output Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 79

4

Using the SPDO API

The TriMedia SPDO API is contained in the archived device library libdev.a. To use the

SPDO API, you must include the tmSPDO.h header files. The libdev.a device library is

linked automatically.

Note
While developing programs using the device library, always use the debug
version of the library (libdev_g.a). Numerous error conditions are trapped
using asserts in the debug library.

The SPDO API depends upon the Board Support API, which is also included in libdev.a

and is transparent to the user. If you want to change the hardware components on the

board, see Chapter 19, TMBoard API, in Book 5, System Utilities, Part C.

Limitations

You should be aware of the following hardware and/or software limitations:

■ Calculation of the sample rate is based on TriMedia’s cycle clock.The software gets its

definition of this clock from a global variable that is patched when the program is

loaded. Under Win95, this value is read from the tmman.ini file residing in the Win-

dows directory (for Win95). It can be set explicitly using the debugger. You must

ensure that the value specified matches your hardware.

■ When setting sample rates, consider the fact that the value for the DDS control regis-

ter is computed in 32-bit math, possibly resulting in inaccuracies because of trunca-

tion. The “GetSampleRate” functions return the actual sample as set in hardware.

SPDO API Data Structures

This section presents the SPDO device library data structures. These data structures are

defined in the tmSPDO.h header file.

Name Page

spdoCapabilities_t 80

spdoInstanceSetup_t 82

Chapter 4: SPDIF Output Device Library

80 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

spdoCapabilities_t

typedef struct {
 tmVersion_t version;
 Int numSupportedInstances;
 Int numCurrentInstances;
 char codecName[DEVICE_NAME_LENGTH];
 UInt32 audioTypeFormats;
 UInt32 audioSubtypeFormats;
 UInt32 audioAdapters;
 Float minSRate;
 Float maxSRate;
 intInterrupt_t intNumber;
 UInt32 mmioBase;
} spdoCapabilities_t, *pspdoCapabilities_t;

Fields

version Version of the SPDO library module. Used by soft-
ware to identify changes.

numSupportedInstances Number of units in the hardware.

numCurrentInstances Number of units currently in use.

codecName
A string giving the name of the codec installed
(which varies depending on the board used).

audioTypeFormats An OR’d value of all the audio type formats sup-
ported by this library. Audio type formats are
defined in the file tmAvFormats.h. This will be
updated with values from the board support pack-
age when spdoInstanceSetup is called.

audioSubtypeFormats An OR’d value of all the audio subtype formats
supported by this library. Audio subtype formats
are defined in the file tmAvFormats.h. This will be
updated with values from the board support pack-
age when spdoInstanceSetup is called.

audioAdapters An OR’d value of all the audio adapters supported
by this library. Audio subtype formats are defined
in the file tmAvFormats.h. This will be updated
with values from the board support package when
spdoInstanceSetup is called.

minSRate Lowest supported sample rate.

maxSRate Highest supported sample rate.

intNumber SPDO interrupt.

mmioBase SPDO MMIO base address.

Chapter 4: SPDIF Output Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 81

4

Description

A pointer to this structure is returned by the spdoGetCapabilities function. It is updated

with values from the board support package when spdoInstanceSetup is called.

Chapter 4: SPDIF Output Device Library

82 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

spdoInstanceSetup_t

typedef struct {
 void (*isr)(void);
 intPriority_t interruptPriority;
 Bool underrunEnable;
 Bool hbeEnable;
 Bool buf1emptyEnable;
 Bool buf2emptyEnable;
 tmAudioTypeFormat_t audioTypeFormat;
 UInt32 audioSubtypeFormat;
 tmAudioAnalogAdapter_t output;
 Float sRate;
 Int size;
 Pointer base1;
 Pointer base2;
} spdoInstanceSetup_t, *pspdoInstanceSetup_t;

Fields

isr Interrupt service routine.

interruptPriority The interrupt priority for the SPDO ISR installed.

underrunEnable Enable interrupt sources.

hbeEnable Enable HBE interrupt.

buf1fullEnable Enable the ISR when buffer 1 is empty.

buf2fullEnable Enable the ISR when buffer 2 is empty.

audioTypeFormats The audio type format selected. Audio type for-
mats are defined in the file tmAvFormats.h.

audioSubtypeFormats The audio subtype format selected. Audio subtype
formats are defined in the file tmAvFormats.h.

output Selects the output, if multiple are available. The
value aaaNone selects the default.

srate Sample rate [Hertz].

size Size of buffers, in bytes, in samples.

base1 Base address of buffer 1.

base2 Base address of buffer 2.

Description

This struct is used by the function spdoInstanceSetup to read setup parameters. All fields

are used on initial setup. Bases and size are updated only during the initial setup. The

ISR, priority and flags can be updated while running.

Chapter 4: SPDIF Output Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 83

4

SPDO API Functions

This section presents the SPDO device library functions.

Name Page

spdoGetCapabilities 84

spdoGetCapabilitiesM 85

spdoGetNumberOfUnits 86

spdoOpen 87

spdoOpenM 88

spdoInstanceSetup 89

spdoClose 90

spdoStop 91

spdoStart 92

spdoSetSampleRate 93

spdoGetSampleRate 94

spdoConfig 95

Chapter 4: SPDIF Output Device Library

84 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

spdoGetCapabilities

tmLibdevErr_t spdoGetCapabilities(
 pspdoCapabilities_t *pCap
);

Parameters

pCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Returned if pcap is null. In the debug version of
the library, an assertion triggers this when pCap is
null.

The function can also return codes from a call to boardGetConfig.

Description

This function fills in the value of a user-supplied pointer variable which will then point

to the single shared capabilities structure for the SPDO device library. The function is

implemented by a call to spdoGetCapabilitiesM with unitName set to the first unit

(unit0).

The first time this function is called, it retrieves the capabilities from the board support

package.

Chapter 4: SPDIF Output Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 85

4

spdoGetCapabilitiesM

tmLibdevErr_t spdoGetCapabilitiesM(
 pspdoCapabilities_t *pCap,
 unitSelect_t unitName
);

Parameters

pCap Pointer to a variable in which to return a pointer
to an SPDO capabilities structure.

unitName Selects unit.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Can be asserted in debug mode.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
Unit not supported in hardware.

Description

The function finds the capabilities of the SPDO hardware.

Chapter 4: SPDIF Output Device Library

86 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

spdoGetNumberOfUnits

tmLibdevErr_t spdoGetNumberOfUnits(
 UInt32 *pNumberOfUnits
);

Parameters

pNumberOfUnits Pointer to a variable in which to return the num-
ber of audio output units that are supported on
the current hardware.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
made if pNumberOfUnits is null.

Description

The function finds the number of audio output units that are supported on the current

hardware.

Chapter 4: SPDIF Output Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 87

4

spdoOpen

tmLibdevErr_t spdoOpen(
 Int *instance
);

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NO_MORE_INSTANCES Returned if there are no more free instances.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assertion
is triggered if the instance is NULL.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
Not supported in hardware.

The function can also return codes from a call to intOpen. See the Interrupt API docu-

mentation for possible error codes.

Description

This function opens an instance of the SPDO device. It opens the SPDO interrupt

(intSPDO) with the intOpen function. The function is implemented by a call to spdo-

OpenM with unitName set to the first unit (unit0). This function is obsolete, and new

code should use spdoOpenM.

Chapter 4: SPDIF Output Device Library

88 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

spdoOpenM

tmLibdevErr_t spdoOpenM(
 Int *instance,
 unitSelect_t unitName
);

Parameters

instance Pointer (returned) to the instance variable.

unitName Selects unit.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Can be asserted in debug mode.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
Not supported in hardware.

TMLIBDEV_ERR_NO_MORE_INSTANCES Unit is already in use.

TMLIBDEV_ERR_MEMALLOC_FAILED Memory used for instance variable structure.

The function can also other return codes if allocation of the interrupt or hardware pins

(on GPIO-enabled devices) fails.

Description

This function will open an instance of the selected SPDO device and assign the instance

value. It opens an interrupt appropriate to the specified unit using the intOpen function.

Chapter 4: SPDIF Output Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 89

4

spdoInstanceSetup

tmLibdevErr_t spdoInstanceSetup(
 Int instance,
 pspdoInstanceSetup_t pSetup
);

Parameters

instance Instance value, assigned by spdoOpen.

pSetup Pointer to setup structure.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if instance does not match owner. In
the debug version of the library, this assertion is
triggered instead of an error code.

BOARD_ERR_NULL_FUNCTION Returned if the board codec structure is missing
the initialization function (init_func) or the
board codec structure is missing the setSRate
function.

AIO_INVALID_SIZE Can be asserted in debug mode if size is not a
multiple of 64.

AIO_INVALID_BASE Can be asserted in debug mode if base register is
not cache aligned (multiple of 64 bytes).

The function can also return codes from a call to boardGetConfig. Other error codes may

be returned from a call to intInstanceSetup. See the interrupts API documentation for

details. Other error codes can also be returned from the board codec initialization func-

tion (init_func) and the setSRate function. These functions are specific to the board

codec.

Description

This function performs initialization of the SPDO hardware by calling the appropriate

init_func from the board API returned by the boardGetConfig function. It sets up the

MMIO registers SPDO_CTL, SPDO_BASE1 and SPDO_BASE2 (spdoSetBASE1 and

spdoSetBASE2 macros), and SPDO_SIZE (spdoSetSize macro). Then it sets up, when

needed, the Interrupt Service Routine by calling the intInstanceSetup.

Upon return, the device is stopped but ready to go (by a call to spdoStart).

Chapter 4: SPDIF Output Device Library

90 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

spdoClose

tmLibdevErr_t spdoClose(
 Int instance
);

Parameters

instance Instance value, assigned in the call to spdoOpen.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if the instance does not match the
owner. In the debug version of the library, an
assertion triggers this when the instance does not
match the owner.

The function can also return codes from a call to intClose. See the Interrupts API docu-

ment for possible codes. Other error codes can also be returned by a call to the board

codec termination function. Those return values are specific to the board codec.

Description

The function closes the instance of the SPDO device by calling the appropriate termina-

tion function from the board API, and close, using intClose, the interrupt opened by

spdoOpen. After this function returns, the device is free and ready for re-allocation.

Chapter 4: SPDIF Output Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 91

4

spdoStop

tmLibdevErr_t spdoStop(
 Int instance
);

Parameters

instance Instance value, assigned in the call to spdoOpen.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if the instance does not match the
owner. In the debug version of the library, an
assertion triggers this when the instance does not
match the owner.

Description

The function stops the audio play of this instance. This is achieved by calling the BSP’s

stopFunc function.

Chapter 4: SPDIF Output Device Library

92 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

spdoStart

tmLibdevErr_t spdoStart(
 Int instance
);

Parameters

instance Instance value, assigned in the call to spdoOpen.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if the instance does not match the
owner. In the debug version of the library, an
assertion triggers this when the instance does not
match the owner.

AIO_ERR_INIT_REQUIRED Returned if spdoInstanceSetup has not been
called.

BOARD_ERR_NULL_FUNCTION Returned if the board codec structure is missing
the start function.

The function can also return other error codes from the call to the board start function.

Description

The function starts the audio play of this instance by calling the BSP’s startFunc func-

tion.

Chapter 4: SPDIF Output Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 93

4

spdoSetSampleRate

tmLibdevErr_t spdoSetSampleRate(
 Int instance,
 Float srate
);

Parameters

instance Instance value, assigned in the call to spdoOpen.

srate Sample rate.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if the instance does not match the
owner. In the debug version of the library, this
assertion is triggered if the instance does not
match the owner.

AIO_ERR_SRATE_TOO_HIGH Returned if the requested sample rate is higher
than the maximum allowed by the board codec
chosen.

AIO_ERR_SRATE_TOO_LOW Returned if the requested sample rate is lower
than the minimum allowed by the board codec
chosen.

BOARD_ERR_NULL_FUNCTION Returned if the board codec structure is missing
the setSRate function.

The function can also return other codes from a call to the board codec setSRate func-

tion. Those codes are specific to the board codec.

Description

The function sets or changes the sample rate, by calling the appropriate setRate function

from the board API.

Chapter 4: SPDIF Output Device Library

94 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

spdoGetSampleRate

tmLibdevErr_t spdoGetSampleRate(
 Int instance,
 Float srate
);

Parameters

instance Instance value, assigned in the call to spdoOpen.

srate Pointer to a variable to hold the data.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if instance does not match the owner.
In the debug version of the library, this assertion
is triggered if instance does not match the owner

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assertion
is triggered if srate is Null.

BOARD_ERR_NULL_FUNCTION Returned if the board codec structure is missing
the getSRate function.

The function can also return codes from a call to the board codec getSRate function.

Those codes are specific to the board codec.

Description

The function gets the current sample rate, by calling the appropriate getSRate function

from the board API.

Chapter 4: SPDIF Output Device Library

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 95

4

spdoConfig

tmLibdevErr_t spdoConfig(
 Int instance,
 UInt32 subaddr,
 UInt32 value
);

Parameters

instance Instance value, assigned in the call to spdoOpen.

subaddr Generic pointer passed to codec Configure rou-
tine.

value Generic pointer passed to codec Configure rou-
tine.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if the instance does not match the
owner. In the debug version of the library, an
assertion triggers this when the instance does not
match the owner.

BOARD_ERR_NULL_FUNCTION Returned if the codec does not support Configure.

The function can also return codes from the board codec ‘Configure’ function. Those

codes are specific to the board codec.

Description

The function allows the passing of configuration information from the user program

through the device library to the (customized) user board codec routines. (Refer to the

board API.) The two parameters, subaddr and value, are passed down to the board codec

‘Configure’ routine without any processing. The error code, if any, returned will be the

return value of the board codec Configure routine.

Implementation Notes

For boards provided by Philips, the board codecs do not provide a Configure function,

and therefore, spdoConfig will return an error.

Chapter 4: SPDIF Output Device Library

96 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 97

5

Chapter 5

Audio Digitizer (AdigAI) API

Topic Page

Audio Digitizer API Overview 98

Audio Digitizer Inputs and Outputs 98

Audio Digitizer Errors 99

Audio Digitizer Progress 99

Audio Digitizer Configuration 100

Audio Digitizer API Data Structures 101

Audio Digitizer API Functions 104

Chapter 5: Audio Digitizer (AdigAI) API

98 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Audio Digitizer API Overview

The audio digitizer provides a TSSA compatible interface to the audio input module. In

addition to the expected dataout connection, the audio digitizer also provides an

optional second output.

The audio digitizer is implemented with separate AL and OL layers. But no synchronous

interface is provided. Hence, only the OL layer interface is documented.

Figure 1 Structure of the Audio Digitizer

While initial versions of the audio digitizer supported only the single audio in unit of

the TriMedia processor, the current version of the audio digitizer has been updated in a

compatible fashion to support the multiple audio in units that might be present on

some TriMedia variants.

Audio Digitizer Inputs and Outputs

The audio digitizer gets its capabilities from the underlying audio hardware. On the Phil-

ips IREF board, this is a stereo or mono 16-bit data stream. This capability can be altered

in the audio input portion of the board support package. The Philips DTV reference

board, for example, supports a choice between digital and analog inputs.

The digitizer has two output pins. These are referred to as the master and the slave. In

normal operation, packets that are read from the empty queue on the master input are

installed into the audio input hardware. When a given packet is full, an interrupt is trig-

gered, and that packet is sent into the full queue.

When the slave output is enabled, a memory copy is performed inside the interrupt ser-

vice routine so that the audio input stream can be routed to two independent modules.

Dataout [0] Main Channel

(queuing)

Dataout [1] Slave Channel

Audio
Digitizer

(queuing)

Chapter 5: Audio Digitizer (AdigAI) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 99

5

Audio Digitizer Errors

The audio digitizer supports the installation of and error callback function. This function

will be called from the interrupt service routine, so make it brief. None of the errors han-

dled by the error callback function are considered fatal. The error function prototype is

of the type tsaErrorFunc_t:

Handlers should be provided for these possible values of the errorCode:

TMLIBAPP_ERR_OVERRUN: The digitizer had samples available, but no memory was
provided to store them. This buffer of samples has been
dropped. The description field is a pointer to an integer
array. Description[0] identifies the source of the error. Possi-
ble sources are:

0: Hardware overrun. Interrupts were locked out for too
long.

1: Main channel overrun: No empty buffers available at
main input.

2: Slave channel overrun. No empty buffers available at
slave channel.

Description[1] contains the value of the CPU clock regis-
ter when the error occurred.

TMLIBAPP_ERR_HIGHWAY_BANDWIDTH_ERR:
The digitizer could not get access to the internal data
“highway.” Samples have been dropped. This situation
might be corrected by changing the priority of the various
DMA units. This is controlled using the ARB_BW_CTL
MMIO register. See Chapter 19 of the appropriate TriMedia
data book.

Audio Digitizer Progress

You can optionally install a progress function to be notified when the format of the

input stream has changed. Notification is required when the format of the input data is

specified by an external master device, such as an SPDIF transmitter. The use of this

mechanism is demonstated with the exolCopyAudio program running on a DTV refer-

ence board. When notified by an interrupt installed through the board support package,

the digitizer progress function is called with the flag AD_CHANGE_AT_DIGITAL_INPUT

when a change in format is detected.

typedef tmLibappErr_t(*tsaErrorFunc_t)(Int instId, UInt32 flags,
ptsaErrorArgs_t args);

typedef struct tsaErrorArgs {
 Int errorCode;
 Pointer description;
} tsaErrorArgs_t, *ptsaErrorArgs_t;

Chapter 5: Audio Digitizer (AdigAI) API

100 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Audio Digitizer Configuration

The audio digitizer provides a simple configuration function. It can be used to change

the input sample rate, change the source of the input stream, or to retrieve the status of

the current input stream. Status is particularly useful when a digital audio input is being

used. The exact behavior of these commands is determined by the board support pack-

age, as each command calls a function in the tmAI library.

AD_SET_SAMPLE_RATE The parameter field of the control structure holds a floating
point number that is used to set the sample rate, if possible.
aiSetSampleRate is called.

AD_GET_SAMPLE_RATE The parameter field of the control structure holds a pointer to
a floating point number that is updated to reflect the current
sample rate. aiGetSampleRate is called.

AD_SET_VOLUME The parameter field of the control structure holds a pointer to
an array of two integers that represents the left and right input
gain in 0.01dB steps. This is passed to the board support pack-
age the response is returned in the retval field of the arguments
structure. aiSetVolume is called.

AD_GET_VOLUME The last selected input volume is returned at the location to
which the parameter field of the control structure points. The
value is returned as an array of two integers specifying left and
right input gain in 0.01dB steps. aiGetVolume is called.

AD_SET_INPUT The parameter field of the control structure holds an integer
specifying the desired input source. Choices include:

 aaaMicInput aaaLineInput aaaAuxInput1

 aaaAuxInput2 aaaDigitalInput

as defined in the tmAudioAnalogAdapter_t enumerated in
tmAvFormats.h. aiSetInput is called.

AD_GET_INPUT The last selected input is returned at the location pointed to by
the parameter field of the control structure. aiGetInput is
called.

AD_GET_FORMAT The format of the currently selected input is returned.This is
particularly useful when locking to a digital input. aiGetFormat
is called.

AD_CONFIG The parameter field of the control structure is passed to the AI
library’s config function. This is used to implement other
unspecified controls in the A/D converter. aiConfig is called.

tmLibappErr_t tmolAdigAIInstanceConfig (Int instance, UInt32 flags,
ptsaControlArgs_t args);

Chapter 5: Audio Digitizer (AdigAI) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 101

5

Audio Digitizer API Data Structures

This section presents the Audio Digitizer application library data structures.

Name Page

tmolAdigAICapabilities_t 102

tmolAdigAIInstanceSetup_t 103

Chapter 5: Audio Digitizer (AdigAI) API

102 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolAdigAICapabilities_t

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
 Int32 max_srate;
 Int32 min_srate;
 Int32 granularityOfAddress;
 Int32 granularityOfSize;
 Int32 minBufferSize;
 UInt32 mmioBaseAddress;
} tmolAdigAICapabilities_t; *ptmolAdigAICapabilities_t;

Fields

defaultCapabilities For compliance with the application library archi-
tecture, this is a pointer to a structure of the stan-
dard type.

max_srate Minimum sample rate [Hz].

min_srate Maximum sample rate [Hz].

granularityOfAddress Number of lsb's that should be zero: (e.g. 6 for 64
byte alignment).

granularityOfSize Number of LSBs that should be zero in the size
field (size is the number of samples).

minBufferSize Minimum buffer size (samples).

mmioBaseAddress mmio base address of the selected audio out unit.

Description

The tmolAdigAICapabilities_t structure describes the capabilities and requirements of the

audio digitizer module. A user can retrieve the structure’s address by calling tmolAdigAI-

GetCapabilities.

Chapter 5: Audio Digitizer (AdigAI) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 103

5

tmolAdigAIInstanceSetup_t

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 tmAdigAIMode_t mode;
 Int32 pauseBufferSize;
 tmAudioAnalogAdapter_t input;
 Bool useControlIRQ;
} tmolAdigAIInstanceSetup_t; *ptmolAdigAIInstanceSetup_t;

Fields

defaultSetup For compliance with TSA, this is a pointer to a
structure of the standard type.

mode Can be TMADIG_CONSERVATIVE_MODE or
TMADIG_DIRECT_MODE. Use only conservative
mode.

pauseBufferSize Specified in samples. A buffer of this size is allo-
cated at instance setup. This buffer is used when-
ever overruns occur, as the digitizer needs to fill in
the pointer so that capture does not overwrite
other memory.

tmAudioAnalogAdapter_t Can be line in, mic in, digital in, etc.

input Input that will be used, the library will use the
default input if input is set to aaaNone.

useControlIRQ Indicates if the control IRQ should be used for
digital audio input (if supported on the actual
hardware).

Description

The tmolAdigAIInstanceSetup_t structure describes the intended operation of this

instance of the digitizer.

Chapter 5: Audio Digitizer (AdigAI) API

104 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Audio Digitizer API Functions

This section presents the Audio Digitizer API application library functions.

Name Page

tmolAdigAIGetCapabilities 105

tmolAdigAIGetCapabilitiesM 106

tmolAdigAIGetNumberOfUnits 107

tmolAdigAIOpen 108

tmolAdigAIOpenM 109

tmolAdigAIGetInstanceSetup 110

tmolAdigAIInstanceSetup 111

tmolAdigAIStart 112

tmolAdigAIStop 113

tmolAdigAIInstanceConfig 114

Chapter 5: Audio Digitizer (AdigAI) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 105

5

tmolAdigAIGetCapabilities

tmLibappErr_t tmolAdigAIGetCapabilities(
 ptmolAdigAICapabilities_t *pCap
);

Parameters

pCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

Used to retrieve the capabilites of the audio digitizer. The function pointer that is

returned remains valid as long as the digitizer is active. Implemented by a call to tmol-

GetCapabilitiesM with unitName set to the first unit (unit0).

Chapter 5: Audio Digitizer (AdigAI) API

106 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalAdigAIGetCapabilitiesM

tmLibappErr_t tmalAdigAIGetCapabilitiesM(
 ptmalAdigAICapabilities_t *pCap,
 unitSelect_t unitNumber
);

tmolAdigAIGetCapabilitiesM

tmLibappErr_t tmolAdigAIGetCapabilitiesM(
 ptmolAdigAICapabilities_t *pCap,
 unitSelect_t unitNumber
);

Parameters

pCap Pointer to pointer to an AdigAI capabilities struc-
ture at the appropriate level (AL or OL).

unitName Select which unit.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Can be asserted in debug mode.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
Unit not supported in hardware.

Description

Used to find out about the AI hardware.

Chapter 5: Audio Digitizer (AdigAI) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 107

5

tmalAdigAIGetNumberOfUnits

tmLibappErr_t tmalAdigAIGetNumberOfUnits(
 UInt32 *numberOfUnits
);

tmolAdigAIGetNumberOfUnits

tmLibappErr_t tmolAdigAIGetNumberOfUnits(
 UInt32 *numberOfUnits);

Parameters

numberOfUnits Pointer to a variable in which to return the num-
ber of audio input units that are supported on the
current hardware.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
given if numberOfUnits is null.

Description

Used to find the number of audio input units that are supported on the current hard-

ware.

Chapter 5: Audio Digitizer (AdigAI) API

108 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalAdigAIOpen

tmLibappErr_t tmalAdigAIOpen(
 Int *instance
);

tmolAdigAIOpen

tmLibappErr_t tmolAdigAIOpen(
 Int *instance
);

Parameters

instance Address of an integer that will hold the instance
value for this audio digitizer

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MODULE_IN_USE No more instances of the audio digitizer are avail-
able.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation for the default instance vari-
ables failed.

Description

The open function creates an instance of the audio digitizer and informs the user of its

instance. The audio digitizer supports only one instance. Add to description: Imple-

mented by a call to tmolOpenM with unitName set to the first unit (unit0).

Chapter 5: Audio Digitizer (AdigAI) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 109

5

tmalAdigAIOpenM

tmLibappErr_t tmalAdigAIOpenM(
 Int *instance,
 unitSelect_t unitNumber);

tmolAdigAIOpenM

tmLibappErr_t tmolAdigAIOpenM(
 Int *instance,
 unitSelect_t unitNumber
);

Parameters

instance Pointer (returned) to the instance.

unitName Select unit.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Can be asserted in debug mode.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
Unit not supported in hardware.

TMLIBDEV_ERR_NO_MORE_INSTANCES Unit is already in use at the device library level.

TMLIBAPP_ERR_MODULE_IN_USE Unit is in use at the AL or OL level.

TMLIBDEV_ERR_MEMALLOC_FAILED Memory used for instance variable structure.

Other errors might be returned if the allocation of the interrupt or hardware pins (on

GPIO enabled devices) fail.

Description

This function will open an instance of the selected AI device and assign the instance

value. Using the tmAI device library, It opens an interrupt as appropriate for the specified

unit with intOpen function.

Chapter 5: Audio Digitizer (AdigAI) API

110 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolAdigAIGetInstanceSetup

tmLibappErr_t tmolAdigAIGetInstanceSetup(
 Int instance,
 ptmolAdigAIInstanceSetup_t *setup
);

Parameters

instance As returned from tmolAdigAIOpen.

setup Pointer to variable in which to return a pointer to
setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can be asserted in debug mode.

Description

The functio retrieves a pointer to the current instance setup. After a call to tmolAdigAI-

Open, this structure is filled with default values to simplify the impending call to tmol-

AdigAIInstanceSetup.

Chapter 5: Audio Digitizer (AdigAI) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 111

5

tmolAdigAIInstanceSetup

tmLibappErr_t tmolAdigAIInstanceSetup(
 Int instance,
 ptmolAdigAIInstanceSetup_t setup
);

Parameters

instance Instance, as returned by tmolAdigAIOpen.

setup Pointer to setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can be asserted in debug mode.

TMLIBAPP_ERR_MODULE_IN_USE Specified instance does not match current
instance. Digitizer supports only one instance.

TMLIBAPP_ERR_NULL_DATAOUTFUNC A valid dataout function is required. Only stream-
ing operation is supported.

TMLIBAPP_ERR_INVALID_SETUP The primary output is not enabled. Queues or for-
mat are unspecified. The primary output must be
connected.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
An unsupported data format was requested.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation for the pause buffer failed.

Other errors are possibly reported by the device library or board support package.

Description

The audio digitizer is prepared for operation. Parameters are checked. The digitizer is left

“stopped.” It will become operational on a call to tmolAdigAIStart. The interrupt service

routine is running. Data is being captured and thrown away in the ‘pause’ buffer.

Chapter 5: Audio Digitizer (AdigAI) API

112 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolAdigAIStart

tmLibappErr_t tmolAdigAIStart(
 Int instance
);

Parameters

instance Instance, as returned by tmolAdigAIOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can be asserted in debug mode.

Description

The digitizer represented by the instance is started. This causes data pointers from

tmAvPacket_t packets to be installed into the audio hardware so that the audio DMA

engine can capture data for delivery to the application.

Chapter 5: Audio Digitizer (AdigAI) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 113

5

tmolAdigAIStop

tmLibappErr_t tmolAdigAIStop(
 Int instance
);

Parameters

instance Instance, as returned tmolAdigAIOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can be asserted in debug mode.

Description

The digitizer represented by the instance is stopped. This causes the pause buffer to be

installed into the registers of the AI DMA engine. The interrupt stays active until tmolA-

digAIClose is called.

Chapter 5: Audio Digitizer (AdigAI) API

114 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolAdigAIInstanceConfig

tmLibappErr_t tmolAdigAIInstanceConfig(
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Parameters

instance As returned from tmolAdigAIOpen.

flags Not used by tmolAdigAIInstanceConfig.

args Points to a control structure used to modify the
operation of the audio digitizer.

Return Codes

TMLIBAPP_OK Success.

Errors detected by the underlying tmalAdigAI call can be found in the retval member of

the control structure.

Description

The parameters of the configuration function are described on page 100 (in this chapter).

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 115

6

Chapter 6

Audio Renderer (ArendAO) API

Topic Page

Audio Renderer API Overview 116

Audio Renderer API Data Structures 125

Audio Renderer API Functions 135

Chapter 6: Audio Renderer (ArendAO) API

116 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Audio Renderer API Overview

The Audio Renderer for TriMedia serves as a TSSA-compatible interface between audio

stream-producing modules and the outside world. The renderer receives packets of data

and, using the AO hardware, converts it to analog audio.

The audio renderer supports both streaming and non-streaming interfaces to the audio

hardware. To provide these services, the renderer installs an interrupt service routine.

The renderer supports a sophisticated form of synchronization based on presentation

times and a reference clock. The audio renderer is supplied as a library that can be used

without restriction by owners of the TriMedia SDE. For those that are interested, similar

audio interrupt service routines are presented in the programs that are included in the

TCS examples directory. Refer in particular to patest.c.

Like all TSSA components, the renderer requires audio data to be packaged in

tmAvPacket_t data structures. (For more information, see Chapter 4, tmAvFormats.h: Mul-

timedia Format Definitions in Book 3, Software Architecture, Part A.)

Figure 2 Structure of the Audio Renderer

While initial versions of the audio renderer supported only the single audio out unit of

the TriMedia processor, the current version of the audio renderer has been updated in a

compatible fashion to support the multiple audio out units that might be present on

some TriMedia variants.

Inputs and Outputs

The Audio Renderer has one input and consumes buffers full of audio data. It returns the

same buffers in an empty state. In exchange, sound is produced. The exact mechanism

depends on the available hardware. The audio renderer is customized for new boards

using the mechanism of the board support package.

Errors

Errors can be reported during the renderer’s setup phase, or at run time. Errors reported

during the setup phase will be noticed as non-zero return values from the API. In addi-

Datain [0]

Audio
Renderer

(queuing)

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 117

6

tion, the library used in its debugging mode will use the assert mechanism to flag invalid

inputs. These errors are covered along with the descriptions of each function in the API.

Note
We strongly advise that you bring up the audio renderer using the _a
(assert) version of the audio renderer and the device libraries. Many possible
error conditions are flagged with assertions in these libraries.

For run-time errors, the audio renderer supports an error-reporting callback function.

This function will be called from the audio output interrupt service routine. None of the

errors handled by the error callback function are considered fatal. The error function

prototype is of the type tsaErrorFunc_t:

Handlers should be provided for these possible values of the error code:

TMLIBAPP_ERR_UNDERRUN

The audio system requested data but none was available. This error could come up in

several circumstances. The renderer’s interrupt service routine always attempts to handle

this case gracefully. More information about the source of the data is available in the

description field. When an underrun error is logged, the renderer fills in the description

field with a pointer to an array of three integers. The first member identifies the exact

source of the error.

TMLIBAPP_ERR_HIGHWAY_BANDWIDTH_ERR

The receipt of this error implies that there is not enough bandwidth available to service

audio output on the TriMedia’s internal data highway. This can be remedied by repro-

gramming the bandwidth allocation MMIO register.

AR_ERR_BUF_TOO_LARGE

This message is only given by the streaming interrupt service routine. When the audio

renderer operates in streaming mode, it allocates a buffer of silence. This is played when-

ever valid audio data is not available. As a result, the largest buffer size needs to be speci-

fied when the renderer is setup.

Note
Since the error function is called from the context of an interrupt, it is not
appropriate to call printf or any other complex handler.

typedef tmLibappErr_t(*tsaErrorFunc_t)(Int instId,
 UInt32 flags, ptsaErrorArgs_t args);

typedef struct tsaErrorArgs {
 Int errorCode;
 Pointer description;
} tsaErrorArgs_t, *ptsaErrorArgs_t;

Values of errArg.description[0]:
0: The interrupt handler was locked out for too long.
1: The streaming handler found the queue empty.

Chapter 6: Audio Renderer (ArendAO) API

118 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Progress Function

When the renderer is operated in streaming mode, a progress function can be called

according to the user’s needs. If this is not desired, set the progressFunc member of the

instance setup structure to Null. The progressReportFlags member of the default

instance setup structure allows a user to control when the progress function is called.

The valid flags, defined in tmalArendAO.h, include AREND_PROGRESS_ReportCount and

AREND_PROGRESS_SyncEventCorrect. The ReportCount flag causes the progress function

to be called in every ISR. The SyncEventCorrect flag causes the progress function to be

called when the AV sync algorithm is active. The other values of this flag are reserved.

 The progress function has this prototype:

When called, the progress code will be some combination of the progress flags, as noted

above. It is possible for the progress function to be called with more than one flag set. In

the audio renderer, the description field of the args structure will usually contain a

pointer to a structure of this type:

One exception is made for the progress flag AREND_PROGRESS_ChangeSampleRate. In

that case, the parameter member points to a floating point sample rate. In the control

info structure, the numberOfSamples field gives the number of samples that will be

played when the buffer installed by this interrupt is played. Knowledge of this number

allows a user to implement a simple form of synchronization using the mechanism of

the DDS clock synthesizers available on TriMedia. For example, the output clock can be

phase locked to an external source at the audio input. The packet member of this struc-

ture is the address of the audio packet that is being installed in this interrupt. The time-

Diff member of the structure is used to implement the more sophisticated type of

synchronization appropriate for time stamped data streams. The syncState and mute-

Timer are used to monitor the operation of the internal synchronization mechanism.

They are described in the API reference entry for this structure.

How to Use Audio Renderer

The audio renderer can be used in streaming or non-streaming mode. In streaming

mode, it can also be used at the AL or OL layer. These terms are explained in full in Book

typedef tmLibappErr_t (*tsaProgressFunc_t) (Int instId, UInt32 flags,
 ptsaProgressArgs_t args);

typedef struct tsaProgressArgs {
 Int progressCode;
 Pointer description;
} tsaProgressArgs_t, *ptsaProgressArgs_t;

typedef struct tmArendAOControlInfo {
 UInt numberOfSamples;
 ptmAvPacket_t packet;
 Int timeDiff;
 Int muteTimer;
 arSyncState syncState;
} tmArendAOControlInfo_t, *ptmArendAOControlInfo_t;

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 119

6

3, Software Architecture. Two examples are provided explicitly to illustrate the use of the

audio renderer. exalArendAO demonstrates both streaming and non-streaming operation

without an operating system at the AL layer. exolArendAO demonstrates streaming oper-

ation at the OL layer, using the TSSA default functions and pSOS.

The AL layer of the audio renderer is appropriate for use in situations where an operating

system is not required. It is also used to implement an operating system layer (OL). The

AL layer supports a function-based interface (non-streaming), as well as a streaming

interface, via callbacks.

1. Call the Open function so that an instance can be assigned. The audio renderer will

support as many audio outputs as are available on the processor. For 32-bit TriMedia

processors, this is one.

2. Obtain a pointer to an instance setup structure and fill it in. This structure completely

describes the operation of the renderer. Most of the important fields are in the “stan-

dard” location. Refer to tsa.h for the definition of the structure ptsaDefaultInstance-

Setup_t. In particular, you will fill in the format structure. Entries are provided for a

number of callback functions. When working at the OL layer, the datain function is

provided as a default. The presence of the datain function is used to determine

whether the renderer runs in streaming, or non-streaming mode. Finally, call tmal-

ArendAOInstanceSetup.

3. In streaming mode, call the Start function. This will cause the renderer to expect data

and consequently, to log ensuing errors if data is not present.

4. In non-streaming mode, call tmalArendAORenderBuffer to send audio data to the

DAC. You can use the completion function or you can poll the buffersInUse field of

the packet that you sent to determine when the buffer has been rendered. In non-

streaming mode, the application calls a library function to send data downstream. In

the audio renderer, this is tmalArendAORenderBuffer. By contrast, in streaming mode

the application uses a queuing mechanism (provided by the operating system) to

send data. The timing of the data flow is determined by the availability of empty

buffers, rather than by the availability of buffers full of data. The operation of the ren-

derer also changes accordingly. For example:

NonÐStreaming Mode:
The waiting program spins waiting for data.
 while(1){
 computeData();
 render frame();
 while (buffer not available);
 }
Streaming Mode:
The waiting program gives up control to the OS via the "q_get" call.
 while(1){
 q_get (BLOCK);
 computeData();
 q_put();
 }

Chapter 6: Audio Renderer (ArendAO) API

120 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

How the Audio Renderer Works

The audio renderer installs an interrupt service routine and all processing happens in

this ISR. This version of the audio renderer uses the audio out (AO) device library to ren-

der sound. Other versions of an audio renderer might use the VO or SSI hardware inter-

faces. Since the API is identical, an application using the OL layer to produce audio

wouldn’t know the difference.

The OL layer always runs in streaming mode, and this is the more sophisticated method

of operation. All setup happens in the (tmxx)ArendAOInstanceSetup function. An inter-

rupt service routine is installed. If no datainFunc is installed, we are in non-streaming

(“pull”) mode, and a simple queue is initialized. The queue is written to in the tma-

lArendAORenderBuffer function. It is read during the interrupt service routine.

A more complete description of the use of the audio renderer in streaming mode is

found in the example program “exolArendAO.” This is also documented in Chapter 6,

“Programming TriMedia Audio Applications,” of the Cookbook. As with any OL layer

component constructed to the streaming architecture, the setup happens through the

structures passed to tmolArendAOInstanceSetup. Communication queues are allocated

and buffers are placed in the empty queue. As the source component is initialized with

the same pair of queues, data exchange begins as soon as tmolArendAOStart is called.

When streaming mode is selected by the installation of a datain function, the datainFunc

will be called in the interrupt service routine. This allows you to install your own (oper-

ating system based) queueing system.

The Silence Buffer

The maxBufferSize field of the instance setup variable is used to allocate a “silence

buffer.” This buffer is zeroed, and it is played whenever valid data is not available.

Raw Mode and Conservative Mode

In Conservative mode, the audio renderer copies back all buffers before sending them to

the audio hardware. This relieves the user of cache coherency responsibility. In Raw

mode, it is up to the user to ensure cache coherency. When the TSSA default OL layer

interface is used, cache coherency is handled by the default functions.

Formats in the Audio Renderer

The list of formats supported by the audio renderer is determined by a call to tmAOGet-

Capabilities. This in turn queries the board support package. The audio renderer itself

supports all 16- and 32-bit formats between mono and eight channels. Which of these

are available is up to the board support package.

The OL version of the audio renderer can change its format on-the-fly. It is possible (and

legal) to specify no format at instance setup, instead relying on the format to be passed

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 121

6

in the first data packet. Similarly, the audio renderer will change its format based on the

format specified in any packet. Because the format change function cannot be called

from the interrupt service routine, it is called from the sending component’s dataout

function. This may result in a few queued packets being played with the wrong format.

Synchronization Overview

The audio renderer includes a number of services designed to be used for synchroniza-

tion. It also includes specific code to synchronize audio and video streams, based on a

reference clock and time stamped packets. The AV sync code is used, for example, in the

TriMedia DTV reference application. Other forms of sync, such as “broadcast sync” and

“AA sync” are supported with the user’s ability to change the audio sample rate and the

reports given by the renderer in the progress function. The interface includes a sync-

Mode parameter. When this is set to AR_Sync_None, sync is disabled and all packets are

played as received. In AR_Sync_trigger mode, the renderer expects the first packet it sees

to be time stamped, and this packet is held until the reference clock is greater than the

time stamp. The AR_Sync_skip mode is the most powerful.

AV Sync Details

There are many details involved in the renderer’s AV synchronization scheme. When the

AR_Sync_trigger mode is used, the operation is almost trivial. An example of the com-

plete AR_Sync_skip mechanism is demonstrated in the DTV reference app, ATSCbasic.

The mechanism is still conceptually simple, as described below:

In order for the AV sync mechanism to be enabled, the user must explicitly enable the

mechanism by setting the syncMode to AR_Sync_skip. Also, a reference clock must be

installed at instance setup, and packets to be synchronized must contain a valid times-

tamp. With these pre-requisites met, the algorithm attempts to present the packet at the

correct time. This behavior is controlled by the user’s specification of the syncMode and

the timeThreshold. In very general terms:

1. If the time stamp matches the clock to the accuracy of the timeThreshold field, the

packet will be played. The user is informed of this condition through the progress

function, and the syncState value of AR_SyncState_CorrectionAppropriate informs

him that this is a good time to fine tune the audio sample clock, for example, with

the DDS.

2. If the time stamp is earlier than the current clock value, the packet is returned with-

out being fully played.

3. If the time stamp is in the future, the packet is held until the clock reaches the value

of the timestamp

4. If the difference between the time stamp and the clock is greater than 16 times the

timeThreshold, then the time stamp data is assumed to be erroneous and it is ignored.

Note that it is this parameter that determines the number of packets that must be

Chapter 6: Audio Renderer (ArendAO) API

122 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

available in the system. If the audio renderer can hold a packet for 16 times the

threshold, the rest of the system must be prepared for this possibility.

timeDiff

The fundamental measure of AV sync is the comparison between the Presentation Time

Stamp (PTS) and the clock, sometimes called the Program Clock Reference (PCR). This

comparison is made using the difference (timeDiff) between these two clocks, each repre-

sented by a 32-bit number. When the difference is positive, the packets are ahead of the

clock. Since humans prefer late audio to early audio, the skipping algorithm is biased to

return slightly negative time differences.

timeThreshold

The timeThreshold member of the instance setup structure sets how far out of sync the

clock and the PTS can be before drastic action is taken. When the difference (timeDiff) is

less than the threshold, the audio can track the video without gaps in the audio data. In

MPEG applications, the PCR usually runs at 90KHz, and a threshold of 3000 works well.

When a timestamp is encountered that is inside of the rejection window, but outside of

the acceptable window, and early, it is held and silence is played until the timestamp

matches the reference clock. If it is late, a short packet of silence is played (64 samples)

and, the next packet is retrieved.

As a further conservative measure, timestamps must indicate the necessity of skipping or

waiting three times consecutively before any action is taken.

As mentioned, the human bias against early audio causes the threshold to be asymmetri-

cal around zero. A value of timeThreshold/2 is used for positive time differences.

Rejecting Bad Time Stamps

When the absolute value of the time difference is greater than sixteen times the thresh-

old, it is assumed that the clock or the time stamp is bad, and the packet is played as if it

were not time stamped.

Holding a Packet When Ahead

When the time difference is greater than the half threshold (but less than 16 times the

threshold), the packet is ahead of the clock and the renderer will hold this packet until

the clock catches up. The progress function is called with the syncState set to

AR_SyncState_Waiting. When a packet is being held, the audio renderer output is muted,

the mute counter is initialized to the value of muteCounterInit as specified in the

LATE EARLY

Reject TS Skip to Catch Up OK Hold and Wait Reject TS

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 123

6

instance setup structure, and silence is played. This mechanism places a minimum on

the number of packets that are available in a system. If the threshold is set high, and too

few packets are circulated in the queues, it may be possible for all of the packets to end

up held by the audio system because of this case. The threshold should be set appropri-

ately and enough packets should be available so this does not become an issue.

Playing Short to Catch Up

When the time difference is less than the negative threshold (but not less than 16 times

the negative threshold), the packet is behind the clock, and the audio needs to catch up.

The renderer catches up by playing only the minumum number of samples from the

packet. This number is 64 stereo 16-bit samples, but it is smaller for multi-word samples.

Note that it might be possible to break this mechanism if you routinely use very short

buffers with the renderer. The progress function is called with the syncState set to

AR_SyncState_Skipping. Like in the “holding” case, the audio renderer output is muted,

the mute counter is initialized to the value of muteCounterInit as specified in the

instance setup structure, and silence is played while the renderer is skipping.

Adapting the Sample Rate

When the time difference is within the bounds set by the threshold, the application is

given the opportunity to drive the remaining difference to zero using some sort of a lin-

ear controller in a feedback loop. The controller can be very simple: If the output clock is

based on the TriMedia DDS, the output sample rate linearly follows the DDS control

word. The DDS control word can be modified according to an equation like this:

newDDS = (1– Kp × timeDiff) × originalDDS.

This sort of an update is normally done when the progress function is called with sync-

State equal to AR_SyncState_CorrectionAppropriate. For more information, see the exam-

ple code in the ATSCbasic application.

syncDelay

It is often useful to add an offset to the PCR (clock) when computing the time difference.

The audio renderer can accept this offset as the syncDelay. It can be specified at instance

setup, or changed on the fly using the AR_SET_DELAY command to the InstanceConfig

function. The syncDelay is added to the timeDiff, so a positive delay will move the packet

forward in time.

As an example, the syncDelay is useful when the video renderer is also locking to the

same PCR. The video renderer can only lock to an accuracy of one frame, but it can mea-

sure an offset to the clock of less than one frame. In the DTV applications, the video ren-

derer passes this offset to the audio renderer as a the syncDelay, and the audio renderer

uses this to compute the time difference.

But when the delay tends to jump abruptly, it might be appropriate to filter the delay so

that artifacts in the sound are less noticeable. To do this, do not use the audio renderer’s

Chapter 6: Audio Renderer (ArendAO) API

124 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

delay parameter. Instead, add the filtered delay value to the time difference reported in

the progress function. A filter like this will be updated only when a packet with a time-

stamp is processed.

Muting

Whenever the renderer is muted, a counter internal to the renderer is initialized to the

value specified as muteCounterInit at Instance Setup. When mute is disabled, the counter

begins to count down and mute is actually lifted when the counter gets back to zero. If

this feature is not desired, simply set muteCounterInit to zero. But the mute counter is

also used when muting is enabled by the AV sync mechanism. The counter is used to

avoid the situation where several short periods of mute are heard while the AV sync algo-

rithm locks up. It is better to stay muted until everything is stable.

Other Forms of Sync

Another aspect of synchronization occurs when the audio output should be slaved to the

audio input. This occurs when an AO input is being used. This form of sync is referred to

as AA sync, for Audio-Audio. The mechanism for AA sync is generally implemented out-

side of the audio renderer through the use of the callback function. AA sync is likely to

be incompatible with AV sync, as only one master is reasonably allowed. The TriMedia

DTV Audio System module includes an implementation of AA sync. The concepts are

fairly simple. The DDS value is scaled in accordance with the difference between the

number of incoming samples and outgoing samples.

Broadcast sync is required when the system is a slave to a signal that is being broadcast.

Some mechanism has to lock the receiver’s clocks to those of the broadcaster. The audio

renderer’s MODIFY_SRATE command can be used to implement this sync. Or this require-

ment can be met through the lock of time stamps to the PCR when the PCR is locked to

the broadcast stream.

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 125

6

Audio Renderer API Data Structures

This section presents the Audio Renderer application library data structures.

Name Page

arMode_t 126

arConfigParam_t 127

arProgressFlags_t 128

arSyncMode_t 129

arSyncState_t 130

tmalArendAOCapabilities_t 131

tmolArendAOCapabilities_t 131

tmalArendAOInstanceSetup_t 132

tmolArendAOInstanceSetup_t 132

tmArendAOControlInfo_t 134

Chapter 6: Audio Renderer (ArendAO) API

126 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

arMode_t

typedef enum {
 AR_MODE_RAW,
 AR_MODE_CONSERVATIVE
} arMode_t;

Description

The renderer can be run in raw or conservative mode. These are legal values to be passed

to tmalArendAOInstanceSetup. In conservative mode, audio data to be rendered is copied

back from cache to SDRAM before playback. In raw mode, this operation is the responsi-

bility of the user. The TSA defaults handle this, and the OL version of the renderer runs

in RAW mode.

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 127

6

arConfigParam_t

typedef enum {
 AR_VOLUME,
 AR_PAN,
 AR_SAMPLE_RATE,
 AR_MUTE, /* toggle */
 AR_SET_MUTE,
 AR_GET_MUTE,
 AR_SET_DELAY,
 AR_SET_SAMPLE_RATE,
 AR_GET_SAMPLE_RATE,
 AR_SET_SYNC_MODE,
 AR_GET_SYNC_MODE,
 AR_SET_BAD_TIMESTAMP_THRESHOLD,
 AR_SET_SYNC_THRESHOLD,
} arConfigParam_t;

Description

Describes the quantities that can be adjusted using the instance config functions.

Volume and pan are passed as integers. The requested value is passed through the device

library and to the board support package where the command may or may not be sup-

ported. Both values are specified in “milliBels” (1/100th of a DB). Positive pan values go

right.

Sample rate is passed as a pointer to a floating point number. The obsolete

SR_SAMPLE_RATE command is identical to AR_SET_SAMPLE_RATE.

The MUTE command toggles the mute state. When SET_MUTE is used, the requested

value is passed directly as the parameter. When GET_MUTE is used, the user passes the

address of a Boolean variable.

DELAY is specified in units of the currently installed TSA clock, and it is passed directly.

When SET or GET_SYNC_MODE are used, the address of the mode is passed as the

parameter.

When syncSkip mode is active, packets can be rejected if their timestamp is too far from

the current clock value. The AR_SET_BAD_TIMESTAMP_THRESHOLD configuration com-

mand allows the threshold of rejection to be changed dynamically. Default value is

48000 ticks.

The AR_SET_SYNC_THRESHOLD configuration command dynamically adjusts the differ-

ence between the reference clock and a timestamp on a packet that is considered “close

enough” for playback.

Chapter 6: Audio Renderer (ArendAO) API

128 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

arProgressFlags_t

typedef enum {
 AREND_PROGRESS_ReportCount,
 AREND_PROGRESS_ChangeSampleRate,
 AREND_PROGRESS_SyncEventCorrect,
 AREND_PROGRESS_EndOfStream,
 AREND_PROGRESS_ChangeFormat
} arProgressFlags_t;

Description

The renderer can call the progress function under a number of conditions. EndOfStream

and ChangeFormat are TSSA standard progress occasions.

The ReportCount flag causes the progress function to be called at every interrupt service

routine to report the count of samples played, using the ControlInfo type described

below.

The ChangeSampleRate flag causes the progress function to be called if the sample rate is

changed. This gives an opportunity for the application’s sync algorithm to be informed

of sample rate changes. Note that the progress function is not called for the initial instal-

lation of the sample rate, as the sample rate is set before the progress function variable is

set.

The SyncEventCorrect flag causes the progress function to be called if a timestamp was

detected in a received packet, and hence a sync event was triggered. This progress event

is critical to the implementation of AV sync algorithms. When called, the progress

parameter is a pointer to a ControlInfo structure, as described below.

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 129

6

arSyncMode_t

typedef enum {
 AR_Sync_None,
 AR_Sync_trigger,
 AR_Sync_skip,
} arSyncMode_t;

Description

Synchronization processing can be disabled (AR_Sync_None), or it can be enabled in one

of two modes. In “trigger” mode, the renderer expects the first packet it receives to be

time stamped, and this packet is held until the reference clock matches the time stamp.

After that, sync information is ignored, and all packets are played. The trigger is reset by

stopping and starting the renderer.

In “skip” mode, the renderer uses an algorithm as described earlier, under AV Sync

Details. Packets are constantly checked for their relation to the reference clock, and they

are always presented within the window specified.

Chapter 6: Audio Renderer (ArendAO) API

130 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

arSyncState_t

typedef enum {
 AR_SyncState_NoAction,
 AR_SyncState_Waiting,
 AR_SyncState_Skipping,
 AR_SyncState_CorrectionAppropriate,
} arSyncState_t;

Description

When synchronization processing is enabled, the syncState is communicated to the

application using the controlInfo structure as passed in the progress function. The skip-

ping and waiting states tell the application that the timestamp of the packet to be played

is outside of the legal window. When the CorrectionAppropriate state is used, the packet

is within its window and further action is up to the application. It is “appropriate” to

“correct” the sample rate clock.

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 131

6

tmalArendAOCapabilities_t

typedef struct tmalArendAOCapabilities_t {
 ptsaDefaultCapabilities_t defaultCapabilities;
 Int32 max_srate;
 Int32 min_srate;
 Int32 granularityOfAddress;
 Int32 granularityOfSize;
 Int32 minBufferSize;
} tmalArendAOCapabilities_t; *ptmalArendAOCapabilities_t;

tmolArendAOCapabilities_t

typedef tmalArendAOCapabilities_t
tmolArendAOCapabilities_t, *ptmolArendAOCapabilities_t;

Fields

defaultCapabilities For compliance with the application library archi-
tecture, this is a pointer to a structure of the stan-
dard type.

max_srate Minimum sample rate [Hz].

min_srate Maximum sample rate [Hz].

granularityOfAddress Number of LSBs that should be zero (for example,
6 for 64-byte alignment).

granularityOfSize Number of LSBs that should be zero in the size
field (size is the number of samples).

minBufferSize Minimum buffer size (samples).

Description

tmalArendAOCapabilities_t and tmolArendAOCapabilities_t are structures holding a list of

capabilities. The audio renderer maintains a structure of this type to describe itself. A

user can retrieve the structure’s address by calling tmalArendAOGetCapabilities or tmol-

ArendAOGetCapabilities. Notice that the AL and the OL layer structures are identical,

except for the extensions to the default capabilities structure made in the OL layer (tsa.h)

Chapter 6: Audio Renderer (ArendAO) API

132 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendAOInstanceSetup_t

typedef struct tmalArendAOInstanceSetup_t {
 ptsaDefaultInstanceSetup_t defaultSetup;
 arMode_t operationalMode
 Int32 maxBufferSize;
 tmAudioAnalogAdapter_t output;
 Int muteCounterInit;
 UInt32 syncThreshold;
 Int syncDelay;
 arSyncMode_t syncMode;
 Int32 badTimestampThreshold;
} tmalArendAOInstanceSetup_t;

tmolArendAOInstanceSetup_t

typedef tmalArendAOInstanceSetup_t
tmolArendAOInstanceSetup_t, *ptmolArendAOInstanceSetup_t;

Fields

defaultSetup Refer to tsa.h for more information. The function
pointers (error func, datain func) are taken from
here, as is the format.

operationalMode Raw or Conservative. See arMode_t on page 126.

maxBufferSize Maximum buffer size in bytes. The value of this
field should match the buffer size used in the data
packets that are played by the renderer. Because of
hardware restrictions, the number of samples
must be a multiple of 64d. maxBufferSize must
hence be a multiple of 64, and the number of
bytes per sample in the chosen data format (for
example, 12 for six channel 16-bit). This size is
used to allocate a “silence buffer” that is played
whenever appropriate.

output Select line output or digital output. The value
aaaNone selects the default.

muteCounterInit Whenever the audio renderer is muted, either by
user command or by loss of AV sync, a counter
internal to the renderer is initialized to this value.
It is then decremented when the mute condition
is lifted. Only when the counter goes to zero is
the mute actually ended. Set to zero to disable
this feature.

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 133

6

syncThreshold When the difference between the current time
and the timestamp on a packet exceeds this
threshold, packets are held or skipped to correct
the loss of sync. This mechanism is activated if 1)
A clock is installed at instance setup. 2) Valid
timestamps are provided on received packets. A
value equal to 30ms is usually appropriate.

syncDelay An offset, given in units of the installed TSA clock
that is used to compute audio video (AV) sync.
Positive values delay the playback of packets. See
page 123.

syncMode See arSyncMode_t enum above.

badTimestampThreshold When syncSkip mode is active, packets can be
rejected if their timestamp is too far from the cur-
rent clock value. This configuration command
allows the threshold of rejection to be changed
dynamically. Default value is 48000 ticks.

Description

A structure of this type is passed to tmalArendAOInstanceSetup or to tmolArendAO-

InstanceSetup.Using the standard tmal (TriMedia Application Library) model, you can

configure the renderer at the AL or OL layer. The OL layer simply calls the AL layer.

Chapter 6: Audio Renderer (ArendAO) API

134 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmArendAOControlInfo_t

typedef struct tmArendAOControlInfo {
 UInt numberOfSamples;
 ptmAvPacket_t packet
 Int timeDiff;
 Int muteTimer;
 arSyncState_t syncState;
} tmArendAOControlInfo_t, *ptmArendAOControlInfo_t;

Fields

numberOfSamples The number of samples that will be played in this
invocation of the audio renderer ISR.

packet Pointer to the packet that will be played in this
invocation of the audio renderer ISR.

timeDiff Difference in time, give in the units of the cur-
rently installed TSA clock, between the time
stamp of the current packet, and its expected pre-
sentation time, with the addition of the syncDe-
lay. See page 122.

muteTimer The current value of the mute timer.

syncState Tells the progress function what decision the ren-
derer has made about sync, and hence, what
action to take.

Description

A structure of this type is available in the audio renderer’s progress function. It can be

used by an application to monitor the status of the AV sync algorithm, or to implement

an alternative sync algorithm.

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 135

6

Audio Renderer API Functions

This section presents the Audio Renderer API application library functions.

Name Page

tmalArendAOGetCapabilities 136

tmolArendAOGetCapabilities 136

tmalArendAOGetCapabilitiesM 137

tmolArendAOGetCapabilitiesM 137

tmalArendAOGetNumberOfUnits 138

tmolArendAOGetNumberOfUnits 138

tmalArendAOOpen 139

tmolArendAOOpen 139

tmalArendAOOpenM 140

tmolArendAOOpenM 140

tmalArendAOClose 141

tmolArendAOClose 141

tmalArendAOInstanceSetup 142

tmolArendAOInstanceSetup 142

tmalArendAOStart 143

tmolArendAOStart 143

tmalArendAOStop 144

tmolArendAOStop 144

tmalArendAORenderBuffer 145

tmalArendAOInstanceConfig 146

tmolArendAOInstanceConfig 146

Chapter 6: Audio Renderer (ArendAO) API

136 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendAOGetCapabilities

tmLibdevErr_t tmalArendAOGetCapabilities(
 ptmalArendAOCapabilities_t *pCap
);

tmolArendAOGetCapabilities

tmLibdevErr_t tmolArendAOGetCapabilities(
 ptmolArendAOCapabilities_t *pCap
);

Parameters

pCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

This function fills in the pointer of a static structure, ptmalArendAOCapabilities_t, main-

tained by the renderer, to describe the capabilities and requirements of this library. This

is achieved by calling aoGetCapabilities function.

The OL layer implements this by calling the AL layer and adding its overhead to the

specifications of code size and data size found in the default capabilities structure. Imple-

mented by a call to tmalGetCapabilitiesM with unitName set to the first unit (unit0).

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 137

6

tmalArendAOGetCapabilitiesM

 tmLibappErr_t tmalArendAOGetCapabilitiesM (
 ptmalArendAOCapabilities_t *pCap,
 unitSelect_t unitNumber
);

tmolArendAOGetCapabilitiesM

 tmLibappErr_t tmolArendAOGetCapabilitiesM (
 ptmolArendAOCapabilities_t *pCap,
 unitSelect_t unitNumber
);

Parameters

pCap Pointer to pointer to an ArendAO capabilities
structure at the appropriate level (AL or OL).

unitName Select which unit.

Return Codes

 TMLIBDEV_OK Success.

 TMLIBDEV_ERR_NULL_PARAMETER Can be asserted in debug mode.

 TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
Unit not supported in hardware.

Description

Used to find out about the AO hardware.

Chapter 6: Audio Renderer (ArendAO) API

138 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendAOGetNumberOfUnits

tmLibappErr_t tmalArendAOGetNumberOfUnits (
 UInt32 *numberOfUnits
);

tmolArendAOGetNumberOfUnits

tmLibappErr_t tmolArendAOGetNumberOfUnits (
 UInt32 *numberOfUnits
);

Parameters

numberOfUnits Pointer to an integer describing the number of
audio output units that are supported on the cur-
rent hardware.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
given if numberOfUnits is null.

Description

Finds the number of audio output units that are supported on the current hardware.

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 139

6

tmalArendAOOpen

tmLibdevErr_t tmalArendAOOpen(
 Int *instance
);

tmolArendAOOpen

tmLibdevErr_t tmolArendAOOpen(
 Int *instance
);

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBAPP_OK Returned if the function completes successfully.

TMLIBAPP_ERR_MODULE_IN_USE Returned if the renderer or audio hardware is
already in use by someone else.

Other error values may be returned from the underlying tmAO and BSP libraries.

Description

Creates an instance of a renderer, and sets the instance variable given by aoOpen func-

tion. At the OL layer, memory is allocated for internal variables. Implemented by a call

to tmxlOpenM with unitName set to the first unit (unit0).

Chapter 6: Audio Renderer (ArendAO) API

140 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendAOOpenM

tmLibappErr_t tmalArendAOOpenM(
 Int *instance,
 unitSelect_t unitNumber
);

tmolArendAOOpenM

tmLibappErr_t tmolArendAOOpenM(
 Int *instance,
 unitSelect_t unitNumber
);

Parameters

instance Pointer (returned) to the instance.

unitName Selects unit.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Can be asserted in debug mode

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
Unit not supported in hardware

MLIBDEV_ERR_NO_MORE_INSTANCES Unit is already in use at the device library level.

TMLIBAPP_ERR_MODULE_IN_USE Unit is in use at the AL or OL level.

TMLIBDEV_ERR_MEMALLOC_FAILED Memory used for instance variable structure.

Other errors might be returned if the allocation of the interrupt or hardware pins (on

GPIO enabled devices) fail.

Description

This function will open an instance of the selected AO device and assign the instance

value. Using the tmAO device library, It opens an interrupt as appropriate for the speci-

fied unit with intOpen function.

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 141

6

tmalArendAOClose

tmLibappErr_t tmalArendAOClose(
 Int instance
);

tmolArendAOClose

tmLibappErr_t tmolArendAOClose(
 Int instance
);

Parameters

instance Instance returned by tmalArendAOOpen or tmol-
ArendAOOpen.

Return Codes

TMLIBAPP_OK Returned if the function completes successfully.

TMLIBAPP_ERR_MODULE_IN_USE Asserted if the renderer has not been opened by
this instance.

Description

Shuts down this instance of the renderer by calling aoClose. At the OL layer, memory

allocated for internal variables is freed. If InstanceSetup has been called, the interrupt

service routine is active until this function is called.

Chapter 6: Audio Renderer (ArendAO) API

142 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendAOInstanceSetup

tmLibappErr_t tmalArendAOInstanceSetup(
 Int instance,
 ptmalArendAOInstanceSetup_t setup
);

tmolArendAOInstanceSetup

tmLibappErr_t tmalArendAOInstanceSetup(
 Int instance,
 ptmalArendAOInstanceSetup_t setup
);

Parameters

instance Instance returned by tmalArendAOOpen or tmol-
ArendAOOpen.

setup Pointer to the setup structure.

Return Codes

TMLIBAPP_OK Returned if the function completes successfully.

(Errors from the device library) When a call into the device library fails, a unique
error code is returned.

TMLIBAPP_ERR_MODULE_IN_USE Returned if the renderer has not been opened by
this instance.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
Returned if the dataSubtype of the requested for-
mat is unknown.

TMLIBAPP_ERR_MEMALLOC_FAILED Returned if memory allocation for the silence
buffer fails.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert in debug mode.

TMLIBAPP_ERR_MODULE_IN_USE Can assert in debug mode.

Description

Initializes the renderer and sets up the audio out library with aoInstanceSetup using the

appropriate format (specified in setup). Leaves renderer stopped. The OL layer calls the

AL layer.

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 143

6

tmalArendAOStart

tmLibappErr_t tmalArendAOStart(
 Int instance
);

tmolArendAOStart

tmLibappErr_t tmolArendAOStart(
 Int instance
);

Parameters

instance Instance returned by tmalArendAOOpen or tmol-
ArendAOOpen.

Return Codes

TMLIBAPP_OK Returned if the function completes successfully.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert in debug mode.

TMLIBAPP_ERR_MODULE_IN_USE Can assert in debug mode.

Description

Starts the audio transmit for the specific instance. The interrupt service routine is

instructed to begin processing audio data packets.

Chapter 6: Audio Renderer (ArendAO) API

144 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendAOStop

tmLibappErr_t tmalArendAOStop(
 Int instance
);

tmolArendAOStop

tmLibappErr_t tmolArendAOStop(
 Int instance
);

Parameters

instance Instance returned by tmalArendAOOpen or tmol-
ArendAOOpen.

Return Codes

TMLIBAPP_OK Returned if the function completes successfully.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert in debug mode.

TMLIBAPP_ERR_MODULE_IN_USE Can assert in debug mode.

Description

Stops the audio transmit for the specific instance. The interrupt is disabled and all out-

standing packets are returned. The stop command may block for as long as the time it

takes to play two audio packets. Stop will not return until the two packets currently

installed in the hardware are no longer in use.

Chapter 6: Audio Renderer (ArendAO) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 145

6

tmalArendAORenderBuffer

tmLibappErr_t tmalArendAORenderBuffer(
 Int instance,
 ptmAudioPacket_t packet
);

Parameters

instance Instance value as returned by tmalArendAOOpen.

packet Pointer to a packet of audio data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_STREAM_MODE_CONFUSION
This function is not to be used in streaming
mode. Calling it when the datain function has
been specified (to indicate streaming mode)
returns this error code.

AR_ERR_INSTANCE_BUSY Instance is not ready for new data.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert in debug mode.

TMLIBAPP_ERR_MODULE_IN_USE Can assert in debug mode.

Description

In non-streaming mode, this function is used to hand over a buffer of samples to play.

This buffer will be played using the settings assigned using tmalArendAOInstanceSetup.

The completion callback function will be called when this buffer has finished playing

and is free. At the same time, the buffersInUse field in the packet will be set to zero. In

non-streaming mode, the audio renderer keeps an internal queue of four packets. Invo-

cation of this function when the queue is full of packets to be played will have no effect

and will return AR_ERR_INSTANCE_BUSY. True double-buffered operation is supported in

by this function. Timestamp based synchronization is not supported in this mode.

Chapter 6: Audio Renderer (ArendAO) API

146 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendAOInstanceConfig

tmLibappErr_t tmalArendAOInstanceConfig(
 Int instance,
 arConfigParam_t p,
 void* val
);

tmolArendAOInstanceConfig

tmLibappErr_t tmolArendAOInstanceConfig(
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Parameters

instance Instance, as returned by tmalArendAOOpen or
tmolArendAOOpen.

p Address of parameter to be modified.

val Pointer to the value to be used for modification.

flags Not used.

args Contains the parameter and value that are passed
to the AL layer function

Return Codes

TMLIBAPP_OK Returned if the function completes successfully.

AR_ERR_UNSUPPORTED_COMMAND The parameter was not recognized.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert in debug mode.

TMLIBAPP_ERR_MODULE_IN_USE Can assert in debug mode.

Description

These functions are used to configure parameters of the renderer while it is running.

Unlike the configuration functions of task based modules, the audio renderer configura-

tion functions act directly without using control queues. The supported parameters are

are described as the arConfigParam_t, on page 127.

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 147

7

Chapter 7

SPDIF Renderer (ArendSpdif) API

Topic Page

SPDIF Audio Renderer API Overview 148

SPDIF Audio Renderer API Data Structures 156

SPDIF Audio Renderer API Functions 167

Chapter 7: SPDIF Renderer (ArendSpdif) API

148 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

SPDIF Audio Renderer API Overview

The SPDIF (Sony/Philips Digital Interface Format) audio renderer for TriMedia serves as a

TSA-compatible interface between audio stream-producing modules and the outside

world, using the SPDIF output that is now present on the TM-1300 and the TM-2700.

The data format used for this interface is described in the international standard known

as IEC60958. The IEC60958 standard describes two variants, one for consumer use and

another for professional use. The term “SPDIF” applies to the consumer version of the

standard, while the professional variant is called AES3, or AES/EBU. In this document,

“SPDIF” is often used as a general term for these interfaces.

The SPDIF audio renderer is based on the standard AO audio renderer documented in

Chapter 6, Audio Renderer (ArendAO) API. As a consequence, the renderer requires audio

data to be packaged in tmAvPacket_t data structures. (For more information, see

Chapter 4, tmAvFormats.h: Multimedia Format Definitions, in Book 3, Software Architecture,

Part A).

The SPDIF audio renderer supports a streaming interface to the hardware, at the OL level.

It can also be used as a function library to format a buffer for presentation to the hard-

ware. This would happen at the AL level. To support the streaming interface, the SPDIF

audio renderer installs an interrupt service routine and starts a task. The task reformats

data from the TSA packet format it receives to the bitwise representation of the SPDIF

format that is required by the SPDO hardware. Audio precision up to 24 bits is sup-

ported. Although the SPDIF hardware supports only the output of a stereo pair, the

SPDIF renderer accepts multi-channel packets, just like the AO renderer. One channel

pair is selected from these larger packets for presentation over the SPDIF interface. The

SPDIF renderer offers full support for the so-called “C” bit, through an entry in the

instance setup structure. It also allows users to control the “U” bit.

Like the AO renderer, the SPDIF renderer supports a sophisticated form of synchroniza-

tion based on presentation times and a reference clock. The renderer is supplied as a

library that can be used without restriction by owners of the TriMedia SDE.

Figure 3 Structure of the Audio Renderer

Supporting SPDIF digital inputs using the audio digitizer:

With an appropriate board support package (BSP), the audio digitizer can support input

from a digital audio source over an SPDIF (IEC60958) connection. The issues that must

Datain [0]

Audio Renderer

(queuing)

1 0 0 1 1 0 0 0

Bi-phase mark encoding

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 149

7

be addressed are demonstrated in the exolCopyAudio program, as well as in the DTV ref-

erence BSPs. The audio-in unit must be configured as a slave. A software PLL must be set

up to lock the output rate to the input rate. And an interrupt must be provided to notify

the application when the master SPDIF source changes. More information follows in the

section discussing the progress function.

Inputs and Outputs

The SPDIF Audio Renderer has one input and consumes buffers full of audio data. It

returns the same buffers in an empty state. In the exchange, the data is presented at the

SPDIF output. The SPDIF renderer calls the tmSPDO device library. The tmSPDO device

library expects a BSP to be installed.

Errors

Errors can be reported during the renderer’s setup phase or at run time. Errors occurring

during the setup phase are reported as non-zero return values from the API. In addition,

the debugging version of the library uses assert mechanism to flag invalid inputs. Possi-

ble errors are listed in the descriptions of the API functions.

Note
We strongly advises that you bring up the SPDIF audio renderer using the _a
(assert) version of the audio renderer and the device libraries. Many possible
error conditions are flagged with assertions in these libraries.

For run-time errors, the audio renderer supports an error-reporting callback function.

This function is called from the audio output interrupt service routine. None of the

errors handled by the error callback function are fatal. The error function prototype is of

the type tsaErrorFunc_t:

You should provide handlers for these possible values of the errorCode:

TMLIBAPP_ERR_UNDERRUN

The audio system requested data but nothing was available. This error could occur in

several circumstances. The renderer’s interrupt service routine always attempts to handle

this case gracefully. More information about the source of the data is available in the

description field. When an underrun error is logged, the renderer fills in the description

typedef tmLibappErr_t(*tsaErrorFunc_t)(
 Int instId,
 UInt32 flags,
 ptsaErrorArgs_t args
);

typedef struct tsaErrorArgs {
 Int errorCode;
 Pointer description;
} tsaErrorArgs_t, *ptsaErrorArgs_t;

Chapter 7: SPDIF Renderer (ArendSpdif) API

150 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

field with a pointer to an array of three integers. The first member identifies the exact

source of the error.

TMLIBAPP_ERR_HIGHWAY_BANDWIDTH_ERR

Not enough bandwidth is available to service audio output on the TriMedia’s internal

data highway. This condition can possibly be remedied by reprogramming the band-

width allocation MMIO register.

ARENDSP_ERR_INVALID_BUFFER_SIZE

This message is given only by the task that formats data to be passed to the SPDO out-

put. It occurs when an odd-sized buffer is passed to the output device. Usually, this case

is handled correctly, but if it can’t be, this error is logged and some data may be skipped.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE

If the task formatting data for output receives a packet with a format that it does not

understand, then the renderer reports this error and does not output the packet.

Note
Since an error function can be called from the context of an interrupt, it
must not call printf or any other complex handler.

Progress Function

When the renderer is operating, it can be configured to call a progress function. If you

don’t want to call a progress function, set the progressFunc member of the instance

setup structure to Null. The progressReportFlags member of the default instance setup

structure allows you to control when the progress function is called. Valid flags, defined

in tmalArendSpdif.h, include these flags:

ARENDSP_PROGRESS_ReportCount Cause the progress function to be called in every
ISR.

ARENDSP_PROGRESS_ChangeSampleRate
Cause the progress function to be called when the
sample rate changes.

ARENDSP_PROGRESS_SyncEventCorrect
Cause the progress function to be called when the
AV sync algorithm is active.

Values of errArg.description[0]:
0: The interrupt handler was locked out for too long.
1: The ISR could not receive data from the task.
Other error codes: Returned in the task when checking the input queue.

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 151

7

 The progress function has this prototype:

where

When called, the progress code will be some combination of the progress flags, as noted

above. It is possible to call progress function with more than one flag set. When called

with the progress flag AREND_PROGRESS_ChangeSampleRate, the description field con-

tains a pointer to the new sample rate, as a Float. In the other cases, the description field

of the args structure will usually contain a pointer to a structure of this type:

In the control info structure, the numberOfSamples field gives the number of samples

that will be played when the buffer installed by this interrupt is played. Knowledge of

this number allows you to implement a simple form of synchronization using the mech-

anism of the DDS clock synthesizers available on TriMedia. For example, the output

clock can be phase-locked to an external source at the audio input. The packet member

of this structure is the address of the audio packet that is being installed in this interrupt.

The timeDiff member of the structure implements the more sophisticated type of syn-

chronization appropriate for time-stamped data streams. The syncState and muteTimer

members monitor the operation of the internal synchronization mechanism. They are

described in the API reference entry for this structure.

How to Use the Audio Renderer

The SPDIF audio renderer is to be used as a streaming driver accessed from the OL layer.

The sample program exolArendSpdif demonstrates streaming operation at the OL layer,

using the TSSA default functions and pSOS.

To use the audio renderer, follow these steps:

1. Call the Open function to create an instance.

2. Obtain a pointer to an instance setup structure and fill it with your data. The instance

setup structure completely describes the operation of the renderer. Refer to tsa.h for

the definition of the structure ptsaDefaultInstanceSetup_t.

typedef tmLibappErr_t (*tsaProgressFunc_t) (
 Int instId,
 UInt32 flags,
 ptsaProgressArgs_t args
);

typedef struct tsaProgressArgs {
 Int progressCode;
 Pointer description;
} tsaProgressArgs_t, *ptsaProgressArgs_t;

typedef struct tmArendSpdifControlInfo {
 UInt numberOfSamples;
 ptmAvPacket_t packet;
 Int timeDiff;
 Int muteTimer;
 arSyncState syncState;
} tmArendSpdifControlInfo_t, *ptmArendSpdifControlInfo_t;

Chapter 7: SPDIF Renderer (ArendSpdif) API

152 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

In particular, you will fill in the format structure. Entries are provided for a number of

callback functions. When working at the OL layer, the datain function is provided as

a default.

3. Call the InstanceSetup function to register these settings with the renderer.

4. Call the Start function. This will cause the renderer to expect data and consequently,

to log ensuing errors if data is not present.

5. To change the mode of operation while running, call InstanceConfig.

6. When you are done, call Stop and then Close.

How the Audio Renderer Works

The audio renderer installs an interrupt service routine which manages a small queue of

buffers formatted especially for the SPDO unit. The size of these buffers is determined by

the bufferSize member in the instance setup structure. This size is given in samples. It

must be a multiple of 192 (the SPDIF frame size). The actual amount of memory allo-

cated (in bytes) is 32 × bufferSize. The interrupt service routine does very little besides

servicing the hardware.

The renderer also spawns a task that receives packets in TSA format, reformats them for

the SPDO output hardware, and passes them along to the ISR.

A more complete description of the use of the audio renderer in streaming mode is

found in the example program exolArendSpdif. As with any OL layer component con-

forming to the streaming architecture, the setup happens through the structures passed

to tmolArendSpdifInstanceSetup. Communication queues are allocated and buffers are

placed in the empty queue. As the source component is initialized with the same pair of

queues, data exchange begins as soon as tmolArendSpdifStart is called.

Formats in the Audio Renderer

The formats supported by the SPDIF audio renderer are determined by a call to tmAOGet-

Capabilities, which queries the board support package. The SPDIF audio renderer cur-

rently supports 2-, 6-, and 8-channel PCM formats in 16- and 32-bit variants.

The OL version of the audio renderer can change its format on-the-fly. It is possible (and

acceptable) to specify no format at instance setup, instead relying on the format being

passed in the first data packet. The audio renderer will change its format based on the

format specified in any packet. Because the format change function cannot be called

from the interrupt service routine, it is called from the sending component’s dataout

function. This may result in a few queued packets being played with the wrong format.

Synchronization Overview

The SPDIF renderer operates in exact analogy to the AO audio renderer.

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 153

7

The SPDIF renderer includes a number of services to be used for synchronization. It also

includes specific code to synchronize audio and video streams, based on a reference

clock and time-stamped packets. The AV sync code is used, for example, in the TriMedia

DTV reference application. Other forms of sync, such as “broadcast sync” and “AA sync”

are supported with the application’s ability to change the audio sample rate and the

reports given by the renderer in the progress function. The interface includes a sync-

Mode parameter. When this is set to AR_Sync_None, sync is disabled and all packets are

played as received. In AR_Sync_trigger mode, the renderer expects the first packet it sees

to be time-stamped, and this packet is held until the reference clock is greater than the

time stamp. The AR_Sync_skip mode is the most powerful.

AV Sync Details

There are many details involved in the renderer’s AV synchronization scheme. When the

AR_Sync_trigger mode is used, the operation is almost trivial. An example of the com-

plete AR_Sync_skip mechanism is demonstrated in the DTV reference app, ATSCbasic.

The mechanism is still conceptually simple, as described below:

In order for the AV sync mechanism to be enabled, the user must explicitly enable the

mechanism by setting the syncMode to AR_Sync_skip. Also, a reference clock must be

installed at instance setup, and packets to be synchronized must contain a valid times-

tamp. With these pre-requisites met, the algorithm attempts to present the packet at the

correct time. This behavior is controlled by the user’s specification of the syncMode and

the timeThreshold. In very general terms:

1. If the time stamp matches the clock to the accuracy of the timeThreshold field, the

packet will be played. The user is informed of this condition through the progress

function, and the syncState value of AR_SyncState_CorrectionAppropriate informs

him that this is a good time to fine tune the audio sample clock, for example, with

the DDS.

2. If the time stamp is earlier than the current clock value, the packet is returned with-

out being fully played.

3. If the time stamp is in the future, the packet is held until the clock reaches the value

of the timestamp.

4. If the difference between the time stamp and the clock is greater than 16 times the

timeThreshold, then the time stamp data is assumed to be erroneous and it is ignored.

Note that it is this parameter that determines the number of packets that must be

available in the system. If the audio renderer can hold a packet for 16 times the

threshold, the rest of the system must be prepared for this possibility.

timeDiff

The fundamental measure of AV sync is the comparison between the Presentation Time

Stamp (PTS) and the clock, sometimes called the Program Clock Reference (PCR). This

comparison is made using the difference (timeDiff) between these two clocks, each repre-

Chapter 7: SPDIF Renderer (ArendSpdif) API

154 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

sented by a 32-bit number. When the difference is positive, the packets are ahead of the

clock. Since humans prefer late audio to early audio, the skipping algorithm is biased to

return slightly negative time differences.

timeThreshold

The timeThreshold member of the instance setup structure sets how far out of sync the

clock and the PTS can be before drastic action is taken. When the difference (timeDiff) is

less than the threshold, the audio can track the video without gaps in the audio data. In

MPEG applications, the PCR usually runs at 90KHz, and a threshold of 3000 works well.

When a timestamp is encountered that is inside of the rejection window, but outside of

the acceptable window, and early, it is held and silence is played until the timestamp

matches the reference clock. If it is late, a short packet of silence is played (64 samples)

and, the next packet is retrieved.

As a further conservative measure, timestamps must indicate the necessity of skipping or

waiting three times consecutively before any action is taken.

As mentioned above, the human bias against early audio causes the threshold to be

asymmetric around zero. A value of timeThreshold/2 is used for positive time differ-

ences.

Rejecting Bad Time Stamps

When the absolute value of the time difference is greater than sixteen times the thresh-

old, the software assumes the clock or the time stamp is bad, and the packet is played as

if it were not time stamped.

Holding a Packet When Ahead

When the time difference is greater than the half threshold (but less than 16 times the

threshold), the packet is ahead of the clock and the renderer will hold this packet until

the clock catches up. The progress function is called with the syncState set to

AR_SyncState_Waiting. When a packet is being held, the audio renderer output is muted,

the mute counter is initialized to the value of muteCounterInit as specified in the

instance setup structure, and silence is played. Note that this mechanism places a mini-

mum on the number of packets that are available in a system. If the threshold is set

high, and too few packets are circulated in the queues, it may be possible for all of the

packets to end up held by the audio system because of this case. The threshold should be

set appropriately and enough packets should be available so that this cannot become an

issue.

LATE EARLY

Reject TS Skip to Catch Up OK Hold and Wait Reject TS

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 155

7

Playing Short to Catch Up

When the time difference is less than the negative threshold (but not less than 16 times

the negative threshold), the packet is behind the clock, and the audio needs to catch up.

The renderer catches up by playing only the minumum number of samples from the

packet. This number is 64 stereo 16-bit samples, but it is smaller for multi-word samples.

Note that it might be possible to break this mechanism if you routinely use very short

buffers with the renderer. The progress function is called with the syncState set to

AR_SyncState_Skipping. As in the “holding” case, the audio renderer output is muted,

the mute counter is initialized to the value of muteCounterInit as specified in the

instance setup structure, and silence is played while the renderer is skipping.

Adapting the Sample Rate

When the time difference is within the bounds set by the threshold, the application is

given the opportunity to drive the remaining difference to zero using some sort of a lin-

ear controller in a feedback loop. The controller can be very simple: If the output clock is

based on the TriMedia DDS, the output sample rate linearly follows the DDS control

word. The DDS control word can be modified according to an equation like this:

newDDS = (1 – Kp × timeDiff) × originalDDS.

This sort of an update is normally done when the progress function is called with sync-

State equal to AR_SyncState_CorrectionAppropriate. For more information, see the exam-

ple code in the ATSCbasic application.

Sync Delay

It is often useful to add an offset to the PCR (clock) when computing the time difference.

The audio renderer can accept this offset as the syncDelay. It can be specified at instance

setup, or changed on the fly using the AR_SET_DELAY command to the InstanceConfig

function. The syncDelay is added to the timeDiff, so a positive delay will move the packet

forward in time.

As an example, the syncDelay is useful when the video renderer is also locking to the

same PCR. The video renderer can only lock to an accuracy of one frame, but it can mea-

sure an offset to the clock of less than one frame. In the DTV applications, the video ren-

derer passes this offset to the audio renderer as a the syncDelay, and the audio renderer

uses this to compute the time difference.

But when the delay tends to jump abruptly, it might be appropriate to filter the delay so

that artifacts in the sound are less noticeable. To do this, do not use the audio renderer’s

delay parameter. Instead, add the filtered delay value to the time difference reported in

the progress function. A filter like this will be updated only when a packet with a times-

tamp is processed.

Chapter 7: SPDIF Renderer (ArendSpdif) API

156 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Muting

Whenever the renderer is muted, a counter internal to the renderer is initialized to the

value specified as muteCounterInit at instance setup. At the moment mute is enabled, the

counter begins to count down. Mute is disabled when the counter gets back to zero. If

you do not want this feature, simply set muteCounterInit to zero. But the mute counter is

also used when muting is enabled by the AV sync mechanism. The counter is used to

avoid the situation where several short periods of mute are heard while the AV sync algo-

rithm locks up. It is better to stay muted until everything is stable.

SPDIF Audio Renderer API Data Structures

This section presents the SPDIF Audio Renderer data structures.

Name Page

arendSpdifConfigParam_t 157

arendSpdifProgressFlags_t 160

arendSpdifSyncMode_t 161

arendSpdifSyncState_t 161

tmalArendSpdifChannelStatus_t 162

tmalArendSpdifCapabilities_t 163

tmolArendSpdifCapabilities_t 163

tmalArendSpdifInstanceSetup_t 164

tmolArendSpdifInstanceSetup_t 164

tmArendSpdifControlInfo_t 166

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 157

7

arendSpdifConfigParam_t

typedef enum {
 ARENDSP_MUTE,
 ARENDSP_SET_MUTE,
 ARENDSP_GET_MUTE,
 ARENDSP_SET_DELAY,
 ARENDSP_SET_SAMPLE_RATE,
 ARENDSP_GET_SAMPLE_RATE,
 ARENDSP_SET_SYNC_MODE,
 ARENDSP_GET_SYNC_MODE,
 ARENDSP_SET_BAD_TIMESTAMP_THRESHOLD,
 ARENDSP_SET_SYNC_THRESHOLD,
 ARENDSP_SPDIF_SET_DATA_MODE,
 ARENDSP_SPDIF_PCM_MODE,
 ARENDSP_SPDIF_SET_COPYRIGHT_INFO,
 ARENDSP_SPDIF_SET_COPYRIGHT_BIT,
 ARENDSP_SPDIF_UNSET_COPYRIGHT_BIT,
 ARENDSP_SET_CBITS,
 ARENDSP_SET_UBITS,
 ARENDSP_SET_CHANNEL_PAIR,
 ARENDSP_GET_CHANNEL_PAIR,
} arendSpdifConfigParam_t;

Description

Enumerates the commands used by the InstanceConfig function. When you call tmo-

lArendSPDIFInstanceConfig, you pass a configuration command which includes one of

these command values and a pointer to a parameter. If the command is a ‘set’ command,

you pass the appropriate parameter value also. If the command is a ‘get’ command, the

parameter value is returned in the parameter.

The following list tells you the parameter types for a call to tmolArendSPDIFInstance-

Config.

Fields

ARENDSP_MUTE The MUTE command toggles the mute state.

ARENDSP_SET_MUTE When you use SET_MUTE, pass the Boolean value
directly as the parameter.

ARENDSP_GET_MUTE When you use GET_MUTE, pass the address of a
Boolean variable.

ARENDSP_SET_DELAY Specify delay in units of the currently installed
TSA clock and pass it directly as the parameter.

ARENDSP_SET_SAMPLE_RATE Pass the address of the specified rate (float) as the
parameter.

Chapter 7: SPDIF Renderer (ArendSpdif) API

158 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

ARENDSP_GET_SAMPLE_RATE Pass the address to receive the rate (float) as the
parameter.

ARENDSP_SET_SYNC_MODE Pass the address of the mode as the parameter.

ARENDSP_GET_SYNC_MODE Pass the address of the mode as the parameter.

ARENDSP_SET_BAD_TIMESTAMP_THRESHOLD
When sync skip mode is active, packets can be
rejected if their timestamp is too far from the cur-
rent clock value. This configuration command
allows the threshold of rejection to be changed
dynamically. The default value is 48,000 ticks.
Pass the address of the threshold as the parameter.

ARENDSP_SET_SYNC_THRESHOLD This configuration command dynamically adjusts
the difference between the reference clock and a
timestamp on a packet that is considered “close
enough” for playback. Pass the address of the
threshold as the parameter.

ARENDSP_SPDIF_SET_DATA_MODE This configuration command forces the SPDIF C
bit to identify the channel as non-PCM data. The
command takes no parameter.

ARENDSP_SPDIF_PCM_MODE This configuration command (the inverse of the
above command) forces the SPDIF C bit to iden-
tify the channel as PCM data. The command
takes no parameter.

ARENDSP_SPDIF_SET_COPYRIGHT_INFO
When the renderer is operating in consumer
mode, the category code and the L bit can be set
using this command. The parameter of the con-
trol argument points to an integer that will be
dereferenced and cast to the type UInt8. The low
seven bits are the category code (as defined by
IEC60958, and using the constants defined in
tmalArendSpdif.h). The eighth bit (mask 0x80) is
used to set the “L” bit.

ARENDSP_SPDIF_SET_COPYRIGHT_BIT When the renderer is operating in consumer
mode, this command sets the copyright bit. The
command takes no parameter.

ARENDSP_SPDIF_UNSET_COPYRIGHT_BIT
When the renderer is operating in consumer
mode, this command clears the copyright bit. The
command takes no parameter.

ARENDSP_SET_CBITS This command sets any field of the officially-
defined C bit structures. Here, the command
parameter is treated as an array of pointers, the
first pointing to a “field” flag that allows you to
control the A and B fields of the C bit separately,

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 159

7

or as a unit, and the second being a pointer to a C
bit union structure (tmalArendSpdifChannel-
Status_t).

ARENDSP_SET_UBITS This command sets any field of the U bit struc-
ture. Here, the command parameter is treated as
an array of pointers, the first pointing to a “field”
flag that allows a user to control the A and B fields
of the U bit separately, or as a unit, and the sec-
ond being a pointer to an array of 24 UInt8s (192
bits).

ARENDSP_SET_CHANNEL_PAIR When the renderer has more than two channels
of input, it can select one channel pair from the
input using this command. Pass the command
parameter as a pointer to an integer channel pair
specifier.

ARENDSP_GET_CHANNEL_PAIR When the renderer has more than two channels
of input, it can select one channel pair from the
input using this command. The command param-
eter is returned as a pointer to an integer channel
pair specifier.

Chapter 7: SPDIF Renderer (ArendSpdif) API

160 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

arendSpdifProgressFlags_t

typedef enum {
 ARENDSP_PROGRESS_ReportCount,
 ARENDSP_PROGRESS_ChangeSampleRate,
 ARENDSP_PROGRESS_SyncEventCorrect,
 ARENDSP_PROGRESS_EndOfStream,
 ARENDSP_PROGRESS_ChangeFormat
} arendSpdifProgressFlags_t;

Fields

ARENDSP_PROGRESS_ReportCount Causes the progress function to be called at every
interrupt to report the count of samples played,
using the tmArendSpdifControlInfo_t structure.

ARENDSP_PROGRESS_ChangeSampleRate
Causes the progress function to be called if the
sample rate changes, allowing the application’s
sync algorithm to be informed of sample rate
changes. Note that the progress function is not
called for the initial installation of the sample
rate, because the sample rate is set before the
progress function variable is set.

SyncEventCorrect Causes the progress function to be called if a
timestamp was detected in a received packet, and
hence a sync event was triggered. This progress
event is critical to the implementation of AV sync
algorithms. When called, the progress parameter
is a pointer to a tmArendSpdifControlInfo_t struc-
ture.

Description

The renderer can call the progress function under a number of conditions. EndOfStream

and ChangeFormat are TSSA standard progress occasions.

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 161

7

arendSpdifSyncMode_t

typedef enum {
 ARENDSP_Sync_None,
 ARENDSP_Sync_trigger,
 ARENDSP_Sync_skip,
} arendSpdifSyncMode_t;

Description

Synchronization processing can be disabled (AR_Sync_None), or it can be enabled in one

of two modes. In “trigger” mode, the renderer expects the first packet it receives to be

time-stamped, and this packet is held until the reference clock matches the timestamp.

After that, sync information is ignored, and all packets are played. The trigger is reset by

stopping and starting the renderer.

In “sync skip” mode, the renderer uses the algorithm described under AV Sync Details.

Packets are constantly checked for their relation to the reference clock, and they are

always presented within the window specified.

arendSpdifSyncState_t

typedef enum {
 ARENDSP_SyncState_NoAction,
 ARENDSP_SyncState_Waiting,
 ARENDSP_SyncState_Skipping,
 ARENDSP_SyncState_CorrectionAppropriate,
} arSyncState_t;

Description

When synchronization processing is enabled, the ‘sync state’ is communicated to the

application using the tmArendSpdifControlInfo_t structure as passed in the progress func-

tion. The skipping and waiting states tell the application that the timestamp of the

packet to be played is outside of the legal window.

When your application sees ARENDSP_SyncState_CorrectionAppropriate state, the packet

is within its window and further action is up to your application. It is “appropriate” to

“correct” the sample rate clock.

Chapter 7: SPDIF Renderer (ArendSpdif) API

162 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendSpdifChannelStatus_t

typedef union arendSpdif_channel_status_t{
 struct{ // consumer:
 Bool consumerMode;
 Bool PCM;
 Bool copyright;
 arendSpdifConsumerFormat_t format;
 Bool LcopyBit;
 UInt8 CategoryCode;
 UInt8 SourceNumber;
 UInt8 ChannelNumber;
 arendSpdifConsumerSampleRate_t SamplingFrequency;
 arendSpdifConsumerClockAccuracy_t ClockAccuracy;
 arendSpdifConsumerWordLength_t WordLength;
 } consumer;
 struct { // Professional
 Bool consumerMode;
 Bool PCM;
 arendSpdifProfessionalEmphasis_t emphasis;
 Bool SRateUnLocked;
 arendSpdifProfessionalSampleRate_t SamplingFrequency;
 arendSpdifProfessionalChannelMode_t ChannelMode;
 arendSpdifProfessionalCUserBitsMgt_t UserBitsMgt;
 arendSpdifProfessionalCUseOfAuxBits_t UseOfAuxBits;
 UInt8 SourceWordLengthAndHistory;
 Bool DigitalAudioReferenceSignal;
 char Origin1;
 char Origin2;
 char Origin3;
 char Origin4;
 char Destination1;
 char Destination2;
 char Destination3;
 char Destination4;
 Int32 LocalSampleAddressCode;
 Int32 TimeOfDayCode;
 char ReliabilityFlags;
 char CRC;
 } professional;
} tmalArendSpdifChannelStatus_t, *ptmalArendSpdifChannelStatus_t;

Description

The C Bits of an IEC60958-compliant data stream can have different meanings depend-

ing upon whether they are used in professional (AES3, or AES/EBU) or consumer (SPDIF)

modes. This union reflects this fact. The specific types referenced in the union are

defined as enumerated types in tmalArendSpdif.h to provide strong type checking.

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 163

7

tmalArendSpdifCapabilities_t

typedef struct tmalArendSpdifCapabilities_t {
 ptsaDefaultCapabilities_t defaultCapabilities;
 Int32 max_srate;
 Int32 min_srate;
 UInt32 audioAdapters;
 Int32 granularityOfAddress;
 Int32 granularityOfSize;
 Int32 minBufferSize;
 UInt32 mmioBaseAddress;
} tmalArendSpdifCapabilities_t; *ptmalArendSpdifCapabilities_t;

tmolArendSpdifCapabilities_t

typedef tmalArendSpdifCapabilities_t
tmolArendSpdifCapabilities_t, *ptmolArendSpdifCapabilities_t;

Fields

defaultCapabilities In compliance with the application library archi-
tecture, this is a pointer to a standard capabilities
structure.

max_srate Minimum sample rate [Hz].

min_srate Maximum sample rate [Hz].

audioAdapters Will be aaaDigitalOutput, unless extra BSP sup-
port is implemented.

granularityOfAddress Number of LSBs that should be zero (for example,
6 bits for 64-byte alignment).

granularityOfSize Number of LSBs that should be zero in the size
field (size is the number of samples).

minBufferSize Minimum buffer size (samples).

mmioBaseAddress Set from the BSP and used to determine the base
address of the underlying hardware.

Description

This type (either version, above) holds a list of capabilities. The audio renderer maintains

a structure of this type to describe itself. A user can retrieve the structure’s address by

calling tmalArendSpdifGetCapabilities or tmolArendSpdifGetCapabilities. Notice that the

AL and the OL layer structures are identical, except for the extensions to the default

capabilities structure made in the OL layer (tsa.h).

Chapter 7: SPDIF Renderer (ArendSpdif) API

164 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendSpdifInstanceSetup_t

typedef struct tmalArendSpdifInstanceSetup_t {
 ptsaDefaultInstanceSetup_t defaultSetup;
 Int32 bufferSize;
 tmAudioAnalogAdapter_t output;
 Int muteCounterInit;
 UInt32 syncThreshold;
 Int syncDelay;
 arSyncMode_t syncMode;
 Int32 badTimestampThreshold;
 ptmalArendSpdifChannelStatus_t channelStatusA;
 UInt8 *userBitsA;
 ptmalArendSpdifChannelStatus_t channelStatusB;
 UInt8 *userBitsB;
} tmalArendSpdifInstanceSetup_t;

tmolArendSpdifInstanceSetup_t

typedef tmalArendSpdifInstanceSetup_t
tmolArendSpdifInstanceSetup_t, *ptmolArendSpdifInstanceSetup_t;

Fields

defaultSetup Refer to tsa.h for more information. The function
pointers (error func, datain func) are taken from
here, as is the format.

bufferSize Specifies the size of the buffers used internally to
communicate between the task and the ISR. This
value must be a multiple of 1536 bytes (192×8).

output Must be aaaDigitalOutput, unless extra BSP sup-
port is implemented and indicated by capabilites
structure.

muteCounterInit Whenever the audio renderer is muted, either by
user command or by loss of AV sync, a counter
internal to the renderer is initialized to this value.
It is then decremented when the mute condition
is lifted. Only when the counter goes to zero is
the mute actually ended. Set to zero to disable
this feature.

syncThreshold When the difference between the current time
and the timestamp on a packet exceeds this
threshold, packets are held or skipped to correct
the loss of sync. This mechanism is activated if

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 165

7

(1) A clock is installed at instance setup or
(2) Valid timestamps are provided on received
packets. A value equal to 30ms is usually appro-
priate.

syncDelay An offset, given in units of the installed TSA clock
that is used to compute audio video (AV) sync.
Positive values delay the playback of packets. See
page 155.

syncMode See arendSpdifSyncMode_t on page 161.

badTimestampThreshold When sync skip mode is active, packets can be
rejected if their timestamp is too far from the cur-
rent clock value. This configuration command
allows the threshold of rejection to be changed
dynamically. Default value is 48,000 ticks.

channelStatusA

channelStatusB These structures configure the “C bits” as
described in the IEC60958 standard. The union
definition allows convenient access to each field.
Since the A and B frames can be different, two
pointers are provided.

userBitsA, userBitsB These pointers are used to configure the “U bits”
as described in the IEC60958 standard. Since the
use of the U bits is left to the user, a pointer to an
array of 192 bits (24 bytes) is used. Since the A
and B frames can be different, two pointers are
provided.

Description

A structure of this type is passed to tmalArendSpdifInstanceSetup or to tmolArendSpdifIn-

stanceSetup.Using the standard tmal (TriMedia Application Library) model, you can con-

figure the renderer at the AL or OL layer. The OL layer simply calls the AL layer.

Chapter 7: SPDIF Renderer (ArendSpdif) API

166 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmArendSpdifControlInfo_t

typedef struct tmArendSpdifControlInfo {
 UInt numberOfSamples;
 ptmAvPacket_t packet;
 Int timeDiff;
 Int muteTimer;
 arSyncState_t syncState;
} tmArendSpdifControlInfo_t, *ptmArendSpdifControlInfo_t;

Fields

numberOfSamples The number of samples that will be played in this
invocation of the audio renderer ISR.

packet Pointer to the packet that will be played in this
invocation of the audio renderer ISR.

timeDiff Difference in time, give in the units of the cur-
rently installed TSA clock, between the time
stamp of the current packet, and its expected pre-
sentation time, with the addition of the syncDe-
lay. See page 153.

muteTimer The current value of the mute timer.

syncState Tells the progress function what decision the ren-
derer has made about sync, and hence, what
action to take.

Description

A structure of this type is available in the audio renderer’s progress function. It can mon-

itor the status of the AV sync algorithm or implement an alternative sync algorithm.

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 167

7

SPDIF Audio Renderer API Functions

This section presents the Audio Renderer API application library functions.

Name Page

tmalArendSpdifGetCapabilities 168

tmolArendSpdifGetCapabilities 168

tmalArendSpdifGetCapabilitiesM 169

tmolArendSpdifGetCapabilitiesM 169

tmalArendSpdifGetNumberOfUnits 170

tmolArendSpdifGetNumberOfUnits 170

tmalArendSpdifOpen 171

tmolArendSpdifOpen 171

tmalArendSpdifOpenM 172

tmolArendSpdifOpenM 172

tmalArendSpdifClose 173

tmolArendSpdifClose 173

tmalArendSpdifInstanceSetup 174

tmolArendSpdifInstanceSetup 174

tmalArendSpdifStart 175

tmolArendSpdifStart 175

tmalArendSpdifStop 176

tmolArendSpdifStop 176

tmalArendSpdifInstanceConfig 177

tmolArendSpdifInstanceConfig 177

tmalArendSpdifFormatTemplate 178

tmalArendSpdifFormatBuffer 179

Chapter 7: SPDIF Renderer (ArendSpdif) API

168 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendSpdifGetCapabilities

tmLibdevErr_t tmalArendSpdifGetCapabilities(
 ptmalArendSpdifCapabilities_t *pCap
);

tmolArendSpdifGetCapabilities

tmLibdevErr_t tmolArendSpdifGetCapabilities(
 ptmolArendSpdifCapabilities_t *pCap
);

Parameters

pCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

The function fills the pointer of a static structure, ptmalArendSpdifCapabilities_t, main-

tained by the renderer, to describe the capabilities and requirements of this library. It

calls aoGetCapabilities function.

The OL layer implements this by calling the AL layer and adding its overhead to the

specifications of code size and data size found in the default capabilities structure. The

function is implemented by a call to tmalGetCapabilitiesM with unitName set to the first

unit (unit0).

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 169

7

tmalArendSpdifGetCapabilitiesM

tmLibappErr_t tmalArendSpdifGetCapabilitiesM (
 ptmalArendSpdifCapabilities_t *pCap,
 unitSelect_t unitNumber
);

tmolArendSpdifGetCapabilitiesM

tmLibappErr_t tmolArendSpdifGetCapabilitiesM (
 ptmolArendSpdifCapabilities_t *pCap,
 unitSelect_t unitNumber
);

Parameters

pCap Pointer to a variable in which to return capabili-
ties data at the appropriate level (AL or OL).

unitName Select which unit.

Return Codes

 TMLIBDEV_OK Success.

 TMLIBDEV_ERR_NULL_PARAMETER Can be asserted in debug mode.

 TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
Unit not supported in hardware.

Description

Finds out about the SPDIF hardware.

Chapter 7: SPDIF Renderer (ArendSpdif) API

170 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendSpdifGetNumberOfUnits

tmLibappErr_t tmalArendSpdifGetNumberOfUnits (
 UInt32 *numberOfUnits
);

tmolArendSpdifGetNumberOfUnits

tmLibappErr_t tmolArendSpdifGetNumberOfUnits (
 UInt32 *numberOfUnits
);

Parameters

numberOfUnits Pointer to a variable in which to return the num-
ber of audio output units that are supported on
the current hardware.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this asserts if
numberOfUnits is null.

Description

Find the number of audio output units that are supported on the current hardware.

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 171

7

tmalArendSpdifOpen

tmLibdevErr_t tmalArendSpdifOpen(
 Int *instance
);

tmolArendSpdifOpen

tmLibdevErr_t tmolArendSpdifOpen(
 Int *instance
);

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MODULE_IN_USE The renderer or audio hardware is already in use.

Other error values may be returned from the underlying tmSPDO and BSP libraries.

Description

Creates an instance of a renderer, and sets the instance variable given by aoOpen func-

tion. At the OL layer, memory is allocated for internal variables. The function is imple-

mented by a call to tmxlOpenM with unitName set to the first unit (unit0).

Chapter 7: SPDIF Renderer (ArendSpdif) API

172 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendSpdifOpenM

tmLibappErr_t tmalArendSpdifOpenM(
 Int *instance,
 unitSelect_t unitNumber
);

tmolArendSpdifOpenM

tmLibappErr_t tmolArendSpdifOpenM(
 Int *instance,
 unitSelect_t unitNumber
);

Parameters

instance Pointer to instance variable, stored as an integer.
This variable, assigned in open, is used to access
the unit in subsequent calls.

unitName Select which unit.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Can be asserted in debug mode.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
Unit not supported in hardware.

MLIBDEV_ERR_NO_MORE_INSTANCES Unit is already in use at the device library level.

TMLIBAPP_ERR_MODULE_IN_USE Unit is in use at the AL or OL level.

TMLIBDEV_ERR_MEMALLOC_FAILED Memory used for instance variable structure.

Other errors might be returned if the allocation of the interrupt or hardware pins (on

GPIO enabled devices) fail.

Description

This function will open an instance of the selected SPDO device and assign the instance

value. Using the tmSPDO device library, It opens an interrupt as appropriate for the spec-

ified unit with intOpen function.

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 173

7

tmalArendSpdifClose

tmLibappErr_t tmalArendSpdifClose(
 Int instance
);

tmolArendSpdifClose

tmLibappErr_t tmolArendSpdifClose(
 Int instance
);

Parameters

instance Instance, as returned by tmalArendSpdifOpen or
tmolArendSpdifOpen.

Return Codes

TMLIBAPP_OK Returned if the function completes successfully.

TMLIBAPP_ERR_MODULE_IN_USE Asserted if the renderer has not been opened by
this instance.

Description

Shuts down this instance of the renderer by calling aoClose. At the OL layer, memory

allocated for internal variables is freed. If InstanceSetup has been called, the interrupt

service routine is active until this function is called.

Chapter 7: SPDIF Renderer (ArendSpdif) API

174 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendSpdifInstanceSetup

tmLibappErr_t tmalArendSpdifInstanceSetup(
 Int instance,
 ptmalArendSpdifInstanceSetup_t setup
);

tmolArendSpdifInstanceSetup

tmLibappErr_t tmalArendSpdifInstanceSetup(
 Int instance,
 ptmalArendSpdifInstanceSetup_t setup
);

Parameters

instance Instance, as returned by tmalArendSpdifOpen or
tmolArendSpdifOpen.

setup Pointer to the setup structure.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MODULE_IN_USE The renderer has not been opened by this
instance.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
The data subtype of the requested format is
unknown.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation for the silence buffer fails.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert in debug mode.

TMLIBAPP_ERR_MODULE_IN_USE Can assert in debug mode.

Errors from the device library When a call into the device library fails, a unique
error code is returned.

Description

Initializes the renderer and sets up the audio out library with aoInstanceSetup using the

appropriate format (specified in s). Leaves renderer stopped. The OL layer calls the AL

layer.

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 175

7

tmalArendSpdifStart

tmLibappErr_t tmalArendSpdifStart(
 Int instance
);

tmolArendSpdifStart

tmLibappErr_t tmolArendSpdifStart(
 Int instance
);

Parameters

instance Instance, as returned by tmalArendSpdifOpen or
tmolArendSpdifOpen.

Return Codes

TMLIBAPP_OK Returned if the function completes successfully.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert in debug mode.

TMLIBAPP_ERR_MODULE_IN_USE Can assert in debug mode.

Description

Starts the audio transmit for the specific instance. The interrupt service routine is

instructed to begin processing audio data packets.

Chapter 7: SPDIF Renderer (ArendSpdif) API

176 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendSpdifStop

tmLibappErr_t tmalArendSpdifStop(
 Int instance
);

tmolArendSpdifStop

tmLibappErr_t tmolArendSpdifStop(
 Int instance
);

Parameters

instance Instance, as returned by tmalArendSpdifOpen or
tmolArendSpdifOpen.

Return Codes

TMLIBAPP_OK Returned if the function completes successfully.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert in debug mode.

TMLIBAPP_ERR_MODULE_IN_USE Can assert in debug mode.

Description

Stops the audio transmit for the specific instance. The interrupt is disabled and all out-

standing packets are returned. The stop command may block for as long as the time it

takes to play two audio packets. Stop will not return until the two packets currently

installed in the hardware are no longer in use.

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 177

7

tmalArendSpdifInstanceConfig

tmLibappErr_t tmalArendSpdifInstanceConfig(
 Int instance,
 ptsaControlArgs_t args
);

tmolArendSpdifInstanceConfig

tmLibappErr_t tmolArendSpdifInstanceConfig(
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Parameters

instance Instance, as returned by tmalArendSpdifOpen or
tmolArendSpdifOpen.

flags Not used.

args Contains the parameter and value that are passed
to the AL layer function.

Return Codes

TMLIBAPP_OK Returned if the function completes successfully.

AR_ERR_UNSUPPORTED_COMMAND The parameter was not recognized.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert in debug mode.

TMLIBAPP_ERR_MODULE_IN_USE Can assert in debug mode.

Description

These functions are used to configure parameters of the renderer while it is running.

Unlike the configuration functions of task-based modules, the audio renderer configura-

tion functions act directly without using control queues. The supported parameters are

are described as the arMode_t on page 126.

Chapter 7: SPDIF Renderer (ArendSpdif) API

178 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalArendSpdifFormatTemplate

tmLibappErr_t tmalArendSpdifFormatTemplate(
 Int instance,
 Int32 *templateBuffer
);

Parameters

instance Instance, as returned by tmalArendSpdifOpen or
tmolArendSpdifOpen.

templateBuffer Points to a buffer that will be used by the SPDO
hardware to transmit a valid SPDIF frame.

Return Codes

TMLIBAPP_OK Success.

Description

Fills in the C bits and U bits of a buffer for transmission via the SPDO hardware. The

desired configuration of the C and U bits are read from the instance variable. The tem-

plateBuffer must point to memory enough for at least one block (1536 bytes). The size of

this memory is specified by the bufferSize parameter passed at instanceSetup.

A default template (including preambles) is copied to the template. Then the two C bit

structures and the two U bit structures are expanded into the template.

Chapter 7: SPDIF Renderer (ArendSpdif) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 179

7

tmalArendSpdifFormatBuffer

tmLibappErr_t tmalArendSpdifFormatBuffer (
 Int instance,
 ptmAvPacket_t inPacket,
 Int32 *outPointer,
 Int32 bytesAvailableInOutputBuffer,
 Int32 *bytesCopiedToOutput,
 Int32 *bytesUsedFromInput
);

Parameters

instance Instance, as returned by tmalArendSpdifOpen or
tmolArendSpdifOpen.

inPacket A TSSA audio packet containing input data.

outPointer Points to a buffer that will be used by the SPDO
hardware to transmit a valid SPDIF frame.

bytesAvailableInOutputBuffer Used to avoid writing past the end of the output
buffer.

bytesCopiedToOutput Pointer to an integer to be updated with the num-
ber of bytes that have been copied into the out-
put buffer. This number will be 8 times the
number of stereo samples played, as one SPDIF
output frame is 8 byte long. Allows the caller to
update the output pointer.

bytesUsedFromInput Pointer to an integer that will be updated with
the number of bytes that have been read from the
input buffer. This number will take into account
the dependency of the size of an input frame on
the number of channels and on the size of the
data (16 or 32 bits). Allows the caller to update
the input pointer.

Return Codes

TMLIBAPP_OK Returned if the function completes successfully.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
Returned if the input packet’s data subtype is not
one supported (as listed in capabilities structure).

Description

Used to transfer audio data from an input TSA packet to an output SPDO format packet.

Supports partial filling of the output buffer, but must consume the input buffer com-

pletely. If the input buffer does not fit into the output buffer, then the contents of the

Chapter 7: SPDIF Renderer (ArendSpdif) API

180 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

input buffer will be dropped, and the error callback function will be called to signal the

error ARENDSP_ERR_INVALID_BUFFER_SIZE.

The output buffer is assumed to have been previously setup using tmalArendSpdifFor-

matTemplate. This function does not touch the C bits or U bits. Data is OR’d into the

buffer.

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 181

8

Chapter 8

Simple Audio Mixer (AmixSimple) API

Topic Page

Simple Audio Mixer API Overview 182

Simple Audio Mixer Inputs and Outputs 185

Simple Audio Mixer Progress 185

Simple Audio Mixer Errors 185

Simple Audio Mixer Configuration 186

Simple Audio Mixer API Data Structures 187

Simple Audio Mixer API Functions 190

Chapter 8: Simple Audio Mixer (AmixSimple) API

182 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Simple Audio Mixer API Overview

The simple audio mixer is an example of a TSSA component that has multiple inputs

and one output. It also uses other TSSA compatible components to implement its func-

tion. In fact, the component mixes audio data. Because audio mixers can be called on to

do so many things, they are necessarily application-specific. The simple audio mixer is

provided in source form so that it can easily be customized to meet the needs of a user.

This mixer is documented to guide a user into an implementation that takes advantages

of the features of TSSA. As a simple mixer, the component requires that all packets be of

the same size, and the same sample rate. It provides only volume scaling, and a simple

filter.

The simple mixer is also an example of a “DVP audio mixer.” Audio systems in the Phil-

ips Digital Video Platform (DVP) can be designed using this example as a template.

The simple mixer is implemented with separate AL and OL layers. It is demonstrated

operating in asynchronous mode, as a task. Its implementation would allow it to be used

in a synchronous (functional) mode, although this is not demonstrated. It is designed to

be operated mainly from the OL layer.

The simple mixer is also designed to act as a reference for the creation of new TSSA com-

ponents. It can serve as a guide to TSSA standard compliance. It is a reasonably complete

TSSA module that accepts three audio inputs and mixes them together into one audio

output. Because it does demonstrate a significant functionality, it may seem dauntingly

large at first glance. CopyIO is a more simple example.

Since AmixSimple has both inputs and outputs, and since it is implemented using a

pSOS task, it is an example of a task based filter.

Figure 4 Structure of the Simple Audio Mixer

Datain [0]

Dataout [0]

Simple Audio Mixer (queuing)

Datain [1]

(queuing)

Datain [2]

Σ

Chapter 8: Simple Audio Mixer (AmixSimple) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 183

8

Background

This document assumes that the reader is familiar with the concepts of TSSA that are

documented in Book 3, Software Architecture.

The Files

Files making up the AmixSimple live in several directories:

■ include/tmalAmixSimple.h

The “TAS” include directory holds tmalAmixSimple.h. This file defines the bulk of the

public interface. As the definition of the public interface, it contains only type defini-

tions, preprocessor defines, and function prototypes for things that are to be accessed

by users of the module. As an AL layer, it is designed to be usable whether or not a

user desires the more sophisticated features of the OL layer. But the OL layer interface

is defined in terms of this, the AL layer.

■ include/tmolAmixSimple.h

The “TAS” include directory also holds tmolAmixSimple.h. This is usually the pri-

mary public interface to the mixer. It includes the AL layer interface definition, and

its structures are all defined in terms of the AL layer structures. The OL layer depends

on an operating system, and so it is a higher level interface than the AL layer. The

included example program uses the mixer from the OL layer.

■ example/exolAmixSimple/exolAmixSimple.c

The example directory contains a program that demonstrates the use of the mixer

library. A user of the library will probably copy code out of the example program. The

exol prefix tells us that this is an example of the use of the OL interface to the Amix-

Simple. Other files in this directory are the makefile and supporting files for pSOS.

■ lib/AmixSimple/tmolAmixSimple.c

This is the source for the OL layer of the AmixSimple. As you will see when you

examine the OL layer source, it is rather generic. The OL layer uses the default func-

tions to initialize the AL layer so that it can share the standard TSSA interface code.

tmolAmixSimple.c is commented with “your code here” to point out places where

your component will be different from the standard component. As explained in the

TSSA software architecture document, the OL layer contains the operating system

dependence, and it could be released to a customer without compromising the intel-

lectual property contained in the component.

■ lib/AmixSimple/tmalAmixSimple.c

The AL layer source file defines the functions that make up the public interface to the

AL layer. In some cases, the tmal file might contain code describing the entire mod-

ule. In other cases, as in the mixer, the tmal file just defines the public interface.

Other files are used to define the private portion of the interface. Sometimes a direc-

tory structure is used to organize the AL layer source. It can be arbitrarily complex.

Chapter 8: Simple Audio Mixer (AmixSimple) API

184 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

The AL layer start function defines a loop that is the body of the component. Buffer

management is implemented using the standard set of callbacks, as described in the soft-

ware architecture manual.

■ lib/AmixSimple/AmixSimpleCore.h

The file filling this need is sometimes called “mix_private.h.” It holds definitions that

are shared amoung the files of the mixer, but which are not part of the public inter-

face. This file will not be included in example applications.

■ lib/AmixSimple/AmixSimpleCore.c

The core of the simple mixer is an example of a “DVP ready” audio mixer core. A DVP

ready mixer core consists of “deinterleave” and “interleave” functions bracketing

calls to “Audio Signal Processing (ASP)” components. The deinterleave function does

the actual mixing of the three input channels, and its output is an array of non-inter-

leaved “channel buffers.” The interleave function takes the array of channel buffers

and creates an output packet in the correct format. This choice of architecture results

from a number of considerations:

— We want to be able to re-use the ASP components.

— The input and output packets may be of several types, with various numbers of
channels and various numbers of bits. The de-interleave and interleave functions
handle all possible conversions to and from the 32 bit integer channel buffers that
are used by the ASP functions.

— The signal processing functions can make better use of the cache because the data
is not interleaved.

— Systems that require the output channels to be offset in time (like Dolby compli-
ant speaker location controls) can use less memory, as the delay is specified on a
“per channel” basis.

Because the ASP components have a simple, functional interface, it is easy to run the

core algorithm on the TriMedia simulator. When the simulator is used in this way on the

core of an algorithm, cycle-accurate execution numbers are easily obtained for conve-

nient optimization.

See the TriMedia Software Architecture reference for more information about ASP com-

ponents.

The AspLpf Component

The AspLpf component is provided as a simple template of a typical signal processing

component. You can notice that AspLpf exports the standard functions along with an

instance setup structure, and that the include file for this is stored in the TAS include

directory. Note also the use of the private instance variable.

Chapter 8: Simple Audio Mixer (AmixSimple) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 185

8

Simple Audio Mixer Inputs and Outputs

The simple audio mixer has three inputs and one output. Since the mixer is an example,

rather strict limits are imposed on the formats of the input and output. A user should

customize the mixer to support the formats that are really required.

The simple mixer accepts only stereo, 16-bit inputs and it generates only stereo, 16-bit

output. All input packets are constrained to be the same size as the output packets.

The mixer includes a two pole low pass filter that is applied to the output stream. This is

simply for demonstration purposes.

Simple Audio Mixer Progress

The simple audio mixer does not require a progress function It uses the default progress

function to handle changes of format.

Simple Audio Mixer Errors

Errors can be reported during the mixer’s setup phase, or at run time. Errors reported

during the setup phase will be noticed as non-zero return values from the API. The defi-

nition of these constants is found in tmalAmixSimple.h. In addition, the library used in

its debugging mode will use the assert mechanism to flag invalid inputs. These errors are

covered along with the descriptions of each function in the API.

The simple audio mixer supports the installation of an error callback function. This

function is invoked for a set of run time errors, as described below. None of the errors

handled by the error callback function are considered fatal. The error function prototype

is of the type tsaErrorFunc_t:

Handlers should be provided for these possible values of the errorCode:

TMLIBAPP_ERR_UNDERRUN The mixer requested data but none was available.
This error is not currently logged by the simple
mixer. Its implementation is left to the user.

AMIX_SIMPLE_ERR_IO_BUFFER_SIZE_MISMATCH
Triggered when the dataSize of the received
packet is not the same as samplesPerPacket (speci-
fied in the instance setup) and outChan.bytes-

typedef tmLibappErr_t(*tsaErrorFunc_t)(Int instId, UInt32 flags,
ptsaErrorArgs_t args);
typedef struct tsaErrorArgs {
 Int errorCode;
 Pointer description;
} tsaErrorArgs_t, *ptsaErrorArgs_t;

Chapter 8: Simple Audio Mixer (AmixSimple) API

186 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

PerSample, computed from the initial format. The
error description is an integer pointer.

Simple Audio Mixer Configuration

The simple audio mixer provides a queue-based configuration function. It can be used to

change the volumes of the various channels and the filter cutoff frequency. The queue-

based implementation is discussed in some depth in Book 3, Software Architecture.

tmLibappErr_t tmolAmixSimpleInstanceConfig (
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Values for the command entry in the args structure are defined in tmalAmixSimple.h,

and are described below:

AMIX_SIMPLE_CONFIG_MASTER_VOLUME
The output volume is adjusted. The parameter
field of the control structure will contain an inte-
ger describing the volume in 1/100 dB. Positive
values provide gain, negative values attenuation.

AMIX_SIMPLE_CONFIG_CHANNEL_VOLUME
The input channel volume is adjusted. The
parameter field of the control structure is treated
as a pointer to an array of integers. The first mem-
ber is the channel ID. The second is an integer
describing the volume in 0.01 dB. Positive values
provide gain, negative values attenuation.

AMIX_SIMPLE_CONFIG_LPF_FREQUENCY
The output volume is adjusted. The parameter
field of the control structure will contain an inte-
ger describing the volume in 0.01 dB. Positive val-
ues provide gain, negative values attenuation.

AMIX_SIMPLE_CONFIG_INPUT Not currently implemented.

description[0]: channel ID. 256 for output channel
description[1]: dataSize of offending packet
description[2]: expected packet size.
description[3]: ID of offending packet.

Chapter 8: Simple Audio Mixer (AmixSimple) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 187

8

Simple Audio Mixer API Data Structures

This section presents the data structures contained in the Simple Audio Mixer library.

Name Page

tmolAmixSimpleCapabilities_t 188

tmolAmixSimpleInstanceSetup_t 189

Chapter 8: Simple Audio Mixer (AmixSimple) API

188 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolAmixSimpleCapabilities_t

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
} tmolAmixSimpleCapabilities_t; *ptmolAmixSimpleCapabilities_t;

Fields

defaultCapabilities For compliance with the application library archi-
tecture, this is a pointer to a structure of the stan-
dard type.

Description

The tmolAmixSimpleCapabilities_t structure describes the capabilities and requirements

of the simple audio mixer module. A user can retrieve the structure’s address by calling

tmolAmixSimpleGetCapabilities.

Chapter 8: Simple Audio Mixer (AmixSimple) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 189

8

tmolAmixSimpleInstanceSetup_t

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 Int masterVolume;
 Int channelVolume
 [AMIX_SIMPLE_NUM_INPUT_PORTS];
 Int lpfFrequency;
 Int samplesPerPacket;
} tmolAmixSimpleInstanceSetup_t; *ptmolAmixSimpleInstanceSetup_t;

Fields

defaultSetup For compliance with TSA, this is a pointer to a
structure of the standard type.

masterVolume An integer specifying output volume in 0.01 dB.

channelVolume An array of integers, one per input channel, speci-
fying input volume in 0.01 dB.

lpfFrequency A two-pole low-pass filter is applied to the output
of the mixer. Its cutoff frequency is specified in
Hertz.

samplesPerPacket Since all packets must have the same size, it is
specified here.

Description

The tmolAmixSimpleInstanceSetup_t structure is used to describe the initial operation of

this instance of the mixer.

Chapter 8: Simple Audio Mixer (AmixSimple) API

190 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Simple Audio Mixer API Functions

This section presents the functions contained in the Simple Audio Mixer library.

Name Page

tmolAmixSimpleGetCapabilities 191

tmolAmixSimpleOpen 191

tmolAmixSimpleGetInstanceSetup 192

tmolAmixSimpleInstanceSetup 193

tmolAmixSimpleStart 194

tmolAmixSimpleStop 195

tmolAmixSimpleInstanceConfig 196

Chapter 8: Simple Audio Mixer (AmixSimple) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 191

8

tmolAmixSimpleGetCapabilities

tmLibappErr_t tmolAmixSimpleGetCapabilities(
 ptmolAmixSimpleCapabilities_t *pCap
);

Parameters

pCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

Retrieves the capabilites of the simple audio mixer. The function pointer that is returned

remains valid as long as the digitizer is active.

tmolAmixSimpleOpen

tmLibappErr_t tmolAmixSimpleOpen(
 Int *instance
);

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MODULE_IN_USE No more instances of the simple audio mixer are
available.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation failed.

Description

The open function creates an instance of the simple audio mixer and informs the user of

its instance. The simple audio mixer supports only one instance.

Chapter 8: Simple Audio Mixer (AmixSimple) API

192 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolAmixSimpleGetInstanceSetup

tmLibappErr_t tmolAmixSimpleGetInstanceSetup(
 Int instance,
 ptmolAmixSimpleInstanceSetup_t *setup
);

Parameters

instance Instance, as returned by tmolAmixSimpleOpen.

setup Pointer to a variable in which to return a pointer
to the setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can be asserted in debug mode.

Description

A pointer to the current instance setup is retrieved. After a call to tmolAmixSimpleOpen,

this structure is filled with default values to simplify the impending call to tmolAmix-

SimpleInstanceSetup.

Chapter 8: Simple Audio Mixer (AmixSimple) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 193

8

tmolAmixSimpleInstanceSetup

tmLibappErr_t tmolAmixSimpleInstanceSetup(
 Int instance,
 ptmolAmixSimpleInstanceSetup_t setup
);

Parameters

instance As returned from tmolAmixSimpleOpen.

setup Pointer to setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can be asserted in debug mode.

TMLIBAPP_ERR_MODULE_IN_USE Specified instance does not match current
instance. Digitizer supports only one instance.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
An unsupported data format was requested.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation failed.

Other errors are possibly reported by the device library or board support package.

Description

The simple audio mixer is prepared for operation. Parameters are checked. The mixer is

left “stopped.” It will become operational on a call to tmolAmixSimpleStart.

Chapter 8: Simple Audio Mixer (AmixSimple) API

194 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolAmixSimpleStart

tmLibappErr_t tmolAmixSimpleStart(
 Int instance
);

Parameters

instance Instance, as returned by tmolAmixSimpleOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can be asserted in debug mode.

Description

The mixer represented by the instance is started.

Chapter 8: Simple Audio Mixer (AmixSimple) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 195

8

tmolAmixSimpleStop

tmLibappErr_t tmolAmixSimpleStop(
 Int instance
);

Parameters

instance Instance, as returned by tmolAmixSimpleOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can be asserted in debug mode.

Description

The mixer represented by the instance is stopped.

Chapter 8: Simple Audio Mixer (AmixSimple) API

196 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolAmixSimpleInstanceConfig

tmLibappErr_t tmolAmixSimpleInstanceConfig(
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Parameters

instance Instance, as returned by tmolAmixSimpleOpen.

flags Not used by tmolAmixSimpleInstanceConfig.

args Points to a control structure used to modify the
operation of the simple audio mixer.

Return Codes

TMLIBAPP_OK Success.

Errors detected by the underlying tmalAmixSimple call can be found in the retval mem-

ber of the control structure.

Description

While a module is operating, the configuration function can be used to change the oper-

ating parameters. In the example, a few simple operations are implemented.

AMIX_SIMPLE_CONFIG_MASTER_VOLUME
The output volume is adjusted. The parameter
field of the control structure will contain an inte-
ger describing the volume in 0.01dB. Positive val-
ues provide gain, negative values attenuation.

AMIX_SIMPLE_CONFIG_CHANNEL_VOLUME
The input channel volume is adjusted. The
parameter field of the control structure is treated
as a pointer to an array of integers. The first mem-
ber is the channel ID. The second is an integer
describing the volume in 0.01 dB. Positive values
provide gain, negative values attenuation.

AMIX_SIMPLE_CONFIG_LPF_FREQUENCY
The output volume is adjusted. The parameter
field of the control structure will contain an inte-
ger describing the volume in 1/100 dB. Positive
values provide gain, negative values attenuation.

AMIX_SIMPLE_CONFIG_INPUT Not currently implemented.

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 197

9

Chapter 9

Noise Sequencer (NoiseSeq) API

Note
This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Topic Page

Introduction 198

Noise Sequencer Inputs and Outputs 199

Noise Sequencer Errors 199

Noise Sequencer Progress 199

Noise Sequencer Configuration 199

Noise Sequencer AL Layer API Data Structures 201

Noise Sequencer AL Layer API Functions 208

Noise Sequencer OL Layer API Data Structures 216

Noise Sequencer OL Layer API Functions 219

Chapter 9: Noise Sequencer (NoiseSeq) API

198 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

The TriMedia Noise Sequencer library can be used to produce a calibration signal for

multichannel audio systems. It produces pink noise at frequencies of 32, 44.1 and 48

kHz. The library can be used at both the AL layer and the OL layer. It provides a flexible

interface with several different configuration possibilities.

The generated pink noise is produced on one output channel at a time. All other output

channels are muted. It is possible to automatically change the output channel after a

user has specified channel duration time. In the automatic channel switch mode, the

noise source can either be moved in clockwise or counter-clockwise direction. A channel

mask determines the channels on which the noise will be presented.

All options mentioned above can be applied statically as well as dynamically. The static

configuration is performed by tmXlNoiseSeqInstanceSetup and the dynamic configura-

tion by tmXlNoiseSeqInstanceConfig.

One example program is provided with this library that shows how an OL layer applica-

tion of the Noise Sequencer can be implemented. The program exalNoiseSeq.c connects

the Noise Sequencer with the Audio Renderer. It shows how dynamic configuration

changes can be performed with simple commands.

Spectrum of the Pink Noise

The following plot illustrates the spectrum of the pink noise which is produced by the

TriMedia Noise Sequencer library.

Figure 5 Spectrum of the colored noise (44100 Hz sampling rate)

–36

–42

–48

–54

–60

–66

–72

Hz
40 80 160 320 640 1280 2560 5120 10240 20480

–30

–24

d
B

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 199

9

Noise Sequencer Inputs and Outputs

The TriMedia Noise Sequencer is a component that provides one output and no input

pins. It supports only one 16-bit PCM output format which is apfFiveDotOne16. As sam-

pling frequencies only 32, 44.1, and 48 kHz are supported.

Noise Sequencer Errors

The error callback function can convey the following error messages:

TMLIBAPP_ERR_ALREADY_STARTED The instance of the decoder is already started.

NS_ERR_ILL_DATASIZE The size of the current output packet is too small.
It must be big enough to accommodate at least on
multichannel sample, which is 12 bytes for
apfFiveDotOn16.

Noise Sequencer Progress

The Noise Sequencer does not use the progress callback function except for installing an

output format. Refer to the respective chapter in the TSSA documentation to find more

details on this specific usage of the progress function.

Noise Sequencer Configuration

The Noise Sequencer API provides two configuration functions, one for the usage at the

AL layer and one for the OL layer. The AL layer function tmalNoiseSeqInstanceConfig

executes one of the below described commands in the classical fashion directly upon its

call. The OL layer function tmolNoiseSeqInstanceConfic on the other hand uses its AL

layer counterpart to perform the desired action. It uses either a control queue to commu-

nicate with the AL layer function, or it can call it directly. It does the latter if tmolNoise-

SeqInstanceConfig is called in the context of the Noise Sequencer start function (same

task).

Both config function have a pointer to a struct of the type tsaControlArgs_t as parameter

which consists of four fields:

The application writes one of the below described commands into the command field.

The parameter field is used to either send (_SET_ commands) a value to the AC-3 decoder

or receive (_GET_ commands) a value from it. In both cases type casts must be applied in

typedef struct tsaControlArgs {
 UInt32 command;
 Pointer parameter;
 tmLibappErr_t retval;
 UInt32 timeout;
} tsaControlArgs_t, *ptsaControlArgs_t;

Chapter 9: Noise Sequencer (NoiseSeq) API

200 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

the application because the parameter field contains a void pointer. In some cases the

parameter field is not used.

The remaining two fields are not used by tmalNoiseSeqInstanceConfig. Its OL layer coun-

terpart is using the timeout value for the access to the control queue. It is measured in

pSOS+ clock ticks. If its value is zero it waits forever. The retval field is filled by tmol-

NoiseSeqInstanceConfig with the return value of tmalNoiseSeqInstanceConfig. The appli-

cation must check this value as well as the return value of tmolNoiseSeqInstanceConfig

which indicates problems with the control queue.

An OL layer application must provide a control descriptor during the initialization phase

(before calling tmolNoiseSeqInstanceSetup). The queues of this descriptor carry the com-

mands between the application and the Noise Sequencer component.

Table 1 Commands to Change the Configuration

Command Supported Values for Parameter

NS_CONFIG_SET_OUTCHAN all values defined in tmalNoiseSeqOutChan_t,
except for NS_OUTCHAN_NONE

NS_CONFIG_SET_NEXT_OUTCHAN no parameter required

NS_CONFIG_SET_OUTCHAN_MASK parameter contains the channels on which noise
is to be rendered, values of tmalNoiseSeqOut-
Chan_t are OR’d for this purpose

NS_CONFIG_SET_AUTOSWITCH_ON no parameter required

NS_CONFIG_SET_AUTOSWITCH_OFF no parameter required

NS_CONFIG_SET_SWITCHTIME values greater or equal 0.1

NS_CONFIG_SET_DIRECTION_CW no parameter required

NS_CONFIG_SET_DIRECTION_ACW no parameter required

Table 2 Commands to get Settings of Current Configuration

Command Parameter needs cast to

NS_CONFIG_GET_OUTCHAN tmalNoiseSeqOutChan_t

NS_CONFIG_GET_OUTCHAN_MASK Int32

NS_CONFIG_GET_AUTOSWITCH_MODE Bool

NS_CONFIG_GET_SWITCHTIME Float

NS_CONFIG_GET_DIRECTION tmalNoiseSeqDirection_t

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 201

9

If a floating point value is to be sent to the Noise Sequencer or to be received by the

application, a special casting mechanism is required. The switch time can be set to 0.8

with the following operations:

If the application wants to obtain the current setting of this Noise Sequencer parameter

it must do the following:

This casting is required because an implicit cast to integer would otherwise be performed

by the compiler. For more details on what actions the commands perform, see page 204.

Note
If tmolNoiseSeqInstanceConfig is called within the context of the Noise
Sequencer, the command gets executed immediately. This is the case when
this function gets called from a callback function. The queue mechanism is
used only when the function call happens in a separate task.

Noise Sequencer AL Layer API Data Structures

This section presents the Noise Sequencer API data structures.

tsaControlArgs_t cargs;
Float32 fval = 0.8;
cargs.command = NS_CONFIG_SET_SWITCHTIME;
cargs.parameter = *((Pointer *) &fval);
tmolNoiseSeqInstanceConfig(decInstance, tsaControlWait, &cargs);

tsaControlArgs_t cargs;
Float32 fval;
cargs.command = NS_CONFIG_GET_SWITCHTIME;
tmolNoiseSeqInstanceConfig(decInstance, tsaControlWait, &cargs);
fval = *((Float32 *) &cargs.parameter);

Name Page

tmalNoiseSeqCapabilities_t 202

tmalNoiseSeqInstanceSetup_t 203

tmalNoiseSeqCommands_t 204

tmalNoiseSeqOutChan_t 206

tmalNoiseSeqDirection_t 207

Chapter 9: Noise Sequencer (NoiseSeq) API

202 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalNoiseSeqCapabilities_t

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
} tmalNoiseSeqCapabilities_t, *ptmalNoiseSeqCapabilities_t;

Fields

defaultCapabilities Pointer to default capabilities structure.

Description

A pointer to a struct of this type is returned by tmalNoiseSeqGetCapabilities. It contains

information about the properties of the Noise Sequencer library.

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 203

9

tmalNoiseSeqInstanceSetup_t

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 tmalNoiseSeqOutChan_t outChan;
 Int32 outChanMask;
 Bool autoChanSwitch;
 Float switchTime;
 tmalNoiseSeqDirection_t switchDir;
} tmalNoiseSeqInstanceSetup_t, *ptmalNoiseSeqInstanceSetup_t;

Fields

defaultSetup Pointer to default instance setup struct (see tsa.h).

outChan Audio channel on which the noise will appear
first.

outChanMask Bit mask of the output channels on which the
noise should be produced. Active channels are
selected by ORing tmalNoiseSeqOutChan_t values.

autoChanSwitch If True, automatic channel switching is per-
formed. If False, noise will only be produced on
outChan.

switchTime Time in seconds after which the channel swap-
ping is performed, if autoChanSwitch is True. Min-
imum value is 0.1.

switchDir Determines the direction the noise moves from
speaker to speaker.

Description

A struct of this type is used to configure the noise sequencer prior to starting the data

streaming. The configuration of the component is performed with tmalNoiseSeq-

InstanceSetup.

Chapter 9: Noise Sequencer (NoiseSeq) API

204 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalNoiseSeqCommands_t

typedef enum {
 NS_CONFIG_SET_OUTCHAN = tsaCmdUserBase + 0x00,
 NS_CONFIG_GET_OUTCHAN = tsaCmdUserBase + 0x01,
 NS_CONFIG_SET_NEXT_OUTCHAN = tsaCmdUserBase + 0x02,
 NS_CONFIG_SET_OUTCHAN_MASK = tsaCmdUserBase + 0x03,
 NS_CONFIG_GET_OUTCHAN_MASK = tsaCmdUserBase + 0x04,
 NS_CONFIG_SET_AUTOSWITCH_ON = tsaCmdUserBase + 0x05,
 NS_CONFIG_SET_AUTOSWITCH_OFF = tsaCmdUserBase + 0x06,
 NS_CONFIG_GET_AUTOSWITCH_MODE = tsaCmdUserBase + 0x07,
 NS_CONFIG_SET_SWITCHTIME = tsaCmdUserBase + 0x08,
 NS_CONFIG_GET_SWITCHTIME = tsaCmdUserBase + 0x09,
 NS_CONFIG_SET_DIRECTION_CW = tsaCmdUserBase + 0x0a,
 NS_CONFIG_SET_DIRECTION_ACW = tsaCmdUserBase + 0x0b,
 NS_CONFIG_GET_DIRECTION = tsaCmdUserBase + 0x0c
} tmalNoiseSeqCommands_t;

Fields

NS_CONFIG_SET_OUTCHAN Changes the output channel to channel stored in
parameter field of the control arguments struct,
see tmalNoiseSeqOutChan_t for supported values.

NS_CONFIG_GET_OUTCHAN Returns the current output channel in the param-
eter field.

NS_CONFIG_SET_NEXT_OUTCHAN Switches the noise to the next active channel in
the specified rotation direction, no parameter is
required.

NS_CONFIG_SET_OUTCHAN_MASK Sets a new mask for the active output channels

NS_CONFIG_GET_OUTCHAN_MASK Returns the current output channel mask

NS_CONFIG_SET_AUTOSWITCH_ON Enables the automatic switching of the output
channel in clockwise order.

NS_CONFIG_SET_AUTOSWITCH_OFF Disables the automatic switching of the output
channel.

NS_CONFIG_GET_AUTOSWITCH_MODE Returns a boolean in the parameter field indicat-
ing if automatic channel switching is enabled or
disabled.

NS_CONFIG_SET_SWITCHTIME Sets the time after which the channels are
switched, value is stored in the parameter field. It
is of the type float and may not less 0.1.

NS_CONFIG_GET_SWITCHTIME Returns the current switch time in the parameter
field.

NS_CONFIG_SET_DIRECTION_CW Sets the noise rotation direction to clockwise.

NS_CONFIG_SET_DIRECTION_ACW Sets the noise rotation direction to counter-clock-
wise.

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 205

9

NS_CONFIG_GET_DIRECTION Gets the noise rotation direction.

Description

Specifies supported commands for tmalNoiseSeqInstanceConfig.

Chapter 9: Noise Sequencer (NoiseSeq) API

206 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalNoiseSeqOutChan_t

typedef enum {
 NS_OUTCHAN_NONE = 0x00000000,
 NS_OUTCHAN_LEFT = 0x00000001,
 NS_OUTCHAN_RIGHT = 0x00000002,
 NS_OUTCHAN_CENTER = 0x00000004,
 NS_OUTCHAN_LEFTSUR = 0x00000008,
 NS_OUTCHAN_RIGHTSUR = 0x00000010
} tmalNoiseSeqOutChan_t;

Fields

NS_OUTCHAN_NONE This value must not be used.

NS_OUTCHAN_LEFT Left channel is output channel for the pink noise.

NS_OUTCHAN_RIGHT Right channel is output channel for the pink
noise.

NS_OUTCHAN_CENTER Center channel is output channel for the pink
noise.

NS_OUTCHAN_LEFTSUR Left surround channel is output channel for the
pink noise.

NS_OUTCHAN_RIGHTSUR Right surround channel is output channel for the
pink noise.

Description

Specifies supported output channels for the noise.

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 207

9

tmalNoiseSeqDirection_t

typedef enum {
NS_DIRECTION_CW = 0x00000001,
NS_DIRECTION_ACW = 0x00000002
} tmalNoiseSeqDirection_t;

Fields

NS_DIRECTION_CW Noise moves in clockwise direction (left, center,
right, rsur, lsur).

NS_DIRECTION_ACW Noise moves in counter-clockwise direction (left,
lsur, rsur, right, center).

Description

Used to determine the steering direction of the noise.

Chapter 9: Noise Sequencer (NoiseSeq) API

208 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Noise Sequencer AL Layer API Functions

This section describes the Noise Sequencer API functions.

Name Page

tmalNoiseSeqGetCapabilities 209

tmalNoiseSeqOpen 210

tmalNoiseSeqClose 211

tmalNoiseSeqInstanceSetup 212

tmalNoiseSeqStart 213

tmalNoiseSeqStop 214

tmalNoiseSeqInstanceConfig 215

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 209

9

tmalNoiseSeqGetCapabilities

extern tmLibappErr_t tmalNoiseSeqGetCapabilities (
 ptmalNoiseSeqCapabilities_t *cap
);

Parameters

cap Pointer to tmalNoiseSeqCapabilities_t.

Return Codes

TMLIBAPP_OK Success.

Description

Returns a pointer to the capabilities of the Noise Sequencer.

Chapter 9: Noise Sequencer (NoiseSeq) API

210 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalNoiseSeqOpen

extern tmLibappErr_t tmalNoiseSeqOpen (
 Int *instance
);

Parameters

instance Pointer to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MEMALLOC_FAILED If memory allocation for the instance variables
failed.

Description

Assigns an instance of the Noise Sequencer for usage.

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 211

9

tmalNoiseSeqClose

extern tmLibappErr_t tmalNoiseSeqClose (
 Int instance
);

Parameters

instance Number of the instance to be closed.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE
If instance is not a valid instance.

Description

De-assigns instance for usage. Requires tmalNoiseSeqOpen to be called first.

Chapter 9: Noise Sequencer (NoiseSeq) API

212 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalNoiseSeqInstanceSetup

extern tmLibappErr_t tmalNoiseSeqInstanceSetup (
 Int instance,
 tmalNoiseSeqInstanceSetup_t *setup
);

Parameters

instance The instance.

setup Pointer to the NS setup structure tmalNoiseSeq-
InstanceSetup_t.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE
If instance is not a valid instance.

TMLIBAPP_ERR_INVALID_SETUP If setup parameters are not valid (parentId,
dataoutFunc or completionFunc are missing).

TMLIBAPP_ERR_NOT_STOPPED If the instance was not in the stopped state.

NS_ERR_ILL_OUT_CHAN If the outChan field of the setup structure con-
tains an invalid value.

NS_ERR_ILL_TIME_CONST If the switchTime field of the setup structure con-
tains an invalid value (less than 0.1).

NS_ERR_ILL_FREQ If the sampling frequency specified in the output
descriptor is not supported, supported values are
48K, 44K, and 32K.

NS_ERR_ILL_DIR If specified steering direction is not defined in
tmalNoiseSeqDirection_t.

NS_ERR_ILL_CHAN_MASK Channel mask is either zero or contains values
not defined in tmalNoiseSeqOutChan_t.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
If the specified audio dataSubtype is not sup-
ported. Currently only apfFiveDotOne16 is sup-
ported.

Description

Sets up the instance of the Noise Sequencer. Requires tmalNoiseSeqOpen to be called

first. Instance must be stopped (Open automatically changes state to stopped).

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 213

9

tmalNoiseSeqStart

extern tmLibappErr_t tmalNoiseSeqStart (
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE If instance is not a valid instance.

TMLIBAPP_ERR_NOT_SETUP If instance has not been setup previously.

TMLIBAPP_ERR_ALREADY_STARTED If instance has already been started.

NS_ERR_ILL_DATASIZE If bufSize of empty output packet is too small,
(less than one sample across all channels).

Description

This function starts the data streaming.

Chapter 9: Noise Sequencer (NoiseSeq) API

214 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalNoiseSeqStop

extern tmLibappErr_t tmalNoiseSeqStop (
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE If instance is not a valid instance.

TMLIBAPP_ERR_NOT_SETUP If instance has not been setup previously.

TMLIBAPP_ERR_ALREADY_STOPPED If instance has already been stopped.

Description

Stops data streaming.

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 215

9

tmalNoiseSeqInstanceConfig

extern tmLibappErr_t tmalNoiseSeqInstanceConfig (
 Int instance,
 ptsaControlArgs_t cmdDesc
);

Parameters

Instance The instance.

cmdDesc Pointer to control parameter struct containing a
command and a parameter. The usage of the
parameter depends on the command.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE If instance is not a valid instance.

TMLIBAPP_ERR_NOT_SETUP If instance has not been setup previously.

FR_ERR_UNKNOWN_COMMAND If the supplied command is not a valid one.

NS_ERR_ILL_OUT_CHAN If selected output channel is not supported or not
marked active in the output channel bit mask.

NS_ERR_ILL_TIME_CONST If the switch time value in the parameter field is
less 0.1.

Description

Effects a command on an open instance. See tmalNoiseSeqCommands_t for the sup-

ported commands.

Chapter 9: Noise Sequencer (NoiseSeq) API

216 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Noise Sequencer OL Layer API Data Structures

This section presents the Noise Sequencer API data structures specific to the OL API.

Name Page

tmolNoiseSeqCapabilities_t 217

tmolNoiseSeqInstanceSetup_t 218

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 217

9

tmolNoiseSeqCapabilities_t

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
} tmolNoiseSeqCapabilities_t, *ptmolNoiseSeqCapabilities_t;

Fields

defaultCapabilities Pointer to default capabilities structure.

Description

A pointer to a structure of this type is returned by tmolNoiseSeqGetCapabilities. It con-

tains information about the properties of the Noise Sequencer library.

Chapter 9: Noise Sequencer (NoiseSeq) API

218 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolNoiseSeqInstanceSetup_t

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 tmalNoiseSeqOutChan_t outChan;
 Int32 outChanMask;
 Bool autoChanSwitch;
 Float switchTime;
 tmalNoiseSeqDirection_t switchDir;
} tmolNoiseSeqInstanceSetup_t, *ptmolNoiseSeqInstanceSetup_t;

Fields

defaultSetup Pointer to default instance setup struct (see tsa.h).

outChan Audio channel on which the noise will appear
first.

outChanMask Bit mask of the output channels on which the
noise should be produced. Active channels are
selected by ORing tmalNoiseSeqOutChan_t values.

autoChanSwitch If True, automatic channel switching is per-
formed. If False, noise will only be produced on
outChan.

switchTime Time in seconds after which the channel switch-
ing is performed, if autoChanSwitch is True. Mini-
mum value is 0.1.

switchDir Determines the direction the noise moves from
speaker to speaker.

Description

A struct of this type is used to configure the noise sequencer prior to starting the data

streaming. A pointer to a pre-configured instance setup struct can be obtained by tmol-

NoiseSeqGetInstanceSetup. The configuration of the Noise Sequencer component is per-

formed with tmolNoseSeqInstanceSetup.

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 219

9

Noise Sequencer OL Layer API Functions

This section presents the Noise Sequencer OL functions.

Name Page

tmolNoiseSeqGetCapabilities 220

tmolNoiseSeqOpen 220

tmolNoiseSeqClose 221

tmolNoiseSeqGetInstanceSetup 222

tmolNoiseSeqInstanceSetup 223

tmolNoiseSeqStart 224

tmolNoiseSeqStop 225

tmolNoiseSeqInstanceConfig 226

Chapter 9: Noise Sequencer (NoiseSeq) API

220 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolNoiseSeqGetCapabilities

extern tmLibappErr_t tmolNoiseSeqGetCapabilities (
 ptmolNoiseSeqCapabilities_t *cap
);

Parameters

cap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

Returns a pointer to the capabilities of the Noise Sequencer.

tmolNoiseSeqOpen

extern tmLibappErr_t tmolNoiseSeqOpen (
 Int *instance
);

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation failed.

Description

Assigns an instance of the Noise Sequencer for usage.

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 221

9

tmolNoiseSeqClose

extern tmLibappErr_t tmolNoiseSeqClose (
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

Asserts

TMLIBAPP_ERR_INVALID_INSTANCE Not a valid instance.

Description

De-assigns instance for usage. Requires tmolNoiseSeqOpen to be called first.

Chapter 9: Noise Sequencer (NoiseSeq) API

222 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolNoiseSeqGetInstanceSetup

extern tmLibappErr_t tmolNoiseSeqGetInstanceSetup (
 Int instance
 ptmolNoiseSeqInstanceSetup_t *setup
);

Parameters

instance The instance.

setup Pointer to a variable in which to return a pointer
to the setup data.

Return Codes

TMLIBAPP_OK Success.

Asserts

TMLIBAPP_ERR_INVALID_INSTANCE If instance is not a valid instance.

Description

This function can be used to obtain a pointer to a pre-configured and allocated instance

setup struct. The memory for this struct is allocated by tmolNoiseSeqOpen. Requires

tmolNoiseSeqOpen to be called first.

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 223

9

tmolNoiseSeqInstanceSetup

extern tmLibappErr_t tmolNoiseSeqInstanceSetup (
 Int instance,
 tmolNoiseSeqInstanceSetup_t *setup
);

Parameters

instance The instance.

setup Pointer to the setup structure.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE If instance is not a valid instance.

TMLIBAPP_ERR_INVALID_SETUP If setup parameters are not valid (parentId,
dataoutFunc or completionFunc are missing).

TMLIBAPP_ERR_NOT_STOPPED If the instance was not in the stopped state.

NS_ERR_ILL_OUT_CHAN If the outChan field of the setup structure con-
tains an invalid value.

NS_ERR_ILL_TIME_CONST If the switchTime field of the setup structure con-
tains an invalid value (< 0.1).

NS_ERR_ILL_FREQ If the sampling frequency specified in the output
descriptor is not supported, supported values are
48K, 44K, and 32K.

NS_ERR_ILL_DIR If specified steering direction is not defined in
tmalNoiseSeqDirection_t.

NS_ERR_ILL_CHAN_MASK Channel mask is either zero or contains values
not defined in tmalNoiseSeqOutChan_t.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
If the specified audio dataSubtype is not sup-
ported. Currently only apfFiveDotOne16 is sup-
ported.

Asserts

TMLIBAPP_ERR_INVALID_INSTANCE If instance is not a valid instance.

TMLIBAPP_ERR_INVALID_SETUP If setup pointer is a NULL pointer.

Description

Sets up the instance of the Noise Sequencer. Requires tmolNoiseSeqOpen to be called

first. Instance must be stopped (Open automatically sets state to stopped).

Chapter 9: Noise Sequencer (NoiseSeq) API

224 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolNoiseSeqStart

extern tmLibappErr_t tmolNoiseSeqStart (
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_TCREATE_FAILED The creation of the task for the AL layer start
function failed.

TMLIBAPP_ERR_TSTART_FAILED The start of the task for the AL layer start function
failed.

Asserts

TMLIBAPP_ERR_INVALID_INSTANCE Not a valid instance.

TMLIBAPP_ERR_NOT_SETUP Instance is not set up properly.

Description

Starts the AL layer start function as task, data streaming begins.

Chapter 9: Noise Sequencer (NoiseSeq) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 225

9

tmolNoiseSeqStop

extern tmLibappErr_t tmolNoiseSeqStop (
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_TSUSPEND_FAILED The Noise Sequencer task could not be sus-
pended.

Asserts

TMLIBAPP_ERR_INVALID_INSTANCE Not a valid instance.

TMLIBAPP_ERR_NOT_SETUP Instance is not set up properly.

Description

Stops data streaming.

Chapter 9: Noise Sequencer (NoiseSeq) API

226 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolNoiseSeqInstanceConfig

extern tmLibappErr_t tmolNoiseSeqInstanceConfig (
 Int instance,
 ptsaControlArgs_t cmdDesc
);

Parameters

Instance The instance.

cmdDesc Pointer to control parameter struct containing a
command and a parameter. The usage of the
parameter depends on the command.

Return Codes

TMLIBAPP_OK Success.

Asserts

TMLIBAPP_ERR_INVALID_INSTANCE If instance is not a valid instance.

TMLIBAPP_ERR_NOT_SETUP If instance is not set up properly.

Description

Effects a command on an open instance. See page 204 for the supported commands and

page 199 for the usage of the control struct and the relationship to tmalNoiseSeq-

InstanceConfig.

Note that this function is just a communication interface to tmalNoiseSeqInstance-

Config. If an error occurs during the execution of a command, the respective error mas-

sage is stored in the retval field of the struct to which cmdDesc points.

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 227

10
Chapter 10

DTV Audio Mixer (AmixDtv) API

Note
This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Topic Page

DTV Audio Mixer Overview 228

DTV Audio Mixer Inputs and Outputs 228

Operation of the DTV Audio Mixer 230

DTV Audio Mixer Progress 233

DTV Audio Mixer Errors 233

DTV Audio Mixer Configuration 234

DTV Audio Mixer API Data Structures 234

DTV Audio Mixer API Functions 238

Chapter 10: DTV Audio Mixer (AmixDtv) API

228 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

DTV Audio Mixer Overview

The DTV audio mixer is designed to provide convenient access to audio output for the

various audio sources that are used in a digital television system. The DTV mixer does

mix several audio streams into one output stream. But the DTV mixer contains a number

of features that are designed specifically for digital TV. These include bass redirection and

delay for the center and surround channels.

The DTV mixer supports three input channels. One of these is designed to be a six chan-

nel (5.1) stream. The output is usually an eight channel stream. The output can be accu-

rate to 20 bits.

The DTV mixer is implemented as a TSSA module, and as such, it has an AL and an OL

layer. Because it is tested only as an OL layer module, the AL layer functions are declared

in the single OL layer include file. Only the OL layer is documented. The DTV mixer is

an example of a task based filter with multiple inputs and one output.

Background

This document assumes that the reader is familiar with the concepts of TSSA as docu-

mented in Book 3, Software Architecture. Some of the concepts like bass redirection are

described in the Dolby Licensee Information Manual, V2.0. This is available from Dolby

Labs.

DTV Audio Mixer Inputs and Outputs

Figure 6 Block Diagram of Mixer

The DTV audio mixer has three inputs and one output. Each of the inputs is specialized

and named for its intended task. The formats that are supported are specified in the

MC Delays

Aux
Volume

AUX

Main
Volume

Bass
Redirection

Master
Volume

6

6

2 2
6

InterleaveTC
2

HP Volume

Byte Swap

Headphone

2 8 Output

1937

Σ

Chapter 10: DTV Audio Mixer (AmixDtv) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 229

10

capabilities structure. The format of each channel in operation is determined using the

format mechanism of TSSA.

■ The MultiChannel (MC) input accepts stereo or six channel streams that are 16 or 20

bits wide. This stream is gain scaled, delayed, filtered, and redirected as specified by

the user. At the end of this processing, the six channels are presented as six of the

eight channels available on the output.

■ The TwoChannel (TC) input accepts stereo 16 bit PCM data, or alternatively,

IEC61937 formatted data (AC-3). It is also known as the “headphone” channel. The

two channels of PCM can be gain scaled to provide a headphone output. The two

channels of IEC61937 data are not gain scaled, but they are byte swapped. In any

case, they are interleaved into the eight channel output stream and presented as the

last pair of channels in the output.

■ The auxiliary channel (AUX) is not yet used. It is designed to support a second stereo

stream that is mixed into the multi-channel output. It has not been tested.

■ The output is usually an eight channel stream, although a six channel mode is also

supported for testing. The output is designed to interface directly with the audio ren-

derer.

static tmAvFormat_t amixMultiChannelFormat = {
 ...
 avdcAudio, /* dataClass */
 atfLinearPCM, /* dataType */
 apfFiveDotOne16 | apfStereo16 | apfFiveDotOne32 | apfStereo32,
 /* dataSubtype */
 20 /* description */
};

static tmAvFormat_t amixTwoChannelFormat = {
 ... /* data for AC3 or headphone */
 avdcAudio, /* dataClass */
 atf1937 | atfLinearPCM, /* dataType */
 apfStereo16, /* dataSubtype */
 16 /* description */
};

static tmAvFormat_t amixAuxFormat = {
 ...
 avdcAudio, /* dataClass */
 atfLinearPCM, /* dataType */
 apfStereo16, /* dataSubtype */
 16 /* description */
};

static tmAvFormat_t amixOutputChannelFormat = {
 ...
 avdcAudio, /* dataClass */
 atfLinearPCM, /* dataType */
 apfFiveDotOne16 | apfSevenDotOne16 | apfFiveDotOne32 |
 apfSevenDotOne32, /* dataSubtype */
 20 /* description */
};

Chapter 10: DTV Audio Mixer (AmixDtv) API

230 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

All of these I/Os are fully TSSA compliant. In order to simplify the processing inside of

the mixer, input packets are constrained to contain the same number of samples as out-

put packets. When this is not the case, errors are reported using the error callback func-

tion.

Operation of the DTV Audio Mixer

In simplified form, the buffer management loop of the DTV mixer is structured like this:

The mixer copies the timestamp of the MC input packet to the output packet. The gain

taken in the mixer is in two phases. In the preamp phase, gain or attenuation is taken

using controls for each individual channel. The gain is limited to +12db, and the signal

is saturated at this level. The output gain phase is combined with the bass redirection

processing. A master gain (or attenuation) is applied to the summed output, and trim is

applied. The gain applied at this stage is again limited to +12db, with the output signal

saturated at full scale. In a product, positive gain is not usually applied to the Dolby Dig-

ital signal in the digital domain, as this will result in signal distortion. The decision to

implement attenuation in the digital or analog domain depends on the structure of the

D/A converters and the analog output system. All gain scaling has traditionally been

implemented in the analog domain.

Prime Buffer

In order to assure clean startup from cases where the input pipeline begins empty, the

mixer can be configured to hold a configurable number of MC input buffers before start-

ing actual operation. This is implemented as a loop preceding the main processing loop,

as described above. To ensure that the audio system passes the Dolby “start/stop” test

from an SPDIF input, it has been found that 19 buffers are required to prime the mixer.

Since each packet input to the AC-3 decoder results in 6 output packets (of 256 samples

each), this translates to a requirement that four AC-3 buffers be decoded before the

mixer starts. The size of this buffer is controlled by a member of the instance setup struc-

ture. Zero is a valid size, and the array of buffer pointers is dynamically allocated.

Delay

In order to satisfy the requirement of adjustable delay for the center and surround chan-

nels, the mixer implements a a delay line that can hold a user defined number of packets

while (1) {
 getEmptyOutput packet (block here, and check the control queue);
 get full packet for each input channel
 (wait one tick at each valid input to allow scheduling)
 mix input channels to create output packet()
 send back empty input packets()
 send on full output packet()
}

Chapter 10: DTV Audio Mixer (AmixDtv) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 231

10

on the multichannel input. The inner loop of the mixer is implemented with a

“preamp” phase followed by a bass redirection phase. In the preamp phase, channel spe-

cific gains are applied and samples are selected from the delay line according to the user’s

specification. The bass redirection phase can then operate on a single output buffer to

prepare the data for presentation. The DTV mixer does not implement negative delays.

Assuming that 30ms is enough delay, and assuming that each packet is 256 samples at

48000hz (as in Dolby Digital AC-3), a delay line of six packets is enough. The size of this

buffer is controlled by a member of the instance setup structure. Zero is a valid size, and

the array of buffer pointers is dynamically allocated.

Bass Redirection

Bass redirection is implemented according the specifications in the Dolby Licensee

Implementation Manual, V 2.0 (Dolby LIM 2.0). Seven modes are implemented, includ-

ing variations on each of the three modes specified by Dolby. These modes have been

tested by Dolby and found to be in compliance with the specifications. See figures 2

through 8.

Figure 7 AMIX_bassRedirHPF_all_a: Dolby bass redirection mode 1: High Pass Filter All

L

C

R

LS

RS

SUB

L

C

R

LS

RS

LFE
Analog
Gain

+15 dB MAX

Dolby Digital
Only

-15dB x 5

-5dB
+

Chapter 10: DTV Audio Mixer (AmixDtv) API

232 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Figure 8 AMIX_bassRedirFullRangeLR_a: Dolby Bass redirection mode 2 (alternative)

Figure 9 AMIX_bassRedirFullRangeLRS_s: Dolby Bass redirection mode 3

L

C

R

LS

RS

SUB
(Optional)

L

C

R

LS

RS

LFE +10.5dB

Dolby Digital
Only

+
-15dB x 3

-5dB

Digital Processing D/A Analog Processing

+

+

+

L

C

R

LS

RS

SUB

L

C

R

LS

RS

LFE

+10dB

+
-4.5dB

+

+

+
OFF (Normal)

ON
SUB OUT

(Switch Optional)

(Full Range Center Optional)

Chapter 10: DTV Audio Mixer (AmixDtv) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 233

10

DTV Audio Mixer Progress

The DTV Audio mixer does not require a progress function It uses the default progress

function to handle changes of format.

DTV Audio Mixer Errors

Errors can be reported during the mixer’s setup phase, or at run time. Errors reported

during the setup phase will be noticed as non-zero return values from the API. The defi-

nition of these constants is found in tmolAmixDtv.h. In addition, the library used in its

debugging mode will use the assert mechanism to flag invalid inputs. These errors are

covered along with the descriptions of each function in the API.

The DTV Audio mixer supports the installation of an error callback function. This func-

tion is invoked for a set of run time errors, as described below. None of the errors han-

dled by the error callback function are considered fatal. The error function prototype is

of the type tsaErrorFunc_t:

Handlers should be provided for these possible values of the errorCode:

TMLIBAPP_ERR_UNDERRUN The mixer requested data but none was available. Since the
DTV mixer blocks indefinitely on the MC input, no under-
runs will be logged on the MC channel. When an error
occurs, the error description is an integer pointer, and
description[0] is the ID of the offending channel.

AMIX_ERR_IO_BUFFER_SIZE_MISMATCH
Triggered when the dataSize of the received packet is not
the same as samplesPerPacket (specified in the instance
setup) and outChan.bytesPerSample, computed from the
initial format. The error description is an integer pointer.

typedef tmLibappErr_t(*tsaErrorFunc_t)(Int instId, UInt32 flags,
ptsaErrorArgs_t args);
typedef struct tsaErrorArgs {
 Int errorCode;
 Pointer description;
} tsaErrorArgs_t, *ptsaErrorArgs_t;

description[0]: channel ID. 256 for output channel
description[1]: dataSize of offending packet
description[2]: expected packet size.
description[3]: ID of offending packet.

Chapter 10: DTV Audio Mixer (AmixDtv) API

234 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

DTV Audio Mixer Configuration

The DTV Audio mixer provides a queue-based configuration function. It can be used to

change the volumes of the various channels and the filter cutoff frequency. The queue-

based implementation is discussed in some depth in Book 3, Software Architecture.

tmLibappErr_t tmolAmixDtvInstanceConfig (
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Values for the command entry in the args structure are defined in tmolAmixDtv.h, and

are described in Table 3 on page 244.

A number of commands control volumes. Volume is specified in units of 100th dB. Zero

is no gain. The maximum value is 1200, or 12 dB of gain. This is a multiplication by 4

(approximately). No minimum value is specified, but a value of –9600 will attenuate by

96 dB, effectively muting a 16-bit signal. A value of –600 corresponds to a 6 dB attenua-

tion, or a multiplication by 0.5 (approximately).

DTV Audio Mixer API Data Structures

This section presents the data structures contained in the DTV Audio Mixer library.

Name Page

tmolAmixDtvCapabilities_t 235

tmolAmixDtvInstanceSetup_t 236

Chapter 10: DTV Audio Mixer (AmixDtv) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 235

10

tmolAmixDtvCapabilities_t

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
} tmolAmixDtvCapabilities_t; *ptmolAmixDtvCapabilities_t;

Fields

defaultCapabilities For compliance with the application library archi-
tecture, this is a pointer to a structure of the stan-
dard type.

Description

This structure describes the capabilities and requirements of the DTV Audio mixer mod-

ule. A user can retrieve the structure’s address by calling tmolAmixDtvGetCapabilities.

Chapter 10: DTV Audio Mixer (AmixDtv) API

236 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolAmixDtvInstanceSetup_t

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 Int masterVolume;
 Int multiChannelVolume;
 Int auxVolume;
 Int headphoneVolume;
 Int centerDelay;
 Int surroundDelay;
 UInt8 speakerMode;
 UInt8 bassRedirMode;
 Int crossoverFrequency;
 Int trim[NUM_MULTICHANNEL_OUTPUTS];
 Int samplesPerPacket;
 UInt8 delayBufferSize;
 UInt8 primeBufferSize;
} tmolAmixDtvInstanceSetup_t; *ptmolAmixDtvInstanceSetup_t;

Fields

defaultSetup For compliance with TSA, this is a pointer to a
structure of the standard type.

masterVolume, multiChannelVolume, auxVolume, headphoneVolume
Integers specifying volumes in 0.01 dB. The mas-
ter volume is the output volume. Other volumes
control individual channels. Volumes are clipped
at +12 dB (1200). More information on volumes is
given in the description of control parameters.

centerDelay, surroundDelay To compensate for the position of speakers in a
room, the center and surround channels can be
delayed. The delay is specified in microseconds,
and it is referred to the sample rate of the output
channel. The delay is limited to the length of 8
output packets. Dolby recommends that the user
interface limit center channel delay to 5ms and
surround delay to 20 ms.

speakerConfig Not used.

bassRedirMode Per the Dolby spec, several bass redirection modes
are supported. They are described in some detail
in the section on control parameters. Defaults to
zero, or no bass redirection.

crossoverFrequency A set of two pole filters is used to implement bass
redirection, and the cutoff frequency of these fil-
ters can be specified in Hertz. Values between 60
and 150 Hz are recommended.

Chapter 10: DTV Audio Mixer (AmixDtv) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 237

10

trim[6] To compensate for speaker and room mismatch,
the volume of each speaker can be adjusted sepa-
rately. This is mapped to balance type controls in
the user interface.

samplesPerPacket Since all packets must have the same size, it is
specified here. The usual value is 256.

delayBufferSize The number of input packets held on the multi-
channel input to implement delay is specified
here. The default value is 6 packets, correspond-
ing to 30 ms with 256 samples per packet and a
48,000 Hz sample rate.

primeBufferSize It is possible to make the mixer wait for this given
number of packets before processing begins. This
feature was created to get rid of the bubbles that
can exist in the pipeline at startup.

Description

The tmolAmixDtvInstanceSetup_t structure is used to describe the initial operation of

this instance of the mixer.

Chapter 10: DTV Audio Mixer (AmixDtv) API

238 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

DTV Audio Mixer API Functions

This section presents the functions contained in the DTV Audio Mixer library.

Name Page

tmolAmixDtvGetCapabilities 239

tmolAmixDtvOpen 240

tmolAmixDtvGetInstanceSetup 241

tmolAmixDtvInstanceSetup 242

tmolAmixDtvStart 243

tmolAmixDtvStop 243

tmolAmixDtvInstanceConfig 244

Chapter 10: DTV Audio Mixer (AmixDtv) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 239

10

tmolAmixDtvGetCapabilities

tmLibappErr_t tmolAmixDtvGetCapabilities(
 ptmolAmixDtvCapabilities_t *pCap
);

Parameters

pCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

Used to retrieve the capabilities of the DTV Audio mixer. The function pointer that is

returned remains valid as long as the mixer is active.

Chapter 10: DTV Audio Mixer (AmixDtv) API

240 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolAmixDtvOpen

tmLibappErr_t tmolAmixDtvOpen(
 Int *instance
);

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MODULE_IN_USE No more instances of the DTV Audio mixer ar
available.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation for the default instance vari-
ables failed.

Description

The open function creates an instance of the DTV Audio mixer and informs the user of

its instance. The DTV Audio mixer does support multiple instances, but this feature is

untested.

Chapter 10: DTV Audio Mixer (AmixDtv) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 241

10

tmolAmixDtvGetInstanceSetup

tmLibappErr_t tmolAmixDtvGetInstanceSetup(
 Int instance,
 ptmolAmixDtvInstanceSetup_t *setup
);

Parameters

instance Instance, as returned by tmolAmixDtvOpen.

setup Pointer to a variable in which to return a pointer
to setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can be asserted in debug mode.

Description

A pointer to the current instance setup is retrieved. During a call to tmolAmixDtvOpen,

this structure is filled with default values to simplify the impending call to tmolAmixDtv-

InstanceSetup.

Chapter 10: DTV Audio Mixer (AmixDtv) API

242 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolAmixDtvInstanceSetup

tmLibappErr_t tmolAmixDtvInstanceSetup(
 Int instance,
 ptmolAmixDtvInstanceSetup_t setup
);

Parameters

instance As returned from tmolAmixDtvOpen.

setup Points to a setup structure as described above.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can be asserted in debug mode.

TMLIBAPP_ERR_MODULE_IN_USE Specified instance does not match current
instance. Digitizer supports only one instance.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
An unsupported data format was requested.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation failed.

Other errors are possibly reported by the device library or board support package.

Description

The DTV Audio mixer is prepared for operation. Parameters are checked. The mixer is left

“stopped.” It will become operational on a call to tmolAmixDtvStart.

Chapter 10: DTV Audio Mixer (AmixDtv) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 243

10

tmolAmixDtvStart

tmLibappErr_t tmolAmixDtvStart(
 Int instance
);

Parameters

instance As returned from tmolAmixDtvOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can be asserted in debug mode.

Description

The mixer represented by the instance is started. An independent task is started to exe-

cute the processing described in the section on the mixer’s operation.

tmolAmixDtvStop

tmLibappErr_t tmolAmixDtvStop(
 Int instance,
);

Parameters

instance As returned from tmolAmixDtvOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can be asserted in debug mode.

Description

The mixer represented by the instance is stopped. All packets held by the mixer are

returned to their respective queues, and the mixer exits its processing loop in accordance

with standard TSSA guidelines.

Chapter 10: DTV Audio Mixer (AmixDtv) API

244 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmolAmixDtvInstanceConfig

tmLibappErr_t tmolAmixDtvInstanceConfig(
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Parameters

instance As returned from tmolAmixDtvOpen.

flags not used by tmolAmixDtvInstanceConfig.

args Points to a control structure used to modify the
operation of the DTV Audio mixer.

Return Codes

TMLIBAPP_OK Success.

Errors detected by the underlying tmalAmixDtv call can be found in the retval member of

the control structure.

Description

While a module is operating, the configuration function can be used to change the oper-

ating parameters. The acceptable parameters are described in Table 3, following.

Table 3 Configuration Parameters

Parameter Description

AMIX_CONFIG_MASTER_VOLUME The master gain is applied to the sum of the
multichannel input and the auxiliary input to
the mixer. This should be used as a master vol-
ume control. The parameter field of the argu-
ment structure is a treated as pointer to an
integer.

AMIX_CONFIG_MULTICHANNEL_VOLUME The fixed point volume specification passed in
the parameter field is applied to the multichan-
nel input to the mixer. It is designed to be used
in situations where the more than one audio
source is being mixed and displayed through
the speaker system. The parameter field of the
argument structure is a treated as pointer to an
integer.

Chapter 10: DTV Audio Mixer (AmixDtv) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 245

10

AMIX_CONFIG_HEADPHONE_VOLUME When the two channel input of the mixer is
used as a headphone channel, this control
affects the volume of the headphone channel.
It is disabled when the second mixer output is
used for IEC61937 formatted Dolby Digital (AC-
3) data. The parameter field of the argument
structure is a treated as pointer to an integer.

AMIX_CONFIG_AUX_VOLUME The aux channel is not yet used. It is designed
to allow a secondary source, like an audible
feedback from the user interface, to be mixed
into the master output. The parameter field of
the argument structure is a treated as pointer
to an integer.

AMIX_CONFIG_TRIM The trim controls are used to control the rela-
tive balance of the audio channels. The trim
should be controlled during a speaker setup
phase of system operation. The parameter field
of the argument structure is a treated as pointer
to an array of integer six integers in the stan-
dard L, R, C, Sub, Lsur, Rsur order.

AMIX_CONFIG_CENTER_DELAY Per the Dolby Digital spec, the center channel
of the multichannel input can be delayed by up
to 10ms to compensate for the placement of
the center channel speaker. The actual delay is
specified in microseconds, and it is limited
internally to be less than 8 packets in length.
The parameter field of the argument structure
is a treated as pointer to an integer.

AMIX_CONFIG_SURROUND_DELAY Per the Dolby Digital spec, the surround chan-
nels of the multichannel input can be delayed
by up to 20ms to compensate for the place-
ment of the surround channel speaker. The
actual delay is specified in microseconds, and it
is limited internally to be less than 8 packets in
length. The parameter field of the argument
structure is a treated as pointer to an integer.

AMIX_CONFIG_SPEAKER_MODE This parameter is not used. The mixer always
passes six channels on the multichannel input.

Table 3 Configuration Parameters

Parameter Description

Chapter 10: DTV Audio Mixer (AmixDtv) API

246 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

AMIX_CONFIG_BASSREDIR_MODE The audio mixer supports bass redirection as
described in the Dolby Licencee Information
Manual. Version 1 of the mixer implements a set
of second order crossover filters. The filter Q is
0.707, and the crossover frequency can be con-
trolled with another command. This command
allows the user to select one of the values listed
in Table 4 on page 247. The parameter field of
the argument structure is a treated as pointer
to an integer.

AMIX_CONFIG_CROSSOVER_FREQUENCY The frequency of the crossover filter used for
bass redirection can be set using this com-
mand. The frequency is specified in hertz as an
integer. Crossover frequency should be set
between 60 and 500 hz. The parameter field of
the argument structure is a treated as pointer
to an integer.

AMIX_CONFIG_GET_LFE_LEVEL The Dolby LIM suggests that the user interface
be able to display the amount of Low Fre-
quency Energy (LFE) currently in the subwoofer
channel. The mixer measures and records the
peak level of the subwoofer channel in every
packet. This command can be used to retrieve
the current level. The address of an integer vari-
able to be updated by the mixer is passed as
the parameter member of the control structure.
LFE level will reach a maximum of 32k in 16 bit
systems and 128k in 20 bit systems. The param-
eter field of the argument structure is a treated
as pointer to an integer.

Table 3 Configuration Parameters

Parameter Description

Chapter 10: DTV Audio Mixer (AmixDtv) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 247

10

Table 4 Mixer values

Value Description

AMIX_bassRedirNone No bass redirection is applied. All channels are
passed through without modification.

AMIX_bassRedirHPF_all_a As described on p54 of the Dolby LIM, High
pass filtering is applied to L, R, C, and surround
outputs. All channels are summed to the LFE
channel. It is assumed that 15db of gain will be
added to the LFE channel in the analog output
stage. This is Dolby mode 1.

AMIX_bassRedirHPF_all_d DO NOT USE. Headroom is compromised.
As described on p54 of the Dolby LIM, High
pass filtering is applied to L, R, C, and surround
outputs. All channels are summed to the LFE
channel. The required 15db of gain for the LFE
channel is added in the digital domain. This is
Dolby mode 1.

AMIX_bassRedirFullRangeLR_a The alternative form of Dolby mode 2, as
described on p54 of the Dolby LIM. Full range
speakers are available for the front L and R
channels. The other channels are high pass fil-
tered at the crossover frequency. The low fre-
quency energy (LFE) from the other channels is
redirected into the LFE channel. The final sum-
ming of the LFE into the L and R channel (with
associated gain) is assumed to be implemented
in the analog output stage.

AMIX_bassRedirFullRangeLR_d DO NOT USE. Headroom is compromised.
Dolby mode 2, as described on p54 of the
Dolby LIM. Full range speakers are available for
the front L and R channels. The other channels
are high pass filtered at the crossover fre-
quency. The low frequency energy (LFE) from
the other channels is redirected into the LFE
channel. All processing, including the final redi-
rection of the LFE into the L and R channels, is
done in the digital domain.

Chapter 10: DTV Audio Mixer (AmixDtv) API

248 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

AMIX_bassRedirFullRangeLRS_s Dolby mode 3, as described on p56 of the
Dolby LIM: Full range speakers are assumed for
L, R, and surround channels. The LFE from the
center channel is redirected. A subwoofer is
assumed to be present.

AMIX_bassRedirFullRangeLRS_ns Dolby mode 3, as described on p56 of the
Dolby LIM: Full range speakers are assumed for
L, R, and surround channels. The LFE from the
center channel is redirected. Gains are set as if
no subwoofer is present, and the subwoofer
output is silent.

AMIX_bassRedirExtern As described on p71 of the Dolby LIM: All chan-
nels are given full range audio and the all chan-
nels are summed into the LFE channel. Bass
redirection is assumed to be handled exter-
nally.

Table 4 Mixer values

Value Description

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 249

11

Chapter 11

DTV Audio System (AudSys) API

Note
This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Topic Page

DTV Audio System Overview 250

DTV Audio System Inputs and Outputs 253

DTV Audio System Errors 253

DTV Audio System Progress 254

DTV Audio System Configuration 254

DTV Audio System Operation 254

DTV Audio System API Data Structures 257

DTV Audio System API Functions 268

Chapter 11: DTV Audio System (AudSys) API

250 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

DTV Audio System Overview

The audio system for the TriMedia DTV system meets the requirements of a digital TV

system. The requirements are outlined by the Dolby Digital Licensee Information Man-

ual [1]. These requirements include the ability to decode AC-3 and ProLogic encoded sig-

nals with six channels of audio output.

TriMedia further extends this specification by adding an extra stereo output that can be

used to present digitally encoded AC-3 data, or analog audio.

This most recent release of the audio system includes significant enhancements, includ-

ing digital tone control and loudness compensation.

The audio system is constructed using the framework of the TriMedia Software Stream-

ing Architecture (TSSA). The system presents a TSSA compatible interface, and it is con-

structed of several modules, all of which conform to TSSA:

■ Audio Renderer

■ Dolby Digital AC-3 decoder

■ Dolby ProLogic decoder

■ Audio Mixer including IEC61937 encoding for SPDIF transmission of Dolby Digital

data

■ Audio Digitizer

■ Noise sequencer

TSSA provides a crucial integrating framework for all of the audio modules. The audio

system contains the logic needed to connect these modules and it can modify these con-

nections based on the format of the input stream and the wishes of a user.

The input to the audio system can come from a TSSA compliant source of an AC-3 ele-

mentary stream. This might be a transport stream demultiplexer. Or the audio system

can be configured to read its input from the audio digitizer that is connected to jacks on

the back panel of the system.

The use of the audio system is demonstrated with an example program, exAudSys.

Statement of Dolby Compliance

In June of 1998, the digital portion of the TriMedia audio system was confirmed to meet

all group A specification given by Dolby in reference [1]. The system as it exists today is

based on that code, but it will be resubmitted for testing during the summer of 1999.

New Features in Version 2

The new audio system incorporates the features of the new audio mixer, and expands

many of the capabilities already present in the version 1.1. In particular, it allows to con-

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 251

11

trol the tone control and the loudness compensation of the mixer. The tone control con-

sists of two boost/cut filters, the bass and the treble filters. The gain/ attenuation of each

of these filters can be dynamically controlled by passing its value to the audio system.

The bass /treble gain/attenuation can be controlled in the range –12 to +12 dB. The loud-

ness filter's task is to compensate for the subjective sensation of the low and high fre-

quencies loss relative to the mid range of frequencies, at low sound levels. The operation

of this filter is controlled by the master volume. Both tone and loudness control filters

can be turned on or off.

Auto detection of PCM or IEC61937 format data at the digital input is now provided.

The -mode dauto command line option to exAudSys enables the auto detection. The

audio system waits for the digital bitstream from the digitizer and switches to appropri-

ate playback of the AC-3 or the SPDIF when the bitstream is provided. It also reports the

lock loss through the call to the progress function and allows to reconnect the input bit-

stream from one digital mode to the other. This facility takes some MIPS, and in prod-

ucts it should be augmented (or replaced) by the facility to check the state of the non-

PCM C bit in the SPDIF channel status structure.

The “headphone” output of the audio system can now be switched between PCM coded

(headphone) output, or IEC61937 coded (SPDIF) output. The operator of exAudSys can

dynamically switch from one form to another by issuing the hpm command.

The ProLogic decoder is now called as a function from the mixer. In the past, it was oper-

ated as a task. This change allows us to reduce latency from input to output when decod-

ing ProLogic, as would be required with an analog TV signal.

In addition to the ProLogic algorithm for converting stereo input to 5.1, an “echo” mode

has been added. This simply copies the front channels to the rear channels with a delay

of a few milliseconds.

The noise sequencer was extended to call a progress function when it switches from one

channel to another in its auto-rotate mode. Also, the time spent in each channel can

now be controlled with a configuration command.

The audio system 2.0 can also use the new SPDIF output of the TM1300 and TM2. These

new microprocessors allow the user to pass a selected channel pair of the PCM playback

to the SPDIF output. This feature is added to enable testing with the digital output pro-

vided on TM2700. The new arendSpdif renderer controls appropriate formatting and

transmission of the SPDIF stream to the output. To use this feature an -tm2spdif option

has to be used when executing the exAudSys. The SPDIF channel pair indicator (a num-

ber between 0 and 3) has to be used with this option to start the desired playback. The

channel pair parameter can be then dynamically changed (see the “spdif” of the exAud-

Sys).

Chapter 11: DTV Audio System (AudSys) API

252 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Programmers Interface

The programmers interface to the audio system is like that of any TSSA component.

■ tsaAudSysOpen

■ tsaAudSysClose

■ tsaAudSysGetInstanceSetup

■ tsaAudSysInstanceSetup

■ tsaAudSysInstanceConfig

■ tsaAudSysStart

■ tsaAudSysStop

■ ErrorCallbackFunction

■ ProgressCallbackFunction

Required Board Support

Proper operation of the audio system requires that certain features be implemented in

the board support package. Among these are:

■ Audio out clock must be provided by TriMedia’s AO DDS.

■ Audio in clock should be derived from AI DDS if an analog source is used, but it will

be recovered from the SPDIF source if an SPDIF source is used.

■ For digital input to be used, board support must be provided for digital audio input.

This should include the control interrupt that is generated when the state of the digi-

tal input changes. This can be tested using the program exolCopy Audio, as it uses

mechanisms similar to those of AudSys.

Related Documents

[1] Dolby Digital Licensee Information Manual version 2.0. April, 1997.

Details of the APIs of the underlying audio system components are available in the Tri-

Media Developer’s kit documentation:

■ Audio Renderer (ArendAO)

■ Audio Digitizer (AdigAI)

■ Dolby Digital (AdecAc3)

■ Dolby ProLogic (AdecPl)

■ DTV Audio Mixer (AmixDtv)

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 253

11

DTV Audio System Inputs and Outputs

The audio system makes most of its connections to the outside world through the audio

renderer and digitizer. To the hosting program, it has one input port for AC-3 encoded

elementary streams. It also has a control port. Figure 10 gives a simplified idea of the

inner structure.

Figure 10 DTV Audio System Inputs and Outputs

The renderer and digitizer are assumed to be capable of analog or digital input and out-

put. Through the DTV Mixer, the renderer should support operation at 48 kHz with 8

channels of 20-bit data. The digitizer supports only 16-bit stereo data, but the input

should be selectable between an analog input and an SPDIF digital input. The selection is

made with an appropriate call to the board support package.

DTV Audio System Errors

Users of the audio system can install an error handling function. The standard TSSA pro-

totype is used:

typedef struct tsaErrorArgs {
 Int errorCode;
 Pointer description;
} tsaErrorArgs_t, *ptsaErrorArgs_t;

tmLibappErr_t tsaErrorFunc(Int instId, UInt32 flags,
 ptsaErrorArgs_t args);

ProLogic
Decode

AC-3
Decode

DTV
Mixer

MC
Input

TC
Input

Audio
In

TSSA
Format

Elementary
Stream

Main
Output

Audio
Digitizer

Noise
Sequencer

Audio
Digitizer

Audio
Out

Chapter 11: DTV Audio System (AudSys) API

254 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

The function is called when:

■ renderer errors occur

■ mixer errors occur

■ digitizer errors occur

■ errors are encountered in the AC-3 data stream

The error function should switch on the error code specified in the arguments to the

error function. Since each of the errors reported by the subsidiary components is unique,

it is simply passed up to the user of the audio system. An example of an appropriate error

handler can be found in exAudSys.c

The error handler should return zero if the error has been completely handled. In the

case of the renderer or digitizer, the error function may be called from within an inter-

rupt handler, so care should be taken not to create a deadlock with a call to printf.

DTV Audio System Progress

The audio system progress function is called in at least three cases. An example of an

appropriate progress function is found in exAudSys.c. The progress function can report

when the first AC-3 sync word is found in a new stream. It is also called when the AC-3

bitstream information says that the stream is ProLogic encoded. And the progress func-

tion reports on the state of the audio video (AV) synchronization mechanism, as main-

tained by the audio renderer. This latter case gives the user the chance to customize the

AV sync algorithm.

DTV Audio System Configuration

The audio system implements the TSA standard of a single function to configure the

audio system. This function uses a switch statement to handle the various commands.

Refer to tsaAudSysInstanceConfig for more information about the function and its com-

mands.

DTV Audio System Operation

The system can be operated in a number of different modes. These modes are specified

using the contents of the setup structure. The mode of operation can also be changed on

the fly using the configuration function.

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 255

11

The following sections describe two representative modes.

Figure 11 DTV Audio System Decoding Dolby Digital AC-3 Elementary Stream

Figure 11 illustrates the basic DTV decoding mode. The AC-3 decoder is active, and the

mixer is interleaving the six channels of PCM data with the two channels of IEC61937

format data for output on the SPDIF connector. This mode is selected by setting:

AudSysSetup.inputSource = audSysInputElementaryStream

When the standard start sequence is invoked, the action is as described below:

tsaAudSysOpen(&audSysInstance);

The capabilities of all the internal components are retrieved, and all internal compo-

nents are opened. The internal instance setup structure is allocated and filled with

default values. The values that are not zero are initialized to:

 AudSysSetup.speakerConfig = audSysSpeakerConfig_3_2;
 AudSysSetup.bassRedirMode = AMIX_bassRedirNone;
 AudSysSetup.subwoofOn = True;
 AudSysSetup.proLogicEnable = audSysProLogicOff;
 AudSysSetup.compressionMode = audSysCompStandard;
 AudSysSetup.effectsMode = audSysEffectsNone;
 AudSysSetup.noiseSequencerOn = False;
 AudSysSetup.plAutoBalanceOn = True;
 AudSysSetup.plWideSurroundOn = False;
 AudSysSetup.numMixPackets = 26;
 AudSysSetup.numArPackets = 6;
 AudSysSetup.numAiPackets = 26;
 AudSysSetup.numMixPrimeBuffers = 19; /* three AC-3 blocks + 1 packet */
 AudSysSetup.inputSource = audSysInputAnalogIn;
 AudSysSetup.audioPriorityBase = 100;
 AudSysSetup.crossoverFrequency = 120;
 AudSysSetup.centerDelay = 0; /* microsec */
 AudSysSetup.surroundDelay = 5000; /* (5 ms in microsec) */

ProLogic
Decode

AC-3
Decode

DTV
Mixer

MC
Input

TC
Input

Audio
In

TSSA
Format

Elementary
Stream

Main
Output

Audio
Digitizer

Noise
Sequencer

Audio
Digitizer

Audio
Out

Chapter 11: DTV Audio System (AudSys) API

256 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

When tsaAudSysInstanceSetup is then called, the internally held setup structure is

updated to match that specified. If this is the first time that InstanceSetup is called, the

InOut descriptors that are used to connect the various internal modules are created. The

queues are created and the packets that circulate in the queues are malloc’ed. In the

default configuration, about 600K of buffer memory is allocated. By avoiding the use of

the prime buffer, that number can be lowered to near 400K. Enough buffers are allocated

during InstanceSetup to cover the worst case mode of operation.

It is in tsaAudSysStart that the connections between the various modules are made and

the internal modules are started. tsaAudSysStart can be called multiple times. Except for

the renderer, which always runs, all internal components are stopped momentarily be-

fore restarting them with the correct connections. Memory is not reallocated.

A more complex configuration is shown in Figure 12. Here, two more components are

running under the control of the audio system.

Figure 12 DTV Audio System Decoding ProLogic-Encoded AC-3 Stream from SP DIF Input

Each of the blocks in these pictures represents a separate thread of execution. While the

renderer and the digitizer are interrupt driven, the rest of the components are tasks. In

addition, the audio system creates a task that is used to check for changes that might

necessitate automatic configuration. Examples of this are changes in sample rate

 AudSysSetup.dynRngScaleHi = -1.0; /* if neg, use defaults */
 AudSysSetup.dynRngScaleLow = -1.0; /* if neg, use defaults */
 AudSysSetup.sampleRate = 48000.0;
 AudSysSetup.headphoneMode = audSysHeadphone61937;
 AudSysSetup.inversionRequired = False;
 AudSysSetup.syncThreshold = 3000;
 AudSysSetup.framesToMute = 1;
 AudSysSetup.syncMode = AR_SyncMode_skip;

ProLogic
Decode

AC-3
Decode

DTV
Mixer

MC
Input

TC
Input

Audio
In

TSSA
Format

Elementary
Stream

Main
Output

Audio
Digitizer

Noise
Sequencer

Audio
Digitizer

Audio
Out

61937

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 257

11

detected in an AC-3 stream. Or a stream might change format from 3_2 into ProLogic

encoded stereo. When ProLogic is set up in automatic mode, the audio system task will

cause the ProLogic decoder to be started.

Resource Usage

The numbers given below are ballpark figures measured under typical conditions.

Text Memory

The combined text, data and bss segments of the audio system libraries require about

260k. This includes about 30K of shared TSSA default functions.

Data Memory

The audio system allocates at least 400K for audio buffers. This is under the control of

the user via the buffer count settings. Typical operation requires 600K. This memory is

allocated using the malloc or _cache_malloc. Most of it is allocated by the tsaDefaultI-

nOutDescriptorCreate function calls.

MIPS

The audio system example (exAudSys.out) can report MIPS usage dynamically. Typical

six-channel AC-3 bitstreams require about 25 MIPS. ProLogic decode (when enabled)

requires about 7 MIPS. The audio mixer requires about between 10 and 20 MIPS in this

release, but this will be reduced in future releases.

DTV Audio System API Data Structures

This section presents the DTV Audio System API data structures.

Name Page

Audio System Constants 258

tsaAudSysStatus_t 260

tsaAudSysSetup_t 262

Chapter 11: DTV Audio System (AudSys) API

258 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Audio System Constants

These constants are defined in tsaAudSys.h. They are designed to communicate configu-

ration specifications to the audio system.

Values for inputSource:

Values for decodeMode:

Speaker Configurations:

Values for processMode:

audSysInputElementaryStream 0

audSysInputAnalogIn 1

audSysInputDigitalIn 2

audSysDecodeModeAutoDetect 0 Not fully implemented

audSysDecodeModeAC3 1

audSysDecodeModePCM 2

audSysSpeakerConfig_PL 0 ProLogic encoded stereo

audSysSpeakerConfig_1_0 1 Center channel mono

audSysSpeakerConfig_2_0 2 Normal stereo

audSysSpeakerConfig_3_0 3 Stereo plus center speaker

audSysSpeakerConfig_2_1 4 Two front speakers, one surround speaker

audSysSpeakerConfig_3_1 5 Three front speakers, one suround speaker

audSysSpeakerConfig_2_2 6 Two front speakers, two suround speakers

audSysSpeakerConfig_3_2 7 Three front speakers, two suround speakers

audSysEffectsNone 0 Default

audSysEffectsTHX 1 Not implemented

audSysEffectsTheater 2 Not implemented

audSysEffectsHall 3 Not implemented

audSysEffectsStadium 4 Not implemented

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 259

11

 Values for compressionMode. See Dolby LIM, table 7.11 [1]:

Values for proLogicEnable:

Values for headphoneMode:

These values are used with the audSysConfig function to set the decode mode.

audSysCompDirect 0 No compression applied, requires analog dialog
normalization.

audSysCompMaximum 1 Line mode, No compression applied

audSysCompStandard 2 Line mode, full compression (default)

audSysCompLateNight 3 RF mode, fully compressed, with HF rolloff, and
11 dB gain.

audSysProLogicOff 0 Always off.

audSysProLogicOn 1 On whenever input is stereo.

audSysProLogicAuto 2 Enables PL if AC-3 stream is labeled as PL

audSysHeadphoneOff 0

audSysHeadphonePCM 1 (not implemented)

audSysHeadphone61937 2 (default)

audSysAutoDetectOn 0 (not implemented)

audSysAutoDetectForceAC3 1

audSysAutoDetectForcePCM 2

Chapter 11: DTV Audio System (AudSys) API

260 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tsaAudSysStatus_t

typedef struct {
 Int32 LFE_level;
 Bool audioInputIsPCM;
 UInt8 programSpeakerConfig;
 Bool programSubwoofIsOn;
 Bool programProLogicEncoded;
 UInt16 programDataRate;
 Int programSampleRate;
 UInt8 programBitStreamIdentification;
 UInt8 programBitStreamMode;
 UInt8 programCenterMixLevel;
 UInt8 programSurMixLevel;
 UInt8 programDialogueNormalization;
 Bool programLanguageCodeExists;
 UInt8 programLanguageCode;
 Bool programAudioProductionInfoExists;
 UInt8 programMixingLevel;
 UInt8 programRoomType;
 Bool programCopyrightProtected;
 Bool programOriginalBitstream;
 UInt8 numAc3Errs;
 UInt8 numArendErrs;
 UInt8 numMixerErrs;
 UInt8 numDigitizerErrs;
} tsaAudSysStatus_t, *ptsaAudSysStatus_t;

Fields

LFE_level Reflects the peak level of the signal present in the
LFE channel. The peak level is updated every five
milliseconds.

audioInputIsPCM False if the AC-3 decoder is running and it has
detected a valid AC-3 sync word in the bitstream.

programSpeakerConfig Reflects the format of the AC-3 audio stream as
encoded. The value will be one of the audSys-
SpeakerConfig constants defined above.

programSubwoofIsOn True if the AC-3 program stream includes an LFE
channel.

programProLogicEncoded True if the AC-3 program is encoded as stereo
with ProLogic encoding.

programDataRate The data rate of the AC-3 stream, in kilobits per
second.

programSampleRate The nominal sample rate of the incoming AC-3
stream, in Hertz.

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 261

11

numAc3Errs Records the number of errors reported by the
AC-3 decoder since last status check.

numArendErrs Records the number of errors reported by the
audio renderer since last status check.

numMixerErrs Records the number of errors reported by the
audio mixer since last status check.

numDigitizerErrs Records the number of errors reported by the
audio digitizer since last status check.

Description

This structure is used by the application to find out about the status of the audio system.

In particular, it retrieves information about an AC-3 encoded input stream. The com-

mand AUDSYS_COMMAND_GET_STATUS can be used to access an updated copy of this

structure.

Chapter 11: DTV Audio System (AudSys) API

262 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tsaAudSysSetup_t

typedef struct {
 UInt8 inputSource;
 UInt8 speakerConfig;
 UInt8 bassRedirMode;
 Bool subwoofOn;
 UInt8 proLogicEnable;
 UInt8 compressionMode;
 UInt8 effectsMode;
 Bool mixerBypass;
 UInt8 decodeMode;
 Bool noiseSequencerOn;
 Bool noiseCenterExtendedMode;
 Float noiseDwellTime;
 Bool plAutoBalanceOn;
 Bool plWideSurroundOn;
 UInt8 ac3KaraokeMode;
 ptsaInOutDescriptor_t esIod;
 ptsaClockHandle_t PCRClock;
 UInt32 audioPriorityBase;
 UInt16 crossoverFrequency;
 Int16 masterVolume;
 Int16 mainVolume;
 Int16 headphoneVolume;
 Int16 auxVolume;
 Int32 trim[6];
 UInt16 centerDelay;
 UInt16 surroundDelay;
 UInt16 echoDelay;
 Float dynRngScaleHi;
 Float dynRngScaleLow;
 Float sampleRate;
 tsaErrorFunc_t errorFunc;
 tsaProgressFunc_t progressFunc;
 UInt8 numMixPackets;
 UInt8 numArPackets;
 UInt8 numAiPackets;
 UInt8 numMixPrimeBuffers;
 UInt8 headphoneMode;
 UInt8 inversionRequired;
 UInt16 framesToMute;
 UInt16 syncThreshold;
 arSyncMode_t syncMode;
 UInt16 progressReportFlags;
 UInt16 errorReportFlags;
 UInt8 toneGenOn;
 UInt8 toneGenChannel;
 Float toneGenFrequency;
 Bool toneControlEnable;

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 263

11

 loudnessMode_t loudnessMode;
 Int alingmentVolume;
 Bool useSpdifArend;
 Int spdifChanPair;
 Int packetBase;
} tsaAudSysSetup_t, *ptsaAudSysSetup_t;

Fields

inputSource Select an input source for the audio system. Use
one of the audSysInputSource constants as
defined in tsaAudSys.h, and described above.

speakerConfig Select output speaker configuration. Use one of
the audSysSpeakerConfig constants as defined in
tsaAudSys.h, and described above.

bassRedirMode Bass redirection mode. As defined in tsaA-
mixDtv.h, and described in the section on
tsaAudSysConfig.

subwoofOn Enable or disable generation of LFE channel by
AC-3 decoder.

proLogicEnable Disable (0), enable (1), or automate (2) ProLogic
decoding. ProLogic decoding will only be applied
to stereo input streams. The automatic mode uses
the indication given in an AC-3 stream to control
the decoder.

compressionMode Dynamic range compression modes: See descrip-
tion under tsaAudSysInstanceConfig.

effectsMode Effects mode. Reserved. Set to zero.

mixerBypass If true, the mixer is bypassed and AC-3 is run in
stereo, 16-bit mode and connected directly to the
audio renderer.

decodeMode Controls how the decoder handles inputs.

audSysDecodeModeAc3 will force AC-3 decoding.

audSysDecodeModePCM will force PCM playback.

audSysDecodeModeAutoDetect is not yet imple-
mented.

noiseSequencerOn True to use noise sequencer as multi-channel
audio source. Used to setup Dolby Digital sys-
tems.

noiseCenterExtendedMode If true, center channel gets 50% more dwell time.

noiseDwellTime Dwell time in seconds for the Noise Sequencer.

plAutoBalanceOn True to enable ProLogic autobalance feature.
Default is True.

Chapter 11: DTV Audio System (AudSys) API

264 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

plWideSurroundOn True to enable ProLogic wide surround feature.
Default is False.

ac3KaraokeMode Sets mode of operation of AC-3 when Karaoke fea-
tures are in use. See AC-3 documentation.

esIod Pointer to IO Descriptor for Elementary Stream
input.

PCRClock The application supplies this clock to be used as
the reference for AV sync. The expected frequency
is 90 kHz. A Null entry disables AV sync.

audioPriorityBase Audio task priorities are given as offsets from this.
Valid range is 10–230. AC-3 is assigned this prior-
ity plus 3. ProLogic gets this plus 2. The mixer
gets priorityBase plus one.

The following eight parameters are passed to the audio mixer (AmixDtv). Refer to that
documentation for more information.

crossoverFrequency Crossover frequency for bass redirection, in hertz.
Values are expected to range from 60 to 150 Hz
(currently limited to the range from 80 to 120
Hz).

masterVolume Master output volume, in 0.01 dB.

mainVolume Main output volume, in 0.01 dB.

headphoneVolume Headphone output volume, in 0.01 dB.

auxVolume 0.01 dB.

trim Per channel volume trim, in 0.01 dB.

centerDelay Given in microseconds.

surroundDelay Given in microseconds

echoDelay Given in microseconds

dynRngScaleHi Dynamic range scale high.

dynRngScaleLow Dynamic range scale low. Dynamic range controls
are used by AC-3. Valid range is 0 to 1.0, with
negative values meaning “use defaults.”

sampleRate Sample rate, in Hertz. This is normally deter-
mined by the header of the AC-3 bitstream.

errorFunc Error callback function pointer.

progressFunc Progress callback function pointer.

numMixPackets Number of packets created in the queues at the
input of the mixer.

numArPackets Number of packets created in the queue connect-
ing the mixer and the audio renderer.

numAiPackets Number of packets created in the queues at the
output of the audio digitizer. Should be the same
as numMixPackets.

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 265

11

numMixPrimeBuffers The mixer can be configured to wait until this
many packets have been delivered by the AC-3
decoder before starting to present the audio. This
is only done when the input is from the audio
digitizer. Setting this to 19 packets allows AC-3
decode to start without glitches. It is OK to set
this to zero.

headphoneMode audSysHeadphoneOff causes the headphone out-
put to be zero. audSysHeadphonePCM causes the
headphone output to be a stereo mix of the main
output. audSysHeadphone61937 causes the SPDIF
output to be coded AC-3 data, as described in IEC
standard 61937.

inversionRequired Since some D/A converters have been found to
invert the polarity of the analog output, this
switch was added to correct for the inversion.

framesToMute When the renderer encounters a discontinuity in
the AV sync algorithm, the output is muted.
When the cause of the mute is removed, the mute
remains active for this many audio interrupts.
This mechanism allows users to avoid the choppy
mute-unmute-mute-unmute sequence that can be
noticed when changing bit streams.

syncThreshold When the audio renderer detects that we are “far”
out of lock, a more aggressive sync algorithm is
enabled. This parameter, given in clock ticks,
determines that transition. A normally reasonable
value is 3000, which translates to about one
frame at a 90 kHz clock.

syncMode Determines the behavior of the portion of the AV
sync algorithm. The legal modes are described in
the audio renderer’s documentation.
AR_Sync_None is appropriate if you are not deal-
ing with AV sync. AR_Sync_skip is appropriate if
you are syncing the audio to a reference clock
using time stamps.

progressReportFlags Not currently used. All appropriate progress
reports are always enabled.

errorReportFlags Used to enable or disable error reporting in the
various subsidiary components of the audio ren-
derer.

toneGenOn Non-zero if the user wishes the mixer to generate
a test tone rather than output the mixed version
of the input. Note that an input source is required
for the tone generator to work.

Chapter 11: DTV Audio System (AudSys) API

266 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

toneGenChannel A channel mask to control the tone generator.
The lowest bit is for the left channel. The channel
mapping is defined in tmalAmixDtv.h.

toneGenFrequency The test tone can be any frequency in the audio
range. If it is below 20 Hz, a noise source is
enabled as the test tone.

toneControlEnable Enables/disables the tone control of the mixer.
The amount of the bass/treble cut/boost can be
controlled by issuing appropriate commands to
the audio system as described in the Table 5.1
(Configuration Commands).

loudnessMode Enables/disables the ‘loudness’ filter of the mixer.
This filter has very little effect on loud sounds
(close to 0 dBFS). For the soft sounds, the filter
raises the low and high frequencies trying to com-
pensate for the subjective feeling of week bass/tre-
ble of such soft sounds. loudnessMode can
currently have values of AMIX_LOUDNESS_STATIC
(ON) or AMIX_LOUDNESS_OFF (default).

alignmentVolume The master and main volume controls can only
attenuate sounds (their values can be only
expressed as negative dBFS). Often it is important
to raise the volume of the soft sounds, however.
This can be accomplished by setting/controlling
the alignmentVolume, whose values can go posi-
tive. The alignmentVolume is set in 0.01 dB as
any other volume control.

The alignment volume is designed to be used by
system designers to align their audio channel
while tuning the product. The alignment volume
changes the position of the zero point. When the
alignment volume is zero dB or lower, the system
will never clip. As you raise the alignment gain to
a maximum volume of +18 dB, it becomes possi-
ble to saturate a full scale sound when trim and
tone controls are also maximized.

Default: 0.

useSpdifArend Instead of using the AO audio renderer (default),
force the output to the SPDIF renderer that is
present on TM1300 and TM2. Designed for use in
tests, not product.

Default: False.

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 267

11

spdifChanPair The selector of the SPDIF channel pair to be
played by the SPDIF renderer.

 0: Left and right channels.
1: Center and subwoofer.
2: Left and right surround channels.
3: Headphone channels.

Default: 0

packetBase When debugging, it can be useful to monitor the
packet ID that is in the header of each packet.
This setup entry allows the user to vary the base
of the audio packets so that it might not conflict
with another component.

Default: 0.

Description

This structure is used to initialize the audio system.

The call to tsaAudSysGetInstanceSetup returns a pointer to the internal copy of this

structure. Many of the values in this structure can also be changed using the tsaAudSys-

InstanceConfig function. More data about the controls may be found in that section.

Chapter 11: DTV Audio System (AudSys) API

268 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

DTV Audio System API Functions

This section presents DTV Audio System API functions.

Name Page

tsaAudSysOpen 269

tsaAudSysClose 269

tsaAudSysInstanceSetup 270

tsaAudSysInstanceConfig 271

tsaAudSysStart 279

tsaAudSysStop 279

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 269

11

tsaAudSysOpen

tmLibappErr_t tsaAudSysOpen(
 Int *instance
);

Parameters

instance Instance value is determined by this function call.

Return Codes

TMLIBAPP_OK Success.

Description

Open all audio system components.

tsaAudSysClose

tmLibappErr_t tsaAudSysClose(
 Int instance
);

Parameters

instance Instance value as returned by tsaAudSysOpen.

Return Codes

TMLIBAPP_OK Success.

Description

Close all audio system components.

Chapter 11: DTV Audio System (AudSys) API

270 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tsaAudSysInstanceSetup

tmLibappErr_t tsaAudSysInstanceSetup(
 Int instance
 tsaAudSysSetup_t *setup
);

Parameters

instance Instance value as returned by tsaAudSysOpen.

setup Pointer to a structure containing information
necessary to start the audio system.

Return Codes

TMLIBAPP_OK Success.

Description

Called once, before starting the audio system. Specify queues connecting AC-3 elemen-

tary stream source. Specify initial mode, and volumes. The first time this is called, a sig-

nificant amount of setup is performed. All of the InOutDescriptors that are used

internally are allocated.

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 271

11

tsaAudSysInstanceConfig

tmLibappErr_t tsaAudSysInstanceConfig(
 Int instance,
 UInt32 flags
 tmalControlArgs_t *config
);

Parameters

instance Instance value as returned by tsaAudSysOpen.

flags Always pass tsaControlWait.

config Pointer to a structure specifying how to change
the configuration of the operating audio system.

Return Codes

TMLIBAPP_OK Success. The actual return value from the target
component will be found in the retval field of the
config structure.

Description

Use to change the configuration of the operating audio system. Accepted commands are

listed as follows:

AUDSYS_COMMAND_GET_STATUS
The parameter field of the control structure is filled in with
the address of an updated AudSysStatus structure. This
address remains valid as long as the audio system is active.

AUDSYS_COMMAND_SET_INPUT
The input of the audio system can be set as

 audSysInputElementaryStream
 audSysInputAnalogIn
 audSysInputDigitalIn

These values are cast and passed directly in the parameter
field of the config structure.

AUDSYS_COMMAND_GET_INPUT
The currently selected input (as listed above) is returned in
the parameter field of the control structure.

AUDSYS_COMMAND_SET_SPEAKER_CONFIG
The Dolby standard speaker configurations are accepted.
Symbolic constants representing these are defined in
tsaAudSys.h, and are described above. These values are cast
and passed directly in the parameter field of the config
structure. This value is passed to the currently active

Chapter 11: DTV Audio System (AudSys) API

272 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

decoder, whether AC-3, ProLogic, or the noise sequencer. It
does not affect the operation of the mixer.

AUDSYS_COMMAND_GET_SPEAKER_CONFIG
The currently selected speaker configuration (see
AUDSYS_COMMAND_SET_SPEAKER_CONFIG above) is
returned in the parameter field of the control structure.

AUDSYS_COMMAND_SET_SUBWOOFER

AUDSYS_COMMAND_GET_SUBWOOFER
Set subwoofer ON (1) or OFF (0).

AUDSYS_COMMAND_SET_MUTE

AUDSYS_COMMAND_GET_MUTE Mute the output of the audio system at the renderer. Data
continues to flow.

AUDSYS_COMMAND_SET_COMPRESSION_MODE

AUDSYS_COMMAND_GET_COMPRESSION_MODE
Control the dynamic range compression implemented as
part of the Dolby Digital AC-3 decoder. Legal values are
defined in tsaAudSys.h:

audSysCompDirect
No compression is applied

audSysCompMaximum
Compression controlled by dynamic range scale parame-
ters.

audSysCompStandard
Compression appropriate for normal TV listening

audSysCompLateNight
Full compression suitable for late night TV viewing

AUDSYS_COMMAND_SET_DYNRANGESCALE

AUDSYS_COMMAND_GET_DYNRANGESCALE
Control the two parameters that allow customization of
dynamic range scaling. These are the “low cut” and “high
boost” parameters exported by the Dolby Digital AC-3
decoder. Higher values will yield more dynamic range com-
pression at the low and high end of the spectrum. Maxi-
mum value is 1.0. Minimum is 0.0. The parameter field of
the control structure holds the address of an array of two
floating point values.

AUDSYS_COMMAND_SET_EFFECTS_MODE

AUDSYS_COMMAND_GET_EFFECTS_MODE
Effects modes are not implemented.

AUDSYS_COMMAND_SET_PROLOGIC_MODE

AUDSYS_COMMAND_GET_PROLOGIC_MODE
audSysProLogicOff, audSysProLogicOn
Apply ProLogic decode to any two channel stream

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 273

11

audSysProLogicAuto
Apply ProLogic decode only to the output of an AC-3
decode that is labeled as ProLogic encoded.

These values are cast and passed directly in the parameter
field of the config structure.

AUDSYS_COMMAND_SET_PL_AUTOBALANCE

AUDSYS_COMMAND_GET_PL_AUTOBALANCE
A control for the ProLogic Decoder. The autobalance fea-
ture can be disabled. It defaults to enabled.

AUDSYS_COMMAND_SET_PL_WIDE_SURROUND

AUDSYS_COMMAND_GET_PL_WIDE_SURROUND
A control for the ProLogic Decoder. The surround channels
are normally band limited between 100 Hz and 7 kHz.
Enabling wide surround will disable the bandlimiting fil-
ters.

AUDSYS_COMMAND_SET_AC3_KARAOKE_MODE

AUDSYS_COMMAND_GET_AC3_KARAOKE_MODE
Control for Dolby Digital AC-3 decoder

AUDSYS_COMMAND_SET_HEADPHONE_MODE

AUDSYS_COMMAND_GET_HEADPHONE_MODE
When an 8-channel renderer is used, and the source is AC-3
data, the last channel pair can either be IEC61937 encoded
AC-3 data or it can be a PCM downmix of the decoded
AC-3 stream. In that case, three legal values are recognized
as the headphone mode:

 audSysaHeadphoneOff
 audSysHeadphone61937
 audSysHeadphonePCM

The requested value is cast as a Pointer and passed directly
as the parameter of the config structure.

AUDSYS_COMMAND_SET_AUTODETECT

AUDSYS_COMMAND_GET_AUTODETECT
When autodetect is turned on, the system will attempt to
determine automatically whether the input stream is PCM
format or AC-3. This is done by checking the “non-PCM
audio” bit in the S/P DIF subcode on digital audio in. Legal
values are:

 audSysAutoDetectOn
 audSysAutoDetectForceAC3
 audSysAutoDetectForcePCM

The requested value is cast as a Pointer and passed directly
as the parameter field of the config structure. This control is
expected to be used with digital audio input. In other cases,
it should be set to force the correct control mode. This con-
trol is not fully implemented. Board support may be miss-

Chapter 11: DTV Audio System (AudSys) API

274 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

ing to read the SPDIF subcode. A more sophisticated test for
AC-3 format data would look into the data stream. This is
not enabled.

A number of commands control volumes. Volume is speci-
fied in units of 0.01 dB. Zero is no gain. The maximum
value is 1200, or 12 dB of gain. This is a multiplication by 4
(approximately). No minimum value is specified, but a
value of –9600 will attenuate by 96 dB, effectively muting a
16-bit signal. –600 corresponds to a 6 dB attenuation, or a
multiplication by 0.5 (approximately).

AUDSYS_COMMAND_SET_MASTER_VOLUME

AUDSYS_COMMAND_GET_MASTER_VOLUME
The master gain is applied to the sum of the multichannel
input and the auxiliary input to the mixer. This should be
used as a master volume control. This version of the audio
system does not give access to the aux input of the mixer.
The integer volume is cast to a Pointer and passed directly
as the parameter field of the config structure.

AUDSYS_COMMAND_SET_MAIN_VOLUME

AUDSYS_COMMAND_GET_MAIN_VOLUME
The main volume is applied to the multichannel input to
the mixer. It is designed to be used in situations where the
more than one audio source is being mixed and displayed
through the speaker system. The integer volume is cast to a
Pointer and passed directly as the parameter of the config
structure.

AUDSYS_COMMAND_SET_HEADPHONE_VOLUME

AUDSYS_COMMAND_GET_HEADPHONE_VOLUME
When the two channel input of the mixer is used as a head-
phone channel, this control affects the volume of the head-
phone channel. It is disabled when the second mixer
output is used for IEC61937 formatted Dolby Digital (AC-3)
data. The integer volume is cast to a Pointer and passed
directly as the parameter field of the config structure.

AUDSYS_COMMAND_SET_AUX_VOLUME

AUDSYS_COMMAND_GET_AUX_VOLUME
The aux channel is not yet used. It is designed to allow a
secondary source, like an audible feedback from the user
interface, to be mixed into the master output. The integer
volume is cast to a Pointer and passed directly as the
parameter field of the config structure.

AUDSYS_COMMAND_SET_ALIGNMENT_VOLUME

AUDSYS_COMMAND_GET_ALIGNMENT_VOLUME
The volume of the master channel can only have negative
values up to 0 dB. Sometimes it is important to boost low
level sounds more than this control allows. Set alignment

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 275

11

volume allows user to set a volume offset, which can be a
positive number. This number has to be passed as a parame-
ter (in 0.01 dB). Get allows to read current alignment set-
ting. Please, note that high level sounds may saturate with
a positive alignment gain set.

AUDSYS_COMMAND_SET_TRIM

AUDSYS_COMMAND_GET_TRIM The trim controls are used to control the relative balance of
the audio channels. The trim should be controlled during a
speaker setup phase of system operation. When trim is con-
figured, the parameter field of the config structure holds a
pointer to an array of six 32-bit integers. The members of
the array are ordered in the standard L, R, C, Sub, Lsur, Rsur
order.

AUDSYS_COMMAND_SET_CENTER_DELAY

AUDSYS_COMMAND_GET_CENTER_DELAY

AUDSYS_COMMAND_SET_SURROUND_DELAY

AUDSYS_COMMAND_GET_SURROUND_DELAY
In the audio system, delays are specified in milliseconds.
The maximum value is 30 ms. The minumum value is zero.
Delays should be used to compensate for speaker positions
in a room, and they should be adjusted in a system setup
interface. The integer delay is cast to a Pointer and passed
directly as the parameter field of the config structure.

AUDSYS_COMMAND_SET_SAMPLERATE

AUDSYS_COMMAND_GET_SAMPLERATE
The set and get sample rate commands pass the address of a
floating point number.

AUDSYS_COMMAND_MODIFY_SAMPLERATE
The modify sample rate command passes the address of a
floating point number that is multiplied by the currently
set sample rate. This is designed to be used in systems
where the clock is locked to an external source, such as the
broadcast of MPEG audio and video. For example, the nom-
inal sample rate is 48000. The MPEG clock recovery code
has determined that the video clock should run at
27,000,010 Hz to regenerate the 90 kHz MPEG clock. The
audio sample rate can be modified by 27,000,010/
27,000,000 to compensate. In the end, this command will
call aoSetSrate with the a value that is a floating point
number times the nominal sample rate. It does not change
the nominal sample rate, so subsequent modifications are
still applied to the nominal sample rate. Since aoSetSrate
uses the board support package, it is up to the board
designer to ensure the function is efficient and callable
from interrupts.

Chapter 11: DTV Audio System (AudSys) API

276 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

AUDSYS_COMMAND_SET_BASS_REDIR_MODE
The audio mixer supports bass redirection as described in
the Dolby Licencee Information Manual. Version 1 of the
mixer implements a set of second order crossover filters.
The filter Q is 0.707, and the crossover frequency can be
controlled with another command. This command allows
the user to select one the values listed in under Mixer Values
on page 278.

AUDSYS_COMMAND_GET_BASS_REDIR_MODE
The currently selected bass redirection mode (as listed
above) is returned in the parameter field of the control
structure.

AUDSYS_COMMAND_SET_CROSSOVER

AUDSYS_COMMAND_GET_CROSSOVER
Given in Hertz. Max value is 500. Min Value is 10. No
bounds check is performed. The integer value is cast and
passed directly in the parameter field of the config struc-
ture.

AUDSYS_COMMAND_ENABLE_TONE_CONTROL

AUDSYS_COMMAND_DISABLE_TONE_CONTROL
Enables or disables the tone control filter.

AUDSYS_COMMAND_SET_BASS_GAIN

AUDSYS_COMMAND_GET_BASS_GAIN
Sets/gets the tone control bass boost/cut filter. The parame-
ter (float) values are given in dB in the range ±12 dB.
Requires passing the pointer to the parameter.

AUDSYS_COMMAND_SET_TREBLE_GAIN

AUDSYS_COMMAND_GET_TREBLE_GAIN
Sets / gets the tone control treble boost/ cut filter. The
parameter (Float) values are given in dB in the range ±12
dB. Requires passing the pointer to the parameter.

AUDSYS_COMMAND_ENABLE_LOUDNESS_CONTROL

AUDSYS_COMMAND_DISABLE_LOUDNESS_CONTROL
Enables or disables the loudness control filter. This filter has
very little effect on loud sounds (close to 0 dBFS). For the
soft sounds, the filter raises the low and high frequencies
trying to compensate for the subjective feeling of week
bass/treble of such soft sounds.

AUDSYS_COMMAND_GET_LOUDNESS_MODE
Passes the current setting of the loudness mode.

AUDSYS_COMMAND_ENABLE_ECHO

AUDSYS_COMMAND_DISABLE_ECHO
Enables/disables an echo effect to provide varying spacious-
ness. Stereo sounds only.

AUDSYS_COMMAND_SET_ECHO_DELAY

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 277

11

AUDSYS_COMMAND_GET_ECHO_DELAY
Controls the delay of the rear speakers for the echo effect.
Requires a pointer to the delay Float value in ms.

AUDSYS_COMMAND_ENABLE_NOISE_SEQUENCER

AUDSYS_COMMAND_DISABLE_NOISE_SEQUENCER
During the room setup phase, the noise sequence can be
used as a neutral source of sound for the adjustment of rela-
tive speaker levels. These commands take no parameters.

AUDSYS_COMMAND_ENABLE_NOISE_SEQUENCER_ROTATE
Start the noise sequencer rotating its noise clockwise
around the enabled channels. The noise sequencer must be
enabled first. Rotation always starts in the center channel.

AUDSYS_COMMAND_SET_NOISE_SEQUENCER_CHANNEL
If the noise sequencer is running, rotation is stopped and
the output is forced to the channel specified. Specify the
channel using the constants from tmalNoiseSeq.h, like
NS_OUTCHAN_CENTER. Place the value in the parameter
field of the control structure.

AUDSYS_COMMAND_SET_TIMEDELAY
The parameter value contains the number of clock ticks to
delay the audio against the video. The audio renderer ulti-
mately treats this as a signed integer.

AUDSYS_COMMAND_ENABLE_AV_SYNC_ADAPTATION

AUDSYS_COMMAND_DISABLE_AV_SYNC_ADAPTATION
Enable or disable the mechanism by which the audio ren-
derer varies the AV Sync time constant to find an appropri-
ate value. Useful as a debugging tool.

AUDSYS_COMMAND_GET_AV_SYNC_TIMECONSTANT

AUDSYS_COMMAND_SET_AV_SYNC_TIMECONSTANT
Change the AV Sync time constant while the system is run-
ning. Pass the address of a floating point number.

AUDSYS_COMMAND_GET_RANGE

AUDSYS_COMMAND_GET_STEP
These values allow a control program to use an integer scale
for setting the current value of the master volume and the
tone bass/ treble gains. Range returns a maximum and a
minimum values on the integer scale. The controller pro-
gram can operate on the integer values within this range.
The real dB values to be passed to the audioSystem are
n*step, where the step is a Float dB increment for the con-
trols, and n is an integer between the minimum and the
maximum values. The ‘get range’ command requires pass-
ing of a pointer to an Int minMax[2] array. First value in
this array should be a control ID (tsaAudSysControls_t). In
return the min/max values are placed in the table. The ‘get
step’ command requires passing of a pointer to the control

Chapter 11: DTV Audio System (AudSys) API

278 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

ID (tsaAudSysControls_t). Float step value will be returned
at this pointer. Currently only the master volume and bass/
treble gains are supported.

AUDSYS_COMMAND_SET_TM2_SPDIF_CHANN_PAIR

AUDSYS_COMMAND_SET_TM2_SPDIF_CHANN_PAIR
This command allows switching between the channel pairs
during the SPDIF playback on the TM1300 or TM2. A value
identifying the channel pair (0,1,2,or 3) has to be passed in
the parameter. The ‘Get’ command returns the current set-
ting.

Mixer Values

AMIX_bassRedirNone No bass redirection is applied.

AMIX_bassRedirHPF_all_a As described on page 54 of the Dolby LIM, High pass filter-
ing is applied to L, R, C, and surround outputs. All channels
are summed to the LFE channel. It is assumed that 15 dB of
gain will be added to the LFE channel in the analog output
stage. This is Dolby mode 1.

AMIX_bassRedirFullRangeLR_a
The alternative form of Dolby mode 2, as described on page
55 of the Dolby LIM. Full range speakers are available for
the front L and R channels. The other channels are high
pass filtered at the crossover frequency. The low frequency
energy (LFE) from the other channels is redirected into the
LFE channel. The final summing of the LFE into the L and R
channel (with associated gain) is assumed to be imple-
mented in the analog output stage.

AMIX_bassRedirFullRangeLRS_s
Dolby mode 3, as described on page 56 of the Dolby LIM:
Full range speakers are assumed for L, R, and surround
channels. The LFE from the center channel is redirected. A
subwoofer is assumed to be present.

AMIX_bassRedirFullRangeLRS_ns
Dolby mode 3, as described on page 56 of the Dolby LIM:
Full range speakers are assumed for L, R, and surround
channels. The LFE from the center channel is redirected.
Gains are set as if no subwoofer is present. The subwoofer
output is silent.

AMIX_bassRedirExtern As described on page 71 of the Dolby LIM: All channels are
given full range audio and the all channels are summed
into the LFE channel. Bass redirection is assumed to be han-
dled externally.

Chapter 11: DTV Audio System (AudSys) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part A 279

11

tsaAudSysStart

tmLibappErr_t tsaAudSysStart(
 Int instance
);

Parameters

instance Instance value as returned by tsaAudSysOpen.

Return Codes

TMLIBAPP_OK Success.

Description

The audio system is started, using the setup specified in the setup function. All compo-

nents are first stopped. Then they are connected as specified, and the necessary compo-

nents are started. A task is created and used to monitor the aspects of the system that

might change and necessitate a change to the setup.

tsaAudSysStop

tmLibappErr_t tmalArendAORenderBuffer(
 Int instance
);

Parameters

instance Instance value as returned by tsaAudSysOpen.

Return Codes

TMLIBAPP_OK Success.

Description

Stop all components of the audio system.

Chapter 11: DTV Audio System (AudSys) API

280 Book 6—Audio Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 6—Audio Support Libraries
	I/O and Control
	1: Audio Overview
	Introduction
	Device Libraries

	Board Support Package
	Application Libraries
	Architecture
	Filter Graphs

	Modules Types
	Renderers
	Digitizers
	Mixers
	Decoders
	Encoders
	Signal Processing Libraries

	Audio Systems

	2: Audio BSP
	Introduction
	Writing a BSP for Audio
	Parameter Structures
	boardAOParam_t
	boardAIParam_t

	BSP Config Structure
	initFunc
	termFunc
	setSRate / getSRate
	setVolume / getVolume
	getInput / setInput / getOutput / setOutput
	ConfigFunc
	getFormat
	Others

	How Is This Used?

	3: Audio Device Library
	Audio Device Library Overview
	Demonstration Programs
	Using the Audio Device Library
	Limitations
	Audio Input API Data Structures
	aiCapabilities_t
	aiInstanceSetup_t

	Audio Output API Data Structures
	aoCapabilities_t
	aoInstanceSetup_t

	Audio Input API Functions
	aiGetCapabilities
	aiGetCapabilitiesM
	aiGetNumberOfUnits
	aiOpen
	aiOpenM
	aiInstanceSetup
	aiChangeBuffer1
	aiChangeBuffer2
	aiClose
	aiStop
	aiStart
	aiSetInput
	aiGetInput
	aiSetVolume
	aiGetVolume
	aiSetSampleRate
	aiGetSampleRate
	aiGetFormat
	aiConfig

	Audio Output API Functions
	aoGetCapabilities
	aoGetCapabilitiesM
	aoGetNumberOfUnits
	aoOpen
	aoOpenM
	aoInstanceSetup
	aoChangeBuffer1
	aoChangeBuffer2
	aoClose
	aoStop
	aoStart
	aoSetOutput
	aoGetOutput
	aoSetVolume
	aoGetVolume
	aoSetSampleRate
	aoGetSampleRate
	aoConfig

	4: SPDIF Output Device Library
	SPDO API Overview
	Using the SPDO API
	Limitations
	SPDO API Data Structures
	spdoCapabilities_t
	spdoInstanceSetup_t

	SPDO API Functions
	spdoGetCapabilities
	spdoGetCapabilitiesM
	spdoGetNumberOfUnits
	spdoOpen
	spdoOpenM
	spdoInstanceSetup
	spdoClose
	spdoStop
	spdoStart
	spdoSetSampleRate
	spdoGetSampleRate
	spdoConfig

	5: Audio Digitizer (AdigAI) API
	Audio Digitizer API Overview
	Audio Digitizer Inputs and Outputs
	Audio Digitizer Errors
	Audio Digitizer Progress
	Audio Digitizer Configuration
	Audio Digitizer API Data Structures
	tmolAdigAICapabilities_t
	tmolAdigAIInstanceSetup_t

	Audio Digitizer API Functions
	tmolAdigAIGetCapabilities
	tmalAdigAIGetCapabilitiesM
	tmolAdigAIGetCapabilitiesM
	tmalAdigAIGetNumberOfUnits
	tmolAdigAIGetNumberOfUnits
	tmalAdigAIOpen
	tmolAdigAIOpen
	tmalAdigAIOpenM
	tmolAdigAIOpenM
	tmolAdigAIGetInstanceSetup
	tmolAdigAIInstanceSetup
	tmolAdigAIStart
	tmolAdigAIStop
	tmolAdigAIInstanceConfig

	6: Audio Renderer (ArendAO) API
	Audio Renderer API Overview
	Inputs and Outputs
	Errors
	TMLIBAPP_ERR_UNDERRUN
	TMLIBAPP_ERR_HIGHWAY_BANDWIDTH_ERR
	AR_ERR_BUF_TOO_LARGE

	Progress Function
	How to Use Audio Renderer
	How the Audio Renderer Works
	The Silence Buffer
	Raw Mode and Conservative Mode

	Formats in the Audio Renderer
	Synchronization Overview
	AV Sync Details

	Other Forms of Sync

	Audio Renderer API Data Structures
	arMode_t
	arConfigParam_t
	arProgressFlags_t
	arSyncMode_t
	arSyncState_t
	tmalArendAOCapabilities_t
	tmolArendAOCapabilities_t
	tmalArendAOInstanceSetup_t
	tmolArendAOInstanceSetup_t
	tmArendAOControlInfo_t

	Audio Renderer API Functions
	tmalArendAOGetCapabilities
	tmolArendAOGetCapabilities
	tmalArendAOGetCapabilitiesM
	tmolArendAOGetCapabilitiesM
	Parameters

	tmalArendAOGetNumberOfUnits
	tmolArendAOGetNumberOfUnits
	tmalArendAOOpen
	tmolArendAOOpen
	tmalArendAOOpenM
	tmolArendAOOpenM
	tmalArendAOClose
	tmolArendAOClose
	tmalArendAOInstanceSetup
	tmolArendAOInstanceSetup
	tmalArendAOStart
	tmolArendAOStart
	tmalArendAOStop
	tmolArendAOStop
	tmalArendAORenderBuffer
	tmalArendAOInstanceConfig
	tmolArendAOInstanceConfig

	7: SPDIF Renderer (ArendSpdif) API
	SPDIF Audio Renderer API Overview
	Supporting SPDIF digital inputs using the audio digitizer:
	Inputs and Outputs
	Errors
	TMLIBAPP_ERR_UNDERRUN
	TMLIBAPP_ERR_HIGHWAY_BANDWIDTH_ERR
	ARENDSP_ERR_INVALID_BUFFER_SIZE
	TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE

	Progress Function
	How to Use the Audio Renderer
	How the Audio Renderer Works
	Formats in the Audio Renderer
	Synchronization Overview
	AV Sync Details

	Muting

	SPDIF Audio Renderer API Data Structures
	arendSpdifConfigParam_t
	arendSpdifProgressFlags_t
	arendSpdifSyncMode_t
	arendSpdifSyncState_t
	tmalArendSpdifChannelStatus_t
	tmalArendSpdifCapabilities_t
	tmolArendSpdifCapabilities_t
	tmalArendSpdifInstanceSetup_t
	tmolArendSpdifInstanceSetup_t
	tmArendSpdifControlInfo_t

	SPDIF Audio Renderer API Functions
	tmalArendSpdifGetCapabilities
	tmolArendSpdifGetCapabilities
	tmalArendSpdifGetCapabilitiesM
	tmolArendSpdifGetCapabilitiesM
	tmalArendSpdifGetNumberOfUnits
	tmolArendSpdifGetNumberOfUnits
	tmalArendSpdifOpen
	tmolArendSpdifOpen
	tmalArendSpdifOpenM
	tmolArendSpdifOpenM
	tmalArendSpdifClose
	tmolArendSpdifClose
	tmalArendSpdifInstanceSetup
	tmolArendSpdifInstanceSetup
	tmalArendSpdifStart
	tmolArendSpdifStart
	tmalArendSpdifStop
	tmolArendSpdifStop
	tmalArendSpdifInstanceConfig
	tmolArendSpdifInstanceConfig
	tmalArendSpdifFormatTemplate
	tmalArendSpdifFormatBuffer

	8: Simple Audio Mixer (AmixSimple) API
	Simple Audio Mixer API Overview
	Background
	The Files
	The AspLpf Component

	Simple Audio Mixer Inputs and Outputs
	Simple Audio Mixer Progress
	Simple Audio Mixer Errors
	Simple Audio Mixer Configuration
	Simple Audio Mixer API Data Structures
	tmolAmixSimpleCapabilities_t
	tmolAmixSimpleInstanceSetup_t

	Simple Audio Mixer API Functions
	tmolAmixSimpleGetCapabilities
	tmolAmixSimpleOpen
	tmolAmixSimpleGetInstanceSetup
	tmolAmixSimpleInstanceSetup
	tmolAmixSimpleStart
	tmolAmixSimpleStop
	tmolAmixSimpleInstanceConfig

	9: Noise Sequencer (NoiseSeq) API
	Introduction
	Spectrum of the Pink Noise

	Noise Sequencer Inputs and Outputs
	Noise Sequencer Errors
	Noise Sequencer Progress
	Noise Sequencer Configuration
	Noise Sequencer AL Layer API Data Structures
	tmalNoiseSeqCapabilities_t
	tmalNoiseSeqInstanceSetup_t
	tmalNoiseSeqCommands_t
	tmalNoiseSeqOutChan_t
	tmalNoiseSeqDirection_t

	Noise Sequencer AL Layer API Functions
	tmalNoiseSeqGetCapabilities
	tmalNoiseSeqOpen
	tmalNoiseSeqClose
	tmalNoiseSeqInstanceSetup
	tmalNoiseSeqStart
	tmalNoiseSeqStop
	tmalNoiseSeqInstanceConfig

	Noise Sequencer OL Layer API Data Structures
	tmolNoiseSeqCapabilities_t
	tmolNoiseSeqInstanceSetup_t

	Noise Sequencer OL Layer API Functions
	tmolNoiseSeqGetCapabilities
	tmolNoiseSeqOpen
	tmolNoiseSeqClose
	tmolNoiseSeqGetInstanceSetup
	tmolNoiseSeqInstanceSetup
	tmolNoiseSeqStart
	tmolNoiseSeqStop
	tmolNoiseSeqInstanceConfig

	10: DTV Audio Mixer (AmixDtv) API
	DTV Audio Mixer Overview
	Background

	DTV Audio Mixer Inputs and Outputs
	Operation of the DTV Audio Mixer
	Prime Buffer
	Delay
	Bass Redirection

	DTV Audio Mixer Progress
	DTV Audio Mixer Errors
	DTV Audio Mixer Configuration
	DTV Audio Mixer API Data Structures
	tmolAmixDtvCapabilities_t
	tmolAmixDtvInstanceSetup_t

	DTV Audio Mixer API Functions
	tmolAmixDtvGetCapabilities
	tmolAmixDtvOpen
	tmolAmixDtvGetInstanceSetup
	tmolAmixDtvInstanceSetup
	tmolAmixDtvStart
	tmolAmixDtvStop
	tmolAmixDtvInstanceConfig

	11: DTV Audio System (AudSys) API
	DTV Audio System Overview
	Statement of Dolby Compliance
	New Features in Version 2
	Programmers Interface
	Required Board Support
	Related Documents

	DTV Audio System Inputs and Outputs
	DTV Audio System Errors
	DTV Audio System Progress
	DTV Audio System Configuration
	DTV Audio System Operation
	Resource Usage
	Text Memory
	Data Memory
	MIPS

	DTV Audio System API Data Structures
	Audio System Constants
	tsaAudSysStatus_t
	tsaAudSysSetup_t

	DTV Audio System API Functions
	tsaAudSysOpen
	tsaAudSysClose
	tsaAudSysInstanceSetup
	tsaAudSysInstanceConfig
	tsaAudSysStart
	tsaAudSysStop

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

