

Version 2.0 beta

AB

Book 6—Audio Support Libraries

Part B:

Codecs

©1999 Philips Semiconductors 10/08/99

Book 6—Audio Support Libraries, Part B

iii

Book 6—Audio Support Libraries
Part B: Codecs

Table of Contents

Chapter 12 Dolby Digital AC-3 (AdecAc3) API

Dolby Digital AC-3 Standard Overview .. 10

Composition of AC-3 Streams ... 11

AC-3 Decoding Scheme .. 12

AC-3 Synchronization Scheme ... 14

TriMedia AC-3 API Overview ... 14

The AL Layer .. 16

The OL Layer .. 18

Configuring the Decoder... 20

Setup of an OL Layer Decoder Application .. 20

Setup of an AL Decoder Application .. 24

Implementation Aspects ... 26

Frame versus Block-Oriented Decoding ... 26

Time Stamps .. 30

Time Stamps for the Secondary Stereo Output ... 30

Rejection of Expired Input Packets ... 31

Memory Allocation ... 31

Callback Function Requirements ... 31

Application Requirements and Limitations... 34

Input Processing .. 34

Output Processing Chain .. 34

System Calibration .. 36

Quality Assurance and Decoder Performance .. 36

Quality Assurance ... 36

Decoder Performance .. 37

AdecAc3 Inputs and Outputs.. 40

Inputs ... 40

Main Multichannel Output .. 40

Secondary Stereo Output ... 42

AdecAc3 Errors .. 44

AdecAc3 Progress ... 45

Table of Contents

iv

Book 6—Audio Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

AdecAc3 Configuration.. 46

AC-3 API Data Structures ... 49

tmalAdecAc3LibraryMode_t .. 50

tmAdecAc3ProgressFlags_t.. 51

tmAdecAc3AcMod_t... 52

tmAdecAc3LfeMod_t.. 53

tmAdecAc3SurMod_t ... 54

tmAdecAc3RoomType_t.. 55

tmAdecAc3CopyRight_t .. 56

tmAdecAc3CopyState_t... 56

tmAdecAc3StereoOutputMixMode_t... 57

tmAdecAc3OutConfig_t .. 58

tmAdecAc3CompMode_t ... 59

tmAdecAc3KaraokeMode_t ... 60

tmAdecAc3DualMonoMode_t .. 61

tmAdecAc3ConfigTypes_t .. 62

tmAdecAc3Capabilities_t.. 63

tmalAdecAc3InstanceSetup_t... 64

tmalAdecAc3InstanceConfig_t ... 66

tmolAdecAc3InstanceSetup_t... 67

tmAdecAc3HeaderInfo_t... 69

tmalAdecAc3Frame_t ... 71

AC-3 API Functions ... 73

tmalAdecAc3GetCapabilities ... 74

tmolAdecAc3GetCapabilities... 75

tmalAdecAc3Open... 76

tmolAdecAc3Open .. 77

tmalAdecAc3Close... 78

tmolAdecAc3Close... 79

tmalAdecAc3GetInstanceSetup.. 80

tmolAdecAc3GetInstanceSetup ... 81

tmalAdecAc3InstanceSetup... 82

tmolAdecAc3InstanceSetup... 84

tmalAdecAc3InstanceConfig ... 86

tmolAdecAc3InstanceConfig ... 88

tmalAdecAc3Start .. 89

tmolAdecAc3Start.. 90

tmalAdecAc3Stop .. 92

tmolAdecAc3Stop .. 93

tmalAdecAc3FindSyncword ... 94

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 6—Audio Support Libraries, Part B

v

tmalAdecAc3DecodeFrame.. 96

tmalAdecAc3MuteFrame... 98

Chapter 13 Pro Logic Decoder (AdecPl) API

Introduction...100

Principles of the Pro Logic Encoder ..100

Principles of the Pro Logic Decoder ...101

Special Considerations of the TriMedia Implementation102

Overview of the TriMedia Pro Logic Decoder Library ..104

Supported Packet Formats ..104

Decoder Configurations ..105

Using the OL Layer API ..105

Constraints on Input/Output Packets ..106

Time Stamps..107

Run Time Behavior ..107

Using the AL Layer API ...108

Operation in Streaming Mode..108

Operation in Non-Streaming Mode..109

Constraints on Input/Output Packets ..109

Time Stamps..109

Run Time Behavior ..110

Quality Assurance and Performance...110

Quality Assurance ...110

Decoder Performance ..110

Additional Requirements For a Complete Audio System..111

AdecPl Inputs and Outputs ...112

AdecPl Errors..112

AdecPl Progress...113

AdecPl Configuration ...113

Pro Logic AL Layer API Data Structures ..115

tmalAdecPlLibraryMode_t..116

tmalAdecPlConfigTypes_t...116

tmalADecPlCapabilities_t..117

tmalAdecPlSetup_t..118

tmalAdecPlConfig_t ..119

tmalAdecPlFrame_t ...121

Table of Contents

vi

Book 6—Audio Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

Pro Logic AL layer API Functions..122

tmalAdecPlGetCapabilities ...123

tmalAdecPlOpen ..124

tmalAdecPlClose...124

tmalAdecPlGetInstanceSetup..125

tmalAdecPlInstanceSetup...126

tmalAdecPlStart ..128

tmalAdecPlStop ..129

tmalAdecPlInstanceConfig ...130

tmalAdecPlDecode ..132

Pro Logic Operating System Layer API Data Structures ..133

tmolAdecPlCapabilities_t..134

tmolAdecPlInstanceSetup_t ..135

Pro Logic Operating System Layer API Functions...136

tmolAdecPlGetCapabilities...137

tmolAdecPlOpen ..138

tmolAdecPlClose ..138

tmolAdecPlInstanceSetup...139

tmolAdecPlGetInstanceSetup ...141

tmolAdecPlInstanceConfig ...142

tmolAdecPlStart..143

tmolAdecPlStop..144

Chapter 14 MPEG Audio Decoder (AdecMpeg) API

Overview...146

Introduction ..146

MPEG Compliancy ...146

Inputs and Outputs ...146

Real Time Behavior ..146

Input/Output Buffering...146

Time Stamps..147

Synchronization ...147

Errors ..147

Progress ..148

Configuration ..148

Using the MPEG Audio Decoder API ...148

The OL Layer ..148

Callback Function Requirements ...150

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 6—Audio Support Libraries, Part B

vii

MPEG Audio Decoder Data Structures..151

tmolAdecMpegCapabilities_t..152

tmAdecMpegProgressFlags_t ...152

tmAdecMpegMode_t ...153

tmAdecMpegLayer_t ..153

tmAdecMpegCopyright_t...154

tmAdecMpegOriginal_t ...154

tmAdecMpegProtection_t ..155

tmAdecMpegPrivate_t ...155

tmAdecMpegEmphasis_t..156

tmAdecMpegSecOutputMode_t..156

tmolAdecMpegInstanceSetup_t ..157

tmAdecMpegFormat_t...158

MPEG Audio Decoder Functions ..159

tmolAdecMpegGetCapabilities...160

tmolAdecMpegOpen ..160

tmolAdecMpegClose ..161

tmolAdecMpegGetInstanceSetup ...162

tmolAdecMpegInstanceSetup ..163

tmolAdecMpegInstanceConfig...164

tmolAdecMpegStart..165

tmolAdecMpegStop..166

Chapter 15 MPEG-1 Audio Encoder (AencMpeg) API

Introduction...168

Supported MPEG Modes ..168

Comparison of MPEG Audio Layers II and III ..168

AencMpeg1 Inputs and Outputs ...169

Run Time Behavior ..169

Performance ..170

AencMpeg1 Errors ..170

AencMpeg1 Progress ...171

AencMpeg1 Configuration ..171

Audio Encoder Data Structures..172

tmalAencMpeg1ConfigTypes_t ..173

tmalAencMpeg1Layer_t ..173

tmalAencMpeg1Copyright_t ...174

tmalAencMpeg1Protection_t ..174

tmalAencMpeg1Private_t ...175

Table of Contents

viii

Book 6—Audio Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

tmalAencMpeg1Original_t ...175

tmalAencMpeg1Emphasis_t..176

tmalAencMpeg1Capabilities_t..176

tmAencMpeg1ProgressFlags_t...177

tmalAencMpeg1InstanceSetup_t ..178

Audio Encoder Functions ..180

tmolAencMpeg1GetCapabilities ..181

tmalAencMpeg1GetCapabilities ..181

tmolAencMpeg1Open..182

tmalAencMpeg1Open..182

tmolAencMpeg1Close..183

tmalAencMpeg1Close ..183

tmolAencMpeg1GetInstanceSetup...184

tmalAencMpeg1GetInstanceSetup ...184

tmolAencMpeg1InstanceSetup..185

tmalAencMpeg1InstanceSetup ..185

tmolAencMpeg1Start ...186

tmalAencMpeg1Start ...187

tmolAencMpeg1InstanceConfig...188

tmalAencMpeg1InstanceConfig...189

tmolAencMpeg1Stop ...190

tmalAencMpeg1Stop..190

tmalAencMpeg1EncodeFrame ...191

©1999 Philips Semiconductors 10/08/99

 Book 6—Audio Support Libraries, Part B

9

12

Chapter 12

Dolby Digital AC-3 (AdecAc3) API

Note

This component library is not included with the basic TriMedia SDE, but is available
as a part of other software packages, under a separate licensing agreement. In ad-
dition, this algorithm is owned by Dolby Labs and an appropriate license must be
obtained for its use. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Topic Page

Dolby Digital AC-3 Standard Overview 10

TriMedia AC-3 API Overview 14

Configuring the Decoder 20

Implementation Aspects 26

Application Requirements and Limitations 34

Quality Assurance and Decoder Performance 36

AdecAc3 Inputs and Outputs 40

AdecAc3 Errors 44

AdecAc3 Progress 45

AdecAc3 Configuration 46

AC-3 API Data Structures 49

AC-3 API Functions 73

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

10

Book 6—Audio Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

Dolby Digital AC-3 Standard Overview

Dolby Digital AC-3 is a digital compression standard for audio signals that was devel-

oped by Dolby Laboratories, Inc. It is a standard intended for use in high-quality, multi-

channel audio environments, but it also supports low bit-rate stereo or mono audio

signal coding. Dolby Digital AC-3 application fields include digital television (DTV),

sound on laser disk and digital versatile disk (DVD), as well as general multimedia PC or

Internet applications. In addition to the pure compression feature required for efficient

storage or transmission of audio data, AC-3 data streams contain information on the

nature of the stream and conditions under which the data was recorded/sampled.

Figure 1

Structure of the Dolby Digital AC-3 Decoder

The standard supports a variety of different audio configurations. For example, an AC-3

decoder can map the incoming AC-3 bitstream onto the existing loudspeaker configura-

tion by downmixing the input channels to the appropriate number of output channels.

Furthermore, AC-3 provides the means to adjust the dynamic range and apparent loud-

ness of the decoded sound to compensate for various loudspeaker characteristics and lis-

tening environments. It is, for example, possible to maintain an equivalent loudness

level when switching from one program to another in digital TV applications using AC-3

as audio standard.

A special mode allows for generating a Dolby Surround-compatible stereo signal. This is

useful when someone wants to use the AC-3 decoder with an existing Dolby Surround or

Dolby Pro Logic receiver/amplifier. In addition , AC-3 supports a special Karaoke mode.

The AC-3 standard supports data rates ranging from 32 kbps to 640 kbps and sampling

frequencies of 32 kHz, 44.1kHz and 48 kHz. The time resolution of the employed filter

bank is 2.66 ms and the frequency resolution is 93.75 Hz at a sampling frequency of

48 kHz. According to Dolby, audio transparency is achieved at 320 kbps and upward in

5.1 channel mode. Dolby distinguishes between three different quality levels of AC-3

decoder implementations ranging from 16-bit through 20-bit resolution of the generated

PCM samples.

AC-3 data streams contain up to five independently coded full-bandwidth channels and

one low-frequency effects channel. shows an AC-3 audio environment that is set up with

five conventional speakers and one subwoofer for bass effects. For more information,

Dataout [0] (multichannel)

Datain [0]

AC-3

(queuing)
Dataout [1] (two-channel)

(queuing)

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99

 Book 6—Audio Support Libraries, Part B

11

12

refer to http://www.dolby.com or http://www.atsc.org. The AC-3 standard is document

A/52 in the terminology of the Advanced Television System Committee.

Figure 2

AC-3 audio environment

Composition of AC-3 Streams

The AC-3 bitstreams consist of frames that are coded independently of one another (see

). Each frame represents 1,536 PCM samples across all coded channels. This means that if

a sample rate of 48 kHz is applied, each frame represents 32 ms audio. All frames are of

equal size for 32 kHz and 48 kHz modes. In 44.1 kHz mode, a difference in length of 2 or

4 bytes between successive frames is possible. This is necessary because the data rate

divided by the number of frames per second cannot be represented by an integer num-

ber for some supported data rate values.

Figure 3

Frame structure

Subwoofer

Right Center Left

Surround LeftSurround Right

AC-3 Decoder

Audio
Block 1

Audio
Block 0

Audio
Block 3

Audio
Block 2

Audio
Block 5

Audio
Block 4

Sync CRC
#1

SI BSI CRC
#2

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

12

Book 6—Audio Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

Each frame begins with a bitstream information field that contains general information

(such as sample rate and channel configuration), and special information regarding the

coding strategies. The actual audio samples are located in 6 audio blocks, each of which

represents 256 samples across all coded channels. The structure of the audio blocks is

shown in . In addition to the audio blocks and bitstream information, two cyclic redun-

dancy checks (CRC) are placed in each frame in order to detect transmission errors.

Figure 4

Audio block structure

The audio blocks contain 256 coded frequency coefficients for each coded audio chan-

nel. These are used as input for an inverse frequency transform. The encoder splits the

frequency samples into exponents and mantissas, as is common in floating-point repre-

sentation. The exponents are coded with fixed data lengths. Bit-allocation for the man-

tissas is calculated by the decoder by using the exponents and additional bit allocation

parameters. This adaptive coding approach enables higher compression ratios than fixed

bit-allocation coding. Even higher compression can be achieved by sharing high-fre-

quency carrier components across channels, a technique called channel coupling.

AC-3 Decoding Scheme

 illustrates the AC-3 decoding process. The bitstream information decoding block

extracts information from the bitstream. This is used within the actual decoding process

by the computational blocks, and also by the application to correctly set up the audio

environment. Frame information (such as sample rate) and audio block information

(such as coding strategies) is obtained at this stage.

Block
Switch
Flags

Dither
Flags

Dynamic
Range

Control

Coupling
Strategy

Coupling
Coordinates

Exponent
Strategy

Exponents
Bit

Allocation
Parameters

Mantissas

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99

 Book 6—Audio Support Libraries, Part B

13

12

Figure 5

AC-3 Decoder data flow block diagram showing the functions blocks of the
decoder core. Dotted arrows represent control data and solid arrows represent
the AC-3 bitstream itself, as well as decoded samples in the time and frequency

domain.

The next step in the AC-3 decoding process is unpacking the exponents. Exponent cod-

ing is fixed, which means that they can be extracted by using the exponent strategy field

and fixed tables known to both encoder and decoder. The exponents are coded in groups

by 7-bit data words. After the exponents are decoded, the bit allocation for the mantissas

is computed, using bit-allocation information and the exponents. Calculation of the bit

allocation is done, in principle, by using a psycho-acoustic model, and is performed in

seven successive steps. Within these steps, the masking curve used by the encoder is

derived from an estimate of the log-spectral envelope of the audio block. It is obtained

from the values of the exponents. The resulting mantissas are then dequantized and

denormalized. The resulting frequency coefficients are in fixed-point format, which can

then be scaled with respect to the user’s requirements and compression parameters sup-

plied in the bitstream.

The actual inverse transform is a so-called Inverse Modified Discrete Cosine Transform

(IMDCT), which implements a time domain alias cancellation (TDAC) synthesis filter

bank. Refer to the literature for more information on this filter bank.

The next step in the decoding process is downmixing to an appropriate number of out-

put channels. This is necessary if the number of encoded channels differs from the num-

ber of loudspeakers connected to the decoder. Karaoke processing is also performed

within the downmixing if it is enabled.

Once the downmixing is complete, windowing is applied for anti-aliasing the audio sig-

nal. The last step is to overlap the first half of the windowed block with the second half

of the previous block. The overlapped MDCT of the encoder necessitates this step.

Exponent
Decoding

PCM Samples

Bitstream
Properties

AC-3 Bitstream

Bitstream Info
Decoding

Bit
Alloc

Mantissa
Decoding

Generation and
Scaling of
Frequency

Coefficients

AC-3 Decoder

Windowing Downmix
Inverse Freq.

Transform

User Configuration

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

14

Book 6—Audio Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

AC-3 Synchronization Scheme

As previously stated, an AC-3 decoder operates on a frame by frame basis. The length of

an encoded audio frame is between 128 bytes and 3,840 bytes, depending on the sam-

pling frequency and the data rate. It always starts with a 16-bit sync word. An AC-3

decoder must find a sync word prior to doing the actual decoding described in the previ-

ous section. A description of the structure of an AC-3 frame can be found in the earlier

section

Composition of AC-3 Streams

.

Together with the sync word, two CRC words are transmitted in every AC-3 frame. The

first one checks the first 5/8 of the frame’s data and the second one checks the rest. If one

CRC fails, the respective part of the frame will not be decoded and a special error con-

cealment algorithm will be applied instead. The worst-case situation from the decoder

perspective is if a corrupted frame conveys data that passes both CRC tests and has a

valid sync word. In this case, the decoding algorithm can suffer from misinterpretation

problems. By design, the probability of the occurrence of such a situation is quite low,

(for example, if the data rate is 384 kbps, the probability of false detected sync word

accompanied by successful CRC calculations is 0.000035%, which is once in 26 hours of

decoding).

In cases where synchronization or transmission problems occur during processing, an

AC-3 decoder conceals the error either by muting or by repeating the last correctly

decoded audio block. Dolby recommends repeating rather than muting for a certain

number of consecutively damaged blocks. If further frames are corrupted, muting may

be applied. The nature of the overlap add window in the last processing stage of the

decoder supports this type of error concealment; the TriMedia AC-3 decoder library sup-

ports this model. An application programmer integrating the AC-3 decoder library into

an application can choose the maximum number of repeated blocks in a row before

muting is applied.

TriMedia AC-3 API Overview

The TriMedia AC-3 decoding library is fully hardware-independent, thereby providing

the highest flexibility. Applications using the API must implement any hardware-specific

processing, particularly the input of AC-3 data and output of PCM data. Philips provides

a set of interface libraries for this purpose. The AC-3 data source could be, for example,

the PCI bus, the audio input interface, or, in special environments, the video input inter-

face. It could also be, of course, the output of another data-processing component, such

as an MPEG-2 demultiplexer.

 illustrates the AC-3 decoding library input and output streams. The TriMedia AC-3

decoder library implements a data-processing filter that has one input and two outputs.

It expects compressed data at its input and produces up to 6 channels of PCM samples at

the Main Multichannel Audio output. A Secondary Stereo output is optional, and can be

used in special consumer electronics application environments. It conveys either

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99

 Book 6—Audio Support Libraries, Part B

15

12

decoded stereo PCM samples or the uncompressed AC-3 data. It is possible to apply a

Dolby Surround Pro Logic compatible downmixing scheme. This data can be used, for

instance, to drive a headphone output. In the second case, the output provides the AC-3

data itself in a special format (IEC61937, also referred to as 1937 format in this docu-

ment), which supplies the AC-3 data at audio data rates and can be used to interface with

external decoders.

Aside from the pure data processing, the AC-3 library has functions that enable the con-

figuration of the decoder, (for example, number of output channels), and functions that

return properties of the compressed audio, (for example, the sampling rate). These prop-

erties are required to properly set up the audio-reproduction environment.

Figure 6

AC-3 library as data processing block. Solid arrows represent the input and
output data streams. Dashed arrows represent control data used to set up the

decoder itself and the environment of the decoder.

The TriMedia AC-3 decoding library implements the standard TSA API, which enables

application programmers to easily implement frame-oriented, as well as streaming-data,

processors. This API consists of two layers: the operating system-dependent OL layer and

the operating system-independent AL layer. In the following discussions, the OL layer is

also referred to as the OS library. The AL layer is also known as the AL library.

The reason for having two different library front ends (which actually are layered on

each other) is to provide the applications programmer with flexible interfaces on differ-

ent abstraction levels suitable for different application requirements. Philips recom-

mends that applications use the OL layer, rather than the AL layer, since the OL layer

supplies automatic data transmission and reception using a message-passing scheme.

The advantage is that applications connecting multiple OL libraries can be programmed

easily and quickly. The disadvantage is that a certain amount of overhead is introduced,

which consumes additional CPU time and memory.

Both forms of the AC-3 decoder library have a number of similarities. Both offer the

seven standard API functions (GetCapabilities, Open, Close, GetInstanceSetup, Instanc-

eSetup, Start, and Stop) with the name prefix tmolAdecAc3 or tmalAdecAc3, respectively.

In addition, the AC-3 library provides functions for operation in the so-called push or

non-streaming mode.

AC-3 Dec LibAC-3 Bitstream

AC-3 Bitstream Information

Main Multichannel Audio Output

Secondary Stereo Output

Errors, Progress

AC-3 User Configuration

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

16

Book 6—Audio Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

The AC-3 decoder works with instances. Multiple AC-3 decoders can be run at the same

time being identified by their instance. The current TriMedia AC-3 decoder library can be

instantiated up to ten times.

Both library forms are implemented following the principle of separating the pure data-

stream processing from the buffer handling, from control and command processing, and

also from error and progress reporting. Also, OS-dependent operations, (such as dynamic

memory allocs) are completely separated from the data-processing functions imple-

mented in the AL library.

An application programmer must decide whether to use the AL layer or the OL layer.

Implementing an application at the OL layer is easier and requires less development

time; however, there is an overhead cost (CPU load and memory requirements). On the

other hand, applications implemented using the AL library in non-streaming mode

might be faster. The disadvantage is that the programmer must now implement synchro-

nization and data packet processing which is otherwise masked by the streaming mode

APIs.

The furnished API does not match the interface format recommended by Dolby in their

DSP Software Interface Protocol document. This is because the Dolby interface does not

optimally match a media processor such as the TriMedia. It is intended for pure DSP

development. However, the same functionality is exposed by the TriMedia API. The

names of bitstream information fields and decoder configuration parameters are identi-

cal to those specified in Dolby’s interface. Therefore, no problems are anticipated for pro-

grammers, (who are used to working with the DSP Software Interface Protocol) to

develop applications using the TriMedia AC-3 decoder library.

The AL Layer

The operating system-independent library can be used in two different modes:

push mode

or

pull mode

. While the pull mode supports the streaming data model, the push mode

operates at the granularity of a single data frame.

In the push model, the AC-3 decoder library acts passively. This means it does not

actively request data or return data. All decoding actions are controlled by the applica-

tion built above the AC-3 decoder library. All buffer management and synchronization

issues must be managed by the application. shows the order in which the functions pro-

vided by the AL library are typically called when the decoder application is working in

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99

 Book 6—Audio Support Libraries, Part B

17

12

push mode (non-streaming). The operation mode of the AL library is selected within the

instance setup function. It is determined by a field of the instance setup struct.

Figure 7

Operation of an AL decoder in push mode. Shaded function blocks are to be
implemented by the application programmer. White blocks represent API
functions of the TriMedia AC-3 decoder library. Note that this is a simplified

block diagram.

First an instance of the decoder is obtained by

tmalAdecAc3Open

. The next step is the

configuration of the decoder instance. With

tmalAdecAc3GetInstanceSetup

 the applica-

tion obtains a pre-configured setup structure. This structure is then modified by the

application and returned to the decoder by calling

tmalAdecAc3InstanceSetup

. This con-

figures the decoder. After that, a loop

tmalAdecAc3FindSyncword

 and

tmalAdecAc3-

DecodeFrame

 is executed. If changes to the configuration of the decoder are required,

the function

tmalAdecAC3InstanceConfig

 can optionally be called. After finishing, the

application must finalize the decoder instance with

tmalAdecAc3Close

.

Using the AL library in pull mode results in the following order of library function calls

shown in . The path of the arrows shows the handling of the input and output data

streams and the control processing as error concealment which must be implemented by

tmalAdecAc3Open

tmalAdecAc3GetInstanceSetup

tmalAdecAc3InstanceSetup

Input Buffer Management

tmalAdecAc3FindSyncWord

tmalAdecAc3DecodeFrame

Output Buffer Management

tmalAdecAc3Close

tmalAdecAc3InstanceConfig

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

18

Book 6—Audio Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

the application programmer. Note that

tmalAdecAc3DecodeFrame

 is referred to as a Pro-

cessData function in the TriMedia Software Architecture.

Figure 8

Operation of an AL decoder in pull mode. Shaded function blocks are the
callback functions to be implemented by the application programmer. White
blocks represent API functions of the TriMedia AC-3 decoder library. Note that

this is a simplified block diagram.

The first steps in using the AL AC-3 decoder API in pull mode are the same as in push

mode: the instance of the decoder is obtained and then initialized. Once the decoder is

started by calling

tmalAdecAc3Start

, it runs in streaming mode until the function

tmalAdecAc3Stop

 is called either from one of the callback functions, an interrupt rou-

tine, or a task running concurrently. The call of

tmalAdecAc3Stop

 sets a stop flag, which

is checked by

tmalAdecAc3Start

. After leaving

tmalAdecAc3Start

, the current instance of

the AC-3 decoder must be finalized by calling

tmalAdecAc3Close

. While running the

decoder can be reconfigured by calling

tmalAdecAc3InstanceConfig

 from either a callback

function, an interrupt service routine, or a different task if an operating system is used.

The function

tmalAdecAc3Start

 does all input and output data processing by calling call-

back functions. The application programmer must supply callback functions for the AC-

3 decoder running in the AL pull mode. A more detailed description of the behavior of

tmalAdecAc3Start

 is given in a later section.

The OL Layer

The OL layer works in a similar fashion as the AL layer in pull mode. Unlike the AL layer,

default data-processing is based on message queues implemented using ISI’s pSOS+™

operating system. As a result, an application programmer using the OL layer must simply

set up the appropriate queues, and then connect inputs and outputs of each of the com-

tmalAdecAc3Open

tmalAdecAc3GetInstanceSetup

tmalAdecAc3InstanceSetup

tmalAdecAc3Close

tmalAdecAc3InstanceConfig

tmalAdecAc3Start

Callback functions
errorFunc
datainFunc
dataoutFunc
progressFunc

tmalAdecAc3Stop

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99

 Book 6—Audio Support Libraries, Part B

19

12

ponents along a processing chain. shows a block diagram describing the order of func-

tion calls in an application using the OL layer.

Figure 9

Operation of an OS decoder. White blocks represent functions provided by the
library. Functions on the left side are provided by the OS library; functions on the

right side belong to the AL library.

The creation of queues and allocation of packet memory can be done using the function

tsaDefaultInOutDescriptorCreate

 which is part of the Default library. Similarly, the

resources required for the control queue processing can be acquired by the application

using

tsaDefaultControlDescriptorCreate

.

As shown in , some of the OS layer library functions implement their functionality by

delegating to their respective AL layer library counterparts. The open and instance setup

functions do this directly by the use of a function call. A difference between AL layer and

OL layer programming is that an OL application must query for the library’s capabilities

in order to negotiate with connected components about supported TSA packet formats.

After setup and configuration of the decoder,

tmalAdecAc3Start

 is started as a pSOS task

created by

tmolAdecAc3Start

. The decoder core function

tmalAdecAc3Start

 then runs

parallel to the user application program. A decoder configuration change is possible after

the start of the decoder by calling

tmolAdecAc3InstanceConfig

. This function sends a

command via the command queue to its AL layer counterpart which then performs the

requested configuration change. Since the command queue is only read when data input

tmolAdecAc3GetCapabilities

tmolAdecAc3Open tmalAdecAc3Open

tmolAdecAc3GetInstanceSetup

tmolAdecAc3InstanceSetup

tmolAdecAc3Start

tmalAdecAc3InstanceSetup

tmalAdecAc3Start

Functions of the AL Layer Library

Default Callback
Functions

errorFunc
datainFunc
dataoutFunc
progressFunc

start as task

simple call

simple call

tmolAdecAc3InstanceConfig tmalAdecAc3InstanceConfig

command sent via queue

tmolAdecAc3Stop

tmolAdecAc3Close

Application Control Loop

tmalAdecAc3Close

simple call
Application

Functions of the OL Layer Library

Input/Output
Processing

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

20

 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

or output is performed, command execution is asynchronous. Command execution

occurs in the context of the decoder, while tmolAdecAc3InstanceConfig executes in the

context of the application. The user application can stop the AC-3 decoder by calling

tmolAdecAc3Stop which causes the decoder core function tmalAdecAc3Start to flush all

data packets that are kept and return. After that the associated task is destroyed. Note

that data still remaining in the input queue is returned unprocessed in the empty queue.

Configuring the Decoder

Before the decoding of an AC-3 bitstream can be started the decoder library needs to be

configured. This holds for both, streaming and non-streaming modes. Both modes sup-

ply a GetInstanceSetup and an InstanceSetup function. The purpose of the InstanceS-

etup functions is to provide the decoder with all required information of the data it will

receive at its input and what sort of data it is expected to send at its outputs. In addition

to this, the decoder receives all necessary configuration properties such as downmix set-

tings and dynamic range parameters.

Setup of an OL Layer Decoder Application

This section describes the setup of the AC-3 library with a sample application. It con-

nects the AC-3 decoder at its input side to the TriMedia File Reader component, and on

its output side to the TriMedia Audio Renderer component. The code is slightly modified

from the example program exolAdecAc3.c.

The above code segment shows the declarations of the variables used by the following

sample code. The operating system is initialized by tmosInit.

void tmosMain(){
 tmLibappErr_t rval;
 Int readerInstance, decoderInstance,
 arendInstance;
 ptmolFreadInstanceSetup_t readerSetup;
 ptmolAdecAc3InstanceSetup_t decoderSetup;
 ptmolArendAOInstanceSetup_t arendSetup;
 tmAudioFormat_t audioFormat;
 tsaInOutDescriptorSetup_t iodSetup;
 ptsaInOutDescriptor_t iodReaderDecoder;
 ptsaInOutDescriptor_t iodDecoderRenderer;
 ptmolFreadCapabilities_t frCaps;
 ptmolArendAOCapabilities_t arCaps;
 ptmAdecAc3Capabilities_t ac3Caps;
 ptsaControlDescriptor_t decoderCommand;
 tsaControlDescriptorSetup_t csetup;
 char FileName[80];
 tmosInit();

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 21

12

At first instances of the three involved components are acquired with the respective

Open functions. In addition, the components’ capabilities are obtained. They will be

used for the initialization of the queue packet formats.

The next step is the configuration of the format of the packets circulating between the

File Reader and the AC-3 Decoder. It is AC-3 data in raw format. Note that a dataSubtype

must be specified. The format manager requires this.

This format is used for the creation of an input/output descriptor which is shared

between the File Reader and the AC-3 Decoder. In this configuration, the AC-3 decoder is

the receiver of packets. The receiverIndex field contains the number of the input pin

which receives data packets after startup. Since the AC-3 decoder has only one input pin,

the value is always ADECAC3_MAIN_INPUT. The input/output descriptor pointer iodRea-

derDecoder obtained from the descriptor creation function is used later on for the setup

of the File Reader and AC-3 Decoder. The memory for the descriptor is allocated within

tsaDefaultInOutDescriptorCreate.

On its output side, the AC-3 decoder is connected to the Audio Renderer. The senderIn-

dex field is set to ADECAC3_MULTICHANNEL_OUTPUT. The second optional output pin of

the AC-3 decoder is not used in this sample application. It is important to set the tsaIO-

DescSetupFlagCacheMalloc flag, because otherwise cache coherency problems might

occur with the audio output hardware. The input/output descriptor pointer iodDecoder-

Renderer is used later on for the setup of the AC-3 decoder and the Audio Renderer. Note

that no format is specified by this input/output descriptor setup struct. However, the

 rval = tmolFreadOpen(&readerInstance); /* open file reader */
 rval = tmolAdecAc3Open(&decoderInstance); /* open decoder */
 rval = tmolArendAOOpen(&arendInstance); /* open audio renderer */
 tmolFreadGetCapabilities(&frCaps);
 tmolArendAOGetCapabilities(&arCaps);
 tmolAdecAc3GetCapabilities(&ac3Caps);

 audioFormat.size = sizeof(tmAudioFormat_t);
 audioFormat.hash = 0;
 audioFormat.referenceCount = 0;
 audioFormat.dataClass = avdcAudio;
 audioFormat.dataType = atfAC3;
 audioFormat.dataSubtype = apfGeneric;
 audioFormat.description = 0;
 audioFormat.sampleRate = 0.0;

 iodSetup.format = (ptmAvFormat_t)&audioFormat;
 iodSetup.flags = tsaIODescSetupFlagCacheMalloc;
 iodSetup.fullQName = "ac3f";
 iodSetup.emptyQName = "ac3e";
 iodSetup.queueFlags = tmosQueueFlagsStandard;
 iodSetup.senderCap = frCapsÐ>defaultCapabilities;
 iodSetup.receiverCap = ac3CapsÐ>defaultCapabilities;
 iodSetup.senderIndex = FREAD_MAIN_OUTPUT;
 iodSetup.receiverIndex = ADECAC3_MAIN_INPUT;
 iodSetup.packetBase = 0;
 iodSetup.numberOfPackets = MAX_PACKETS;
 iodSetup.numberOfBuffers = 1;
 iodSetup.bufSize[0] = CBUFSIZE;
 rval = tsaDefaultInOutDescriptorCreate(&iodReaderDecoder, &iodSetup);

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

22 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

queues between the decoder and the renderer supply PCM audio data at a particular sam-

ple rate. This sample rate value, however, is not available before the decoder starts. It is

encoded within the incoming AC-3 bitstream. Hence, an appropriate format for this

descriptor is installed by the decoder when it starts.

Once the input/output descriptors for the system are created, the setup of the individual

components can take place. The File Reader is now set up as the first component in the

processing chain.

For the initialization of the AC-3 decoder, a control descriptor is required. After the

decoder is started, the associated control queue can be used by the application to either

change internal settings of the decoder or obtain settings from the decoder. The function

tsaDefaultControlDescriptorCreate allocates this control descriptor and returns a pointer

to it as its first argument.

The AC-3 decoder is the next component to be configured. First a pre-configured

instance setup struct is obtained from the decoder component via tmolAdecAc3Get-

InstanceSetup.

Certain fields of the returned instance setup struct must be updated. Pointers to the two

input/output descriptors and to the control descriptor are stored in the instance setup

 iodSetup.format = Null;
 iodSetup.flags = tsaIODescSetupFlagCacheMalloc;
 iodSetup.fullQName = "pcmf";
 iodSetup.emptyQName = "pcme";
 iodSetup.queueFlags = tmosQueueFlagsStandard;
 iodSetup.senderCap = ac3CapsÐ>defaultCapabilities;
 iodSetup.receiverCap = arCapsÐ>defaultCapabilities;
 iodSetup.senderIndex = ADECAC3_MULTICHANNEL_OUTPUT;
 iodSetup.receiverIndex = ARENDAO_MAIN_INPUT;
 iodSetup.packetBase = 100;
 iodSetup.numberOfPackets = MAX_PACKETS;
 iodSetup.numberOfBuffers = 1;
 iodSetup.bufSize[0] = DBUFSIZE;
 rval = tsaDefaultInOutDescriptorCreate(&iodDecoderRenderer,&iodSetup);

sprintf(FileName, "cave.ac3");
rval = tmolFreadGetInstanceSetup(readerInstance,&readerSetup);
readerSetupÐ>defaultSetupÐ>outputDescriptors[FREAD_MAIN_OUTPUT]
 = iodReaderDecoder;
readerSetupÐ>fileName = FileName;
readerSetupÐ>defaultSetupÐ>priority = READER_PRIORITY;
rval = tmolFreadInstanceSetup(readerInstance,readerSetup);

csetup.commandQName = "ac3C";
csetup.responseQName = "ac3R";
csetup.queueFlags = tmosQueueFlagsStandard;
csetup.flags = 0;
rval = tsaDefaultControlDescriptorCreate(&decoderCommand,&csetup);

rval = tmolAdecAc3GetInstanceSetup(decoderInstance,&decoderSetup);

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 23

12

struct. The secondary stereo output pin is then disabled by assigning a Null pointer to its

output descriptor.

After the installation of the control and I/O descriptors, the callback function which are

implemented in the application must be installed. In this application a progress and an

error function are implemented as callback functions. The progress function reports

when a major change in the parameters of the incoming bitstream occurs. Refer to page

45 for more information on the progress function and its flags.

Another important field contains the priority value of the component. The priority

should be chosen with care because it affects the stability and performance of the appli-

cation.

The decoder requires information about the output format to be exposed by its output

pins. It gets this information via the tmolAdecAc3InstanceSetup_t fields pcmFormatOut0,

precisionOut0, formatOut1, and precisionOut1. See section AdecAc3 Inputs and Outputs for

detailed information on the supported configurations. In this particular application only

the pcmFormatOut0 field is used because the precisionOut0 field is redundant when the

packet format is a 16-bit PCM format; formatOut1 and precisionOut1 do not matter

because the second output is not used.

The configuration of the decoder’s data and control interfaces is finished with this step

in the example program. No modifications are made to the internal decoder configura-

tion which controls the actual signal processing. It can be altered by changing the set-

tings of the config structure. A pointer to this config structure is an element of the

instance setup struct. A downmix to stereo could for instance be switched on by:

Now that all necessary fields of the instance setup struct are updated the decoder setup

function can be called.

The last component to be configured is the Audio Renderer which is connected to the

main multichannel output of the AC-3 decoder. Its input descriptor is shared with the

AC-3 decoder’s main multichannel output. Note that the packet size DBUFSIZE of the

decoderSetupÐ>defaultSetupÐ>inputDescriptors[ADECAC3_MAIN_INPUT]
 = iodReaderDecoder;
decoderSetupÐ>defaultSetupÐ>outputDescriptors[ADECAC3_MULTICHANNEL_OUTPUT]
 = iodDecoderRenderer;
decoderSetupÐ>defaultSetupÐ>outputDescriptors[ADECAC3_TWO_CHANNEL_OUTPUT]
 = Null;
decoderSetupÐ>defaultSetupÐ>controlDescriptor = decoderCommand;

decoderSetupÐ>defaultSetupÐ>progressReportFlags = A3_PROG_REPORT_CHANGES;
decoderSetupÐ>defaultSetupÐ>progressFunc = decoderProgressFunc;
decoderSetupÐ>defaultSetupÐ>errorFunc = ac3_error_func;
decoderSetupÐ>defaultSetupÐ>priority = DECODER_PRIORITY;

decoderSetupÐ>pcmFormatOut0 = apfFiveDotOne16;

decoderSetupÐ>configÐ>outputMode = A3_OUTCHANCONFIG_2_0;

rval = tmolAdecAc3InstanceSetup(decoderInstance, decoderSetup);

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

24 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

PCM packets must be a multiple of 64 bytes. Otherwise the audio output device library

would assert.

Finally, all components are configured and ready to start. In principle, the order of start-

ing is not important. However, it is recommended to start the component first that

receives data last.

After stopping and closing the components a clean up of the two I/O descriptors and the

control descriptor is necessary.

Setup of an AL Decoder Application

This section describes how the AC-3 decoder must be configured to be used in non-

streaming mode at the AL layer. The source code fragments used below are taken from

the example program exalAdecAc3ns.c, which implements a file based AC-3 decoder. It

reads compressed AC-3 data from an input file, performs input data buffer management,

calls the core decoder on a frame by frame basis, and stores the decoded six channel

PCM samples in the output file output.pcm. The application configures the input pin and

the main multichannel output pin for this purpose.

The following structure variables are used during setup:

Note that static memory is allocated for the I/O descriptors. At the OL layer a default

helper function is used for creating I/O descriptors. This function is not available to AL

layer applications. It is the responsibility of the application to provide a set of properly

allocated I/O descriptors for the setup of the AC-3 decoder library.

The application needs to supply one format struct for the decoder input and one for the

decoder output. The format for the input side is raw data mode AC-3. In contrast to the

OL layer example, the value of the dataSubtype field does not matter in the AL example,

when the dataType is atfAC3.

arendSetupÐ>defaultSetupÐ>inputDescriptors[ARENDAO_MAIN_INPUT]
 = iodDecoderRenderer;
arendSetupÐ>defaultSetupÐ>errorFunc = arend_error_func;
arendSetupÐ>defaultSetupÐ>priority = AREND_PRIORITY;
arendSetupÐ>operationalMode = AR_MODE_CONSERVATIVE;
arendSetupÐ>maxBufferSize = DBUFSIZE;
rval = tmolArendAOInstanceSetup(arendInstance,arendSetup);

rval = tmolArendAOStart(arendInstance);
rval = tmolAdecAc3Start(decoderInstance);
rval = tmolFreadStart (readerInstance);

static tsaInOutDescriptor_t idesc, odesc0, odesc1;
static ptsaInOutDescriptor_t inputDescriptors[1], outputDescriptors[2];
static tmAudioFormat_t ac3Format, pcmFormat;
ptmalAdecAc3InstanceSetup_t ac3Setup;
Int status;

ac3Format.size = sizeof(tmAudioFormat_t);
ac3Format.dataClass = avdcAudio;
ac3Format.dataType = atfAC3;

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 25

12

For the decoder output a six channel 16-bit precision PCM format is prepared.

Next, a pre-configured instance setup structure must be obtained with the AL layer Open

and GetInstanceSetup functions.

The setup of the AC-3 decoder in non-streaming mode is a little bit more complex than

the setup of an OL layer decoder because the application has to create manually input/

output descriptors similar to those created by tsaDefaultInOutDescriptorCreate. This is

achieved by following code fragment. Pointers to the statically allocated input/output

descriptor pointer arrays are assigned to the respective fields of the instance setup struct

(first two lines of the following code fragment). This is necessary, because the current

implementation of tmalAdecAc3GetInstanceSetup does not allocate the memory for

these pointer arrays. However, this will be changed in future releases.

In non-streaming mode no strict format handling is required. The only fields that matter

for the input format are dataClass (always avdcAudio) and dataType (atfAC3 or atf1937).

In the main multichannel output format, the fields that matter are dataClass (always

avdcAudio), dataType (always atfLinearPCM), dataSubtype, and description (if 32-bit

dataSubtype is chosen). The second output is never used in non-streaming mode.

At the OL layer, a component connected to an output of the AC-3 decoder determines

the sampling rate by the format of the outgoing PCM packets. In non-streaming mode,

the decoder returns this information to the caller in its argument struct, refer to 1 and 1.

The instance setup struct is now configured and can be used to setup the decoder.

After the configuration is finished the actual decoding can be performed. Refer to

Figure 11 on page 28 and to The AL Layer on page 16 for further information.

ac3Format.dataSubtype = 0;
ac3Format.description = 0;
ac3Format.sampleRate = 0.0;

pcmFormat.size = sizeof(tmAudioFormat_t);
pcmFormat.dataClass = avdcAudio;
pcmFormat.dataType = atfLinearPCM;
pcmFormat.dataSubtype = apfFiveDotOne16;
pcmFormat.description = 0;
pcmFormat.sampleRate = 0.0;

status = tmalAdecAc3Open(&instance);
status = tmalAdecAc3GetInstanceSetup(instance, &ac3Setup);

ac3SetupÐ>defaultSetupÐ>inputDescriptors = inputDescriptors;
ac3SetupÐ>defaultSetupÐ>outputDescriptors = outputDescriptors;
ac3SetupÐ>defaultSetupÐ>inputDescriptors[ADECAC3_MAIN_INPUT]
 = &idesc;
ac3SetupÐ>defaultSetupÐ>outputDescriptors[ADECAC3_MULTICHANNEL_OUTPUT]
 = &odesc0;
ac3SetupÐ>defaultSetupÐ>outputDescriptors[ADECAC3_TWO_CHANNEL_OUTPUT]
 = NULL;
idesc.format = (ptmAvFormat_t)&ac3Format;
odesc0.format = (ptmAvFormat_t)&pcmFormat;
ac3SetupÐ>libraryMode = A3_LIB_MODE_PUSH;

status = tmalAdecAc3InstanceSetup(instance, ac3Setup);

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

26 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Implementation Aspects

This section describes some implementation aspects of the AC-3 decoder library, such as

granularity of processed data, decoder delays, formats of input and output data, along

with general hints for application programmers and examples of configurations.

Frame versus Block-Oriented Decoding

You must not be concerned with inner-frame-processing, such as CRC calculations and

handling of the audio blocks. This section describes the granularity of the data processed

by the AC-3 decoder library and provides an overview of some implementation details.

Another important issue discussed in this section is decoding delay.

The decoder delay of a complete AC-3 system is defined as the time between arrival of

the first byte of the compressed data and the display of the first decoded PCM sample

(see Figure 10).

Figure 10 Decoding delay of frame-oriented and block-oriented decoder applications.

Different application may have completely different delay requirements. These require-

ments are dominated primarily by synchronization issues. AC-3 will mostly be used

where video and lip synchronization must be maintained.

The difference between a frame and a block-oriented decoder is the moment in time

when the decoder starts decoding of the incoming AC-3 data. The frame-oriented

decoder starts decoding after a complete frame of AC-3 data has been received. Normally,

a frame-oriented decoder would be able to deliver first PCM samples after decoding of

the first audio block. In the TriMedia implementation, the AC-3 decoder returns the

1,536 PCM samples of a decoded frame as a single entity instead of as a series of 256

PCM samples blocks. The frame-oriented decoding is only supported by the AL library in

push mode.

A block-oriented decoder can start to decode after 5/8 of an AC-3 frame is received. This

is possible because 5/8 of a frame is exactly the range covered by the first CRC word. It is

guaranteed by the standard that this first part of the frame contains at least two com-

plete audio blocks. Thus, the first two blocks can be decoded while still receiving the

remainder of the compressed data. In data-streaming mode (pull mode), the TriMedia

AC-3 decoder library implements block-oriented decoding.

PCM Frame

Time

AC-3 Frame

AC-3 Decoder

Decoder Delay in
Block-Oriented Processing

Decoder Delay in
Frame-Oriented Processing

PCM Frame

AC-3 Frame

AC-3 Decoder

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 27

12

If the AC-3 library is intended to be used in an AC-3 decoder-only application, it must be

ensured that Dolby’s latency requirements are exactly met. Dolby defines the decoder

latency as follows:

The block period is the time period of one audio block and, therefore, dependent on the

sampling frequency:

Dolby chose 2/3 instead of 5/8 of a frame as the reference time until the decoding of the

frame can be started because this ratio is easier to handle. The time required to read the

data depends on the transmission mode. In continuous transmission mode, the time

derives from the block period as follows:

In contrast to continuous transmission mode, the time to read 2/3 of a frame in burst

transmission mode depends on the data rate of the transmission channel and on the AC-

3 bitstream data rate. Dolby considers only S/P DIF digital audio connections for such

transfers. S/P DIF is a digital audio interface standard normally used to convey stereo

PCM samples. The standard has been extended to convey compressed audio as well, but

still operating at normal audio data rates. Since the required bandwidth for compressed

audio is less than for uncompressed audio, the S/P DIF bitstream is split into blocks con-

taining relevant data and blocks containing stuffing bits. The blocks containing relevant

data are called bursts. A burst contains exactly one single frame of AC-3 data. The tempo-

ral distance between the starting points of two successive bursts corresponds to the time

period a burst represents (32.00, 34.83, or 48.00 ms). This time is the derived from the

number of samples per AC-3 frame divided by the sampling frequency. The time

required to read 2/3 of the frame is computed from the S/P data rate and from the size of

the AC-3 frame in 16-bit words, which is a function of sampling frequency and data rate.

The latency range is from 5.78 ms (32 kbps at 48 kHz) through 28.00 ms (640 kbps at

32 kHz). Fore more information on latency issues refer to the document Dolby AC-3

Multichannel Digital Audio Decoding System For Consumer Products, Version 1 as of October

10, 1995.

The data processing implemented by the push model or non-streaming TriMedia AC-3

decoder API is frame-oriented. That means the application built upon the library must

ensure that tmalAdecAc3DecodeFrame always gets a complete AC-3 frame within its

parameters struct. The application is responsible for the acquisition AC-3 data, setting up

the struct, and checking with help of tmalAdecAc3FindSyncword if a complete frame is

in the data referred to by the struct (ac3Packet->buffers[0].data field). Before calling tmal-

AdecAc3DecodeFrame, you must ensure that ac3Packet–>buffers[0].data + offset points

to the sync word of the next frame to be decoded. A successful execution of tmalAdec-

Ac3FindSyncword guarantees this.

Latency = (time to read 2/3 of a frame) + (Block Period)

Sampling Frequency 48.0 KHz 44.1 KHz 32.0 KHz

Block Period 5.33 ms 5.80 ms 8.00 ms

(time to read 2/3 of a frame) = 4 * (Block Period)
 => Latency = 5 * (Block Period)

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

28 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Figure 11 shows how the synchronization between the incoming data stream and the

AC-3 decoder library functions must be implemented in non-streaming (push) mode.

Note that the programmer must ensure that the AC-3 frame struct is set up properly

before calling the core decoder function tmalAdecAc3DecodeFrame.

Figure 11 Mode of operation of the decoder using the AL library in push (non-streaming)
mode. Shaded blocks represent functions to be implemented by the
programmer. White blocks stand for functions provided by the AC-3 decoder
library.

Obviously the delay of a decoder built up with the AL library in push mode adds up from

the time required to get the input frame and the time required to decode the frame. This

is acceptable for applications that do the video/audio synchronization as a separate task

on the TriMedia, or when the AC-3 data is delivered with meaningful time stamps.

In applications transmitting AC-3 data without any synchronization information, it is

important to keep the decoder delay in a certain range known to the rest of the audio/

video system. The maximum delays are well-defined for different application environ-

ments. Dolby defines the requirements in the document Dolby AC-3 Multichannel Digital

Audio Decoding System For Consumer Products, Version 1 as of October 10, 1995.

To keep the overall decoding delay low in non-streaming (push) mode, it is important to

implement a suitable input buffer management. The input buffer should be imple-

mented as a relatively small FIFO.

Applications using the TriMedia AC-3 decoder library in streaming mode (either in OL or

AL mode) can keep the decoding delay as low as possible since the core decoder function

Input Buffer Management

Setup of AC-3 Frame Structure

tmalAdecAc3FindSyncword

tmalAdecAc3DecodeFrame

Sync word found in search range?

Fatal errors during decoding?

No

Yes
tmalAdecAc3MuteFrame

Output Buffer Management

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 29

12

implemented in tmalAdecAc3Start works block-oriented. The delay is determined by the

granularity of the incoming AC-3 packets.

The larger the packets, the longer the decoder delay will be. At its input, the decoder

accepts any packet size. The tradeoff is that with smaller packets, communication and

internal synchronization overhead increases. The library would consume more CPU

cycles.

 illustrates the arbitrary size of the output PCM packets. Since the granularity of the

decoder output is a multiple of 256 samples times the chosen number of channels, set

the output packet buffer size accordingly. If you choose a smaller buffer size, the decoder

sends multiple packets after decoding of one AC-3 audio block. The last of those packets

may not be filled completely. This is possible since the data size of an audio packet may

be smaller than its buffer size. If the output packet buffer size is larger than 256 times the

number of channels, the decoder sends (via the dataout function) a complete PCM sam-

ples block when decoded. The remainder of the packet buffer is empty in this case.

Figure 12 Fullness of PCM packets.

Dolby’s latency requirements can be satisfied by TriMedia-based implementations, even

though some overhead in the reading of the AC-3 data exists compared to specialized

DSP solutions. However, the time being lost in the data-input processing can be compen-

sated by the decoder core because this is running 3 to 5 times faster than required. The

exact speed of the decoder does not need to be known exactly, since the synchronization

between input and output will be done on time-stamp basis. An audio input task pro-

vides the incoming S/P DIF samples with time stamps, which can be interpreted as pre-

sentation time stamps. Therefore, the Dolby latency tables must be known to this task.

This task also provides all other involved components with a reference clock. The AC-3

decoder then decodes the data and provides the output with the same time stamps.

Finally the audio renderer ensures that the decoded sound is displayed at the correct

• • •

AC-3 Packet

AC-3 Decoder

AC-3 Packet

AC-3 Packet

AC-3 Decoder

Block 5 Block 0

PCM Packets of Ideal Size (256 × No. Channels)

One completely
filled packet sent
per audio block

PCM Packets Smaller than Ideal Size

Multiple packets
sent per audio block

PCM Packets Larger than Ideal Size

Block 5 Block 0

Block 5 Block 0

One incompletely
filled packet sent
per audio block

AC-3 Decoder

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

30 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

time with respect to the presentation time stamps. Note that the current version of the

audio renderer does not support interpretation of presentation time stamps.

The current AC-3 library is fully functional for time-correct applications, since all syn-

chronization issues are to be implemented in components external to the AC-3 decoder

library.

Time Stamps

When used in streaming mode, the AC-3 decoder library is capable of the proper han-

dling of time stamps. All incoming time stamps are interpreted as presentation time

stamps (PTS). Decoding time stamps are not supported by the Ac-3 decoder library! The

decoder selects a time stamp from the incoming AC-3 packets and propagates this to the

outgoing PCM packets. If a valid time stamp is received it is assigned to the first PCM

samples packet of the next decoded AC-3 frame. If the input packet, however, contains

the beginning of an AC-3 frame and a valid time stamp, the time stamp is used for the

first PCM block of the present frame.

Figure 13 Assignment of Time Stamps

Figure 13 illustrates the time stamp assignment algorithm. The shaded packets represent

packets with valid time stamps. The first AC-3 data packet contains a valid time stamp

and it coincides with a frame start. It is therefore assigned to the first PCM packet. AC-3

packet number five contains the next valid time stamp. Since it is not aligned with a

frame start it is assigned to the first PCM packet of the next audio frame. This algorithm

is described in the ATSC standard.

Time Stamps for the Secondary Stereo Output

The handling of time stamps for the second output pin of the AC-3 decoder library

depends on the mode of operation. If the pin is used to provide a stereo (ProLogic)

downmix of the decoded audio signal, the PCM data packets receive the same time

stamps as those of the main multichannel output. If the output is, however, configured

to send IEC61937 formatted AC-3 packets, the time stamps need to be corrected. The

decoding delay of an external decoder must be taken into account in order to maintain

the synchronization between audio and video. Accordingly, the AC-3 decoder calculates

the delay based on the sampling frequency and the data rate of the AC-3 bit stream and

Frame 1

AC-3 Data Packets

Frame 2

1 2 3 4 5 6 7 8

Frame 3

PCM Sample Packets

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 31

12

subtracts it from the presentation time stamps attached to the IEC61937 data packets.

The time stamp correction requires the knowledge of the clock reference. It is only

applied when a clock handle is installed during the setup of the AC-3 decoder. Other-

wise, the time stamps for the 1937 packets stay unmodified.

Rejection of Expired Input Packets

In addition to the assignment of time stamps, the AC-3 decoder is also capable of reject-

ing input packets with expired time stamps. This functionality can be enabled by assign-

ing a clock handle during the setup of the AC-3 decoder. The clock handle is a field of

the default instance setup structure which also contains the callback function pointers.

When enabled, the rejection algorithm compares the time stamp to be assigned to the

next output packet with the current system time which is determined with the clock

handle. In an ATSC system, the system time is derived from the program clock reference.

If the value of the PTS equals the system time or is even greater, the current input packet

is marked as empty is send back on the empty input queue. No output data is produced

for the associated AC-3 frame. Then, the AC-3 decoder searches for new synch word to

continue decoding. Whenever an input packet is rejected the decoder’s error callback

function is called with the error message A3_ERR_PTS_EXPIRED.

Memory Allocation

All memory allocation for the AC-3 decoder is done during the configuration phase.

Operated at the OL layer, the decoder allocates all required dynamic memory in the

function tmolAdecAc3Open using calloc. During the processing no further memory allo-

cation is required. Therefore, no callback function for memory allocation or freeing need

to be installed. The dynamically allocated memory is freed by tmolAdecAc3Close.

When the AC-3 decoder library is used at the AL layer in either streaming or non-stream-

ing mode dynamic memory is allocated by the functions tmalAdecAc3Open and

tmalAdecAc3GetInstanceSetup. It is freed by tmalAdecAc3Close. As at the OL layer the

memory gets allocated by calloc.

Callback Function Requirements

This section describes the functionality implemented in the function tmalAdecAc3Start.

It is necessary for an application programmer to know under which conditions callback

functions are called, and what actions the library expects to be carried out by the call-

back functions. Figure 14, following, illustrates how tmalAdecAc3Start works.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

32 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Figure 14 Flow diagram of tmalAdecAc3Start. Gray boxes without black lined border
represent the callback functions called by the AL library. All other boxes stand
for subfunctions implemented in tmalAdecAc3Start.

At first, the function tmalAdecAc3Start performs a check to see if the setup has been

done and the instance ID is valid. If one of the checks fails, the function returns to its

caller with the error message TMLIBAPP_ERR_INVALID_INSTANCE or

TMLIBAPP_ERR_NOT_SETUP, respectively.

The decoder then goes into loop mode which it leaves only if either tmolAdecAc3Stop or

tmalAdecAc3Stop has been called. There are two ways to exit the start loop. Operated in

pull mode at the AL layer, a flag is set by tmalAdecAc3Stop. This stop flag is checked at

dataout function

dataout function

datain function

dataout function

dataout function

progress function

Read 5/8 of frame

STOP?

Extract stream info

CRC1

Send stream info

Decode block 0

Decode block 1

Read last 3/8 of frame

CRC2

STOP?

Decode block 2

Decode block 5

STOP?

Error in datain
function

datain function

Invalid value in
frame header

CRC failed

Error during
decoding

Error during
decoding

Error in datain
function

CRC failed

Error during
decoding

Error during
decoding

dataout function TMLIBAPP_OK

TMLIBAPP_OK

TMLIBAPP_OK

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 33

12

three locations within the start function—after receiving the first and second part of the

frame data, and at the end of the loop. In OL layer mode, the return values of the datain

and dataout callback functions are checked. If a return value is

TMLIBAPP_STOP_REQUESTED, the decoder also leaves its main processing loop. This is

part of the OL layer default stop mechanism and happens after tmolAdecAc3Stop has

been called.

As its first task in the loop, the decoder tries to fill the internal decoding buffer up to the

level that equals 5/8 of the current frame. This is the amount of data required to do the

first CRC calculation. If not enough data is available, the datain callback function gets

called. Dependent on the granularity of the input data packets, the datain function may

get called several times. By returning a value unequal to TMLIBAPP_OK, the datain func-

tion indicates that an error occurred during the reception of input data packets. The AC-

3 decoder then mutes the complete frame. It, therefore, calls the dataout function as

often as necessary to send six PCM blocks containing 256 PCM samples across all chan-

nels of the respective format of the output pin (see also Frame versus Block-Oriented

Decoding on page 26, which describes the output behavior of the decoder). After gener-

ating and sending of the PCM frame, the error callback function is called and gets as an

argument the error code previously received from datain function. Program execution

then continues at the end of the loop.

While searching for the first valid frame, the AC-3 decoder omits the muting.

All rectangular blocks of Figure 14 implement identical error handling. When an error

occurs in one of those blocks, muted PCM data is generated for the not yet decoded

audio blocks and sent by calling the dataout callback function. After that, the error call-

back function gets called. These callback function calls are not indicated in . It is not

required for a user of the API to implement special error processing. The decoder core

itself cares for producing the required amount of PCM data by muting or repeating of

audio blocks. It is possible to count the occurrences of certain error types in the error

callback function and to stop the decoder by calling of tmalAdecAc3Stop. This might be

useful if the input delivers only corrupted frames for a certain time period.

After successfully reading of the first part of the frame, the decoder checks whether the

stop function was called. If it was, the decoder calls the datain function to return the cur-

rently used packet as empty. This is required if queue-based data-transfer mechanisms

are used in the datain callback function. After that, tmalAdecAc3Start is left with the

return value TMLIBAPP_OK.

If the decoder continues, the next step is the extraction of the bitstream header field.

The bitstream information is used internally by the decoder and can be passed to the

application by the progress callback function. Since the internal checking of its validity

is not reliable, the CRC is calculated before this information is passed to the application.

If the first CRC test fails, six muted audio blocks are produced in the fashion described

previously, the error callback function is called with the error value

A3_ERR_CRC1_FAILED, and, finally, the program continues at the stop block at the bot-

tom of Figure 14.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

34 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

The bitstream information is then passed to the application via the progress callback

function. The user of the API determines how often this information shall be sent with

the progress flags A3_PROG_REPORT_FORMAT , A3_PROG_REPORT_CHANGES, and

A3_PROG_REPORT_EVERY_FRAME. Refer to section AdecAc3 Progress on page 45 for more

information about how to use these progress flags.

After positive CRC test, the first audio blocks are decoded. The decoder sends the PCM

packets on a block basis to the dataout callback function.

Now, the second part of the frame is decoded. The applied processing is the same as for

the first part, with the difference that four audio blocks are decoded instead of two, and

no further bitstream information is extracted. Finally, a check is made to see whether the

stop function was called. If not, the processing of the next frame is started.

The current version of the AC-3 decoder library uses only the datain, dataout, error, and

progress callback functions at the AL layer. No dynamic memory allocation is performed

within the main processing all. The required memory is allocated by the Open function.

Application Requirements and Limitations

This section discusses integration issues, including what components may be connected

to the TriMedia AC-3 library. Also discussed are what features must be implemented out-

side of the TriMedia library to implement a consumer product. Most of the following

considerations are taken from the document Dolby AC-3 Multichannel Digital Audio

Decoding System For Consumer Products, Version 1 as of October 10, 1995.

Input Processing

If one intends to use the TriMedia AC-3 decoder library for decoding AC-3 bitstreams

coming from external sources, it is necessary to provide an S/P DIF interface for the data

transmission. The TriMedia itself does not have such an audio interface, but it is possible

to convert the incoming S/P DIF signals to I2S signals using the Philips TDA1315 inte-

grated circuit. This chip provides a glueless interface to the TriMedia DSP and imple-

ments the interface conversion bidirectionally.

Output Processing Chain

In consumer products, some additional processing on the AC-3 decoder library output

must be carried out, as shown in Figure 15. An important requirement is for instance the

matching of the decoder output to the capabilities of the loud speakers connected to the

decoder device. This processing is determined by the bass reproduction capabilities of

the speakers and by their position in the room. Apart from mandatory signal-processing,

additional features can be implemented. Some examples include virtual surround pro-

cessing, reverberation processing to simulate theatre, hall, or stadium acoustics, and Pro

Logic decoding.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 35

12

Figure 15 Output processing function blocks. The three blocks within the Mixer
superblock are possible features of the TriMedia audio mixer library. The dashed
Noise Sequencer block is not used during normal operation. It is only used for
system calibration.

The first post-processing step on the AC-3 decoder output can be Pro Logic decoding.

This makes sense in case the AC-3 bitstream contains only a stereo signal that was Pro

Logic or Surround encoded prior to the AC-3 encoding. The Pro Logic decoder will be

provided by Philips as a separate TriMedia library. The field dSurMod indicates this. It is

returned by the progress callback function in the description field of the arguments. A

Pro Logic decoder decodes Pro Logic encoded signals by applying an adaptive matrix to

the two channels Lt and Rt. The result are four channels (L,C,R, and S). Optionally, the

surround channel can be split into two surround channels that are attenuated by 3 dB.

Dolby distinguishes between two Dolby Surround (Pro Logic) application environments:

home theatre and multimedia, PC-oriented solutions. The requirements are different

with respect to the processing of the surround channel. A Dolby Surround Multimedia

decoder skips the filters applied to the surround channel. The remainder of the process-

ing is identical. See http://www.dolby.com/multi/surreqrm.html for further details.

TriMedia’s Pro Logic decoder library will support both application environments.

All audio environment specific processing is carried out in the Audio Mixer, which is also

available in form of a TSSA library. Its task is it to adapt the output of the AC-3 or Pro

Logic decoder to the audio reproduction environment. It performs adequate crossover/

bass redirection filtering, which means that the bass content is distributed to the existing

loudspeakers with respect to their bass reproduction capabilities. That basically means

that channels connected to small speakers with limited bass capabilities are highpass-fil-

tered. The low-frequency content is then distributed to speakers with better bass repro-

duction, or directly to the subwoofer. The second major task of the Audio Mixer is the

delay of the surround and (for special listening environments) the center channel. The

reason for channel delays is that it is desirable to have the sound of the five main speak-

ers arriving simultaneously. For AC-3 decoding applications, a surround delay of up to 15

ms is required. For Pro Logic decoded signals, up to 30 ms is required, depending on the

Audio
Renderer

Audio
Mixer

6-channel
input

2-channel
input

Pro Logic
Decoder

Noise
Sequencer

multichannel
output

secondary
stereo output

AC-3
Decoder

System
Stream
Demux

Audio
Digitizer

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

36 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

relative position of the listener to front and surround speakers. the Audio Mixer also

implements trims for the individual channels and volume control. Another important

feature is that the mixer is capable of dealing with the secondary stereo output of the

AC-3 decoder. It is interleaving the channels, so that they be rendered accurately by the

audio renderer.

For headphone or stereo speaker environments, another special processing step might be

applied. This is known as stereo enhancement, virtual surround, or 3-D sound pro-

cessing. Its purpose is to produce a virtual 3-D positioning effect by mixing the available

channels down to two, and taking into account the head-related transfer function

(HRTF). This approach provides good results when the position of the listener is known

in advance, or when the employed processing is adapted to the approach. It doesn’t

work well for a wide hearing field.

Apart from HRTF processing, reverberation is a processing step that might be performed

in the audio system. This processing block would be executed after the Audio Mixer.

System Calibration

As a further component for both AC-3 and Pro Logic decoding applications, a test signal

generator is required. The calibration of the system can be done by using a pink noise

sequencer. Philips provides such a function block that will produce PCM packets. The

output of this function block can be connected to the mixer input.

Quality Assurance and Decoder Performance

This section describes how the quality and functionality of the AC-3 decoder library is

assured. Furthermore, the library performance is also analyzed.

Quality Assurance

The quality of the AC-3 library is assured by design of the software and an extensive test

suite. The decoder design was based upon the reference C code version 3.11 available

from Dolby. During the entire implementation and optimization phase, extensive com-

pliance tests were performed. During the implementation phase, a set of more than 400

test vectors covering almost all possible decoder states was used to assure compliance.

The tests were carried out with an automatic test environment generating reference PCM

outputs using the Dolby reference decoder, running with double-precision floating-point

arithmetic. These reference PCM outputs were compared against the output of the Tri-

Media AC-3 decoder. The comparison was done on sample basis in time domain. The

acceptance criterion was the highest absolute difference between the original samples

and the TriMedia output, which in all cases was at most one least-significant bit in 16-

and 18-bit mode. In 20-bit mode, some 2-bit differences occur.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 37

12

In addition to this testing in the time-domain, intensive tests were carried out in the fre-

quency domain, using Dolby’s audio precision 2 test suite. No differences to the refer-

ence results have been observed.

Apart from the testing of the implemented algorithm comprehensive tests of the TSSA

interface are performed to guarantee that the library is capable of dealing with all speci-

fied packet types.

Dolby Laboratories also evaluated the library core. According to Dolby’s test results, the

implemented algorithm is compliant with their class A product specification, which

means that the output precision is as high as 20-bit.

Furthermore, extensive listening tests were carried out with different applications built

upon the Dolby Digital AC-3 library.

Decoder Performance

This section provides an overview of the processor resources requirements for decoding

AC-3 streams under different conditions. During the tests, the processor load of the

decoder core was measured using two different test programs that were originally devel-

oped to perform the library compliance test in streaming and non-streaming mode, and

the OL layer example exolAdecAc3. While the two compliance test programs have a very

flexible interface capable of testing all possible decoder configurations, exolAdecAc3 is

relatively simple and therefore only a subset of the test modes were carried out with it.

All three programs measure the decoder performance using the TriMedia custom opera-

tors CYCLES and HICYCLES. To provide a processor speed independent value the results

are given in MIPS, assuming that a 100 MHz TriMedia processor accommodates 100

MIPS. All performance tests were executed on real TriMedia chips as opposed to simula-

tions.

During the tests with the compliance test programs only the performance of the decoder

core function was measured. This is tmalAdecAc3DecodeFrame in non-streaming mode

and tmalAdecAc3Start in streaming mode. It is obvious that the non-streaming mode

results are lower than those of the streaming mode because the required input data

buffer management is implemented by the application in non-streaming mode. It there-

fore contributes only to the streaming mode results because tmalAdecAc3Start imple-

ments it in a hidden way. The results of the AL layer streaming mode tests do not include

time spent in the callback functions.

In a real multitasking application using the AC-3 library at the OL layer, a certain over-

head is added due to task switches and the time spent in the default data input and out-

put functions. To provide an idea how big this overhead is, some test results are provided

which represent the amount of MIPS actually spent in the AC-3 task.

The measurements were performed on seven different AC-3 streams with different sam-

pling rates, data rates, and channel configurations. The example bitstreams 5voices, cave,

locomotive, and egypt are demo material available from Dolby. They can be sampled from

laser disk or DVD. The bitstreams wrst3841, music3 and music4 originate from a Dolby

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

38 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

test vector suite; wrst3841 is supposed to have worst-case characteristics with respect to

the load of a decoder.

Both AL layer tests were carried out with four different decoder configurations. The OL

layer test were performed with the first, second, and the fifth test configuration. The

Packet Type column describes the PCM packet format used to store the decoded sam-

ples. In 32 bit mode the output sample precision was set to 20 bits. The Downmix to

column contains the applied downmix operations for the test configurations and LFE

Decoding tells whether or not the LFE channel in the input bitstream, if present, is

decoded during the respective test. The 2nd Output column indicates is the stereo out-

put of the decoder is used and, if so, if it carries compressed AC-3 data in 1937 format or

stereo PCM data.

Table 1 Properties of the Test Streams

Test Stream Sampling Rate Data Rate Channel Config

5voices 48 kHz 384 kbps 5.1

cave 48 kHz 448 kbps 5.1

egypt 48 kHz 448 kbps 5.1

locomotive 48 kHz 448 kbps 5.1

wrst3841 48 kHz 384 kbps 5.1

music3 48 kHz 384 kbps 5.0

music4 44.1 kHz 192 kbps 2.0

Table 2 Test Configurations

Test Packet Type Downmix to LFE Decoding 2nd Output

Config1 apfFiveDotOne16 no Downmix On not used

Config2 apfFiveDotOne16 stereo, Pro Logic encoded On not used

Config3 apfFiveDotOne32 no Downmix On not used

Config4 apfStereo32 stereo, Pro Logic encoded Off not used

Config5 apfFiveDotOne16 no Downmix On atf1937

Table 3 Results of Non-Streaming Mode Test

Test Stream Config 1 Config 2 Config 3 Config 4 Config 5

5voices 23.16 MIPS 20.95 MIPS not tested not tested not tested

cave 23.54 MIPS 21.28 MIPS not tested not tested not tested

egypt 23.30 MIPS 21.03 MIPS not tested not tested not tested

locomotive 23.29 MIPS 21.07 MIPS not tested not tested not tested

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 39

12

The test results show clearly that a user of the AC-3 library must carefully decide whether

to use the AL or OL layer interface and choose the appropriate packet type for the

intended application. The size of the input and output packets also influences the

decoder performance. If the processor load caused by the decoder is not important it is

highly recommended to use the OL layer interface because of its ease of use.

wrst3841 24.88 MIPS 22.57 MIPS 25.34 MIPS 21.31 MIPS not tested

music3 24.04 MIPS 20.07 MIPS not tested not tested not tested

music4 13.97 MIPS not tested not tested not tested not tested

Table 4 Results of AL Layer Streaming Mode Test

Test Stream Config 1 Config 2 Config 3 Config 4 Config 5

5voices 24.01 MIPS 21.84 MIPS not tested not tested not tested

cave 24.58 MIPS 22.26 MIPS not tested not tested not tested

egypt 24.32 MIPS 22.08 MIPS not tested not tested not tested

locomotive 24.27 MIPS 22.03 MIPS not tested not tested not tested

wrst3841 25.70 MIPS 23.47 MIPS 26.16 MIPS 22.38 MIPS not tested

music3 25.13 MIPS 21.74 MIPS not tested not tested not tested

music4 14.81 MIPS not tested not tested not tested not tested

Table 5 Results of OL Layer Streaming Mode Test

Test Stream Config 1 Config 2 Config 3 Config 4 Config 5

5voices not tested not tested not tested not tested 29.00 MIPS

cave not tested not tested not tested not tested 29.50 MIPS

egypt not tested not tested not tested not tested 29.30 MIPS

locomotive not tested not tested not tested not tested 29.30 MIPS

wrst3841 not tested not tested not tested not tested 30.95 MIPS

music3 not tested not tested not tested not tested 29.70 MIPS

music4 not tested not tested not tested not tested 17.30 MIPS

Table 3 Results of Non-Streaming Mode Test

Test Stream Config 1 Config 2 Config 3 Config 4 Config 5

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

40 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

AdecAc3 Inputs and Outputs

The TriMedia AC-3 decoder library provides one input pin. While the decoder being

operated in streaming mode can handle both output pins, only one output is supported

in non-streaming mode.

Inputs

The input pin of the TriMedia AC-3 decoder library is capable of handling two different

AC-3 formats, atfAC3 and atf1937. The difference between these formats is the way AC-3

frames are placed in the bitstream formed of consecutive data packets. Both formats are

used for different application environments.

■ atfAC3 bitstreams consist of pure AC-3 data in form of adjacent frames. The data rate

is derived from the frame sizes and the sampling rate, which determines the number

of frames per time period. There is no additional data present. This data format is typ-

ically used in MPEG systems. A system stream demultiplexer is the source of the AC-3

data in this case.

■ atf1937 bitstreams consist of single AC-3 frames embedded in data blocks of 6144

bytes. The first 8 bytes of the data blocks form a preamble describing the type of data

and the length of the block. Next to the preamble comes the actual AC-3 frame. The

remainder of the data block is filled with zeros, the so called stuffing. This format is

compliant to the digital audio interface format IEC958 which is also known as S/P

DIF. The data rate is determined by the sampling frequency of the encoded AC-3 data.

In 44.1 kHz mode it equals the data rate produced by an audio CD player. This data

format is used in applications where the AC-3 data stream source resides in a system

external to the TriMedia processor, for instance a laser disc player or a DVD player.

Main Multichannel Output

The first output pin of the AC-3 decoder carries PCM audio samples in various formats

ranging from mono 16-bit to 6 channel 32-bit. It is also called “Main Multichannel

Channel Output” earlier in this document.

It is possible to map the encoded audio content of any AC-3 bitstream, which ranges

from 1 to 5 full bandwidth channels plus an optional subwoofer channel, to any number

of existing output channels. The configuration parameters outputMode and outLfeOn

determine the output configuration as described in depth on 1 and 1. It must be ensured

by the application that the format specified for the output descriptor of this output pin

matches the output configuration settings of the decoder. This means more specifically

that no channels may be produced by the decoder that are not present in the output

packet format.

The following table shows which outputMode and outLfeOn settings are supported

dependent on the selected packet type. If the chosen outputMode does not match the

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 41

12

used packet type, the error message A3_ERR_OUTPUT_MISMATCH is returned by

tmalAdecAc3InstanceSetup, tmolAdecAc3InstanceSetup, tmalAdecAc3InstanceConfig,

and tmolAdecAc3InstanceConfig.

The meaning of the channel abbreviations is as follows:

L = left

R = right

C = center

Lfe = subwoofer

S = surround (if only one surround channel is used; this channel is mapped to ls)

ls = left surround

rs = right surround

Enums are defined for both the values of outputMode and outLfeOn, refer to tmAdecAc3-

OutConfig_t and tmAdecAc3LfeMod_t.

Channels that are supported by the packet format but not generated by the decoder run-

ning in a particular output mode (outputMode and outLfeOn) are filled with zeros.

The AC-3 decoder provides two different output sample resolutions if one of the 32-bit

packet formats is chosen. It supports 18-bit and 20-bit precision. The precision is deter-

mined by the lower 8 bits in the description field of the first’s output descriptor’s format.

Table 6 Supported output formats for the first output

Packet Type Allowed Values for outputMode and
outLfeOn

Interleaved Channel
Order at Output

0 1 2 3 4 5 6 7 Lfe

apfMono16 • C

apfStereo16 • • L, R

apfFourCh_3_1_0_16 • • • • • • L, R, C, S

apfFourCh_2_2_0_16 • • • • L, R, ls, rs

apfFourCh_2_1_1_16 • • • • L, R, S, Lfe

apfFourCh_3_0_1_16 • • • • • L, R, C, Lfe

apfFiveDotOne16 • • • • • • • • • L, R, C, Lfe, ls, rs

apfMono32 • C

apfStereo32 • • L, R

apfFourCh_3_1_0_32 • • • • • • L, R, C, S

apfFourCh_2_2_0_32 • • • • L, R, ls, rs

apfFourCh_2_1_1_32 • • • • L, R, S, Lfe

apfFourCh_3_0_1_32 • • • • • L, R, C, Lfe

apfFiveDotOne32 • • • • • • • • • L, R, C, Lfe, ls, rs

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

42 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

A bitmask AVFORMAT_NUMBER_OF_BITS_MASK to access this value is provided in tmAv-

Formats.h. The masked value tells the number of significant bits within the 32 bit sam-

ples. The bits are stored right justified.

The format of the first output is normally not installed prior to the start of the decoder

because the sampling frequency is unknown and must be determined from information

stored in the incoming AC-3 bitstream. An application can specify during the setup

phase of the decoder what PCM format and precision the decoder should install later on

with the pcmFormatOut0 and precisionOut0 fields of the instance setup variable. The

default format is apfFiveDotOne16.

Secondary Stereo Output

The second output pin is optional and it is supported only in streaming mode. It is acti-

vated during instance setup if its output descriptor pointer is different from NULL. As its

name “Secondary Stereo Output,” used earlier in this document, leads to assume, it car-

ries audio data packets in stereo format. The task of this output is to provide either a sur-

round compatible downmixed version of the main audio output or AC-3 data encoded

in IEC958/1937 format.

As for the first output pin, the format for the second output can be selected in two differ-

ent ways:

■ the format information of the output descriptor is used,

■ the information stored in formatOut1, precisionOut1, stereoMixMode and

dualMonoMode1 is used.

If the output descriptor for the second output contains a format pointer different from

NULL, the decoder takes the respective information from this format structure. In this

case the dataType field determines whether the 1937 format or linear PCM is used. When

linear PCM is selected, the dataSubtype field must have either the value apfStereo16 or

apfStereo32. In 32-bit mode the least significant 8 bits of the description field determine

the output precision of the decoder. Supported values are 18- and 20-bit. It is determined

by the ProLogic bit in the description field of the format whether a ProLogic downmix is

performed or a regular stereo downmix. The respective bit position in the description

field is predefined as AVFORMAT_PROLOGIC_ENCODED.

If no format is present in the output descriptor when tmXlAdecAc3InstanceSetup is

called, the configuration of the output pin is performed based on the settings of the

formatOut1 and precisionOut1 fields of the instance setup variable; formatOut1 deter-

mines if the output carries compressed AC-3 data (atf1937) or stereo PCM data (atfLinear-

PCM). In the second case, the precisionOut1 field determines the dataSubtype of the

output format. This format will be installed by the decoder after the sampling frequency

information is obtained from the AC-3 bitstream. If the precision field contains the value

16 the output format data subtype is set to apfStereo16, otherwise apfStereo32. The type

of the stereo downmix is determined by the stereoMixMode field. The permitted values

are: A3_SECOND_OUTPUT_STEREO_MIX and A3_SECOND_OUTPUT_PROLOGIC_MIX. In

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 43

12

addition to the stereo downmixing mode and the sample precision, the dual mono

behavior of the second output can be determined with the instance setup field

dualMonoMode1. For its meaning, see page 61.

The downmixed stereo data can be used for a headphone connector. It could also be fed

to an external Dolby Surround receiver. This receiver is then capable of reproducing a

surround audio field.

Note
The second output always works in line out mode irrespective of the
compression mode setting for the main output!

Running in atf1937 format, the decoder performs a formatting of the raw AC-3 data

which is compatible with the S/P DIF format. This output can be used to connect to an

external AC-3 decoder. A possible application scenario is a product with build in speakers

and a digital audio output. If available, an external home theater system can be used

instead of the internal speakers. There are also a couple of products on the market that

provide only a stereo line output plus the digital output supplying the AC-3 data. The

amount of data produced in 1937 mode is identical to the amount produced in

apfStereo16 mode. Six data packets with a dataSize of 1024 bytes are sent at this output

pin for each decoded AC-3 frame. If the bufSize of the empty output packets is smaller

than 1024 bytes, the decoder asserts in debug mode. The application must ensure that

smaller packets are not used.

During normal operation the atf1937 data packets are sent in a sequence after the second

audio block of the AC-3 frame is decoded and the respective block of PCM samples is

sent at the main multichannel output pin. If internal decoding errors occur and muting

is applied, first all 1536 samples of the main multichannel audio output are sent at the

first output pin and then the AC-3 data is sent at the second output pin.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

44 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

AdecAc3 Errors

This section describes all errors that can be reported by the error callback function. The

error callback function is called from the AL layer start function which implements the

actual AC-3 decoding in streaming mode. Only the first three errors cause the decoder to

return from the decoding task. The other errors are non-fatal, the decoder continues to

work after execution of the error callback function.

TMLIBAPP_ERR_INVALID_INSTANCE AL instance is invalid.

TMLIBAPP_ERR_NOT_SETUP Decoder is not yet set up.

TMLIBAPP_ERR_ALREADY_STARTED The instance of the decoder is already started.

A3_ERR_SYNC_NOT_FOUND Decoder did not find a valid sync word within the
search range. The search range is the width of last
correctly decoded frame plus two bytes, or, if the
input format is atf1937, 6144 bytes. To maintain a
continuous data stream at the output the decoder
mutes one frame (1536 samples).

A3_ERR_DECODE_FATAL A fatal error occurred during the decoding of the
last block. The decoder performs muting of the
current audio block and for the rest of the frame
after returning from the error callback function.

A3_ERR_CRC1_FAILED The calculation of the first CRC derived a wrong
value. Depending on how many blocks have
already been repeated, block repeats or muting is
performed after the return from the error callback
function. The maximum number of repeated
blocks can be determined with the maxRepeat
field in the instance setup structure.

A3_ERR_CRC2_FAILED The calculation of the second CRC yielded a
wrong value. Therefore, for the last four blocks of
the current frame block repeats or muting is per-
formed after return from the error callback func-
tion.

A3_ERR_PTS_EXPIRED The valid time stamp, that has been received last,
is expired and the current input packet is there-
fore rejected. For more information, refer to the
section Rejection of Expired Input Packets on
page 31.

Aside from the first three error messages, all messages have an informative nature. The

application gets the information that something went wrong during the search for a new

sync word or during the actual decoding of AC-3 data. It is taken care of appropriate

error handling by the decoder. The application should implement special processing in

the case that no sync word could be found within a certain amount of input data. In this

case something goes wrong upstream.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 45

12

AdecAc3 Progress

The purpose of the progress function is to provide the application with information on

the properties of the AC-3 bitstream. This is required to properly set up the audio repro-

duction system and display relevant information. A user of the TriMedia AC-3 decoder

library can select between getting the bitstream information only once with the recep-

tion of the first AC-3 frame, for every frame, or only when important changes of the con-

figuration occur. This choice is made by setting the progressReportFlags in the

defaultSetup to one of the following values. Refer to section Setup of an OL Layer Decoder

Application on page 20 for an example on how to configure the progress function.

If none of the above values is assigned to the progressReportFlags field, the progress

report function will never be called by the decoder. If A3_PROG_REPORT_EVERY_FRAME

or A3_PROG_REPORT_CHANGES is chosen A3_PROG_REPORT_FORMAT is implicitly acti-

vated. The progress function indicates to the application which flag has triggered its call

via its second parameter. The time the progress function is called, the flag value is always

A3_PROG_REPORT_FORMAT.

A pointer to a structure of the type tmAdecAc3HeaderInfo_t returns the bitstream infor-

mation from the decoder to the application. The following code fragment shows how to

access the sampling frequency information within the progress callback function.

For more information on the fields of tmAdecAc3HeaderInfo_t, see page 69.

Table 7 Supported Progress Flags

progressReportFlags meaning

A3_PROG_REPORT_FORMAT Progress function reports bitstream format only for
the first frame and then never again.

A3_PROG_REPORT_EVERY_FRAME Progress function reports bitstream format for every
frame.

A3_PROG_REPORT_CHANGES Progress function reports bitstream format only when
either acMod, lfeOn, sFrequency, or dataRate
changed.

tmLibappErr_t decoderProgFunc(
 Int instId, UInt32 flags, ptsaProgressArgs_t args
){
 ptmAdecAc3HeaderInfo_t config;
 Float32 freq;
 config = (ptmAdecAc3HeaderInfo_t) argsÐ>progressCode;
 freq = configÐ>sFrequency;

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

46 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

AdecAc3 Configuration

The TriMedia AC-3 decoder library provides two different functions to change the con-

figuration during run-time. One is the AL layer function tmalAdecAc3InstanceConfig and

the other one is the OL layer function tmolAdecAc3InstanceConfig. They accept an iden-

tical set of commands. The difference between them is that the OL layer function exe-

cutes its commands delayed via an operation system control queue, as opposed to

tmalAdecAc3InstanceConfig which changes the internal decoder configuration directly

when it is called. In fact, the actual command execution takes place in tmalAdecAc3-

InstanceConfig in both cases, tmolAdecAc3InstanceConfig just implements the queue

handler.

The control queue is checked by the decoder every time a data packet is received or sent

but changes are only applied when the decoder starts to decode a new frame. A typical

delay of a configuration change is therefore up to 48 ms.

There are three different kinds of commands. An application can change the internal

decoder configuration, obtain information on the current values of internal configura-

tion parameters, and retrieve values for default settings. These default settings are pro-

vided for parameters that depend on the formats of the input/output descriptors.

Both config function have a pointer to a struct of the type tsaControlArgs_t as parameter

which consists of four fields:

The application writes one of the below described commands into the command field.

The parameter field is used to either send (_SET_ commands) a value to the AC-3 decoder

or receive (_GET_ commands) a value from it. In both cases type casts must be applied in

the application because the parameter field contains a void pointer.

The remaining two fields are not used by tmalAdecAc3InstanceConfig. Its OL layer coun-

terpart is using the timeout value for the access to the control queue. It is measured in

pSOS+ clock ticks. If its value is zero it waits forever. The retval field is filled by tmolAdec-

Ac3InstanceConfig with the return value of tmalAdecAc3InstanceConfig. The application

must check this value as well as the return value of tmolAdecAc3InstanceConfig which

indicates problems with the control queue.

An OL layer application must provide a control descriptor during the initialization phase

(before calling tmolAdecAc3InstanceSetup). The queues of this descriptor carry the com-

typedef struct tsaControlArgs {
 UInt32 command;
 Pointer parameter;
 tmLibappErr_t retval;
 UInt32 timeout;
} tsaControlArgs_t, *ptsaControlArgs_t;

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 47

12

mands between the application and the AC-3 decoder component. Refer to page 20 for

more information about the proper setup of the decoder.

The commands of Table 10 are used to retrieve recommended settings for the output

channel configuration dependent on the packet format of the output descriptor. This

could help to avoid configuration conflicts. If for instance the output format is apfFour-

Table 8 Commands to Change the Configuratio

Command Supported Values for Parameter

A3_CONFIG_SET_KARAOKE_MODE all values defined in
tmAdecAc3KaraokeMode_t

A3_CONFIG_SET_COMP_MODE all values defined in
tmAdecAc3CompMode_t

A3_CONFIG_SET_SUBWOOFER_ON no parameter required

A3_CONFIG_SET_SUBWOOFER_OFF no parameter required

A3_CONFIG_SET_OUTPUT_MODE all values defined in tmAdecAc3OutConfig_t

A3_CONFIG_SET_DUAL_MONO_MODE all values defined in
tmAdecAc3DualMonoMode_t

A3_CONFIG_SET_DYN_RNG_SCALE_HI values of the range [0.0 , 1.0]

A3_CONFIG_SET_DYN_RNG_SCALE_LOW values of the range [0.0 , 1.0]

A3_CONFIG_SET_PCM_SCALE_FACTOR values of the range [0.0 , 1.0]

Table 9 Commands to get Settings of current Configuration

Command Parameter needs cast to

A3_CONFIG_GET_KARAOKE_MODE tmAdecAc3KaraokeMode_t

A3_CONFIG_GET_COMP_MODE tmAdecAc3CompMode_t

A3_CONFIG_GET_SUBWOOFER_MODE tmAdecAc3LfeMod_t

A3_CONFIG_GET_OUTPUT_MODE tmAdecAc3OutConfig_t

A3_CONFIG_GET_DUAL_MONO_MODE tmAdecAc3DualMonoMode_t

A3_CONFIG_GET_DYN_RNG_SCALE_HI Float32

A3_CONFIG_GET_DYN_RNG_SCALE_LOW Float32

A3_CONFIG_GET_PCM_SCALE_FACTOR Float32

Table 10 Commands to get default Settings

Command Parameter needs cast to

A3_CONFIG_GET_DEF_SUBWOOFER_MODE tmAdecAc3LfeMod_t

A3_CONFIG_GET_DEF_OUTPUT_MODE tmAdecAc3OutConfig_t

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

48 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Ch_3_1_0_16 output mode A3_OUTCHANCONFIG_2_2 cannot be used since it produces

two surround channels. The packet format, however, supports only one surround chan-

nel. In this particular case the recommended output mode would be

A3_OUTCHANCONFIG_3_1 and the recommended LFE mode A3_LFE_OFF, since no sub-

woofer channel is supported by this packet format.

If a floating point value is to be sent to the decoder or to be received by the application,

a special casting mechanism is required. The dynamic range compression cut scale fac-

tor, for instance, can be set to 0.8 with the following operations:

If the application wants to obtain the current setting of this decoder parameter it must

do the following:

This casting is required because otherwise an implicit cast to integer would be performed

by the compiler.

For additional information refer to tmAdecAc3ConfigTypes_t on page 62, to tmalAdec-

Ac3InstanceConfig on page 86, and to tmolAdecAc3InstanceConfig on page 88.

Note
If tmolAdecAc3InstanceConfig is called within the context of the AC-3
decoder, the command gets executed immediately. This is the case, when
this function gets called from the AC-3 decoder progress function. The
queue mechanism is only used when the function call happens in a
separate task.

tsaControlArgs_t cargs;
Float32 fval = 0.8;
cargs.command = A3_CONFIG_SET_DYN_RNG_SCALE_HI;
cargs.parameter = *((Pointer *) &fval);
tmolAdecAc3InstanceConfig(decInstance, tsaControlWait, &cargs);

tsaControlArgs_t cargs;
Float32 fval;
cargs.command = A3_CONFIG_GET_DYN_RNG_SCALE_HI;
tmolAdecAc3InstanceConfig(decInstance, tsaControlWait, &cargs);
fval = *((Float32 *) &cargs.parameter);

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 49

12

AC-3 API Data Structures

This section presents the AC-3 Decoder device library data structures.

Name Page

tmalAdecAc3LibraryMode_t 50

tmAdecAc3ProgressFlags_t 51

tmAdecAc3AcMod_t 52

tmAdecAc3LfeMod_t 53

tmAdecAc3SurMod_t 54

tmAdecAc3RoomType_t 55

tmAdecAc3CopyRight_t 56

tmAdecAc3CopyState_t 56

tmAdecAc3StereoOutputMixMode_t 57

tmAdecAc3OutConfig_t 58

tmAdecAc3CompMode_t 59

tmAdecAc3KaraokeMode_t 60

tmAdecAc3DualMonoMode_t 61

tmAdecAc3ConfigTypes_t 62

tmAdecAc3Capabilities_t 63

tmalAdecAc3InstanceSetup_t 64

tmalAdecAc3InstanceConfig_t 66

tmolAdecAc3InstanceSetup_t 67

tmAdecAc3HeaderInfo_t 69

tmalAdecAc3Frame_t 71

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

50 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3LibraryMode_t

typedef enum {
 A3_LIB_MODE_PUSH,
 A3_LIB_MODE_PULL
} tmalAdecAc3LibraryMode_t;

Description

The decoder can be run in push mode or in pull mode (only in the AL layer). These are

legal values for the field libraryMode in tmalAdecAc3InstanceSetup_t. Push mode is also

known as non-streaming mode. Pull mode is also known as streaming mode.

For more information, refer to structures tmalAdecAc3InstanceSetup_t, tmalAdecAc3-

InstanceSetup, and to The AL Layer on page 16.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 51

12

tmAdecAc3ProgressFlags_t

typedef enum {
 A3_PROG_REPORT_FORMAT = 0x00000001,
 A3_PROG_REPORT_EVERY_FRAME = 0x00000002,
 A3_PROG_REPORT_CHANGES = 0x00000004
} tmAdecAc3ProgressFlags_t;

Description

These enums fulfill two purposes:

■ they are used as the progress flags that an application can set in the instance setup

structure to configure the decoder,

■ they are used by the progress function to indicate which event caused its call. When-

ever the progress function is called its flags parameter equals one of these enums.

To configure the decoder, these flags are assigned to the progressReportFlags in the

tsaDefaultInstanceSetup_t structure. Refer to Setup of an OL Layer Decoder Application on

page 20 for an example on how to configure the progress function.

When the A3_PROG_REPORT_FORMAT flag is set, the decoder calls the progress function

once after it successfully decoded the frame information of the initial frame. The argu-

ment ((ptsaProgressArgs_t)arg)–>progressCode is a pointer to a struct of type tmAdec-

Ac3HeaderInfo_t. It contains the header information of the frame to be decoded.

It is normally sufficient to propagate the bitstream information to an application only

when important changes occur. When the flag A3_PROG_REPORT_CHANGES is set, the

decoder calls the progress function when the first valid frame is found. After that, the

progress function is called, only when changes in either the channel configuration, the

data rate or the sampling rate occur. The progress function indicates the configuration

change by using A3_PROG_REPORT_CHANGES as the flags parameter. However, at its first

call the progress function is using A3_PROG_REPORT_FORMAT as the flags parameter.

When the A3_PROG_REPORT_EVERY_FRAME flag is set, the decoder calls the progress

function every time it decodes the bitstream information of a valid new frame. Likewise

for the flag A3_PROG_REPORT_CHANGES, the first call of the progress function is done

with A3_PROG_REPORT_FORMAT as the flags parameter.

For more information, refer to structures tmalAdecAc3InstanceSetup_t, tmalAdecAc3-

Start, as well as the sections Setup of an OL Layer Decoder Application and AdecAc3 Progress

earlier in this chapter.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

52 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmAdecAc3AcMod_t

typedef enum {
 A3_ACMOD_DUAL_MONO = 0x00000000,
 A3_ACMOD_1_0 = 0x00000001,
 A3_ACMOD_2_0 = 0x00000002,
 A3_ACMOD_3_0 = 0x00000003,
 A3_ACMOD_2_1 = 0x00000004,
 A3_ACMOD_3_1 = 0x00000005,
 A3_ACMOD_2_2 = 0x00000006,
 A3_ACMOD_3_2 = 0x00000007
} tmAdecAc3AcMod_t;

Description

These enum values are used to characterize the full bandwidth audio channel configura-

tion of the AC-3 bitstream currently decoded. Enums of this type are used in the acMod

field of tmAdecAc3HeaderInfo_t in conjunction with the progress callback function and

the non-streaming mode decoder function tmalAdecAc3DecodeFrame.

The channel configuration is as follows:

Table 11 Audio Coding Modes of an AC-3 bitstream

Value coded channels

A3_ACMOD_DUAL_MONO (1+1) dual mono

A3_ACMOD_1_0 (1/0) mono

A3_ACMOD_2_0 (2/0) stereo

A3_ACMOD_3_0 (3/0) left, center, right

A3_ACMOD_2_1 (2/1) left, right, sur

A3_ACMOD_3_1 (3/1) left, center, right, sur

A3_ACMOD_2_2 (2/2) left, right, left sur, right sur

A3_ACMOD_3_2 (3/2) left, center, right, left sur, right sur

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 53

12

tmAdecAc3LfeMod_t

typedef enum {
 A3_LFE_OFF = 0x00000000,
 A3_LFE_ON = 0x00000001
} tmAdecAc3LfeMod_t;

Description

These enum values are used to detect if a subwoofer channel is encoded in the current

AC-3 bitstream. An application can also use them to select whether or not the subwoofer

channel, if present, shall be decoded.

The progress function returns the information whether a subwoofer channel is present

in the current bitstream in the field lfeOn of the tmAdecAc3HeaderInfo_t struct. Refer

also to AdecAc3 Progress.

To configure the decoder either A3_LFE_OFF or A3_LFE_ON can be assigned to the out-

LfeOn field of tmalAdecAc3InstanceConfig_t before tmalAdecAc3InstanceSetup or

tmolAdecAc3Instance, respectively, is called.

The instance config function also uses these enums as parameter values when the respec-

tive command concerns the subwoofer channel. (See page 46.)

Table 12 Subwoofer Modes in tmAdecAc3HeaderInfo_t

Value Mode

A3_LFE_OFF LFE channel does not exist in stream

A3_LFE_ON LFE channel exists in stream

Table 13 Subwoofer Modes for the Decoder Configuration

Value Mode

A3_LFE_OFF LFE channel is not decoded

A3_LFE_ON LFE channel is decoded if it exists

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

54 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmAdecAc3SurMod_t

typedef enum {
 A3_SURMOD_NOT_INDICATED = 0x00000000,
 A3_SURMOD_NOT_ENCODED = 0x00000001,
 A3_SURMOD_ENCODED = 0x00000002,
 A3_SURMOD_RESERVED = 0x00000003
} tmAdecAc3SurMod_t;

Description

These enum values are used for stereo AC-3 bitstreams to determine whether or not the

stereo signal is Dolby Surround encoded. In the case that the signal is Surround encoded,

a Dolby Pro Logic decoder can be connected to the AC-3 output to produce a surround

sound field. Enums of this type are used as values for the field dSurMod in tmAdecAc3-

HeaderInfo_t.

Table 14 Dolby Surround Modes

Value Mode

A3_SURMOD_NOT_INDICATED unknown if audio is Surround encoded or not

A3_SURMOD_NOT_ENCODED audio is not encoded

A3_SURMOD_ENCODED audio is Surround encoded

A3_SURMOD_RESERVED reserved value

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 55

12

tmAdecAc3RoomType_t

typedef enum {
 A3_ROOMTYPE_NOT_INDICATED = 0x00000000,
 A3_ROOMTYPE_LARGE = 0x00000001,
 A3_ROOMTYPE_SMALL = 0x00000002,
 A3_ROOMTYPE_RESERVED = 0x00000003
} tmAdecAc3RoomType_t;

Description

Some AC-3 bitstreams contain information on the properties of the recording environ-

ment. The fields roomTyp and roomTyp2 (in 1+1 mode) of tmAdecAc3HeaderInfo_t are

using the values defined by tmAdecAc3LfeMod_t. These values are meaningful only

when audProdIE and audProdi2E, respectively, equal one.

In streaming mode this information can be obtained via the progress callback function,

and in non-streaming via tmalAdecAc3DecodeFrame.

Table 15 Room Type Modes

Value Mode

A3_ROOMTYPE_NOT_INDICATED Room type is not indicated

A3_ROOMTYPE_LARGE Production room with X curve monitor

A3_ROOMTYPE_SMALL Production room with flat monitor

A3_ROOMTYPE_RESERVED Reserved value

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

56 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmAdecAc3CopyRight_t

typedef enum {
 A3_COPYRIGHT_NOT_PROTECTED = 0x00000000,
 A3_COPYRIGHT_PROTECTED = 0x00000001
} tmAdecAc3CopyRight_t;

Description

These are the possible values of the copyrightb field of the struct tmAdecAc3Header-

Info_t. They determine whether or not the audio content of the AC-3 bitstream is pro-

tected by copyright.

In streaming mode this information can be obtained via the progress callback function,

and in non-streaming via tmalAdecAc3DecodeFrame.

tmAdecAc3CopyState_t

typedef enum {
 A3_COPYSTATE_COPY = 0x00000000,
 A3_COPYSTATE_ORG = 0x00000001
} tmAdecAc3CopyState_t;

Description

These are the possible values of the origbs field of the struct tmAdecAc3HeaderInfo_t.

They determine whether or not the audio content of the AC-3 bitstream is an original

bitstream or a copy of another bitstream.

In streaming mode this information can be obtained via the progress callback function,

and in non-streaming via tmalAdecAc3DecodeFrame.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 57

12

tmAdecAc3StereoOutputMixMode_t

typedef enum {
 A3_SECOND_OUTPPUT_STEREO_MIX = 0x00000000,
 A3_SECOND_OUTPUT_PROLOGIC_MIX = 0x00000001
} tmAdecAc3CopyState_t;

Description

These are the possible values of the stereoMixMode field of the structs tmalAdecAc3-

InstanceSetup_t and tmolAdecAc3InstanceSetup_t. They determine whether a regular ste-

reo or a Dolby ProLogic Surround compatible downmix is performed on the second

output when active.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

58 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmAdecAc3OutConfig_t

typedef enum {
 A3_OUTCHANCONFIG_SUR = 0x00000000,
 A3_OUTCHANCONFIG_1_0 = 0x00000001,
 A3_OUTCHANCONFIG_2_0 = 0x00000002,
 A3_OUTCHANCONFIG_3_0 = 0x00000003,
 A3_OUTCHANCONFIG_2_1 = 0x00000004,
 A3_OUTCHANCONFIG_3_1 = 0x00000005,
 A3_OUTCHANCONFIG_2_2 = 0x00000006,
 A3_OUTCHANCONFIG_3_2 = 0x00000007
} tmAdecAc3OutConfig_t;

Description

These enum values are used to select how many full bandwidth output channels are gen-

erated by the decoder. If the bitstream contains a channel configuration which does not

match the selected output configuration downmixing is applied. Enums of this type are

used in the outputMode field of tmalAdecAc3InstanceConfig_t to configure the decoder

during the setup phase. During run-time the output configuration of the decoder can be

re-configured by calling either tmalAdecAc3InstanceConfig or

tmolAdecAc3InstanceConfig with the command A3_CONFIG_SET_OUTPUT_MODE. Infor-

mation on the current output channel configuration and an optimal output configura-

tion depending on the output descriptor format can be obtained with the commands

A3_CONFIG_GET_OUTPUT_MODE and A3_CONFIG_GET_DEF_OUTPUT_MODE.

The channel configuration is as follows:

Table 16 Audio Coding Modes of an AC-3 bitstream

Value Coded Channels

A3_OUTCHANCONFIG_SUR (2/0) stereo Surround compatible encoded

A3_OUTCHANCONFIG_1_0 (1/0) mono

A3_OUTCHANCONFIG_2_0 (2/0) stereo

A3_OUTCHANCONFIG_3_0 (3/0) left, center, right

A3_OUTCHANCONFIG_2_1 (2/1) left, right, sur

A3_OUTCHANCONFIG_3_1 (3/1) left, center, right, sur

A3_OUTCHANCONFIG_2_2 (2/2) left, right, left sur, right sur

A3_OUTCHANCONFIG_3_2 (3/2) left, center, right, left sur, right sur

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 59

12

tmAdecAc3CompMode_t

typedef enum {
 A3_DYNRNGMODE_ANALOG_DIALNORM = 0x00000000,
 A3_DYNRNGMODE_DIGITAL_DIALNORM = 0x00000001,
 A3_DYNRNGMODE_LINE_OUT = 0x00000002,
 A3_DYNRNGMODE_RF_REMOD = 0x00000003
} tmAdecAc3CompMode_t;

Description

These enum values are used to select the dynamic range of the decoded audio signal

which is required to map the reproduced audio to the listening environment and

speaker capabilities. The enum values can be assigned to the compMode field of the

struct tmalAdecAc3InstanceConfig_t to configure the decoder in the setup phase in con-

junction with the instance setup functions. During the actual decoding the instance

config functions can be used to obtain the current compression mode from the decoder

or change the mode using the commands A3_CONFIG_SET_COMP_MODE or

A3_CONFIG_GET_COMP_MODE, respectively.

When you choose A3_DYNRNGMODE_ANALOG_DIALNORM or

A3_DYNRNGMODE_DIGITAL_DIALNORM, the dynrng values of the 6 audio blocks taken

from the AC-3 bitstream determine the dynamic range of the audio output. The decoder

application can scale the dynamic range with the scale factors dynRngScaleHi and dyn-

RngScaleLow stored in the instance config struct during setup. If those scale values equal

zero no dynamic range compression is applied, and if they equal one the full dynamic

range compression is applied. If downmixing is active the channels are additionally

attenuated by 11 dB. The difference between the modes

A3_DYNRNGMODE_ANALOG_DIALNORM and A3_DYNRNGMODE_DIGITAL_DIALNORM is

the handling of the dialog normalization. In the analog mode, the normalization is not

done by the decoder. It can be implemented external to the decoder. In contrast to that,

the dialog normalization is carried out by the decoder in the second mode.

In A3_DYNRNGMODE_LINE_OUT mode, the dynamic range of the signal is also deter-

mined by the individual dynrng values of the 6 audio blocks. Again the scale factors dyn-

RngScaleHi and dynRngScaleLow are used to scale the dynamic range compression

factors. Dialogue normalization is not applied in line out mode.

In A3_DYNRNGMODE_RF_REMOD mode, the heavy compression value compr is used to

limit the dynamic range of the audio signal. This mode is intended to ensure that certain

peak levels are not exceeded. It is appropriate for listening environments where distur-

bance of other people is to be avoided. This mode is also applied to prevent overmodula-

tion when RF modulators are used.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

60 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmAdecAc3KaraokeMode_t

typedef enum {
 A3_KARAOKEMODE_NO_VOCAL = 0x00000000,
 A3_KARAOKEMODE_LEFT_VOCAL = 0x00000001,
 A3_KARAOKEMODE_RIGHT_VOCAL = 0x00000002,
 A3_KARAOKEMODE_BOTH_VOCALS = 0x00000003
} tmAdecAc3KaraokeMode_t;

Description

These enum values are used to select the method how Karaoke bitstreams are handled.

Karaoke bitstreams contain up to 5 main audio channels: left and right, M which is a

guide melody and V1 and optionally V2 as vocal tracks. The TriMedia AC-3 decoder is

Karaoke capable, which means a user can choose between four different reproduction

modes.

Karaoke bitstreams are reproduced only with the front speakers since they do not carry

surround information. In two speaker mode M is reproduced as phantom center, other-

wise on the real center channel. If A3_KARAOKEMODE_NO_VOCAL is selected, none of

the vocal tracks is reproduced. If A3_KARAOKEMODE_LEFT_VOCAL or

A3_KARAOKEMODE_RIGHT_VOCAL is set, V1 or V2, respectively, is mixed either into the

phantom center in stereo mode or into the real center in three channel mode. In

A3_KARAOKEMODE_BOTH_VOCALS mode, V1 is mixed into the left channel and V2 into

the right channel.

The Karaoke mode can be set during the setup phase in the kCapableMode field of the

struct tmalAdecAc3InstanceConfig_t. During run-time the Karaoke mode can be changed

by calling the instance config functions with the command

A3_CONFIG_SET_KARAOKE_MODE. The information on what mode is currently set can

be obtained with the command A3_CONFIG_GET_KARAOKE_MODE.

For more information on the Karaoke modes, see annex C of the ATSC document A/52.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 61

12

tmAdecAc3DualMonoMode_t

typedef enum {
 A3_DUALMONOMODE_STEREO = 0x00000000,
 A3_DUALMONOMODE_LEFT = 0x00000001,
 A3_DUALMONOMODE_RIGHT = 0x00000002,
 A3_DUALMONOMODE_MIXED = 0x00000003
} tmAdecAc3DualMonoMode_t;

Description

These enum values are used to select the method how dual mono bitstreams are han-

dled. In A3_DUALMONOMODE_STEREO mode the first mono channel is routed to the left

output channel and the second mono channel to the right. In

A3_DUALMONOMODE_LEFT mode the first mono channel is routed to the center output

channel and in A3_DUALMONOMODE_RIGHT mode, it is the right channel, respectively.

When A3_DUALMONOMODE_MIXED is set, the center channel will carry both mono

channels attenuated by 3 dB and mixed together.

The dual mono reproduction mode can be set in the setup phase in the dualMonoMode

field of the struct tmalAdecAc3InstanceConfig_t. During run-time it can be changed by

calling the instance config functions with the command

A3_CONFIG_SET_DUAL_MONO_MODE. The information on what mode is currently set

can be retrieved with the command A3_CONFIG_GET_DUAL_MONO_MODE.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

62 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmAdecAc3ConfigTypes_t

typedef enum {
 A3_CONFIG_SET_KARAOKE_MODE = tsaCmdUserBase + 0x00,
 A3_CONFIG_SET_COMP_MODE = tsaCmdUserBase + 0x01,
 A3_CONFIG_SET_SUBWOOFER_ON = tsaCmdUserBase + 0x02,
 A3_CONFIG_SET_SUBWOOFER_OFF = tsaCmdUserBase + 0x03,
 A3_CONFIG_SET_OUTPUT_MODE = tsaCmdUserBase + 0x04,
 A3_CONFIG_SET_DUAL_MONO_MODE = tsaCmdUserBase + 0x05,
 A3_CONFIG_SET_DYN_RNG_SCALE_HI = tsaCmdUserBase + 0x06,
 A3_CONFIG_SET_DYN_RNG_SCALE_LOW = tsaCmdUserBase + 0x07,
 A3_CONFIG_SET_PCM_SCALE_FACTOR = tsaCmdUserBase + 0x08,
 A3_CONFIG_GET_KARAOKE_MODE = tsaCmdUserBase + 0x09,
 A3_CONFIG_GET_COMP_MODE = tsaCmdUserBase + 0x0a,
 A3_CONFIG_GET_SUBWOOFER_MODE = tsaCmdUserBase + 0x0b,
 A3_CONFIG_GET_OUTPUT_MODE = tsaCmdUserBase + 0x0c,
 A3_CONFIG_GET_DUAL_MONO_MODE = tsaCmdUserBase + 0x0d,
 A3_CONFIG_GET_DYN_RNG_SCALE_HI = tsaCmdUserBase + 0x0e,
 A3_CONFIG_GET_DYN_RNG_SCALE_LOW = tsaCmdUserBase + 0x0f,
 A3_CONFIG_GET_PCM_SCALE_FACTOR = tsaCmdUserBase + 0x10,
 A3_CONFIG_GET_DEF_OUTPUT_MODE = tsaCmdUserBase + 0x11,
 A3_CONFIG_GET_DEF_SUBWOOFER_MODE = tsaCmdUserBase + 0x12
} tmAdecAc3ConfigTypes_t;

Description

These enum values represent the valid commands for both configuration functions

tmalAdecAc3InstanceConfig and tmolAdecAc3InstanceConfig. All commands of the type

A3_CONFIG_SET_XXX are used to change an internal setting of the decoder. The com-

mands of the type A3_CONFIG_GET_XXX are used to obtain the value of an internal

decoder setting. In addition, commands of the type A3_CONFIG_GET_DEF_XXX return

suggested default settings depending on the packet format of the output descriptor. The

parameter field of the tsaControlArgs_t struct contains either the value to be set by the

decoder (if command is _SET_) or it returns the requested value from the decoder (if

command is _GET_).

For more information refer to tmalAdecAc3InstanceConfig on page 86,

tmolAdecAc3InstanceConfig on page 88, and to AdecAc3 Configuration on 46.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 63

12

tmAdecAc3Capabilities_t

typedef struct tmAdecAc3Capabilities{
 ptsaDefaultCapabilities_t defaultCaps;
 UInt8 decoderCaps;
} tmAdecAc3Capabilities_t, *ptmAdecAc3Capabilities_t;

Fields

defaultCaps Default capabilities. For compliance with the
application library architecture, this is a pointer
to a structure of the default type.

decoderCaps The 5 least significant bits contain the AC-3 ver-
sion number to which this decoder is compatible.
This number can be compared to the bsid field in
the AC-3 bitstream. The decoder is capable of
decoding the stream if bsid less or equal decoder-
Caps.

Description

Structures of this type hold a list of capabilities. The Dolby Digital AC-3 decoder main-

tains a structure of this type to describe itself. A user can retrieve the address of this struc-

ture by calling tmalAdecAc3GetCapabilties or tmolAdecAC3GetCapabilities.

Note
The AL and OL layers have similar structures; except for the extensions to the
default capabilities structure made in the OL layer (tsa.h).

For more information, refer to functions tmalAdecAc3GetCapabilities and

tmolAdecAc3GetCapabilities described in this chapter.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

64 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3InstanceSetup_t

typedef struct tmalAdecAc3InstanceSetup{
 ptsaDefaultInstanceSetup_t defaultSetup;
 ptmalAdecAc3InstanceConfig_t ac3Config;
 tmalAdecAc3LibraryMode_t libraryMode;
 Int maxRepeat;
 tmAudioPcmFormat_t pcmFormatOut0;
 Int precisionOut0;
 tmAudioTypeFormat_t formatOut1;
 Int precisionOut1;
 tmAdecAc3StereoOutputMixMode_t stereoMixMode;
 tmAdecAc3DualMonoMode_t dualMonoMode1;
} tmalAdecAc3InstanceSetup_t, *ptmalAdecAc3InstanceSetup_t;

Fields

defaultSetup Refer to tsa.h for more information about this
default struct.

ac3Config Pointer to the decoder configuration struct. It
contains parameters determining the processing
executed by the decoder core.

libraryMode Field to indicate the mode in which the library
will be used:

A3_LIB_MODE_PUSH for frame-based decoding

A3_LIB_MODE_PULL for streaming mode. These
values can be found in
tmalAdecAc3LibraryMode_t.

maxRepeat Maximum number of blocks that will be repeated
before muting.

pcmFormatOut0 PCM packet format dataSubtype which will be
installed by the decoder for the output descriptor
of the main multichannel output when the sam-
pling frequency of the AC-3 bitstream is deter-
mined.

precisionOut0 Number of significant LSBs in the decoded sam-
ples. This is used, when the PCM format specified
in the above field represents a 32-bit PCM packet
type.

formatOut1 PCM packet format dataType which will be
installed by the decoder for the output descriptor
of the main multichannel output when the sam-
pling frequency of the AC-3 bitstream is deter-
mined.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 65

12

precisionOut1 Number of significant LSBs in the decoded sam-
ples. This value is used, only when formatOut1 is
atfLinearPCM. The dataSubtype which will be
installed depends on the value of this field. It is
apfStereo16 if 16-bit precision is chosen, other-
wise it is apfStereo32.

stereoMixMode Determines if a normal stereo downmix or a
Dolby ProLogic Surround compatible downmix is
performed on the second output. The Value of
this field matters only when the second output is
active.

dualMonoMode1 This field determines how dual mono audio data
is handled on the second output.

Description

A structure of this type is passed to tmalAdecAc3InstanceSetup. The setup function uses

this information to do the basic initialization of the AC-3 decoder library (for example,

setup of the input and output ports). A pointer to a pre-configured struct of this type can

be obtained by calling tmalAdecAc3GetInstanceSetup.

The pcmFormatOut0 and precisionOut0 fields are used by the decoder during the execu-

tion of the instance setup function for internal configuration when no format in the first

output descriptor (for outpin 0) is present. Under normal conditions, a format cannot be

installed before the decoder is started because the sampling frequency is unknown until

it is decoded from the incoming bitstream. Once the sampling frequency is decoded, the

output format consisting of the specified PCM type, specified by the pcmFormatOut0

and precisionOut0 fields, and the sampling frequency itself, is installed by the decoder by

calling the progress function with the flag tsaProgressFlagChangeFormat. Supported val-

ues for pcmFormatOut0 are given in Table 6 on page 41.

If an output descriptor for the second output pin is installed, the value of formatOut1 is

used to configure the decoder, when the respective format pointer of the descriptor is

NULL. Once the sampling frequency is determined from the AC-3 bitstream, a format is

installed for the second output. This format is of the type specified by formatOut1. In the

case that a PCM stereo format is chosen the precisionOut1 field determines if the data-

Subtype is either apfStereo16 or apfStereo32.

For more information, refer to tmalAdecAc3LibraryMode_t, tmalAdecAc3InstanceSetup,

tmolAdecAc3InstanceSetup, and to TriMedia AC-3 API Overview, page 14, and Implementa-

tion Aspects, page 26.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

66 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3InstanceConfig_t

typedef struct tmalAdecAc3Config{
 tmAdecAc3KaraokeMode_t kCapableMode;
 tmAdecAc3CompMode_t compMode;
 tmAdecAc3LfeMode_t outLfeOn;
 tmAdecAc3OutConfig_t outputMode;
 tmAdecAc3DualMonoMode_t dualMonoMode;
 Float32 dynRngScaleHi;
 Float32 dynRngScaleLow;
 Float32 pcmScaleFactor;
} tmalAdecAc3Config_t, *ptmalAdecAc3Config_t;

Fields

kCapableMode Karaoke-capable reproduction mode. See page 60
for more information.

compMode Dynamic-range compression mode. See page 59
for more information.

outLfeOn Output LFE channel mode. See page 53 for more
information.

outputMode Output channel configuration mode. See page 58
for more information.

dualMonoMode Dual mono reproduction mode. See page 61 for
more information.

dynRngScaleHi Dynamic range compression cut scale factor
(default 1.0).

Allowed range: 0.0 ≤ dynRngScaleHi ≤ 1.0.

dynRngScaleLow Dynamic range compression boost scale factor
(default 1.0).

Allowed range: 0.0 ≤ dynRngScaleLow ≤ 1.0.

Description

A pointer to a structure of this type is an element of the instance setup structs tmalAdec-

Ac3InstanceSetup_t and tmolAdecAc3InstanceSetup_t. This information is used to con-

figure the core decoder.

Note
The values of outputMode and outLfeOn (indicating the presence of the
LFE channel) must match the setup for the output of the decoder.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 67

12

tmolAdecAc3InstanceSetup_t

typedef struct tmolAdecAc3InstanceSetup{
 ptsaDefaultInstanceSetup_t defaultSetup;
 ptmalAdecAc3InstanceConfig_t ac3Config;
 tmalAdecAc3LibraryMode_t libraryMode;
 Int maxRepeat;
 tmAudioPcmFormat_t pcmFormatOut0;
 Int precisionOut0;
 tmAudioTypeFormat_t formatOut1;
 Int precisionOut1;
 tmAdecAc3StereoOutputMixMode_t stereoMixMode;
 tmAdecAc3DualMonoMode_t dualMonoMode1;
} tmolAdecAc3InstanceSetup_t, *ptmolAdecAc3InstanceSetup_t;

Fields

defaultSetup Refer to tsa.h for more information.

ac3Config Pointer to AC-3 configuration struct.

libraryMode This field is not of importance for the OL layer
interface. It exists just for compatibility reasons.

maxRepeat Maximum number of blocks that will be repeated
before muting.

pcmFormatOut0 PCM packet format dataSubtype which will be
installed by the decoder for the output descriptor
of the main multichannel output when the sam-
pling frequency of the AC-3 bitstream is deter-
mined.

precisionOut0 Number of significant LSBs if the PCM format
specified in the above field represents a 32-bit
PCM packet type.

formatOut1 PCM packet format dataType which will be
installed by the decoder for the output descriptor
of the main multichannel output when the sam-
pling frequency of the AC-3 bitstream is deter-
mined.

precisionOut1 Number of significant LSBs if formatOut1 is atf-
LinearPCM. The dataSubtype which will be
installed depends on the value of this field. It is
apfStereo16 if 16-bit precision is chosen, other-
wise it is apfStereo32.

stereoMixMode Determines if a normal stereo downmix or a
Dolby ProLogic Surround compatible downmix is
performed on the second output. The Value of
this field matters only when the second output is
active.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

68 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

dualMonoMode1 This field determines how dual mono audio data
is handled on the second output.

Description

A structure of this type is passed to tmolAdecAc3InstanceSetup. The decoder is config-

ured based on the values of this struct.

For more information, refer to tmalAdecAc3InstanceConfig_t and tmolAdecAc3Instance-

Setup.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 69

12

tmAdecAc3HeaderInfo_t

typedef struct tmAdecAc3HeaderInfo{
 UInt16 syncWord;
 UInt16 crcWord;
 UInt8 bsId;
 UInt8 bsMod;
 tmAdecAc3AcMod_t acMod;
 UInt8 cMixLev;
 UInt8 surMixLev;
 tmAdecAc3SurMod_t dSurMod;
 tmAdecAc3LfeMod_t lfeOn;
 UInt8 dialNorm;
 UInt8 comprE;
 UInt8 compr;
 UInt8 langCodE;
 UInt8 langCod;
 UInt8 audProdIE;
 UInt8 mixLevel;
 tmAdecAc3RoomType_t roomTyp;
 UInt8 dialNorm2;
 UInt8 compr2E;
 UInt8 compr2;
 UInt8 langCod2E;
 UInt8 langCod2;
 UInt8 audProdi2E;
 UInt8 mixLevel2;
 tmAdecAc3RoomType_t roomTyp2;
 tmAdecAc3CopyRight_t copyrightb;
 tmAdecAc3CopyState_t origbs;
 UInt8 timeCod1E;
 UInt16 timeCod1;
 UInt8 timeCod2E;
 UInt16 timeCod2;
 UInt8 addbsiE;
 UInt8 addbsil;
 UInt16 frameSize;
 Float32 sFrequency;
 UInt16 dataRate;
} tmAdecAc3HeaderInfo_t, *ptmAdecAc3HeaderInfo_t;

Fields

syncWord Synchronization word.

crcWord First CRC word (start of frame).

bsId Bitstream identification.

bsMod Bitstream mode.

acMod Audio coding mode.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

70 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

cMixLev Center mix level.

surMixLev Surround mix level.

dSurMod Dolby surround mode.

lfeOn Low frequency effects channel flag.

dialNorm Dialog normalization word.

comprE Compression word exists.

compr Compression word.

langCodE Language code exists.

langCod Language code.

audProdIE Audio production info exists.

mixLevel Mixing level

roomTyp Room type.

dialNorm2 Dialog normalization word #2.

compr2E Compression word #2 exists.

compr2 Compression word #2.

langCod2E Language code #2 exists.

langCod2 Language code #2.

audProdi2E Audio production info #2 exists.

mixLevel2 Mixing level #2.

roomTyp2 Room type #2.

copyrightb Copyright bit.

origbs Original bitstream flag.

timeCod1E Time code first half exists.

timeCod1 Time code first half.

timeCod2E Time code second half exists.

timeCod2 Time code second half.

addbsiE Additional BSI exists.

addbsil Additional BSI length.

frameSize Size of AC-3 frame in bytes.

sFrequency Sampling frequency in Hz.

dataRate Data rate in kbps.

Description

This struct is used to provide the application with information on the properties of the

AC-3 bitstream. In streaming mode applications, this information can be obtained by

the progress callback function. In non-streaming mode, tmalAdecAc3DecodeFrame

returns this information in its parameter struct which contains a pointer to a header info

struct. Refer also to tmalAdecAc3Frame_t and tmalAdecAc3DecodeFrame.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 71

12

tmalAdecAc3Frame_t

typedef struct tmalAdecAc3Frame{
 ptmAvPacket_t ac3Packet;
 ptmAvPacket_t pcmPacket;
 Int searchRange;
 Int offset;
 Int frameLength;
 Address ancilData;
 tmalAdecAc3HeaderInfo_t headerInfo;
} tmalAdecAc3Frame_t, *ptmalAdecAc3Frame_t;

Fields

ac3Packet Pointer to AC-3 packet.

pcmPacket The decoded PCM samples are written into this
audio packet by tmalAdac3DecodeFrame and
tmalAdac3MuteFrame.

searchRange Search range for the function tmalAdecAc3Find-
Syncword. searchRange bytes will be searched.

offset Number of bytes from AC-3 data pointer to the
first valid sync word. This value will be set by
tmalAdecAc3FindSyncword.

frameLength Length of the detected frame in bytes.

ancilData Pointer to ancillary data in the AC-3 frame

headerInfo This struct is filled with the information of the
current frame by the function tmalAdecAc3-
DecodeFrame.

Description

This structure is used by AL layer applications using the non-streaming (push) mode

decoder interface. It is used by the functions tmalAdecAc3FindSyncword, tmalAdecAc3-

DecodeFrame and tmalAdecAc3MuteFrame.

tmalAdecAc3FindSyncword searches the AC-3 packet data for a valid sync word. The sync

word displacement from the data pointer is stored in the offset field. This function also

writes the length of the frame into the frameLength field. The AC-3 packet must contain

at least (searchRange + 4) bytes of data.

tmalAdecAc3DecodeFrame decodes one AC-3 frame (stored in the AC-3 packet) into one

frame of PCM data. The AC-3 packet must contain at least framelength bytes of AC-3

data (a complete frame) and the PCM packet buffer must be large enough to receive the

PCM packet (1536 * number of channels * sizeOfSample bytes); sizeOfSample is either 2

bytes in 16-bit mode or 4 bytes in 18- or 20-bit mode. This function also updates the

headerInfo field and the pointer to the ancillary data (ancilData).

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

72 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3MuteFrame mutes one frame. The result is written into the PCM packet. The

PCM packet buffer must be large enough to receive the PCM packet (1536 × number of

channels × sizeOfSample bytes).

For more information, refer to tmalAdecAc3FindSyncword, tmalAdecAc3DecodeFrame,

and tmalAdecAc3MuteFrame.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 73

12

AC-3 API Functions

This section presents the AC-3 Decoder device library functions.

Name Page

tmalAdecAc3GetCapabilities 74

tmolAdecAc3GetCapabilities 75

tmalAdecAc3Open 76

tmolAdecAc3Open 77

tmalAdecAc3Close 78

tmolAdecAc3Close 79

tmalAdecAc3GetInstanceSetup 80

tmolAdecAc3GetInstanceSetup 81

tmalAdecAc3InstanceSetup 82

tmolAdecAc3InstanceSetup 84

tmalAdecAc3InstanceConfig 86

tmolAdecAc3InstanceConfig 88

tmalAdecAc3Start 89

tmolAdecAc3Start 90

tmalAdecAc3Stop 92

tmolAdecAc3Stop 93

tmalAdecAc3FindSyncword 94

tmalAdecAc3DecodeFrame 96

tmalAdecAc3MuteFrame 98

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

74 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3GetCapabilities

tmLibappErr_t tmolAdecAc3GetCapabilities(
 ptmAdecAc3Capabilities_t *caps,
);

Parameters

caps Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

This function can be used to retrieve a pointer to the capabilities struct of the TriMedia

AC-3 decoder library.

For more information, refer to tmAdecAc3Capabilities_t.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 75

12

tmolAdecAc3GetCapabilities

tmLibappErr_t tmolAdecAc3GetCapabilities(
 ptmAdecAc3Capabilities_t *caps,
);

Parameters

caps Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

This function can be used to retrieve a pointer to the capabilities struct of the TriMedia

AC-3 decoder library.

For more information, refer to tmAdecAc3Capabilities_t.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

76 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3Open

tmLibappErr_t
tmalAdecAc3Open(
 Int *instance
);

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MALLOC_FAILED Memory allocation failure.

TMLIBAPP_ERR_NO_INSTANCE_AVAILABLE
No further decoder instance can be instantiated.

Description

Creates an instance of an AC-3 decoder and sets the instance variable. This instance vari-

able must be used in subsequent function calls for this decoder. The open function allo-

cates memory for the internal instance variables.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 77

12

tmolAdecAc3Open

tmLibappErr_t tmolAdecAc3Open(
 Int *instance
);

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MALLOC_FAILED Memory allocation failure (only in the OL layer).

TMLIBAPP_ERR_NO_INSTANCE_AVAILABLE
No further decoder instance can be opened.

Description

Instantiates an AC-3 decoder and sets the instance variable. This instance variable must

be used in subsequent function calls for this decoder. Memory is allocated for internal

variables.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

78 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3Close

tmLibappErr_t tmalAdecAc3Clos
 Int instance,
);

Parameters

instance Instance, as returned by tmalAdecAc3Open.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance.

Description

This function releases the instance of the decoder. It frees the memory allocated for

internal variables.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 79

12

tmolAdecAc3Close

tmLibappErr_t tmolAdecAc3Close(
 Int instance,
);

Parameters

instance Instance, as returned by tmolAdecAc3Open.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance.

Description

Shuts down the instance of the decoder. It frees the memory allocated for internal vari-

ables.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

80 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3GetInstanceSetup

tmLibappErr_t tmalAdecAc3GetInstanceSetup(
 Int instance,
 ptmalAdecAc3InstanceSetup_t *setup
);

Parameters

setup Pointer to a variable in which to return a pointer
to the setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance number.

TMLIBAPP_ERR_MEMALLOC_FAILED Allocation of memory for the instance setup
structure failed.

Description

This function can be used to retrieve a pre-configured AL layer instance setup struct. The

structure and all substructures are filled with default settings. The memory allocated by

this function is freed by tmalAdecAc3Close.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 81

12

tmolAdecAc3GetInstanceSetup

tmLibappErr_t tmolAdecAc3GetInstanceSetup(
 Int instance,
 ptmolAdecAc3InstanceSetup_t *setup
);

Parameters

instance Instance, as returned by tmalAdecAc3Open.

setup Pointer to a variable in which to return a pointer
to the setup data.

Return Codes

TMLIBAPP_OK Success.

Description

This function can be used to retrieve a pre-configured OL layer instance setup struct. The

structure and all substructures are filled with default settings. When the AC-3 decoder is

running, a call to this function will retrieve the settings currently in use.

The debug version of the library triggers an assert if the instance value is incorrect.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

82 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3InstanceSetup

tmLibappErr_t tmalAdecAc3InstanceSetup(
 Int instance,
 ptmalAdecAc3InstanceSetup_t setup
);

Parameters

instance Instance, as returned by tmalAdecAc3Open.

setup Pointer to the setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance number.

TMLIBAPP_ERR_NO_QUEUE Queues for the input pin or for the first output
pin are not assigned.

TMLIBAPP_ERR_UNSUPPORTED_DATACLASS
Selected data class of input or output format is
not supported.

TMLIBAPP_ERR_UNSUPPORTED_DATATYPE
Data type of input or output format is not sup-
ported.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
Data subtype of input or output format is not sup-
ported.

A3_ERR_OUTPUT_MISMATCH Conflict between outputMode or outLfeOn setting
in the instance config struct and the format of the
output descriptor. The output configuration
allows channels that are not supported by the
specified packet format.

A3_ERR_ILL_KARAOKE_MODE The kCapableMode field of the instance config
struct contains an illegal value. See page 60 for
the supported values.

A3_ERR_ILL_COMP_MODE The compMode field of the instance config struct
contains an illegal value. See page 59 for the sup-
ported values.

A3_ERR_ILL_DUAL_MONO_MODE The dualMonoMode field of the instance config
struct contains an illegal value. See page 61 for
the supported values.

A3_ERR_ILL_DYN_RNG_SCALE_HI The dynRngScaleHi field of the instance config
struct contains an illegal value (exceeding the
range of [0.0, 1.0]).

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 83

12

A3_ERR_ILL_DYN_RNG_SCALE_LOW The dynRngScaleLow field of the instance config
struct contains an illegal value (exceeding the
range of [0.0, 1.0]).

A3_ERR_ILL_PCM_SCALE_FACTOR The pcmScaleFactor field of the instance config
struct contains an illegal value (exceeding the
range of [0.0, 1.0]).

Description

Initializes the decoder using the information in the setup struct. It leaves the decoder in

a stopped state. After successful execution of this function the actual decoder can be

started by calling tmalAdecAc3Start or the respective sequence of non-streaming mode

functions.

For more information, refer to tmalAdecAc3Setup_t, tmolAdecAc3Setup_t, and to TriMe-

dia AC-3 API Overview on page 14.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

84 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAdecAc3InstanceSetup

tmLibappErr_t tmolAdecAc3InstanceSetup(
 Int instance,
 ptmolAdecAc3Setup_t setup
);

Parameters

instance Instance, as returned by tmolAdecAc3Open.

setup Pointer to the setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Invalid AL layer instance number. OL instance is
only checked in debug mode and an assert is trig-
gered in the case that it is invalid.

TMLIBAPP_ERR_NO_QUEUE Queues for the input pin or for the first output
pin are not assigned.

TMLIBAPP_ERR_UNSUPPORTED_DATACLASS
Data class of input or output format is not sup-
ported.

TMLIBAPP_ERR_UNSUPPORTED_DATATYPE
Data type of input or output format is not sup-
ported.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
Data subtype of input or output format is not sup-
ported.

A3_ERR_OUTPUT_MISMATCH Conflict between outputMode or outLfeOn setting
in the instance config struct and the format of the
output descriptor. The output configuration
allows channels that are not supported by the
specified packet format.

A3_ERR_ILL_KARAOKE_MODE The kCapableMode field of the instance config
struct contains an illegal value. See page 60 for
the supported values.

A3_ERR_ILL_COMP_MODE The compMode field of the instance config struct
contains an illegal value. See page 59 for the sup-
ported values.

A3_ERR_ILL_DUAL_MONO_MODE The dualMonoMode field of the instance config
struct contains an illegal value. See page 61 for
the supported values.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 85

12

A3_ERR_ILL_DYN_RNG_SCALE_HI The dynRngScaleHi field of the instance config
struct contains an illegal value (exceeding the
range of [0.0, 1.0]).

A3_ERR_ILL_DYN_RNG_SCALE_LOW The dynRngScaleLow field of the instance config
struct contains an illegal value (exceeding the
range of [0.0, 1.0]).

A3_ERR_ILL_PCM_SCALE_FACTOR The pcmScaleFactor field of the instance config
struct contains an illegal value (exceeding the
range of [0.0, 1.0]).

Description

Initializes the decoder using the information in the setup struct. In debug mode asserts

are triggered when the OL layer instance is invalid or queues are not assigned. All error

messages are returned from the AL layer instance setup function, which is called from

the OL layer instance setup function as part of its processing.

After successful setup, the decoder can be started with tmolAdecAc3Start.

Refer also to tmalAdecAc3InstanceSetup and tmolAdecAc3InstanceSetup_t.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

86 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3InstanceConfig

tmLibappErr_t tmalAdecAc3InstanceConfig(
 Int instance,
 ptsaControlArgs_t args
);

Parameters

instance Instance value returned by tmalAdecAc3Open.

args Pointer to the control arguments structure which
contains a command and a parameter. The two
other fields are not used by this function.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance number. The decoder has been
either not opened or already been closed.

TMLIBAPP_ERR_NOT_SETUP tmalAdecAc3InstanceSetup has not been called
yet. The decoder needs to be set up before the
config function can be called.

TMLIBAPP_ERR_INVALID_COMMAND The command could not be interpreted by the
function.

A3_ERR_OUTPUT_MISMATCH Returned on commands
A3_CONFIG_SET_OUTPUT_MODE or
A3_CONFIG_SET_SUBWOOFER_ON if the output
configuration would allow channels that are not
supported by the packet format specified in the
output descriptor.

A3_ERR_ILL_KARAOKE_MODE Returned on command
A3_CONFIG_SET_KARAOKE_MODE if the mode set
in the parameter field is not defined. Refer to 1 for
the supported values.

A3_ERR_ILL_COMP_MODE Returned on command
A3_CONFIG_SET_COMP_MODE if the mode set in
the parameter field is not defined. Refer to 1 for
the supported values.

A3_ERR_ILL_DUAL_MONO_MODE Returned on command
A3_CONFIG_SET_DUAL_MONO_MODE if the mode
set in the parameter field is not defined. Refer to 1
for the supported values.

A3_ERR_ILL_DYN_RNG_SCALE_HI Returned on command
A3_CONFIG_SET_DYN_RNG_SCALE_HI if the value

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 87

12

set in the parameter field exceeds the range of
[0.0, 1.0].

A3_ERR_ILL_DYN_RNG_SCALE_LOW Returned on command
A3_CONFIG_SET_DYN_RNG_SCALE_LOW if the
value set in the parameter field exceeds the range
of [0.0, 1.0].

A3_ERR_ILL_PCM_SCALE_FACTOR Returned on command
A3_CONFIG_SET_PCM_SCALE_FACTOR if the value
set in the parameter field exceeds the range of
[0.0, 1.0].

A3_ERR_ILL_CONFIG The outputMode field of the instance config
struct contains an illegal value. Refer to 1 for the
supported values.

Description

This function is used to either change the configuration of the decoder or obtain infor-

mation on the current configuration. It is called with a pointer to a tsaControlArgs_t

struct as argument. This struct contains four elements, two of which are used by the

function. The first one is the command, specified in tmAdecAc3ConfigTypes_t on page

62. In addition to this, the parameter field is used as input or output dependent on if the

command is of the type _SET_ or _GET_. Refer to AdecAc3 Configuration on page 46 for

more information on the commands and the respective parameters.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

88 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAdecAc3InstanceConfig

tmLibappErr_t tmalAdecAc3InstanceConfig(
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Parameters

instance Instance value returned by tmalAdecAc3Open.

flags Flags used for the access to the control queue.
Typically tsaControlWait is used.

args Pointer to the control arguments structure which
contains a command and a parameter. The two
other fields are not used by this function.

Return Codes

TMLIBAPP_OK Success.

(other return values) Returned from the function tsaDefaultInstance-
Config which is called from this function and
implements the queue handling. Those errors
indicate problems with the command or response
queue or problems with the setup of the compo-
nent.

Description

This function is used to either change the configuration of the decoder or get informa-

tion on the current configuration. It is called with a pointer to a tsaControlArgs_t struct

as argument. This struct contains four elements. The first one is the command, specified

in tmAdecAc3ConfigTypes_t on 1. The values of certain internal decoder settings can be

sent or received in the parameter field. It is used as input or output depending on if the

command is of the type _SET_ or _GET_. Refer to AdecAc3 Configuration on page 46 for

more information on the commands and their parameters. The timeout field is used as

timeout value for the access to the response queue. The information if the command has

been executed successfully is stored in the retval field. It contains the return value from

tmalAdecAc3InstanceConfig. Refer to page 86 for the respective error codes.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 89

12

tmalAdecAc3Start

tmLibappErr_t tmalAdecAc3Start(
 Int instance
);

Parameters

instance Instance value returned by tmalAdecAc3Open.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance number. The decoder either has
not been opened or has already been closed.

TMLIBAPP_ERR_NOT_SETUP tmalAdecAc3InstanceSetup has not been called
yet. The decoder needs to be set up before the
start function can be called.

TMLIBAPP_ERR_ALREADY_STARTED The decoder is already running. It must be
stopped before it can be started again.

Description

Before the decoder can be started, an instance must be opened and the decoder must be

initialized using the setup function.

The decoder requires the following callback functions: progressFunction, dataoutFunc-

tion, datainFunction, and errorFunction. Refer to AdecAc3 Progress on page 45 for more

information on the behavior of the progress function and to AdecAc3 Errors on page 44

for the error function.

The decoder continues to run until the application calls the stop function. The decoder

checks to see if it has been requested to stop at several points during the decoding pro-

cess. If the decoder determines that it has been asked to stop, it returns all the packets

that it has in its possession, and then returns.

For more information, refer to tmalAdecAc3Stop, and TriMedia AC-3 API Overview on

page 14. Also refer to Book 3, Software Architecture.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

90 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAdecAc3Start

tmLibappErr_t tmolAdecAc3Start(
 Int instance
);

Parameters

instance Instance value returned by tmolAdecAc3Open.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_TCREATE_FAILED Creation of the task for the AL layer start function
failed.

TMLIBAPP_ERR_TSTART_FAILED The start of the task for the AL layer start function
failed.

Description

Before you can start the decoder, you must open an instance and initialize the decoder

using the setup function.

The decoder makes use of the progress and error callback functions to interact with the

application or with other components. Providing implementations for those functions is

optional. However, in an application using real-time audio playback, we recommend

that you determine the format of the AC-3 bitstream using the progress callback func-

tion and then set up the audio hardware accordingly.

It is also useful to provide an error function to detect problems with the input bitstream.

The decoder is capable of handling all error situations after data streaming is started.

Before the start of data streaming, the decoder checks that:

■ The instance is correct.

■ The setup function has been called.

■ The current instance of the decoder is already started.

In all those cases, the error callback function is called with the respective error message

(refer to AdecAc3 Errors on page 44). After returning from the error callback function, the

decoder task is terminated. It is important for the application to know of this, so that it

can resolve the problem. Otherwise, it would assume that the decoder is still running in

its own context.

When your application calls tmolAdecAc3Stop, the decoder returns all the packets that it

has in its possession.

It is possible to set up the instance again, after the decoder has been stopped. After that,

the same instance of the decoder can be restarted. It can also be restarted without calling

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 91

12

tmolAdecAc3InstanceSetup after its stopping. When the decoder is running in its own

context, internal parameters can be changed or examined by using

tmolAdecAc3InstanceConfig.

In addition to the previously described error messages the tmolAdecAc3Start function

triggers asserts in debug mode when the OL layer instance is incorrect or the decoder is

not set up.

For more information, refer to tmalAdecAc3InstanceSetup, tmolAdecAc3InstanceSetup,

tmalAdecAc3Stop, tmolAdecAc3Stop, and TriMedia AC-3 API Overview on page 14. Also

refer to Book 3, Software Architecture.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

92 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3Stop

tmLibappErr_t tmalAdecAc3Stop(
 Int instance,
);

Parameters

instance Instance returned by tmalAdecAc3Open.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance number. The decoder either has
not been opened or has already been closed.

TMLIBAPP_ERR_NOT_SETUP The decoder has not been set up yet.

Description

Stops the decoder by setting a stop flag. The function immediately returns with

TMLIBAPP_OK. This function is used only when the decoder is operated in streaming

mode at the AL layer. It is otherwise not directly called from the application.

Note that the decoder can continue to run for additional cycles after the call to this stop

function, because it recognizes the stop flag only after loading the first part of the frame,

after loading the second part of the frame, and after finishing the whole frame.

Before the decoder stops, it returns all AC-3 and PCM packets that it still has in its pos-

session.

For more information, refer to tmalAdecAc3Start, and TriMedia AC-3 API Overview on

page 14. Also refer to Book 3, Software Architecture.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 93

12

tmolAdecAc3Stop

tmLibappErr_t tmolAdecAc3Stop(
 Int instance,
);

Parameters

instance Instance returned by tmalAdecAc3Open or tmol-
AdecAc3Open.

Return Codes

TMLIBAPP_OK Success.

Description

Stops the decoder by executing the default stop sequence. The decoder is notified of the

stop request by receiving a stop message on either the input pin or one of the output

pins. It expels all data packets that it keeps. When tmolAdecAc3Stop returns, the decoder

task is not destroyed, but suspended. It can be resumed by calling tmolAdecAc3Start. The

task gets destroyed by tmolAdecAc3Close.

In debug mode this function can assert TMLIBAPP_ERR_INVALID_INSTANCE and

TMLIBAPP_ERR_NOT_SETUP.

For more information, refer to tmalAdecAc3Start, tmolAdecAc3Start, and TriMedia AC-3

API Overview on page 14. Also refer to Book 3, Software Architecture.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

94 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3FindSyncword

tmLibappErr_t tmalAdecAc3FindSyncword(
 Int instance,
 ptmalAdecAc3Frame_t ac3Frame
);

Parameters

instance Instance value returned by tmalAdecAc3Open.

ac3Frame Pointer to a struct that contains all other parame-
ters required to search for a syncword.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance number. The decoder either has
not been opened or has already been closed.

A3_ERR_INVALID_PARAMETER ac3Frame is a null pointer, the pointer to the
AC-3 data (in the AC-3 packet) is a null pointer, or
the search range value is zero or negative.

A3_ERR_NOT_ENOUGH_DATA The AC-3 packet does not contain enough data to
search the complete searchrange. There must be
at least searchrange bytes in the AC-3 packet.

A3_ERR_SYNC_NOT_FOUND There was no valid sync word in the AC-3 packet
within the search range.

A3_ERR_ILL_DATA_RATE A sync word bit pattern was found, but it is prob-
ably false because the frame size code of the frame
is illegal.

A3_ERR_ILL_SAMPLE_RATE A sync word bit pattern was found, but it is prob-
ably false because the sample rate code of the
frame is illegal.

Description

This function searches a packet of AC-3 data for a valid sync word.

The argument ac3Frame points to a struct that is used by all non-streaming (push) mode

processing functions. tmalAdecAc3FindSyncword uses the fields ac3Packet and search-

Range of this struct as its input and writes its results (if it found a valid sync word) into

the fields offset and frameLength. It also stores the sample rate of the detected AC-3

frame into the sFrequency field of the tmAdecAc3HeaderInfo_t struct to which a pointer

is stored in ac3Frame.

The AC-3 packet must contain at least searchrange bytes of AC-3 data. The search range

must be larger than zero. Otherwise, tmalAdecAc3FindSyncword returns an error.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 95

12

If tmalAdecAc3FindSyncword finds a valid sync word, it writes the sync word offset

(number of bytes) from the AC-3 data pointer into the ac3Frame–>offset field.

If tmalAdecAc3FindSyncword does not find a valid sync word, it returns an error.

See also: tmalAdecAc3Open, tmalAdecAc3Close, tmalAdecAc3InstanceSetup,

tmalAdecAc3InstanceConfig, tmalAdecAc3MuteFrame, tmalAdecAc3Frame_t, and TriMe-

dia AC-3 API Overview on page 14, and Implementation Aspects on page 26.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

96 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3DecodeFrame

tmLibappErr_t tmalAdecAc3DecodeFrame(
 Int instance,
 ptmalAdecAc3Frame_t ac3Frame
);

Parameters

instance Instance value from tmalAdecAc3Open.

ac3Frame Pointer to a struct that contains all parameters to
decode one AC-3 frame into one PCM frame.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance number.

TMLIBAPP_ERR_NOT_SETUP tmalAdecAc3InstanceSetup has not been called.

A3_ERR_NOT_ENOUGH_DATA The ac3Packet in the ac3Frame struct does not
contain a complete frame.

A3_ERR_PCM_BUFFER_TO_SMALL The buffer in the PCM packet is not large enough
to receive one complete frame.

A3_ERR_PUSH_DEC_FATAL Fatal error while decoding. No output data will be
produced. The application must take appropriate
action (e.g. muting).

A3_ERR_PUSH_DEC_NON_FATAL The decoder had problems decoding the current
frame. It repeated or muted one or more blocks. A
complete frame with PCM samples is stored in
ac3Frame–>pcmPacket. This is just a warning.

A3_ERR_SYNC_NOT_FOUND There was no valid sync word in the AC-3 packet
at the memory position calculated from the AC-3
data pointer plus offset.

A3_ERR_ILL_DATA_RATE The frame size code of the AC-3 frame is illegal.

A3_ERR_ILL_SAMPLE_RATE The sample rate code of the frame is illegal.

A3_ERR_CRC1_FAILED The first cyclic redundancy check failed. The
entire PCM frame is invalid in this case.

A3_ERR_CRC2_FAILED The second cyclic redundancy check failed. In
this case the first two PCM blocks (512 samples)
are valid. The remaining 4 blocks contain invalid
data.

Description

This function decodes one frame of AC-3 data into one frame of PCM data.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 97

12

To decode one AC-3 frame, there must be one complete frame in the AC-3 packet in

ac3Frame. To find a starting point of a complete frame in the bit steam, the function

tmalAdecAc3FindSyncword can be used. It detects the start of an AC-3 frame and calcu-

lates the length of this frame. The application must put this frame into the AC-3 packet

(the pointer ac3Frame–>ac3Packet–>buffers[0].data + offset must point to the beginning

of the frame).

If the AC-3 packet contains an entire frame, the decoder can process the frame and put

the resulting PCM data into the PCM packet. A pointer to a PCM packet is an element of

the argument structure ac3Frame. The buffer in the PCM packet must be large enough to

receive one complete PCM frame. The required size (in bytes) can be calculated:

#decoded channels × A3_SAMPLES_PER_CHAN_FRAME × SIZE_OF_SAMPLE

The number of decoded channels is determined by the output configuration (tmalAdec-

Ac3InstanceSetup). It can be 1, 2, 4 or 6 channels. A3_SAMPLES_PER_CHAN_FRAME is a

constant that is defined in tmalAdecAc3.h and represents the number of samples per

channel for one decoded AC-3 frame (1,536). The output of the decoder is either 16-bit

or 32-bit linear PCM. Therefore, the number of samples must be multiplied by

SIZE_OF_SAMPLE which is 2 or 4 depending on the packet format’s data subtype. If the

buffer is not large enough to receive a complete frame of PCM data, the decoder returns

an error.

If a fatal error occurs while decoding, no output data will be generated. In this case, an

error will be returned. The application must then perform an appropriate error handling,

which could be muting or repeating of the previous frame.

For more information, refer to tmalAdecAc3Open, tmalAdecAc3Close,

tmalAdecAc3InstanceSetup, tmalAdecAc3InstanceConfig, tmalAdecAc3FindSyncword,

tmalAdecAc3MuteFrame, tmalAdecAc3Frame_t, as well as the sections TriMedia AC-3 API

Overview on page 14, The AL Layer on page 16, and Implementation Aspects on page 26.

Chapter 12: Dolby Digital AC-3 (AdecAc3) API

98 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecAc3MuteFrame

tmLibappErr_t tmalAdecAc3MuteFrame(
 Int instance,
 tmalAdecAc3Frame_t ac3Frame
);

Parameters

instance Instance value returned by tmalAdecAc3Open.

ac3Frame Pointer to a structure that contains all other
parameters to mute one frame.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance number.

Description

This function mutes one frame (1,536 samples per channel) of audio data. It can be used

when the decoder returned a fatal error, or if the application must produce silence.

The buffer in the PCM packet must be large enough to receive one complete PCM frame.

The required size (in bytes) can be calculated:

decoded channels ×A3_SAMPLES_PER_CHAN_FRAME × SIZE_OF_SAMPLE

The number of decoded channels is determined by the output configuration (as per-

formed by tmalAdecAc3InstanceSetup. It can be 1, 2, 4, or 6 channels.

A3_SAMPLES_PER_CHAN_FRAME is a constant that is defined in tmalAdecAc3.h and rep-

resents the number of samples per channel for one decoded AC-3 frame (1,536). The out-

put of the decoder is either 16-bit or 32-bit linear PCM. Therefore, the number of

samples must be multiplied by 2 or 4. If the buffer is not large enough to receive a com-

plete frame of PCM data tmalAdecAc3MuteFrame returns an error.

For more information, refer to tmalAdecAc3Open, tmalAdecAc3Close,

tmalAdecAc3InstanceSetup, tmalAdecAc3InstanceConfig, tmalAdecAc3FindSyncword,

tmalAdecAc3MuteFrame, tmalAdecAc3Frame_t, as well as the sections TriMedia AC-3 API

Overview on page 14, The AL Layer on page 16, and Implementation Aspects on page 26.

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 99

13

Chapter 13

Pro Logic Decoder (AdecPl) API

Note
This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. In addition, this algorithm is owned by Dolby Labs and an ap-
propriate license must be obtained for its use. Please visit our web site
(www.trimedia.philips.com) or contact your TriMedia sales representative for
more information.

Topic Page

Introduction 100

Overview of the TriMedia Pro Logic Decoder Library 104

Additional Requirements For a Complete Audio System 111

AdecPl Inputs and Outputs 112

AdecPl Errors 112

AdecPl Progress 113

AdecPl Configuration 113

Pro Logic AL Layer API Data Structures 115

Pro Logic AL layer API Functions 122

Pro Logic Operating System Layer API Data Structures 133

Pro Logic Operating System Layer API Functions 136

Chapter 13: Pro Logic Decoder (AdecPl) API

100 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Introduction

Dolby Pro Logic Surround is an audio coding technique that transmits and stores stereo-

compatible multichannel audio. This is achieved by a mix of four channels into two at

the encoder side. As a result, the Pro Logic encoded audio can be listened to whether a

Pro Logic decoder is present or not. This is not the case for digitally compressed audio

like MPEG or AC-3 (Dolby Digital). In such cases a decoder is required for listening to the

audio.

Figure 16 Structure of the Pro Logic decoder

Dolby Pro Logic Surround is widely used for VHS cassettes, laser disks, PC games and TV

applications. It allows for movie theatre 3D sound positioning in a home environment.

Dolby Pro Logic Surround is derived from the older Dolby Surround technique. The

main difference is the better separation of the audio channels accomplished by using an

adaptive decoding matrix as opposed to a passive one as used by Dolby Surround.

The original implementation of Dolby Surround and Dolby Pro Logic was done with

analog circuitry. Nowadays, this task can easily be performed by DSPs and general pur-

pose processors. The load of a TriMedia for this task is less than 9 MIPS.

Dolby Pro Logic Surround will continue to play an important role in the future even

though the digital compression algorithms like AC-3 and MPEG multichannel provide

better channel separation and require less transmission bandwidth. AC-3 for instance

explicitly supports a special Pro Logic two channel coding mode and it is a requirement

for certain AC-3 decoder products to be capable to decode Pro Logic as well.

Principles of the Pro Logic Encoder

The Dolby Pro Logic Surround encoder mixes a four channel input signal (left, center,

right and surround) to a two channel output signal (left-total and right-total). Figure 17,

following, depicts the processing implemented by a Dolby Surround encoder.

Dataout [0]

(queuing)

Datain [0]

Pro Logic

(queuing)

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 101

13

The center channel is simply attenuated by 3 dB and added to both the left and the right

channel. A bit more effort is required for the surround channel before it is mixed with

the left and right channel (already containing the center).

Figure 17 Block Diagram of Dolby Surround Encoder

The surround channel is also attenuated by 3 dB before it is bandpass filtered (100 Hz to

7 kHz). After that, the surround signal is encoded by a Dolby noise reduction filter block.

The resulting signal is then phase-shifted by 90 degrees. Finally, the output of the phase

shifter is added to the left channel and subtracted from the right channel. The resulting

two signals form the Pro Logic encoded audio signal.

The special processing on the surround channel is done to achieve better channel sepa-

ration in the decoder. If Lt and Rt were perfect transmission channels, a decoder would

need only add Lt and Rt to retrieve the center channel and subtract Rt from Lt to retrieve

the surround channel. No crosstalk between center and surround would occur. However,

real-world transmission channels cause signal leakage from the center into the surround.

The effect can be reduced by limiting the bandwidth of the surround channel and apply-

ing the noise reduction encoding to it.

Principles of the Pro Logic Decoder

A Dolby Pro Logic Surround decoder must reproduce a four-channel surround image as

well as possible. It must not only invert the processing of the encoder, but also minimize

the effects of unwanted crosstalk between the channels. For this reason, the Pro Logic

decoder uses an adaptive matrix dynamically updated during decoding based on the

properties of Lt, Rt, (Lt + Rt) and (Lt – Rt).

+

++

Pro Logic
Encoder

Left

Center

Right

Surround

Lt

Rt

–3dB

–3dB

+

+

+

BPF
Dolby NR
Encoder

+90 deg
–90 deg

+

+

Chapter 13: Pro Logic Decoder (AdecPl) API

102 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

The main signal path of the decoder is illustrated in Figure 18.

Figure 18 Block Diagram of the Channel Decoding Path of the Pro Logic Decoder

The first step of the decoder is scaling the two input signals. If Lt and Rt are in balance,

the decoder attenuates both signals by 3 dB. If there is a mismatch, the decoder adapts

the incorrect level applying autobalance processing. The three output channels Left,

Center, and Right are then reproduced by linear combinations of Lt′ and Rt′ using weight

factors stored in the adaptive matrix. As in the encoder, the surround channel requires

some extra signal processing in the form of a low pass filter and a Dolby B-type noise

reduction filter.

If the elements of the adaptive matrix remain unmodified, the processing is the same as

the processing of a Dolby Surround decoder. Updating the matrix elements is based on

the detection of signal dominance. It is possible for the control block to determine that a

dominant signal exists in the room spanned by the four cardinal directions left, center,

right and surround. If the decoder detects a dominant signal, it suppresses leakage into

other channels by adapting the matrix elements. The dominance detection block is also

capable of switching off directional enhancements when no dominant signal is found.

In that case, the decoder behaves like a passive Dolby Surround Decoder.

For an example of a dominant signal, consider an audio stream that must create the

effect of a helicopter flying in a circle above the listener. The dominant direction is the

direction of the helicopter. The intention is to emphasize this one position in the room

and to provide proper localization. If multiple dominant sounds exist, the Pro Logic

decoder would fail to provide such localization. Therefore, the mixing process on the

encoder side must be carried out carefully.

An example where no directional enhancement is desirable is the sound of rain or wind,

intended to come from all directions. Special localization is generally not desirable.

Special Considerations of the TriMedia Implementation

The block diagram illustrated in Figure 18 does not show all processing blocks that are

required for a full functional surround audio decoding. For instance, a delay line for the

surround channel is required to prevent sound, intended to come from a front speaker,

Pro Logic
Decoder

Lt

Rt

Left

Right

Input
Balance
Control

7 kHz
Low-Pass

Filter

Mod.
Dolby
B-type

NR

Center

Surround

Pro Logic
Adaptive

Matrix

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 103

13

from arriving at the listener earlier from the surround channel due to leakage effects. The

exact delay time depends on the positions of the loud speakers in the room and, of

course, on the position of the listener. The time delay and some other features required

for a complete Dolby Pro Logic Surround solution are not part of the TriMedia Pro Logic

Decoder library. They are implemented in other TriMedia audio system components like

the Audio Mixer library. An example how a complete audio system could look like is

given on page 111.

The TriMedia Pro Logic decoder library provides three options to influence the decoder

processing shown in Figure 18.

■ The autobalance control can optionally be switched off. If switched off, both input

signals are equally attenuated by 3 dB.

■ The signal processing applied to the surround output can optionally be bypassed.

This mode is called wide surround mode and it is applicable in multimedia PC appli-

cations.

■ If the output format supports two surround channels, the surround channel pro-

duced by the core decoder is split into two channels. Before the actual split, it is

attenuated by 3 dB to maintain constant loudness.

Chapter 13: Pro Logic Decoder (AdecPl) API

104 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Overview of the TriMedia Pro Logic Decoder Library

The TriMedia Pro Logic Library comes in form of a TSA library. It can be used at both the

AL and OL layer. The provided functionality is the same for both API levels. Depending

on the application’s requirements it has to be decided what API is appropriate. Philips

recommends the use of the OL layer interface because its ease of use. In some special

cases the AL layer interface may be preferable. It has the disadvantage that mechanisms

for data exchange between different software components must be implemented in the

context of the application, as opposed to being hidden in the library in case of the OL

layer interface.

The Pro Logic decoder consists of one input pin accepting data packets with several PCM

audio formats and one output pin sending decoded multichannel audio packets in dif-

ferent PCM formats. In the setup phase of the decoder a certain format has to specified

for the input and output pin.

Figure 19 Inputs and Outputs of the Pro Logic Decoder Library

Supported Packet Formats

Following PCM audio packet subtypes are supported by the TriMedia Pro Logic Decoder

library at its input:

Lt and Rt are always supposed to be at the position of the left and right channel within

the input data packets. The decoder just uses those samples and neglects the remaining

channels.

Table 17 Supported Packet Formats

16 bit formats 32 bit formats

apfStereo16 apfStereo32

apfFourCh_3_1_0_16 apfFourCh_3_1_0_32

apfFourCh_2_2_0_16 apfFourCh_2_2_0_32

apfFourCh_2_1_1_16 apfFourCh_2_1_1_32

apfFourCh_3_0_1_16 apfFourCh_3_0_1_32

apfFiveDotOne16 apfFiveDotOne32

Pro Logic
Library

Audio Packets
with Lt, Rt Data

Audio Packets
with L, C, R, S Data

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 105

13

At its output the library supports the same packet types as at is input except for the ste-

reo formats. There is one constraint on the output packet format. It must provide all

channels decoded by the decoder. The output channel configuration is determined dur-

ing the setup phase by the config structure field chanconfig (see page 119). The output

consists of left and right channel plus a combination of center and one or two surround

channels.

Decoder Configurations

During the setup phase of the decoder the application can determine what parts of the

decoder are active. The instance setup struct contains a pointer to the configuration

struct which consists of four elements.

■ abaldisable

If 0, the input balance block of Figure 18 is active. If 1, both input signals are attenu-

ated by 3 dB.

■ chanconfig

Determines how many channels are produced by the decoder. Left and Right are

always present at the output. The presence of center and surround(s) depends on the

value of this field (See page 119).

■ widesur

If 0, the low pass filter and the modified B-type noise reduction filter are applied

to the surround channel. If 1, the surround output of the adaptive matrix stays

unfiltered.

■ pcmScaleFactor

Floating point number that is used to scale the samples of all output channels.

All the above described decoder settings can also be changed dynamically during the

processing phase by using tmolAdecPlInstanceConfig if the OL interface is used or tmal-

AdecPlInstanceConfig if the AL interface is used, respectively.

Note that the sample rate of the input descriptor’s format determines the characteristics

of the filters implemented in the decoder. If the sample rate is set to 0.0 the default value

48.0 kHz is used.

Using the OL Layer API

The usage of the Pro Logic decoder library at the OL layer is similar to that of other OL

layer libraries. At first an instance of the decoder is obtained by calling tmolAdecPlOpen

and the decoder capabilities are retrieved from the decoder by calling tmolAdecPlGet-

Capabilities. The decoder capabilities are required by tsaDefaultInOutDescriptorCreate to

properly set up the input and output descriptors. Then a prototype of the instance setup

struct required to configure the decoder instance is obtained by calling tmolAdecPlGet-

InstanceSetup. The application does the necessary modifications of the instance setup

struct and uses it then to configure the Pro Logic decoder by calling tmolAdecPlInstance-

Chapter 13: Pro Logic Decoder (AdecPl) API

106 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Setup. This setup provides the decoder with pointers to callback functions and the infor-

mation on the configuration of the input and output pins. After that the static

configuration of the library is done. The actual decoding can be started using tmolAdec-

PlStart. From now on, the decoder operates as a separate task in its own context. Com-

munication with the application and other OL component is implemented by callback

functions. In addition to this, the application or a different library can change the

decoder configuration or acquire information on it by sending commands to the decoder

task. These commands are sent by calling tmolAdecPlInstanceConfig. The Pro Logic

decoder can be stopped by calling tmolAdecPlStop. This function forces the decoder to

expel all internally held packets and leave the main processing loop. Finally, the decoder

instance can be released by calling tmolAdecPlClose.

Constraints on Input/Output Packets

Aside from the restriction on the packet format types (see page 104) there are some con-

straints on the packet sizes. The Pro Logic decoder works internally on chunks of 8 sam-

ples. To simplify the internal buffer management, all full input packets must contain a

multiple of 8 samples per channel. On the output side, empty packets are accepted only

if they can accommodate at least eight samples across all channels. There is no direct

dependency between the input and output packet sizes. They are independent of each

other at the OL layer. Note that this is different for pure AL layer applications!

Following table contains the number of bytes that must be present in a full input packet

or allocated in an empty output packet. All multiples of those values are valid as well.

Note that the size of the input and output packet influences the real time behavior of the

decoder:

■ Decoding delay: the size of the output packet determines the delay of the decoder. In

applications where a low latency is required the output packet size must be chosen

accordingly.

■ MIPS consumption: the decoder works more efficiently with larger packets because

they reduce the amount of internal control overhead. If the processor load is a critical

matter, both input and output packets should be chosen large enough.

Table 18 Granularity of Input/Output Packets

packet format full input packet data size
(in bytes)

empty output packet buffer
size (in bytes)

apfStereo16 32 not supported

apfFourCh_X_X_X_16 64 64

apfFiveDotOne16 96 96

apfStereo32 64 not supported

apfFourCh_X_X_X_32 128 128

apfFiveDotOne32 192 192

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 107

13

■ To optimize the decoder, the smallest possible packet format should be chosen. That

is always a stereo format for the input. At the output, it depends on whether sur-

round splitting is desired.

Time Stamps

The TriMedia Pro Logic Decoder is capable of handling time stamps. It assigns the newest

valid time stamp received with the input packets to the current output packet at the

moment the output packet is filled and sent back via the dataout callback function. If

the granularity of the input packets is coarser than the granularity of the output packets,

only the first output packet of a group being related to the current input packet would

obtain the input packet's time stamp. The time stamps of the successive output packets

would be marked invalid. The decoder does not adapt its processing to the time stamps,

nor does it interpret them. They are presentation time stamps and the application has to

ensure that the decoder gets its input decoder at the appropriate time.

Run Time Behavior

Once the function tmolAdecPlStart is called the Pro Logic decoder starts to run as a sepa-

rate task. All the interaction with other components and the application occurs via call-

back functions. The decoder makes use of the datain, dataout and error function.

Whenever a fatal error occurs the respective error code is sent via the error callback func-

tion. All empty output and full input packets are expelled and the AL layer start function

is left.

The decoder works without any internal buffers. It writes the decoded samples directly

into the output packets.

Changes to the configuration can be done by calling tmolAdecPlInstanceConfig. This

function sends a message to the decoder via the command queue. Since the commands

are checked only when data input or output occurs, configuration changes do not hap-

pen at the same time when the config function is called. The delay of a configuration

change depends on the sizes of the input and output packets, because those determine

the frequency at which the datain and dataout callback functions are called by tmal-

AdecPlStart.

Chapter 13: Pro Logic Decoder (AdecPl) API

108 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Figure 20 Time Behavior of tmolAdecPlInstanceConfig

Using the AL Layer API

At the AL layer a programmer has two choices of interfaces. It is possible to write an AL

layer application in streaming (pull) mode and non-streaming (push) mode. Philips rec-

ommends the usage of the non-streaming mode interface at the AL layer. However, the

TriMedia Pro Logic Decoder is also fully functional in streaming mode at the AL layer.

Operation in Streaming Mode

If the AL layer interface is used in streaming mode, application programmers must

implement their own callback functions. The default mechanisms are only available for

OL layer applications. The code required to use the streaming mode AL layer library is

very similar to that of the OL layer. At first an instance is obtained by calling tmalAdecPl-

Open. Then, the instance of the decoder is configured with an instance setup struct. A

pointer to an already configured struct can be retrieved from tmalAdecPlGetInstance-

Setup. It is then adapted to the application’s requirements and used to configure the

decoder by tmalAdecPlInstanceSetup. After that the actual decoding is started by calling

tmalAdecPlStart. From now on the decoder acquires and sends data automatically using

the respective callback functions. It can be stopped by calling tmalAdecPlStop. If no

operating system is used, the call of the stop function must occur either in an interrupt

service routine or in one of the callback functions. Once the decoder is stopped the cur-

rent instance of it can be freed by tmalAdecPlClose. An example of how to implement an

application using the AL layer streaming mode API is provided with the software release.

The name of the example file is exaladecpls.c.

tmolAdecPlInstanceConfig

DataIn

C
al

l f
ro

m
 A

p
p

lic
at

io
n

Re
tu

rn
 to

 A
p

p
lic

at
io

n

C
o

m
m

an
d

 G
et

s
Ex

ec
u

te
d

DataOut

Delay

Time

tmolAdecPlInstanceConfig

DataIn DataOut DataIn DataOut

C
al

l f
ro

m
 A

p
p

lic
at

io
n

Re
tu

rn
 to

 A
p

p
lic

at
io

n

C
o

m
m

an
d

 G
et

s
Ex

ec
u

te
d

Delay

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 109

13

Operation in Non-Streaming Mode

To use the TriMedia Pro Logic Decoder in non-streaming mode the steps required for

acquiring an instance and setting up the instance are the same as for the streaming

mode application. The actual processing is done by the function tmalAdecPlDecode. This

function decodes one chunk of Lt, Rt input data. It has as parameter a struct of the type

tmalAdecPlFrame_t. This struct consists of two pointers, one to an input packet and the

other to an output packet. A block diagram of the actual processing loop is given in

Figure 21. Shaded boxes represent functionality to be implemented in the application

and white boxes are functions provided by the Pro Logic library.

Figure 21 Processing Loop in Non-Streaming Mode

An example program using the non-streaming mode AL layer API is given by exaladec-

plns.c which is shipped together with the library.

Constraints on Input/Output Packets

If the application is using the streaming mode API of the AL layer, the same constraints

as for the OL layer apply (see page 106). In non-streaming mode there apply two restric-

tions. First of which is that the number of PCM samples of each channel must be a mul-

tiple of eight. In addition to this the output packet buffer size must be large enough to

store all decoded samples of the input packet.

The performance considerations made for the OL layer library hold for the AL layer

library, too: larger buffers decrease the required processor load for the decoding; how-

ever, they also increase the decoding delay.

Time Stamps

The handling of time stamps is the same for the streaming mode interface as for the OL

layer library (see page 107). In non-streaming mode time stamps are not handled. A user

of the non-streaming mode API can just copy the time stamp information from the

input to the output packet, since their associated time duration is the same.

Get Input Data

tmalAdecPlDecode

Process Output Data

tmalAdecPlCloseEnd?
No Yes

Chapter 13: Pro Logic Decoder (AdecPl) API

110 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Run Time Behavior

If the application is using the AL layer API in streaming mode it must provide at least a

datain and a dataout function. An error function is not necessarily required, since when

an error occurs tmalAdecPlStart returns with the respective error code and the applica-

tion can react in an appropriate way. In contrast to the OL layer config function its AL

layer counterpart tmalAdecPlInstanceConfig changes the configuration immediately

upon its call. No delay occurs.

For the non-streaming mode API no particular run time issues exist. The run time behav-

ior is completely determined by the application, as it is in charge of input/output syn-

chronization and buffer management.

Quality Assurance and Performance

This section describes how the quality and functionality of the Pro Logic decoder library

is assured. Furthermore, the library performance is also analyzed.

Quality Assurance

The quality of the Pro Logic library is assured by design of the software and an extensive

test suite. The decoder design was based upon the reference C code revision number 2.0

available from Dolby Labs. During the entire implementation and optimization phase,

extensive compliance tests were performed. A set of 140 test vectors testing all critical

decoder properties at different sampling frequency was used to assure compliance. Dolby

provides a set of Matlab tools that generate objective measures telling whether or not an

individual test failed. These tests were carried out with the optimized TriMedia imple-

mentation. Since then all tests were carried out with an automatic test environment

comparing all decoding results to those proved as correct with the Matlab tests.

The TriMedia ProLogic decoder has been completely tested and certified by Dolby Labs.

Apart from the testing of the implemented algorithm comprehensive tests of the TSSA

interface are performed to guarantee that the library is capable of dealing with all speci-

fied packet types.

Furthermore, extensive listening tests were carried out with different applications built

upon the Pro Logic library.

Decoder Performance

The processor resources requirements have been measured for all four supported sample

rates with an AL and an OL layer Pro Logic decoder application. In both cases the

decoder’s input packet format is apfStereo16 and the output packet format apfFiveDot-

One16.

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 111

13

The performance measure unit is MIPS which is independent of the TriMedia clock fre-

quency. A 100 MHz TriMedia executes 100 million VLIW instructions and therefore pro-

vides 100 MIPS.

The values of Table 19 are worst-case figures for the specified sampling frequencies.

Note that the AL layer results do not take the handling of input and output data into

account. The OL layer results, however, represent the entire time spent in the Pro Logic

decoder task. This overhead in the OL layer result increases with the sampling frequency,

because the amount of data travelling through the decoder increases.

Additional Requirements For a Complete Audio System

The functionality of the Pro Logic decoder is limited to the actual decoding algorithm.

Additional features, that are absolutely required for a real audio application, must be

implemented external to the Pro Logic decoder. An example for a real audio system build

upon available TriMedia TSA libraries is illustrated by Figure 22.

Figure 22 Pro Logic Decoder Audio System

The tasks of the connected components are:

■ Audio Digitizer: Samples PCM data from the audio input hardware and sends it as

TSA audio packets to the Pro Logic Decoder.

■ Pink Noise Generator: Produces pink noise which is used to calibrate the audio sys-

tem dependent on the location of the speakers.

Table 19 Performance Measurement Results

Sample Rate AL Layer OL Layer

22050 Hz 3.7 MIPS 4.0 MIPS

32000 Hz 5.4 MIPS 5.8 MIPS

44100 Hz 7.4 MIPS 8.0 MIPS

48000 Hz 8.1 MIPS 8.7 MIPS

AdigAI

Pro Logic DecoderAudio Digitizer

Audio Mixer

AdecPl

NoiseSeq

Amix

Audio Renderer

ArendAO

Pink Noise Generator

Chapter 13: Pro Logic Decoder (AdecPl) API

112 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

■ Pro Logic Decoder: Decodes the left and right channel samples received in the input

packets. It sends the surround sound PCM samples at its output to the audio mixer.

■ Audio Mixer: Receives the multichannel audio packets at its input. It applies addi-

tional processing like master volume control, trim, bass redirection and center/sur-

round delays.

■ Audio Renderer: Receives audio packets from the mixer and renders the sound via the

audio output hardware. It is also capable of handling time stamps to ensure that the

audio packets are displayed at the right time.

AdecPl Inputs and Outputs

The Pro Logic Decoder library has got one input and one output. Several different PCM

audio formats are supported by the Pro Logic Decoder library. Details can be found on

page 104.

The restrictions on the inputs and outputs of the Pro Logic Decoder library are described

for the OL layer on page 106, and for the AL layer on page 109, respectively.

AdecPl Errors

Following errors can be reported by the error callback function during the actual data

processing of the library (only in streaming mode!). All those errors are fatal and the AL

layer start function terminates after the error callback function has returned to it. Before

the AL layer start function returns, it expels all packets it kept.

The error callback function, which must be implemented by the application program-

mer, should inform the application about the fact that the data processing will stop after

it returns. The application can then, for instance, restart the Pro Logic decoder.

See page 107 and 110 for further information on the run time behavior of the Pro Logic

Library.

Error Codes Meaning

TMLIBAPP_ERR_INVALID_INSTANCE Instance number is invalid.

TMLIBAPP_ERR_NOT_SETUP Instance is not yet setup.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
Format of input or output packet is not sup-
ported.

PL_ERR_IN_GRANULARITY Number of samples per channel in the input
packet is not a multiple of eight.

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 113

13

AdecPl Progress

The TriMedia Pro Logic Decoder library does not make use of the progress callback func-

tion. The exception is, of course, the installation of a new format at its output. See the

respective chapter about the TriMedia Streaming Software Architecture for more details.

AdecPl Configuration

The TriMedia Pro Logic Decoder library provides two configuration functions, one for OL

layer applications and one for AL layer applications. The OL layer configuration function

uses command queues. Its run time behavior is described on page 107, refer also to page

142 for its interface description. On the contrary the AL layer configuration function

works without command queues. The commands are executed directly. Refer to page 110

for information on its run time behavior and to page 130 for its interface description.

Both function accept the same commands which either change or get the values of the

auto balance mode, the wide surround mode, the channel configuration mode, and the

scale factor of the output samples.

Commands to change the configuration are:

PL_CONFIG_SET_AUTOBALANCE_ON Switches the auto balance input control on.
Parameter is not used.

PL_CONFIG_SET_AUTOBALANCE_OFF Switches the auto balance input control off.
Parameter is not used.

PL_CONFIG_SET_CHANNEL_CONFIG Changes the output channel configuration.
Parameter is in the range [3, 7]. For the meaning
of the values, refer to n.

PL_CONFIG_SET_SAMPLERATE Changes the sample rate, which affects the inter-
nal filters. Parameter is in the range [0, 3] where
0 = 48000 Hz, 1 = 44100 Hz, 2 = 32000 Hz, and
3 = 22050 Hz.

PL_CONFIG_SET_WIDE_SURROUND_ON Switches wide surround mode on (see page 105).
Parameter is not used

PL_CONFIG_SET_WIDE_SURROUND_OFF Switches wide surround mode off (see page 105).
Parameter is not used

PL_CONFIG_SET_PCM_SCALE_FACTOR Sets the factor with which the output samples are
multiplied. Parameter is in the range [0.0, 1.0]

Commands to get values of the current configuration are:

PL_CONFIG_GET_AUTOBALANCE_MODE Parameter returns the current status of the auto-
balance mode,
parameter == 0, auto balance is switched off
parameter == 1, auto balance is switched on.

PL_CONFIG_GET_CHANNEL_CONFIG_MODE
Parameter returns the current channel configura-

Chapter 13: Pro Logic Decoder (AdecPl) API

114 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tion mode. Refer to n for the meaning of the
codes.

PL_CONFIG_GET_SAMPLERATE Parameter returns the current sample rate, where
0 = 48000 Hz, 1 = 44100 Hz, 2 = 32000 Hz, and
3 = 22050 Hz.

PL_CONFIG_GET_WIDE_SURROUND_MODE
Parameter returns the current surround mode.
Parameter == 0 means normal surround channel
processing; parameter == 1 means LPF and B-type
NR filter switched off.

PL_CONFIG_GET_PCM_SCALE_FACTOR Parameter returns the current PCM scale factor, a
floating point value of the range [0.0, 1.0]

The (one) command to get default values is:

PL_CONFIG_GET_DEF_CHANNEL_CONFIG
Parameter return the default channel configura-
tion depending on the format of the output
descriptor (refer to).

If the application wants either to change the value of the PCM scale factor or retrieve the

current setting from the running decoder a special cast operation is required. The follow-

ing code fragments show how those commands must be set up. In the first example the

PCM scale factor is set to 0.8:

If the application wants to acquire the current setting of this decoder parameter it has to

perform the following:

This sort of casting is required because otherwise an implicit cast to integer would be per-

formed by the compiler.

tsaControlArgs_t cargs;
Float32 pcmVal = 0.8;
cargs.command = PL_CONFIG_SET_PCM_SCALE_FACTOR;
cargs.parameter = *((Pointer *) &pcmVal);
tmolAdecAc3InstanceConfig(decInstance, tsaControlWait, &cargs);

tsaControlArgs_t cargs;
Float32 pcmVal;
cargs.command = PL_CONFIG_GET_PCM_SCALE_FACTOR;
tmolAdecAc3InstanceConfig(decInstance, tsaControlWait, &cargs);
pcmVal = *((Float32 *) &cargs.parameter);

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 115

13

Pro Logic AL Layer API Data Structures

This section describes the Pro Logic data structures.

Name Page

tmalAdecPlLibraryMode_t 116

tmalAdecPlConfigTypes_t 116

tmalADecPlCapabilities_t 117

tmalAdecPlSetup_t 118

tmalAdecPlConfig_t 119

tmalAdecPlFrame_t 121

Chapter 13: Pro Logic Decoder (AdecPl) API

116 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecPlLibraryMode_t

typedef enum {
 PL_LIB_MODE_PUSH,
 PL_LIB_MODE_PULL
} tmalAdecPlLibraryMode_t;

Description

The decoder can be run in push mode or in pull mode (only in the AL layer). These are

legal values for the field libraryMode in tmalAdecAc3InstanceSetup_t. Push mode is also

known as non-streaming mode. Pull mode is also known as streaming mode.

For more information, refer to structures tmalAdecPlSetup_t (see page 118) and tmal-

AdecPlInstanceSetup(see page 125).

tmalAdecPlConfigTypes_t

typedef enum {
 PL_CONFIG_SET_AUTOBALANCE_ON = tsaCmdUserBase + 0x00,
 PL_CONFIG_SET_AUTOBALANCE_OFF = tsaCmdUserBase + 0x01,
 PL_CONFIG_SET_CHANNEL_CONFIG = tsaCmdUserBase + 0x02,
 PL_CONFIG_SET_SAMPLERATE = tsaCmdUserBase + 0x03,
 PL_CONFIG_SET_WIDE_SURROUND_ON = tsaCmdUserBase + 0x04,
 PL_CONFIG_SET_WIDE_SURROUND_OFF = tsaCmdUserBase + 0x05,
 PL_CONFIG_SET_PCM_SCALE_FACTOR = tsaCmdUserBase + 0x06,
 PL_CONFIG_GET_AUTOBALANCE_MODE = tsaCmdUserBase + 0x07,
 PL_CONFIG_GET_CHANNEL_CONFIG_MODE = tsaCmdUserBase + 0x08,
 PL_CONFIG_GET_SAMPLERATE = tsaCmdUserBase + 0x09,
 PL_CONFIG_GET_WIDE_SURROUND_MODE = tsaCmdUserBase + 0x0a,
 PL_CONFIG_GET_PCM_SCALE_FACTOR = tsaCmdUserBase + 0x0b,
 PL_CONFIG_GET_DEF_CHANNEL_CONFIG = tsaCmdUserBase + 0x0c
} tmalAdecPlConfigTypes_t;

Description

These are the valid commands for both the AL and OL layer instance config function.

They can be used to either change an internal decoder setting PL_CONFIG_SET_xxx, get

the current setting PL_CONFIG_GET_xxx or get a default value PL_CONFIG_GET_DEF_xxx.

For more information, refer to the functions tmalAdecPlInstanceConfig (see page 130),

and tmolAdecPlInstanceConfig (see page 142).

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 117

13

tmalADecPlCapabilities_t

typedef struct tmalADecPlCapabilities{
 ptsaDefaultCapabilities_t defaultCaps;
} tmalADecPlCapabilities_t, *ptmalAdecPlCapabilities_t;

Fields

defaultCaps Pointer to TSA default capabilities structure.

Description

Structures of this type hold a list of capabilities. This audio decoder maintains a structure

of this type to describe itself. A user can retrieve the address of this structure by calling

tmalAdecPlGetCapabilities.

Chapter 13: Pro Logic Decoder (AdecPl) API

118 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecPlSetup_t

typedef struct tmalAdecPlSetup{
 ptsaDefaultInstanceSetup_t defaultSetup;
 ptmalAdecPlConfig_t config;
 tmalAdecPlLibraryMode_t libraryMode;
} tmalAdecPlSetup_t, *ptmalAdecPlSetup_t;

Fields

defaultSetup Pointer to tsaDefaultInstanceSetup_t.

config Pointer to tmalAdecP1Config_t.

libraryMode enum value determining whether AL library is
operated in streaming or non-streaming mode.

Description

This structure consists of a pointer to a tsaDefaultInstanceSetup_t struct, a pointer to a

config struct (tmalAdecP1Config_t) and an integer field which indicates whether the

library is used in streaming or non-streaming mode. Structs of this type are used to con-

figure the decoder. While the default setup describes the interface of the decoder to the

outside world (callback functions and input/output pins) the internal behavior of the

decoder is determined by the config structure.

A valid instance setup structure with pre-configured settings can be obtained from the

Pro Logic decoder library by calling tmalAdecPlGetInstanceSetup (see page 125). The

content of the setup struct is used to configure the decoder by calling tmalAdecPl-

InstanceSetup (see page 126) with a pointer to the struct as second parameter.

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 119

13

tmalAdecPlConfig_t

typedef struct tmalAdecPlConfig{
 Int abaldisable;
 Int chanconfig;
 Int widesur;
 Float pcmScaleFactor;
} tmalAdecPlConfig_t, *ptmalAdecPlConfig_t;

Fields

abaldisable Disable autobalance.

chanconfig Output channel configuration.

widesur Wide surround mode.

pcmScaleFactor PCM output sample scale factor.

Description

This struct is used to configure the decoder during the setup phase. The Pro Logic

instance setup struct see page 118) contains a pointer to the config structure. Its content

determines the algorithmic behavior of the decoder:

■ abaldisable: If 1, auto balance is disabled; the default setting is enabled (therefore 0).

■ chanconfig: Determines the output configuration of the decoder, as indicated in the

table below.

The default setting depends on format of the output descriptor.

Table 20 Channel Configuration Codes

chanconfig code reproduced audio channels

3 = 3/0 left, center, right

4 = 2/1 left, right and one surround + phantom center

5 = 3/1 left, center, right and one surround

6 = 2/2 left, right and split surrounds + phantom center

7 = 3/2 left, center, right and split surrounds

Table 21 Default Channel Configuration Values

Output Descriptor Format Default Setting

apfFourCh_3_0_1_16 3

apfFourCh_2_1_1_16 4

Chapter 13: Pro Logic Decoder (AdecPl) API

120 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

■ widesur: If set, the low pass filter and the Dolby B-type NR filter are not performed on

the samples of the surround channel. This is recommended for PC type applications.

Default wise these filters are applied.

■ pcmScaleFactor: A value of the range [0.0, 1.0] with which all PCM output samples

are multiplied. The default value is 1.0, i.e., the output samples stay unmodified.

apfFourCh_3_1_0_16 5

apfFourCh_2_2_0_16 6

apfFiveDotOne16 7

Table 21 Default Channel Configuration Values

Output Descriptor Format Default Setting

apfFourCh_3_0_1_16 3

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 121

13

tmalAdecPlFrame_t

typedef struct tmalAdecPlFrame{
 ptmAvPacket_t PlpcmPacket;
 ptmAvPacket_t pcmPacket;
} tmalAdecPlFrame_t, *ptmalAdecPlFrame_t;

Fields

PlpcmPacket Pointer to input packet.

xpcmPacket Pointer to output packet.

Description

Structures of this type consist of two pointers. Both are pointing to data packets; the first

to an input packet and the second to an output packet. This structure is used as argu-

ment for the function tmalAdecPlDecode, which implements the non-streaming mode

decoder.

Chapter 13: Pro Logic Decoder (AdecPl) API

122 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Pro Logic AL layer API Functions

This section describes the Pro Logic Application Layer API functions.

Name Page

tmalAdecPlGetCapabilities 123

tmalAdecPlOpen 124

tmalAdecPlClose 124

tmalAdecPlGetInstanceSetup 125

tmalAdecPlInstanceSetup 126

tmalAdecPlStart 128

tmalAdecPlStop 129

tmalAdecPlInstanceConfig 130

tmalAdecPlDecode 132

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 123

13

tmalAdecPlGetCapabilities

extern tmLibappErr_t tmalAdecPlGetCapabilities(
 ptmalAdecPlCapabilities_t *caps
);

Parameters

caps Pointer to a variable in which to return a pointer
to the capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

Function returns pointer to the decoder capabilities struct via the argument pointer.

Chapter 13: Pro Logic Decoder (AdecPl) API

124 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecPlOpen

extern tmLibappErr_t tmalAdecPlOpen(
 Int *instance
);

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NO_INSTANCE_AVAILABLE
No further instance is free.

Description

Returns instance if a free instance is available via the argument pointer.

tmalAdecPlClose

extern tmLibappErr_t tmalAdecPlClose(
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is invalid.

Description

Closes the instance and frees resources.

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 125

13

tmalAdecPlGetInstanceSetup

extern tmLibappErr_t tmalAdecPlGetInstanceSetup(
 Int instance,
 ptmalAdecPlSetup_t *setup
);

Parameters

instance The instance.

setup Pointer to a variable in which to return a pointer
to the setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is invalid.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation failed.

Description

The function provides a prototype of a valid instance setup struct. It fills in the most

likely values. Memory is allocated dynamically.

Note
The queues of the input and output descriptors need to be assigned in both
push and pull model.

Chapter 13: Pro Logic Decoder (AdecPl) API

126 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecPlInstanceSetup

extern tmLibappErr_t tmalAdecPlInstanceSetup(
 Int instance,
 ptmalAdecPlSetup_t setup
);

Parameters

instance Instance variable.

setup Pointer to setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is invalid.

TMLIBAPP_ERR_NO_QUEUE The queues for the input or output pins are not
assigned.

TMLIBAPP_ERR_UNSUPPORTED_DATACLASS
The dataClass field in either the format of the
input or output descriptor contains an unsup-
ported value.

TMLIBAPP_ERR_UNSUPPORTED_DATATYPE
The dataType field in either the format of the
input or output descriptor contains an unsup-
ported value.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
The dataSubype field in either the format of the
input or output descriptor contains an unsup-
ported value.

PL_ERR_ILL_SAMPRATE The sample rate specified in the format of the
input descriptor is not supported.

PL_ERR_ILL_CHCNFG The value of the chanconfig field exceeds the
range [3, 7].

PL_ERR_OUTPUT_MISMATCH The channel configuration setting and the format
of the output descriptor contain conflicting val-
ues, i.e., the channel configuration setting would
produce audio channels that are not present in
the specified output format.

PL_ERR_ILL_PCMSCALEFACTOR The PCM sample scale factor exceeds the interval
[0.0, 1.0].

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 127

13

Description

Function copies information from the Pro Logic setup structure into an internal struc-

ture belonging to the instance and checks if the settings are valid.

Note
The sample rate value of the input format is used to determine the internal
filter characteristics.

Chapter 13: Pro Logic Decoder (AdecPl) API

128 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecPlStart

extern tmLibdevErr_t tmalAdecP1Start(
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is invalid.

TMLIBAPP_ERR_NOT_SETUP Instance is not yet setup.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
The format of input or output packet is not sup-
ported.

PL_ERR_IN_GRANULARITY The number of samples per channel in the input
packet is not a multiple of eight.

Description

Function works in a loop mode, it acquires empty PCM output data packets and full Pro

Logic PCM input packets. The condition for the packets is, that the data size of the input

packets and the buffer size of the output packets is always a multiple of 8 samples. The

number of samples in the input and output packets does not need to be identical. The

decoder writes its results directly into the output packets. Therefore, no memory will be

allocated during decoding. The loop processing can be stopped by calling the AL layer

stop function tmalAdecPlStop.

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 129

13

tmalAdecPlStop

extern tmLibappErr_t tmalAdecPlStop(
 Int instance
);

Parameters

instance Instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is invalid.

Description

Sets internal flag that is checked by the start function. The start function then terminates

at the next possible position.

Chapter 13: Pro Logic Decoder (AdecPl) API

130 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecPlInstanceConfig

extern tmLibappErr_t tmalAdecPlInstanceConfig(
 Int instance,
 ptsaControlArgs_t args
);

Parameters

instance Instance variable obtained from open function.

args Pointer to argument structure consisting of a
command and a parameter pointer. The two other
fields are unused at the AL layer.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is invalid.

TMLIBAPP_ERR_NOT_SETUP Instance is not yet setup.

PL_ERR_ILL_CHCNFG chanconfig value is illegal.

PL_ERR_ILL_SAMPRATE Sample rate code is not supported.

PL_ERR_OUTPUT_MISMATCH chanconfig and format of output descriptor con-
flict with another.

PL_ERR_ILL_PCMSCALEFACTOR The PCM sample scale factor exceeds the interval
[0.0, 1.0].

TMLIBAPP_ERR_INVALID_COMMAND Command is unknown.

Description

This function is used to change or to get information on the operational mode of the

decoder. This function needs not be called if the default settings meet the application’s

requirements. It can be used during the data processing phase to change the decoder

configuration without stopping the decoder. It is applicable in both streaming and non-

streaming mode. In both cases the configuration is changed before the function returns.

There is no special mechanism implemented to synchronize changes with the start

function.

This function can execute the commands specified in tmalAdecPlConfigTypes_t (refer to

116). One of those commands are assigned to the command field of the args struct.

Depending of the nature of the command it could be necessary to assign a value to the

parameter field. This is the case for PL_CONFIG_SET_CHANNEL_CONFIG,

PL_CONFIG_SET_SAMPLERATE and PL_CONFIG_SET_PCM_SCALE_FACTOR.

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 131

13

Supported parameter values are:

■ PL_CONFIG_SET_CHANNEL_CONFIG

■ PL_CONFIG_SET_SAMPLERATE

■ PL_CONFIG_SET_PCM_SCALE_FACTOR

The parameter must be of the range [0.0, 1.0].

If the command is a ‘get’ command, the requested value is returned in the args struct in

the parameter field.

Note
Parameter is of the type Pointer and a cast to integer or float must be
performed in the application program because the Pro Logic Decoder
Library does not use the parameter value as a pointer, it interprets the
content of the field as integer or float value.

parameter reproduced audio channels

3 = 3/0 left, center, right

4 = 2/1 left, right and one surround + phantom center

5 = 3/1 left, center, right and one surround

6 = 2/2 left, right and split surrounds + phantom center

7 = 3/2 left, center, right and split surrounds

parameter

0 = 48000 Hz

1 = 44100 Hz

2 = 32000 Hz

3 = 22050 Hz

Chapter 13: Pro Logic Decoder (AdecPl) API

132 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAdecPlDecode

extern tmLibappErr_t tmalAdecPlDecode(
 Int instance,
 ptmalAdecPlFrame_t PlFrame
);

Parameters

instance Instance variable.

PlFrame Pointer to a PlFrame struct.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is invalid.

TMLIBAPP_ERR_NOT_SETUP Instance is not yet setup.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
The format of input or output packet is not sup-
ported.

PL_ERR_IN_GRANULARITY The number of samples per channel in the input
packet is not a multiple of eight.

PL_ERR_INOUT_MISMATCH The buffer size of the output packet is not great
enough to accommodate all decoded samples.

Description

Decoder function for non-streaming mode. This function has no internal buffer. The

number of samples of the input and output packets must match (refer to error codes

above). If, for instance, the dataSize of the input packet is 256, the input dataSubtype is

apfStereo16, and the output packet dataSubtype is apfFiveDotOne16, then the bufferSize

of the output packet must greater equal 768.

Note
The Pro Logic Decoder Library uses only one buffer in both input and
output packets.

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 133

13

Pro Logic Operating System Layer API Data Structures

This section presents the Pro Logic Operating System Layer API data structures.

Name Page

tmolAdecPlCapabilities_t 134

tmolAdecPlInstanceSetup_t 135

Chapter 13: Pro Logic Decoder (AdecPl) API

134 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAdecPlCapabilities_t

typedef struct tmolADecPlCapabilities{
 ptsaDefaultCapabilities_t defaultCapabilities;
} tmolADecPlCapabilities_t, *ptmolAdecPlCapabilities_t;

Fields

defaultCapabilities Pointer to the default capabilities struct as speci-
fied in tsa.h.

Description

Structures of this type hold a list of capabilities.This audio decoder maintains a structure

of this type to describe itself. A user can retrieve the address of this structure by calling

tmolAdecPlGetCapabilities.

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 135

13

tmolAdecPlInstanceSetup_t

typedef struct tmolAdecPlInstanceSetup_t {
 ptsaDefaultInstanceSetup_t defaultSetup;
 ptmalAdecPlConfig_t config;
} tmolAdecPlInstanceSetup_t, *ptmolAdecPlInstanceSetup_t;

Fields

defaultSetup Pointer to the default instance setup struct. This
struct contains the information that is required
for the decoder to interact with the application
and other library components.

config Pointer to the Pro Logic Decoder configuration
struct. It contains settings that determine the sort
of signal processing applied to the input data.

Description

This structure consists of two pointers. The first points to a tsaDefaultInstanceSetup_t

struct. The second points to the AL layer user configuration struct tmalAdecPlConfig_t

which is used to control the channel mapping of the decoder output and the imple-

mented signal processing (wide surround, auto balance). A pre-configured struct of the

type tmolAdecPlInstanceSetup_t can be retrieved from the decoder library by calling

tmolAdecPlGetInstanceSetup (see page 141). The user must then adapt all necessary set-

tings to the application’s requirements. The decoder gets finally configured by calling

tmolAdecPlInstanceSetup with a pointer to a tmolAdecPlInstanceSetup_t struct as second

parameter (see page 139).

Chapter 13: Pro Logic Decoder (AdecPl) API

136 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Pro Logic Operating System Layer API Functions

This section presents the Pro Logic Operating System Layer API functions.

Note
All functions trigger asserts in debug mode. They do not check the validity
of the instance and if the instance is set up in release mode! It is therefore
recommended to use the debug version of the library during the
development phase.

Name Page

tmolAdecPlGetCapabilities 137

tmolAdecPlOpen 138

tmolAdecPlClose 138

tmolAdecPlInstanceSetup 139

tmolAdecPlGetInstanceSetup 141

tmolAdecPlInstanceConfig 142

tmolAdecPlStart 143

tmolAdecPlStop 144

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 137

13

tmolAdecPlGetCapabilities

extern tmLibappErr_t tmolAdecPlGetCapabilities(
 ptmolAdecPlCapabilities_t *pCap
);

Parameters

pCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

Fills in the pointer to a static tmolADecCapabilities_t structure maintained by the

decoder to describe the capabilities and requirements of this library.

Chapter 13: Pro Logic Decoder (AdecPl) API

138 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAdecPlOpen

extern tmLibappErr_t tmolAdecPlOpen(
 Int *instance
);

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MEMALLOC_FAILED Allocation of memory for the internally used
instance variable failed.

Description

Creates an instance of a decoder. Memory for an instance structure and a setup structure

is allocated.

tmolAdecPlClose

extern tmLibappErr_t tmolAdecPlClose(
 Int instance
);

Parameters

instance Instance, as returned by tmolAdecPlOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INST The instance is invalid.

Description

Shut down this instance of the decoder. Free instance variable memory.

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 139

13

tmolAdecPlInstanceSetup

extern tmLibappErr_t tmolAdecPlInstanceSetup(
 Int instance,
 ptmolAdecPlInstanceSetup_t setup
);

Parameters

instance The instance.

setup Pointer to setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is invalid.

TMLIBAPP_ERR_NO_QUEUE The queues for the input or output pins are not
assigned.

TMLIBAPP_ERR_UNSUPPORTED_DATACLASS
The dataClass field in either the format of the
input or output descriptor contains an unsup-
ported value.

TMLIBAPP_ERR_UNSUPPORTED_DATATYPE
The dataType field in either the format of the
input or output descriptor contains an unsup-
ported value.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
The dataSubype field in either the format of the
input or output descriptor contains an unsup-
ported value.

PL_ERR_ILL_SAMPRATE The sample rate specified in the format of the
input descriptor is not supported. Note that the
samprate field of the config struct has lower
importance! The sample rate is determined by the
format of the input descriptor!

PL_ERR_ILL_CHCNFG The value of the chanconfig field exceeds the
range [3, 7].

PL_ERR_OUTPUT_MISMATCH The channel configuration setting and the format
of the output descriptor contain conflicting val-
ues, i.e. the channel configuration setting would
produce audio channels that are not present in
the specified output format.

PL_ERR_ILL_PCMSCALEFACTOR The PCM sample scale factor exceeds the interval
[0.0, 1.0].

Chapter 13: Pro Logic Decoder (AdecPl) API

140 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Description

This function configures the Pro Logic Decoder. All information required for the set up

and configuration of the Pro Logic decoder is contained in the setup struct (see page

135). Normally the setup struct is obtained from the library by calling tmolAdecPlGetIn-

stanceSetup. It is then modified by the application to match the application’s require-

ments before tmolAdecPlGetInstanceSetup gets called.

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 141

13

tmolAdecPlGetInstanceSetup

tmLibdevErr_t tmolAdecPlInstanceSetup(
 Int instance,
 ptmolAdecPlInstanceSetup_t *rsetup
);

Parameters

instance Instance, as returned by tmolAdecPlOpen.

rsetup Pointer to a variable in which to return a pointer
to the setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is invalid.

Description

This function is used to obtain a valid instance setup structure from the library. The

library fills in the most likely settings. In the best case, an application program just needs

to fill in pointers to the input, output and the control descriptors in the respective

descriptor fields before calling tmolAdecPlInstanceSetup. This function does not allocate

memory for the instance setup struct. The allocation happens when an instance is

acquired by calling tmolAdecPlOpen.

Chapter 13: Pro Logic Decoder (AdecPl) API

142 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAdecPlInstanceConfig

tmLibdevErr_t tmolAdecPlInstanceConfig(
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Parameters

instance Instance value from tmolAdecPlOpen.

flags Flags for the pSOS command queue.

args Pointer to argument structure containing a com-
mand (see tmalAdecPlConfigTypes_t), a parameter
pointer, a return value pointer (retval) and a time-
out value. Note that the AL layer instance config
function's return value is stored in the return
value pointer parameter!

Return Codes

TMLIBAPP_OK Success.

other Error codes from the command queue handler
implemented in the default functions.

Description

This function is used to either reconfigure particular settings of the decoder or get their

values from the decoder. The functionality is identical to that of tmalAdecPlInstance-

Config (see page 130). In fact, tmolAdecPlInstanceConfig makes use of its AL layer coun-

terpart. The command and the parameter are sent via a command queue to the AL layer

function which then executes the command. In the case of a PL_CONFIG_GET_xxx com-

mand the requested value is stored in the parameter field of the args struct. Similarly to

the AL layer function, type casts need to be used to access the values.

The OL layer InstanceConfig function works in a synchronized fashion. It can exchange

information with its AL layer counterpart, where the actual processing occurs, only at

certain moments. Those are when data input or data output occurs. Hence, the delay

time of the execution of a command depends on the data granularity.

The value of the timeout field of the args struct determines the number of pSOS clock

ticks the function should wait for the response from tmalAdecPlInstanceConfig on the

response queue. This value is only of importance if the flag tsaControlWait is set.

Chapter 13: Pro Logic Decoder (AdecPl) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 143

13

Note
The application using tmolAdecPlInstanceConfig must check both the
return code of the function and the retval field of the args struct. The return
value of tmolAdecPlInstanceConfig just indicates whether or not the
communication via the command queue was successful. Error codes of the
command execution are stored in the retval field.

tmolAdecPlStart

extern tmLibdevErr_t tmolAdecPlStart(
 Int instance
);

Parameters

instance Instance, as returned by tmolAdecPlOpen.

Return Codes

TMLIBAPP_OK Success.

other Return values from the default start function.

Description

Starts the AL layer start function as task, which implements the actual Pro Logic decod-

ing. The data processing can be stopped by calling tmolAdecPlStop. All errors occurring

during the execution of the AL layer start function are made known to the application

by the error callback function. The return values of tmalAdecPlStart (see page 128) are

sent as the errorCode via the error callback function. After sending the error message

tmalAdecPlStart returns.

Chapter 13: Pro Logic Decoder (AdecPl) API

144 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAdecPlStop

extern tmLibdevErr_t tmolAdecPlStop(
 Int instance
);

Parameters

instance Instance, as returned by tmolAdecPlOpen.

Return Codes

TMLIBAPP_OK Success.

Description

This function triggers the stop sequence for the instance of the Pro Logic decoder. It

forces the decoder to leave the main processing loop and return from tmolAdecPlStart.

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 145

14

Chapter 14

MPEG Audio Decoder (AdecMpeg) API

Note
This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Topic Page

Overview 146

Using the MPEG Audio Decoder API 148

MPEG Audio Decoder Data Structures 151

MPEG Audio Decoder Functions 159

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

146 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Overview

Introduction

The MPEG audio decoder is a TSSA compliant module that accepts a stream of MPEG 1

layer 1 and layer 2 encoded audio at its input stream and generates a linear PCM format

output stream. It is also able to handle the respective MPEG-2 bit streams. However, it

decodes only the stereo channels of MPEG-2 streams. For information about the general

interface philosophy, you are directed to the TSSA software architecture documentation.

The public programmers interface of the decoder is the file tmolAdecMpeg.h. This TriMe-

dia library does not support a non-streaming interface. Therefore, no AL header file is

made public.

Use of either of these decoders may require a patent license, as the MPEG audio coding

standards are covered by patents held by various companies.

MPEG Compliancy

The decoder is capable of decoding all Layer 1and Layer 2 bit streams except for bit

streams using the free data rate format. Such bit streams cause an error message. The

decoder is also not performing de-emphasis. It, however, indicates if emphasis is applied

to MPEG bit stream via the progress callback function when the appropriate flag is

installed.

Inputs and Outputs

The decoder has one input and two outputs. The input is an MPEG 1 encoded bit stream.

The first output is stereo 16 bit linear PCM audio data, as described by a TSA packet. Ste-

reo 16 bit is the only supported output format. The sample rate can be 32k, 44.1k, or

48k, as described by the MPEG specification. The second will support IEC601937 format-

ted data, or a headphone mix, in the future.

Real Time Behavior

This section describes some issues of using the decoder in a real time application as buff-

ering, time stamping, and synchronization.

Input/Output Buffering

The MPEG-1 audio decoder accepts TSSA data packets of the type atfMpeg and sends out

packets of the type atfLinearPCM and the subtype apfStereo16. On its input side the

decoder implements a flexible buffer management. It accepts packets of any size. On the

output side, however, it accepts only packets that can accommodate at least one frame of

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 147

14

decoded audio which is 284 samples for Layer 1 and 1152 samples for Layer 2. The

decoder sends the output packet when it is filled with one decoded audio frame. It does

not try to fill the rest of the packet with data from successive frames.

Time Stamps

The MPEG audio decoder is capable of attaching time stamps to the PCM data packets

which are copied from the incoming MPEG packets. It is ensured that the time stamps

are assigned to the correct PCM packets.

Synchronization

After the start function of the decoder has been called the decoder can either be in sync

or out of sync. It reports a change of this state through the progress function if the

progress flag ADEC_MPEG1_PROG_REPORT_FIND_SYNC is installed. Whenever the

decoder is not in sync it is not producing audio output. It loses the synchronization,

when settings in the MPEG headers change, the header is invalid, the distance to the

next frame is incorrect, or the optional CRC is incorrect. In the latter three cases an error

is reported via the error callback function. In all cases the progress function is called if

the above mentioned progress flag is installed.

The decoder does not perform any muting or block repeating when it loses sync. It is up

to downstream components to implement features like that.

Errors

The errors reported by the MPEG decoder are all defined in tmolAdecMpeg.h. The base

value of these errors is 0x140A0000, as defined in tmLibappErr.h.

The user can install a TSA standard error callback function, and the decoder will call this

if it encounters errors while decoding the bit stream. In that case, the errorCode will be

one of the values defined in tmolAdecMpeg.h. Errors reported by the error function are

not fatal, and processing will continue as the decoder attempts to recover from the error.

Apart from the standard TSSA errors that are defined in tmLibappErr.h the following

component specific errors can occur during the execution of the start function:

ADEC_MPEG1_ERR_INVALID_HEADER The ID bit in the MPEG header equals zero.

ADEC_MPEG1_ERR_FREE_FORMAT_NOT_SUPPORTED
MPEG bit stream does not have a specified data
rate. This mode is not supported.

ADEC_MPEG1_ERR_LAYER3_NOT_SUPPORTED
Decoder can only handle Layer 1 and 2 bit
streams.

ADEC_MPEG1_ERR_CRC_FAILED The calculation of the cyclic redundancy check
failed. This is an indication for a corrupted bit
stream and/or transmission errors.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

148 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

ADEC_MPEG1_ILLEGAL_FRAME_LENGTH The decoder read more bits than permitted by the
standard to decode the last frame. This is an indi-
cation that either the encoder did not work prop-
erly or that transmission errors occurred.

Progress

The user can install a TSA standard progress callback function. The decoder will use this

in several cases.

1. To report a change in format, per standard TSSA behavior. The defaults handle this.

2. To report a change in format to the user. In this case, the progress flag is

ADEC_MPEG1_PROG_REPORT_FORMAT, and the progress argument description field is

a pointer to a data structure of the type tmAdecMpegFormat_t.

3. To report the state of the decoder while decoding. In this case, the progress flag is

ADEC_MPEG1_PROG_REPORT_FIND_SYNC. The decoder reports its state in the

description field of the progress arguments struct. It contains a pointer to an integer.

The integer value is either DECODER_NOT_IN_SYNC or DECODER_IN_SYNC. Note that

the progress function only reports transitions between these two states.

4. To report that a frame is decoded successfully. In this case, the progress flag is

ADEC_MPEG1_PROG_REPORT_EVERY_FRAME. This can be used to count frames or to

do some performance measurements.

Configuration

Although the decoder does export the standard configuration function, no configuration

changes are supported.

Using the MPEG Audio Decoder API

The TriMedia MPEG Audio decoder API is contained within the archived application

library libtmAdecMpeg.a. For OL layer applications, you must include the tmolAdec-

Mpeg.h header file. AL layer operation is not supported.

The OL Layer

The operating system layer only supports data streaming operation. A diagram of the

typical flow of control is shown in Figure 23.

The capabilities of the component should be obtained using tmolAdecMpegGetCapabili-

ties. This information will be used by the format manager to ensure that the two

instances being connected together are compatible. An instance of the audio decoder

should be obtained using tmolAdecMpegOpen. InOutDescriptors which connect the

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 149

14

audio decoder to other components should be created by initializing ptsaInOut-

DescriptorSetup_t structures and calling tsaDefaultInOutDescriptorCreate for each con-

nection. This function can also be used to automatically create packets which will be

used to transfer data between component instances.

The pointer to the audio decoder instance setup should be obtained using tmolAdec-

MpegGetInstanceSetup. This structure should be initialized with any application specific

values. The application should then call tmolAdecMpegInstanceSetup to configure the

instance.

Data streaming can then be initiated by calling tmolAdecMpegStart. Coded audio pack-

ets to be decoded are obtained using the datain call back function which is provided in

the tsaDefaults library. An output packet will be obtained using the dataout call back

function and this will be used to store the decoded audio data.

The application can terminate data streaming using tmolAdecMpegStop, and release the

instance using tmolAdecMpegClose. After the instance has been closed, the application

should destroy the InOutDescriptor using the tsaDefaultInOutDescriptorDestroy func-

tion. This will automatically free the packets contained in the queues.

Figure 23 OL Layer Data Streaming Flow Control

tmolAdecMpegGetCapabilities

tmolAdecMpegOpen

tmolAdecMpegGetInstanceSetup

tmolAdecMpegInstanceSetup

tmolAdecMpegStart
datain callback

dataout callback

tmolAdecMpegStart

application can perform other tasks

datain callback
dataout callback
progress callback

datain callback
dataout callback

tmolAdecMpegStop

tmolAdecMpegClose

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

150 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Callback Function Requirements

The following table indicates the mandatory and optional callback functions used by the

MPEG audio decoder.

Callback Function Use

datainFunc (mandatory) Used for data streaming to obtain full packets containing
coded audio data. The tsaDefaults library provides a default
function automatically.

dataoutFunc (mandatory) Used for data streaming to obtain empty packets where
decoded audio data will be stored. The tsaDefaults library
provides a default function automatically.

controlFunc (mandatory) Used to pass configuration command to the decoder. The tsa-
Defaults library provides a default function automatically.

progressFunc (mandatory) Used by the decoder to report the decoders progress to the
application. The tsaDefaults library provides a default func-
tion automatically.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 151

14

MPEG Audio Decoder Data Structures

This section presents the TriMedia MPEG-1 Layer II and Layer III audio decoder data

structures.

Name Page

tmolAdecMpegCapabilities_t 152

tmAdecMpegProgressFlags_t 152

tmAdecMpegMode_t 153

tmAdecMpegLayer_t 153

tmAdecMpegCopyright_t 154

tmAdecMpegProtection_t 155

tmAdecMpegPrivate_t 155

tmAdecMpegOriginal_t 154

tmAdecMpegEmphasis_t 156

tmAdecMpegSecOutputMode_t 156

tmolAdecMpegInstanceSetup_t 157

tmAdecMpegFormat_t 158

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

152 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAdecMpegCapabilities_t

typedef struct tmolAdecMpegCapabilities_t {
 ptsaDefaultCapabilities_t defaultCapabilities;
} tmolAdecMpegCapabilities_t, *ptmolAdecMpegCapabilities_t;

Description

Standard TSSA capabilities structure. Used by applications to find out about the inputs

and outputs of the component.

tmAdecMpegProgressFlags_t

typedef enum {
 ADEC_MPEG1_PROG_REPORT_FORMAT = 0x01,
 ADEC_MPEG1_PROG_REPORT_FIND_SYNC = 0x02,
 ADEC_MPEG1_PROG_REPORT_EVERY_FRAME = 0x04
} tmAdecMpegProgressFlags_t;

Description

Controls the operation of the progress callback function. An application programmer

can request notification in any of these cases. These flags are used to configure the

progress function behavior during instance setup. In addition to that they are also used

during the data streaming. Whenever the library calls the progress function, it indicates

via the in progressCode field of the progress arguments which progress flag caused the

function call.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 153

14

tmAdecMpegMode_t

typedef enum {
 ADEC_MPEG1_STEREO = 0x00000001,
 ADEC_MPEG1_JOINT_STEREO = 0x00000002,
 ADEC_MPEG1_DUAL_CHANNEL = 0x00000004,
 ADEC_MPEG1_SINGLE_CHANNEL = 0x00000008
} tmAdecMpegMode_t;

Description

Describes the mode of the encoded audio. This type is used in the structure tmAdec-

MpegFormat_t.

tmAdecMpegLayer_t

typedef enum {
 ADEC_MPEG1_LAYER1 = 0x01,
 ADEC_MPEG1_LAYER2 = 0x02,
 ADEC_MPEG1_LAYER3 = 0x03
} tmAdecMpegLayer_t;

Description

Describes the encoding mode of the current stream. Reported in the tmAdecMpeg-

Format_t structure, as found in the bit stream.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

154 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmAdecMpegCopyright_t

typedef enum {
 ADEC_MPEG1_COPYRIGHT_ON = 0x01,
 ADEC_MPEG1_COPYRIGHT_OFF = 0x02
} tmAdecMpegCopyright_t;

Description

Describes the copyright state of the current stream. Reported in the tmAdecMpeg-

Format_t structure, as found in the bit stream.

tmAdecMpegOriginal_t

typedef enum {
 ADEC_MPEG1_ORIGINAL = 0x01,
 ADEC_MPEG1_COPY = 0x02
} tmAdecMpegOriginal_t;

Description

Describes the state of the “original” bit in the current stream. Reported in the tmAdec-

MpegFormat_t structure, as found in the bit stream.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 155

14

tmAdecMpegProtection_t

typedef enum {
 ADEC_MPEG1_CRC_ON = 0x01,
 ADEC_MPEG1_CRC_OFF = 0x00
} tmAdecMpegProtection_t;

Description

Tells whether or not CRC checksum are used to protect the transmitted bit stream.

Reported in the tmAdecMpegFormat_t structure, as found in the bit stream.

tmAdecMpegPrivate_t

typedef enum {
 ADEC_MPEG1_PRIVATE_ON = 0x01,
 ADEC_MPEG1_PRIVATE_OFF = 0x02
} tmAdecMpegPrivate_t;

Description

Describes the state of the “private” bit in the current stream. Reported in the tmAdec-

MpegFormat_t structure, as found in the bit stream.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

156 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmAdecMpegEmphasis_t

typedef enum {
 ADEC_MPEG1_NO_EMPHASIS = 0x01,
 ADEC_MPEG1_50_15_EMPHASIS = 0x02,
 ADEC_MPEG1_CCITT_EMPHASIS = 0x03,
} tmAdecMpegEmphasis_t;

Description

Tells a user whether or not emphasis has been applied to the current stream. Reported in

the tmAdecMpegFormat_t structure, as found in the bit stream.

tmAdecMpegSecOutputMode_t

typedef enum {
 ADEC_MPEG1_SEC_OUT_DISABLED = 0x01,
 ADEC_MPEG1_SEC_OUT_1937 = 0x02,
} tmAdecMpegSecOutputMode_t;

Description

Sets the mode of operation for the second audio output. Always

ADEC_MPEG1_SEC_OUT_DISABLED in this release.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 157

14

tmolAdecMpegInstanceSetup_t

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 tmAdecMpegSecOutputMode_t secondOutputMode;
} tmolAdecMpegInstanceSetup_t, *ptmolAdecMpegInstanceSetup_t;

Fields

defaultSetup Pointer to the default instance setup struct, refer
to tsa.h.

secondOutputMode To allow for 1937 output. Must be
ADEC_MPEG1_SEC_OUT_DISABLED in this release.

Description

Configure the component for operation. Standard TSSA callback functions can be pro-

vided.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

158 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmAdecMpegFormat_t

typedef struct AdecMpegFormat_t {
 tmAdecMpegLayer_t layer;
 tmAdecMpegMode_t eMode;
 UInt32 bitRate;
 tmAdecMpegCopyright_t copyright;
 tmAdecMpegProtection_t protection;
 tmAdecMpegPrivate_t private;
 tmAdecMpegOriginal_t original;
 tmAdecMpegEmphasis_t emphasis;
 Float sampleRate;
} tmAdecMpegFormat_t;

Fields

layer Encoding method, layer 1, 2, or 3.

emode Stereo mode.

bitRate Encoded bit rate.

copyright Recovered from bit stream.

protection Is CRC used? Recovered from bit stream.

private Recovered from bit stream.

original Recovered from bit stream.

emphasis Recovered from bit stream.

sampleRate Recovered from bit stream.

Description

A structure of this type is passed to progress function when the sync word is found in a

bit stream. An application can use this to determine the nature of the stream.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 159

14

MPEG Audio Decoder Functions

This section presents the TriMedia MPEG-1 Layer II audio decoder functions.

Name Page

tmolAdecMpegGetCapabilities 160

tmolAdecMpegOpen 160

tmolAdecMpegClose 161

tmolAdecMpegGetInstanceSetup 162

tmolAdecMpegInstanceSetup 163

tmolAdecMpegInstanceConfig 164

tmolAdecMpegStart 165

tmolAdecMpegStop 166

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

160 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAdecMpegGetCapabilities

extern tmLibappErr_t tmolAdecMpegGetCapabilities (
 ptmolAdecMpegCapabilities_t *pCap
);

Parameters

pCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

This function can be used to determine the capabilities of the audio decoder.

tmolAdecMpegOpen

extern tmLibappErr_t tmolAdecMpegOpen (
 Int *instance
);

Parameters

instance Pointer (returned) to the instance .

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory could not be allocated for the internal
variables.

Description

Creates an instance of a MPEG audio decoder, and sets the instance variable to point to

the audio decoder instance. Allocates memory for the instance variable.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 161

14

tmolAdecMpegClose

extern tmLibappErr_t tmolAdecMpegClose (
 Int instance
);

Parameters

instance Instance value, as returned by tmxlAdecMpe-
gOpen.

Return Codes

TMLIBAPP_OK Success

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not open.

Description

This function will shut down an instance of the decoder. The instance must have been

stopped prior to calling the function.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

162 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAdecMpegGetInstanceSetup

extern tmLibappErr_t tmolAdecMpegGetInstanceSetup(
 Int instance,
 ptmolAdecMpegInstanceSetup_t *setup
);

Parameters

instance Instance, as returned by tmolAdecMpegOpen.

setup Pointer to a variable in which to return a pointer
to setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not open.

Description

The tmolAdecMpegGetInstanceSetup function is used to return a pointer to the decoders

default OL Layer instance setup structure. The decoder creates this structure when the

component is opened. After obtaining the pointer to the structure, the application can

initialize specific instance values before calling tmolAdecMpegInstanceSetup.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 163

14

tmolAdecMpegInstanceSetup

extern tmLibappErr_t tmolAdecMpegInstanceSetup (
 Int instance,
 ptmolAdecMpegInstanceSetup_t setup
);

Parameters

instance Instance, as returned by tmalAdecMpegOpen.

setup Pointer to the setup structure.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The desired instance is not open.

TMLIBAPP_ERR_NULL_PROGRESSFUNC The progress function callback pointer is Null.

TMLIBAPP_ERR_NULL_DATAINFUNC The datain function callback pointer is Null.

TMLIBAPP_ERR_NULL_DATAOUTFUNC The dataout function callback pointer is Null.

TMLIBAPP_ERR_NULL_CONTROLFUNC The control function callback pointer is Null.

TMLIBAPP_ERR_UNSUPPORTED_DATACLASS
The input/output dataClass is not avdcAudio.

TMLIBAPP_ERR_UNSUPPORTED_DATATYPE
The input dataType is not atfMPEG or the output
dataType is not atfLinearPCM.

TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE
The input dataSubtype is not either
amfMPEG_Layer1, amfMPEG_Layer2 or
amfMPEG_Layer3, or the output data subtype is
not apfStereo16.

TMLIBAPP_ERR_NULL_IODESC Can assert if the input descriptor is Null.

TMLIBAPP_ERR_NO_QUEUE The output descriptor has no full.

Description

This function configures the decoder.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

164 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAdecMpegInstanceConfig

extern tmLibappErr_t tmolAdecMpegInstanceConfig (
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Parameters

instance Instance, as returned by tmolAdecMpegOpen.

flags Not used.

args Pointer to the configuration arguments.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The desired instance is not open.

TMLIBAPP_ERR_INVALID_COMMAND The configuration command is not recognized.

Description

This function can be used to change instance parameters after the component has been

initialized and during data streaming operation. At present, no commands are imple-

mented; this might change in the future.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 165

14

tmolAdecMpegStart

extern tmLibappErr_t tmolAdecMpegStart (
 Int instance
);

Parameters

instance Instance, as returned by tmalAdecMpegOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not open or set up.

Description

This function begins data streaming for the decoder. At the AL layer, it invokes a func-

tion that is an infinite loop. At the OL layer, this loop is spawned as a task.

Chapter 14: MPEG Audio Decoder (AdecMpeg) API

166 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAdecMpegStop

extern tmLibappErr_t tmolAdecMpegStop (
 Int instance
);

Parameters

instance Instance, as returned by tmxlAdecMpegOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is not open or setup.

Description

This function stops the audio decoder from streaming data.

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 167

15

Chapter 15

MPEG-1 Audio Encoder (AencMpeg) API

Topic Page

Introduction 168

Audio Encoder Data Structures 172

Audio Encoder Functions 180

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

168 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Introduction

The MPEG-1 audio encoder library can be used to encode ISO 11172-3 compatible audio

bit streams from 16-bit PCM data. This version of the library supports Layer II (Layer III

is available on request). In Layer II mode the library can be used at both the AL and the

OL layer. In Layer III mode, however, only the streaming mode interface is supported.

MPEG1 uses lossy sub-band coding techniques to achieve high compression rates. The

PCM samples are transformed to the frequency domain by a polyphase filter bank. A psy-

choacoustic model calculates thresholds to control the quantizer. Finally additional

information is added to build the MPEG stream.

Supported MPEG Modes

The encoder supports the following modes:

Emphasis and mono encoding are currently not supported.

Comparison of MPEG Audio Layers II and III

This table shows minimum values for the delay by the algorithms themselves. The delay

may increase significantly if large output buffers are used.

Domain Modes

channels (mono)/stereo

bit rates 32, 48, 56, 64, 80, 96, 112, 128, 160, 192 kb/s per channel

sample rates 32, 44.1, 48 kHz

error protection optional CRC

flags copyright, original

Domain Layer II Layer III

Bit rates (per channel) 32-384 kb/s 32-320kbits/s

PCM
Samples

Filter
Bank

Quantizer Frame
Formatter

MPEG Stream

Psychoacoustic
model

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 169

15

AencMpeg1 Inputs and Outputs

The MPEG-1 audio encoder library supports one input and one output pin. At its input

pin, it expects TSSA audio packets with linear PCM data in apfStereo16 format (or

apfMono16 in future versions). This version of the library supports no other format. The

encoder supports the following sampling frequencies: 32000.0 Hz, 44100.0 Hz, and

48000.0 Hz. You can install the input data format either during instance setup, in the

input descriptor of the default instance setup variable, or later on, by just sending a

packet with the proper format to the encoder library.

The output format, and therefore the MPEG layer, is determined during the execution of

tmXlAencMpeg1InstanceSetup. There are two ways to choose the mode in which the

encoder works:

■ The output descriptor of the default instance setup variable contains an output for-

mat, which is either amfMPEG1_Layer2 or amfMPEG1_layer3.

■ The output descriptor of the default instance setup variable has a null pointer in its

format field. In this case, the value of the layer field of the instance setup variable

determines the MPEG layer (and therefore the output format). A proper format is

installed accordingly by the library.

The MPEG-1 audio encoder does not attach time stamps to the MPEG output packets.

This must be done by a component operating downstream.

Run Time Behavior

The MPEG-1 encoding library can be used in both non-streaming and streaming mode.

In the non-streaming mode, the application using the library must implement the neces-

sary buffer management of the PCM data and compressed MPEG audio data. The library

exposes one processing function for use in non-streaming mode: tmalAencMpeg1-

EncodeFrame. The application must ensure that the encoder is always provided with a

buffer of 1152 PCM samples and with a sufficiently large empty buffer for the encoded

data when this function is called.

In streaming mode, buffer management is implemented by the encoder library. The

component sending PCM data packets to the encoder can send any amount of samples

at a time. The only restriction is that the last sample of the packet is complete and not

transparent at 128 kb/s 64 kb/s

min. delay 35 ms 59 ms

features 1024-point FFT MDCT
Higher frequency resolution
Huffman-coding
Variable bitrate

Domain Layer II Layer III

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

170 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

split across packet boundaries. At the output side, the encoder fills the empty output

packets entirely before it sends them to the full queue. If the packets are smaller than a

compressed audio frame, the encoder sends multiple packets per frame. If they are larger,

the encoder puts multiple frames into one packet. Note that the choice of packet size

during system setup affects the system performance and the system latency: larger pack-

ets account for a lower processor load but for a longer encoding delay.

When operated in streaming mode, the encoder can be forced to send out a partially

filled output packet at any time by using the tmolAencMpeg1InstanceConfig function

with the command AENC_MPEG1_CONFIG_FLUSH_OUTPUT. Note that the execution of

this command might be delayed because the command is sent to the encoder compo-

nent through an operating system message queue.

The example program exolAencMpeg1 shows how the encoder can be used in a real-time

encoding application. This example samples audio input with the audio digitizer. The

samples are sent to the MPEG-1 audio encoder. The program supports two different out-

put modes. In the first mode, the encoder is connected to the File Writer component

which stores the encoded audio bit stream in a file. In the second mode, the MPEG-1

audio decoder receives the encoder output and decodes it. Then, the PCM samples are

played with the audio renderer.

Performance

The processor resources requirements have been measured with an OL layer encoder

application.

The performance measure unit is MIPS which is independent of the TriMedia clock fre-

quency. A 100 MHz TriMedia executes 100 million VLIW instructions and therefore pro-

vides 100 MIPS. Note that the processor load largely depends on the complexity of the

audio material to be encoded.

AencMpeg1 Errors

The following component-specific error messages can be reported by the error function

of the MPEG-1 audio encoder, when operated in streaming mode:

AENC_MPEG1_ERR_ILL_SAMPLERATE A new input format is installed and the sampling
rate is neither 32 kHz, 44.1 kHz, nor 48 kHz.

AENC_MPEG1_ERR_ILL_DATASIZE Incomplete samples are received in one of the
input data packets. The dataSize field of the TSSA
input packets must contain a multiple of 4 bytes
in apfStereo16 mode and a multiple of 2 bytes in
apfMono16 mode.

Sample Rate/ Bit Rate Stereo Mono

44100 Hz / 224 kb/s 38 MIPS 20 MIPS

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 171

15

If a new input format is installed and the data class is not avdcAudio or the data type is

not atfLinearPCM or the data subtype is not apfStereo16, one of the following standard

errors is reported by the error function:

TMLIBAPP_ERR_UNSUPPORTED_DATACLASS
TMLIBAPP_ERR_UNSUPPORTED_DATATYPE
TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE

In non-streaming mode, the function tmalAencMpeg1EncodeFrame is called to encode

MPEG-1 layer 2 audio frames. When calling this function, ensure that the input packet

contains exactly one frame of PCM samples (1152 samples) and that the output packet is

large enough to store the compressed frame. If these conditions are not met, the encoder

returns one of these the error messages:

AENC_MPEG1_ERR_NOT_ENOUGH_INPUT_SAMPLES

AENC_MPEG1_ERR_OUTBUF_TOO_SMALL

AencMpeg1 Progress

If the progress flag

AENC_MPEG1_PROG_REPORT_EVERY_FRAME

is installed during instance setup, the progress function of the MPEG-1 audio encoder is

called whenever the encoding of an audio frame (1152 samples) is completed. The

progress arguments do not contain any specific information. The progress function can

be used to measure the processor load of the audio encoder or just to count the number

of encoded frames.

AencMpeg1 Configuration

The function tmXlAencMpeg1InstanceConfig can influence the behavior of the encoder

while it is running. The current version of the library supports one command:

AENC_MPEG1_CONFIG_FLUSH_OUTPUT

When this command is sent to the encoder, its current output packet is sent out, no mat-

ter how much it is filled. This feature might be useful to decrease the system latency.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

172 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Audio Encoder Data Structures

This section presents the TriMedia MPEG-1 Layer II and Layer III audio encoder data

structures.

Name Page

tmalAencMpeg1ConfigTypes_t 173

tmalAencMpeg1Layer_t 173

tmalAencMpeg1Copyright_t 174

tmalAencMpeg1Protection_t 174

tmalAencMpeg1Private_t 175

tmalAencMpeg1Original_t 175

tmalAencMpeg1Emphasis_t 176

tmalAencMpeg1Capabilities_t 176

tmAencMpeg1ProgressFlags_t 177

tmalAencMpeg1InstanceSetup_t 178

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 173

15

tmalAencMpeg1ConfigTypes_t

typedef enum {
 AENC_MPEG1_CONFIG_FLUSH_OUTPUT = tsaCmdUserBase + 0x00
} tmalAencMpeg1ConfigTypes_t;

Fields

AENC_MPEG1_CONFIG_FLUSH_OUTPUT Flush the current output packet, no matter how
much it is filled.

Description

Enumerates the commands recognized by tmalAencMpeg1InstanceConfig.

AENC_MPEG1_CONFIG_FLUSH_OUTPUT can be used to flush the current output packet

no matter how much it is filled.

tmalAencMpeg1Layer_t

typedef enum {
 AENC_MPEG1_LAYER1 = 0x01,
 AENC_MPEG1_LAYER2 = 0x02,
 AENC_MPEG1_LAYER3 = 0x03
} tmalAencMpeg1Layer_t;

Description

Enumerates MPEG-1 layers.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

174 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAencMpeg1Copyright_t

typedef enum {
 AENC_MPEG1_COPYRIGHT_ON = 0x01,
 AENC_MPEG1_COPYRIGHT_OFF = 0x02
} tmalAencMpeg1Copyright_t;

Description

Enumerates copyright values. A bitstream can be marked as copyright-protected.

tmalAencMpeg1Protection_t

typedef enum {
 AENC_MPEG1_CRC_ON = 0x01,
 AENC_MPEG1_CRC_OFF = 0x00
} tmalAencMpeg1Protection_t;

Description

Enumerates protection values. During instance setup, you can determine whether the

encoder puts a cyclic redundancy check (CRC) in every encoded MPEG-1 audio frame.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 175

15

tmalAencMpeg1Private_t

typedef enum {
 AENC_MPEG1_PRIVATE_ON = 0x01,
 AENC_MPEG1_PRIVATE_OFF = 0x02
} tmalAencMpeg1Private_t;

Description

Enumerates privacy values. During instance setup, you can determine whether the pri-

vate bit in the headers of the encoded audio frames is set.

tmalAencMpeg1Original_t

typedef enum {
 AENC_MPEG1_ORIGINAL = 0x01,
 AENC_MPEG1_COPY = 0x02
} tmalAencMpeg1Original_t;

Description

During instance setup, you can determine whether the encoder marks the MPEG bit-

stream as original or as copy.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

176 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAencMpeg1Emphasis_t

typedef enum {
 AENC_MPEG1_NO_EMPHASIS = 0x01,
 AENC_MPEG1_50_15_EMPHASIS = 0x02,
 AENC_MPEG1_CCITT_EMPHASIS = 0x03,
} tmalAencMpeg1Emphasis_t;

Description

Determines the type of pre-emphasis applied to the input audio signal before it enters

the encoder.

tmalAencMpeg1Capabilities_t

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
} tmalAencMpeg1Capabilities_t, *ptmalAencMpeg1Capabilities_t;

Fields

defaultCapabilities Pointer to a default capabilities structure. (Refer to
tsa.h.)

Description

This structure contains a description of the capabilities of the MPEG-1 audio encoder

library. It is filled by the tmalAencMpeg1GetCapabilities function.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 177

15

tmAencMpeg1ProgressFlags_t

typedef enum {
 AENC_MPEG1_PROG_REPORT_EVERY_FRAME = 0x01
} tmAencMpeg1ProgressFlags_t;

Description

Enumerates MPEG progress flags.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

178 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalAencMpeg1InstanceSetup_t

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 tmalAencMpeg1Layer_t layer;
 UInt32 bitRate;
 UInt32 quality;
 tmalAencMpeg1Copyright_t copyright;
 tmalAencMpeg1Protection_t protection;
 tmalAencMpeg1Private_t private;
 tmalAencMpeg1Original_t original;
 tmalAencMpeg1Emphasis_t emphasis;
} tmalAencMpeg1InstanceSetup_t, *ptmalAencMpeg1InstanceSetup_t;

Fields

defaultSetup Pointer to the default instance setup. (Refer to
tsa.h.)

layer Determines the encoding profile. Note that the
MPEG layer can also be determined by the format
of the output descriptor. If the format is installed,
it overrides the value in this structure. Layer I is
currently not supported. (Refer to tmalAenc-
Mpeg1Layer_t.)

bitrate Determines the rate of the encoder output (kilo-
bits per second). Legal values are 32, 48, 56, 64,
80, 96, 112, 128, 160, 192, 224, 256, 320, 384 for
layer II and 32, 40, 48, 56, 64, 80, 96, 112, 128,
160, 192, 224, 256, 320 for layer III.

quality Used only in layer III mode, this determines the
break-up condition for the bit allocation iteration
loop. A lower number stands for more iterations
and better audio quality. Supported values are
integers from 0 to 30.

copyright Determines whether the MPEG stream will be
marked as copyright protected. (Refer to tmal-
AencMpeg1Copyright_t.)

protection Determines whether a CRC word is calculated and
inserted into the MPEG bitstream for every audio
frame. (Refer to tmalAencMpeg1Protection_t.)

private Determines the value of the privacy bit to be writ-
ten into the MPEG frame headers. (Refer to tmal-
AencMpeg1Private_t.)

original Determines whether the MPEG bit stream is
marked as original. (Refer to tmalAencMpeg1-
Original_t.)

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 179

15

emphasis Characterizes the nature of the pre-emphasis
applied to the audio input outside of the encoder.
Currently no emphasis is used. (Refer to tmal-
AencMpeg1Emphasis_t.)

Description

A structure of this type configures the MPEG-1 audio encoder when operated at the AL

layer. For the OL layer, a similar structure is used. A pointer to a struct of this type is

passed to tmalAencMpeg1InstanceSetup as an argument. A pre-configured “template” of

this structure can be obtained by tmalAencMpeg1GetInstanceSetup.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

180 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Audio Encoder Functions

This section presents the TriMedia MPEG-1 Layer II and Layer III audio encoder func-

tions.

Name Page

tmolAencMpeg1GetCapabilities, tmalAencMpeg1GetCapabilities 181

tmolAencMpeg1Open, tmalAencMpeg1Open 182

tmolAencMpeg1Close, tmalAencMpeg1Close 183

tmolAencMpeg1GetInstanceSetup, tmalAencMpeg1GetInstanceSetup 184

tmolAencMpeg1InstanceSetup, tmalAencMpeg1InstanceSetup 185

tmolAencMpeg1Start, tmalAencMpeg1Start 186

tmolAencMpeg1InstanceConfig 188

tmalAencMpeg1InstanceConfig 189

tmolAencMpeg1Stop, tmalAencMpeg1Stop 190

tmalAencMpeg1EncodeFrame 191

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 181

15

tmolAencMpeg1GetCapabilities

tmLibappErr_t tmolAencMpeg1GetCapabilities (
 ptmolAencMpeg1Capabilities_t *pcap
);

tmalAencMpeg1GetCapabilities

tmLibappErr_t tmolAencMpeg1GetCapabilities (
 ptmalAencMpeg1Capabilities_t *pcap
);

Parameters

pcap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

Fills in the pointer of a static tmolAencMpeg1Capabilities_t structure maintained by the

encoder to describe the capabilities and requirements of this library.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

182 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAencMpeg1Open

tmLibappErr_t tmolAencMpeg1Open (
 Int *instance
);

tmalAencMpeg1Open

tmLibappErr_t tmalAencMpeg1Open (
 Int *instance
);

Parameters

instance Pointer (returned) to an encoder instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MEMALLOC_FAILED A memalloc failed.

TMLIBAPP_ERR_NO_INSTANCE_AVAILABLE
No further layer instance is available.

Side Effects

Creates an instance of an encoder and calloc’s an instance structure. Allocates an

instance setup structure and fills it with default values.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 183

15

tmolAencMpeg1Close

extern tmLibappErr_t tmolAencMpeg1Close (
 Int instance
);

tmalAencMpeg1Close

extern tmLibappErr_t tmalAencMpeg1Close (
 Int instance
);

Parameters

instance Instance, as returned by an ‘open’ function.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is invalid.

Description

Closes this instance of the encoder and deletes task. Frees instance variable memory and

setup variable memory.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

184 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAencMpeg1GetInstanceSetup

extern tmLibappErr_t tmolAencMpeg1GetInstanceSetup (
 Int instance,
 ptmolAencMpeg1InstanceSetup_t *setup
);

tmalAencMpeg1GetInstanceSetup

extern tmLibappErr_t tmalAencMpeg1GetInstanceSetup (
 Int instance,
 ptmalAencMpeg1InstanceSetup_t *setup
);

Parameters

instance Instance, as returned by an ‘open’ function.

setup Pointing to variable in which to return a pointer
to setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance is invalid.

Description

Returns (1) a pointer to the setup structure allocated by the open function or (2) the cur-

rent setup structure after the setup function has been called.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 185

15

tmolAencMpeg1InstanceSetup

extern tmLibappErr_t tmolAencMpeg1InstanceSetup (
 Int instance,
 tmolAencMpeg1InstanceSetup_t *setup

);

tmalAencMpeg1InstanceSetup

extern tmLibappErr_t tmalAencMpeg1InstanceSetup (
 Int instance,
 tmalAencMpeg1InstanceSetup_t *setup
);

Parameters

instance Instance, as returned by an ‘open’ function.

setup Pointer to the setup structure.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE
The instance is invalid.

TMLIBAPP_ERR_NO_QUEUE The queues for either the input pin or the first
output pin are not assigned.

AENC_MPEG1_ERR_LAYER_NOT_SUPPORTED
The selected MPEG layer is not supported.

TMLIBAPP_ERR_UNSUPPORTED_DATACLASS
TMLIBAPP_ERR_UNSUPPORTED_DATATYPE
TMLIBAPP_ERR_UNSUPPORTED_DATASUBTYPE

Incorrect format in the input or output descriptor.

AENC_MPEG1_ERR_ILL_SAMPLERATE Unsupported sample rate specified in the input
format.

AENC_MPEG1_ERR_ILL_BITRATE Unsupported bit rate specified in the setup struct.

AENC_MPEG1_ERR_ILL_QUALITY Unsupported quality value specified in the setup
struct.

AENC_MPEG1_ERR_ILL_EMPHASIS Unsupported emphasis value of the setup struct.

Description

Initializes the instance of the encoder and configures it.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

186 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAencMpeg1Start

extern tmLibappErr_t tmolAencMpeg1Start (
 Int instance
);

Parameters

instance Instance, as returned by an ‘open’ function.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The encoder has not been opened by this
instance.

TMLIBAPP_ERR_NOT_SETUP The encoder has not been initialized.

Description

Starts the encoder’s tmalAencMpeg1Start function as a task.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 187

15

tmalAencMpeg1Start

extern tmLibappErr_t tmalAencMpeg1Start (
 Int instance
);

Parameters

instance Instance, as returned by an ‘open’ function.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The encoder has not been opened by this
instance.

TMLIBAPP_ERR_NOT_SETUP The encoder has not been initialized.

Description

Starts the data processing loop of the MPEG-1 encoder.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

188 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAencMpeg1InstanceConfig

extern tmLibappErr_t tmolAencMpeg1InstanceConfig (
 Int instance,
 Int32 flags,
 tsaControlArgs_t args
);

Parameters

instance Instance, as returned by an ‘open’ function.

flags Flags used for the pSOS command queue which
sends the command to the AL layer config func-
tion.

args A structure containing the command, a parameter
pointer, and a timeout value.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The encoder has not been opened by this
instance.

TMLIBAPP_ERR_NOT_SETUP The encoder has not been initialized.

The function can also return error messages from the command queue handler.

Description

Invokes the default stop procedure which stops the encoder task and sends pause packets

to the connected components.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 189

15

tmalAencMpeg1InstanceConfig

extern tmLibappErr_t tmalAencMpeg1InstanceConfig (
 Int instance,
 ptsaControlArgs_t cmdArgs
);

Parameters

instance Instance, as returned by an ‘open’ function.

cmdArgs A structure containing the command and a
parameter pointer. This function does not use its
timeout field nor does it get values.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The encoder has not been opened by this
instance.

TMLIBAPP_ERR_NOT_SETUP The encoder has not been initialized.

TMLIBAPP_ERR_INVALID_COMMAND The config function cannot interpret the com-
mand.

Description

Issues a command to the encoder. This function can be used when the encoder is run-

ning.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

190 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolAencMpeg1Stop

extern tmLibappErr_t tmolAencMpeg1Stop (
 Int instance
);

tmalAencMpeg1Stop

extern tmLibappErr_t tmalAencMpeg1Stop (
 Int instance
);

Parameters

instance Instance, as returned by an ‘open’ function.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The encoder has not been opened by this
instance.

TMLIBAPP_ERR_NOT_SETUP The encoder has not been initialized.

Description

The OL layer function invokes the default stop procedure which stops the encoder task

and sends pause packets to the connected components.

The AL layer function forces the encoder to the main processing loop of the start func-

tion.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 6—Audio Support Libraries, Part B 191

15

tmalAencMpeg1EncodeFrame

extern tmLibappErr_t tmalAencMpeg1EncodeFrame (
 Int instance,
 tmAvPacket_t *inpacket,
 tmAvPacket_t *outPacket
);

Parameters

instance Instance, as returned by an ‘open’ function.

inpacket Pointer to a full packet carrying PCM stereo data.

outPacket Pointer to an empty packet into which the
encoder writes the encoded audio frame.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The encoder has not been opened by this instance

TMLIBAPP_ERR_NOT_SETUP The encoder has not been initialized.

AENC_MPEG1_ERR_NOT_ENOUGH_INPUT_SAMPLES
The input packet contains less samples than a full
audio frame (1152 for layer II).

AENC_MPEG1_ERR_OUTBUF_TOO_SMALL The empty output packet is not large enough to
store an encoded audio frame.

AENC_MPEG1_ERR_LAYER_NOT_SUPPORTED
The encoder is not supporting the layer chosen
during instance setup in non streaming mode.

Description

Encodes one frame of audio data. The user of this function must ensure that the input

packet contains the exact number of samples required for one frame. The encoder does

not perform any type of buffering between subsequent calls of this function.

Note that this function is only applicable for encoding Layer II bit streams! It is also

important to mention that padding bytes are not inserted when this function is used. In

future versions of the library this will be done.

Chapter 15: MPEG-1 Audio Encoder (AencMpeg) API

192 Book 6—Audio Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 6—Audio Support Libraries
	Codecs
	12: Dolby Digital AC-3 (AdecAc3) API
	Dolby Digital AC-3 Standard Overview
	Composition of AC-3 Streams
	AC-3 Decoding Scheme
	AC-3 Synchronization Scheme

	TriMedia AC-3 API Overview
	The AL Layer
	The OL Layer

	Configuring the Decoder
	Setup of an OL Layer Decoder Application
	Setup of an AL Decoder Application

	Implementation Aspects
	Frame versus Block-Oriented Decoding
	Time Stamps
	Time Stamps for the Secondary Stereo Output
	Rejection of Expired Input Packets

	Memory Allocation
	Callback Function Requirements

	Application Requirements and Limitations
	Input Processing
	Output Processing Chain
	System Calibration

	Quality Assurance and Decoder Performance
	Quality Assurance
	Decoder Performance

	AdecAc3 Inputs and Outputs
	Inputs
	Main Multichannel Output
	Secondary Stereo Output

	AdecAc3 Errors
	AdecAc3 Progress
	AdecAc3 Configuration
	AC-3 API Data Structures
	tmalAdecAc3LibraryMode_t
	tmAdecAc3ProgressFlags_t
	tmAdecAc3AcMod_t
	tmAdecAc3LfeMod_t
	tmAdecAc3SurMod_t
	tmAdecAc3RoomType_t
	tmAdecAc3CopyRight_t
	tmAdecAc3CopyState_t
	tmAdecAc3StereoOutputMixMode_t
	tmAdecAc3OutConfig_t
	tmAdecAc3CompMode_t
	tmAdecAc3KaraokeMode_t
	tmAdecAc3DualMonoMode_t
	tmAdecAc3ConfigTypes_t
	tmAdecAc3Capabilities_t
	tmalAdecAc3InstanceSetup_t
	tmalAdecAc3InstanceConfig_t
	tmolAdecAc3InstanceSetup_t
	tmAdecAc3HeaderInfo_t
	tmalAdecAc3Frame_t

	AC-3 API Functions
	tmalAdecAc3GetCapabilities
	tmolAdecAc3GetCapabilities
	tmalAdecAc3Open
	tmolAdecAc3Open
	tmalAdecAc3Close
	tmolAdecAc3Close
	tmalAdecAc3GetInstanceSetup
	tmolAdecAc3GetInstanceSetup
	tmalAdecAc3InstanceSetup
	tmolAdecAc3InstanceSetup
	tmalAdecAc3InstanceConfig
	tmolAdecAc3InstanceConfig
	tmalAdecAc3Start
	tmolAdecAc3Start
	tmalAdecAc3Stop
	tmolAdecAc3Stop
	tmalAdecAc3FindSyncword
	tmalAdecAc3DecodeFrame
	tmalAdecAc3MuteFrame

	13: Pro Logic Decoder (AdecPI) API
	Introduction
	Principles of the Pro Logic Encoder
	Principles of the Pro Logic Decoder
	Special Considerations of the TriMedia Implementation

	Overview of the TriMedia Pro Logic Decoder Library
	Supported Packet Formats
	Decoder Configurations
	Using the OL Layer API
	Constraints on Input/Output Packets
	Time Stamps
	Run Time Behavior

	Using the AL Layer API
	Operation in Streaming Mode
	Operation in Non-Streaming Mode
	Constraints on Input/Output Packets
	Time Stamps
	Run Time Behavior

	Quality Assurance and Performance
	Quality Assurance
	Decoder Performance

	Additional Requirements For a Complete Audio System
	AdecPl Inputs and Outputs
	AdecPl Errors
	AdecPl Progress
	AdecPl Configuration
	Pro Logic AL Layer API Data Structures
	tmalAdecPlLibraryMode_t
	tmalAdecPlConfigTypes_t
	tmalADecPlCapabilities_t
	tmalAdecPlSetup_t
	tmalAdecPlConfig_t
	tmalAdecPlFrame_t

	Pro Logic AL layer API Functions
	tmalAdecPlGetCapabilities
	tmalAdecPlOpen
	tmalAdecPlClose
	tmalAdecPlGetInstanceSetup
	tmalAdecPlInstanceSetup
	tmalAdecPlStart
	tmalAdecPlStop
	tmalAdecPlInstanceConfig
	tmalAdecPlDecode

	Pro Logic Operating System Layer API Data Structures
	tmolAdecPlCapabilities_t
	tmolAdecPlInstanceSetup_t

	Pro Logic Operating System Layer API Functions
	tmolAdecPlGetCapabilities
	tmolAdecPlOpen
	tmolAdecPlClose
	tmolAdecPlInstanceSetup
	tmolAdecPlGetInstanceSetup
	tmolAdecPlInstanceConfig
	tmolAdecPlStart
	tmolAdecPlStop

	14: AdecMpeg (Audio Decoder) API
	Overview
	Introduction
	MPEG Compliancy
	Inputs and Outputs
	Real Time Behavior
	Input/Output Buffering
	Time Stamps
	Synchronization

	Errors
	Progress
	Configuration

	Using the MPEG Audio Decoder API
	The OL Layer
	Callback Function Requirements

	MPEG Audio Decoder Data Structures
	tmolAdecMpegCapabilities_t
	tmAdecMpegProgressFlags_t
	tmAdecMpegMode_t
	tmAdecMpegLayer_t
	tmAdecMpegCopyright_t
	tmAdecMpegOriginal_t
	tmAdecMpegProtection_t
	tmAdecMpegPrivate_t
	tmAdecMpegEmphasis_t
	tmAdecMpegSecOutputMode_t
	tmolAdecMpegInstanceSetup_t
	tmAdecMpegFormat_t

	MPEG Audio Decoder Functions
	tmolAdecMpegGetCapabilities
	tmolAdecMpegOpen
	tmolAdecMpegClose
	tmolAdecMpegGetInstanceSetup
	tmolAdecMpegInstanceSetup
	tmolAdecMpegInstanceConfig
	tmolAdecMpegStart
	tmolAdecMpegStop

	15: AencMpeg (Audio Encoder) API
	Introduction
	Supported MPEG Modes
	Comparison of MPEG Audio Layers II and III
	AencMpeg1 Inputs and Outputs
	Run Time Behavior
	Performance
	AencMpeg1 Errors
	AencMpeg1 Progress
	AencMpeg1 Configuration

	Audio Encoder Data Structures
	tmalAencMpeg1ConfigTypes_t
	tmalAencMpeg1Layer_t
	tmalAencMpeg1Copyright_t
	tmalAencMpeg1Protection_t
	tmalAencMpeg1Private_t
	tmalAencMpeg1Original_t
	tmalAencMpeg1Emphasis_t
	tmalAencMpeg1Capabilities_t
	tmAencMpeg1ProgressFlags_t
	tmalAencMpeg1InstanceSetup_t

	Audio Encoder Functions
	tmolAencMpeg1GetCapabilities
	tmalAencMpeg1GetCapabilities
	tmolAencMpeg1Open
	tmalAencMpeg1Open
	tmolAencMpeg1Close
	tmalAencMpeg1Close
	tmolAencMpeg1GetInstanceSetup
	tmalAencMpeg1GetInstanceSetup
	tmolAencMpeg1InstanceSetup
	tmalAencMpeg1InstanceSetup
	tmolAencMpeg1Start
	tmalAencMpeg1Start
	tmolAencMpeg1InstanceConfig
	tmalAencMpeg1InstanceConfig
	tmolAencMpeg1Stop
	tmalAencMpeg1Stop
	tmalAencMpeg1EncodeFrame

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

