Book 7—Video Support Libraries

Part A:
Video 1/0

Tr’f'v‘:" Version 2.0 bet
Med.fa ersion Z. eta

Book 7—Video Support Libraries

Part A: Video 1/0

Table of Contents

Chapter 1 Video In/Out (vi/vo) API

Video In/Out API Overview 10
Introduction 10
viOpen and voOpen 10
Instance Setup 10
Changing Buffers 11

The Rest 1
Caveats 1

Error Codes 11
Video-In API Data Structures 1
viYUVModes_t 12
viRawModes_t 12
viCapabilities_t 13
viRawSetup_t 14
viYUVSetup_t 15
vilnstanceSetup_t 16
Video-In API Functions 17
viGetNumberOfUnits 20
viGetCapabilities 21
viGetCapabilitiesM 22
vilnstanceSetup 23
viYUVSetup 24
viRawSetup 25
viOpen 26
viOpenM 27
viClose 28
viStart 29
viStop 30
viYUVChangeBuffer 31
viRawChangeBuffer1 32
viRawChangeBuffer2 33
viConfigureDecoder 34
viGetColorStandard 35
viSetBrightness 36

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A iii

Table of Contents

viSetContrast 37
viSetHue 38
viSetSaturation 39
viGetVideoStandard 40
viGetVSyncFallingEdge 41
viGetSlicedData 42
viGetStatus 43
viGetSupportedDataServices 44
viSetDataServices 45
viGetSlicerLineFlags 46
viEnableSlicing 47
viSetSlicerVideoStandard 48
viGetSlicerVideoStandard 49
viToggleFieldID 50
viSetSlicerinput 51
viGetSlicerlnput 52
viSetVideoColor 53
viGetVideoColor 54
viSetAnaloglnput 55
viGetAnaloginput 56
viSetStandard 57
viSetSourceType 58
viGetSourceType 59
viSetOutputFormat 60
viGetOutputFormat 61
viSetAcquisitionWnd 62
viGetAcquisitionWnd 63
viGetDefaultAcquisitionWnd 64
viSetOutputSize 65
viSetinterlaceMode 66
viDisableDecoder 67
viEnablePowerSaveMode 68
viGetGPIOCount 69
viSetGPIOState 70
viGetGPIOState 71
viOpenVBI 72
viEnableVBI 73
viSetVBIMode 74
viSetSlicerMode 75
viCloseVBI 76

iv Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Table of Contents

Video-Out API Data Structures 77
voYUVModes_t 78
voRawModes_t 78
voCapabilities_t 79
voRawSetup_t 79
voOverlaySetup_t 80
voYUVSetup_t 81
volnstanceSetup_t 82
voenhChromaKeyingSetup_t 83
voenhClipSetup_t 84
voenhGenlLockSetup_t 84

Video-Out API Functions 85
voGetNumberOfUnits 86
voGetCapabilities 87
voGetCapabilitiesM 88
volnstanceSetup 89
voOpen 90
voOpenM 91
voClose 92
voStart 93
voStop 94
voYUVSetup 95
voOverlaySetup 97
voRawSetup 98
voYUVChangeBuffer 99
voOverlayChangeBuffer 100
voRawChangeBuffer1 101
voRawChangeBuffer2 102
voConfigureEncoder 103
voSetBrightness 104
voSetHue 105
voSetSaturation 106
voenhStart 107
voenhClipSetup 107
voenhChromaKeyingSetup 108
voenhGenlLockSetup 108

Chapter 2 Video Capturer (VcapVl) API

VcapVI API Overview 110

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A v

Table of Contents

Using the VcapVI API 111
Integrated Slicing Mechanism 113
Software Slicing 114

Line counting issues 114
Cache Coherency 116
VcapVl Inputs and Outputs 117
Packet Formats 118

Main Output Pin Format 118

TXT Output Packet Format 120

L21 Output Packet Format 121

WSS Output Packet Format 121

VPS Output Packet Format 121

VcapVI Error 121
VcapVI Progress 121
VcapVI Configuration 122
VcapVI API Data Structures 123
tmolVcapVICapabilities_t 124
tmolVcapVlinstanceSetup_t 125
VcapVI API Functions 127
tmolVcapVIGetNumberOfUnits 128
tmolVcapVIGetCapabilities 129
tmolVcapVIGetCapabilitiesM 130
tmolVcapVIOpen 131
tmolVcapVIOpenM 132
tmolVcapVIClose 133
tmolVcapVIGetlnstanceSetup 134
tmolVcapVlinstanceSetup 135
tmolVcapVIStart 136
tmolVcapVIStop 137
tmolVcapVlinstanceConfig 138

Chapter 3 Video Digitizer (VdigVI) API

TriMedia Video Digitizer APl Overview 140
Using the Video Digitizer API 140
The AL layer 141

The OL Layer 142

vi Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

TriMedia Video Digitizer Inputs and Outputs

TriMedia Video Digitizer Error
TriMedia Video Digitizer Progress

Video Digitizer APl Data Structures

AL Layer Video Digitizer API Functions

OL Layer Video Digitizer APl Functions

Line counting issues

Cache Coherency

Packet Formats

tmalVdigVICapabilities_t, tmolVdigVICapabilities_t

tmalVdigVlinstanceSetup_t, tmolVdigVlinstanceSetup_t

tmalVdigVIGetNumberOfUnits

tmalVdigVIGetCapabilities
tmalVdigVIGetCapabilitiesM

tmalVdigVIOpen

tmalVdigVIOpenM

tmalVdigVIClose
tmalVdigVlinstanceSetup

tmalVdigVIStart

tmalVdigVIStop
tmalVdigVlinstanceConfig

tmolVdigVIGetNumberOfUnits

tmolVdigVIGetCapabilities

tmolVdigVIGetCapabilitiesM
tmolVdigVIOpen

tmolVdigVIOpenM

tmolVdigVIClose

tmolVdigVIGetinstanceSetup

tmolVdigVlinstanceSetup

tmolVdigViIStart

tmolVdigVIStop
tmolVdigVlinstanceConfig

Table of Contents

143
145

146
146

149
149

150
151
152

154
155
156
157
158
159
160
161
162
163
164

166
167
168
169
170
171
172
173
174
175
176
177

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A

vii

Table of Contents

Chapter 4 Video Renderer (VrendV0) API

Video Renderer APl Overview 180
Using the Video Renderer API 180
The AL Layer 181
The OL Layer 184
Callback Function Requirements 185
Packet Formats 185
Main Image Input Packet 186
Overlay Image Input Packet 186
Cache Coherency 187
Video Renderer API Data Structures 187
tmalVrendVOProgressFlags_t 188
tmalVrendVOCapabilities_t 189
tmolVrendVOCapabilities_t 189
tmalVrendVOInstanceSetup_t 190
tmolVrendVOInstanceSetup_t 190
tmalVrendVOConfigTypes_t 192
Video Renderer API Functions 194
tmalVrendVOGetCapabilities 195
tmolVrendVOGetCapabilities 195
tmalVrendVOOpen 196
tmolVrendVOOpen 196
tmalVrendVOClose 197
tmolVrendVOClose 197
tmolVrendVOGetInstanceSetup 198
tmalVrendVOInstanceSetup 199
tmolVrendVOInstanceSetup 199
tmalVrendVOStart 200
tmolVrendVOStart 200
tmalVrendVOStop 201
tmolVrendVOStop 201
tmalVrendVOInstanceConfig 202
tmolVrendVOInstanceConfig 202
tmalVrendVORenderFrame 203
tmalVrendVORenderOverlay 204
tmalVrendVOReceiverFormat 205

viii Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1
Video In/Out (vi/vo) API

Topic Page

Video In/Out API Overview 10

Video-In API Data Structures 1

Video-In API Functions 17

Video-Out API Data Structures 77

Video-Out API Functions 85
Note

For a general overview of TriMedia device libraries, see Chapter 5, Device
Libraries, of Book 3, Software Architecture, Part A.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A~ 9

Chapter 1:Video In/Out (vi/vo) API

Video In/Qut API Overview

The TriMedia Video device library provides a set of functions for accessing the Video-in
and Video-out peripherals available on TriMedia processors. The TriMedia Video device
library controls the Video-in and Video-out hardware on the TriMedia, providing specific
functions for controlling video encoders and decoders. It is relinkable with other pro-
grams, giving you total control of the hardware. It allows you to:

= Optimize Interrupt Service Routines (ISR) in order to meet application requirements.

= Create vendor-specific initialization and configuration routines for on-board chips,
such as a decoder that works with TriMedia Video-in and an encoder that works with
the TriMedia Video-out component.

The example applications show how the Video device library can be used on its own
without a traditional device-driver structure. In a given operating system, it may or may
not be useful to create a standard device driver for this peripheral. However, if you decide
to create a device driver, the Video In/Out API should be very helpful.

Introduction

The Video In/Out (VI/VO) peripheral provides a digitized stream of video or data into or
out of SDRAM. VI and VO have two operation modes:

= Video Stream Input, in which VI/VO interfaces with the decoder/encoder on the
board.

= Data Streaming, in which VI/VO interfaces with decoder/encoder, without data selec-
tion or data interpretation.

The Enhanced Video Out unit (EVO) is not part of the TriMedia processor. EVO features
are controlled through MMIO (EVO_xxx) registers, and the EVO_ENABLE bit in the
EVO_CTL register.

viOpen and voOpen

VI/VO starts by claiming a device using one of the viOpen, viOpenM, voOpen, or
voOpenM functions.

Instance Setup

Initialization then starts with a call to vilnstanceSetup or volnstanceSetup that sets up
the basic functionality and initializes the specified decoder/encoder. It sets the common
fields between the two modes of operation. After that, you can choose from:

= viYUVSetup and voYUVSetup for the video modes operation.

= viRawSetup and voRawSetup for the data streaming modes of operation.

10 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

Changing Buffers

A special interface offers fast buffer switching. It is implemented with the macros:
= viYUVChangeBuffer/voYUVChangeBuffer(instance,Y, U, V)
= viRawChangeBuffer1/voRawChangeBuffer1(instance, B),

= viRawChangeBuffer2/voRawChangeBuffer2(instance, B)

The Rest

The functions viStart/voStart and viStop/voStop start and stop the device.

The functions viClose/voClose close the device and free memory allocated for the
instance.
Some decoder control functions are available:

viSetBrightness viSetContrast viDetectColorStandard
viSetSaturation viSetHue
Several decoder functions support VBI data processing, internal scaling, and other
features.

Caveats

There are a number of hardware bugs in the earlier versions of the TM-1xxx chips. Most
of them have been addressed. Please read the errata carefully before operating VI/VO.

Error Codes

The error codes returned by the functions of the Video In/Out API are defined in the
tmLibdevErr.h.

Video-In API Data Structures

This section presents the Video-in data structures.

Name Page
viYUVModes_t 12
viRawModes_t 12
viCapabilities_t 13
viRawSetup_t 14
viYUVSetup_t 15
vilnstanceSetup_t 16

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 11

Chapter 1:Video In/Out (vi/vo) API

viYUVModes _t

typedef enum {
viFULLRES = @,
viHALFRES

} viYUVModes_t;

I
—

Description

Enumerates the possible video-in modes of the VI peripheral. These are used when VI
interfaces to a digital or analog camera. Refer to the appropriate TriMedia data book for
more information.

viRawModes_t

typedef enum {
viSTREAM8
viSTREAM1@S
viSTREAM10QU
viMESSAGE

} viRawModes_t;

1}
g s w N

Description

Enumerates the data streaming modes that VI can be set in. These modes are used when
VI interfaces with an A/D raw input channel. Refer to the appropriate TriMedia data
book for more information.

12 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viCapabilities_t

typedef struct {
tmVersion_t version;

Int numSupportedInstances;
Int numCurrentInstances;
char codecName[16];

UInt32 videoStandards;

UInt32 adapterTypes;

} viCapabilities_t, *pviCapabilities_t;

Fields

version Version of the video in library component.

numSupportedInstances Number of instances that are supported by the
processor.

numCurrentInstances Number of instances currently in use.

codecName[16] Name of the video encoder on the board as
returned by the board init routine.

videoStandards OR’d bitmask of video standards supported by the
encoder on the board.

adapterTypes OR’d bitmask of video standards supported by the
encoder on the board.

Description

The capabilities of the VI library component can be investigated using viGetCapabilities
or viGetCapabilitiesM. These return a pointer to a read-only data structure of the type
viCapabilities_t as described here.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 13

Chapter 1:Video In/Out (vi/vo) API

viRawSetup_t

typedef struct {

Bool buflfullEnable;
Bool buf2fullEnable;
Bool overflowEnable;
Bool overrunEnable;
viRawModes_t mode;

UInt size;

Pointer basel,base?;

} viRawSetup_t, *pviRawSetup_t;

Fields

buflfullEnable Enables the interrupt when buffer 1 is full.

buf2fullEnable Enables the interrupt when buffer 2 is full.

overflowEnable Used in message passing mode.

overrunknable Used in raw mode.

mode The data streaming mode in which VI has to
operate.

size Size of buffers, in bytes.

basel, base2 Pointers to buffers.

Description

viRawSetup_t is used when VI is used in data streaming mode. This structure should be
used with the viRawSetup function.

14 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viYUVSetup_t

typedef struct {

Bool thresholdReachedEnable;
Bool captureCompleteEnable;
Bool cositedSampling;
viYUVModes_t mode;

UInt yThreshold;

UInt startX, starty;

Ulnt width;

UInt height;

Pointer yBase, uBase, VvBase;
UInt yDelta, uDelta, vDelta;

} viYUVSetup_t, *pviYUVSetup_t;

Fields

thresholdReachedEnable
captureCompleteEnable
cositedSampling

mode

yThreshold

startX
starty
width

height

yBase, uBase, vBase

yDelta, uDelta, vDelta

Description

Enable interrupt whenever the threshold is
reached.

Enable interrupt when capture is completed.

Co-sited sampling, as opposed to interspersed
sampling; refer to the appropriate TriMedia data
book for more information.

The data streaming mode in which VI has to
operate.

The line where the threshold interrupt should be
generated; refer to the appropriate TriMedia data
book for more information.

Defines the starting pixel number or x-coordinate
for sampling; this must be an even number.
Defines the starting pixel number or y-coordinate
for sampling.

Defines the width of the captured image; this
must be an even number.

Defines the height of the captured image.
Pointers to variables in which the captured data is
to be stored.

The address differences between the last sample
of a line and the address of the first sample of the
next line; all deltas should be chosen such that
the line start addresses are 64-byte aligned.

This structure should be used with the viYUVInstanceSetup function.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 15

Chapter 1:Video In/Out (vi/vo) API

vilnstanceSetup_t

typedef struct {

Bool hbeEnable;
intPriority_t interruptPriority;
void (*isr)(void);
tmVideoAnalogStandard_t videoStandard;
tmVideoAnalogAdapter_t adapterType;

} vilnstanceSetup_t, *pvilnstanceSetup_t;

Fields

hbeEnable Enables highway bandwidth errors.

interruptPriority VI interrupt priority.

isr Pointer to the interrupt service routine.

videoStandard Default standard: the decoder will try to locate
the standard but if that fails, this is the default.

adapterType Uses vaaCVBS or vaaSvideo adapters.

Description

This can be used as the common initialization structure among all video-in modes of
operation, including image and data streaming modes. It should be passed to vilnstanc-
eSetup, which performs the initial programming of the video-in peripheral. After this
generic setup, use either viYUVSetup or viRawSetup to complete the initialization.

16 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

Video-In API Functions

This section describes the TriMedia Video-in API functions.

Name Page
viGetNumberOfUnits 20
viGetCapabilities 21
viGetCapabilitiesM 22
vilnstanceSetup 23
viYUVSetup 24
viRawSetup 25
viOpen 26
viOpenM 27
viClose 28
viStart 29
viStop 30
viYUVChangeBuffer 31
viRawChangeBuffer1 32
viRawChangeBuffer2 33
viConfigureDecoder 34
viGetColorStandard 35
viSetBrightness 36
viSetContrast 37
viSetHue 38
viSetSaturation 39
viGetVideoStandard 40
viGetVSyncFallingEdge 41
viGetSlicedData 42
viGetStatus 43
viGetSupportedDataServices 44
viSetDataServices 45

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 17

Chapter 1:Video In/Out (vi/vo) API

Name Page
viGetSlicerLineFlags 46
viEnableSlicing 47
viSetSlicerVideoStandard 48
viGetSlicerVideoStandard 49
viToggleFieldID 50
viSetSlicerlnput 51
viGetSlicerlnput 52
viSetVideoColor 53
viGetVideoColor 54
viSetAnaloginput 55
viGetAnaloglnput 56
viSetStandard 57
viSetSourceType 58
viGetSourceType 59
viSetOutputFormat 60
viGetOutputFormat 61
viSetAcquisitionWnd 62
viGetAcquisitionWnd 63
viGetDefaultAcquisitionWnd 64
viSetOutputSize 65
viSetinterlaceMode 66
viDisableDecoder 67
viEnablePowerSaveMode 68
viGetGPIOCount 69
viSetGPIOState 70
viGetGPIOState 71
viOpenVBI 72
viEnableVBI 73

18 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

Name Page
viSetVBIMode 74
viSetSlicerMode 75
viCloseVBI 76

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 19

Chapter 1:Video In/Out (vi/vo) API

viGetNumberOfUnits

tmLibdevErr_t viGetNumberOfUnits (
UInt32 *pNumberOfUnits
)3

Parameters

pNumberOfUnits Pointer to variable in which to return the number
of video-in units available.

Return Codes

TMLIBDEV_OK Success.

Description

This function determines the number of video-in peripherals available.

20 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viGetCapabilities

tmLibdevErr_t viGetCapabilities (
pviCapabilities_t *cap
)3

Parameters

cap Pointer to a variable in which to return a pointer
to the capabilities data.

Return Codes

TMLIBDEV_OK Success.

Description

Provided so that a system resource controller can determine information about the
default video-in device before installing it. The cap pointer is valid until the video-in
library is unloaded. This function will return the capabilities of the default video-in
peripheral (i.e. unit0).

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 21

Chapter 1:Video In/Out (vi/vo) API

viGetCapabilitiesM

tmLibdevErr_t viGetCapabilitiesM (
pviCapabilities_t *cap,

unitSelect_t unitName
)5
Parameters
cap Pointer to a variable in which to return a pointer
to capabilities data.
unitName Name of the hardware unit whose capabilities are
required.

Return Codes

TMLIBDEV_OK Success.

Description

Provided so that a system resource controller can determine information about the spec-
ified video-in unit before installing it. The cap pointer is valid until the video-in library is
unloaded.

22 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

vilnstanceSetup

Chapter 1: Video In/Out (vi/vo) API

tmLibdevErr_t vilnstanceSetup(
Int
vilnstanceSetup_t “*setup

)5

instance,

Parameters
instance VI instance to set up.
setup Pointer to a structure containing new parameters.

Return Codes

TMLIBDEV_OK
VI_ERR_INVALID_DECODER_INT

BOARD_ERR_UNSUPPORTED_STANDARD

TMLIBDEV_ERR_NOT_OWNER

TMLIBDEV_ERR_NULL_PARAMETER

Description

Success.

Returned if the board has no initialization routine
to initialize a VI decoder.

Returned if either video standard or adapter type
are not supported by the board video decoder,
and any error returned by calls to the board or
interrupt library components.

In the debug version of the library, this assertion
is triggered if instance does not match the owner.
In the debug version of the library, this assert is
triggered if the setup pointer is Null.

This function initializes instance setup parameters, sets VI endianness to the endianness

of current execution, programs the VI clock to external mode, initializes the decoder on
the board (see Chapter 19, TMBoard API in Book 5, System Utilities, Part C) by calling the
appropriate functions in the board library, and prepares the device for either data

streaming mode or video mode.

This function should be called before viYUVSetup, or viRawSetup.

Related Functions

viOpen, viOpenM, viRawSetup, and viYUVSetup.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 23

Chapter 1:Video In/Out (vi/vo) API

viYUVSetup

tmLibdevErr_t viYUVSetup(
Int instance,
viYUVSetup_t *setup

)3

Parameters
instance VI instance to set up.
setup Pointer to a structure containing new parameters.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER In the debug version of the library, this assertion
is triggered if instance does not match the owner.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
triggered if the setup pointer is Null.

Description

Sets or changes instance setup parameters in the YUV operation mode. This function
checks that every parameter in the viYUVSetup_t structure is correct according to the
alignment requirements (see viYUVSetup_t and the appropriate TriMedia data book), and
calls the macro viSetWIDTH macro according to the desired mode (full or half resolu-
tion).

This function assumes that vilnstanceSetup has already been called.

Related Functions

vilnstanceSetup, viStart.

24 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viRawSetup

tmLibdevErr_t viRawSetup(
Int instance,
viRawSetup_t *setup

)3

Parameters
instance VI instance to set up.
setup Pointer to a structure containing new parameters.

Return Codes

TMLIBDEV_OK Success. In the debug version there are appropri-
ate alignment and size assertions.

TMLIBDEV_ERR_NOT_OWNER In the debug version of the library, this assertion
is triggered if the instance does not match the
owner.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is

triggered if the setup pointer is Null.

Description

This function sets and changes instance setup parameters in the Raw operation mode.

It assumes vilnstanceSetup has already been called.

Related Functions

vilnstanceSetup, viStart.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 25

Chapter 1:Video In/Out (vi/vo) API

viOpen

tmLibdevErr_t viOpen (
Int *instance
)3

Parameters

instance Pointer to a unique instance ID that is set when
the default VI device is opened successfully.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NO_MORE_INSTANCES Returned when all possible instances have been
allocated. Returned by the interrupts library com-
ponent when the video-in interrupt vector is
already in use.

Description

This function attempts to open the default video-in device (i.e. unit0), and if successful
assigns a unique video-in instance for the caller. This API function should be called first
to obtain an instance before any further initialization is performed. It resets the default
video-in device using the viAckRESET macro, and initializes the associated interrupt.

Related Functions

viOpenM, vilnstanceSetup, viClose.

26 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viOpenM

tmLibdevErr_t viOpenM (
Int *instance
unitSelect_t unitName
)3

Parameters

instance Pointer to a unique instance ID that is set when
the default VI device is opened successfully.

unitName The hardware unit to open.

Return Codes

TMLIBDEV_OK
TMLIBDEV_ERR_NO_MORE_INSTANCES

Description

Success.

Returned when all possible instances have been
allocated. Returned by the interrupts library com-
ponent when the video-in interrupt vector is
already in use.

This function attempts to open the specified video-in device, and if successful assigns a

unique video-in instance for the caller. This API function should be called first to obtain

an instance. It resets the required video-in device (ViAckRESET macro), and initializes the

associated interrupt.

Related Functions

viOpen, vilnstanceSetup, viClose.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 27

Chapter 1:Video In/Out (vi/vo) API

viClose

tmLibdevErr_t viClose(
Int instance
)s

Parameters

instance VI instance to release.

Return Codes

TMLIBDEV_OK Success.

(other error codes) Various other errors returned by the interrupt
library component when deallocation of the
interrupt failed, or when the video encoder's ter-
mination function has failed.

Description

This function is used to close an instance. It calls the board's video decoder termination
function if one installed. It resets the associated video-in device (ViAckRESET macro), and
closes the interrupt opened by viOpen/viOpenM.

Related Functions

viStart, and the board video-in decoder's term_func.

28 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viStart

tmLibdevErr_t viStart (
Int instance
)s

Parameters

instance VI instance to start.

Return Codes

TMLIBDEV_OK Success.

VI_ERR_INITIALIZATION_NOT_COMPLETE
Returned when the initialization is not complete:
either vilnstanceSetup is not called, or no call is
made to either viYUVSetup or viRawSetup.

Description

This function starts the video-in unit associated with the instance. It checks the validity
of the instance, and calls the macro viEnableENABLE.

Related Functions

vilnstanceSetup, viRawSetup, viYUVSetup, and viStop.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 29

Chapter 1:Video In/Out (vi/vo) API

viStop

tmLibdevErr_t viStop(
Int instance
)3

Parameters

instance VI instance to stop.

Return Codes

TMLIBDEV_OK Success.

Description

This will stop the video-in peripheral associated with the instance. After being called, the
associated video interrupt will be disabled.

Related Functions

viStart.

30 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viYUVChangeBuffer
void viYUVChangeBuffer(
Int instance,
Pointer Y,
Pointer U,
Pointer)
)3
Parameters
instance VI instance to change.
Y New Y (luminance) buffer pointer.
U New U (chrominanc)e buffer pointer.
) New V (chrominance) buffer pointer.

Return Codes

There is no return code because this function is implemented as a macro.

Description

This function specifies new capture buffers and modifies the pointers directly without
instance checking. It uses the macros viSetY_BASE_ADR, viSetU_BASE_ADR,
viSetV_BASE_ADR (look at tmVLh).

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A

31

Chapter 1:Video In/Out (vi/vo) API

viRawChangeBuffer1

void viRawChangeBufferl(
Int instance,
Pointer buffer

);

Parameters
instance VI instance to change.
buffer New buffer pointer for buffer 1.

Return Codes

There is no return code because this function is implemented as a macro.

Description

Sets a new buffer and modifies the pointers directly without instance checking. It uses
the macro viSetBASE1 (refer to tmVI.h).

32 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viRawChangeBuffer2

void viRawChangeBuffer2(
Int instance,
Pointer buffer

);

Parameters
instance VI instance to change.
buffer New buffer pointer for buffer 2.

Return Codes

There is no return code since this is implemented as a macro.

Description

Sets a new buffer and modifies the pointers directly without instance checking. It uses
the macro viSetBASE2 (refer to tmVI.h).

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 33

Chapter 1:Video In/Out (vi/vo) API

viConfigureDecoder

tmLibdevErr_t viConfigureDecoder(
Int instance,
UInt32 subaddr,
UInt32 value,

)

Parameters

instance VI instance to configure.

subaddr IIC subaddress to be modified.

value New value to be stored on the sub address.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the configure function for the video-in decoder.

Other errors Any error returned by the board support package
(BSP).

Description

Configures the board’s decoder according to the data passed in. This function calls the
appropriate function in the board library, depending upon the installed board (currently
IREF or DEBUG). For IREF boards, it calls saa7111Configure.

Related Functions

The board video decoder’s configure function.

34 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viGetColorStandard

tmLibdevErr_t viGetColorStandard(
Int instance,
tmVideoAnalogStandard_t *colorStandard
);

Parameters

instance VI instance.

colorStandard Pointer to the color standard detected. When the
function is not implemented, this will be vas-
None.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION The board does not implement the getColor-
Standard function for the video-in decoder.

Other errors Any error returned by the BSP.

Description

Detects the board’s decoder color standard when this functionality is implemented by
the board. (Refer to Chapter 19, TMBoard API, in Book 5, System Utilities, Part C.)

Related Functions

The board video-decoder’s getColorStandard function.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 35

Chapter 1:Video In/Out (vi/vo) API

viSetBrightness
tmLibdevErr_t viSetBrightness(
Int instance,
UInt lTevel
)3
Parameters
instance VI instance.
Tevel Brightness level.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setBrightness function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Calls the boards video-decoder setBrightness function when this functionality is imple-
mented by the board. (Refer to Chapter 19, TMBoard API, in Book 5, System Utilities, Part
C)

36 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viSetContrast
tmLibdevErr_t viSetContrast(
Int instance,
UInt lTevel
);
Parameters
instance VI instance.
Tevel Contrast level.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION The board does not implement the setContrast
function for the video-in decoder.

Other errors Any error returned by the BSP.

Description

Sets the board’s decoder contrast level when this functionality is implemented by the
board. (Refer to Chapter 19, TMBoard API, in Book 5, System Utilities, Part C.)

Related Functions

The board video-decoder’s setContrast function.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 37

Chapter 1:Video In/Out (vi/vo) API

viSetHue

tmLibdevErr_t viSetHue(
Int instance,
UInt lTevel

);

Parameters

instance VI instance.

Tevel Hue level

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION The board does not implement the setHue func-
tion for the video-in decoder.

Other errors Any error returned by the BSP.

Description

Sets the board’s decoder hue level when this functionality is implemented by the board.
(Refer to Chapter 19, TMBoard API, in Book 5, System Utilities, Part C.)

Related Functions

The board video-decoder’s setHue function.

38 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viSetSaturation
tmLibdevErr_t viSetSaturation(
Int instance,
UInt lTevel
);
Parameters
instance VI instance.
Tevel Saturation level.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setSaturation function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Sets the board’s decoder saturation level when this functionality is implemented by the
board. (Refer to Chapter 19, TMBoard API, in Book S, System Utilities, Part C.)

Related Functions

The board video-decoder’s setSaturation function.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 39

Chapter 1:Video In/Out (vi/vo) API

viGetVideoStandard

tmLibdevErr_t viGetVideoStandard(
Int instance,
tmVideoAnalogStandard_t *colorStandard
);

Parameters
instance Instance.
colorStandard The color standard detected. When the function

is not implemented, this will be vasNone.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION The board does not implement the getVideo-
Standard function for the video-in decoder.

Other errors Any error returned by the BSP.

Description

Get the color standard of the decoder.

40 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viGetVSyncFallingEdge

tmLibdevErr_t viGetVSyncFallingEdge(
Int instance,
UInt *1ineNumber

);

Parameters
instance Instance.
TineNumber Receives the line number.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the getVSyncFallingEdge function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Get the line number in which the falling edge of VSync occurs.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 41

Chapter 1:Video In/Out (vi/vo) API

viGetSlicedData

tmLibdevErr_t viGetSlicedData(
Int instance,

UInt8 *Y,
UInt8 *U,
UInt8 *V,
tmVideoDataService_t service,
UInt size,
UInt8 *data,
UInt8 *dataSize
)3
Parameters
instance Instance.
Y, U, Vv Pointers to planar YUV data.
service Teletext data service to extract.
sizeY Size of Y data buffer to search for sliced data.
data Buffer in which to write extracted data.
dataSize Receives the number of extracted bytes.

Return Codes

TMLIBDEV_OK
BOARD_ERR_NULL_DETECT_FUNCTION

Other errors

Description

Success.

Returned when the board does not implement
the getSlicedData function for the video-in
decoder.

Any error returned by the BSP.

Extracts sliced VBI data. If the decoder inserts sliced data into the video data stream, it
will be captured in all three video planes. The pointers to YUV specify the start positions

where to extract the data slices.

42 Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

viGetStatus

Chapter 1: Video In/Out (vi/vo) API

tmLibdevErr_t viGetStatus(
Int
tmVideoStatusType_t
UInt

type,
*state
)

Parameters

instance,

instance
type
state

Return Codes

Instance.
Describes condition to check.

Receives current state of specified condition.

TMLIBDEV_OK
BOARD_ERR_NULL_DETECT_FUNCTION

Other errors

Description

Success.

Returned when the board does not implement
the getStatus function for the video-in decoder.

Any error returned by the BSP.

Get information about the decoder’s status (lock, field ID, etc.)

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 43

Chapter 1:Video In/Out (vi/vo) API

viGetSupportedDataServices

tmLibdevErr_t viGetSupportedDataServices(
Int instance,
tmVideoDataService_t fieldOne[],
tmVideoDataService_t fieldTwo[],

UInt8 tb1Size

)3

Parameters

instance Instance.

fieldOne Array receiving supported services for each line of
field 1.

fieldTwo Array receiving supported services for each line of
field 2.

tb1Size Number of lines in field 1 and field 2.

Return Codes

TMLIBDEV_OK
BOARD_ERR_NULL_DETECT_FUNCTION

Other errors

Description

Success.

Returned when the board does not implement
the getSupportedDataServices function for the
video-in decoder.

Any error returned by the BSP.

Get information about data services supported by the decoder’s text slicer.

44 Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viSetDataServices
tmLibdevErr_t viSetDataServices(
Int instance,
tmVideoDataService_t fieldOne[],
tmVideoDataService_t fieldTwo[],
UInt8 tb1Size
)3
Parameters
instance Instance.
fieldOne Specifies the data service for each line of field 1.
fieldTwo Specifies the data service for each line of field 2.
tb1Size Number of lines in fieldOne and fieldTwo

Return Codes

TMLIBDEV_OK

Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement

Other errors

Description

the setDataServices function for the video-in
decoder.

Any error returned by the BSP.

Set up the decoder’s text slicer for specific data service in each VBI line.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 45

viGetSlicerLineFlags

Chapter 1:Video In/Out (vi/vo) API

tmLibdevErr_t viGetSlicerLineFlags(

Int instance,
Bool fieldOnel[1],
Bool fieldTwo[],
UInt8 tbi1Size
)3
Parameters
instance Instance.
fieldOne Buffer receiving True for every line a service has
been found.
fieldTwo Buffer receiving True for every line a service has
been found.
tb1Size Number of lines in field 1and field 2.

Return Codes

TMLIBDEV_OK
BOARD_ERR_NULL_DETECT_FUNCTION

Other errors

Description

Success.

Returned when the board does not implement
the getSlicerLineFlags function for the video-in
decoder.

Any error returned by the BSP.

Get information from the decoder if specified data services have been found by the

decoder’s text slicer.

46 Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viEnableSlicing

tmLibdevErr_t viEnableSTicing(
Int instance,
Bool enable

);

Parameters
instance Instance.
enable True: enable slicer. False: disable slicer.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the enableSlicing function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Enable the decoder’s text slicer.

Note: If the decoder has no separate enable for the slicer, it gets turned on and off by
viSetDataServices.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 47

Chapter 1:Video In/Out (vi/vo) API

viSetSlicerVideoStandard

tmLibdevErr_t viSetSlicerVideoStandard(
Int instance,
tmVideoAnalogStandard_t standard

)5

Parameters
instance Instance.
standard Video standard for the slicer.

Return Codes

TMLIBDEV_OK
BOARD_ERR_NULL_DETECT_FUNCTION

Other errors

Description

Success.

Returned when the board does not implement
the setSlicerVideoStandard function for the video-
in decoder.

Any error returned by the BSP.

Set the text slicer’s video standard.

Note: In most decoders this standard has to match the standard for the active video.

48 Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viGetSlicerVideoStandard

tmLibdevErr_t viGetSlicerVideoStandard(
Int instance,
tmVideoAnalogStandard_t *standard

)5

Parameters
instance Instance.
standard Receives the slicer’s video standard.

Return Codes

TMLIBDEV_OK
BOARD_ERR_NULL_DETECT_FUNCTION

Other errors

Description

Success.

Returned when the board does not implement
the getSlicerVideoStandard function for the
video-in decoder.

Any error returned by the BSP.

Get the text slicer’s video standard.

Note: In most decoders this standard will match the standard for the active video.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 49

Chapter 1:Video In/Out (vi/vo) API

viToggleFieldID

tmLibdevErr_t viToggleFieldID(
Int instance,
Bool toggle

);

Parameters
instance Instance.
toggle True: invert field detection. False: do not.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the toggleFieldID function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Toggle the video decoder’s field ID.

50 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viSetSlicerinput

tmLibdevErr_t viSetSlicerInput(

Int instance,
UInt num
)3
Parameters
instance Instance.
num Input mode for the decoder’s slicer.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setSlicerlnput function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Set the slicer’s video input.

Note: If the decoder does not support different inputs for active video and the text slicer
this function will return an error if num differs from the current input for active video.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 51

Chapter 1:Video In/Out (vi/vo) API

viGetSlicerinput

tmLibdevErr_t viGetSlicerInput(
Int instance,
UInt “*num

)3

Parameters
instance Instance.
num Pointer to a variable in which to return the cur-

rent input mode for the decoder’s slicer.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the getSlicerlnput function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Get the slicer’s video input.

Note: If the decoder does not support different inputs for active video and the text slicer
this function will return the current input for active video.

52 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viSetVideoColor
tmLibdevErr_t viSetVideoColor(
Int instance,
tmVideoColor_t color,
UInt val
);
Parameters
instance Instance.
color Defines which color parameter to change.
val The new value.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setVideoColor function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Set brightness, contrast, saturation, or hue for the decoder’s video input.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 53

Chapter 1:Video In/Out (vi/vo) API

viGetVideoColor

tmLibdevErr_t viGetVideoColor(

Int
tmVideoColor_t
UInt

)

Parameters

instance
color

val

Return Codes

Defines which color parameter to get.

Receives current value.

TMLIBDEV_OK

BOARD_ERR_NULL_DETECT_FUNCTION

Other errors

Description

Returned when the board does not implement
the getVideoColor function for the video-in

Any error returned by the BSP.

Get the current value for brightness, contrast, saturation, or hue of the decoder’s video

input.

54 Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viSetAnaloginput

tmLibdevErr_t viSetAnalogInput(
Int instance,

UInt num
)3
Parameters
instance Instance.
num Defines the new video input.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setAnaloglnput function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Set the decoder’s video input.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 55

Chapter 1:Video In/Out (vi/vo) API

viGetAnaloginput

tmLibdevErr_t viGetAnalogInput(
Int instance,
UInt “*num

);

Parameters
instance Instance.
num Receives the current video input.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the getAnaloglnput function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Get the decoder’s current video input.

56 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viSetStandard

tmLibdevErr_t viSetStandard(
Int instance,
tmVideoAnalogStandard_t standard
);

Parameters
instance Instance.
standard New video input standard.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setStandard function for the video-in decoder.

Other errors Any error returned by the BSP.

Description

Set the decoder’s video input standard.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 57

Chapter 1:Video In/Out (vi/vo) API

viSetSourceType

tmLibdevErr_t viSetSourceType(
Int instance,
tmVideoSourceType_t type

);

Parameters
instance Instance.
type New video source type.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setSourceType function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Set the decoder’s video decoder’s source type (VCR, TV, ...). Depending on the source
type the decoder’s SYNC detection will vary.

58 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viGetSourceType

tmLibdevErr_t viGetSourceType(
Int instance,
tmVideoSourceType_t *type

)3

Parameters
instance Instance.
type Receives current video source type.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the getSourceType function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Get the decoder’s video source type (VCR, TV, ...).

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 59

Chapter 1:Video In/Out (vi/vo) API

viSetOutputFormat

tmLibdevErr_t viSetOutputFormat(
Int instance,
tmVideoRGBYUVFormat_t format

)3

Parameters
instance Instance.
format New video output format.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setOutputFornat function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Set the decoder’s video output format.

60 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viGetOutputFormat

tmLibdevErr_t viGetOutputFormat(
Int instance,
tmVideoRGBYUVFormat_t *format

)3

Parameters
instance Instance.
format Receives current video output format.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the getOutputFormat function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Get the decoder’s video output format.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 61

Chapter 1:Video In/Out (vi/vo) API

viSetAcquisitionWnd

tmLibdevEr
Int
UInt
UInt
UInt
UInt

)

Parameters

r_t viSetAcquisitionWnd(
instance,

beginX,

beginY,

endX,

endY

instance

Instance.

beginX, beginY Horizontal and vertical start of window.

endX, endY

Horizontal and vertical end of window.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_|

Other errors

Description

NULL_DETECT_FUNCTION Returned when the board does not implement
the setAcquisitionWindow function for the video-
in decoder.

Any error returned by the BSP.

Set the decoder’s video acquisition window. Changing the acquisition window will only

affect the video input if the decoder’s internal scaler is used.

62 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viGetAcquisitionWnd

tmLibdevErr_t viGetAcquisitionWnd(
Int instance,
UInt *beginX,
UInt *beginy,

UInt *endX,
Ulnt *endY
)3
Parameters
instance Instance.
beginX, beginY Pointers to variables to get start of window.
endX, endY Pointers to variables to get end of window.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the getAcquisitionWnd function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Get the decoder’s video acqusition window.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 63

Chapter 1:Video In/Out (vi/vo) API

viGetDefaultAcquisitionWnd

tmLibdevErr_t viGetDefaultAcquisitionWnd(
Int instance,
UInt *beginX,
UInt *beginy,

UInt *endX,
Ulnt *endY
);
Parameters
instance Instance.
beginX, beginY Pointers to variables to receive default horizontal
and vertical start of window.
endX, endY Pointers to variables to get default horizontal and

vertical end of window.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the getDefaultAcquisitionWnd function for the
video-in decoder.

Other errors Any error returned by the BSP.

Description

Get the decoder’s default video acquisition window of the active video. The rectangle
returned depends on the current video standard and video decoder.

64 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viSetOutputSize

tmLibdevErr_t viSetOutputSize(
Int instance,
UInt width,
UInt height

);

Parameters

instance Instance.

width Specifies new width of the video output window.
height Specifies new height of the video output window.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setOutputSize function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Set the decoder’s output window. This function can only be used if the video decoder
supports an internal scaler.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 65

Chapter 1:Video In/Out (vi/vo) API

viSetinterlaceMode

tmLibdevErr_t viSetInterlaceMode(
Int instance,
Bool interlace

);

Parameters
instance Instance.
interlace True: use decoder’s scaler in interlace mode.

False: use the decoder’s scaler in field mode.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setinterlaceMode function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Set the interlace mode of the decoder’s internal scaler.

66 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viDisableDecoder

tmLibdevErr_t viDisableDecoder(
Int instance,
Bool disable

)

Description

Disable/tristate the decoder’s output pins.

Parameters
instance Instance.
disable True: disable decoder. False: enable decoder.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the disableDecoder function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Disable/tristate the decoder’s output pins, if supported by the decoder. By default, the
decoder is enabled.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 67

Chapter 1:Video In/Out (vi/vo) API

viEnablePowerSaveMode

tmLibdevErr_t viEnablePowerSaveMode(
Int instance,
Bool enable

);

Parameters
instance Instance.
enable True: turn on power-save mode

False: turn off power-save mode.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the enablePowerSaveMode function for the
video-in decoder.

Other errors Any error returned by the BSP.

Description

Turns the decoder’s power save mode on or off, if the functionality is supported.

68 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viGetGPIOCount

tmLibdevErr_t viGetGPIOCount(
Int instance,
UInt “*num

);

Parameters
instance Instance.
num Pointer to variable receiving the number of

decoder GPIOs.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the getGPIOCount function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Get the number of GPIO pins on the video decoder.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 69

Chapter 1:Video In/Out (vi/vo) API

viSetGPIOState

tmLibdevErr_t viSetGPIOState(
Int instance,
UInt pin,
Bool state

);

Parameters

instance Instance.

pin Number of the decoder’s GPIO pin to set.
state True: output high. False: low.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setGPIOState function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Set the state of a video decoder’s GPIO pin.

70 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viGetGPIOState

tmLibdevErr_t viGetGPIOState(
Int instance,
UInt pin,
Bool “*state

);

Parameters

instance Instance.

pin Number of the GPIO pin to get.

state Pointer to variable to get current state. (True =

high. False = low.)

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the getGPIOState function for the video-in
decoder.

Other errors Any error returned by the BSP.

Description

Get the state of a video decoder’s GPIO pin.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 71

Chapter 1:Video In/Out (vi/vo) API

viOpenVBI

tmLibdevErr_t viOpenVBI(
Int instance,
UInt sampleFreq,
UInt startlLine,
UInt numLines

)3

Parameters

instance Instance.

sampleFreq VBI sample frequency in Hz.
startLine First VBI line to handle.
numlLines Number of VBI lines.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the openVBI function for the video-in decoder.

Other errors Any error returned by the BSP.

Description

Open the decoder for raw VBI handling in software. This function sets up the decoder to
bypass and/or oversample the appropriate VBI lines. Typical sample frequencies are 13.5
and 27 MHz.

Note: Usage of VBI oversampling will require the usage of hardware syncs with some
video decoders.

72 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viEnableVBI

tmLibdevErr_t viEnableVBI(
Int instance,
Bool enable

);

Parameters
instance Instance.
enable True: enable raw VBI handling

False: disable raw VBI handling.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the enableVBI function for the video-in decoder.

Other errors Any error returned by the BSP.

Description

Enable the decoder for raw VBI handling. Raw VBI data has to be decoded in software
without using a video decoder’s text slicer.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 73

Chapter 1:Video In/Out (vi/vo) API

viSetVBIMode

tmLibdevErr_t viSetVBIMode(
Int instance,
tmVideoVBIMode_t mode

);

Parameters
instance Instance.
mode Set mode to raw Y or baseband YUV.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setVBIMode function for the video-in decoder.

Other errors Any error returned by the BSP.

Description

Set the decoder’s mode for raw VBI handling. Raw VBI data has to be decoded in software
without using a video decoder’s text slicer.

74 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

viSetSlicerMode

tmLibdevErr_t viSetSlicerMode(

Int instance,

tmVideoSlicerMode_t mode
);

Parameters
instance Instance.
mode Set mode to SAV/EAV or ANC header.

Return Codes

TMLIBDEV_OK
BOARD_ERR_NULL_DETECT_FUNCTION

Other errors

Description

Success.

Returned when the board does not implement
the setSlicerMode function for the video-in
decoder.

Any error returned by the BSP.

Set the decoder’s mode for sliced VBI data handling. By default SAV/EAV mode will be
used. The ancillary data header (ANC) mode requires the video decoder and the video

input block to support this feature.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A

75

Chapter 1:Video In/Out (vi/vo) API

viCloseVBI

tmLibdevErr_t viCloseVBI(
Int instance
)s

Parameters

instance Instance.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the closeVBI function for the video-in decoder.

Other errors Any error returned by the BSP.

Description

Close the decoder’s raw VBI data handling.

76 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

Video-0ut API Data Structures

This section presents the video-out data structures. These data structures are defined in
the tmVo.h header file, which also contains the video-out API interface.

Name Page
voYUVModes_t 78
voRawModes_t 78
voCapabilities_t 79
voRawSetup_t 79
voOverlaySetup_t 80
voYUVSetup_t 81
volnstanceSetup_t 82
voenhChromaKeyingSetup_t 83
voenhClipSetup_t 84
voenhGenLockSetup_t 84

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 77

Chapter 1:Video In/Out (vi/vo) API

voYUVModes_t

typedef enum {
v0422_COSITED_UNSCALED
vo422_INTERSPERSED_UNSCALED
vo42@_UNSCALED
vo422_COSITED_SCALED
vo422_INTERSPERSED_SCALED
vo42@_SCALED =

} voYUVModes_t;

[B2 BN - SR S

Description

Enumerate the various YUV image transfer modes for different input data formats and
with or without horizontal 2X upscaling.

Note

A full explanation of each of these modes is beyond the scope of this
reference. See Section 7 of the appropriate TriMedia data book for more
information.

voRawModes_t

typedef enum {
VOSTREAM8 = 8,
VOMESSAGE =

} voRawModes_t;

|
©0

Description

Enumerates the data streaming modes.

78 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voCapabilities_t

typedef struct voCapabilities_t {

tmVersion_t
Int

Int

char

UInt32
UInt32

version;
numSupportedInstances;
numCurrentInstances;
codecName[16];
videoStandards;
adapterTypes;

} voCapabilities_t, *pvoCapabilities_t;

Description

Used by the voGetCapabilities and voGetCapabilitiesM functions, this function provides
information about video-out capabilities. This includes the version of the device library,
the name of the video codec, and video standards and adapter types supported.

voRawSetup_t

typedef struct voRawSetup_t{

Bool

Bool
voRawModes_t
UInt

Pointer

buflemptyEnable;
buf2emptyEnable;
mode;

sizel, size2;
basel, base?2;

} voRawSetup_t, *pvoRawSetup_t;

Fields
buflemptyEnable Enable interrupt when buffer 1 is empty.
buf2emptyEnable Enable interrupt when buffer 2 is empty.

sizel, size?2

basel, base2

Description

Sizes of the two buffers.

Pointers to the two buffers.

Describes the settings for the data streaming and message passing modes of the VO

peripheral. See the appropriate TriMedia data book for more information.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 79

Chapter 1:Video In/Out (vi/vo) API

voOverlaySetup_t

typedef struc
Bool
UInt
UInt
UInt
Pointer
UInt

} voOverlaySe

Fields

t voOverlaySetup_t{
overlayEnable;

overlayStartX, overlayStartY;
overlayWidth, overlayHeight;
overlayStride;

overlayBase;

alpha@, alphal;

tup_t, *pvoOverlaySetup_t;

overlayEnable
overlayStartX
overlayWidth,

overlayStride

overlayBase

alpha@, alphal

Description

Enable the overlay.
,overlayStartyY Left upper corner (pixel and line) of the overlay.
overlayHeight Width and height of the overlay.

The stride of the overlay (overlay offset in the
appropriate TriMedia data book).

The base address of the overlay

alphao is the alpha blend value used in the
YUV+alpha mode, when the alpha bit is set to 0;
alphal is used when the alpha bit (low bit of Y
data) is set to 1.

Passed to the voOverlaySetup function to initialize the video-out peripheral image over-

lay for the image passing modes.

80 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voYUVSetup_t

typedef struct voYUVSetup_t{

Bool buflemptyEnable;

Bool yThresholdEnable;

voYUVModes_t mode;

UInt imageVertOffset, imageHorzOffset;
UInt imageWidth, displayHeight;

UInt yThreshold;

Ulnt yStride, uStride, vStride;
Pointer yBase, Base, vBase;

} voYUVSetup_t, *pvoYUVSetup_t;

Fields

buflemptyEnable Enable interrupt when buffer 1 is empty.
YThresholdEnable Enable interrupt threshold interrupt.

mode Select the image mode of operation. See the

imageVertOffset, imageHorz0ffset
imageWidth, displayHeight
yThreshold

yStride, uStride, vStride

yBase, uBase, vBase

Description

appropriate TriMedia data book for more informa-
tion.

Vertical and horizontal start of the upper left cor-
ner of the output.

Image width and height in samples.

When the yThresholdEnable flag is true, an inter-
rupt will be generated when the line counter
reaches this value.

Number of bytes from the start of one line to the
start of the next line

Pointers to the start of the YUV data.

Passed to the voYUVSetup function to setup the video-out peripheral in image passing

mode.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 81

Chapter 1:Video In/Out (vi/vo) API

volnstanceSetup_t

typedef struct volInstanceSetup_t{

Bool

Bool

UInt32
intPriority_t
void

tmVideoAnalogStandard_t
tmVideoAnalogAdapter_t

hbeEnable;
underrunEnable;
ddsFrequency;
interruptPriority;

(*isr)(void);

videoStandard;
adapterType;

} volnstanceSetup_t, *pvolnstanceSetup_t;

Fields

hbeEnable
underrunEnable
ddsFrequency
interruptPriority
isr

videoStandard

adapterType

Description

Enable interrupts for highway bandwidth errors.
Enable interrupts when an under-run occurs.
Frequency in Hertz.

VO interrupt priority.

Pointer to the interrupt service routine

Video standard which the video-out decoder on
the board needs to be programmed to.

The adaptor type (either vaaCVBS and vaaSvideo)
passed to the board’s video-out decoder.

This structure is used as the common initializing structure for all video-out modes of

operation, including YUV images and raw data streaming modes. It is passed to the

volnstanceSetup function to perform an initial setup of the video-out peripheral.

82

Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voenhChromaKeyingSetup_t

typedef struct voenhChromaKeyingSetup_t{
Bool keyEnable;
UInt8 keyY, keyU, keyV;
UInt8 maskY, maskUV;
} voenhChromaKeyingSetup_t, *pvoenhChromaKeyingSetup_t;

Fields

keyEnable Enables the chroma keying feature.
keyY, keyU, keyV 8 bits for each key.

maskY, maskUV 4 bits for each mask.

Description

When the keyEnable is set, the chroma keying feature is enabled. The overlay values (Y,
U and V) are compared to values stored in keyY, keyU, and keyV. Bits that correspond to
bits set in maskY and maskUV are ignored for this comparison. When there is an exact
match between the pixel value and the values in keyY, keyU, and keyV (less the bits
selected by maskY and maskUV), then the overlay value is not present in the output
stream (full transparency).

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 83

Chapter 1:Video In/Out (vi/vo) API

voenhClipSetup_t

typedef struct voenhClipSetup_t{

Bool clipEnable;

UInt8 highClipUV, TowClipUV, highClipY, TowClipY;
} voenhClipSetup_t, *pvoenhClipSetup_t;

Fields

clipEnable Enable the clipping feature.

highC1ipUV, TowC1ipUV High and low clipping values for U and V.
highClipY, TowC1ipY High and low clipping values for Y.
Description

When clipEnable is true, the Y output values are clipped between lowClipY and highClipY,
and the U, V output values are clipped between lowClipUV and highClipUV.

voenhGenLockSetup_t

typedef struct voenhGenLockSetup_t{
Bool genLockEnable;
UInt slaveDelay;
} voenhGenLockSetup_t, *pvoenhGenLockSetup_t;

Fields

genLockEnable When set, enables the TM-1100 genlock feature.
slaveDelay Number of delay cycles in genLock.

Description

TM-1100 genLock works when the video-out is not synchronization master. Frame syn-
chronization is achieved by an external signal on VO_IO2.

84 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

Video-0ut API Functions

This section describes the TriMedia video-out API functions.

Name Page
voGetNumberOfUnits 86
voGetCapabilities 87
voGetCapabilitiesM 88
voGetCapabilitiesM 88
voOpen 920
voOpenM 91
voStart 93
voStop 94
voYUVSetup 95
voOverlaySetup 97
voRawSetup 98
voYUVChangeBuffer 929
voOverlayChangeBuffer 100
voRawChangeBuffer1 101
voRawChangeBuffer2 102
voConfigureEncoder 103
voSetBrightness 104
voSetHue 105
voSetSaturation 106
voenhStart 107
voenhClipSetup 107
voenhChromaKeyingSetup 108
voenhGenLockSetup 108

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 85

Chapter 1:Video In/Out (vi/vo) API

voGetNumberOfUnits

tmLibdevErr_t voGetNumberOfUnits (
UInt32 *pNumberOfUnits
)3

Parameters

pNumberOfUnits Pointer to a variable in which to return the num-
ber of hardware units available.

Return Codes

TMLIBDEV_OK Success.

Description

This function determines the number of video-out peripherals which are available.

86 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voGetCapabilities

tmLibdevErr_t voGetCapabilities(
pvoCapabilities_t *cap
)3

Parameters

cap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBDEV_OK Success.
TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
triggered if cap is null.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
In the debug version of the library, this assert is
triggered if cap is null.

Description

Sets a pointer to default video-out (unit0) capability structure.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 87

Chapter 1:Video In/Out (vi/vo) API

voGetCapabilitiesM

tmLibdevErr_t voGetCapabilitiesM (
pvoCapabilities_t *cap,

unitSelect_t unitName
)5
Parameters
cap Pointer to a variable in which to return a pointer
to capabilities data.
unitName Name of the hardware unit whose capabilities are
required.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
In the debug version of the library, this assert is
triggered if cap is null.

Description

Provided so that a system resource controller can determine information about the spec-
ified video-out unit before installing it.

88 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

volnstanceSetup

Chapter 1: Video In/Out (vi/vo) API

tmLibdevErr_t voInstanceSetup(
Int
voInstanceSetup_t *setup

)5

instance,

Parameters
instance Current instance of VO.
setup Setup pointer to buffer that holds new parame-

Return Codes

ters.

TMLIBDEV_OK
VO_ERR_INVALID_ENCODER_INT

BOARD_ERR_UNSUPPORTED_STANDARD

BOARD_ERR_UNSUPPORTED_ADAPTER

TMLIBDEV_ERR_NOT_OWNER

TMLIBDEV_ERR_NULL_PARAMETER

Description

Success.

Returned if the board has no initialization routine
to initialize a VO decoder.

Returned if either video standard or adapter type
are not supported by the board video encoder,
and any error returned by calls to the board or
interrupt library components.

Returned if either video standard or adapter type
are not supported by the board video encoder,
and any error returned by calls to the board or
interrupt library components.

In the debug version of the library, this assertion
is triggered if instance does not match the owner.

In the debug version of the library, this assert is
triggered if setup is null.

Sets or changes the setup parameters for a specific instance. It sets VO endianness to that

of current execution, initializes the encoder on the board according to the board type
(see Chapter 19, TMBoard API, in Book 5, System Utilities, Part C) and prepares for either

data or video streaming mode.

Call this function before calling voYUVSetup or voRawSetup.

Related Functions

voOpen, voOpenM, voYUVSetup, and voRawSetup.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 89

Chapter 1:Video In/Out (vi/vo) API

voOpen

tmLibdevErr_t voOpen(
Int *instance
)3

Parameters

instance Pointer to a unique instance ID which is set when
the default VO device is opened successfully.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NO_MORE_INSTANCES Returned when all possible instances have been
given out. Returned by the interrupts library com-
ponent when the video-out interrupt vector is
already in use.

TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assert is
triggered if instance is null.

Description

Assigns a unique video-out instance for the caller; the default video-out peripheral is
used (unit0). It opens and sets up an interrupt for the video-out unit with the intOpen
and intinstanceSetup.

Related Functions

voOpenM, volnstanceSetup, voClose.

90 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voOpenM

tmLibdevErr_t voOpenM (
Int *instance
unitSelect_t unitName
)3

Parameters

instance Pointer to a unique instance ID which is set when
the desired VO device is opened successfully.

unitName The hardware unit to open.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NO_MORE_INSTANCES Returned when all possible instances have been
given out. Returned by the interrupts library com-
ponent when the video-out interrupt vector was
already in use.

Description

This function attempts to open the specified video-out device, and if successful assigns a
unique instance for the caller. This API should be called first to obtain an instance. It
resets the required video out device (voAckRESET macro), and initializes the interrupt for
the device.

Related Functions

voOpen, volnstanceSetup, voClose.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 91

Chapter 1:Video In/Out (vi/vo) API

voClose

tmLibdevErr_t voClose(
Int instance
)s

Parameters

instance Video-out instance to be released.

Return Codes

TMLIBDEV_OK Success. Various other errors returned by the
interrupt library component when deallocation
of the interrupt failed, or when the video
decoder's termination function has failed.

TMLIBDEV_ERR_NOT_OWNER In the debug version of the library, this assertion
is triggered if instance does not match the owner.

Description

Deallocates the video-out instance, and uninstalls its handler when it has one, closes the
interrupt opened by voOpen/voOpenM with intClose, resets the video-out unit, calls the
board's video encoder termination function when that function is installed.

Related Functions

voStart, and the board video-out encoder’s termination function.

92 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voStart

tmLibdevErr_t voStart(
Int instance
)s

Parameters

instance Video-out instance to start.

Return Codes

TMLIBDEV_OK Success.

VO_ERR_INITIALIZATION_NOT_COMPLETE
Either volnstanceSetup is not called, or no call is
made to either voYUVSetup or voRawSetup.

TMLIBDEV_ERR_NOT_OWNER In the debug version of the library, this assertion
is triggered if instance does not match the owner.

Description

Starts the video-out unit. After checking that video-out is properly initialized, it calls the
macro voEnableENABLE.

Related Functions

volnstanceSetup, voRawSetup, voYUVSetup, and voOverlaySetup.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 93

Chapter 1:Video In/Out (vi/vo) API

voStop

tmLibdevErr_t voStop(
Int instance
)3

Parameters

instance Video-out instance to stop.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER In the debug version of the library, this assertion
is triggered if instance does not match the owner.

Description

Stop the video-out peripheral. Interrupts will no longer be generated, do not release the
instance and leave the setup as is. This function calls the macro voDisableENABLE.

Related Functions

vostart.

94 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voYUVSetup

tmLibdevErr_t voYUVSetup(
Int instance,
voYUVSetup_t *setup

)3

Parameters
instance Video-out instance.
setup Setup pointer to a structure holding the setup

parameters. Refer to voYUVSetup_t.

Return Codes

TMLIBDEV_OK Success. In the debuggable version of the libdev
library there are appropriate alignment and size
assertions given.

VO_ERR_MODE_SIZE In the debug version, this assertion is triggered if
setup->mode is a data streaming mode
(voRawMode_t), and not an image transfer mode
(voYUVMode_t).

VO_ERR_IMAGE_HOFF_SIZE In the debug version, this assertion is triggered if
(setup->imageWidth + setup->imageHorzOffset) is
bigger than the standard frame width, set up in
VOinstanceSetup. This assertion is also triggered if
the value of setup->imageHorzOffset is repre-
sented on more than 8 bits.

VO_ERR_IMAGE_VOFF_SIZE Save definition as VO_ERR_IMAGE_MOFF_SIZE,
but in the vertical direction.

VO_ERR_IMAGE_WIDTH_SIZE, VO_ERR_IMAGE_HEIGHT_SIZE
These are assertions, triggered if the values of
setup->imageWidth or setup->imageHeight is rep-
resented on more than 12 bits.

VO_ERR_Y_THRESHOLD_SIZE This assertion is triggered if the value of
setup->yThreshold is represented on more than
12 bits.

VO_ERR_Y_OFFSET_SIZE This assertion is triggered if the value of
setup->yStride is represented on more than 16
bits.

VO_ERR_U_OFFSET_SIZE This assertion is triggered if the value of
setup->uStride is represented on more than 16
bits.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 95

Chapter 1:Video In/Out (vi/vo) API

VO_ERR_V_OFFSET_SIZE This assertion is triggered if the value of
setup->vStride is represented on more than 16
bits.

VO_ERR_Y_BASE_ADR_SIZE This assertion is triggered if the value of
setup->yBase is represented on more than 32 bits.

VO_ERR_U_BASE_ADR_SIZE This assertion is triggered if the value of
setup->uBase is represented on more than 32 bits.

VVO_ERR_V_BASE_ADR_SIZE This assertion is triggered if the value of

setup->vBase is represented on more than 32 bits.

Description

This function prepares video-out according to the parameters given in *setup; this func-
tion should be used when image transfer mode is required. Refer to voYUVSetup_t for
further information. This function assumes that a call to volnstanceSetup has been
made.

Related Functions

volnstanceSetup, voStart.

96 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voOverlaySetup

tmLibdevErr_t voOverlaySetup(
Int instance,
*setup

voOverlaySetup_t
)3

Parameters
instance Video-out instance to setup.
setup Setup pointer to a structure holding the setup

Return Codes

parameters. Refer to voOverlaySetup_t.

TMLIBDEV_OK
TMLIBDEV_ERR_NULL_PARAMETER
TMLIBDEV_ERR_NOT_OWNER

VO_ERR_OL_WIDTH_SIZE

VO_ERR_OL_HEIGHT_SIZE
VO_ERR_ALPHA@_SIZE
VO_ERR_ALPHA1_SIZE
VO_ERR_OL_BASE_ADR_SIZE

VO_ERR_OL_OFFSET_SIZE

Description

Success. In the debuggable version of the libdev
library there are appropriate alignment and size
assertions given.

Triggered if setup is null.

In the debug version of the library, this assertion
is triggered if instance does not match the owner.

This assertion is triggered if (setup->overlayStartX
+ setup->overlayWidth) is bigger than the stan-
dard frame width. This assertion is also triggered
if the value of setup->overlayWidth is represented
on more than 12 bits.

Same definition as above, but in the vertical direc-
tion.

This assertion is triggered if the value of
setup->alpha0 is represented on more than 8 bits.

This assertion is triggered if the value of
setup->alpha1 is represented on more than 8 bits.
This assertion is triggered if setup->overlayBase is
represented on more than 32 bits.

This assertion is triggered if setup->overlayStride
is represented on more than 16 bits.

Sets up overlay-related parameters (see voOverlaySetup_t definition for further informa-

tion).

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 97

Chapter 1:Video In/Out (vi/vo) API

voRawSetup

tmLibdevErr_t voRawSetup(
Int instance,
voRawSetup_t *setup

)3

Parameters
instance Video-out instance to setup.
setup Setup pointer to a structure holding the setup

parameters. Refer to voRawSetup_t.

Return Codes

TMLIBDEV_OK Success. In the debuggable version of the libdev
library, there are appropriate alignment and size
assertions given.

VO_ERR_MODE_SIZE This assertion is triggered if setup->mode is an
image transfer mode (voVUVMode_t), not a data
streaming mode (voRawMode_t).

VO_ERR_BASE1_SIZE This assertion is triggered if setup->base1 is not
64-bit aligned addresses, and if the value of
setup->base1 is represented on more than 32 bits.

VO_ERR_BASE2_SIZE This assertion is triggered if setup->base2 is not
64-bit aligned addresses, and if the value of
setup->base2 is represented on more than 32 bits.

VO_ERR_SIZE1_SIZE This assertion is triggered if setup->size1 is not
64-bit aligned addresses, and if the value of
setup->size1 is represented on more than 32 bits.

VO_ERR_SIZE2_SIZE This assertion is triggered if setup->size2 is not
64-bit aligned addresses, and if the value of
setup->size2 is represented on more than 32 bits.

Description

Used to set the data streaming mode parameters. Refer to voRawSetup_t definition for
further information.

It assumes volnstanceSetup has already been called.

Related Functions

volnstanceSetup, and voStart.

98 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voYUVChangeBuffer

tmLibdevErr_t voYUVChangeBuffer(
Int instance,
Pointer Y,
Pointer u,
Pointer v
);

Parameters

instance Video-out instance.

Y New luminance buffer pointer.

U New U chrominance buffer pointer.
) New V chrominance buffer pointer.

Return Codes

Because this function is implemented as a macro, it does not return an error code.

Description

This function sets a new display buffer and modifies the MMIO registers directly without
instance checking. It calls the three macros: voSetY_BASE_ADR, voSetU_BASE_ADR,
voSetV_BASE_ADR (refer to tmVO.h).

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 99

Chapter 1:Video In/Out (vi/vo) API

voOverlayChangeBuffer

tmLibdevErr_t voOverlayChangeBuffer(
Int instance,
Pointer Y,
Pointer u,
Pointer v
);

Parameters

instance Video-out instance.

Y New luminance buffer.

] New U chrominance buffer.
v New V chrominance buffer.

Return Codes

Because this function is implemented as a macro it does not return an error code.

Description

This function sets a new overlay buffer and modifies the mmio registers directly without
instance checking. It calls the macro voSetOL_BASE_ADR (refer to tmVO.h).

100 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voRawChangeBuffer1
tmLibdevErr_t voRawChangeBufferl(
Int instance,
Pointer buffer,
UInt size
);
Parameters
instance Video-out instance.
buffer New buffer pointer.
size New size.

Return Codes

Because this function is implemented as a macro, it does not return an error code.

Description

This function sets a new data-transfer buffer and modifies the mmio registers directly
without instance checking. This calls the macros voSetBASE1 and voSetSIZE1 (refer to
tmVO.h).

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 101

Chapter 1:Video In/Out (vi/vo) API

voRawChangeBuffer2
tmLibdevErr_t voRawChangeBuffer2(
Int instance,
Pointer buffer,
UInt size
);
Parameters
instance Video-out instance.
buffer New buffer pointer.
size New size.

Return Codes

Because this function is implemented as a macro, it does not return an error code.

Description

This function sets a new data transfer buffer and modifies the MMIO registers directly
without instance checking. This calls the macros voSetBASE2 and voSetSIZE2 (refer to
tmVO.h).

102 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voConfigureEncoder

tmLibdevErr_t voConfigureEncoder(
Int instance,
UInt32 subaddr,
UInt32 value

)

Parameters

instance Video-out instance.

subaddr IIC subaddress of the encoder.

value New value to be stored on the subaddress.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the configure function for the video-out encoder.

Other errors Any error returned by the BSP.

Description

Calls the appropriate board’s configure function with the parameters above. The func-
tion depends on the board (see Chapter 19, TMBoard API, in Book S, System Utilities, Part
C).

Related Functions

The board video encoder’s configure function.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 103

Chapter 1:Video In/Out (vi/vo) API

voSetBrightness

tmLibdevErr_t voSetBrightness(
Int instance
UInt brightLevel

);

Parameters
instance Video-out instance.
lTevel Brightness level

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setBrightness function for the video-out
encoder.

Other errors Any error returned by the BSP.

Description

Detects the board video-encoder’s setBrighness function and sets brightness to bright-
Level when this functionality is implemented by the board (see Chapter 19, TMBoard
API, in Book 5, System Utilities, Part C).

104 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voSetHue

tmLibdevErr_t voSetHue(
Int instance,
UInt huelevel

);

Parameters
instance Video-out instance.
level Hue level.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setHue function for the video-out encoder.

Other errors Any error returned by the BSP.

Description

Sets the board’s encoder hue level when this functionality is implemented by the board
(see Chapter 19, TMBoard API, in Book 5, System Utilities, Part C).

Related Functions

The board video-encoder’s setHue function.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 105

Chapter 1:Video In/Out (vi/vo) API

voSetSaturation

tmLibdevErr_t voSetSaturation(
Int instance,
UInt saturationlLevel

);

Parameters
instance Video-out instance.
saturationlLevel Saturation level.

Return Codes

TMLIBDEV_OK Success.

BOARD_ERR_NULL_DETECT_FUNCTION Returned when the board does not implement
the setSaturation function for the video-out
encoder.

Other errors Any error returned by the BSP.

Description

Sets the board’s encoder saturation level when this functionality is implemented by the
board.

Related Functions

The board video-encoder's setSaturation function.

106 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 1: Video In/Out (vi/vo) API

voenhStart

tmLibdevErr_t voenhStart(
Int instance,
)s

Parameters

instance Enhanced video-out instance.

Return Codes

The function can return any error code generated by Enhanced Video Out.

Description

The start and stop function for enhanced video-out unit.

voenhClipSetup

tmLibdevErr_t voenhClipSetup
Int instance,
voenhClipSetup_t *setup

)

Parameters
instance Enhanced video-out instance.
setup Pointer to buffer holding new parameters.

Return Codes

The function can return any error code generated by Enhanced Video Out.

Description

Set up the higher and lower clipping values for Y, U, and V.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 107

Chapter 1:Video In/Out (vi/vo) API

voenhChromaKeyingSetup

tmLibdevErr_t voenhChromaKeyingSetup
Int instance,
voenhChromaKeyingSetup_t *setup

)3

Parameters
instance Enhanced video-instance.
setup Pointer to buffer holding new parameters.

Return Codes

The function can return any error code generated by Enhanced Video Out.

Description

Sets up the chroma key and mask values for the Y, U, and V components.

voenhGenLockSetup

tmLibdevErr_t voenhGenLockSetup
Int instance,
voenhGenLockSetup_t *setup

)s

Parameters
instance Enhanced video-out instance.
setup Pointer to buffer holding new parameters.

Return Codes

The function can return any error code generated by Enhanced Video Out.

Description

Sets up the GenLock related parameters.

108 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 2
Video Capturer (VcapVl) API

Topic Page
VcapVI APl Overview 110
Using the VcapVI API 111
VcapVI Inputs and Outputs 117
VcapVI Error 121
VcapVI Progress 121
VcapVI Configuration 122
VcapVI API Data Structures 123
VcapVI API Functions 127

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 109

Chapter 2: Video Capturer (VcapVl) API

VcapVl API Overview

The TriMedia Video Capturer (VcapVI) is an implementation of a TSSA-compliant video
input driver. It is similar to the video digitizer (VdigVI), but provides additional VBI
information. An OL layer only is provided. VcapVI delivers video data and sliced vertical
blanking information (VBI) data to downstream TSSA components. The component pro-
vides the functionality to do slicing in a separate task. To reduce the processor load,
hardware VBI slicing is used whenever possible. The video capturer decides for every VBI
line in the video buffer whether it will do the slicing in software or in hardware, depend-
ing on the hardware capabilities of the available video-ADC.

o ———
(e e emmx e D220ut [0] YUV data

D D D D I
(G e emmxan D3te0ut 1] TXT data

- D I I T
Video Capiurer oy ooy eummr qummrem Datoout (2] L21 data
D T S S

aax ennx emmx emmxan Dat2out [3] WSS data

D D D 1D
< < <] Dataout [4] VPS data

Figure 1 Structure of the Video Capturer

The video capturer is a high-level library using the video-in device library. Using the
board ID, the device library can control the external video analog/digital converter chip.
Some of these chips also provide hardware-supported slicing. The VcapVI supports soft-
ware slicing for the following services: European Teletext, NABTS, European Closed Cap-
tion, US Closed Caption, Wide Screen Signalling (WSS), and Video Programming System
(VPS). All the supported hardware slicing is chip dependent.

The application does not have to worry about the required interrupt service routine in
order to handle the hardware video-in events—this is taken care of by the video capturer.
See Figure 2, following.

110 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

Video Capture Application

Video Capturer TSSA Library
libtmVcapVl.a

Video Input Device Driver

libdev.a
TriMedia Video Analog
Video-In Unit Digital Converter
(ADCQ)

Figure 2 Video Capturer Architecture

Using the VcapVi API

The TriMedia Video Capturer API library name is libtmVcapVl.a. For using the Video
Capturer API, the tmolVcapVI.h header file has to be included.

VcapVI supports data streaming operation using the dataoutFunc callback within the
video-in interrupt service routine. By default, the instance will use the dataoutFunc func-
tion supplied by the Defaults library. A typical flow of control is shown in Figure 3.

First, the application obtains the capabilities of the component and the hardware unit
using tmolVcapVIGetCapabilities or tmolVcapVIGetCapabilitiesM. The “M” function has
to be used if the application needs to specify a unit other than the default (default is unit
number zero). The acquired information will be used by the format manager to ensure
that the two components being connected are compatible.

In order to use the VcapVI functionality, an instance of the video capturer must be cre-
ated by calling tmolVcapVIOpen. If the underlying hardware has more than one video-in
unit, the application has to specify which unit the instance has to be connected to. This
can be done in a call to tmolVcapVIOpenM. For instance, the TriMedia family TM-1 only
supports one video-in unit, the TM-2 two. Only one instance can be attached to a spe-
cific unit.

The application can then obtain a pointer to the instance setup structure using tmolV-
capVlGetInstanceSetup; this structure is automatically created when the instance is
opened. It contains default values for the opened instance. The application can then
setup fields such as the video standard and adapter type, and pass the structure to the
instance with tmolVcapVlInstanceSetup. The description of tmolVcapVIGetInstanceS-
etup gives information about the default values.

The tmolVcapVIStart function begins the data streaming operation. The capturer will use
the dataoutFunc callback to obtain an empty packet where the captured video data will
be stored. If no empty packet is available the video capturer does not start with the data

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 111

Chapter 2: Video Capturer (VcapVl) API

streaming and the start function returns with an error code. After capturing one field,
the capturer will attempt to acquire another empty packet using the dataoutFunc call-
back. If successful, it will send out the packet with the recently acquired image to the
connected downstream component. If the acquisition of an empty packet fails, the cap-
turer will simply use the packet which it has in its possession to store the next field. This
overrun condition is signalled by the instance using the progressFunc callback. How the
data slicing works is described later.

Data streaming can be terminated by calling tmolVcapVIStop at any time. This will stop
the video-in device, and expel the packet currently being held by the instance. The
application can release the instance by calling tmolVcapVIClose.

‘ tmolVcapVIGetCapabilities ‘

‘ tmolVcapVIOpen ‘

‘ tmolVcapVIGetinstanceSetup ‘

‘ tmolVcapVlinstanceSetup ‘

‘ tmolVcapViStart dataoutFunc callback
| progressFunc callback

L - - - - - - - - - - - .

‘ Application performs other tasks

dataoutFunc callback
progressFunc callback
(executed via ISR)

‘ tmolVcapVIStop }—»‘ dataoutFunc callback

'

‘ tmolVcapViClose ‘

Figure 3 Data streaming flow control

The VcapVI component contains an extra task which takes care about the slicing func-
tionality. This task is triggered by a received full video packet signal from the video-in

112 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

ISR. Once a full video packet has arrived, data slicing is applied. After that the video and
VBI data packets are sent out.

YUV data
VcapVi:
video-in ISR - . YcapVI: TXT data
internal video slicer task
packet queue
(empty/full) L21 data
WSS data
Tinted color means optional VPS data
data stream
Figure 4 VcapVl internal and external data flow

Integrated Slicing Mechanism

The application specifies what VBI data services have to be sliced by VcapV], by setting
the data service flags (of type dataService_t) in the field1Lines and field2Lines arrays in
the tmolVcapVlinstanceSetup_t structure. The array index plus one represents the line
number where the corresponding data service have to be sliced.

VBI service requested? empty VBI data packet? HW slicing supported?

Yes Yes No
No No\(Yesl
} HW Slicing ‘
Yes . . SW Slici
Still more VBI lines to come? icing i
No
Figure 5 Decision graph concerning the slicing functionality, which is part of the slicer

task of the VcapVI component

The device library gives the VcapVI component information of all provided data services
which have hardware support. Since the data service flags can be OR’d, multiple VBI data
services can be supported per line. Using this capability information the VcapVI compo-
nent decides what requested service is sliced by software and by hardware.

The mechanism shown in Figure 5 works as follows. First, the software slicer gets a full
video packet. Then it looks in the format information of the video packets, to see if it
contains VBI information. If yes, the slicing will be started with the first available VBI
data line. If no empty VBI data packet has been received before, the corresponding ser-

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 113

Chapter 2: Video Capturer (VcapVl) API

vice is being skipped. This condition is reported to the application by calling the
progress function. If the service dependent empty VBI data packet is available, software
or hardware slicing is being performed.

Software Slicing

Software slicing uses DSPCPU resources. No TriMedia internal hardware block is being
used to do this task. Special optimizations have been made to do the software slicing as
fast as possible. Table 1 gives an overview about the software slicer performance.

Table 1 Performance overview of how many cycles are required to slice one line VBl data
of field which was previously been captured by the VcapVl component.
VBI data service Number of cycles to slice one line of VBI data
DT_EU_TELETEXT 23K cycles
DT_US_NABTS 23K cycles
DT_EU_CLOSECAPTION 17K cycles
DT_US_CLOSECAPTION 17K cycles
DT_WSS 20K cycles
DT_VPS 21K cycles

These performance numbers only give an amount of cycles required by the software slic-
ing function itself. Additional cycles have to be added which are caused by the operating
system (task switch) and the VcapVI API layer itself. Since the video packet can only be
sent out after performing the slicing the slicing delay also influences the video delay.

Hardware Slicing

Depending on the information the video-in device library gets from the hardware, hard-
ware data slicing is used. This kind of data slicing is also done in the task associated with
VcapVI. Depending on the connected hardware, different kinds of mechanisms are used
by the device library to retrieve the sliced data from the captured video data. Some chips
(e.g., the SAA7111) deliver the sliced data via the IIC bus. This means that additional
interrupt traffic has to be taken into account. The device library description provides
information how the sliced data is retrieved from the connected ADC device. Because of
that, no performance information can be provided in this documentation, since the VBI
data acquisition is all being done in the video device library.

Line counting issues

To handle the vertical blanking interval (VBI) data in a generic way—VBI data is always
at the beginning of a video packet—the following line counting issues are addressed. The
60-field and 50-field video systems are using different line counting bases, the 50 Hz sys-
tem for instance starts counting on the serration pulses and the 60 Hz systems start

114 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

counting at the first equalization pluses. The equalization and serration pulses can be
seen in the vertical timing diagrams Figure 6 and Figure 7. Those pulses have twice the
line frequency and are located in the vertical blanking interval.

Table 2 Field interval definitions according to CCIR 656

Field SAV/EAV bit 50Hz (625 lines) | 60Hz (525 lines)

V-digital field blanking

Field 1 Start (V=1) Line 624 Line 1
Finish (V=0) Line 23 Line 10

Field 2 Start (V=1) Line 311 Line 264
Finish (V=0) Line 336 Line 273

F-digital field identification

Field 1 F=0 Line 1 Line 4

Field 2 F=1 Line 313 Line 266

In 50 Hz systems, the startY field have an allowed lowest value of -2, to get the content of
the first equalization pulse group, since 50 Hz line counting starts after this first equaliza-
tion pulse group, and VdigVI always has to deliver the VBI data at the beginning of the
video buffer. Since NTSC counting starts at the beginning of the first equalization pulses,
the lowest allowed value in this system is zero. This makes the use of the digitizer com-
ponent as easy as possible. e.g. an application wants to get line 21 data additional to the
active video, the startY value has to be set to 21 in either frequency (50 Hz or 60 Hz).

Is251 1121314151617 181911001111 1200211221232]
v \

F \

12621263 | 264 | 265 | 266 | 267 1 268 1 269 1 270 1 271 1272 1273 | 1283 | 284 | 285 | 286 | 287 |
v \

F |

Figure 6 Vertical timing diagram for 60 Hz and its corresponding SAV/SEAV bits.
V:vertical sync.F:field flag

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 115

Chapter 2: Video Capturer (VcapVl) API

l6221623162416251 1 | 2 | 3 1 41 5161 71 8| 221231241251 26 |
v \

F \

13101311131213131314 13151316 13171318 131913201321 | [3351336 133713381339|
v \

P

Figure 7 Vertical timing diagram for 50 Hz and its corresponding SAV/EAV bits.
V:vertical sync.F:field flag

The video-in hardware block starts counting lines when the V bit in the SAV/EAV codes
goes to zero. The CCIR-656 standard defines the following lines where this happens:
50Hz, line 23 and 60 Hz, line 10. This leads to the following conclusion: if the digitizer
has to capture before these lines (always the case for VBI capturing in 50 Hz systems), a
much higher line count has to be put in the hardware registers to start capturing in the
VBI interval. The first field has one line more than the second field (313/312 in 625-line
systems and 263/262 in 525-line systems). This leads to the restriction that the resulting
line (number in the register) cannot be 313 or 263 in 50 Hz or 60 Hz systems respectively,
because the internal counter of the VI-block only gets reached in the first field, but never
in the second field. This fact causes one little restriction. The internal start value of cap-
turing never can be 313/263. But if an application wants to get the content of this line it
has to start with the capturing one line before.

The fields activeVideoStartX, activeVideoStartY, activeVideoEndX, and activeVideoEndY
have nothing to do with the defined line counting in the 60 Hz and 50 Hz systems.
Those values only represents offset values where a downstream component can find the
active video area by taking into account how the video data are organized in the video
buffer. In interlaced systems the values (times stride) directly lead to the address of the
active video data. In field-in-field systems the content of the structure fields have to be
divided by two in order to apply the same calculation like in the interlaced case to get to
the right active video addresses. That is why these field have a range from 0 to 576 or
from O to 480 respectively.

Cache Coherency

The application has to use the tsalODescSetupFlaginvalidateDataout flag for creation of
the data queue between video capturer and the downstream component Other cache
coherency issues are automatically handled by the tsaDefaults library when VcapVlI is

116 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

connected to another TSSA component. When being connected to a non TSSA compo-
nent, the component needs to invalidate the video data before use by the DSPCPU.

VcapVl Inputs and Outputs

The video capturer is a data source, therefore, it has no input pin and provides besides
the video output pin several VBI data pins. The output format of the video pin can be
specified using the instance setup function. The field pOutputFormat has to be filled by
the application. The value must be a pointer to a tmVideoFormat_t structure. The video
capturer asserts if the installed format does not match with the format installed on the
output queue. The video capturer checks if the containing parameters are supported by
the library. Currently only the TV standards NTSC and PAL and its related parameters are
supported.

The VBI data output pins have specified output formats. All of these pins send packets
out containing data in the ‘Generic’ format. Usually, if the requested data service is avail-
able, full VBI data packets are sent out directly after the video packet is sent out.

The video capturer configures the number of output pins automatically, depending on
downstream components being connected or not by the application. If no empty VBI
data packet is available and the video capturer got a full video packet, no slicing is per-
formed and the progress function will be called to signal the application that the compo-
nent lost a VBI data packet.

A downstream component connected to the video output pin is a requirement.

If no VBI data is available, no full VBI data packets are sent out until decodeable data is
detected in the video signal again.

The following table Table 3 gives an overview of the provided output pins and its
required buffers and it’s sizes, which have to be provided by the application.

Table 3 Output pins, the delivered data type, and the required buffer sizes
PinID Supports Buffer Size
MAIN_OUTPUT video data buffers[0]:

vdfFieldInFrame: height X stride
vdfFieldinField: height x stride /2
buffers[1]:

vdfFieldInFrame: height x stride /2
vdfFieldInField: height x stride /4
buffers[2]:

vdfFieldInFrame: height x stride /2
vdfFieldInField: height x stride /4

TXT_OUTPUT DT_EU_TELETEXT | buffers[0]: 42 bytes

DT_US_NABTS buffers[0]: 33 bytes

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 117

Chapter 2: Video Capturer (VcapVl) API

Table 3 Output pins, the delivered data type, and the required buffer sizes
PinID Supports Buffer Size
L21_OUTPUT DT_EU_CLOSECAP | buffers[0]: 4 bytes
TION
DT_US_CLOSECAP | buffers[0]: 4 bytes
TION
WSS_OUTPUT DT_WSS buffers[0]: 14 bytes
VPS_OUTPUT DT_VPS buffers[0]: 26 bytes

Packet Formats

Several packet formats are being used by the video capturer. The format on the main out-
put pin is described next.

Main Output Pin Format

The video capturer uses the standard packet data types tmAvPacket_t defined in the
tmAvFormats.h include file. The captured YUV data is stored in three buffers, with the Y
data contained in buffer[0], and the UV data contained in buffer[1] and buffer[2] respec-
tively.

Each packet contains a header structure providing information concerning the packet
data. The format field is a pointer to a tmVideoFormat_t structure which specifies the for-
mat and the image size. There are restrictions on the type of video formats that can be
used by the video capturer. These will be described next.

The main image output packet can be either vdfYUV422Planar or vdfYUV422Interspersed.
No YUV420 format is supported by the video-in unit. If the video capturer is used also
for capturing of vertical blanking interval data, the vdfYUV422Planar flag needs to be
used (in this mode the video in hardware does not perform any filtering of the incoming
data). The pOutputFormat field in the instance setup structure should be initialized with
the following values:

Table 4 Main Output Pin Format
Field Setby |Value
dataClass App avdcVideo
dataType App vtfYUV
dataSubtype App vdfYUV422Planar or vdfYUV422Interspersed
description App vdfFieldInFrame or vdfFieldInField
imageWidth App Width of video frame in pixels (luminance)
imageHeight App Height of video frame in lines (luminance)

118 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

Table 4 Main Output Pin Format

Field Setby |Value

imageStride App Stride of video frame in bytes (luminance)

activeVideoStartX |VcapVl |Defines pixel offset in horizontal direction from start of video
buffer to beginning of active video.

activeVideoStartY |VcapVl | Defines number of lines from start of video buffer to begin-
ning of active video

activeVideoEndX |VcapVl | Defines end of active video area in number of pixels within
the video buffer.It is an absolute position.

activeVideoEndY |VcapVl | Defines end of active video area in number of lines within the
video buffer. It is an absolute position.

videoStandard VcapVIl | Defines analog video standard that served as source of digi-
tized image

The description field of the format structure is set by the video capturer automatically

depending on the instance setup field interlaced, but it still checks if the resulting

description matches with the previously installed format of the output queue.

Table 5 The description field is set by the VcapV! library during the instance setup

Description

Meaning

interlaced ==True

vdfFieldInFrame

Only one field is written in the packet buffer.Two consec-
utive lines of one field have one not updated line of the
other field in between.The packet is sent out field based.

interlaced == False

vdfFieldinField

Only one field is written in the packet buffer.No space is
between two consecutive lines of one field. The format
used in the packet being sent out is field-based.

In field based operation every packet is marked in the flags field of the header structure if

the packet contains the second field (avhField2) or not (!avhField2). Using the description

and field information, a downstream component knows which data bytes are valid in

the packet and which are not. In case of description vdfFieldInFrame it is possible to

build up a complete frame by sending the half-filled frame back from the downstream

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 119

Chapter 2: Video Capturer (VcapVl) API

component to the capturer which inserts during capturing the missing field in the lines

between.
imageWidth
Video Field
— T
Buffer
< activeVideoStartY
Active Video Area imageHeight

< activeVideoEndY

activeVideoStartX activeVideoEndX

The fields activeVideoStartX, activeVideoStartY, activeVideoEndX, activeVideoEndY, and
videoStandard are also set by the video capturer automatically. However, in this case it
does not check if they match the current queue setup. Depending what analog video
standard was chosen the video capturer sets these fields accordingly. Using the location
of the active video area, a downstream component has access to additional information,
such as VBI inserted data, which is transmitted by the video signal in parallel. Data ser-
vices currently not being sliced by the VcapVI component can be handled downstream,
since all information to do so is available in the packet. There is one restriction to this.
Some video-ADC'’s place hardware sliced data in the video stream and thus override the
original VBI information. In this case the original VBI data is lost.

TXT Output Packet Format

Compared to the main output packet format, the VBI data packets can be described
using the standard tmAvFormat_t structure.

Table 6 TXT Output Packet Format

Field Value
dataClass avdcGeneric
dataType avdtGeneric
dataSubtype avdsGeneric
description 0

Only one buffer is used. The size of this buffers is usually OUT_DATA_LENGTH_EU_TXT
(42 bytes) or OUT_DATA_LENGTH_NABTS (33 bytes). Either way the downstream compo-
nent has to check the size of the buffer to get the right number of valid data bytes.

120 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

L21 Output Packet Format

The Line21 packet has the generic format with a single buffer being used to store the
data. The buffer for Line21 sliced data stores just four bytes. The ordering of these bytes
is endian dependent. For accessing the data the downstream component has to address
the data by indexing the byte organized buffer. data[O] contains “1” if the packet con-
tains valid data, “0” if in-valid. data[1] is “1” if the Line21 data is corresponding to video
field two. It is “0” if the Line21 data belongs to field one. data[2] and data[3] contain the
two bytes which contain the EIA-608 encoded data.

WSS Output Packet Format

The data size of a full WSS data packet is OUT_DATA_LENGTH_WSS (14 bytes). The
decoded bytes are stored in the output packet in the same order they have been sent out.

First byte on lowest memory address, last byte on highest memory address.

VPS Output Packet Format

The data size of a full VPS data packet is OUT_DATA_LENGTH_VPS (26 bytes). The
decoded bytes are stored in the output packet in order they have been sent out. First byte

on lowest memory address, last byte on highest memory address.

VcapVI Error

Video capturer errors which disturb the normal operation of the component are handled
using the error callback function. This is mainly done in the video in ISR. It is up to the
application to install such a callback function. These calls are reporting problems com-
ing from the dataout function call or by checking the incoming empty packets. The OS
error TMLIBAPP_QUEUE_EMPTY is passed to an application provided progress callback
function. All other errors are reported by the progress function.

VcapVl Progress

The video capturer reports multiple events to the application if enabled. This reporting
can be enabled by setting the default instance field progressReportFlags with one or
more available progress report flags (or-ed together). One is the cycle count at entering
the video-in ISR (VCAPVI_PROGRESS_ISR_ENTRY). This value can be used for instance for
video-in and video-out synchronization algorithms (software PLL). The other one is the
information of a lost frame. This information is produced if the capturer expects an
empty packet in the output queue but was not able to get one. In this case the already
filled packet will not be sent out and will instead be overridden with new incoming digi-
tized data. The progress codes VCAPVI_PROGRESS_FIELD1 and VCAPVI_PROGRESS_FIELD2

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 121

Chapter 2: Video Capturer (VcapVl) API

indicate what video field was currently captured. The application can distinguish

between those events by checking the progressCode field of the progress arguments.

Table 7 Available progress events of the video capturer

VCAPVI_PROGRESS_ISR_ENTRY

Reports time stamp of entering the video-in
ISR.The cycle count is stored in the description
field.

VCAPVI_PROGRESS_LOST_FRAME

Reports a lost frame. This is detected by the ISR
in case of an empty dataout empty queue.In
this case the video capturer did not get a new
empty buffer.

VCAPVI_PROGRESS_FIELD1

Reports if captured field was field one.

VCAPVI_PROGRESS_FIELD2

Reports if captured field was field two.

VCAPVI_PROGRESS_LOST_TXT_PACKET

Reports a lost TXT packet.No empty packet was
available in the TXT empty queue.

VCAPVI_PROGRESS_LOST_L21_PACKET

Reports a lost L21 packet.No empty packet was
available in the L21 empty queue.

VCAPVI_PROGRESS_LOST_WSS_PACKET

Reports a lost WSS packet. No empty packet
was available in the WSS empty queue.

VCAPVI_PROGRESS_LOST_VPS_PACKET

Reports a lost VPS packet.No empty packet was
available in the VPS empty queue.

The installation of this callback function is optional.

VcapVl Configuration

The following configuration commands are supported.

Table 8 Configuration Commands

Command

Description

VCAPVI_CONFIG_SET_HORZ_OFFSET

This command sets the horizontal offset of the
acquisition window of the video capturer.The
value is stored in the parameter field of the
ptsaControlArgs_t structure.

VCAPVI_CONFIG_SET_VERT_OFFSET

This command sets the vertical offset of the
acquisition window of the video capturer.The
value is stored in the parameter field of the
ptsaControlArgs_t structure.

VCAPVI_CONFIG_SET_Y_THRESHOLD

This command sets the new threshold line of
the video-in unit.

VCAPVI_CONFIG_ENABLE_Y_THRESHOLD

This command enables the threshold feature of
the video capturer.

122

Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

Table 8 Configuration Commands

Command

Description

VCAPVI_CONFIG_DISABLE_Y_THRESHOLD

This command disables the threshold feature of
the video capturer. If threshold is disabled the
packet is send out at the end of a field/frame.

VCAPVI_CONFIG_GET_HORZ_OFFSET

This command retrieves the current horizontal
offset of the video digitizer. The returned value
is stored in the parameter field of the
ptsaControlArgs_t structure.

VCAPVI_CONFIG_GET_VERT_OFFSET

This command retrieves the current vertical off-
set of the video digitizer. The returned value is
stored in the parameter field of the
ptsaControlArgs_t structure.

VCAPVI_CONFIG_STATUS_Y_THRESHOLD

This command retrieves the current status of
the threshold feature. If returns True if thresh-
old is enabled and False if disabled.

VcapVl API Data Structures

This section presents the TriMedia Video Capturer data structures.

Name Page
tmolVcapVICapabilities_t 124
tmolVcapVlinstanceSetup_t 125

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 123

Chapter 2: Video Capturer (VcapVl) API

tmolVcapViCapabilities_t

typedef struct tmolVcapVICapabilities_t{
ptsaDefaultCapabilities_t defaultCapabilities;
} tmolVcapVICapabilities_t, *ptmolVcapVICapabilities_t;

Fields

defaultCapabilities Refer to tsa.h.

Description

The video capturer does not provide special capabilities information. Therefore, it simply
contains a pointer to the default capabilities.

124 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

tmolVcapViinstanceSetup_t

typedef struct tmolVcapVIInstanceSetup_t{
ptsaDefaultInstanceSetup_t defaultSetup;
tmVideoAnalogStandard_t

tmVideoAnalogAdapter_t

UInt32

UInt32

UInt32
ptmVideoFormat_t
Bool

Bool

UInt32
dataService_t
dataService_t

} tmolVcapVIInstanceSetup_t,

Fields

videoStandard;

videoAdapter;

capSizeFlag;

startX;

startY;

pOutputFormat;

interlaced;
thresholdReachedEnable;
yThreshold;
fieldlLines[PAL_VBI_LINES_FIELD1];
field2Lines[PAL_VBI_LINES_FIELD2];

*ptmolVcapVIInstanceSetup_t;

defaultSetup

videoStandard

adapterType
capSizeFlag

startX
starty

pOutputFormat

interlaced

thresholdReachedEnable

yThreshold

Refer to tsa.h.

Either vasNTSC, vasPAL, or vasSECAM. Default is
vasNTSC.

Either vaaCVBS or vaaSvideo. Default is vaaCVBS.

Either viFULLRES or viHALFRES. Default is viFULL-
RES.

X-offset of acquisition window. Default is zero.

Y-offset of acquisition window. Default is start of
active video.

Pointer to video format structure. The video cap-
turer uses the format information for setting up
the video-in unit. If this field is Null, the format
information is taken from the output descriptor
structure. It is recommended to pass an output
format to the video capturer. Default is Null.

True if the capturer has to skip one line to put two
consecutive lines of one field in a packet (inter-
laced organized buffer). False to make the cap-
turer putting two consecutive lines right next to
each other (plain organized buffer). Default is
True.

Enables the threshold feature of the video-in unit.
True tells the video digizer to send out a half-filled
packet at line number yThreshold. Default is False.

Specifies the line number when a half filled
packet has to be send out. If the field threshold-

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 125

Chapter 2: Video Capturer (VcapVl) API

fieldlLines

field2Lines

Description

ReachedEnable is False this value will be ignored.
Default is zero.

Array of VBI lines. Each can be configured what
VBI data has to be sliced in field one. All available
constants of type dataService_t are allowed.
Default is DT_DO_NOT_ACQUIRE, which means,
no slicing in that particular line.

Array of VBI lines. Each can be configured what
VBI data has to be sliced in field two. All available
constants of type dataService_t are allowed.
Default is DT_DO_NOT_ACQUIRE, which means,
no slicing in that particular line.

This structure is used to configure the video capturer. It enables the application to spec-
ify parameters such as the video standard, the adaptor type, output format, and data

organization. A pointer to the component allocated setup structure can be obtained by
the tmolVcapVIGetinstanceSetup function. This obtained structure is filled with default

values.

126 Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

VcapVl API Functions
This section presents the functions for the OS Version of the TriMedia Video Capturer
APL
Name Page
tmolVcapVIGetNumberOfUnits 128
tmolVcapVIGetCapabilities 129
tmolVcapVIGetCapabilitiesM 130
tmolVcapVIOpen 131
tmolVcapVIOpenM 132
tmolVcapVIClose 133
tmolVcapVIGetinstanceSetup 134
tmolVcapVlinstanceSetup 135
tmolVcapViStart 136
tmolVcapVIStop 137
tmolVcapVlinstanceConfig 138

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 127

Chapter 2: Video Capturer (VcapVl) API

tmolVcapViGetNumberOfUnits

extern tmLibappErr_t tmolVcapVIGetNumberOfUnits(
UInt32 *number0fUnits
)3

Parameters

number0fUnits Pointer (returned) to the supported number of
units.

Return Codes

TMLIBAPP_OK Success.

The function can also returns error codes generated by viGetNumberOfUnits.

Description

This function returns the number of available hardware units the video capturer sup-
ports.

128 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

tmolVcapViGetCapabilities

extern tmLibappErr_t tmolVcapVIGetCapabilities(
ptmolVcapVICapabilities_t *pCap
)3

Parameters

pCap Pointer to a variable in which to return a pointer
to the video capture capabilities.

Return Codes

TMLIBAPP_OK Success.

The function can also return codes generated by tmolVcapVIGetCapabilitiesM and tmol-
VcapVIGetNumberOfUnits.

Description

This function returns a pointer to the capabilities structure of the default unit (unit
zero). This can be used by the format manager to determine if two components can be
connected together to form a dataflow.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 129

Chapter 2: Video Capturer (VcapVl) API

tmolVcapViGetCapabilitiesM

extern tmLibappErr_t tmolVcapVIGetCapabilitiesM(
ptmolVcapVICapabilities_t *pCap,

unitSelect_t unitNumber
)3
Parameters
pCap Pointer to a variable in which to return a pointer
to the capabilities data.
unitNumber Unit number to which this instance has to be
attached.

Return Codes

TMLIBAPP_OK Success.

VCAPVI_ERR_VI_NOT_SUPPORTED Asserts if the component does not find any video
input hardware unit. Usually, this means that the
board initialization fails.

The function can also return codes generated by tmolVcapVIGetNumberOfUnits, tsa-
BoardGetBoard, and viGetCapabilitiesM.

Description

This function returns pointer to the capabilities structure. This can be used by the format
manager to determine if two components can be connected together to form a dataflow.

130 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

tmolVcapViOpen

extern tmLibappErr_t tmolVcapVIOpen(
Int *instance
)3

Parameters

instance Pointer to the (returned) instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MEMALLOC_FAILED The component cannot allocate memory for its
instance variables.

The function can also return codes generated by tmolVcapVIOpenM and tmolVcapVIGet-
NumberOfUnits.

Description

This function opens an instance of the video capturer; the default unit is opened (unit
Z€ero).

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 131

Chapter 2: Video Capturer (VcapVl) API

tmolVcapViOpenM

extern tmLibappErr_t tmolVcapVIOpenM(
Int *instance,
unitSelect_t unitNumber

)3

Parameters
instance Pointer to the (returned) instance.
unitNumber Number of unit that the video capturer has to

drive by creation of an instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MODULE_IN_USE The component is already in use.

The function can also return codes generated by tmolVcapVIGetNumberOfUnits and viO-
penM.

Description

This function obtains an instance of the video capturer. The component supports a sin-
gle instance per hardware unit.

132 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

tmolVcapVIClose

extern tmLibappErr_t tmolVcapVIClose(
Int instance
)3

Parameters

instance Instance value.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Asserts if the instance parameter is an unknown
instance.

TMLIBAPP_ERR_NOT_STOPPED Asserts if the instance of video capturer is still
running.

The function can also return codes generated by viStop and viClose.

Description

This function will release the instance.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 133

Chapter 2: Video Capturer (VcapVl) API

tmolVcapViGetinstanceSetup

extern tmLibappErr_t tmolVcapVIGetInstanceSetup(
Int instance,
ptmolVcapVIInstanceSetup_t *setup

)3

Parameters
instance Instance value.
setup Pointer to a variable in which to return a pointer

to the instance setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Asserts if the instance parameter is an unknown
instance.

Description

This function returns a pointer to the instance setup structure. The memory for this
structure is created automatically when the instance is opened.

134 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

tmolVcapViinstanceSetup

extern tmLibappErr_t tmolVcapVIInstanceSetup(
Int instance,
tmolVcapVIInstanceSetup_t *setup

)3

Parameters
instance Instance value.
setup Pointer to the instance setup structure.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Asserts if the instance parameter is an unknown
instance.

TMLIBAPP_ERR_NULL_IO_DESC Asserts if the InOutDescriptor is Null.

VCAPVI_ERR_SETUP_FORMAT Asserts if the content of fields fieldbased and

interlaced of the instance setup structure does not
match with the already installed format at the
output queue.

The function can also return codes generated by tmalVcapVlIinstanceSetup.

Description

This function must be called to configure the video capturer. The address of the instance
setup structure should be obtained using the tmolVcapVIGetlnstanceSetup function.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 135

Chapter 2: Video Capturer (VcapVl) API

tmolVcapViStart

extern tmLibappErr_t tmolVcapVIStart(

Int instance
)

Parameters

instance

Return Codes

Instance value.

TMLIBAPP_OK
TMLIBAPP_ERR_INVALID_INSTANCE

TMLIBAPP_ERR_NOT_SETUP

VCAPVI_ERR_BUFFER_ALLOCATION

VCAPVI_ERR_BUFFER_ALLOCATION
VCAPVI_ERR_BUFFER_ALIGNMENT

VCAPVI_ERR_BUFFER_SIZE

Success.

Asserts if the instance parameter is an unknown
instance.

Asserts if the tmolVcapVlinstanceSetup function
has not been called.

The number of buffers does not match required
number of buffers (three).

The memory for buffers is not allocated (Null).

The pointer to data buffers are not cache aligned
(multiple of 64).

The buffer size does not match with image size.

VCAPVI_ERR_BUFFER_SIZE_ALIGNMENT

The buffer size is not multiple of cache line size
(64).

The function can also return codes generated by tmalVcapViStart.

Description

This function will start the video capturer data streaming operation. It calls the dataout-
Func to obtain an empty packet where captured video data will be stored. The format of
this first packet is checked to make sure the packets can hold the data to be captured.
The video-in device is then started which will initiate the capture process. After captur-
ing a frame the instance will try to obtain another empty packet. If successful, it will
return the current packet containing the captured video data and begin capturing the
new packet. If an empty packet is not available, then the progressFunc callback is exe-
cuted, and the next captured frame will be stored in the current packet. This will over-
write the previous frame.

136 Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 2: Video Capturer (VcapVI) API

tmolVcapViStop

extern tmLibappErr_t tmolVcapVIStop(
Int instance
)3

Parameters

instance Instance value.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Asserts if the instance parameter is an unknown
instance.

TMLIBAPP_ERR_NOT_SETUP Asserts if the tmolVcapVlinstanceSetup function

has not been called.

The function can also return codes generated by viStop.

Description

This function is used to terminate video capture and hence stop data streaming. It will
stop the video-in device, and then expel the packet which it was holding. The packet is
returned using the dataoutFunc callback.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 137

Chapter 2: Video Capturer (VcapVl) API

tmolVcapViinstanceConfig

extern tmLibappErr_t tmolVcapVIInstanceConfig(
Int instance,
ptsaControlArgs_t args,

)3

Parameters
instance Instance value.
args Pointer to a structure specifying how to change

the configuration of the running video capturer.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance parameter is Null.

TMLIBAPP_ERR_MODULE_IN_USE The instance parameter does not match the cur-
rently opened instance.

TMLIBAPP_ERR_NOT_SETUP The instance has not been setup using the tmol-

VcapVlinstanceSetup function.

The function can also return codes generated by tmalVcapVlinstanceConfig.

Description

This function is used to change the configuration of the video capturer during operation
(after the capturer has been started). See VcapVI Configuration on page 122 for supported
configuration commands.

138 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3
Video Digitizer (VdigVl) API

Topic Page
TriMedia Video Digitizer API Overview 140
Using the Video Digitizer API 140
TriMedia Video Digitizer Inputs and Outputs 146
TriMedia Video Digitizer Error 149
TriMedia Video Digitizer Progress 149
Video Digitizer API Data Structures 150
AL Layer Video Digitizer APl Functions 154
OL Layer Video Digitizer API Functions 166

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 139

Chapter 3: Video Digitizer (VdigVI) API

TriMedia Video Digitizer APl Overview

The TriMedia video digitizer is an implementation of a TSSA-compliant video input
driver. Both AL and OL layers are provided. It delivers data to a downstream TSSA com-
ponent using either the AL Layer or OL Layer streaming mechanism.

Dataout [0]

DD D D 1D
K G K G Gl
gueuing

Video Digitizer

Figure 8 Structure of the Video Digitizer

The video digitizer is a high-level library using the video-in device library that deter-
mines on which supported board the TriMedia is mounted. Using the board ID, the
device library can control the external video analog/digital converter chip. The applica-
tion does not have to worry about the required interrupt service routine in order to han-
dle the hardware video-in events—this is covered by the video digitizer. See Figure 2.

Video Digitizer Application

Video Digitizer TSSA Library
libtmVdigVl.a

Video Input Device Driver

libdev.a
TriMedia Video Analog
Video-In Unit Digital Converter
(ADCQ)

Figure 9 Video Digitizer Architecture

Using the Video Digitizer API

The TriMedia Video Digitizer API is contained within the archived application library
libtmVdigVl.a. For using the Video Digitizer AL Layer API, the tmalVdigVI.h header file
has to be included; for OL Layer applications, the tmolVdigVI.h header file.

140 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

The AL layer

The AL layer supports data streaming operation using the dataoutFunc callback within
the video-in interrupt service routine. A typical flow of control is shown in Figure 10.

The application can obtain the capabilities of the component using tmalVdigVIGet-
Capabilities. This information can be used to determine the supported output formats of
the digitizer.

In order to use the VdigVI functionality, an instance of the video digitizer must be cre-
ated by calling tmalVdigVIOpen. If the TriMedia has more than one video-in hardware
block the application has to specify which unit has to be driven. tmalVdigVIOpenM must
be used for this purpose. For instance, the TriMedia family TM-1 only supports one
video-in unit, the TM-2 two. Once an instance is installed driving a unit, no more
instances of the video digitizer can be created to drive this specific unit.

After the instantiation the application has to initialize the digitizers instance setup struc-
ture and call tmalVdigVlinstanceSetup. The TSSA streaming model requires a set of call-
back functions. To make the video digitizer operating in data streaming mode, only the
dataoutFunc has to be provided by the application. The video digitizer tries to modify
the format information by setting the fields activeVideoStartX, activeVideoStarty,
activeVideoEndX, and activeVideoEndY of the packet via a provided progressFunc call-
back function. This call is marked with the flag tsaProgressFlagChangeFormat. If the
application is not interested in the updated values of the format this call can just be
returned by with TMLIBAPP_OK.

The tmalVdigVIStart function begins the data streaming operation. The digitizer will use
the dataoutFunc callback to obtain an empty packet where the captured video data will
be stored. If no empty packet is available the video digitizer does not start with the data
streaming. After capturing a image (frame/field), depending on the currently used mode,
the digitizer will attempt to acquire another empty packet using the dataoutFunc call-
back. If successful, it will send out the packet with the recently acquired image to the
connected downstream component. If acquiring of an empty packet fails, the digitizer
will simply use the packet which it has in its possession to store the next image. This
overrun condition is signalled by the instance using the progressFunc callback. The
application must ensure that no additional interrupt depending functions (e.g., printf)
are being called in that progress function.

As the digitizer is using the video-in peripheral to perform the capture operation, the
application is able to perform other operations during this time.

Data streaming can be terminated by calling tmalVdigVIStop at any time. This will stop
the video-in device, and expel the packets currently being held by the instance. The
application can release the instance by calling tmalVdigVIClose.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 141

Chapter 3: Video Digitizer (VdigVI) API

‘ tmalVdigVIGetCapabilities ‘

‘ tmalVdigVIOpen ‘

‘ tmalVdigVlInstanceSetup ‘

dataoutFunc callback
tmalVdigViIStart progressFunc callback
¥
dataoutFunc callback
‘ Application performs other tasks ‘ progressFunc callback
(executed in the ISR)

‘ tmalVdigVIStop }—»‘ dataoutFunc callback

'

‘ tmalVdigVIClose ‘

Figure 10 AL Layer data streaming flow control.

The OL Layer

The operating system layer supports data streaming operation using the dataoutFunc
callback within the video-in interrupt service routine. A typical flow of control is shown
in Figure 11.

First, the application must obtain the capabilities of the component and the hardware
unit using tmolVdigVIiGetCapabilities or tmolVdigVIGetCapabilitiesM respectively. The ‘M’
function has to be used if the application needs to specify an unit other than the default.
By default the unit number one will be used if called the tmolVdigVIiGetCapabilities. The
acquired information will be automatically passed to the format manager to ensure that
the two components being connected are compatible.

In order to use the VdigVI functionality, an instance of the video digitizer must be cre-
ated by calling tmolVdigVIOpen. If the TriMedia has more than one video-in hardware
block the application has to specify which unit has to be driven. tmolVdigVIOpenM must
be used for this purpose. For instance, the TriMedia family TM-1 only supports one
video-in unit., the TM-2 two. Once an instance is installed driving a unit, no more
instances of the video digitizer can be created to drive this specific unit. The application
should then obtain a pointer to the instance setup structure using tmolVdigVIGet-
InstanceSetup; this structure is automatically created when the instance is opened. It can
then setup the required configuration fields such as the video standard and adapter type.
These parameters are passed to the instance by calling tmolVdigVlinstanceSetup. Note

Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

that by default, the instance will use the dataoutFunc function supplied by the tsaDe-
faults library. Furthermore, the most of the fields in the setup structure contain default
values, accept the field which need to filled by the application. The functional descrip-
tion of the tmolVdigVIGetinstanceSetup gives information about the default values.

The tmolVdigVIStart function begins the data streaming operation by calling the tmolV-
digVIStart function. See The AL layer on page 141.

Data streaming can be terminated by calling tmolVdigVIStop at any time. This will stop
the video-in device, and expel the packets currently being held by the instance. The
application can release the instance by calling tmolVdigVIClose.

‘ tmolVdigViGetCapabilities ‘

‘ tmolVdigVIOpen ‘

‘ tmolVdigVIGetInstanceSetup ‘

‘ tmolVdigVlinstanceSetup ‘

‘ tmolVdigVistart ': dataoutFunc callback
| progressFunc callback
‘ Application performs other tasks ‘ ------------ .
1
Y

dataoutFunc callback
progressFunc callback
(executed via ISR)

‘ tmolVdigVIStop }—»‘ dataoutFunc callback

{

‘ tmolVdigViClose ‘

Figure 11 OL Layer data streaming flow control

Line counting issues

To handle the vertical blanking interval (VBI) data in a generic way, that is, having the
VBI data always at the beginning of a video packet, the following line counting issues are
addressed. The 60 and 50 fields per second video systems use different line counting
bases, the 50 Hz system for instance starts counting on the serration pulses and the 60 Hz
systems starts counting at the first equalization pulses. The equalization and serration

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 143

Chapter 3: Video Digitizer (VdigVI) API

pulses can be seen in the vertical timing diagrams Figure 6 and Figure 7. Those pulses
have twice the line frequency and are located in the vertical blanking interval.

Table 9 Field interval definitions according to CCIR 656

Field SAV/EAV bit 50 Hz (625 lines) 60 Hz (525 lines)
V-digital field blanking

Field 1 Start (V=1) Line 624 Line 1
Finish (V=0) Line 23 Line 10

Field 2 Start (V=1) Line 311 Line 264
Finish (V=0) Line 336 Line 273

F-digital field identification

Field 1 F=0 Line 1 Line 4

Field 2 F=1 Line 313 Line 266

In 50 Hz systems the startY! field has an allowed lowest value of -2, to get the content of
the first equalization pulse group, since 50 Hz line counting starts after this first equaliza-
tion pulse group, and VdigVI always delivers the VBI data at the beginning of the video
buffer. Since 60Hz counting starts at the beginning of the first equalization pulses, the
lowest allowed value in this system is zero. That makes the use of the digitizer compo-
nent as easy as possible. e.g. an application wants to get line 21 data additional to the
active video, the startY value has to be set to 21 in either frequency (50 or 60 Hz).

Is251 1 1213 718191100111 200211221231 24]
v \

F \

12621263 | 264 | 265 | 266 | 267 1 268 1 269 1 270 1 271 1272 1273 | 1283 | 284 | 285 | 286 | 287 |
v \

F |

Figure 12 Vertical timing diagram for 60 Hz and its corresponding SAV/SEAV bits.
V:vertical sync.F:field flag

1. startY is defined in the databook in the VI chapter, it is used to vertically position the capture window.

144 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

[525/ 1 12131 4l516l718191l110l11] [20 1211221231241

v \

F \

12621263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 2711 2721 273 | | 283 1284 | 285 | 286 | 287 |

v \

F |

Figure 13 Vertical timing diagram for 50 Hz and its corresponding SAV/EAV bits.
V:vertical sync. F:field flag

The video-in hardware block starts counting lines when the V bit in the SAV/EAV codes
goes from one to zero. The CCIR-656 standard defines the following lines where this
happens: 50 Hz: line 23 and 60 Hz line 10. This leads to the following observation. If the
digitizer has to capture before these lines (always the case for VBI capturing in 50 Hz sys-
tems), a much higher line count has to be put in the hardware registers to start capturing
in the VBI interval. The first field has one line more than the second field (313/312 in
625-line systems and 263/262 in 525-line systems). This leads to the restriction that the
resulting line (number in the register) can not be 313 or 263 in 50 Hz or 60 Hz systems
respectively, because the internal counter of the VI-block only gets reached in the first
field, but never in the second field. This fact causes one little restriction. The internal
start value of capturing never can be 313/263. But if an application wants to get the con-
tent of this line it has to start with the capturing one line before.

The fields activeVideoStartX, activeVideoStartY, activeVideoEndX, and activeVideoEndY
have nothing to do with the defined line counting in the 60 Hz and 50 Hz systems.
Those values only represents offset values where a downstream component can find the
active video area by taking into account how the video data are organized in the video
buffer. In interlaced systems the values (times stride) directly lead to the address of the
active video data. In field-in -ield systems the content of the structure fields have to be
divided by two in order to apply the same calculation like in the interlaced case to get to
the right active video addresses. That is why those field have a range from O to 576 or
from O to 480 respectively.

Cache Coherency

When using the OL Layer of the video digitizer, the application just has to use the tsalO-
DescSetupFlaglnvalidateDataout flag for creation of the data queue between video digi-

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 145

Chapter 3: Video Digitizer (VdigVI) API

tizer and the downstream component. In this case all cache coherency issues are
automatically handled by the tsaDefaults library.

When the application is using the video digitizer AL Layer, it must consider cache coher-
ency issues. For example, if the DSPCPU will read the captured video data, then the
application must perform a cache invalidate operation on the video data before the
DSPCPU accesses this part of the memory. This can simply be performed using the
_cache_invalidate function on the relevant video data. Cache aligned video buffers can
easily be created and destroyed using the _cache_malloc and _cache_free functions
respectively. After the application has allocated the memory for the video buffers, it
must perform a _cache_copyback operation for each buffer. This only needs to be per-
formed on buffer creation and ensures that the memory has been flushed out of the
DSPCPU data cache.

TriMedia Video Digitizer Inputs and Outputs

The video digitizer is a data source therefore it has no input pin and provides only one
output pin. The output format can be specified using the instance setup function. The
field pOutputFormat has to be filled by the application. The value must be a pointer to a
tmVideoFormat_t structure. For easier bug tracking, the video digitizer throws an asser-
tion failure if the installed format does not match with the format installed on the out-
put queue. The video digitizer checks if the containing parameters are supported by the
library. Currently only the TV standards NTSC and PAL and its related parameters are
supported.

In the AL layer the dataout callback has to be provided by the application to make the
output pin working. The instance setup function returns with an error code if a Null
pointer is passed to the library. The dataout callback is called in the video in interrupt
context. This means that the application-supplied callback function should execute as
fast as possible so the time spent inside the interrupt routine be kept to a minimum.

In the OL layer, if the dataoutFunc field of the default setup structure is Null, the default
dataout callback function provided by the tsaDefaults library will be used.

Packet Formats

The video digitizer uses the standard packet data types defined in the tmAvFormats.h
include file. The output uses the tmAvPacket_t structure to specify the packet. The cap-
tured YUV data is stored in three buffers, with the Y data contained in buffer[0], and the
UV data contained in buffer[1] and buffer[2] respectively.

Each packet contains a header structure providing information concerning the packet
data. The format field is a pointer to a tmVideoFormat_t structure which specifies the for-
mat and the image size. There are restrictions on the type of video formats that can be
used by the video digitizer. These will be described next.

146 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

The main image output packet can be either vdfYUV422Planar or vdfYUV422Interspersed.

No YUV420 format is supported by the video-in unit. If the video digitizer is used also

for capturing of vertical blanking interval data, the vdfYUV422Planar flags needs to be

used, because in this mode the video in hardware does not perform any filtering of the

incoming data. The pOutputFormat field in the instance setup structure should be initial-

ized with the following values:

Field Setby |Value

dataClass App avdcVideo

dataType App vtfYUV

dataSubtype App vdfYUV422Planar or vdfYUV422Interspersed

description App vdflnterlaced, vdfFieldinFrame, or vdfFieldInField

imageWidth App Width of video frame in pixels (luminance)

imageHeight App Height of video frame in lines (luminance)

imageStride App Stride of video frame in bytes (luminance)

activeVideoStartX VdigVl | Defines pixel offset in horizontal direction from start of
video buffer to beginning of active video.

activeVideoStartY VdigVl | Defines number of lines from start of video buffer to
beginning of active video

activeVideoEndX VdigVl | Defines end of active video area in number of pixels
within the video buffer. It is an absolute position.

activeVideoEndY VdigVl | Defines end of active video area in number of lines
within the video buffer. It is an absolute position.

videoStandard VdigVl | Defines analog video standard that served as source of

digitized image

The description field of the format structure is set by the video digitizer automatically
depending on the instance setup fields fieldBased and interlaced, but it still checks if the

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 147

Chapter 3: Video Digitizer (VdigVI) API

resulting description matches with the previously installed format of the output queue.

Four different combinations are possible. See Table 10.

Table 10

The description field is set by the VdigVl library during the instance setup

description

fieldBased ==True

fieldBased == False

interlaced ==True

vdfFieldInFrame

The first field is stored just as in
the vdfinterlaced mode.The sec-
ond field is stored just as in the
vdfinterlaced mode, but not in
the same packet.Sent packets
alternately have the first field
filled (second field not updated),
and second field filled (first field
not updated).

Default vdfinterlaced

A complete frame is written in the
packet buffer.The fields are
stored interlaced.The packets are
sent out frame based.

interlaced == False

vdfFieldinField

Only one field is written in the
packet buffer.No space is
between two consecutive lines of
one field. The packet is sent out
field based.

vdfFieldinField

The previous captured field is
overridden by the current field.
The packets are sent out frame
based.

In field-based operation, every packet is marked with the field type using the flags field
of the header structure. The second field will have the avhField2 bit set, whereas the first
field will have this bit clear. Therefore, a downstream component can interrogate the

packets description and field information to determine which data bytes in the packet

are valid. It is possible to build up a complete frame by sending a half-filled frame back

to the digitizer, which will insert the missing field into the correct memory locations of

the packet buffer.

imageWidth
Video Field
— o
Buffer
- activeVideoStartY
Active Video Area imageHeight

- activeVideoEndY

activeVideoStartX activeVideoEndX

The fields activeVideoStartX, activeVideoStartY, activeVideoEndX, activeVideoEndY, and
videoStandard are also set by the video digitizer automatically. In this case it does not

148 Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

check if it matches with the current queue setup. Depending what analog video standard
was chosen the video digitizer sets these fields accordingly. Using the location of the
active video area a downstream component has access to additional information, such as
VBI inserted data, which is transmitted by the video signal in parallel.

TriMedia Video Digitizer Error

Video digitizer errors which would disturb the operation of the component are handled
using the error callback function. The callback function is usually called from within the
video-in ISR. The application is responsible for supplying a function to handle these
error conditions. Error conditions which arise include problems whereas calling the
dataout function and the validity of incoming empty packets. Underrun errors which
occur when the component fails to obtain a new empty packet are reported through the
progress callback function. Progress functions are described in the next section.

TriMedia Video Digitizer Progress

The video digitizer reports multiple events to the application if enabled. This reporting
can be enabled by setting the default instance field progressReportFlags with OR’d avail-
able progress report flags. One is the cycle count at entering the video-in ISR
(VDIGVI_PROGRESS_ISR_ENTRY). This value can be used for instance for video-in and
video-out synchronization algorithms. The other one is the information of a lost frame.
This information is produced if the digitizer expects an empty packet in the output
queue but was not able to get one. In this case the already filled packet will not be sent
out and will instead be overridden with new incoming digitized data. The progress codes
VDIGVI_PROGRESS_FIELD1 and VDIGVI_PROGRESS_FIELD2 indicate what video field was
currently captured. The application can distinguish between those events by checking
the progressCode field of the progress arguments.

Table 11 Available progress events of the video digitizer

VDIGVI_PROGRESS_ISR_ENTRY Reports time stamp of entering the video-in ISR.The
cycle count is stored in the description field.

VDIGVI_PROGRESS_LOST_FRAME | Reports a lost frame.This is detected by the ISR in case
of an empty dataout empty queue. In this case the
video digitizer did not get a new empty buffer.

VDIGVI_PROGRESS_FIELD1 Reports if captured field was field one.

VDIGVI_PROGRESS_FIELD2 Reports if captured field was field two.

The installation of this callback function is optional.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 149

Chapter 3: Video Digitizer (VdigVI) API

Video Digitizer API Data Structures

This section presents the TriMedia Video Digitizer data structures.

Name Page
tmolVcapVICapabilities_t 124
tmolVcapVlinstanceSetup_t 125

150 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

tmalVdigVICapabilities_t, tmolVdigViCapabilities_t

typedef struct tmalVdigVICapabilities_t{
ptsaDefaultCapabilities_t defaultCapabilities;
pviCapabilities_t viCapabilities;

} tmalvVdigVICapabilities_t, *ptmalVdigVICapabilities_t;

typedef tmalVdigVICapabilities_t tmolVdigVICapabilities_t;

typedef ptmalVdigVICapabilities_t ptmolVdigVICapabilities_t;

Fields

defaultCapabilities Refer to tsa.h.

viCapabilities Pointer to the video-in device library capabilities.
Description

This structure stores the capabilities of the video digitizer.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 151

Chapter 3: Video Digitizer (VdigVI) API

tmalVdigVlinstanceSetup_t, tmolVdigVlinstanceSetup_t

typedef struct tmalVdigVIInstanceSetup_t{

ptsaDefaultInstanceSetup_t
tmVideoAnalogStandard_t
tmVideoAnalogAdapter_t
UInt32

UInt32

UInt32

ptmVideoFormat_t

Bool

Bool

Bool

UInt32

Bool

defaultSetup;
videoStandard;
videoAdapter;
capSizeFlag;

startX;

starty;

pOutputFormat;
fieldBased;

interlaced;
thresholdReachedEnable;
yThreshold;
startYisScanLineNumber;

} tmalvdigVIInstanceSetup_t, *ptmalVdigVIInstanceSetup_t;

typedef tmalVdigVIInstanceSetup_t tmolVdigVIInstanceSetup_t;
typedef ptmalVdigVIInstanceSetup_t ptmolVdigVIInstanceSetup_t;

Fields

defaultSetup

videoStandard

adapterType
capSizeFlag

startX
starty

pOutputFormat

fieldBased

interlaced

Refer to tsa.h.

Either vasNTSC, vasPAL, or vasSECAM. Default is
vasNTSC.

Either vaaCVBS or vaaSvideo. Default is vaaCVBS.

Either viFULLRES or viHALFRES. Default is
ViFULLRES.

x-offset of acquisition window. Default is zero.

y-offset of acquisition window. Default is start of
active video.

Pointer to video format structure. The video digi-
tizer uses the format information for setting up
the video in unit. If this field is Null, the format
information is taken from the output descriptor
structure. It is recommended to pass an output
format to the video digitizer. Default is Null.

True if the digitizer has to send captured packets
in a fieldbased frequency. False to make digitizer
sending packets in a frame based frequency.
Default is False.

True if the digitizer has to skip one line to put two
consecutive lines of one field in a packet (inter-
laced organized buffer). False to make the digitizer
putting two consecutive lines right next to each
other (plain organized buffer). Default is True.

152 Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

thresholdReachedEnable Enables the threshold feature of the video-in unit.
True tells the video digizer to send out a half-filled
packet at line number yThreshold. Default is False.

yThreshold Specifies the line number when a half filled
packet has to be send out. If the field threshold-
ReachedEnable is False this value will be ignored.
Default is zero.

startYisScanLineNumber Used for VBI support.

Description

This structure is used to configure the video digitizer. It enables the application to specify
parameters such as the video standard, the adaptor type, output format, packet output
frequency, and data organization. In OL layer a pointer to the component allocated
setup structure can be get by the get instance setup function. This obtained structure is
also filled with default values. All the mentioned default values are only available in the
OL layer by calling tmolVdigVIGetInstanceSetup.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 153

Chapter 3: Video Digitizer (VdigVI) API

AL Layer Video Digitizer API Functions

This section presents the TriMedia Video Digitizer API functions.

Name Page
tmalVdigVIGetNumberOfUnits 155

tmalVdigVIGetCapabilities 156
tmalVdigVIGetCapabilitiesM 157
tmalVdigVIOpen 158
tmalVdigVIOpenM 159
tmalVdigVIClose 160
tmalVdigVlinstanceSetup 161

tmalVdigVIStart 162
tmalVdigVIStop 163
tmalVdigVlinstanceConfig 164

154 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

tmalVdigVIGetNumberOfUnits

extern tmLibappErr_t tmalVdigVIGetNumberOfUnits(
UInt32 *number0fUnits
)3

Parameters

numberofUnits Pointer to integer that contains the supported
number of units after the function has returned
successfully.

Return Codes

TMLIBAPP_OK Success.

The function can also return codes from viGetNumberOfUnits.

Description

This function returns the number of available hardware units the video digitizer sup-
ports.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 155

Chapter 3: Video Digitizer (VdigVI) API

tmalVdigVIGetCapabilities

extern tmLibappErr_t tmalVdigVIGetCapabilities(
ptmalVdigVICapabilities_t *pCap
)3

Parameters

pCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

The function can also return codes from tmalVdigVIGetCapabilitiesM.

Description

This function returns a pointer to the video digitizer capabilities such as version infor-
mation. It simply calls the tmalVdigVIiGetCapabilitiesM function with the default unit
number (unit0).

156 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

tmalVdigVIGetCapabilitiesM

extern tmLibappErr_t tmalVdigVIGetCapabilitiesM(
ptmalVdigVICapabilities_t *pCap,

unitSelect_t unitNumber
)3
Parameters
pCap Pointer to a variable in which to return a pointer

to capabilities data.

unitNumber Unit number where the capabilities have to be
retrieved from.

Return Codes

TMLIBAPP_OK Success.

VDIGVI_ERR_VI_NOT_SUPPORTED Can assert if the component can’t find any video
input hardware unit.

The function can also return codes from tmalVdigVIGetNumberOfUnits, tsaBoardGet-
Board, viGetNumberOfUnits, and viGetCapabilitiesM.

Description

This function returns a pointer to the video digitizer capabilities.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 157

Chapter 3: Video Digitizer (VdigVI) API

tmalVdigVIiOpen

extern tmLibappErr_t tmalVdigVIOpen(
Int *instance
)3

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

The function can also return codes from tmalVdigVIOpenM.

Description

This function is used to obtain an instance of the video digitizer. The component sup-
ports a single instance per hardware unit. This function creates an instance from unit0. If
an application needs to use a different unit it should use the tmalVdigVIOpenM function.

158 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

tmalVdigViOpenM

extern tmLibappErr_t tmalVdigVIOpenM(

Int *instance,
unitSelect_t unitNumber
);

Parameters

instance

unitNumber

Return Codes

The instance.

Number of the video-in unit the application
wishes to use with the video digitizer.

TMLIBAPP_OK
TMLIBAPP_ERR_MODULE_IN_USE
TMLIBAPP_ERR_MEMALLOC_FAILED

Success.
The component is already being used.

No memory is available to store capabilities of
component.

The function can also return codes from tmalVdigVIGetNumberOfUnits and viOpenM.

Description

This function is used to obtain an instance of the video digitizer. The component sup-

ports a single instance per hardware unit.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 159

Chapter 3: Video Digitizer (VdigVI) API

tmalVdigVIClose

extern tmLibappErr_t tmalVdigVIClose(
Int instance
)3

Parameters

instance Instance value.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Asserts if the instance parameter is Null or does
not match the currently opened instance.

TMLIBAPP_ERR_NOT_STOPPED Asserts if the instance has not been stopped.

The function can also return codes from viStop and viClose.

Description

This function will release an instance.

160 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

tmalVdigVlinstanceSetup

Chapter 3: Video Digitizer (VdigVI) API

extern tmLibappErr_t tmalVdigVIInstanceSetup(

Int
tmalVdigVIInstanceSetup_t
)3

instance,

*setup

Parameters
instance The instance.
setup Pointer to the instance setup structure.

Return Codes

TMLIBAPP_OK
TMLIBAPP_ERR_INVALID_INSTANCE
TMLIBAPP_ERR_MODULE_IN_USE

TMLIBAPP_ERR_INVALID_SETUP

TMLIBAPP_ERR_NULL_DATAOUT_FUNC
VDIGVI_ERR_SETUP_FORMAT

Description

Success.
The instance parameter is Null.

The instance parameter does not match the cur-
rently opened instance.

Asserts if the defaultSetup pointer contained
within the setup structure is Null

Asserts if the dataoutFunc callback is Null.
Asserts if the content of fields fieldbased and
interlaced of the instance setup structure does not

match with the already installed format at the
output queue.

This function configures the digitizer. It is important to ensure that the application spec-

ifies a dataoutFunc callback which will be used to obtain and release packets.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 161

Chapter 3: Video Digitizer (VdigVI) API

tmalVdigViStart

extern tmLibappErr_t tmalVdigVIStart(

Int instance
)

Parameters

instance

Return Codes

Instance value.

TMLIBAPP_OK
TMLIBAPP_ERR_INVALID_INSTANCE
TMLIBAPP_ERR_MODULE_IN_USE

TMLIBAPP_ERR_NOT_SETUP

VDIGVI_ERR_BUFFER_ALLOCATION

VDIGVI_ERR_BUFFER_ALLOCATION
VDIGVI_ERR_BUFFER_ALIGNMENT

VDIGVI_ERR_BUFFER_SIZE

VDIGVI_ERR_BUFFER_SIZE_ALIGNMENT

Success.
Asserts if the instance parameter is Null.

Asserts if the instance parameter does not match
the currently opened instance.

Asserts if the instance has not been setup using
the tmalVdigVIInstanceSetup function.

The number of buffers does not match required
number of buffers (three).

Memory for buffers is not allocated (Null).

Data buffers are not cache aligned (multiple of
64).

Buffer size does not match with image size.

Buffer size is not multiple of cache line size (64).

The function can return codes from viYUVSetup and viStart.

Description

This function will start the video digitizer data streaming operation. It calls the dataout-
Func to obtain an empty packet where captured video data will be stored. The format of
this first packet is checked to make sure the packets can hold the to be captured data.
The video-in device is then started which will initiate the capture process. After captur-
ing a frame the instance will try to obtain another empty packet. If successful it will
return the current packet containing the captured video data and begin capturing to the
new packet. If an empty packet is not available, then the progressFunc callback is exe-
cuted, and the next captured frame will be stored in the current packet. This will over-
write the previous frame. The application must provide its own dataout callback
function which provides functionality to get empty packets and return full packets. The
address of this function must be specified during instance setup.

162 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

tmalVdigVIStop

extern tmLibappErr_t tmalVdigVIStop(

Int instance
)s

Parameters

instance

Return Codes

The instance.

TMLIBAPP_OK
TMLIBAPP_ERR_INVALID_INSTANCE
TMLIBAPP_ERR_MODULE_IN_USE

TMLIBAPP_ERR_NOT_SETUP

Success.
The instance parameter is Null.

The instance parameter does not match the cur-
rently opened instance.

The instance has not been setup using the tmalV-
digVlinstanceSetup function.

The function can return codes from viStop.

Description

This function is used to terminate video capture and hence stop data streaming. It will

stop the video-in device, and then expel the packet which it was holding. The packet is

returned using the dataoutFunc callback.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 163

Chapter 3: Video Digitizer (VdigVI) API

tmalVdigVlinstanceConfig

extern tmLibappErr_t tmalVdigVIInstanceConfig(
Int instance,
ptsaControlArgs_t args

)3

Parameters
instance The instance.
args Pointer to a structure specifying how to change

the configuration of the running video digitizer.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance parameter is Null.

TMLIBAPP_ERR_MODULE_IN_USE The instance parameter does not match the cur-
rently opened instance.

TMLIBAPP_ERR_NOT_SETUP The instance has not been setup using the tmalV-

digVlinstanceSetup function.

VDIGVI_ERR_CONFIG_UNKNOWN_COMMAND
Asserts if config function gets not supported com-
mand codes.

Description

This function is used to change the configuration of the video digitizer. The following
constants at the command field of the ptsaControlArgs_t are supported.

Configuration Commands

VDIGVI_CONFIG_SET_HORZ_OFFSET This command sets the horizontal offset of the
acquisition window of the video digitizer. The
value is stored in the parameter field of the
ptsaControlArgs_t structure.

VDIGVI_CONFIG_SET_VERT_OFFSET This command sets the vertical offset of the
acquisition window of the video digitizer. The
value is stored in the parameter field of the
ptsaControlArgs_t structure.

VDIGVI_CONFIG_SET_Y_THRESHOLD This command sets the new threshold line of the
video-in unit.

VDIGVI_CONFIG_ENABLE_Y_THRESHOLD
This command enables the threshold feature of
the video digitizer.

164 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

VDIGVI_CONFIG_DISABLE_Y_THRESHOLD

VDIGVI_CONFIG_GET_HORZ_OFFSET

VDIGVI_CONFIG_GET_VERT_OFFSET

VDIGVI_CONFIG_STATUS_Y_THRESHOLD

This command disables the threshold feature of
the video digitizer. If threshold is disabled the
packet is send out at the end of a field/frame.

This command retrieves the current horizontal
offset of the video digitzer. The returned value is
stored in the parameter field of the ptsaControl-
Args_t structure.

This command retrieves the current vertical offset
of the video digitzer. The returned value is stored
in the parameter field of the ptsaControlArgs_t
structure.

This command retrieves the current status of the
threshold feature. If returns True if threshold is
enabled and False if disabled.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 165

Chapter 3: Video Digitizer (VdigVI) API

OL Layer Video Digitizer APl Functions

This section presents the functions for the OS Version of the Video Digitizer API.

Name Page
tmolVcapVIGetNumberOfUnits 128
tmolVcapVIGetCapabilities 129
tmolVcapVIGetCapabilitiesM 130
tmolVcapVIOpen 131
tmolVcapVIOpenM 132
tmolVcapVIClose 133
tmolVcapVIGetinstanceSetup 134
tmolVcapVlinstanceSetup 135
tmolVcapViStart 136
tmolVcapVIStop 137
tmolVcapVlinstanceConfig 138

166 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

tmolVdigVIGetNumberOfUnits

extern tmLibappErr_t tmolVdigVIGetNumberOfUnits(
UInt32 *number0fUnits
)3

Parameters

numberofUnits Pointer to a variable in which to return the sup-
ported number of units.

Return Codes

TMLIBAPP_OK Success.

The function can also return codes from tmalGetNumberOfUnits.

Description

This function returns the number of available hardware units the video digitizer sup-
ports.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 167

Chapter 3: Video Digitizer (VdigVI) API

tmolVdigVIGetCapabilities

extern tmLibappErr_t tmolVdigVIGetCapabilities(
ptmolVdigVICapabilities_t *pCap
)3

Parameters

pCap Pointer to a variable in which to return a pointer
to the capabilities data.

Return Codes

TMLIBAPP_OK Success.

The function can also return codes from tmolVdigVIGetCapabilitiesM.

Description

This function returns pointer to the capabilities structure. This can be used by the format
manager to determine if two components can be connected together to form a dataflow.

The function simply calls the tmolVdigVIGetCapabilitiesM function with the default unit
number (unit0).

168 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

tmolVdigVIGetCapabilitiesM

extern tmLibappErr_t tmolVdigVIGetCapabilitiesM(
ptmolVdigVICapabilities_t *pCap,

unitSelect_t unitNumber
)3
Parameters
pCap Pointer to a variable in which to return a pointer

to the capabilities data.

Return Codes

TMLIBAPP_OK Success.

VDIGVI_ERR_VI_NOT_SUPPORTED Can assert if the component does not find any
video input hardware unit.

The function can also return codes from tmalVdigVIGetCapabilitiesM.

Description

This function returns a pointer to the capabilities structure. It can be used by the format
manager to determine if two components can be connected together to form a dataflow.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 169

Chapter 3: Video Digitizer (VdigVI) API

tmolVdigVIiOpen

extern tmLibappErr_t tmolVdigVIOpen(
Int *instance
)3

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

or return codes of the internally called tmolVdigVIOpenM function.

Description

This opens an OL Layer instance of the video digitizer. The default unit is opened (unit0).
If an application wants to use a different unit, it should use the tmalVdigVIOpenM func-
tion.

170 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

tmolVdigViOpenM

extern tmLibappErr_t tmolVdigVIOpenM(
Int *instance,
unitSelect_t unitNumber

)3

Parameters
instance The instance.
unitNumber Number of the video-in unit the applications

wishes to use with the video digitizer.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_MODULE_IN_USE The component is already being used.

The function can also return codes from tmalVdigVIOpenM.

Description

This function is used to obtain an instance of the video digitizer. The component sup-
ports a single instance per hardware unit.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 171

Chapter 3: Video Digitizer (VdigVI) API

tmolVdigVIClose

extern tmLibappErr_t tmolVdigVIClose(
Int instance
)3

Parameters

instance Instance value.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Asserts if the instance parameter is an unknown
instance.

TMLIBAPP_ERR_NOT_STOPPED Asserts if the instance of video digitizer is still
running.

The function can also return codes from tmalVdigVIClose.

Description

This function will release the instance.

172 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

tmolVdigVIGetinstanceSetup

extern tmLibappErr_t tmolVdigVIGetInstanceSetup(
Int instance,
ptmolVdigVIInstanceSetup_t *setup

)3

Parameters
instance The instance.
setup Pointer to a variable in which to return a pointer

to the setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert if the instance parameter is an
unknown instance.

Description

This returns a pointer to the OL Layer instance setup structure. The memory for this
structure is created automatically when the instance is opened.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 173

Chapter 3: Video Digitizer (VdigVI) API

tmolVdigVlinstanceSetup

extern tmLibappErr_t tmolVdigVIInstanceSetup(
Int instance,
tmolVdigVIInstanceSetup_t *setup

)3

Parameters
instance The instance.
setup Pointer to the instance setup structure.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert if the instance parameter is an
unknown instance.

TMLIBAPP_ERR_NULL_IO_DESC Can assert if the InOutDescriptor is Null.

VDIGVI_ERR_SETUP_FORMAT Can assert if the content of fields fieldbased and
interlaced of the instance setup structure does not
match with the already installed format at the
output queue.

The function can also return codes from tmalVdigVlinstanceSetup.

Description

This function must be called to configure the video digitizer. The address of the instance
setup structure should be obtained using the tmolVdigVIGetinstanceSetup function.

174 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

tmolVdigVIStart

extern tmLibappErr_t tmolVdigVIStart(

Int instance
)

Parameters

instance

Return Codes

The instance.

TMLIBAPP_OK
TMLIBAPP_ERR_INVALID_INSTANCE

TMLIBAPP_ERR_NOT_SETUP

VDIGVI_ERR_BUFFER_ALLOCATION

VDIGVI_ERR_BUFFER_ALLOCATION
VDIGVI_ERR_BUFFER_ALIGNMENT

VDIGVI_ERR_BUFFER_SIZE

Success.

Asserts if the instance parameter is an unknown
instance.

Asserts if the tmolVdigVlinstanceSetup function
has not been called.

The number of buffers does not match required
number of buffers (three).

The memory for buffers is not allocated (Null).

The pointer to data buffers are not cache aligned
(multiple of 64).

The buffer size does not match with image size.

VDIGVI_ERR_BUFFER_SIZE_ALIGNMENT

The buffer size is not multiple of cache line size
(64).

The function can also return codes from tmalVdigViStart.

Description

This function will start the video digitizer data streaming operation. It calls the dataout-
Func to obtain an empty packet where captured video data will be stored. The format of
this first packet is checked to make sure the packets can hold the to be captured data.
The video-in device is then started which will initiate the capture process. After captur-
ing a frame the instance will try to obtain another empty packet. If successful it will
return the current packet containing the captured video data and begin capturing to the
new packet. If an empty packet is not available, then the progressFunc callback is exe-
cuted, and the next captured frame will be stored in the current packet. This will over-
write the previous frame. By default the video digitizer will use the dataout callback
function provided with the tsaDefaults library.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 175

Chapter 3: Video Digitizer (VdigVI) API

tmolVdigVIStop

extern tmLibappErr_t tmolVdigVIStop(

Int instance
)s

Parameters

instance

Return Codes

Instance value.

TMLIBAPP_OK
TMLIBAPP_ERR_INVALID_INSTANCE

TMLIBAPP_ERR_NOT_SETUP

Success.

Asserts if the instance parameter is an unknown
instance.

Asserts if the tmolVdigVlinstanceSetup function
has not been called.

The function can also return codes from tmalVdigVIStop.

Description

This function is used to terminate video capture and hence stop data streaming. It will

stop the video-in device, and then expel the packet which it was holding. The packet is

returned using the dataoutFunc callback.

176 Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 3: Video Digitizer (VdigVI) API

tmolVdigVlinstanceConfig

extern tmLibappErr_t tmolVdigVIInstanceConfig(
Int instance,
ptsaControlArgs_t args,

);

Parameters
instance The instance.
args Pointer to a structure specifying how to change

the configuration of the running video digitizer.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance parameter is Null.

TMLIBAPP_ERR_MODULE_IN_USE The instance parameter does not match the cur-
rently opened instance.

TMLIBAPP_ERR_NOT_SETUP The instance has not been setup using the tmol-

VdigVlinstanceSetup function.

The function can also return codes from tmalVdigVlinstanceConfig.

Description

This function is used to change the configuration of the video digitizer during operation
(after the digitizer has been started). The following constants at the command field of
the ptsaControlArgs_t are supported.

Configuration Commands

VDIGVI_CONFIG_SET_HORZ_OFFSET This command sets the horizontal offset of the
acquisition window of the video digitizer. The
value is stored in the parameter field of the
ptsaControlArgs_t structure.

VDIGVI_CONFIG_SET_VERT_OFFSET This command sets the vertical offset of the
acquisition window of the video digitizer. The
value is stored in the parameter field of the
ptsaControlArgs_t structure.

VDIGVI_CONFIG_SET_Y_THRESHOLD This command sets the new threshold line of the
video-in unit.

VDIGVI_CONFIG_ENABLE_Y_THRESHOLD
This command enables the threshold feature of
the video digitizer.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 177

Chapter 3: Video Digitizer (VdigVI) API

VDIGVI_CONFIG_DISABLE_Y_THRESHOLD

VDIGVI_CONFIG_GET_HORZ_OFFSET

VDIGVI_CONFIG_GET_VERT_OFFSET

VDIGVI_CONFIG_STATUS_Y_THRESHOLD

This command disables the threshold feature of
the video digitizer. If threshold is disabled the
packet is send out at the end of a field/frame.

This command retrieves the current horizontal
offset of the video digitzer. The returned value is
stored in the parameter field of the
ptsaControlArgs_t structure.

This command retrieves the current vertical offset
of the video digitzer. The returned value is stored
in the parameter field of the ptsaControlArgs_t
structure.

This command retrieves the current status of the
threshold feature. If returns True if threshold is
enabled and False if disabled.

178 Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 4
Video Renderer (VrendVO0) API

Topic Page
Video Renderer APl Overview 180
Using the Video Renderer API 180
Video Renderer API Data Structures 187
Video Renderer API Functions 194

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 179

Chapter 4: Video Renderer (VrendVO) API

Video Renderer API Overview

The TriMedia video renderer is an implementation of a video output driver which com-
plies with the TriMedia streaming architecture specification.

Main: Datain [0]
DD D D
L < < (<

queuing

Video Renderer
Overlay: Datain [1]
> > >)
G G G
queuing

Figure 14 Structure of the Video Renderer

The video renderer accepts data from an application, using either a non-streaming or
streaming interface. Both AL and OL layers are provided, as indicated in Figure 15.

Application

Y

Video Renderer Library
OL Layer

Y

Video Renderer Library
AL Layer

Y

Video Out
Device Library

Y

Video Out Hardware

Figure 15 Video Renderer Architecture

Using the Video Renderer API

The TriMedia Video Renderer API is contained within the archived application library
libtmVrendVO.a. To use the Video Renderer AL layer API, you must include the
tmalVrendVO.h header file; for OL layer applications you must include the
tmolVrendVO.h header file.

180 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 4: Video Renderer (VrendVO) API

The AL Layer

The operating system independent layer supports both non-streaming and streaming
operation.

In non-data streaming mode, the application explicitly calls the tmalVrendVORender-
Frame function to transfer the frame to the video renderer instance. A diagram of the
typical control flow is shown in Figure 16.

tmalVrendVOOpen

tmalVrendVOGetCapabilities
Call receiverFormatSetup

‘ tmalVrendVOInstanceSetup ‘

‘ tmalVrendVOStart ‘
Optional Optional

X ‘ tmalVrendVOlInstanceConfig ‘ '

€ - - - - = = = = - - - - - 4
‘ tmalVrendVORenderFrame + ---------- .
y
Wait for completion function to le - completionFunc callback
indicate frame has been rendered (executed via ISR)
tmalVrendVOStop

{

‘ tmalVrendVOClose ‘

Figure 16 AL Layer Non-Data Streaming Flow Control

An instance of the video renderer must first be created by calling the tmalVrendVOOpen
function; the component only allows one instance to be open at any moment of time.
Once opened, the application should obtain the capabilities of the renderer using
tmalVrendVOGetCapabilities. It should then call the video renderers receiverFormatSetup
callback function to specify the output format of the instance; this configures the output
height, width, and stride.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 181

Chapter 4: Video Renderer (VrendVO) API

The instance should then be setup by initializing the tmalVrendVOInstanceSetup_t struc-
ture and calling tmalVrendVOInstanceSetup. Parameters which may be setup include the
video standard, overlay enable, and application specific completion function. Note that

for non-data streaming the datainFunc must be set to Null.

The video renderer can then be started using tmalVrendVOStart; this informs the ren-
derer to expect data and consequently, to log underrun errors if data is not present. The
application may then call tmalVrendVORenderFrame to display a frame. The renderer is
able to queue up to four frames for display. Once the renderer has displayed a frame, it
will call the completion function, and pass the packet ID as the flags argument; the
application can use this to determine when a frame has been displayed. Note that if the
instance currently has only one frame in it’s queue, then this frame will be displayed
repeatedly. In this case, the completion function is only called once another frame has
been passed to it.

The tmalVrendVORenderOverlay function should be used to pass an overlay image to the
renderer. The application may call this repeatedly to render new overlays on the main
image. The tmalVrendVOInstanceConfig can be called to change instance parameters
such as the main image position, and whether the overlay should be displayed.

By calling tmalVrendVOStop, the renderer will stop displaying images, and return any
packets that are stored in it’s internal queue. The completion function will be called for
each packet on the queue, with the completion function flags argument being set to the
relevant packet ID. Finally, when the application calls tmalVrendVOClose, the instance
will be freed, enabling another task to use the renderer.

182 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 4: Video Renderer (VrendVO) API

In the AL layer streaming operation, the video renderer uses the datainFunc callback
within the video interrupt service routine to obtain video packets to be displayed. A typ-
ical flow of control is shown in Figure 17.

tmalVrendVOOpen

tmalVrendVOGetCapabilities
Call receiverFormatSetup

tmalVrendVOInstanceSetup

- datainFunc callback
tmalVrendVOStart progressFunc callback

| Y
datainFunc callback
progressFunc callback
(executed via ISR)

‘ Application performs other tasks ‘

‘ tmalVrendVOStop }—» datainFunc callback
* completionFunc callback
‘ tmalVrendVOClose ‘

Figure 17 AL Layer Data Streaming Flow Control

A video renderer instance is opened and it’s output configuration is initialized in identi-
cal fashion to the non-streaming flow described previously. In streaming mode, the
application must set the datainFunc callback in the instance setup structure to point to
an application supplied datain callback function. This will be used by the component to
obtain full input packets and return empty packets; the same function must be able to
supply both main image packets and overlay packets.

Data streaming is initiated using tmalVrendVOStart. The instance will call the datainFunc
callback to obtain the main image input packet and possibly an overlay packet if the
overlay is enabled.

The video renderer will then start rendering to the screen. Full packets are obtained in
the video interrupt service routine using the datainFunc callback. As the video renderer
is interrupt driven, the application is free to perform other operations. It may change the
renderer parameters by calling tmalVrendVOInstanceConfig during this time; for exam-
ple, to change the overlay position.

Data streaming can be terminated by calling tmalVrendVOStop. This will cause the
instance to return any packets which it currently is using. The renderer will call the com-
pletionFunc callback to indicate that it has stopped. Note that the completion function

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 183

Chapter 4: Video Renderer (VrendVO) API

is only called when it has stopped; this is different from the non-streaming case which
calls the completion function after each frame has been displayed. Finally, the
tmalVrendVOClose function closes the instance.

Note that it is possible to start VrendVO, calling tmalVrendVOStart without having a
video format already installed. The renderer will actually start once tmalVrendVOReceiv-
erFormat is called by the application or by another library. This can be done by calling
tsaDefaultinstallFormat, or through the progress function, with tsaProgressFlagChange-
Format set.

The OL Layer

The operating system layer only supports streaming operation. A diagram of the typical
flow of control is shown in Figure 18.

tmolVrendVOOpen

‘ tmolVrendVOGetCapabilities ‘

‘ tmolVrendVOGetlnstanceSetup ‘

‘ tmolVrendVOInstanceSetup ‘

datainFunc callback
tmolVrendVOStart progressFunc callback

| Y
datainFunc callback
progressFunc callback
(executed via ISR)

‘ Application performs other tasks ‘

‘ tmolVrendVOStop }—» datainFunc callback
* completionFunc callback
‘ tmolVrendVOClose ‘

Figure 18 OL Layer Data Streaming Flow Control.

An instance of the video renderer should be opened first using tmolVrendVOOpen; only
one instance is currently supported. The capabilities of the component should be

obtained using tmolVrendVOGetCapabilities. This information will be used by the format
manager to ensure that the two instances being connected together are compatible. The
InOutDescriptor which connects the two components should then be created by initial-
izing an ptsalnOutDescriptorSetup_t structure and calling tsaDefaultinOutDescriptorCre-

184 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 4: Video Renderer (VrendVO) API

ate. This can also be used to automatically create packets which will be used to transfer
data between component instances.

The pointer to the video renderer instance setup should be obtained using tmolVrendVO-
GetlnstanceSetup. This structure should be initialized with any application specific val-
ues, for example, the type of display adaptor being used. The application should then
call tmolVrendVOInstanceSetup to configure the instance. Data streaming mode can then
be initiated by calling tmolVrendVOStart. Image packets to be displayed are obtained
using the datain call back function in exactly the same manner as described in the AL
layer data streaming section.

The application can terminate data streaming using tmolVrendVOStop, and release the
instance using tmolVrendVOClose. After the instance has been closed, the application
should destroy the InOutDescriptor using the tsaDefaultinOutDescriptorDestroy func-
tion. This will automatically free the packets contained in the queues.

Callback Function Requirements

The following list gives the mandatory and optional callback functions used by the

video renderer.

datainFunc Used for data streaming in both the AL and OL layers. For AL
Layer streaming the application must provide this function. For
OL Layer streaming, the tsaDefaults library provides a default
function automatically.

This field must be set to Null for AL-Layer non-data streaming
operation.

completionFunc In AL Layer non-data streaming, this is called to indicate that a
frame has been displayed.
In AL Layer data-streaming and the OL Layer, this is used to indi-
cate that streaming has stopped.

errorFunc This is used in all layers to indicate that an error has occurred.

progressFunc This is used to report progress: entering an ISR routine, reaching
Ythreshold, losing a frame, reporting which Field is being pro-
cessed in the ISR.

In streaming mode, datainFunc is mandatory, completionFunc, errorFunc and progress-

Func are optional.

In non streaming mode, datainFunc has to be Null, completionFunc is mandatory, so
that the video renderer can notify the application that a complete frame has been dis-
played. ErrorFunc and progressFunc are still optional.

Packet Formats

The video renderer uses the standard packet data types defined in the tmAvFormats.h
include file. Both the main and overlay image use the tmAvPacket_t structure. The main

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 185

Chapter 4: Video Renderer (VrendVO) API

image YUV data is stored in three buffers, with the Y pointer contained in buffer[0], and
the UV pointers contained in buffer[1] and buffer[2] respectively. The overlay image
YUV sequence data will be stored in a single buffer.

Each packet contains a header structure providing information concerning the packet
data. The format field will be a tmVideoFormat_t structure which specifies the format
and the image size. There are restrictions on the type of video formats that can be
accepted by the video renderer. These will be described next.

The description section of the tmVideoFormat_t structure enables the application to
specify that the video stream is possibly interlaced, and that the video data are sent to
the Video Renderer on a frame or field basis. It is also possible, using the description sec-
tion to specity if the video packet has Mpeg extension. In that case, VrendVO will extract
Mpeg related display information from the header->userPointer field of each incoming
packet. This information is used by VrendVO to perform 3:2 pulldown. In this case also,
VrendVO will automatically center and scale the image if necessary.

Main Image Input Packet

The main image input packet must be either YUV422 or YUV420. The packet headers
format field should be initialized with the following values:

dataClass avdcVideo.

dataType vtfYUV.

dataSubtype vdfYUV422Planer, vdfYUV420Planer, or vdfYUV422Interspersed

description vdflnterlaced, vdfFieldInFrame, vdfFieldInField, vdfProgressive, or
vdfMpegExtension.

imageWidth Width of video frame (luminance).

imageHeight Height of video frame (luminance).

imageStride Stride of video frame (luminance).

activeVideoStartX O

activeVideoStartY O

activeVideoEndX Width of video frame (luminance).
activeVideoEndY Height of video frame (luminance).
videoStandard vasNTSC or vasPAL.

Overlay Image Input Packet

The overlay image must be YUV sequence data. The format field should be initialized
with the following values:

dataClass avdcVideo.
dataType vtfYUV.
dataSubtype vdfYUVSequence or vdfYUVSequenceAlpha.

186 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 4: Video Renderer (VrendVO) API

Description vdflnterlaced, vdfFieldInField, vdfFieldInFrame, or vdfProgressive.
imageWidth Width of overlay frame.

imageHeight Height of overlay frame.

imageStride Stride of overlay frame.

activeVideoStartX O

activeVideoStartY O

activeVideoEndX Width of overlay frame.
activeVideoEndY Height of overlay frame.
videoStandard vasNTSC or vasPAL.

Cache Coherency

When the application is using the video renderer AL Layer, it must consider cache coher-
ency issues. For example, if the DSPCPU created or manipulated the video data, then the
application must perform a cache copyback operation on the data before passing it to
the renderer. This can simply be performed using the _cache_copyback function on the
relevant video data. Cache aligned video buffers can easily be created and destroyed
using the _cache_malloc and _cache_free functions respectively.

When using the OL Layer of the video renderer, all cache coherency issues are automati-
cally handled by the tsaDefaults library.

Video Renderer APl Data Structures

This section describes the Video Renderer application library data structures. These data
structures are defined in the tmalVrendVO.h and tmolVrendVO.h header files.

Name Page
tmalVrendVOProgressFlags_t 188
tmalVrendVOCapabilities_t 189
tmolVrendVOCapabilities_t 189
tmalVrendVOInstanceSetup_t 190
tmolVrendVOInstanceSetup_t 190
tmalVrendVOConfigTypes_t 192

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 187

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVOProgressFlags_t

typedef enum {

VRENDVO_PROGRESS_YTHRESHOLD = 0x00000001,
VRENDVO_PROGRESS_REPORT = Px00000002,
VRENDVO_PROGRESS_ISR_ENTRY = Ox00000004,
VRENDVO_PROGRESS_LOST_FRAME = 0x00000008,
VRENDVO_PROGRESS_FIELD1 = Ox000000140,
VRENDVO_PROGRESS_FIELD2 = 0x00000020,
VRENDVO_PROGRESS_TIMEDIFF = Ox00000040,

} tmalVrendVOProgressFlags_t;

Description

This enumerated type describes the flags that are used when the progress function is
called by the renderer. Those flags can be OR’d, so that the application can choose which
progress needs to be reported by the video render component.

188 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVOCapabilities_t

typedef struct {
ptsaDefaultCapabilities_t
Int
Int
UInt32
UInt32

defaultCapabilities;
granularityOfAddress;
granularityOfStride;
videoStandards;
adapterTypes;

} tmalVrendVOCapabilities_t, *ptmalVrendVOCapabilities_t;

tmolVrendVOCapabilities_t

typedef struct {
ptsaDefaultCapabilities_t
Int
Int
UInt32
UInt32

defaultCapabilities;
granularityOfAddress;
granularityOfStride;
videoStandards;
adapterTypes;

} tmlVrendVOCapabilities_t, *ptmolVrendVOCapabilities_t;

Fields

defaultCapabilities
granularityOfAddress

granularityOfStride

videoStandards

adapterTypes

Description

Pointer to the default capabilities structure.

Number of bits which must be zero in the address
of YUV data.

Number of bits which must be zero in the stride.

OR’d values of different video standards sup-
ported by the VO device library.

OR’d values of different adapter types supported
by the VO device library.

This structure is used to specify the capabilities of the video renderer. An application can

obtain the components capability structure by calling tmalVrendVOGetCapabilities at the
AL layer, or tmolVrendVOGetCapabilities at the OL layer.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 189

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVOInstanceSetup_t

typedef struct {
ptsaDefaultInstanceSetup_t defaultSetup;

tmVideoAnalogStandard_t videoStandard;
tmVideoAnalogAdapter_t adapterType;

Bool scalelp;

Bool overlayEnable;
UIntl6 imageHorzOffset;
UIntlé imageVertOffset;
UIntl6 overlayHorzOffset;
UIntl6 overlayVertOffset;
UIntl6 overlayAlpha;
UIntlé overlayAlphal;
Bool hbeEnable;

Bool underrunEnable;
Bool yThresholdEnable;
UInt32 yThreshold;

Bool underrunHoldFields;

} tmalVrendVOInstanceSetup_t, *ptmalVrendVOInstanceSetup_t;

tmolVrendVOInstanceSetup_t

typedef struct {
ptsaDefaultInstanceSetup_t defaultSetup;

tmVideoAnalogStandard_t videoStandard;
tmVideoAnalogAdapter_t adapterType;

Bool scalelp;

Bool overlayEnable;
UIntl6 imageHorzOffset;
UIntlé imageVertOffset;
UIntl6 overlayHorzOffset;
UIntle overlayVertOffset;
UIntl6 overlayAlphaf;
UIntlé overlayAlphal;
Bool hbeEnable;

Bool underrunEnable;
Bool yThresholdEnable;
UInt32 yThreshold;

Bool underrunHoldFields;

} tmolVrendVOInstanceSetup_t, *ptmolVrendVOInstanceSetup_t;

Fields

defaultSetup Default instance setup (see tsa.h). Note that the
AL and OL layers are identical.

videoStandard vasPAL or vasNTSC.

adapterType CVBS or S-Video. see tmAvFormats.h

190 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

scalelUp

overlayEnable

imageHorzOffset

imageVertOffset
overlayHorzOffset
overlayVertOffset
overlayAlpha@

overlayAlphal
hbeEnable

underrunEnable
yThresholdEnable
yThreshold

underrunHoldFields

Description

Chapter 4: Video Renderer (VrendVO) API

True if this is an MPEG-1 type SIF image which
should be doubled in size by the video out hard-
ware.

True if the overlay functionality will be used.

Specified in pixels from the left edge. Note that an
offset of zero is likely to be displayed off screen on
most video monitors.

Specified in lines from the top of the screen.
Specified in pixels from the left edge.
Specified in pixels from the top of the screen.

Specifies the alpha value to use when the alpha
bit is zero.

Specifies the alpha value to use when the alpha
bit is one.

Set to True to turn on highway bandwidth inter-
rupts.

Set to True to turn on underrun interrupts.
Set to True to turn on yThreshold interrupts.

If yThreshold interrupts are turned on, this field
contains the value of the line in the video buffer
that will trigger the interrupt.

Used in field mode when a packet underrun
occurs. If false, the most recent field is re-dis-
played regardless of whether it is the correct field
type. If true, the instance keeps both top and bot-
tom field packets so the correct field type is dis-
played.

This structure can be used by the application to set up the initial configuration of the

video renderer. In the AL Layer, the application should create and initialize the structure
and then call tmalVrendVOInstanceSetup. In the OL Layer, the application should call
tmolVrendVOGetInstanceSetup to obtain a pointer to the structure. It may then initialize

any specific values before calling tmolVrendVOInstanceSetup.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 191

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVOConfigTypes_t

typedef enum {

VO_CONFIG_SET_DDS_FREQUENCY

VO_CONFIG_SET_OVERLAY

VO_CONFIG_SET_OVERLAY_HORZ_OFFSET = tsaCmdUserBase
VO_CONFIG_SET_OVERLAY_VERT_OFFSET = tsaCmdUserBase
VO_CONFIG_SET_HORZ_OFFSET
VO_CONFIG_SET_VERT_OFFSET
VO_CONFIG_SET_YTHRESHOLD
VO_CONFIG_DES_YTHRESHOLD
VO_CONFIG_SET_MPEG_PLAY

VO_CONFIG_SET_MPEG_PAUSE

VO_CONFIG_SET_MPEG_SFA

VO_CONFIG_SET_MPEG_IGNORE_PTS

VO_CONFIG_SET_WINDOW

VO_CONFIG_GET_DDS_FREQUENCY

VO_CONFIG_GET_OVERLAY

VO_CONFIG_GET_OVERLAY_HORZ_OFFSET = tsaCmdUserBase
VO_CONFIG_GET_OVERLAY_VERT_OFFSET = tsaCmdUserBase
VO_CONFIG_GET_HORZ_OFFSET
VO_CONFIG_GET_VERT_OFFSET
VO_CONFIG_GET_YTHRESHOLD

VO_CONFIG_GET_MPEG_PTS

= tsaCmdUserBase + @x01,
= tsaCmdUserBase + @x@2,

+ 0x03,

+ @x04,
= tsaCmdUserBase + @x@5,
= tsaCmdUserBase + @x@6,
= tsaCmdUserBase + 0x@7,
= tsaCmdUserBase + @x@8,
= tsaCmdUserBase + @x09,
= tsaCmdUserBase + @x0a,
= tsaCmdUserBase + 0x@b,
= tsaCmdUserBase + @x@c,
= tsaCmdUserBase + @x0@d,
= tsaCmdUserBase + @x81,
= tsaCmdUserBase + 0x82,

+ 0x83,

+ 0x84,
= tsaCmdUserBase + @x85,
= tsaCmdUserBase + 0x86,
= tsaCmdUserBase + @x87,
= tsaCmdUserBase + @x88

} tmalVrendVOConfigTypes_t, *ptmalVrendVOConfigTypes_t;

Commands

VO_CONFIG_SET_DDS_FREQUENCY

VO_CONFIG_SET_OVERLAY

Change frequency.

Allow user to set overlay on and off.

VO_CONFIG_SET_OVERLAY_HORZ_OFFSET

Change horizontal position of overlay.

VO_CONFIG_SET_OVERLAY_VERT_OFFSET

VO_CONFIG_SET_HORZ_OFFSET

VO_CONFIG_SET_VERT_OFFSET

VO_CONFIG_SET_YTHRESHOLD

VO_CONFIG_DES_YTHRESHOLD
VO_CONFIG_SET_MPEG_PLAY
VO_CONFIG_SET_MPEG_PAUSE

VO_CONFIG_SET_MPEG_SFA

Change vertical position of overlay.

Change horizontal offset of main image. Offset is
specified in pixels from the left edge.

Change vertical offset of main image. Offset is
specified in lines from the top of the screen.

Enables yThreshold interrupts and sets a new
value for yThreshold.

Disables yThreshold interrupts.

Acquire and display video packets.
Repeatedly display the same frame without
acquiring new packets.

Single-frame advance: obtain a new video packet
and repeatedly display it.

192

Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 4: Video Renderer (VrendVO) API

VO_CONFIG_SET_MPEG_IGNORE_PTS Ignore any PTS timestamps and display the video
frame immediately.

VO_CONFIG_SET_WINDOW Reserved for future use.

Description

This enumeration type describes the command field of the tsaControlArgs_t structure,
that is used as a parameter by the tmalVrendVOInstanceConfig and tmolVrendVOInstance-
Config functions to change certain instance parameters while the renderer is running.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 193

Chapter 4: Video Renderer (VrendVO) API

Video Renderer API Functions

This section describes the TriMedia Video Renderer application library API functions.

Name Page
tmalVrendVOGetCapabilities 195
tmolVrendVOGetCapabilities 195
tmalVrendVOOpen 196
tmolVrendVOOpen 196
tmalVrendVOClose 197
tmolVrendVOClose 197
tmolVrendVOGetInstanceSetup 198
tmalVrendVOInstanceSetup 199
tmolVrendVOInstanceSetup 199
tmalVrendVOStart 200
tmolVrendVOStart 200
tmalVrendVOStop 201
tmolVrendVOStop 201
tmalVrendVOlInstanceConfig 202
tmolVrendVOInstanceConfig 202
tmalVrendVORenderFrame 203
tmalVrendVORenderOverlay 204
tmalVrendVOReceiverFormat 205

194 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVOGetCapabilities

tmLibappErr_t tmalVrendVOGetCapabilities(
tmalVrendVOCapabilities_t **cap
)3

tmolVrendVOGetCapabilities

tmLibappErr_t tmolVrendVOGetCapabilities(
ptmolVrendVOCapabilities_t *pCap
)3

Parameters

cap, pCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

These functions fill in the pointer of a static tmalVrendVOCapabilities_t structure main-
tained by the renderer to describe the capabilities and requirements of this library.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 195

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVOOpen

tmLibappErr_t tmalVrendV0Open(
Int *instance
)3

tmolVrendVOOpen

tmLibappErr_t tmol1VrendV0Open(
Int *instance
)3

Parameters

instance Pointer to the (returned) instance.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_MODULE_IN_USE Maximum number of renderers are allocated.
Description

Instantiates a video renderer, and sets the instance variable to point to the video ren-
derer instance. Currently only one instance is supported.

196 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVOClose

tmLibappErr_t tmalVrendVOClose(
Int instance
)3

tmolVrendVOClose

tmLibappErr_t tmolVrendVOClose(
Int instance
)3

Parameters

instancelnstance value, as returned by tmalVrendVOOpen or tmolVrendVOOpen.

Return Codes

TMLIBAPP_OK Success

TMLIBAPP_ERR_MODULE_IN_USE Asserts if the renderer has not been opened by
this instance.

Description

These functions will shut down an instance of the renderer. The instance must have
been stopped prior to calling the respective function.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 197

Chapter 4: Video Renderer (VrendVO) API

tmolVrendVOGetinstanceSetup

tmLibappErr_t tmolVrendVOGetInstanceSetup(
Int instance,
tmolVrendVOInstanceSetup_t *setup

)3

Parameters
instance Instance value, as returned by tmolVrendVOOpen.
setup Pointer to the setup structure (see page 190).

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MODULE_IN_USE If the renderer has not been opened by this
instance.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert if the desired instance is not open.

VR_ERR_DEVICE_LIBRARY_ERROR Is OR’d with the low byte of the return code of

the device library if volnstanceSetup fails.

Description

The tmolVrendVOGetinstanceSetup function is used to return a pointer to the renderer’s
OL Layer instance setup structure. The renderer creates this structure when the compo-
nent is opened. After obtaining the pointer to the structure, the application can initialize
specific instance values before calling tmolVrendVOInstanceSetup.

Default values for the returned instance setup are shown below:

defaultSetup == defaultSetup
videoStandard == vasNSTC
adapterType == vaaCVBS
scalelp == False
overlayEnable == False
imageHorzOffset =g
imageVertOffset =0
overlayHorzOffset == 0
overlayVertOffset == 0
overlayAlpha@ =g
overlayAlphal =g
hbeEnableTrue, == True
underrunknable == True
yThresholdEnable == False
yThreshold =0
underrunHoldFields == False

198 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVOInstanceSetup

tmLibappErr_t tmalVrendVOInstanceSetup(
Int instance,
tmalVrendVOInstanceSetup_t *setup

)3

tmolVrendVOInstanceSetup

tmLibappErr_t tmolVrendVOInstanceSetup(
Int instance,
tmolVrendVOInstanceSetup_t *setup

)3

Parameters

instance Instance value, as returned by tmalVrendVOOpen
or tmolVrendVOOpen.

setup Pointer to the setup structure (see page 190).

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MODULE_IN_USE If the renderer has not been opened by this
instance.

TMLIBAPP_ERR_INVALID_INSTANCE Can assert if the desired instance is not open.

VR_ERR_DEVICE_LIBRARY_ERROR Is OR’d with the low byte of the return code of

the device library if volnstanceSetup fails

Description

These functions configure the renderer. The video-out device will be opened, and the
renderer will be in a stopped state. After initialization, the application should use the
tmalVrendVOlInstanceConfig and tmolVrendVOInstanceConfig functions to modify
instance variables.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 199

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVOStart

tmLibappErr_t tmalVrendVOStart(
Int instance
);

tmolVrendVOStart

tmLibappErr_t tmolVrendVOStart(
Int instance
)3

Parameters

instance Instance, as returned by tmalVrendVOOpen or
tmolVrendVOOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Asserts if the desired instance is not open.

VR_ERR_DEVICE_LIBRARY_ERROR OR’d with the low byte of the return code of the

device library if volnstanceSetup fails

TMLIBAPP_ERR_INVALID_INSTANCE Asserts if the instance variable is Null.

TMLIBAPP_ERR_MODULE_IN_USE Asserts if the instance variable does not match the
currently opened instance.
TMLIBAPP_ERR_NOT_SETUP Asserts if the instance has not been configured

using the instance setup functions.

Description

These functions start the video rendering for the specific instance. In OL Layer or AL
Layer streaming mode, the datain function is called to obtain the initial main image
packet, and optionally the overlay packet. The VO module is then started.

In AL Layer non-streaming mode, the function simply returns.

200 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVOStop

tmLibappErr_t tmalVrendVO0Stop(
Int instance
);

tmolVrendVOStop

tmLibappErr_t tmolVrendV0Stop(
Int instance
)3

Parameters

instance Instance, as returned by tmalVrendVOOpen or
tmolVrendVOOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MODULE_IN_USE Asserts if the desired instance is not open.

TMLIBAPP_ERR_INVALID_INSTANCE Asserts if the instance variable is Null.

TMLIBAPP_ERR_MODULE_IN_USE Asserts if the instance variable doe not match the
currently opened instance.

TMLIBAPP_ERR_NOT_SETUP Asserts if the instance has not been configured

using the instance setup functions.

Description

These functions stop the video renderer and call voStop.

In AL Layer non-streaming mode, any packets held in the internal queue are returned;
the completion function is called for each packet on the queue with the completion
function flags being set to the packet ID.

In AL Layer streaming and the OL Layer, the renderer can only hold a single main image
packet and one overlay packet (if the overlay is enabled). The function will return the
respective packet using the datainFunc callback, and call the completion function for
each returned packet.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part A 201

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVOInstanceConfig

tmLibappErr_t tmalVrendVOInstanceConfig(
Int instance,
ptsaControlArgs_t args

)3

tmolVrendVOInstanceConfig

tmLibappErr_t tmolVrendVOInstanceConfig(
Int instance,
ptsaControlArgs_t args

)3

Parameters

instance Instance value, as returned by tmalVrendVOOpen
or tmolVrendVOOpen.

args Pointer to tsaControlArgs_t structure. Two fields

of this structure are used to update the instance
configuration: command and parameter.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MODULE_IN_USE Asserts if the desired instance is not open.
TMLIBAPP_ERR_INVALID_INSTANCE Asserts if the instance variable is Null.
TMLIBAPP_ERR_MODULE_IN_USE Asserts if the instance variable does not match the

currently opened instance.
TMLIBAPP_ERR_NOT_SETUP Asserts if the instance has not been configured
using the instance setup functions.

VRENDVO_ERR_CONFIG_UNKNOW_COMMAND
tmalVrendVOInstanceConfig has been called with
an invalid command.

Description

These functions can be used to change instance parameters after the component has
been initialized and during streaming operation. For example, the overlay enable flag
can be changed, or the overlay position moved.

The control structures command field should be set to one of the command values speci-
fied by the enumeration tmalVrendVOConfigTypes_t on page 192. When a parameter is
required, its value should be passed in the control structures parameter field.

202 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVORenderFrame

tmLibappErr_t tmalVrendVORenderFrame(

Int instance,
tmYuvPacket_t *frame
);

Parameters
instance Instance, from tmalVrendVOOpen.
frame Pointer to a packet of video data.

Return Codes

TMLIBAPP_OK
VR_ERR_PUSH_PULL_CONFUSION

VR_ERR_NO_MORE_NODES
VR_ERR_DEVICE_LIBRARY_ERROR

TMLIBAPP_ERR_INVALID_INSTANCE
TMLIBAPP_ERR_MODULE_IN_USE

TMLIBAPP_ERR_NOT_SETUP
VR_ERR_INVALID_ADDRESS

Description

Success.

A datainFunc is installed. Render frame is not used
in streaming mode.

The instance already has four packets to be ren-
dered on its internal queue.

OR’d with the low byte of the return code of the
device library if volnstanceSetup fails.

Asserts if the instance variable passed is Null.

Asserts if the instance variable passed does not
match the currently opened instance.

Asserts if the instance has not been configured
using the instance setup functions.

Asserts if the video buffer is not 64-byte aligned.

In non-streaming mode, this function is used to pass a frame from the application to the
renderer for display. The frame will be displayed using the settings assigned using the
tmalVrendVOInstanceSetup and tmalVrendVOInstanceConfig functions.

The completion callback function will be called when this frame has been displayed and
there are more frames to be displayed on the internal queue. In non-streaming mode,

the video renderer keeps an internal queue of up to four packets. Invocation of this func-

tion when the queue is full will have no effect and will return

VR_ERR_NO_MORE_NODES.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 203

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVORenderOverlay

tmLibappErr_t tmalVrendVORenderOverlay(

Int instance,
tmAvPacket_t *frame
);

Parameters
instance Instance value, from tmalVrendVOOpen.
frame Pointer to a packet of video data

Return Codes

TMLIBAPP_OK
VR_ERR_PUSH_PULL_CONFUSION

VR_ERR_NO_MORE_NODES
VR_ERR_DEVICE_LIBRARY_ERROR

TMLIBAPP_ERR_INVALID_INSTANCE
TMLIBAPP_ERR_MODULE_IN_USE

TMLIBAPP_ERR_NOT_SETUP

VR_ERR_INVALID_ADDRESS

Description

Success.

If a datainFunc is installed. Render frame is not
used in streaming mode.

If instance is not yet ready for new data

Is OR’d with the low byte of the return code of
the device library if voInstanceSetup fails.

Can assert if the instance variable is Null.

Can assert if the instance variable does not match
the currently opened instance

Can assert if the instance has not been configured
using the instance setup functions.

Can assert if the overlay buffer is not 64-byte
aligned.

This function is used to change the video image assigned to the overlay surface. Note
that the overlay must be in sequential YUV422 format.

204 Book 7—Video Support Libraries, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 4: Video Renderer (VrendVO) API

tmalVrendVOReceiverFormat

tmLibappErr_t tmalVrendVOReceiverFormat(
UInt32 inputIndex,

ptmVideoFormat_t format

Parameters

inputIndex

format

Return Codes

If inputindex = VRENDVO_MAIN_INPUT, the for-
mat must be installed on the main input of the
Video Renderer. If inputindex =
VRENDVO_OVERLAY_INPUT, the format must be
installed on the overlay input of the Video Ren-
derer.

Pointer to the video format that needs to be
installed on the queue.

TMLIBAPP_OK
TMLIBAPP_ERR_FORMAT_NULL_FORMAT
VR_ERR_IMAGE_FORMAT

VR_ERR_IMAGE_WIDTH

VR_ERR_IMAGE_HEIGHT

Description

Success.
Asserts if format is null.

Asserts if format->datasubtype is not supported
by VrendVO.

Asserts if
(format->activeVideoEndX —
format->activeVideoStartX) >
format->imageWidth, or if
format->imageWidth = 0.

Asserts if
(format—>activeVideoEndY —
format->activeVideoStartY) >
format->imageHeight, or if
format->imageHeight == 0.

This function is used by the application or a sender component to install a new format

for the Video Renderer. A sender component can call the tsaDefaultProgressFunction
with the flag set to tsaProgressFlagChangeFormat. This calls tmalVrendVOReceiverFormat
and install the new format on the queue. An application can also call the tsaDefault-
InstallFormat function, which also calls tmalVrendVOReceiverFormat.

In case the video standard has changed, tmalVrendVOReceiverFormat stops the Video
Render, does an instance setup, installs the new standard and restarts the Video Renderer
automatically. Any other changes are made without stopping the Video Renderer.

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part A 205

Chapter 4: Video Renderer (VrendVO) API

206 Book 7—Video Support Libraries, Part A ©1999 Philips Semiconductors 10/08/99

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 7—Video Support Libraries
	Video I/O
	1: Video In/Out (vi/vo) API
	Video In/Out API Overview
	Introduction
	viOpen and voOpen
	Instance Setup
	Changing Buffers
	The Rest
	Caveats
	Error Codes

	Video-In API Data Structures
	viYUVModes_t
	viRawModes_t
	viCapabilities_t
	viRawSetup_t
	viYUVSetup_t
	viInstanceSetup_t

	Video-In API Functions
	viGetNumberOfUnits
	viGetCapabilities
	viGetCapabilitiesM
	viInstanceSetup
	viYUVSetup
	viRawSetup
	viOpen
	viOpenM
	viClose
	viStart
	viStop
	viYUVChangeBuffer
	viRawChangeBuffer1
	viRawChangeBuffer2
	viConfigureDecoder
	viGetColorStandard
	viSetBrightness
	viSetContrast
	viSetHue
	viSetSaturation
	viGetVideoStandard
	viGetVSyncFallingEdge
	viGetSlicedData
	viGetStatus
	viGetSupportedDataServices
	viSetDataServices
	viGetSlicerLineFlags
	viEnableSlicing
	viSetSlicerVideoStandard
	viGetSlicerVideoStandard
	viToggleFieldID
	viSetSlicerInput
	viGetSlicerInput
	viSetVideoColor
	viGetVideoColor
	viSetAnalogInput
	viGetAnalogInput
	viSetStandard
	viSetSourceType
	viGetSourceType
	viSetOutputFormat
	viGetOutputFormat
	viSetAcquisitionWnd
	viGetAcquisitionWnd
	viGetDefaultAcquisitionWnd
	viSetOutputSize
	viSetInterlaceMode
	viDisableDecoder
	viEnablePowerSaveMode
	viGetGPIOCount
	viSetGPIOState
	viGetGPIOState
	viOpenVBI
	viEnableVBI
	viSetVBIMode
	viSetSlicerMode
	viCloseVBI

	Video-Out API Data Structures
	voYUVModes_t
	voRawModes_t
	voCapabilities_t
	voRawSetup_t
	voOverlaySetup_t
	voYUVSetup_t
	voInstanceSetup_t
	voenhChromaKeyingSetup_t
	voenhClipSetup_t
	voenhGenLockSetup_t

	Video-Out API Functions
	voGetNumberOfUnits
	voGetCapabilities
	voGetCapabilitiesM
	voInstanceSetup
	voOpen
	voOpenM
	voClose
	voStart
	voStop
	voYUVSetup
	voOverlaySetup
	voRawSetup
	voYUVChangeBuffer
	voOverlayChangeBuffer
	voRawChangeBuffer1
	voRawChangeBuffer2
	voConfigureEncoder
	voSetBrightness
	voSetHue
	voSetSaturation
	voenhStart
	voenhClipSetup
	voenhChromaKeyingSetup
	voenhGenLockSetup

	2: Video Capturer (VcapVI) API
	VcapVI API Overview
	Using the VcapVI API
	Integrated Slicing Mechanism
	Software Slicing

	Line counting issues
	Cache Coherency

	VcapVI Inputs and Outputs
	Packet Formats
	Main Output Pin Format
	TXT Output Packet Format
	L21 Output Packet Format
	WSS Output Packet Format
	VPS Output Packet Format

	VcapVI Error
	VcapVI Progress
	VcapVI Configuration
	VcapVI API Data Structures
	tmolVcapVICapabilities_t
	tmolVcapVIInstanceSetup_t

	VcapVI API Functions
	tmolVcapVIGetNumberOfUnits
	tmolVcapVIGetCapabilities
	tmolVcapVIGetCapabilitiesM
	tmolVcapVIOpen
	tmolVcapVIOpenM
	tmolVcapVIClose
	tmolVcapVIGetInstanceSetup
	tmolVcapVIInstanceSetup
	tmolVcapVIStart
	tmolVcapVIStop
	tmolVcapVIInstanceConfig

	3: Video Digitizer (VdigVI) API
	TriMedia Video Digitizer API Overview
	Using the Video Digitizer API
	The AL layer
	The OL Layer
	Line counting issues
	Cache Coherency

	TriMedia Video Digitizer Inputs and Outputs
	Packet Formats

	TriMedia Video Digitizer Error
	TriMedia Video Digitizer Progress
	Video Digitizer API Data Structures
	tmalVdigVICapabilities_t, tmolVdigVICapabilities_t
	tmalVdigVIInstanceSetup_t, tmolVdigVIInstanceSetup_t

	AL Layer Video Digitizer API Functions
	tmalVdigVIGetNumberOfUnits
	tmalVdigVIGetCapabilities
	tmalVdigVIGetCapabilitiesM
	tmalVdigVIOpen
	tmalVdigVIOpenM
	tmalVdigVIClose
	tmalVdigVIInstanceSetup
	tmalVdigVIStart
	tmalVdigVIStop
	tmalVdigVIInstanceConfig

	OL Layer Video Digitizer API Functions
	tmolVdigVIGetNumberOfUnits
	tmolVdigVIGetCapabilities
	tmolVdigVIGetCapabilitiesM
	tmolVdigVIOpen
	tmolVdigVIOpenM
	tmolVdigVIClose
	tmolVdigVIGetInstanceSetup
	tmolVdigVIInstanceSetup
	tmolVdigVIStart
	tmolVdigVIStop
	tmolVdigVIInstanceConfig

	4: Video Renderer (VrendVO) API
	Video Renderer API Overview
	Using the Video Renderer API
	The AL Layer
	The OL Layer
	Callback Function Requirements
	Packet Formats
	Main Image Input Packet
	Overlay Image Input Packet
	Cache Coherency

	Video Renderer API Data Structures
	tmalVrendVOProgressFlags_t
	tmalVrendVOCapabilities_t
	tmolVrendVOCapabilities_t
	tmalVrendVOInstanceSetup_t
	tmolVrendVOInstanceSetup_t
	tmalVrendVOConfigTypes_t

	Video Renderer API Functions
	tmalVrendVOGetCapabilities
	tmolVrendVOGetCapabilities
	tmalVrendVOOpen
	tmolVrendVOOpen
	tmalVrendVOClose
	tmolVrendVOClose
	tmolVrendVOGetInstanceSetup
	tmalVrendVOInstanceSetup
	tmolVrendVOInstanceSetup
	tmalVrendVOStart
	tmolVrendVOStart
	tmalVrendVOStop
	tmolVrendVOStop
	tmalVrendVOInstanceConfig
	tmolVrendVOInstanceConfig
	tmalVrendVORenderFrame
	tmalVrendVORenderOverlay
	tmalVrendVOReceiverFormat

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

