

Version 2.0 beta

AB

Book 7—Video Support Libraries

Part B:

Video Processing and Coding

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part B

iii

Book 7—Video Support Libraries
Part B: Video Processing and Coding

Table of Contents

Chapter 5 Image Co-Processor (ICP) API

Image Co-Processor API Overview .. 12

Demonstration Programs.. 12

Using the ICP API... 12

Limitations ... 13

Image Co-Processor API Data Structures ... 14

icpOutputType_t .. 15

icpFilterType_t... 15

icpImageHorzVert_t .. 16

icpImageColorConversion_t .. 17

icpOverlaySetup_t ... 19

icpBitMaskSetup_t... 20

icpCapabilities_t ... 20

icpInstanceSetup_t.. 21

Image Co-Processor API Functions.. 22

icpGetCapabilities .. 23

icpOpen ... 24

icpInstanceSetup.. 25

icpClose.. 26

icpLoadCoeff .. 27

icpMove ... 28

icpVertFilter .. 29

icpHorzFilter ... 30

icpDeinterlace.. 31

icpColorConversion ... 33

icpOverlaySetup ... 35

icpGetOverlaySetup .. 36

icpBitMaskSetup... 37

icpGetBitMaskSetup.. 38

Table of Contents

iv

Book 7—Video Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

Chapter 6 Variable Length Decoder (VLD) API

Introduction... 40

VLD Operation .. 40

VLD Basics .. 40

Macroblock Headers... 41

DCT Coefficients... 41

Manipulating the Input Stream.. 42

Reset VLD.. 43

Setup for VLD .. 43

Getting Status Information From VLD ... 44

VLD Multiple Streams (Instances) Decoding ... 45

VLD Example Program ... 45

VLD API Data Structures .. 46

pFnVldEmpty_t ... 47

pFnVldISR_t .. 48

vldCapabilities_t ... 48

vldPictureInfo_t .. 49

vldMVector_t.. 50

vldMV_t.. 50

vldMBHMpeg1_t... 51

vldMBHMpeg2_t... 51

vldMBH_Field_t... 52

vldInstanceSetup_t.. 53

Description .. 53

vldContext_t .. 54

vldInstanceInfo_t.. 55

VLD API Functions... 56

vldGetCapabilities.. 57

vldOpen ... 58

vldClose.. 58

vldInstanceSetup.. 59

vldCommand ... 60

vldInput.. 61

vldReset ... 62

vldGetBits .. 63

vldShowBits .. 64

vldFlushBits... 65

vldNextStartCode... 66

vldSetPictureInfo .. 67

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part B

v

vldGetPictureInfo ... 68

vldFlushOutput ... 68

vldParseMacroblocks .. 69

vldGetMBHeader .. 70

vldSaveContext ... 71

vldRestoreContext ... 72

Chapter 7 Video Transformer (VtransICP) API

Video Transformer API Overview... 74

Video Transformer Functionality ... 75

Limitations ... 75

Using the Video Transformer API ... 76

The AL Layer .. 77

The OL Layer .. 78

Callback Function Requirements... 79

Packet Formats ... 81

Main Image Input Packet.. 81

Overlay Input Packet .. 82

Output Packet... 82

Scaling to a Sub-Section of a YUV Buffer .. 83

Buffer Alignment, Stride, and Cache Coherency .. 85

Demonstration Programs.. 86

AL Layer Example .. 86

Running the Example .. 86

exalVtransICP Program Flow ... 87

OL Layer Example .. 88

Running the Example .. 89

exolVtransICP Program Flow ... 90

Video Transformer API Data Structures .. 91

tmalVtransICPOutputType_t.. 92

tmalVtransICPOverlayPosition_t... 92

tmalVtransICPAlpha_t... 93

tmalVtransICPBitMaskSetup_t... 93

tmalVtransICPCapabilities_t... 94

tmalVtransICPInstanceSetup_t ... 95

tmalVtransICPConfigTypes_t ... 97

tmolVtransICPCapabilities_t .. 98

tmolVtransICPInstanceSetup_t ... 99

Table of Contents

vi

Book 7—Video Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

Video Transformer API Functions ..101

tmalVtransICPOpen ...102

tmalVtransICPClose ...103

tmalVtransICPGetCapabilities..104

tmalVtransICPInstanceSetup ...105

tmalVtransICPGetInstanceConfig...106

tmalVtransICPInstanceConfig..108

tmalVtransICPProcessFrame...109

tmolVtransICPGetCapabilities ...111

tmolVtransICPOpen...112

tmolVtransICPClose...113

tmolVtransICPGetInstanceSetup..114

tmolVtransICPInstanceSetup ...115

tmolVtransICPInstanceConfig..116

tmolVtransICPStart ..117

tmolVtransICPStop...118

Chapter 8 TriMedia Motion JPEG Decoder (VdecMjpeg) API

Motion JPEG Decoder API Overview ...120

Performance ..121

Demonstration Programs ...121

Overview of the tmolVdecMjpeg / tmalVdecMjpeg Component121

Input Description ..121

Output Description ...122

Stopping the VdecMjpeg Component ..122

Motion JPEG Decoder API Data Structures ..123

tmalVdecMjpegStates_t ..124

tmalVdecMjpegStream_t ..125

tmalVdecMjpegCapabilities_t, tmolVdecMjpegCapabilities_t....................................125

tmalVdecMjpegImageDescription_t...126

tmalVdecMjpegInstanceSetup_t, tmolVdecMjpegInstanceSetup_t.........................127

tmalVdecMjpegProgressFlags_t...128

Motion JPEG Decoder API Functions ..129

tmalVdecMjpegOpen, tmolVdecMjpegOpen..130

tmalVdecMjpegStart, tmolVdecMjpegStart ...131

tmalVdecMjpegStop, tmolVdecMjpegStop..132

tmalVdecMjpegClose, tmolVdecMjpegClose...133

tmalVdecMjpegGetCapabilities, tmolVdecMjpegGetCapabilities134

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part B

vii

tmalVdecMjpegInstanceSetup, tmolVdecMjpegInstanceSetup.................................135

tmolVdecMjpegGetInstanceSetup ..136

Chapter 9 TriMedia Motion JPEG Encoder (VencMjpeg) API

Motion JPEG Encoder API Overview ...138

Performance ..139

Demonstration Programs ...139

Overview of the tmolVencMjpeg / tmalVencMjpeg Component139

Input Description ..140

Output Description ...140

Stopping the VencMjpeg Component ..140

Motion JPEG Encoder API Data Structures...140

tmalVencMjpegStates_t...141

tmalVencMjpegStream_t ..142

tmalVencMjpegProgressFlags_t ...142

tmalVencMjpegBufferType_t ...143

tmalVencMjpegCapabilities_t, tmolVencMjpegCapabilities_t143

tmalVencMjpegImageDescription_t, tmolVencMjpegImageDescription_t...........144

tmalVencMjpegInstanceSetup_t/ tmalVencMjpegInstanceSetup_t145

Motion JPEG Encoder API Functions ...146

tmalVencMjpegGetCapabilities / tmolVencMjpegGetCapabilities............................147

tmalVencMjpegOpen / tmolVencMjpegOpen ..148

tmalVencMjpegClose / tmolVencMjpegClose...149

tmolVencMjpegGetInstanceSetup ..150

tmalVencMjpegInstanceSetup / tmolVencMjpegInstanceSetup151

tmalVencMjpegStart / tmolVencMjpegStart..152

tmalVencMjpegEncodeFrame ...153

tmalVencMjpegStop, tmolVencMjpegStop ..154

Chapter 10 Natural Motion Video Transformer (VtransNM) API

VtransNM API Overview ..156

Limitations ...157

VtransNM Inputs and Outputs ...158

Overview ..158

Inputs ...159

Outputs ...159

VtransNM Errors ..159

Table of Contents

viii

Book 7—Video Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

VtransNM Progress ...160

VtransNM Configuration ...160

VtransNM API Data Structures ...160

tmolVtransNMInstanceSetup_t...161

tmolVtransNMCapabilities_t..162

tmolVtransNMConfig_t ..163

tmolVtransNMErrorFlags_t ...165

tmolVtransNMControlCommand_t ...167

VtransNM API Functions..168

tmolVtransNMGetCapabilities...169

tmolVtransNMOpen ..170

tmolVtransNMInstanceSetup...171

tmolVtransNMGetInstanceSetup ...172

tmolVtransNMStart..173

tmolVtransNMStop..174

tmolVtransNMClose ..175

tmolVtransNMInstanceConfig ...176

Chapter 11 MPEG Video Decoder (VdecMpeg) API

VdecMpeg API Overview...178

Limitations ...178

VdecMpeg Inputs and Outputs ..178

Overview ..178

Inputs ...179

Outputs ...179

VdecMpeg Errors...181

VdecMpeg Progress..181

VdecMpeg Configuration ..181

VdecMpeg API Data Structures ..182

tmolVdecMpegInstanceSetup_t, tmalVdecMpegInstanceSetup_t183

tmolVdecMpegCapabilities_t, tmalVdecMpegCapabilities_t184

tmolVdecMpegErrorFlags_t ...185

tmalVdecMpegControlCommand_t ...188

tmalVdecMpegProgressFlags_t ..190

tmalVdecMpegSequenceLevel_t ...191

tmalVdecMpegSequenceDescription_t ..192

tmalVdecMpegPictureInfo_t..193

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 7—Video Support Libraries, Part B

ix

VdecMpeg API Functions ..196

tmolVdecMpegGetCapabilities, tmalVdecMpegGetCapabilities................................197

tmolVdecMpegOpen, tmalVdecMpegOpen ..198

tmolVdecMpegInstanceSetup, tmalVdegMpegInstanceSetup...................................199

tmolVdecMpegGetInstanceSetup, tmalVdecMpegGetInstanceSetup.....................200

tmolVdecMpegStart, tmalVdecMpegStart..201

tmolVdecMpegStop, tmalVdecMpegStop ..202

tmolVdecMpegClose, tmalVdecMpegClose ...203

tmolVdecMpegInstanceConfig ...204

tmalVdecMpegInstanceConfig ...205

Table of Contents

x

Book 7—Video Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99

 Book 7—Video Support Libraries, Part B

11

Chapter 5

Image Co-Processor (ICP) API

Note

For a general overview of TriMedia device libraries, see Chapter 5,

Device
Libraries

, of Book 3,

Software Architecture

, Part A.

Topic Page

Image Co-Processor API Overview 12

Demonstration Programs 12

Using the ICP API 12

Limitations 13

Image Co-Processor API Data Structures 14

Image Co-Processor API Functions 22

Chapter 5: Image Co-Processor (ICP) API

12

Book 7—Video Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

Image Co-Processor API Overview

The TriMedia ICP device library provides a set of functions that allow you to access the

TriMedia DSPCPU and other peripherals through the TriMedia on-chip data highway.

For example, using the ICP device library functions, you can read image data from or

write data to SDRAM, or you can write directly to the PCI interface. In particular, this

library provides functions to:

■

Load filter coefficients from SDRAM.

■

Scale and filter image data in horizontal and vertical directions.

■

Convert interlaced image data to deinterlaced (progressive scan) image data.

■

Perform several different image format conversions, particularly from YUV to RGB.

The TriMedia device libraries are designed to be used to create device drivers. Whereas

device drivers are operating-system specific, the device libraries are generic. And whereas

device drivers specify a data transfer mechanism, the device libraries gives the data trans-

fer mechanism control to the user.

The example application shows how the ICP device library can be used on its own with-

out a traditional device-driver structure. In a given operating system, it may or may not

be useful to create a standard device driver for this peripheral. However, if you decide to

create a device driver, the ICP API should be very helpful.

Demonstration Programs

The ICP device library also includes the demonstration program

icptest

, which demon-

strates the use of ICP library functions. The source code for this demonstration program

serves as an example for developers who want to write their own functions. The program

is contained in the example tree of the TriMedia Compilation System.

Using the ICP API

The ICP API is contained in the archived device library, libdev.a. To use the ICP API, you

must include the tmICP.h file. The libdev.a device library is linked automatically.

To use the ICP API successfully, you also must do the following:

■

Wrap code with the appropriate opening and closing ICP general functions.

■

Use the scaling and filtering functions in the code to provide desired functionality.

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99

 Book 7—Video Support Libraries, Part B

13

Figure 1 shows a sequence you will need to follow in order to use the ICP library.

Figure 1

Functions Required for Using the ICP

Limitations

You should be aware of the following hardware and/or software limitations:

■

All addresses, or pointers to images, should be 64-bytes aligned, otherwise the results

may not be correct.

■

For a vertical filter, the source and destination stride, pitch, or line offset must be a

multiple of 64 bytes, otherwise the results are incorrect.

■

For deinterlacing, the source and destination stride, pitch, or line offset must be a

multiple of 64 bytes, otherwise the results are incorrect.

■

For a color conversion filter on the 0.5-micron version of the TriMedia processor, if

the RGB output is sent to the PCI and the source stride is not a multiple of 64, the

output image may have speckles in it. If the source stride is a multiple of 64, the

speckles are reduced or completely eliminated. (This problem has been fixed for the

0.35 micron version of the TriMedia processor.)

■

The starting address of the microcode must be 128-bytes aligned. This is automati-

cally done in the

icpInstanceSetup

 function, which loads and aligns the microcode. If

the microcode is 64-bytes aligned, ICP may hang in continuous video.

■

There are restrictions on the overlay and output formats when using the

icpColorCon-

version

 function. The overlay image format must be the same type as the output

image format generated by the ICP. If the output image format is one of the RGB for-

mats, the overlay must be one of the two RGB overlay formats (

vdfRGB15Alpha

 or

vdfRGB24Alpha

). Similarly, if the output image format is YUV, then the overlay must

be

vdfYUV422SequenceAlpha

. The formats must be of the same type because the ICP

does no conversion of the overlay data. The output/overlay format restrictions are

shown in table 15-1 below.

Open ICP

Scale and Filter

Close ICP

icpOpen
icpInstanceSetup

icpLoadCoeff
icpOverlaySetup
icpBitmaskSetup
icpMove
icpHorzFilter
icpVertFilter
icpDeinterlace
icpColorConversion

icpClose

Chapter 5: Image Co-Processor (ICP) API

14

Book 7—Video Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

■

There are restrictions on the destination PCI address when outputting

vdfRGB24

using the

icpColorConversion

 function. The restriction applies when the user wishes

to place the output at an address which is offset from the start of the PCI video buffer.

The offset must be a multiple of six bytes (i.e., on an even pixel boundary), otherwise

the color will be incorrect. For example, consider a PCI video card which has a base

address of

0xE0000000

. Valid PCI addresses would be

0xE0000000

,

0xE0000006

,

0xE000000C

,

0xE0000012

, etc.

Image Co-Processor API Data Structures

The following sections describe the ICP device library data structures.

Output Format Overlay Format

vdfRGB8A_233 vdfRGB15Alpha or vdfRGB24Alpha

vdfRGB8R_332

vdfRGB15Alpha

vdfRGB16

vdfRGB24

vdfRGB24Alpha

vdfYUV422Sequence vdfYUV422SequenceAlpha

vdfYUV422SequenceAlpha

Name Page

icpOutputType_t 15

icpFilterType_t 15

icpImageHorzVert_t 16

icpImageColorConversion_t 17

icpOverlaySetup_t 19

icpBitMaskSetup_t 20

icpCapabilities_t 20

icpInstanceSetup_t 21

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99

 Book 7—Video Support Libraries, Part B

15

icpOutputType_t

typedef enum {
 icpSDRAM,
 icpPCI
} icpOutputType_t;

Description

This enum is used by the struct

icpImageColorConversion_t

. It is used to select between

the output being directed to SDRAM bus or the PCI bus.

icpFilterType_t

typedef enum {
 icpFILTER,
 icpBYPASS
} icpFilterType_t;

Description

This enum is used by the structs

icpImageHorzVert

 and

icpImageColorConversion_t

. It is

used to specify the filter mode, i.e., whether to use the ICP 5-tap filter or not.

Chapter 5: Image Co-Processor (ICP) API

16

Book 7—Video Support Libraries, Part B

©1999 Philips Semiconductors 10/08/99

icpImageHorzVert_t

typedef struct {
 UInt8 *imageBase;
 Int inputStride;
 Int inputHeight;
 Int inputWidth;
 UInt8 *outputImage;
 Int outputStride;
 Int outputHeight;
 Int outputWidth;
 icpFilterType_t filterBypass;
 Float outputPixelOffset;
} icpImageHorzVert_t;

Fields

imageBase

Pointer to the input image. It should be 64-byte
aligned.

inputStride

Input image stride.

inputHeight

Input image height.

inputWidth

Input image width.

outputImage

Pointer to the output image.

outputStride

Output image stride.

outputHeight

Output image height.

outputWidth

Output image width.

filterBypass

Filtering mode. (Use or bypass the 5-tap filter.)

outputPixelOffset

Alignment of the output pixel with respect to the
input pixel. This should be in the range of –0.5 to
0.5.

Description

This struct is used by the functions

icpMove

,

icpVertFilter

,

icpHorzFilter and icpDeinter-

lace

. All the height, width, and stride parameters are assumed to be a positive integer.

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99

 Book 7—Video Support Libraries, Part B

17

icpImageColorConversion_t

typedef struct {
 UInt8 *yBase;
 UInt8 *uBase;
 UInt8 *vBase;
 Int yInputStride;
 Int uvInputStride;
 Int inputHeight;
 Int inputWidth;
 UInt8 *outputImage;
 Int outputStride;
 Int outputHeight;
 Int outputWidth;
 icpFilterType_t filterBypass;
 Float outputPixelOffset;
 tmVideoRGBYUVFormat_t inFormat;
 tmVideoRGBYUVFormat_t outFormat;
 Bool littleEndian;
 Bool overlayEnable;
 Bool bitMaskEnable;
 icpOutputType_t outputDestination;
 Float alpha0;
 Float alpha1;
} icpImageColorConversion_t;

Fields

yBase Pointer to the Y image. It should be 64 bytes
aligned.

uBase Pointer to the U image. It should be 64 bytes
aligned.

vBase Pointer to the V image. It should be 64 bytes
aligned.

yInputStride Y image stride.

uvInputStride UV image stride. (U and V assumed to be the
same.)

inputHeight Input image height.

inputWidth Input image width.

outputImage Pointer to the output image

outputStride Output image stride.

outputHeight Output image height.

outputWidth Output image width.

filterBypass Filtering mode. (Use or bypass the 5-tap filter.)

Chapter 5: Image Co-Processor (ICP) API

18 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

outputPixelOffset Alignment of the output pixel with respect to the
input pixel. This should be in the range of -0.5 to
0.5.

inFormat Input image format. The available input formats
are vdfYUV422planar, vdfYUV420Planar,
vdfYUV411Planar, vdf422Interspersed and
vdf420Interspersed.

outFormat Output image format. The available output for-
mats are vdfRGB8A_233, vdfRGB8R_332,
vdfRGB15Alpha, vdfRGB16, vdfRGB24,
vdfRGB24Alpha, vdfYUV422Sequence and
vdfYUV422SequenceAlpha.

littleEndian Output data is little endian if TRUE, big endian if
FALSE.

overlayEnable Enable the overlay. (See Note 1.)

bitMaskEnable Enable the bitmask. (See Note 2.)

outputDestination The choices are icpPCI or icpSDRAM.

alpha0 (See Note 3.)

alpha1 (See Note 4.)

Description

This struct is used by the function icpColorConversion. All the height, width, and stride

parameters are assumed to be a positive integer.

NOTES:

1. This enables the overlay.The user must call icpOverlaySetup before enabling. Once the

overlay is set up, overlayEnable can be TRUE or FALSE to display or inhibit display of

overlays.

2. This enables the bitmask. The user must call icpBitmaskSetup before enabling. Once

the bitmask is set up, bitMaskEnable can be TRUE or FALSE to enable or inhibit the bit-

mask.

3. The value of alpha0 should be between 0 and 1. alpha0 is chosen if the output is

RGB15+alpha or YUV422+alpha and the alpha bit is 0.

4. The value of alpha1 should be between 0 and 1. alpha1 is chosen if the output is

RGB15+alpha or YUV422+alpha and the alpha bit is 1.

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 19

icpOverlaySetup_t

typedef struct {
 UInt8 *overlayBase;
 Int stride;
 Int height;
 Int width;
 Int startX;
 Int startY;
 Bool littleEndian;
 tmVideoRGBYUVFormat_t format;
} icpOverlaySetup_t;

Fields

overlayBase Pointer to the overlay image.

stride Overlay stride in bytes.

height Overlay height in bytes.

width Overlay width in bytes.

startX Starting pixel for overlay in the original image. It
should be between zero and the background
image width.

startY Starting line for overlay in the original image. It
should be between zero and the background
image height.

format Overlay format. Only RGB24+a, RGB15+a and
YUV422+a are accepted.

littleEndian Output data is little endian if TRUE, big endian if
FALSE.

Description

This struct is used by the functions icpOverlaySetup and icpGetOverlaySetup. The height,

width, and stride parameters are assumed to be a positive integer.

Chapter 5: Image Co-Processor (ICP) API

20 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

icpBitMaskSetup_t

typedef struct {
 UInt8 *bitMaskBase;
 Int stride;
} icpBitMaskSetup_t;

Fields

bitMaskBase Pointer to the bitmask image.

stride Stride of the bitmask image (usually 1/8 of the
image width).

Description

This struct is used by the functions icpBitMaskSetup and icpGetBitMaskSetup.

icpCapabilities_t

typedef struct {
 tmVersion_t version;
 Int numSupportedInstances;
 Int numCurrentInstances;
} icpCapabilities_t;

Fields

version Returns the library version.

numSupportedInstances Only one instance is supported.

numCurrentInstances Returns the number of open instances.

Description

This struct is used by the function icpGetCapabilities

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 21

icpInstanceSetup_t

typedef struct {
 Bool reset;
 IntPriority_t interruptPriority;
 void (*isr)(void);
} icpInstanceSetup_t;

Fields

reset True means to reset the of ICP before installing
interrupts.

interruptPriority A value ranging from 0 (lowest priority) to 7
(highest priority).

isr Pointer to the user interrupt service routine (ISR).

Description

This struct is used by the function icpInstanceSetup.

Chapter 5: Image Co-Processor (ICP) API

22 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Image Co-Processor API Functions

This section presents the ICP device library functions.

Name Page

icpGetCapabilities 23

icpOpen 24

icpInstanceSetup 25

icpClose 26

icpLoadCoeff 27

icpMove 28

icpVertFilter 29

icpHorzFilter 30

icpDeinterlace 31

icpColorConversion 33

icpOverlaySetup 35

icpGetOverlaySetup 36

icpBitMaskSetup 37

icpGetBitMaskSetup 38

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 23

icpGetCapabilities

tmLibdevErr_t icpGetCapabilities(
 picpCapabilities_t *icpCap
);

Parameters

icpCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Pointer to the struct is NULL.

Description

This function fills in the value of a user-supplied pointer variable which will then point

to the single shared capabilities structure for the ICP device library.

Chapter 5: Image Co-Processor (ICP) API

24 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

icpOpen

tmLibdevErr_t icpOpen(
 Int *instance
);

Parameters

instance Instance value.

Return Codes

TMLIBDEV_OK Success.

ICP_ERR_NO_MORE_INSTANCES Returned if the ICP cannot allocate more
instances.

Description

This function assigns an instance for usage and resets the ICP with the icpReset macro.

Note that ICP is a single-instance device.

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 25

icpInstanceSetup

tmLibdevErr_t icpInstanceSetup(
 Int instance,
 icpInstanceSetup_t *setup
);

Parameters

instance Instance value.

setup Pointer to a struct of type icpInstanceSetup_t con-
taining setup data.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Some other process already has the device con-
trol. The debug version of the device library can
assert this.

ICP_ERR_LOAD_MICRO_CODE Could not load the micro code. Check to see if
you have the correct microcode file.

Others tmInterrupts errors.

Description

This function will prepare the ICP for operation by loading the micro code. It will enable

or disable the ICP interrupt according to the value of the pointer of the interrupt service

routine with icpEnableINTERRUPT or icpDisableINTERRUPT macros.

It requires that the function icpOpen has been called first. It can then be called more

than once to re-install the interrupt handler or change the interrupt service routine

(ISR).

It also sets up the little-endian or big-endian mode. The mode defaults to match the

compiler switch.

Chapter 5: Image Co-Processor (ICP) API

26 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

icpClose

tmLibdevErr_t icpClose(
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBDEV_OK Success.

ICP_ERR_BUSY Some other process is using the ICP.

TMLIBDEV_ERR_NOT_OWNER The instance does not match the owner.

Description

The icpClose function closes the hardware and deinstalls the interrupt handler.

This resets the ICP (with the icpReset macro), close the intICP interrupt with intClose,

and disables ICP interrupts with the icpDisableINTERRUPT macro.

After closing the ICP, you should call icpOpen in order to use the ICP filters again.

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 27

icpLoadCoeff

tmLibdevErr_t icpLoadCoeff(
 Int instance,
 Int16 *icpFilterCoeff
);

Parameters

instance Instance value.

icpFilterCoeff Pointer to a coefficient table stored as Int16.

Return Codes

TMLIBDEV_OK Success.

ICP_ERR_COEFF_TABLE Filter coefficients are outside the range [–512,
511].

Description

The icpLoadCoeff function loads the ICP with filter coefficients. If the input pointer is

NULL, then it will load the standard coefficients. This function is called only when

changing coefficients and it may be called at any time during ICP processing to load a

new set of coefficients. It starts the ICP and returns after the coefficients are loaded. The

function assumes the following:

■ Microcode is already loaded

■ All other ICP controls are set and checked outside.

Following successful completion, the coefficient table is loaded in SDRAM and is ready

to be used by the ICP filters.

Chapter 5: Image Co-Processor (ICP) API

28 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

icpMove

tmLibdevErr_t icpMove(
 Int instance,
 icpImageHorzVert_t *image
);

Parameters

instance Instance value.

image Pointer to the struct containing image data and
pointers.

Return Codes

TMLIBDEV_OK Operation successfully completed.

TMLIBDEV_ERR_NOT_OWNER Returned if instance does not match owner.

ICP_ERR_SETUP_REQUIRED ICP has not been set up. Use icpInstanceSetup.

ICP_ERR_INVALID_HEIGHT Height not specified correctly.

ICP_ERR_INVALID_WIDTH Width not specified correctly.

ICP_ERR_INVALID_STRIDE Stride not specified correctly.

ICP_ERR_ADDRESS_NOT_64_ALIGNED Source or image address is not 64-bytes aligned.

ICP_ERR_BUSY Attempt to call icpMove while the ICP is busy pro-
cessing another task previously assigned by the
same user.

Description

The icpMove function moves an image from the area in SDRAM specified by *inputImage

to the area in SDRAM specified by *outputImage.

The function assumes the following:

■ Microcode is already loaded.

■ ICP is initialized and open.

■ The source image is copied back in memory.

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 29

icpVertFilter

tmLibdevErr_t icpVertFilter(
 Int instance,
 icpImageHorzVert_t *image
);

Parameters

instance Instance value.

image Pointer to the struct containing image data and
pointers.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if instance does not match owner.

ICP_ERR_SETUP_REQUIRED ICP has not been set up. Use icpInstanceSetup.

ICP_ERR_INVALID_HEIGHT Height not specified correctly.

ICP_ERR_INVALID_WIDTH Width not specified correctly.

ICP_ERR_INVALID_STRIDE Stride not specified correctly.

ICP_ERR_ADDRESS_NOT_64_ALIGNED Source or image address is not 64-bytes aligned.

ICP_ERR_BUSY Attempt to call icpVertFilter while ICP is busy pro-
cessing another task previously assigned by the
same user.

ICP_ERR_VERT_STRIDE_NOT_64_ALIGNED
Source or destination stride is not a multiple of 64
bytes.

Description

The function icpVertFilter vertically filters and scales an image in SDRAM pointed by

*inputImage and stores the new image in SDRAM to which outputImage points. For ver-

tical filtering, output and input strides should be a multiple of 64, otherwise the output

is not guaranteed to be correct.

The function assumes the following:

■ Microcode is already loaded (automatically done in icpOpen).

■ Filter coefficients are already loaded.

■ ICP is initialized and open.

■ Source image is copied back in memory.

Chapter 5: Image Co-Processor (ICP) API

30 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

icpHorzFilter

tmLibdevErr_t icpHorzFilter(
 Int instance,
 icpImageHorzVert_t *image
);

Parameters

instance Instance value.

image Pointer to the struct containing image data and
pointers.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if instance does not match owner.

ICP_ERR_SETUP_REQUIRED ICP has not been set up. Use icpInstanceSetup.

ICP_ERR_INVALID_HEIGHT Height not specified correctly.

ICP_ERR_INVALID_WIDTH Width not specified correctly.

ICP_ERR_INVALID_STRIDE Stride not specified correctly.

ICP_ERR_ADDRESS_NOT_64_ALIGNED Source or image address is not 64-bytes aligned.

ICP_ERR_BUSY Attempt to call icpHorzFilter while ICP is busy
processing another task previously assigned by
the same user.

Description

The icpHorzFilter function filters an image in SDRAM pointed to by *inputImage and

stores the new image in SDRAM to which destImage points.

The function assumes the following:

■ Microcode is already loaded.

■ Filter coefficients are already loaded.

■ ICP is initialized and open.

■ Source image is copied back in memory.

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 31

icpDeinterlace

tmLibdevErr_t icpDeinterlace(
 Int instance,
 icpImageHorzVert_t *image
);

Parameters

instance The instance.

image Pointer to the struct containing image data and
pointers.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if instance does not match owner.

ICP_ERR_SETUP_REQUIRED ICP has not been set up. Use icpInstanceSetup.

ICP_ERR_INVALID_HEIGHT Height not specified correctly.

ICP_ERR_INVALID_WIDTH Width not specified correctly.

ICP_ERR_INVALID_STRIDE Stride not specified correctly.

ICP_ERR_ADDRESS_NOT_64_ALIGNED Source or image address is not 64-bytes aligned.

ICP_ERR_BUSY Attempt to call icpVertFilter while ICP is busy pro-
cessing another task previously assigned by the
same user.

ICP_ERR_VERT_STRIDE_NOT_64_ALIGNED
Source or destination stride is not a multiple of 64
bytes.

Description

The function icpDeinterlace performs interlaced to deinterlaced (progressive scan) con-

version of an image in SDRAM pointed by inputImage and stores the new image in

SDRAM to which outputImage points. For deinterlace filtering, output and input strides

should be a multiple of 64, otherwise the output is not guaranteed to be correct. The

function requires special filter coefficients to be loaded; these are provided in the device

library and have the name icpDeinterlaceCoeff. The coefficients are loaded using the

icpLoadCoeff function; an example being

icpLoadCoeff(instance, icpDeinterlaceCoeff);

Chapter 5: Image Co-Processor (ICP) API

32 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

The function assumes the following:

■ Microcode is already loaded (automatically done in icpOpen).

■ Deinterlace filter coefficients are already loaded.

■ The ICP is initialized and open.

■ Source image is copied back in memory.

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 33

icpColorConversion

tmLibdevErr_t icpColorConversion(
 Int instance,
 icpImageColorConversion_t *image
);

Parameters

instance Instance value.

image Pointer to the struct containing image data and
pointers.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned if instance does not match owner.

ICP_ERR_SETUP_REQUIRED ICP has not been set up. Use icpInstanceSetup.

ICP_ERR_INVALID_HEIGHT Source or destination height <= 0.

ICP_ERR_INVALID_WIDTH Source or destination width <=0.

ICP_ERR_INVALID_STRIDE Source or destination stride <= 0.

ICP_ERR_ADDRESS_NOT_64_ALIGNED Address pointer must be aligned at a 64 byte
block boundary.

ICP_ERR_BUSY Attempt to call icpColorConversion while ICP is
busy processing.

ICP_ERR_IMAGE_TYPE Requested image format is not supported.

ICP_ERR_OUTPUT_NOT_DEFINED Requested output is neither PCI nor SDRAM.

ICP_ERR_CANT_WRITE_TO_BIUCTRL For PCI output, BIU control register could not be
modified.

ICP_ERR_INVALID_ALPHA alpha is outside the range [0,1].

ICP_ERR_SETUP_OVERLAY_REQUIRED Overlay mode requested through overlayEnable
before icpOverlaySetup was called.

ICP_ERR_SETUP_BITMASK_REQUIRED Bitmask mode requested before the function icp-
BitMaskSetup was called.

Description

This function will convert YUV422 planar, YUV420 planar, YUV 411 planar, YUV 420

interspersed and YUV 422 interspersed to RGB 24 + alpha, RGB 24 packed, RGB 16, RGB

15 + alpha, RGB 8A, RGB 8R, YUV 422 sequence, or YUV 422 sequence + alpha formats

and send the data to either the PCI or SDRAM with or without an overlay or bitmask.

Note that when the output is directed to the SDRAM, the ICP does not use overlay and

bitmask information.

Chapter 5: Image Co-Processor (ICP) API

34 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Required conditions are:

■ Images are already copied back.

■ Filter coefficients are already loaded.

■ Micro code is already loaded in SDRAM.

■ ICP is already set up and open.

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 35

icpOverlaySetup

tmLibdevErr_t icpOverlaySetup(
 Int instance,
 icpOverlaySetup_t *overlay
);

Parameters

instance The instance.

Overlay Pointer to the overlay information.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Instance does not match owner.

ICP_ERR_BUSY ICP is still processing some previous job.

ICP_ERR_SETUP_REQUIRED ICP has not been set up.

ICP_ERR_INVALID_START_VALUE Invalid startX or startY.

ICP_ERR_OVERLAY_MODE Requested mode is not supported.

TMLIBDEV_ERR_NULL_PARAMETER Pointer to the overlay struct is NULL.

Description

This function sets up an overlay image. If an image overlay is desired then it must be

called before calling the icpColorConversion function and setting overlayEnable to TRUE.

icpColorConversion can then be called anytime to suppress display of the overlay image

by setting the enableOverlay flag to FALSE.

Chapter 5: Image Co-Processor (ICP) API

36 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

icpGetOverlaySetup

tmLibdevErr_t icpGetOverlaySetup(
 Int instance,
 icpOverlaySetup_t *overlay
);

Parameters

instance Instance value.

overlay Pointer to the overlay information.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned when instance does not match owner.

Description

Retrieves the current overlay information.

Chapter 5: Image Co-Processor (ICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 37

icpBitMaskSetup

tmLibdevErr_t icpBitMaskSetup(
 Int instance,
 icpBitMaskSetup_t *bitmask
);

Parameters

instance Instance value.

bitmask Pointer to the struct containing bitmask informa-
tion.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned when instance does not match owner.

ICP_ERR_SETUP_REQUIRED ICP has not been set up.

TMLIBDEV_ERR_NULL_PARAMETER Pointer to the overlay struct is NULL.

Description

This function sets up a bitmask image. If an bitmask image is desired then it must be

called before calling the icpColorConversion function and setting the bitmaskEnable to

TRUE. icpColorConversion can then be called anytime to suppress display of the bitmask

image by setting the enableBitmask flag to FALSE.

Chapter 5: Image Co-Processor (ICP) API

38 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

icpGetBitMaskSetup

tmLibdevErr_t icpGetBitMaskSetup(
 Int instance,
 icpBitMaskSetup_t *bitmask
);

Parameters

instance The instance.

bitmask Pointer to the structure which will receive bit-
mask information.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Returned when instance does not match owner.

Description

Retrieves the current bitmask information.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 39

6

Chapter 6

Variable Length Decoder (VLD) API

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device
Libraries, of Book 3, Software Architecture, Part A.

Topic Page

Introduction 40

VLD Operation 40

VLD Example Program 45

VLD API Data Structures 46

VLD API Functions 56

Chapter 6: Variable Length Decoder (VLD) API

40 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Introduction

The Variable Length Decoder (VLD) is a co-processor to the TriMedia DSPCPU which

assumes responsibility for the Huffman (Entropy) decoding process in MPEG video. Pro-

vided with a pointer to an MPEG 1 or MPEG 2 stream as well as some configuration

information, it produces as output the macroblock header information and DCT coeffi-

cients on a macroblock level. These data are sent to separate buffers located in SDRAM

via DMA, and are accessed by the DSPCPU to complete the video decoding process. In

general, MMIO registers are used to communicate, control and synchronize for VLD

operations.

VLD Operation

The VLD coprocessor supports five major operations:

1. Shift the bit stream

2. Search for the next start code

3. Parse macroblocks

4. Flush the output FIFO

5. Reset the VLD.

The VLD decodes Huffman codes in hardware enabling asynchronous operation with

the DSPCPU. The VLD outputs to two buffers in SDRAM, one buffer for the macroblock

headers and another for run length encoded DCT coefficients.

VLD Basics

The VLD API functions and data structure definitions are based upon the operations pro-

vided by the VLD. The function vldParseMacroblocks is used to parse a number of mac-

roblocks. This function should be called after the necessary data such as picture

information has been provided using the vldSetPictureInfo function. Once the VLD has

started parsing macroblocks or shifting the bitstream, it may stop for any one of the

flowing reasons:

■ the command completed without exceptions

■ a start code was detected

■ an error was encountered in the bit stream

■ the VLD input DMA completed and the VLD is stalled waiting for more input bit-

stream data

■ one of the VLD output DMAs completed and the VLD is stalled because the output

FIFO is full.

Under normal circumstances the DSPCPU can be interrupted whenever the VLD halts.

The function vldGetBits is provided to get a specific number of bits by shifting the bit-

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 41

6

stream. Other functions that can be used to hand decode the input stream include vld-

ShowBits to look at the next bits without shifting the input stream, vldFlushBits to skip a

number of bits and vldNextStartCode to skip bits until a new startcode is encountered.

Macroblock Headers

The buffer that is filled with macroblock header information has to be allocated by the

user. Its location and size must be given to the VLD before it can start decoding macro-

blocks. Whenever the VLD notifies the user that the buffer is full, the user must point

the VLD to a new buffer. The format of the macroblock header returned by the VLD is

described in the data book (Chapter 14, figure 2). In the case of an MPEG-1 stream, the

macroblock header takes four 32-bit words, while for an MPEG-2 stream, the buffer is

filled with blocks of six 32-bit words; the difference being the second motion vectors.

The VLD library provides an efficient function vldGetMBHeader to store these four- or

six-word blocks into a C structure, vldTMBHField_t, for more convenient access and

manipulation.

DCT Coefficients

Similar to the buffer requirement for the macroblock headers, the buffer for the DCT

coefficients must be allocated explicitly by the user and its location and size passed to

the VLD.

The DCT coefficients are represented with 32 bit words. However, there are three formats

in which the coefficients can be stored:

■ AC coefficients. AC coefficients are stored in the buffer in the following format:

■ DC coefficients. The first word of an intra block describes the DC coefficients in the

following format:

Where k = 16 – dct_dc_size bits, bits k-0 are not significant.

■ End of block markers. The end of block markers are stored in the buffer in the follow-

ing format:

31 1516 0

run level

31 1516 0

dct_dc_size

dct_dc_differential

1920 k –1k

31 1516 02324

1 1 1 1 1 1 1 1

Chapter 6: Variable Length Decoder (VLD) API

42 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Note
The output is generated in sections of 64 bytes, so when the VLD has
completed parsing macroblocks, and the last macroblock headers or
coefficients do not add up to 64 bytes, the user must flush the hardware
buffers explicitly, using vldFlushOutput. As flushing is also performed in
sections of 64 bytes, some erroneous information will be written into the
buffers.

Manipulating the Input Stream

Five functions are available in the VLD library to parse or manipulate the input stream.

By using these functions, the input buffer may become empty. This will be notified

through a bit in the VLD status register, or by an interrupt if enabled. Three of these

functions are provided to manipulate the input bit stream on a per-bit basis; these are

vldGetBits, vldShowBits, and vldFlushBits.

■ vldParseMacroblocks

The function vldParseMacroblocks is used to instruct the VLD to start decoding the

bitstream and fill two buffers with macroblock headers and DCT coefficients. The

arguments of this function inform the VLD how many macroblocks to decode and

where and how large the output buffers are.

The function is asynchronous; it will start the VLD and return immediately. The VLD

will set the status MMIO register or raise an interrupt in case the requested number of

macroblocks is successfully parsed, or when it cannot finish; this may be because the

input buffer is empty, one of the output buffers is full, a start code was encountered

or a bitstream error occurred.

If the VLD is halted because the input buffer is empty or one of the output buffers is

full, the VLD can be supplied with a new buffer to enable it continue automatically.

■ vldNextStartCode

The function vldNextStartCode can be called to find the next start code in the input

stream. On success, the function returns the start code so the user can determine

what specific start code was encountered.

■ vldGetBits

The function vldGetBits will shift the bit stream a maximum of 32 bits, and return

those bits through a pointer.

■ vldShowBits

The function vldShowBits also returns a requested number of bits from the input

stream to the user, but it does not shift the input stream, so it can only show the bits

within the shift register.

■ vldFlushBits

The function vldFlushBits can be used to shift and remove any number of bits from

the input stream.

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 43

6

Reset VLD

Calling vldFlushOutput ensures that all output buffers are up to date with respect to the

current parsed bit stream and that the hardware output buffers have been flushed. The

function vldReset is provided to reset the VLD state machine and ensure all VLD MMIO

registers are in a clean state for parsing an input stream.

Setup for VLD

The function vldInstanceSetup must be called to set up the VLD library. This function

takes as an argument a struct type vldInstanceSetup_t that contains information required

by the library. One of the fields, vldEmptyFunc, provides the library with a pointer to a

callback function that provides the VLD with a filled input buffer. The callback function

can be called from the library, an application or an ISR when the input buffer becomes

empty. The function should accept a flag as parameter that tells the function whether it

is allowed to block until it actually provided the VLD with a new buffer, because there

are synchronous commands such as vldGetBits, vldFlushBits and asynchronous com-

mand like vldParseMacroblocks in the VLD library.

Other fields of the structure hold the interrupt service routine, the interrupt mask and

the interrupt priority for the VLD interrupt. Providing the VLD with new input can take

longer than one might actually want to spend in a ISR, a flag is used to remember that

the input buffer is empty. The flag is used in the library to determine whether it needs

more input before parsing the bitstream. If the flag is set, it will call vldEmptyFunc. The

macros vldGetEmptyFlag and vldSetEmptyFlag can be used to access the flag.

In order for the VLD to operate correctly, the following information must be provided:

■ Location of the input buffers

The location and size of the input buffer can be set by a call to the function vldInput.

The size of the input buffer is passed in bytes.

■ Location of the output buffers

The locations and size of the output buffers are given as arguments to the function

vldParseMacroblock. In case one of the output buffers is full before the VLD com-

pletes parsing, a new location and size can be given by using the macros

vldSetMBH_ADR and vldSetMBH_CNT, or vldSetRL_ADR and vldSetRL_CNT. These

macros will probably be used in the vldEmptyFunc as described in the previous para-

graph. The size of the output buffers is to be given in 32-bit words. The addresses of

the output buffers must be aligned on a 64-byte boundary.

■ Information stored in the picture and slice headers

The slice and picture headers contain information required by the VLD to parse the

macroblocks correctly. Therefore, the VLD needs to be informed after a slice or pic-

ture header is parsed by a decoder. The information in a picture header can be com-

municated by calling the function vldSetPictureInfo. The only argument of this

function is a structure type vldPictureInfo_t that holds all information required by the

Chapter 6: Variable Length Decoder (VLD) API

44 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

VLD; for example, picture_type and frame_pred_frame_dct. Some of the fields are

only relevant when an MPEG 2 stream is parsed. The only information in a slice

header that is important to the correct operation of the VLD is the quantiser scale

which can be set using the macro vldSetQS after a slice header is parsed.

Getting Status Information From VLD

As mentioned previously, the VLD halts on certain conditions. These conditions are

reflected by bits in the VLD status register that can be checked by the user. You can also

instruct the VLD to raise an interrupt on these conditions, by calling vldInstanceSetup

with the correct interrupt mask. There are six conditions that halt the VLD:

1. The command is completed successfully (bit SUCCESS)

2. A startcode in the bitstream is found (bit STARTCODE)

3. A syntax error is found in the bitstream (bit ERROR)

4. The input buffer has become empty (bit DMA_IN_DONE)

5. The run length encoded DCT coefficients output buffer is full (bit RL_OUTPUT_DONE)

6. The output buffer for the macroblock headers is full (bit MBH_OUTPUT_DONE)

You can check, by polling, whether a start code has been encountered using two meth-

ods. The first is to use the macro vldCheckSTATUS_STARTCODE. The second is to use

vldGetSTATUS, which is OR’d with VLD_STATUS_STARTCODE.

Note
The XXX_OUTPUT_DONE bits are set before the success bit, so the output
buffers need to be larger than the actual output for the VLD to complete
successfully. Otherwise, the VLD will complain about a full output buffer
before it can inform the user that the parse command has been successfully
completed.

The MMIO registers that are set to inform the VLD about the locations and sizes of the

input and output buffers are kept up to date by the VLD. They continuously reflect the

location where the next read and writes are to be done, and how many reads or writes

are still left in the current buffers. The macro vldGetBIT_ADR can be used to get the byte

address in the input buffer from which the VLD is reading; whereas vldGetMBH_ADR and

vldGetRL_MBH can be used to get the (64-byte-aligned) locations where the VLD will

write its next output. The macro vldGetBIT_CNT can be used to get the number of bytes

that can still be read from the input buffer. The macros vldGetMBH_CNT and

vldGetRL_CNT can be used to get the number of 32-bit words that can still be written to

the output buffer.

Note
The macros return the requested numbers only, while some of the MMIO
registers hold two values in each 32 bit register.

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 45

6

VLD Multiple Streams (Instances) Decoding

For advanced VLD users, multiple stream or instance decoding functionality and data

structures are provided in the VLD library. There are two data structures for multiple

stream decoding, vldContext_t and vldInstanceInfo_t, and two functions specifically for

context switching in multiple stream decoding. The maximum number of multiple

streams or instances in the VLD library is six.

The VLD context consists of the contents of several VLD registers (VLD_BIT_ADR,

VLD_BIT_CNT, VLD_CTL, VLD_IMASK) and the unused data portion of the VLD input FIFO

content up to a 64-byte boundary. The information of the saved input FIFO data consists

of the bit offset from a byte boundary, the byte number from the current byte to a

64-byte boundary and the actual buffer data. The context switch should be made at the

place when the information is known.

The VLD instance information includes the instance usage flag, the MPEG type flag, the

picture information content, instance setup content and instance context. Each VLD

instance represents a complete set of the VLD functionality and data utility for each

input bitstream.

VLD Example Program

The example program vldtest parses an MPEG-1 or MPEG-2 stream, and compares the

VLD output with two reference files to check the correctness of the library. It provides

example code on how to set up the VLD initially and an ISR to handle an empty input

buffer. It also shows how to parse a picture header or a slice header by hand and pass the

important information from these headers to the VLD. The test program also shows how

cache coherency can be ensured, as described in Cache Coherency in the TriMedia data

book.

Chapter 6: Variable Length Decoder (VLD) API

46 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

VLD API Data Structures

This section presents the VLD device library data structures. These data structures are

defined in the tmVLD.h header file.

Name Page

pFnVldEmpty_t 47

pFnVldISR_t 48

vldCapabilities_t 48

vldPictureInfo_t 49

vldMVector_t 50

vldMV_t 50

vldMBHMpeg1_t 51

vldMBHMpeg2_t 51

vldMBH_Field_t 52

vldInstanceSetup_t 53

vldContext_t 54

vldInstanceInfo_t 55

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 47

6

pFnVldEmpty_t

typedef void (*pFnVldEmpty_t)(
 Int32 flag
);

Fields

flag The function is allowed to block if flag is set.

Description

Callback routine which is executed when a function in the VLD library needs more

input data. If a full buffer is available at the time of the call, it passes it to the VLD by

calling vldInput. If input data is not available at the time of the call then there are two

possibilities:

1. If flag is set, it will wait until data is available, and then supply the buffer to the VLD.

2. If flag is not set, it should return immediately. Before it returns, it should indicate

whether new input is actually provided by calling vldSetEmptyFlag.

Chapter 6: Variable Length Decoder (VLD) API

48 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

pFnVldISR_t

typedef void (*pFnVldISR_t)(void);

Description

VLD interrupt service routine provided by the user to handle those conditions on which

the VLD halts and are signalled through an interrupt.

vldCapabilities_t

typedef struct {
 tmVersion_t version;
 Int32 numSupportedInstances;
 Int32 numCurrentInstances;
} vldCapabilities_t, *pvldCapabilities_t;

Fields

version Version of this device library.

numSupportedInstances Number of users that can access the VLD device
simultaneously.

numCurrentInstances Number of current users.

Description

Used by the function vldGetCapabilities.

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 49

6

vldPictureInfo_t

typedef struct {
 Uint8 PictureType;
 Uint8 PictureStruct;
 Uint8 FramePFrameD;
 Uint8 intraVLC;
 Uint8 concealMV;
 Uint8 mpeg2Mode;
 Uint8 h_Forw_RSize;
 Uint8 v_Forw_RSize;
 Uint8 h_Back_RSize;
 Uint8 v_Back_RSize;
} vldPictureInfo_t;

Fields

PictureType See picture_coding_type [6.3.9].

PictureStruct See picture_structure [6.3.9].

FramePFrameD See frame_pred_frame_dct (MPEG 2) [6.3.10].

intraVLC See intra_vlc_format (MPEG 2) [6.3.10].

concealMV See concealment_motion_vectors (MPEG 2)
[6.3.10].

mpeg2Mode 0 if MPEG 1 and 1 if MPEG 2.

h_Forw_RSize See r_size[0][0] (MPEG 2) [6.3.17].

v_Forw_RSize See r_size[0][1] (MPEG 2) [6.3.17].

h_Back_RSize See r_size[1][0] (MPEG 2) [6.3.17].

v_Back_RSize See r_size[1][1] (MPEG 2) [6.3.17].

Description

Passed to the VLD library that is using SetPictureInfo to inform the VLD hardware about

how to decode the incoming bitstream. As indicated, some of the fields only will appear

in an MPEG-2 stream and do not need to be set for an MPEG-1 stream.

For more information on the interpretation of the fields, refer to official MPEG standard:

the applicable paragraphs in ISO/IEC draft 13818-2 are included in the above comments.

Chapter 6: Variable Length Decoder (VLD) API

50 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

vldMVector_t

typedef struct {
 Int8 hCode;
 UInt8 hRes;
 Int8 vCode;
 UInt8 vRes;
} vldMVector_t;

Fields

hCode See motion_code[r][s][0] [6.3.17].

hRes See motion_residual[r][s][0] [6.3.17].

vCode See motion_code[r][s][1] [6.3.17].

vRes See motion_residual[r][s][1] [6.3.17].

Description

Provides horizontal and vertical motion vectors.

For more information on the interpretation of the fields, refer to official MPEG standard:

the applicable paragraphs in ISO/IEC draft 13818-2 are included in the above comments.

vldMV_t

typedef struct {
 vldMVector_t forw;
 vldMVector_t back;
} vldMV_t;

Fields

forw Forward motionvector [6.3.17].

back Backward motionvector [6.3.17].

Description

Provides forward and backward (horizontal and backward) motion vectors.

For more information on the interpretation of the fields, refer to official MPEG standard:

the applicable paragraphs in ISO/IEC draft 13818-2 are included in the above comments.

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 51

6

vldMBHMpeg1_t

typedef struct {
 UInt32 word[4];
} vldMBHMpeg1_t;

Fields

word Decoded MPEG-1 macroblock header. The inter-
pretation of the bits in these four words can be
found in the appropriate TriMedia data book,
Figure 14-2. These four words exclude the
MPEG-2-specific second forward and backward
motion vectors (words three and five) in Figure
14-2.

Description

Macroblock header produced by the VLD in the output buffer, for an MPEG-1 stream.

This raw output can be converted to a vldMBHField using the function vldGetMBHeader.

vldMBHMpeg2_t

typedef struct {
 UInt32 word[6];
} vldMBHMpeg2_t;

Fields

word[6] Number of words that each header takes. Note
that these six words include the second forward
and backward motion vectors (words three and
five) in the TriMedia data book, Figure 14-2.

Description

Macroblock header produced by the VLD in the output buffer, for an MPEG 2 stream.

This raw output can be converted to a vldMBHField using the function vldGetMBHeader.

Chapter 6: Variable Length Decoder (VLD) API

52 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

vldMBH_Field_t

typedef struct {
 UInt8 mbEscapeCnt;
 UInt8 mbAddrIncr;
 UInt8 mbType;
 UInt8 motionType;
 UInt8 dctType;
 UInt8 mvCount;
 UInt8 mvFormat;
 UInt8 dmvFlag;
 UInt8 quantScaleCode;
 UInt8 cbp;
 Int dmvector[2];
 UInt8 mvFieldSel[2][2];
 vldMV_t mv[2];
} vldMBH_Field_t;

Field

mbEscapeCnt Number of macroblock_escapes [6.3.17.1].

mbAddrIncr See macroblock_address_increment [6.3.17.1].

mbType Five bits for macroblock_quant,
macroblock_motion_forward,
macroblock_motion_backward,
macroblock_pattern, and macroblock_intra. See
[6.3.17.1].

motionType See frame_motion_type [6.3.17.1].

dctType See dct_type [6.3.17.1].

mvCount motion_vector_count minus 1. See [6.3.17.2].

mvFormat See motion_vector_format [6.3.17.2].

dmvFlag See dmv [6.3.17.2].

quantScaleCode See quantiser_scale_code [6.3.16].

cbp See coded_block_pattern [6.3.17.4].

dmvector See dmvector [6.3.17.3].

mvFieldSel See motion_vertical_field_select [6.3.17.2].

mv motion_code and motion_residual r = index
[6.3.17.3]

Description

Decoded macroblock header. An instance of this type is the result of transforming the

vldMBHMpeg1_t or vldMBHMpeg2_t using the function vldGetMBHeader. For more

information on the interpretation of the fields, refer to official MPEG standard: the

applicable paragraphs in ISO/IEC draft 13818-2 are included in the above comments.

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 53

6

vldInstanceSetup_t

typedef struct {
 intPriority_t priority;
 UInt32 interrupts;
 pFnVldISR_t vldISR;
 pFnVldEmpty_t vldEmptyFunc;
} vldInstanceSetup_t;

Fields

priority Defines the priority of the interrupt that is raised
if the VLD stops executing.

interrupts Determines upon which conditions the VLD will
raise an interrupt. The value can be an OR’d com-
bination of VLD_IMASK_xxx, where xxx is any of

 SUCCESS, ERROR, STARTCODE, DMA_IN_DONE,

 MBH_OUT_DONE, RL_OUT_DONE.

vldISR Pointer to the interrupt service routine that will
be called when the VLD raises an interrupt.

vldEmptyFunc Pointer to a function that is called when the
library needs input to execute a function.

Description

An instance of this type is passed to the vldInstanceSetup function.

Chapter 6: Variable Length Decoder (VLD) API

54 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

vldContext_t

typedef struct {
 UInt32 inputAddr;
 UInt32 inputCnt;
 UInt32 control;
 UInt32 imask;
 UInt32 offset;
 UInt32 fifoLength;
 UInt8 *fifo;
 UInt8 fifoBuf[192];
} vldContext_t;

Fields

inputAddr Value of VLD_BIT_ADR register.

inputCnt Count value of VLD_BIT_CNT register.

control Content of the VLD_CTL register.

imask Content of the VLD_IMASK register.

offset Offset from a byte boundary to the start of
unused portion bitstream.

fifoLength Number of unused bytes in the shift register
VLD_SR.

fifo A pointer to a 64-byte aligned address of buffer
containing the unused fifo data (fifoBuf).

fifoBuf An array large enough to store 66 bytes of data
from an aligned address in the input buffer.

Description

The data stored in this structure must be written at a point where it is safe to perform the

context switch. The VLD context consists of the contents of several VLD registers

(VLD_BIT_ADR, VLD_BIT_CNT, VLD_CTL, VLD_IMASK) and the unused data portion of

the VLD input FIFO content up to a 64-byte boundary. The information of the saved

input FIFO data consists of the bit offset from a byte boundary, the byte number from

the current byte to a 64-byte boundary and the actual buffer data.

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 55

6

vldInstanceInfo_t

typedef struct {
 Bool used;
 Bool mpeg2Mode;
 vldPictureInfo_t vldPictInfo;
 vldInstanceSetup_t vldSetup;
 vldContext_t vldContext;
} vldInstanceInfo_t;

Fields

used Instance usage flag; 1 used, 0 unused.

mpeg2Mode MPEG flag: 1 for MPEG-2, 0 for MPEG-1.

vldPictInfo The content of the VLD picture Info register for
an instance.

vldSetup The setup data for an instance.

vldContext The context data for an instance.

Description

This instance information structure represents all the necessary information for each

VLD instance (each input bitstream).

Chapter 6: Variable Length Decoder (VLD) API

56 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

VLD API Functions

This section presents the VLD API device library functions.

Name Page

vldGetCapabilities 57

vldOpen 58

vldClose 58

vldInstanceSetup 59

vldCommand 60

vldInput 61

vldReset 62

vldGetBits 63

vldShowBits 64

vldFlushBits 65

vldNextStartCode 66

vldSetPictureInfo 67

vldGetPictureInfo 68

vldFlushOutput 68

vldParseMacroblockss 69s

vldGetMBHeader 70

vldSaveContext 71

vldRestoreContext 72

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 57

6

vldGetCapabilities

tmLibdevErr_t vldGetCapabilities(
 pvldCapabilities_t *cap
);

Parameters

cap Pointer to a variable in which to return a pointer
to the cabililities data.

Return Codes

TMLIBDEV_OK Success (always returned).

Description

Sets the provided pointer to global capabilities.

Chapter 6: Variable Length Decoder (VLD) API

58 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

vldOpen

tmLibdevErr_t vldOpen(
 Int *instance
);

Parameters

instance Instance pointer.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NO_MORE_INSTANCES No more instances can be opened; the maximum
number of users has been reached already.

Description

Opens an instance of the VLD device. It checks if there is not another opened instance

after disabling the interrupts (intClearIEN). Then it restores the interrupt IEN flag (intRe-

storeIEN).

vldClose

tmLibdevErr_t vldClose(
 Int instance
);

Parameters

instance Device Library instance.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Asserts, in the debug version, if an incorrect
instance is passed.

Description

This function shuts down the device and deinstalls the interrupts. It deinstalls the inter-

rupt handler, and closes the intVLD interrupt, if it was opened.

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 59

6

vldInstanceSetup

tmLibdevErr_t vldInstanceSetup(
 Int Instance,
 vldInstanceSetup_t *vldsetup
);

Parameters

Instance Owner instance.

vldsetup Pointer to vldInstanceSetup_t structure.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Asserts, in the debug version, if an incorrect
instance is passed.

VLD_ERR_INIT_REQUIRED Asserts, in the debug version, if no vldOpen is
called.

Description

This function validates the owner, initializes the registers, resets the VLD, opens an inter-

rupt intVLD, and installs the interrupt handler.

Chapter 6: Variable Length Decoder (VLD) API

60 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

vldCommand

tmLibdevErr_t vldCommand(
 Int instance,
 Int32 command
);

Parameters

instance Owner instance.

command Word which is given to VLD_COMMAND register:
VLD_COMMAND_xxx count_for_command.

Return Codes

TMLIBDEV_OK Success.

VLD_ERR_STATUS_ERROR Returned when the VLD reported a syntax error
in the bitstream.

VLD_ERR_UNEXPECTED_START_CODE Returned when the VLD reported an unexpected
startcode in the bitstream.

VLD_ERR_PREV_COMMAND_NOT_DONE Will assert in the debug version when it is called
while the VLD is still executing a command.

Description

This function issues a VLD command by calling the vldSetCOMMAND macro. The com-

mand VLD_CMD_PARSE is asynchronous with the function returning immediately. All

other commands are synchronous and return upon completed (the status checking of

the vldCommand is performed using the vldGetSTATUS macro).

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 61

6

vldInput

tmLibdevErr_t vldInput(
 Int instance,
 Pointer readaddr,
 UInt32 readcount
);

Parameters

instance Owner instance.

readaddr Input read address.

readcount Input read count.

Return Codes

TMLIBDEV_OK Success.

VLD_ERR_BIT_CNT_OVERFLOW Asserts, in the debug version, when it is called
with a readcount value of more than 4095.

Description

Updates the VLD data input address and count. Supplies the VLD with more data by pro-

viding the address and size of the full input buffer using the vldSetBIT_ADR and

vldSetBIT_CNT macros. This should normally be called only when the count is zero.

Readcount should be 12 bits.

Chapter 6: Variable Length Decoder (VLD) API

62 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

vldReset

tmLibdevErr_t vldReset(
 Int instance,
);

Parameters

instance Owner instance.

Return Codes

TMLIBDEV_OK Success.

VLD_ERR_RESET_FAIL Returned if the hardware peripheral did not
respond.

Description

This function resets the VLD to its defaults.

Implementation Notes

The data that was in the VLD registers is lost.

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 63

6

vldGetBits

UInt vldGetBits(
 Int instance,
 Int32 numBits,
 UInt32 *bits
);

Parameters

instance Owner instance

numBits Number of bits to parse off.

bits Pointer to the number of parsed bits.

Return Codes

TMLIBDEV_OK Success.

VLD_ERR_NUM_BITS_OVERFLOW Will assert in the debug version if it is called with
a numBits value of more than 32.

Description

This function parses off the input bitstream the specified number of bits. This function

uses the vldCommand function with VLD_COMMAND_SHIFT parameter. A maximum

of 32 bits can be parsed at one function call.

Implementation Notes

All of the parsed bits are lost.

Chapter 6: Variable Length Decoder (VLD) API

64 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

vldShowBits

UInt vldShowBits(
 Int instance,
 Int32 numBits,
 UInt32 *bits
);

Parameters

instance Owner instance

numBits The number of bits to be shown.

bits Pointer to the value of parsed bits.

Return Codes

TMLIBDEV_OK Success.

VLD_ERR_SR_OVERFLOW Will assert in the debug version if it is called with
a numBits value of more than 16.

Description

Reads the bits in the VLD Shift Register with a 16 bit limit and does not shift any bit in

the VLD. The function uses the vldGetSR_VALUE macro to get the content of the VLD

Shift Register.

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 65

6

vldFlushBits

tmLibdevErr_t vldFlushBits(
 Int instance,
 Int32 numBits
);

Parameters

instance Owner instance

numBits The number of bits to be flushed.

Return Codes

TMLIBDEV_OK Success.

Description

This function parses off and discards numBits bits. It uses the vldCommand function

with the VLD_COMMAND_SHIFT as many times as required.

Chapter 6: Variable Length Decoder (VLD) API

66 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

vldNextStartCode

UInt vldNextStartCode(
 Int instance,
 UInt32 *startcode
);

Parameters

instance Owner instance

startcode Pointer to the startcode value.

Return Codes

TMLIBDEV_OK Success.

Description

Searches for the next startcode using the vldCommand function with the

VLD_COMMAND_STARTCODE parameter, and combine the next eight bits after the

MPEG start code prefix (0x000001) using the vldShowBits function. It parses and discard

all of the bits until the start code is hit.

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 67

6

vldSetPictureInfo

UInt vldSetPictureInfo(
 Int instance,
 vldPictureInfo_t *pictInfo
);

Parameters

instance Owner instance.

pictInfo vldPictureInfo_t structure instance.

Return Codes

TMLIBDEV_OK Success.

Description

This function sets the picture information parameters for the VLD picture information

register with the vldSetPI macro.

Chapter 6: Variable Length Decoder (VLD) API

68 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

vldGetPictureInfo

UInt vldGetPictureInfo(
 Int instance,
 vldPictureInfo_t *pictInfo
);

Parameters

instance Owner instance

pictInfo vldPictureInfo_t structure instance.

Return Codes

TMLIBDEV_OK Success.

Description

This function gets the picture information parameters from the VLD picture information

register with the vldExtractPI_xxx macros (refer to tmVLDmmio.h).

vldFlushOutput

tmLibdevErr_t vldFlushOutput(
 Int instance
);

Parameters

instance Owner instance

Return Codes

TMLIBDEV_OK Success.

Description

Flushes the output FIFO’s data to SDRAM. This function calls vldCommand with

VLD_COMMAND_WR_FIFO_FLSH (refer to tmVLD.h).

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 69

6

vldParseMacroblocks

tmLibdevErr_t vldParseMacroblocks(
 Int instance,
 Int32 count,
 Pointer mbhAddr,
 Pointer rltokenAddr,
 Int32 mbhBufSize,
 Int32 rlBufSize
);

Parameters

instance Owner instance

count The number of macro blocks.

mbhAddr The beginning address of parsed macro block
headers.

rltokenAddr The output address of parsed coefficients.

mbhBufSize The size of mbh buffer starting from mbhAddr in
32-bit words, 9 bits corresponding. VLD_STATUS
register bit is set when this buffer is full.

rlBufSize The size of rl buffer (starting from rltokenAddr) in
32-bit words, 12 bits corresponding. VLD_STATUS
register bit is set when this buffer is full.

Return Codes

TMLIBDEV_OK Success.

VLD_ERR_MBH_CNT_OVERFLOW Will assert in the debug version if it is called with
a mbhBufSize value of more than 511.

VLD_ERR_RL_CNT_OVERFLOW Will assert in the debug version if it is called with
a rlBufSize value of more than 4095.

Description

Parses the count number of MacroBlocks. It sets the MMIO registers with the given

parameters (vldSetMBH_ADR, vldSetMBH_CNT, vldSetRL_ADR, vldSetRL_CNT macros),

and sends a VLD_COMMAND_PARSE message via the vldCommand function.

Chapter 6: Variable Length Decoder (VLD) API

70 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

vldGetMBHeader

tmLibdevErr_t vldGetMBHeader(
 Int instance,
 vldMBH_Field_t *mbhField,
 Pointer mbhAddr
);

Parameters

instance Owner instance.

mbhField Pointer to vldMBHField_t structure.

mbhAddr The beginning address of parsed macro block
headers.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Can assert if the instance is invalid.

Description

This function gets the macro block header parameters from the macro block header out-

put buffer.

Chapter 6: Variable Length Decoder (VLD) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 71

6

vldSaveContext

tmLibdecErr_t vldSaveContext (
 Int instance,
 Int offset
);

Parameters

instance Owner instance.

offset The bit offset from a byte boundary in the VLD
input buffer.

Return Codes

TMLIBDEV_OK Success.

VLD_ERR_WRONG_OFFSET Asserts, in the debug version, if the function is
called with the offset value more than 8.

VLD_ERR_SAVING_CONTEXT_ERROR The function failed.

Description

The function saves the context for a specific instance with a given bit offset from a byte

boundary in the current VLD input buffer.

Chapter 6: Variable Length Decoder (VLD) API

72 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

vldRestoreContext

tmLibdevErr_t vldRestoreContext (
 Int instance
);

Parameters

instance Owner instance.

Return Codes

TMLIBDEV_OK Success.

Description

This function restores the context for a specific instance for continuous decoding of

associated bitstream.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 73

7

Chapter 7

Video Transformer (VtransICP) API

Topic Page

Video Transformer API Overview 74

Video Transformer Functionality 75

Using the Video Transformer API 76

Demonstration Programs 86

Video Transformer API Data Structures 91

Video Transformer API Functions 101

Chapter 7: Video Transformer (VtransICP) API

74 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Video Transformer API Overview

The TriMedia Video Transformer application library simplifies the filtering and display of

video images. The Video Transformer supports output to either SDRAM or ICP-based

DMA over the PCI interface. It can send output images to the PC screen over the PCI bus;

in this scenario it will perform YUV to RGB color conversion. It can filter YUV images to

SDRAM; in this case, the output format is usually YUV.

Figure 2 Structure of the Video Transformer

The basic concept behind the development of the video transformer is to reduce the pro-

cess of video transformation to a simple, high-level interface. There are two main phases:

the setup phase, during which the characteristics of the video stream are specified, and

the frame transformation phase, which performs filtering and color-space conversion

operations. The video transformer supports both the Application Library layer and Oper-

ating System Layer of the TriMedia Software Architecture.

Figure 3 Video Transformer Architecture

Datain [0] (Main Surface)

(queuing)
Dataout [0]

Video Transformer

(queuing)
Datain [1] (Overlay Surface)

(queuing)

Video Transformer Library

ICP Device Library

Image Coprocessor Hardware

Application 1 Application N

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 75

7

Video Transformer Functionality

The TriMedia video transformer provides the following functionality in both the AL

(non-streaming) and OL (streaming) layers:

■ YUV to YUV vertical scaling.

■ YUV to YUV horizontal scaling.

■ YUV to RGB horizontal scaling and color conversion, with optional overlay and bit-

mask. The output can be to SDRAM or PCI.

■ Deinterlace filtering (YUV interlaced to YUV progressive scan).

■ YUV anti-flicker filtering (for graphics which are displayed on an interlaced screen).

■ YUV422 to YUV420 conversion.

■ Accept buffers which do not have strides that are multiples of 64 bytes.

■ Scale a YUV image into a subsection of a YUV buffer.

■ Copies MPEG-related information from the input packet to the output packet.

Figure 4, a flow diagram, shows video transformer filtering operations.

Limitations

■ There are restrictions on the destination PCI address when outputting vdfRGB24. The

restriction applies when you wish to place the output at an address which is offset

from the start of the PCI video buffer. The offset must be a multiple of six bytes (i.e.,

on an even pixel boundary), otherwise the color will be incorrect. For example, con-

sider a PCI video card which has a base address of 0xE0000000. Valid PCI addresses

would be 0xE0000000, 0xE0000006, 0xE000000C, 0xE0000012, etc.

■ For MPEG packets, the video transformer copies the data identified by the input

packet’s header–>userPointer to the location identified by the output packet’s

header–>userPointer. The video transformer does not allocate the memory required

to store this data in the output packet; the application must allocate this memory and

initialize the pointer. If the output packet’s header–>userPointer is null, the video

transformer will not copy the MPEG data.

Chapter 7: Video Transformer (VtransICP) API

76 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Figure 4 Control flow of video transformer filtering

Using the Video Transformer API

The TriMedia Video Transformer API is contained within the archived application library

libtmVtransICP.a. To use the Video Transformer AL layer API, you must include the

tmalVtransICP.h header file. For OL layer applications, you must include the tmolVtran-

sICP.h header file.

Yes

Yes

YesDo input buffers need aligning to
modulo 64 stride?

Create internal buffers
and align data

Do input buffers need
Deinterlacing?

YUV Deinterlace

YUV422 to YUV420 Conversion?

Perform YUV422 to YUV420
Conversion

Vertical Scaling required? YUV Vertical scale

Antiflicker filtering required? YUV Antiflicker filter

Yes

Yes

Yes

Begin

YUV to YUV Horizontal
scaling required?

Yes
YUV to YUV Horizontal Scale

DoneYUV to RGB Horizontal
scaling required?

Done

Done

YUV to RGB Horizontal Scale
and Color Conversion

Done

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 77

7

The AL Layer

The operating system independent layer supports only non-data streaming operation;

the application explicitly calls the tmalVtransICPProcessFrame function to perform the

desired video transformation. A diagram of typical flow of control is shown in Figure 5.

Figure 5 Non-data streaming flow control

First, create an instance of a video transformer by calling the tmalVtransICPOpen func-

tion; a maximum of four instances can exist. Once an instance has been opened, set it

up by calling the function tmalVtransICPInstanceSetup. The tmalVtransICPInstance-

Setup_t structure passed to this function defines the instance context. One of the param-

eters in this structure is a completion function; since the transformation of a frame is

asynchronous, this callback function is used to notify the sender when the frame has

been completed.

tmalVtransICPOpen

tmalVtransICPInstanceSetup

Buffer Management

tmalVtransICPProcessFrame

Wait for completion function to
indicate the frame has been

transformed

Buffer Management

tmalVtransICPClose

completionFunc callback
(executed via ISR)

OptionalOptional

tmalVtransICPInstanceConfig

Callback Functions
memallocFunc
memfreeFunc

Chapter 7: Video Transformer (VtransICP) API

78 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

If the final output of the transformation is to PCI, then the destination address for the

transformation must be defined using the outputPCIAddr field and a null pointer passed

for the tmalVtransICPProcessFrame output packet parameter. For output to SDRAM an

output packet should be used to specify the destination address and format information;

in this case the outputPCIAddr field must be set to null.

Note
The input, overlay and output packet structures are defined in
tmAvFormats.h.

The tmalVtransICPInstanceConfig function can be called to change the configuration of

the video transformer once the instance has been setup. For example, it could be used to

enable/disable the overlay, or change the overlay position.

The application can then call the tmalVtransICPProcessFrame function to initiate the

frame transformation. The progressFunc callback will be executed once the request has

been placed on the ICP queue. The transformation operation is asynchronous to the

DSPCPU as it is performed by the ICP coprocessor; the application is informed of com-

pletion via the completionFunc callback. This function will usually set a flag to indicate

processing has finished with the application polling the flag to determine the status of

the transformation. Once the transformation has completed, the application may then

perform further buffer management, for example, passing the packet on for further pro-

cessing by another component. The application can repeatedly transform frames by sim-

ply calling the tmalVtransICPProcessFrame function with the relevant packet parameters.

It may also alter the image and overlay parameters by calling tmalVtransICPInstance-

Config before processing the frame. Finally, the instance can be destroyed by calling the

tmalVtransICPClose function.

The OL Layer

The OL layer supports data streaming operation with message queues being used to

transfer packets of data between components. The tmolDefaults library is used to pro-

vide default callback functions; this means that the application programmer simply has

to create the In/Out Descriptor and connect the relevant components to it. Figure 6 on

page 79 shows typical function call control flow.

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 79

7

Figure 6 OL Layer Flow Control

The application first opens an instance of the Video Transformer using tmolVtran-

sICPOpen. The tmolVtransICPGetInstanceSetup function should then be called. This

returns a pointer to the instance variables, which were created when the instance was

opened. The application should initialize instance variable fields required for setup of

the instance. For example, the outputPCIAddr field must be initialized if the final output

is to a PCI video card. The tmolVtransICPInstanceSetup function is then called to initial-

ize the instance variables.

Data streaming is initiated by calling tmolVtransICPStart; this creates a separate operating

system task which executes the Video Transformer code and runs in parallel with the

application task. The application is then free to perform independent processing, while

the Video Transformer is streaming data; it may call the tmolVtransICPInstanceConfig

function to modify the behavior of the instance. For example, it could change the alpha

values used for the overlay.

The Video Transformer can be stopped by calling tmolVtransICPStop; this will send a stop

request to the Video Transformer task via an operating system message. The Video Trans-

former will send an acknowledge back to the application indicating that data streaming

has stopped. Finally, the instance can be closed by calling tmolVtransICPClose.

Callback Function Requirements

This section describes the callback function sequence during data streaming operation.

This information is provided to enable the application programmer to understand when

simple call

simple call

Task start

Functions of the OL Layer

Input/output processing
tmolVtransICPStart

Application

Functions of the AL Layer

Message

tmolVtransICPOpen tmalVtransICPOpen

tmolVtransICPGetInstanceSetup

tmolVtransICPInstanceSetup tmalVtransICPInstanceSetup

vtransICPTask

Application

tmolVtransICPStop

tmolVtransCPClose

simple call

tmolVtansICPInstanceConfig

tmalVtansICPClose

Default Callback
Functions:
completionFunc
controlFunc
datainFunc
dataoutFunc
errorFunc
memallocFunc
memfreeFunc
progressFunc

Chapter 7: Video Transformer (VtransICP) API

80 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

the callback functions are used. A flow diagram of the streaming task operation is shown

in .

Figure 7 Flow diagram of data streaming. Grey boxes represent callback functions.

The initial data packets are obtained using the datain and dataout callback functions.

The datainFunc is always called to obtain the main image input packet. The optional

overlay and output packets are also obtained via the datainFunc and dataoutFunc func-

tions respectively. The default callback functions detect if a stop request has been sent; if

it has then no further packets are obtained and the data streaming stop operation is per-

formed. The tsaDatainCheckControl flag is set when the datainFunc function is called;

this indicates to the default callback function that it should check to see if a configura-

tion command has been sent to the video transformer instance. The OL layer of the

video transformer uses command queues to pass configuration information to the

instance. The configFunc is automatically called when a command is detected; this is

mapped directly to the tmalVtransICPInstanceConfig function.

Once the required packets have been obtained, the tmalVtransICPProcessFrame function

will be executed. This uses memallocFunc and memfreeFunc to allocate any internal buff-

ers which are required. The progressFunc will be called once the video transformation

request has been placed on the ICP queue.

STOP?

Stop received

Stop received

Start data streaming

Get Packets

STOP?

tmalVtransICPProcessFrame

Wait for ICP transfer to complete

Indicate Completion

Return Packets

datainFunc
dataoutFunc
configFunc

memallocFunc
memFreeFunc
progressFunc

completionFunc

datainFunc
dataoutFunc

Return Packets
datainFunc

dataoutFunc

Stopped data streaming

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 81

7

The completionFunc is executed once the ICP request has been serviced. The datainFunc

and dataoutFunc callbacks are then used to place the full and empty packets on the

respective queues. The default functions will check to see if a data streaming stop request

has been made; if it has the streaming loop will be exited.

Once a stop request is detected, any packets that are being held by the video transformer

are returned using the datainFunc and dataoutFunc functions.

Packet Formats

The Video Transformer uses the standard packet data types defined in the tmAvFor-

mats.h include file. Both YUV and RGB data use the tmAvPacket_t structure; RGB packets

have only a single buffer to store the RGB data. YUV data is stored in three buffers, with

the Y pointer contained in buffer[0] and the UV pointers contained in buffer[1] and

buffer[2] respectively.

Each packet contains a header structure providing information concerning the packet

data. An important field in this header is the format field. For the Video Transformer,

this is a pointer to a tmVideoFormat_t structure which provides information about the

video format and image size. There are restrictions on the type of video formats for the

Video Transformer inputs and output; these are described below.

Main Image Input Packet

The main image input packet must be either YUV422 or YUV420. The packet headers

format field should be pointer to a tmVideoFormat_t structure and initialized with the

following values:

Field Value

dataClass avdcVideo

dataType vtfYUV

dataSubtype vdfYUV422Planer or vdfYUV420Planer

description Null or vdfInterlaced

imageWidth Width of video frame (luminance)

imageHeight Height of video frame (luminance)

imageStride Stride of video frame (luminance)

imageUVstride Stride of video frame (chrominance)

Chapter 7: Video Transformer (VtransICP) API

82 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Overlay Input Packet

The overlay input packet must be either YUV or RGB depending on the output format.

The rule is that if the output is YUV then the overlay must be YUV; similarly, if the out-

put is RGB then the overlay must be RGB. This is shown in the table below:

The packet header’s format field should be pointed to a tmVideoFormat_t structure and

initialized with the values in the table below:

Output Packet

The output packet is only used when SDRAM is the destination of the transformation;

the data type may be either YUV or RGB. The packet header’s format field is automati-

Output Format Overlay Format

vdfRGB8A_233 vdfRGB15Alpha or vdfRGB24Alpha

vdfRGB8R_332

vdfRGB15Alpha

vdfRGB16

vdfRGB24

vdfRGB24Alpha

vdfYUV422Sequence vdfYUV422SequenceAlpha

vdfYUV422SequenceAlpha

Field Value

dataClass avdcVideo

dataType vtfYUV or vtfRGB

dataSubtype vdfYUV422SequenceAlpha,

vdfRGB15Alpha

vdfRGB24Alpha

description NULL

imageWidth Width of overlay frame

imageHeight Height of overlay frame

imageStride Stride of overlay frame

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 83

7

cally placed on a full packet by the default dataout callback function. The format points

to a tmVideoFormat_t structure and will be initialized with the following values:

When using the OL layer and output to SDRAM, the Video Transformer automatically

installs the output format on the IO descriptor. This operation is performed during

instance setup and also when the output format is changed via the tmolVtransICP-

InstanceConfig function.

Scaling to a Sub-Section of a YUV Buffer

The Video Transformer is capable of scaling a YUV image to a sub-section of a YUV buffer

located in SDRAM. An example of the use of this functionality is where a video stream is

scaled to a corner of an output frame and is surrounded by graphics; the Video Trans-

Field Value

dataClass avdcVideo

dataType vtfYUV or vtfRGB

dataSubtype vdfYUV422Sequence

vdfYUV422SequenceAlpha

vdfRGB8A_233

vdfRGB8R_332

vdfRGB15Alpha

vdfRGB24

vdfRGB24Alpha

vdfYUV422Planer

vdfYUV420Planer

vdfRGB16

description NULL

imageWidth Width of output frame

imageHeight Height of output frame

imageStride Stride of video frame

activeVideoStartX Set to Zero by Video Transformer

activeVideoStartY Set to Zero by Video Transformer

activeVideoEndX Set to imageWidth-1 by Video Transformer

activeVideoEndY Set to imageHeight-1 by Video Transformer

imageUVstride Stride of the video frame (chrominance) when the output is
YUV. Not used when the output is RGB

Chapter 7: Video Transformer (VtransICP) API

84 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

former scales the video and stores it in the desired location of the output buffer. This is

shown in Figure 8.

Figure 8 Scaling to a Subsection of a YUV Buffer

The application specifies the size and position of the scaled image by using the active-

Video fields in the tmalVtransICPInstanceSetup_t/tmolVtransICPInstanceSetup_t output-

Format structure. The four parameters are described in Table 1.

These parameters specify the coordinates of the image in the output buffer. From these,

the scaled output width and height are determined. To scale the original image to the

entire output buffer, the application should set the activeVideoStartX/activeVideoStartY

parameters to 0 and the activeVideoEndX/activeVideoEndY to imageWidth –1 and

imageHeight –1 respectively. To scale to a subsection, the application should set the

fields to the desired positions in the output buffer.

The initial output image size it set during the call to the instance setup function

(tmalVtransICPInstanceSetup/tmalVtransICPInstanceSetup). The application can dynami-

cally change the size and position by using the instance config functions (tmalVtran-

sICPInstanceConfig/tmolVtransICPInstanceConfig).

The Video Transformer will set the area of the output buffer which is not occupied by the

scaled image to black (Y= 0x10, U/V= 0x80). For performance reasons, this “background

Table 1 Sub-Section Scaling Parameters

Field Description

activeVideoStartX Left horizontal position

activeVideoStartY Top vertical position

activeVideoEndX Right horizontal position

activeVideoEndY Bottom vertical position

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 85

7

filling” is only applied to the output packet when the output packet has not been previ-

ously filled or when the location/size of the scaled video changes.

The sub-scaling functionality only applies to YUV scaling to SDRAM. It is not required

for output to PCI as the application can simply use the imageWidth, imageHeight,

imageStride and outputPCIAddr parameters to perform the desired scaling into the PCI

video card frame buffer.

Buffer Alignment, Stride, and Cache Coherency

The Video Transformer expects all pointers to the YUV and RGB frame components to be

aligned on 64 byte boundaries. The application can ensure this by using the

_cache_malloc and _cache_free functions provided with the software development envi-

ronment.

The video transformer does not place any restrictions on the memory stride of the YUV

and RGB frame components. It will check the stride of the YUV buffers and automati-

cally align them if vertical processing is required (e.g. vertical scale, deinterlace, anti-

flicker).

For example, consider a YUV image stored in a buffer with a width of 720 pixels, height

480 lines, and a stride of 720 bytes. If vertical scaling is required, then the YUV image

must be stored in a buffer which has a stride with multiples of 64 bytes (in this case, 768

bytes for the Y data and 384 bytes for the U/V data). The video transformer will automat-

ically create internal buffers with the required strides and move the image to these buff-

ers before scaling is performed.

The user should be aware that this automatic alignment has a memory and bandwidth

cost associated with it. The memory overhead is the internal buffers which will be cre-

ated that are used to store the aligned image. Additional bandwidth is required to copy

the image from the unaligned buffer to the aligned buffer. If the application provides

buffers with strides which have the correct modulo 64 alignment then there is no mem-

ory or bandwidth overhead.

When the application programmer is using only the AL-layer, while using the CPU to

manipulate the video data before video transformation, the application must flush the

buffers out of the CPU data cache before any ICP requests are made. This is because there

is no cache coherency between the CPU data cache and the ICP. This coherency can eas-

ily be maintained by using the _cache_copyback function once the application has com-

pleted it’s manipulation of the video buffers. Similarly, if the application uses the

DSPCPU to manipulate the video data after processing by the video transformer, the

application must perform a _cache_invalidate on the buffer before processing by the

DSPCPU.

When using the OL-layer, cache coherency is maintained automatically between con-

nected components.

Chapter 7: Video Transformer (VtransICP) API

86 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Demonstration Programs

The Video Transformer application library contains two example programs, exalVtrans-

ICP and exolVtransICP, which are located in the example tree of the TriMedia Application

System.

The source code for the example programs is provided with the library. The programs

demonstrate the use of various Video Transformer APIs, including non-data streaming

and data streaming operation, and serve as an example for developers who want to use

the Video Transformer in their applications.

AL Layer Example

The AL layer example can be found in the examples/exalVtransICP directory, and is

called exalVtransICP.c. The example reads two image files from disk, converts the overlay

image from YUV to RGB format, then combines the two images and puts the result on

the PC screen. The main image is scaled to various sizes, while the overlay image posi-

tion is moved.

Running the Example

The example can be executed using either tmgmon or tmrun. The command line argu-

ments are as follows:

The –help option will print out the program arguments and terminate.

The –d address argument specifies the address of the PCI video card. The argument is

mandatory. The address should be specified in hexadecimal, e.g., –d 0xFE000000.

The –s stride argument specifies the stride of the PCI video card. This is dependent on the

resolution of the display and the number of bytes per pixel. e.g., with a screen resolution

of 1024 pixels and two bytes per pixel (16-bit color) the stride would be set to –s 2048.

The argument is mandatory.

The –mode pci_mode specifies the screen mode of the PCI video card and is mandatory.

The pci_mode is an integer from 1–4 and represents the following modes:

■ RGB 24+alpha

■ RGB 24

■ RGB 15+alpha

■ RGB 16

The –path path allows the user to specify an alternate path to where the required data

files are stored. The program requires the clown640.y, clown640.u, clown640.v,

exalVtransICP.out [Ðhelp] Ðd <address> Ðs <stride> Ðmode <pci_mode>
[Ðpath <path>]

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 87

7

clown120x100.y, clown120x100.u, and clown120x100.v data files. By default it will

search in the current directory and in the data/video directory of the application tree.

exalVtransICP Program Flow

The AL layer control flow is shown in the following diagram:

Figure 9 AL layer non-data streaming example program.

Read images from disk
Convert overlay image

No

Initialize Packets

Open and setup video
transformer instance

Increment image size,
Change overlay position

Process Frame

memallocFunc, memfreeFunc,
progressFunc

Wait for ICP request
complete completionFunc callback

Completed up-scaling
iterations?

Decrement image size,
Change overlay position

memallocFunc, memfreeFunc,
progressFunc

Process Frame

Wait for ICP request
to complete

Completed down-scaling
iterations?

Close instance

completionFunc callback

No

Chapter 7: Video Transformer (VtransICP) API

88 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

The two images used for the main display and overlay are read into memory and the

overlay image converted from YUV to RGB format. This is necessary as the output of the

video transformer is to the PCI bus which requires RGB, and hence, the overlay must be

of the same type.

The packets used for the YUV and overlay data are then created and initialized.

An instance of a video transformer is opened and initialized; this consists of setting up

the instance variables such as the callback function pointers. The code then enters a loop

where the main image is scaled up over a number of iterations.

The first operation inside the loop is to alter the main image output size and the position

of the overlay. This is performed using the tmalVtransICPInstanceConfig function to

change the instance parameters. The frame is then processed using the tmalVtransICP-

ProcessFrame function and the program will then wait for the completion function to

indicate that the request has been completed.

Note
The application must provide memallocFunc, memfreeFunc, errorFunc,
progressFunc, and completionFunc callback functions.

Once the required number of up-scaling operations have completed, the process is

reversed with down scaling being performed using an identical sequence of operations.

Finally, the instance is closed once the required number of iterations has completed.

OL Layer Example

The OL layer example can be found in the examples/exolVtransICP directory, and is

called exolVtransICP.c. A block diagram of the main tasks is shown in Figure 10:

Figure 10 Message queues between library components.

The example uses the video digitizer and the video transformer to generate live video on

the PC screen. The video digitizer acts as a source, producing video frame packets

obtained through the video input hardware; these packets are placed on its full queue.

Empty Queue (YUV) Video TransformerVideo Digitizer

Full Queue (YUV)

PCI Video

Application

Command Queue Response Queue

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 89

7

The video transformer will obtain packets generated by the digitizer on its main input. It

will then scale the main image and then perform RGB color conversion. Its output will

be over the PCI bus.

The packets generated by the video digitizer contain interlaced video. By default, the

video transformer simply scales the images and displays them on the PC, ignoring the

fact that it is displaying interlaced video as progressive video. This will cause movement

artifacts to be seen. To overcome this, the user can type commands on the keyboard

which toggle the use of the deinterlace functionality contained within the video trans-

former library. When enabled, the interlaced video is converted to non-interlaced (pro-

gressive) before scaling and RGB conversion. The user can also toggle the anti-flicker

filter functionality.

Running the Example

The example can be executed using either tmgmon or tmrun. The command line argu-

ments are:

The –help option will print out the program arguments and terminate.

The –d address argument specifies the address of the PCI video card. The argument is

mandatory. The address should be specified in hexadecimal, e.g. –d 0xfe000000.

The –s stride argument specifies the stride of the PCI video card. This is dependent on the

resolution of the display and the number of bytes per pixel. e.g. with a screen resolution

of 1024 pixels and two bytes per pixel (16 bit color) the stride would be set to –s 2048.

The argument is mandatory.

The –mode pci_mode specifies the screen mode of the PCI video card and is mandatory.

The pci_mode is an integer from 1–4 and represents the following modes:

■ RGB 24+alpha

■ RGB 24

■ RGB 15+alpha

■ RGB 16

When run, the user can type commands through the TriMedia Console window. The fol-

lowing commands are available:

A Toggle antiflicker filter

D Toggle deinterlace filter

I Disable both antiflicker and deinterlace filtering (display interlaced)

Q Quit

The commands are case-insensitive and should be followed by pressing the return key.

exolVtransICP.out [Ðhelp] Ðd <address> Ðs <stride> Ðmode <pci_mode>

Chapter 7: Video Transformer (VtransICP) API

90 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

exolVtransICP Program Flow

A diagram showing the program flow is shown below in figure Figure 11.

Figure 11 OL layer example program.

The program first obtains the capabilities of the two components which it will connect.

It then creates the In/Out Descriptor which is used to describe the connection between

the two components; this will also automatically create the packets and place them in

the empty queue. The ControlDescriptor for the video transformer instance is then cre-

ated; this is used to send control messages from the application to the video transformer.

As the video transformer output is to PCI, no further In/Out Descriptors are necessary.

Get Capabilities

Create In/Out Descriptor

Create ControlDescriptor

Open video transformer
instance and set it up

Open video digitizer
instance and set it up

Start all instances

Read keyboard input.
Send configuration

commands to the video
transformer

Quit not
requested

Stop video transformer
instance

Stop video digitizer
instance

Close all instances

Exit

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 91

7

Next, an instance of the video digitizer is opened, its instance variable pointer is

obtained, and the instance is initialized. The instance setup simply involves initializing

the In/Out Descriptor.

The video transformer instance is opened, and a pointer to its instance variables is

obtained. The input descriptor is initialized in a similar manner to the video digitizer.

Note
This instance has two inputs: one for the main image, and one for the
overlay. In this example, the main image is active while the overlay image is
unused.

As this instance is writing its output to the PCI bus, no output In/Out Descriptor is used.

Therefore, it is necessary to initialize the output parameters in the instance setup.

All the instances are now ready to begin data streaming, and each instance is explicitly

started. The application will wait for the user to type a command through the keyboard.

The antiflicker, deinterlace, and interlace commands will cause the application to call

the tmolVtransICPInstanceConfig function. This will send the requested command to the

video transformer instance.

Data streaming will continue until the user presses the ‘Q’ key on the PC keyboard.

When this occurs, the application will simply call the stop functions for the video trans-

former and video digitizer respectively.

Finally, all the instances are closed, and the In/Out Descriptor and ControlDescriptor are

destroyed.

Video Transformer API Data Structures

This section describes the Video Transformer application layer data structures. These

data structures are defined in the tmalVtransICP.h header file.

Name Page

tmalVtransICPOutputType_t 92

tmalVtransICPOverlayPosition_t 92

tmalVtransICPAlpha_t 93

tmalVtransICPBitMaskSetup_t 93

tmalVtransICPCapabilities_t 94

tmalVtransICPInstanceSetup_t 95

tmalVtransICPConfigTypes_t 97

tmolVtransICPCapabilities_t 98

tmolVtransICPInstanceSetup_t 99

Chapter 7: Video Transformer (VtransICP) API

92 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVtransICPOutputType_t

typedef enum {
 tmalVtransICPSDRAM = icpSDRAM,
 tmalVtransICPPCI = icpPCI
} tmalVtransICPOutputType_t;

Description

This enum, used by the struct tmalVtransICPInstanceSetup_t, specifies whether the out-

put is being directed to the SDRAM or the PCI bus.

tmalVtransICPOverlayPosition_t

typedef struct {
 Int startX;
 Int startY;
} tmalVtransICPOverlayPosition_t;

Fields

startX The horizontal start position of the overlay.

startY The vertical start position of the overlay.

Description

This structure specifies the top left position of the overlay.

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 93

7

tmalVtransICPAlpha_t

typedef struct {
 Float alpha0;
 Float alpha1;
} tmalVtransICPAlpha_t;

Fields

alpha0 The alpha value to use when the alpha bit is 0.

alpha1 The alpha value to use when the alpha bit is 1.

Description

This struct specifies the alpha0 and alpha1 values which are used when blending the

overlay.

Note
In RGB24+alpha mode, the alpha value is contained in the overlay data.

tmalVtransICPBitMaskSetup_t

typedef struct {
 UInt8 *bitMaskBase;
 Int stride;
} tmalVtransICPBitMaskSetup_t;

Fields

bitMaskBase Pointer to the bitmask image.

stride Stride of the bitmask image, usually 1/8 image
width.

Description

This struct is used to specify the bitmask address and the bitmask stride.

Chapter 7: Video Transformer (VtransICP) API

94 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVtransICPCapabilities_t

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
 Int granularityOfAddress;
 Int granularityOfStride;
} tmalVtransICPCapabilities_t, *ptmalVtransICPCapabilities_t;

Fields

defaultCapabilities The default capabilities structure is defined in the
Application Layer Library API (tsa.h).

granularityOfAddress Alignment. A value of 6 implies 64-byte align-
ment (i.e., the low 6 bits of the input address
must be zero).

granularityOfStride Restriction on the input stride in terms of byte
alignment.

Description

This struct returns the capabilities of the Video Transformer. The default capabilities

struct is defined in tsa.h. This struct is used in the function tmalVtransICPGetCapabilities.

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 95

7

tmalVtransICPInstanceSetup_t

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 tmalVtransICPOutputType_t outputDest;
 UInt8 *outputPCIAddr;
 Bool overlayEnable;
 Bool bitMaskEnable;
 Bool deinterlaceEnable;
 Bool antiflickerEnable;
 Bool useDSPCPUDeinterlace;
 Bool notConservative;
 tmVideoFormat_t outputFormat;
 tmalVtransICPOverlayPosition_t overlayPosition;
 tmalVtransICPAlpha_t overlayAlpha;
 tmalVtransICPBitMaskSetup_t bitMask;
} tmalVtransICPInstanceSetup_t;

Fields

defaultSetup Pointer to the struct containing default setup
information.

outputDest Specifies the output destination. Either tmal-
VtransICPPCI or tmalVtransICPSDRAM.

outputPCIAddr Output address of the PCI video. Must be set to
Null if the output is to SDRAM.

overlayEnable Use overlay if TRUE.

bitMaskEnable Use bitmask information if TRUE.

deinterlaceEnable Enable deinterlacing if TRUE.

antiflickerEnable Enable the antiflicker filter if TRUE.

useDSPCPUDeinterlace If TRUE, this specifies that the deinterlacing
should be performed by the DSPCPU rather than
the ICP. This functionality is currently not sup-
ported.

notConservative If TRUE, this specifies that video transformer is
allowed to swap YUV packet pointers. This func-
tionality is currently not supported.

outputFormat Specifies the output image format. The supported
av subtypes are vdfRGBA_233, vdfRGBR_332,
vdfRGB15Alpha, vdfRGB24, vdfRGB24Alpha,
vdfYUV422Sequence, vdfYUV422SequenceAlpha,
vdfYUV422Planar, and vdfYUV420Planar.

overlayPosition Specifies that top left position of the overlay.

Chapter 7: Video Transformer (VtransICP) API

96 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

overlayAlpha Specifies the alpha0 and alpha1 values used for
the overlays. The values should be between zero
and one.

bitMask Specifies the bitmask address and the bitmask
stride.

Description

This struct is used in the function tmalVtransICPInstanceSetup and specifies the initial

configuration of the video transformer instance.

The deinterlaceEnable indicates to the video transformer instance that is should deinter-

lace any packets which have format description field set to vdfInterlaced. If this field is

not set in the packet format, deinterlacing will not occur.

The antiflickerEnable indicates that the video transformer should perform antiflicker fil-

tering on the image. The purpose of this is to reduce the flicker which can occur when

computer generated images are displayed on an interlaced screen.

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 97

7

tmalVtransICPConfigTypes_t

typedef enum {
 VTRANS_CONFIG_OVERLAY_ENABLE,
 VTRANS_CONFIG_BITMASK_ENABLE,
 VTRANS_CONFIG_DEINTERLACE_ENABLE,
 VTRANS_CONFIG_ANTIFLICKER_ENABLE,
 VTRANS_CONFIG_USE_DSPCPU_DEINTERLACE,
 VTRANS_CONFIG_NOT_CONSERVATIVE,
 VTRANS_CONFIG_INPUT_FORMAT,
 VTRANS_CONFIG_OUTPUT_FORMAT,
 VTRANS_CONFIG_OVERLAY_FORMAT,
 VTRANS_CONFIG_OVERLAY_POSITION,
 VTRANS_CONFIG_OVERLAY_ALPHA,
 VTRANS_CONFIG_BITMASK
} tmalVtransICPConfigTypes_t;

Description

This enum is used as a parameter to the tmalVtransICPInstanceConfig and tmolVtransICP-

InstanceConfig functions. The values should be used to specify the command field of the

tsaControlArg_t structure.

Chapter 7: Video Transformer (VtransICP) API

98 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVtransICPCapabilities_t

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
 Int granularityOfAddress;
 Int granularityOfStride;
} tmolVtransICPCapabilities_t; *ptmolVtransICPCapabilities_t;

Fields

defaultCapabilities The default capabilities structure is defined in the
OS Layer Library API (tsa.h).

granularityOfAddress Alignment. A value of 6 implies 64-byte align-
ment (i.e., the low 6 bits of the input address
must be zero).

granularityOfStride Restriction on the input stride in terms of byte
alignment.

Description

This structure is used to return the capabilities of the Video Transformer. The default

capabilities structure is defined in tsa.h. This structure is used in the function tmol-

VtransICPGetCapabilities.

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 99

7

tmolVtransICPInstanceSetup_t

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 tmalVtransICPOutputType_t outputDest;
 UInt8 *outputPCIAddr;
 Bool overlayEnable;
 Bool bitMaskEnable;
 Bool deinterlaceEnable;
 Bool antiflickerEnable;
 Bool useDSPCPUDeinterlace;
 Bool notConservative;
 tmVideoFormat_t outputFormat;
 tmalVtransICPOverlayPosition_t overlayPosition;
 tmalVtransICPAlpha_t overlayAlpha;
 tmalVtransICPBitMaskSetup_t bitMask;
tmolVtransICPInstanceSetup_t, *ptmolVtransICPInstanceSetup_t;

Fields

defaultSetup Pointer to the structure containing default setup
information.

outputDest Specifies the output destination. Either tmal-
VtransICPPCI or tmalVtransICPSDRAM.

outputPCIAddr Output address of the PCI video. Must be set to
Null if the output is to SDRAM.

overlayEnable Use overlay if TRUE.

bitMaskEnable Use bitmask information if TRUE.

deinterlaceEnable Enable deinterlacing if TRUE.

antiflickerEnable Enable the antiflicker filter if TRUE.

useDSPCPUDeinterlace If TRUE, this specifies that the deinterlacing
should be performed by the DSPCPU rather than
the ICP. This functionality is currently not sup-
ported.

notConservative If TRUE, this specifies that video transformer is
allowed to swap YUV packet pointers. This func-
tionality is currently not supported.

outputFormat Specifies the output image format. The supported
av subtypes are vdfRGBA_233, vdfRGBR_332,
vdfRGB15Alpha, vdfRGB24, vdfRGB24Alpha,
vdfYUV422Sequence, vdfYUV422SequenceAlpha,
vdfYUV422Planar, and vdfYUV420Planar.

overlayPosition Specifies that top left position of the overlay.

Chapter 7: Video Transformer (VtransICP) API

100 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

overlayAlpha Specifies the alpha0 and alpha1 values used for
the overlays. The values should be between zero
and one.

bitMask Specifies the bitmask address and the bitmask
stride.

Description

This structure is used in the function tmolVtransICPInstanceSetup to setup the initial

configuration of the instance. The application does not need to allocate memory for this

structure as it is automatically created during the tmolVtransICPOpen function call. The

application can obtain a pointer to this structure by calling tmolVtransICPGetInstanceS-

etup.

Note
This structure is identical to the tmalVtransICPInstanceSetup_t structure.

The deinterlaceEnable indicates to the video transformer instance that is should deinter-

lace any packets which have format description field set to vdfInterlaced. If this field is

not set in the packet format, deinterlacing will not occur.

The antiflickerEnable indicates that the video transformer should perform antiflicker fil-

tering on the image. The purpose of this is to reduce the flicker which can occur when

computer generated images are displayed on an interlaced screen.

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 101

7

Video Transformer API Functions

This section describes the TriMedia Video Transformer device library API functions.

Name Page

tmalVtransICPOpen 102

tmalVtransICPClose 103

tmalVtransICPGetCapabilities 104

tmalVtransICPInstanceSetup 105

tmalVtransICPGetInstanceConfig 106

tmalVtransICPInstanceConfig 108

tmalVtransICPProcessFrame 109

tmolVtransICPGetCapabilities 111

tmolVtransICPOpen 112

tmolVtransICPClose 113

tmolVtransICPGetInstanceSetup 114

tmolVtransICPInstanceSetup 115

tmolVtransICPInstanceConfig 116

tmolVtransICPStart 117

tmolVtransICPStop 118

Chapter 7: Video Transformer (VtransICP) API

102 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVtransICPOpen

tmLibappErr_t tmalVtransICPOpen(
 Int *instance
);

Parameters

instance Pointer to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation failed while creating the
instance variables.

VT_ERR_NO_FREE_INST The maximum number of transformers are
already allocated.

VT_ERR_DEVICE_LIBRARY_ERROR Some other process is already using the ICP.

Description

This function will assign an instance for usage. A maximum number of

VR_MAX_VIDTRANS are available. This function will open the ICP with the icpOpen

device library function if this is the first video transformer instance to be opened.

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 103

7

tmalVtransICPClose

tmLibappErr_t tmalVtransICPClose(
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance asked to close is not open.

VT_ERR_ICP_REQUEST_IN_PROGRESS The instance has an ICP request on the queue.

VT_ERR_DEVICE_LIBRARY_ERROR Some other process is already using the ICP.

Description

This function will deassign instances for later reuse. It will close the ICP device if all

instances of the Video Transformer are closed.

Chapter 7: Video Transformer (VtransICP) API

104 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVtransICPGetCapabilities

tmLibappErr_t tmalVtransICPGetCapabilities(
 ptmalVtransICPCapabilities_t **tmalVtransICPCap
);

Parameters

tmalVtransICPCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

Provided so that a system resource controller can obtain information about the video

transformer library before installing it. Fills in the address of a static capabilities struc-

ture. The tmalVtransICPCap pointer is valid until the video transformer library is

unloaded.

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 105

7

tmalVtransICPInstanceSetup

tmLibappErr_t tmalVtransICPInstanceSetup(
 Int instance,
 tmalVtransICPInstanceSetup_t *setup
);

Parameters

instance Instance value.

setup Pointer to the setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Attempt to set up an invalid instance.

TMLIBAPP_ERR_NULL_MEMALLOCFUNC Memory allocation function pointer not setup.

TMLIBAPP_ERR_NULL_MEMFREEFUNC Memory free function pointer not setup.

TMLIBAPP_ERR_NULL_ERRORFUNC Error function pointer not setup.

TMLIBAPP_ERR_NULL_PROGRESSFUNC Progress function pointer not setup.

VT_ERR_ILLEGAL_STRIDE Can assert when the output stride is zero.

VT_ERR_ILLEGAL_WIDTH Can assert when the output width is zero.

VT_ERR_ILLEGAL_HEIGHT Can assert when the output height is zero.

VT_ERR_ICP_REQUEST_IN_PROGRESS The instance has an ICP request on the queue.

VT_ERR_DEVICE_LIBRARY_ERROR Error returned from a call to the ICP device
library. Refer to the icpInstanceSetup and icp-
LoadCoeff functions in the ICP device library
documentation.

Description

This function will prepare the Video Transformer for operation by configuring the ICP,

loading the default ICP coefficients, and installing the ICP interrupts. The setup struc-

ture variables are used to initialize the instance parameters. This function should be

called once to setup the instance; further modifications should be made using the

tmalVtransICPInstanceConfig function.

Chapter 7: Video Transformer (VtransICP) API

106 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVtransICPGetInstanceConfig

tmLibappErr_t tmalVtransICPGetInstanceConfig(
 Int instance,
 ptsaControlArgs_t args
);

Parameters

instance Instance value.

args Pointer to a tsaControlArgs_t struct specifying the
information required.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Attempt to set up an invalid instance.

TMLIBAPP_ERR_INVALID_COMMAND Unrecognized command.

Description

This function will return the current value of specific Video Transformer instance param-

eters. It uses the standard tsaControlArgs_t structure defined in the tsa.h include file to

specify the information required. The control structures command field should be set to

one of the values specified by tmalVtransICPConfigTypes_t. The parameter field should

point to a variable where the information will be stored. The following table specifies the

command field values with the associated parameter pointer field:

Command Parameter

VTRANS_CONFIG_OVERLAY_ENABLE Pointer to Bool. TRUE = Enabled

VTRANS_CONFIG_BITMASK_ENABLE Pointer to Bool. TRUE = Enabled

VTRANS_CONFIG_DEINTERLACE_ENABLE Pointer to Bool. TRUE = Enabled

VTRANS_CONFIG_ANTIFLICKER_ENABLE Pointer to Bool. TRUE = Enabled

VTRANS_CONFIG_USE_DSPCPU_DEINTERLACE Pointer to Bool. TRUE = Enabled

VTRANS_CONFIG_NOT_CONSERVATIVE Pointer to Bool. TRUE = Enabled

VTRANS_CONFIG_INPUT_FORMAT Pointer to tmVideoFormat_t

VTRANS_CONFIG_OUTPUT_FORMAT Pointer to tmVideoFormat_t

VTRANS_CONFIG_OVERLAY_FORMAT Pointer to tmVideoFormat_t

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 107

7

VTRANS_CONFIG_OVERLAY_POSITION Pointer to tmalVtransICPOverlayPosition_t

VTRANS_CONFIG_OVERLAY_ALPHA Pointer to tmalVtransICPAlpha_t

VTRANS_CONFIG_BITMASK Pointer to tmalVtransICPBitMaskSetup_t

Command Parameter

Chapter 7: Video Transformer (VtransICP) API

108 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVtransICPInstanceConfig

tmLibappErr_t tmalVtransICPInstanceConfig(
 Int instance,
 ptsaControlArgs_t args
);

Parameters

instance The instance.

args Pointer to the configuration information.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance has not been assigned.

TMLIBAPP_ERR_NOT_SETUP Instance has not been set up.

TMLIBAPP_ERR_INVALID_COMMAND Unrecognized command.

VT_ERR_ICP_REQUEST_IN_PROGRESS The instance has an ICP request on the queue.

Description

This function will configure specific Video Transformer instance parameters. It uses the

standard tsaControlArgs_t structure defined in the tsa.h include file to specify the config-

uration information. The control structures command field should be set to one of the

values specified by tmalVtransICPConfigTypes_t with certain restrictions. The following

table specifies the legal command field values with the associated parameter pointer

field:

Command Parameter

VTRANS_CONFIG_OVERLAY_ENABLE Pointer to Bool. TRUE = Enabled

VTRANS_CONFIG_BITMASK_ENABLE Pointer to Bool. TRUE = Enabled

VTRANS_CONFIG_DEINTERLACE_ENABLE Pointer to Bool. TRUE = Enabled

VTRANS_CONFIG_ANTIFLICKER_ENABLE Pointer to Bool. TRUE = Enabled

VTRANS_CONFIG_USE_DSPCPU_DEINTERLACE Pointer to Bool. TRUE = Enabled

VTRANS_CONFIG_NOT_CONSERVATIVE Pointer to Bool. TRUE = Enabled

VTRANS_CONFIG_OUTPUT_FORMAT Pointer to tmVideoFormat_t

VTRANS_CONFIG_OVERLAY_POSITION Pointer to tmalVtransICPOverlayPosition_t

VTRANS_CONFIG_OVERLAY_ALPHA Pointer to tmalVtransICPAlpha_t

VTRANS_CONFIG_BITMASK Pointer to tmalVtransICPBitMaskSetup_t

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 109

7

tmalVtransICPProcessFrame

tmLibappErr_t tmalVtransICPProcessFrame(
 Int instance,
 ptmYuvPacket_t inputPacket,
 ptmAvPacket_t overlayPacket,
 ptmAvPacket_t outputPacket,
 Bool formatChange
);

Parameters

instance Instance value.

inputPacket Pointer to the input frame’s packet structure.

overlayPacket Pointer to the overlay frame’s packet structure.
This may be Null if the overlay is disabled.

outputPacket Pointer to the output frame’s packet structure.
This may be Null, provided that the instance has
setup the outputPCIAddr field in the image struc-
ture.

formatChange Indicates that the input or overlay format has
changed.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance has not been assigned.

TMLIBAPP_ERR_NOT_SETUP Instance has not been set up.

VT_ERR_OVERLAY_SETUP_REQUIRED Overlay has not been set up.

VT_ERR_BITMASK_SETUP_REQUIRED Bitmask has not been set up.

VT_ERR_INVALID_ADDRESS The instance outputPCIAddr is Null and the out-
putPacket is Null.

VT_ERR_NO_INPUT_PACKET No input packet.

VT_ERR_NO_OVERLAY_PACKET No overlay packet.

VT_ERR_NO_OUTPUT_PACKET No output packet.

VT_ERR_IMAGE_FORMAT Input format is not YUV.

VT_ERR_OVERLAY_FORMAT Overlay format is not valid.

VT_ERR_OUTPUT_FORMAT Output format is not valid.

VT_ERR_NO_MORE_NODES ICP queue is full.

VT_ERR_ICP_REQUEST_IN_PROGRESS The instance has an ICP request on the queue.

Chapter 7: Video Transformer (VtransICP) API

110 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Description

This function is used to place a video transformation request on the ICP queue. If the

formatChange flag is set, then the respective fields in the instance input and overlay

structures are updated; otherwise the current instance values are used. The required ICP

operations to satisfy the input, overlay, and output conditions are then determined. An

ICP request is then placed on the queue, and the progress function is called to indicate

this.

The ICP processing is asynchronous, and the caller is notified when the request has com-

pleted via the completion function. This completion function is specified by the user

during the instance setup.

Each instance can only have one request on the ICP request at any instant of time.

Therefore, after calling the tmalVtransICPProcessFrame function, the user must wait until

the completion function is executed before calling the tmalVtransICPProcessFrame func-

tion again.

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 111

7

tmolVtransICPGetCapabilities

tmLibappErr_t tmolVtransICPGetCapabilities(
 ptmolVtransICPCapabilities_t *pcap
);

Parameters

pcap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

This function is provided so that a system resource controller can find out about the

Video Transformer library before installing. Fills in the address of the capabilities struc-

ture. By default, the OL layer queries the AL layer for its capabilities.

Chapter 7: Video Transformer (VtransICP) API

112 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVtransICPOpen

tmLibappErr_t tmolVtransICPOpen(
 Int *instance
);

Parameters

instance Pointer to the (returned) instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation failed while creating the
instance.

VT_ERR_NO_FREE_INST The maximum number of transformers are
already allocated.

VT_ERR_DEVICE_LIBRARY_ERROR Some other process is already using the ICP.

Description

Creates an instance of a Video Transformer. This will automatically call the tmalVtrans-

ICPOpen function.

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 113

7

tmolVtransICPClose

tmLibappErr_t tmolVtransICPClose(
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance variable is not valid.

TMLIBAPP_ERR_NOT_STOPPED Instance has not been stopped.

TMLIBAPP_ERR_DEVICE_LIBRARY_ERROR
The ICP library returned an error.

Description

This function will shut down an instance of the video transformer. The instance must be

stopped (i.e. not streaming data) before this function is called; this is done by calling

tmolVtransICPStop first.

Chapter 7: Video Transformer (VtransICP) API

114 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVtransICPGetInstanceSetup

tmLibappErr_t tmolVtransICPGetInstanceSetup(
 Int instance,
 ptmolVtransICPInstanceSetup_t *setup
);

Parameters

instance The instance.

setup Pointer to a variable in which to return a pointer
to the setup data.

Return Codes

TMLIBAPP_OK Success.

Description

This function returns a pointer to the instances setup structure.

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 115

7

tmolVtransICPInstanceSetup

tmLibappErr_t tmolVtransICPInstanceSetup(
 Int instance,
 tmolVtransICPInstanceSetup_t *setup
);

Parameters

instance The instance.

setup Pointer to the setup structure.

Return Codes

TMLIBAPP_OK Success.

Description

This function initializes the Video Transformer instance to the values specified in the

setup structure. After this function has been called, any further changes to the instance

variables should be made using the tmolVtransICPInstanceConfig function.

Chapter 7: Video Transformer (VtransICP) API

116 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVtransICPInstanceConfig

tmLibappErr_t tmolVtransICPInstanceConfig(
 Int instance,
 ptsaControlArgs_t args
);

Parameters

instance Instance.

args Pointer to the configuration information.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NOT_STARTED The instance has not been started.

Description

This function will configure specific Video Transformer instance parameters. It uses the

standard tsaControlArgs_t structure defined in the tsa.h include file to specify the config-

uration information. The control structures command field should be set to one of the

values specified by tmalVtransICPConfigTypes_t. Refer to the tmalVtransICPInstanceConfig

function for information concerning the arguments which need to be passed.

Note
This function can only be called if the video transformer is currently
streaming data.

Chapter 7: Video Transformer (VtransICP) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 117

7

tmolVtransICPStart

tmLibappErr_t tmolVtransICPStart(
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_ALREADY_STARTED The instance is already streaming data.

Description

This function starts the data streaming operation of the Video Transformer. It creates an

instance of the Video Transformer task and starts it.

Chapter 7: Video Transformer (VtransICP) API

118 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVtransICPStop

tmLibappErr_t tmolVtransICPStop(
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_ALREADY_STOPPED The instance is not streaming.

Description

This function stops the data streaming operation of the Video Transformer.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 119

8

Chapter 8

TriMedia Motion JPEG Decoder

(VdecMjpeg) API

Note
This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Topic Page

Motion JPEG Decoder API Overview 120

Motion JPEG Decoder API Data Structures 123

Motion JPEG Decoder API Functions 129

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

120 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Motion JPEG Decoder API Overview

Motion JPEG (MJPEG) is an implementation of JPEG for a sequence of video frames.

As of now no known industry-wide standard exists. The MJPEG Decoder Library (Vdec-

Mjpeg) available with this release implements standard JFIF (JPEG File Interchange For-

mat File), Motion JPEG format A (MJPEG-A) and Motion JPEG format B (MJPEG-B)

decoding for baseline sequentially encoded frames. The current implementation of

MJPEG decoder supports bitstreams with:

■ LossyJPEG compression (DCT plus Huffman run length encoder).

■ Bit stream from input images with 8-bit precision.

■ Image formats: Monochrome and YCbCr formats (4:2:2 and 4:1:1).

See Pennebaker & Mitchell, “JPEG Still Image Data Compression Standard”, Van Nos-

trand-Reinhold NY, 1993 for more details on JPEG and “Motion JPEG Format”, Draft 2,

April 15 1996, courtesy Apple Computer Inc. for details on MJPEG Formats A and B.

MJPEG-A is in full compliance with the ISO JPEG specification. Each frame contains two

fields, with the first one being the odd field. Each field is a standard JPEG stream. More

than one frame in a file makes a MJPEG Sequence file. In addition to standard JFIF mark-

ers (JPEG file interchange format), MJPEG-A adds a new application marker called APP1

(id = “ff e1”). MJPEG-B is nothing but Motion JPEG A stripped of all markers.

The various fields of the APP1 marker are given below:

1. Unused: typically 0000

2. Tag: It should contain “mjpeg”

3. Field size: size of image data

4. Padded field size

5. Offset to next field

6. DCT Quantization table offset

7. Huffman Table Offset

8. Start of Image Offset

9. Start of Scan Offset

10.Start of Data Offset

All fields are 4 bytes and in Big Endian order.

This library provides a standard set of seven APIs, like other TriMedia components that

conform to the TriMedia Software Streaming Architecture (TSSA). All interfaces and data

structures are fully compliant with this architecture. The component takes a stream of

tmAvPackets as input and produces a stream of tmAvPackets (YUV data) at the output.

The Application Library component (tmalVdecMjpeg) provides the basic functionality of

OS independent JPEG decoding, while the operating system application library (OL)

component (tmolVdecMjpeg) takes care of all inputs and outputs.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 121

8

Performance

The typical performance obtained is around 8Mbits/sec of encoded bit stream, as mea-

sured on a cycle accurate simulator with known software tuning on a 100 MHz tml pro-

cessor

Demonstration Programs

The VdecMjpeg component is normally used through the OL layer (tmolVdecMjpeg). An

example program exolVdecMjpeg.c is provided to illustrate the use of this component. It

takes an MJPEG file as an input stream, decodes it and puts it to VO. It uses the File

Reader component to open and stream the data as packets to the VdecMjpeg compo-

nent. After processing, the VdecMjpeg component streams packets of Yuv data to the

VrendVO component which would in turn put it onto the VideoOut.

Overview of the tmolVdecMjpeg / tmalVdecMjpeg Component

The tmolVdecMjpeg component layer takes care of properly passing OS dependent

parameters like empty and full Queue IDs to the tmalVdecMjpeg component. Default

API’s are provided and the API implementation is also largely the same as the default

implementations provided with tsaDefaults.c.

The tmalVdecMjpeg component library provides an interface consistent with TSSA and

provides in all, six C callable functions. A typical Usage Sequence will be:

1. tmalVdecMjpegGetCapabilities to get the decoder capabilities data structure.

2. tmalVdecMjpegOpen. This opens an instance of the decoder. The decoder does not

put any restriction on the number of instances.

3. tmalVdecMjpegInstanceSetup. This registers the setup parameters provided by the

user into internal instance variables.

4. tmalVdecMjpegStart. This decodes MJPEG frames sequentially until tmalVdecMjpeg-

Stop is called.

5. tmalVdecMjpegStop. This changes the state variable to STOP.

6. tmalVdecMjpegClose. This invalidates the instance and frees all memory created by

the component.

Input Description

The MJPEG Decoder always operates in data streaming mode. It requests packets of data

(default size 4K) using the datain callback function registered at the time of setup. Input

packets are of the type tmAvPacket_t. Packet requests are made from within the tmal-

VdecMjpegStart.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

122 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

The first packet received by the component should be aligned to a MJPEG Chunk. Three

types of MJPEG Chunks are recognized by the decoder

■ JFIF

■ Motion JPEG A

■ Motion JPEG B

The first two bytes of JFIF and MJPEG-A formats are “ff” and “d8.”

Output Description

Output packets are of the type tmAvPacket_t.

The sizes of the image that is being decoded are embedded within the input stream. In

order to create the necessary buffers for the AvPackets and in order to set up the renderer,

image sizes and format are to be communicated back to the user. To do this, the user cre-

ates a variable of type ptmalVdecMjpegImageDescription_t and registers it through the

setup variable. The VdecMjpeg component will update this variable immediately after

decoding the image description. The first datain call for an empty output packet will

occur after this. It is the responsibility of the user to have created the buffers before pass-

ing the empty packets to the component. Typically the user will poll the Initialized field

of ImageDescription to find out whether the MJPEG Decoder has decoded the image

sizes. The user then creates the buffers and puts them into the empty queue. The Vdec-

Mjpeg uses these buffers to fill decoded data and puts them out through the dataout

function.

Stopping the VdecMjpeg Component

The VdecMjpeg component may be stopped by either changing the MjpegStates variable

to MJPEG_STOP from the AL layer or by calling tmolVdecMjpegStop. The former will

stop the component after the current frame is processed. The latter is implemented by a

call to the tsaDefaultStop. The example exolVdecMjpeg.c illustrates one way of stopping

the processing chain. When the VdecMjpeg stops, it calls its completion function which

may be used to synchronize with the other components.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 123

8

Motion JPEG Decoder API Data Structures

This section describes all the data structures concerned with the VdecMjpeg component

Name Page

tmalVdecMjpegStates_t 124

tmalVdecMjpegStream_t 125

tmalVdecMjpegCapabilities_t, tmolVdecMjpegCapabilities_t 125

tmalVdecMjpegImageDescription_t 126

tmalVdecMjpegInstanceSetup_t, tmolVdecMjpegInstanceSetup_t 127

tmalVdecMjpegProgressFlags_t 128

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

124 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVdecMjpegStates_t

typedef enum {
 MJPEG_RUN,
 MJPEG_STOP,
 MJPEG_PAUSE,
 MJPEG_SKIP
} tmalVdecMjpegStates_t,*ptmalVdecMjpegStates_t;

Fields

MJPEG_RUN Value of the instance variable’s state field when
the decoder is decoding the stream. tmalVdec-
MjpegStart puts the component into this state.

MJPEG_STOP Value of the state field when the decoder is
stopped or is required to be stopped at the end of
the current frame.

MJPEG_PAUSE Reserved for future use.

MJPEG_SKIP Value of the state field when the user wants to
skip the current frame. It is the user’s responsibil-
ity to release SKIP and put back RUN or STOP.
This can be done by using the progress function.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 125

8

tmalVdecMjpegStream_t

typedef enum {
 MJPEG_A,
 MJPEG_B,
 MJPEG_JFIF,
 MJPEG_UNSUPPORTED_STREAM_TYPE
} tmalVdecMjpegStream_t;

Fields

MJPEG_A Encoded streasm type is Motion JPEG-A.

MJPEG_B Encoded stream type is Motion JPEG-B.

MJPEG_JFIF Encoded stream type is JFIF.

MJPEG_UNSUPPORTED_STREAM_TYPE Unknown input stream.

Description

These are the stream types used by the decoder internally. This is passed to the user

through the (ptmalVdecMjpegImageDescription_t) ImageDescription field, of the setup

variable. Necessary control action can be initiated by the user.

tmalVdecMjpegCapabilities_t, tmolVdecMjpegCapabilities_t

typedef struct{
 ptsaDefaultCapabilities_t defaultCapabilities;
} tmalVdecMjpegCapabilities_t, *ptmalVdecMjpegCapabilities_t;

Fields

defaultCapabilities Pointer to tsaDefaultCapabilities_t.

Description

See tsa.h for details. Replace “al” by “ol” in the structure above to get tmolVdecMjpeg-

Capabilities_t.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

126 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVdecMjpegImageDescription_t

typedef struct{
 Int32 ImageHeight;
 Int32 ImageWidth;
 Int32 ImageStride;
 Int32 PaddedImageHeight;
 tmVideoRGBYUVFormat_t ImageFormat;
 Bool Initialized;
} tmalVdecMjpegImageDescription_t, *ptmalVdecMjpegImageDescription_t;

Fields

ImageHeight Actual image height.

ImageWidth Actual image width.

ImageStride Calculated width of the Image Buffer based on
the required granularity of Output Stride. See
tmalVdecMjpegInstanceSetup_t.

PaddedImageHeight Image height for which the bit stream is encoded.
This can be larger than ImageHeight to take care
of image heights which are not a multiple of
eight.

ImageFormat Decoded image format, one of vdfMono,
vdfYUV420Planar, or vdfYUV422Planar.

Initialized Set to True after the decoder fills in the other
fields.

Description

This is the image description extracted from the encoded stream.

Note
The user is expected to create the image buffers and pass it to the decoder.
The expected size of the buffer is the product of PaddedImageHeight times
ImageStride. The user can poll the Initialized field to know when to create
these buffers.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 127

8

tmalVdecMjpegInstanceSetup_t, tmolVdecMjpegInstanceSetup_t

typedef struct{
 ptsaDefaultInstanceSetup_t default_setup;
 Bool littleEndian;
 Int32 granularityOfOutputAddress;
 Int32 granularityOfOutputStride;
 ptmalVdecMjpegStates_t state;
 ptmalVdecMjpegImageDescription_t ImageDescription;
} tmalVdecMjpegInstanceSetup_t, *ptmalVdecMjpegInstanceSetup_t;

Fields

default_setup Pointer to a tsaDefaultInstanceSetup_t variable.
See tsa.h.

littleEndian True if the component is required to work in little
endian mode, otherwise it is False. Currently only
the compile time selection is employed.

granularityOfOutputAddress The address alignment required for the output
decoded image buffers (Y). Typically 64 for Vrend
and 128 for Vtrans.

granularityOfOutputStride Image width alignment due to output hardware
constraints. Typically Nil for Vrend and 64 for
Vtrans.

Description

This is the InstanceSetup struct for the MJPEG decoder. Replace “al” by “o” in informa-

tion above to get tmolVdecMjpegInstanceSetup_t.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

128 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVdecMjpegProgressFlags_t

typedef enum{
 MJPEG_REPORT_FORMAT,
 MJPEG_REPORT_FIELD,
 MJPEG_REPORT_FRAME
 MJPEG_REPORT_STOP,
 MJPEG_REPORT_EOF
} tmalVdecMjpegProgressFlags_t, *ptmalVdecMjpegProgressFlags_t;

Fields

MJPEG_REPORT_FORMAT Causes the progress function to be called immedi-
ately after the decoder extracts ImageDescription
from the stream.

MJPEG_REPORT_FIELD Causes the progress function to be called after
each field has been decoded.

MJPEG_REPORT_FRAME Causes the progress function to be called after
each frame has been decoded.

MJPEG_REPORT_STOP Causes the progress function to be called while
stopping.

MJPEG_REPORT_EOF Causes the progress function to be called when
dataSize of the input packrt is lesser than the buf-
Size. This can be treated as a warning for an end
of input stream.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 129

8

Motion JPEG Decoder API Functions

This section describes the various API functions for the VdecMjpeg component.

Name Page

tmalVdecMjpegOpen, tmolVdecMjpegOpen 130

tmalVdecMjpegStart, tmolVdecMjpegStart 131

tmalVdecMjpegStop, tmolVdecMjpegStop 132

tmalVdecMjpegClose, tmolVdecMjpegClose 133

tmalVdecMjpegGetCapabilities, tmolVdecMjpegGetCapabilities 134

tmalVdecMjpegInstanceSetup, tmolVdecMjpegInstanceSetup 135

tmolVdecMjpegGetInstanceSetup 136

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

130 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVdecMjpegOpen, tmolVdecMjpegOpen

tmLibappErr_t tmalVdecMjpegOpen(
 Int *instance
);

Parameters

instance Pointer to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MEMALLOC_FAILED Unable to allocate memory for decompressor.

Description

This function will create an instance of the VdecMjpeg component.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 131

8

tmalVdecMjpegStart, tmolVdecMjpegStart

tmLibappErr_t tmalVdecMjpegStart(
 Int instance
);

Parameters

instance Instance value assigned at the call of the MJPEG-
Open function.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_DATAIN_FAILED Returned if datain callback function fails.

TMLIBAPP_ERR_DATAOUT_FAILED Returned if dataout callback function fails.

MJ_ERR_INVALID_PACKET Returned if the input or output packets received
through the empty/full queues are of improper
format or size.

MJ_ERR_CORRUPT_STREAM Returned if the Huffman encoded bitstream yields
invalid states or symbols.

Description

This function will sequentially decode all frames from a MJPEG file.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

132 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVdecMjpegStop, tmolVdecMjpegStop

tmLibappErr_t tmalVdecMjpegStop(
 Int instance
);

Parameters

instance Instance value assigned at the call of the Vdec-
Mjpeg Open function.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Returned if the instance has not been opened.

TMLIBAPP_ERR_NOT_SETUP Returned if the instance has not been set up.

Description

tmalVdecMjpegStop merely changes the components state variable to STOP.

tmolVdecMjpegStop calls tsaDefaultStop.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 133

8

tmalVdecMjpegClose, tmolVdecMjpegClose

tmLibappErr_t tmalVdecMjpegClose(
 Int instance
);

Parameters

instance Instance value assigned at the call of the MJPEG-
Open function.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The passed parameter is not a valid instance.

Description

This function invalidates the instance and frees all memory allocated for instance vari-

ables and Decompression Instance.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

134 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVdecMjpegGetCapabilities, tmolVdecMjpegGetCapabilities

tmLibappErr_t tmalVdecMjpegGetCapabilities(
 ptmalVdecMjpegCapabilities_t *capabilities
);

Parameters

capabilities Pointer to variable in which to return a pointer to
capabilities data.

Return Codes

TMLIBAPP_OK Success.

MJ_ERR_NULL_POINTER The capbilities pointer is Null.

Description

This function initializes the capabilities struct with the MJPEG Decoder component’s val-

ues.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 135

8

tmalVdecMjpegInstanceSetup, tmolVdecMjpegInstanceSetup

tmLibappErr_t tmalVdecMjpegInstanceSetup(
 Int instance,
 ptmalVdecMjpegInstanceSetup_t setup
);

Parameters

instance Instance value assigned at the call of the MJPEG-
Open function.

setup Pointer to the setup data struct.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance value is not valid.

TMLIBAPP_ERR_INVALID_SETUP A field in the setup data struct is invalid.

Description

This function registers the setup parameters provided by the user into the internal

instance variables.

Chapter 8: TriMedia Motion JPEG Decoder (VdecMjpeg) API

136 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVdecMjpegGetInstanceSetup

tmLibappErr_t tmolVdecMjpegGetInstanceSetup(
 Int instance,
 ptmolVdecMjpegInstanceSetup_t setup
);

Parameters

instance The instance.

setup Pointer to the Instance setup structure of Vdec-
Mjpeg.

Return Codes

TMLIBAPP_OK Success

Description

This function assigns the pointer to tmolVdecMjpegInstanceSetup_t structure allocated

by the MJPEG Open function to setup.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 137

9

Chapter 9

TriMedia Motion JPEG Encoder

(VencMjpeg) API

Note
This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Topic Page

Motion JPEG Encoder API Overview 138

Motion JPEG Encoder API Data Structures 140

Motion JPEG Encoder API Functions 146

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

138 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Motion JPEG Encoder API Overview

Motion JPEG (MJPEG) is an implementation of JPEG for a sequence of video frames. As

of now no known official standard exists. The MJPEG Encoder Library provided with this

release implements standard JFIF (JPEG File Interchange Format File), motion JPEG for-

mat A (MJPEG-A) and motion JPEG format B (MJPEG-B) baseline sequential encoding for

frames. The encoder encodes bitstreams using

■ Lossy, DCT based transform, followed by Huffman run length encoding.

■ Input precision of 8 bits

■ YCbCr 4:2:2 or YUV 4:1:1 image format.

See Pennebaker & Mitchell, JPEG Still Image Data Compression Standard, Van Nostrand-

Reinhold NY, 1993 for more details on JPEG, and Motion JPEG Format, Draft 2, April 15,

1996, courtesy Apple Computer Inc., for details on MJPEG Formats A and B (See http://

www.QuickTimeFAQ/developer/).

MJPEG-A is in full compliance with the ISO JPEG specification. Each frame contains two

fields, with the first one being the top field. Each field is a standard JPEG stream. More

than one frame in a file makes an MJPEG Sequence file. In addition to standard JFIF

markers (JPEG file interchange format), MJPEG-A adds a new application marker called

APP1 (id = ”ffe1”). MJPEG-B is nothing but motion JPEG A stripped of all markers. The

various fields of the APP1 marker are given below (All fields are 4 bytes long and are in

Big Endian order):

1. Unused: typically 0000

2. Tag: It should contain “mjpeg”

3. Field size: size of encoded image data for each field

4. Padded field size

5. Offset to next field

6. DCT Quantization table offset

7. Huffman Table Offset

8. Start of Image Offset

9. Start of Scan Offset

10.Start of Data Offset

All fields are 4 bytes and in Big Endian order.

This library provides a standard set of seven APIs, like other tm components, which con-

form to the TriMedia Software Streaming Architecture (TSSA). All interfaces and data

structures are fully compliant with this architecture. The component takes a stream of

tmAvPackets (YUV data) as input and produces a stream of tmAvPackets at the output.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 139

9

The Application Library component (tmalVencMjpeg) provides the basic functionality of

OS independent JPEG encoding, while the operating system application library (OL)

component (tmolVencMjpeg) takes care of all inputs and outputs.

Performance

The typical performance obtained is around 4Mbits/sec of encoded bitstream, as mea-

sured on a cycle-accurate simulator with known software tuning on a 100 MHz TM-1

processor.

Demonstration Programs

The VencMjpeg component is normally used through the OL layer (tmolVencMjpeg). An

example program exolVencMjpeg.c is provided to illustrate the use of this component. It

takes a tmAvPacket_t (YUV data) as an input stream, encodes it and puts it into a file. It

uses the VdigVI component to capture the images and stream the data as packets to the

VencMjpeg component. After processing, the VencMjpeg component streams packets to

the Fwrite component which would in turn put it into the file.

Overview of the tmolVencMjpeg / tmalVencMjpeg Component

The tmolVencMjpeg component layer takes care of properly passing OS dependent

parameters like empty and full Queue IDs to the tmalVencMjpeg component. Default

API’s are provided and the API implementation is also largely the same as the default

implementations provided with tsaDefaults.c.

The tmalVencMjpeg component library provides an interface consistent with TSSA and

provides in all, six C callable functions. A typical Usage Sequence will be:

1. tmalVencMjpegGetCapabilities to get the encoder capabilities data structure.

2. tmalVencMjpegOpen. This opens an instance of the encoder. The encoder does not

put any restriction on the number of instances.

3. tmalVencMjpegInstanceSetup. This registers the setup parameters provided by the

user into internal instance variables.

4. tmalVencMjpegStart. This encodes YUV data frames sequentially until tmalVenc-

MjpegStop is called.

5. tmalVencMjpegStop. This changes the state variable to STOP.

6. tmalVencMjpegClose. This invalidates the instance and frees all memory created by

the component.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

140 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Input Description

The MJPEG Encoder requests data using the datain callback function registered at the

time of setup. Input packets are of type tmAvPacket_t (YUV data). Packet requests are

made from within the tmalVencMjpegStart.

The sizes of the image that has to be encoded are present in the tmalVencMjpegImage-

Description_t structure registered during setup of the instance.

Output Description

Output packets are of type tmAvPacket_t. The user creates the buffers and puts them into

the empty queue. The VencMjpeg uses these buffers to fill encoded data and puts them

out through the dataout function.

The output stream will be in any of the following formats:

■ JFIF

■ Motion JPEG A

■ Motion JPEG B

Stopping the VencMjpeg Component

The VencMjpeg component may be stopped by calling tmalVencMjpegStop or tmolVenc-

MjpegStop. The former will stop the component after the current frame is processed. The

latter is implemented by a call to the tsaDefaultStop. The example exolVencMjpeg.c

illustrates one way of stopping the processing chain. When the VencMjpeg stops, it calls

its completion function which may be used to synchronize with the other components.

Motion JPEG Encoder API Data Structures

This section presents all the data structures concerned with the VencMjpeg component

Name Page

tmalVencMjpegStates_t 141

tmalVencMjpegStream_t 142

tmalVencMjpegProgressFlags_t 142

tmalVencMjpegBufferType_t 143

tmalVencMjpegCapabilities_t, tmolVencMjpegCapabilities_t 143

tmalVencMjpegImageDescription_t, tmolVencMjpegImageDescription_t 144

tmalVencMjpegInstanceSetup_t/ tmalVencMjpegInstanceSetup_t 145

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 141

9

tmalVencMjpegStates_t

typedef enum {
 MJPGEn_RUN = 0x1,
 MJPGEn_STOP = 0x2,
 MJPGEn_PAUSE = 0x4,
 MJPGEn_SKIP = 0x8,
}tmalVencMjpegStates_t,*ptmalVencMjpegStates_t;

Fields

MJPGEn_RUN Value of the instance variable’s state field when
the encoder is encoding the stream. tmalVenc-
MjpegStart puts the component into this state.

MJPGEn_STOP Value of the state field when the encoder is
stopped or is required to be stopped at the end of
the current frame.

MJPGEn_PAUSE Reserved for future use.

MJPGEn_SKIP Value of the state field when the user wants to
skip the current frame. It is the user’s responsibil-
ity to release SKIP and put back RUN or STOP.
This can be done by using the progress function.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

142 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVencMjpegStream_t

typedef enum {
 MJPGEn_A = 0x1,
 MJPGEn_B = 0x2,
 MJPGEn_JFIF = 0x4,
 MJPGEn_UNSUPPORTED_STREAM_TYPE = 0x8,
}tmalVencMjpegStream_t,*ptmalVencMjpegStream_t;

Fields

MJPGEn_A Encoded stream type is Motion JPEG-A.

MJPGEn_B Encoded stream type is Motion JPEG-B.

MJPGEn_JFIF Encoded stream type is JFIF.

MJPGEn_UNSUPPORTED_STREAM_TYPE Unknown input stream.

Description

These are the stream types generated by the encoder. This is passed by the user through

the image description field of the setup variable.

tmalVencMjpegProgressFlags_t

typedef enum {
 MJPGEn_REPORT_START_ENCODING = 0x1,
 MJPGEn_REPORT_STOP_ENCODING = 0x2,
}tmalVencMjpegProgressFlags_t,*ptmalVencMjpegProgressFlags_t;

Fields

MJPGEn_REPORT_START_ENCODING Report before starting the encoding.

MJPGEn_REPORT_STOP_ENCODING Report after encoding has stopped.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 143

9

tmalVencMjpegBufferType_t

typedef enum {
 FULL_BUFFER = 0x1,
 PADDED_FF = 0x2,
} tmalVencMjpegBufferType_t,*ptmalVencMjpegBufferType_t;

Fields

FULL_BUFFER Output buffer allocated equals the maximum
image size.

PADDED_FF Output buffer allocated is of fixed size.

tmalVencMjpegCapabilities_t, tmolVencMjpegCapabilities_t

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
} tmalVencMjpegCapabilities_t,*ptmalVencMjpegCapabilities_t;

Fields

defaultCapabilities Pointer to tsaDefaultCapabilities_t

Description

See tsa.h for details. Replace “al” by “ol” in information above to get description of

tmolVencMjpegCapabilities_t.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

144 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVencMjpegImageDescription_t, tmolVencMjpegImageDescription_t

typedef struct {
 UInt32 height;
 UInt32 width;
 UInt32 imageStride;
 UInt32 is_field;
 tmVideoRGBYUVFormat_t format;
 tmalVencMjpegStream_t stream;
}tmalVencMjpegImageDescription_t,*ptmalVencMjpegImageDescription_t;

Fields

height This must contain the height of the input image.

width This must contain the width of the input image.

imageStride This must contain the stride of the input image.

is_field This must be zero for frame based encoding and 1
for field based encoding.

format This must contain the input image format which
is YUV 4:2:2 or YUV 4:1:1.

stream This must contain the output stream type which
can be JFIF, MJPEG A or MJPEG B.

Description

This contains parameters that describe the image. It also contains a field to indicate the

type of the output stream to be generated.

Note
The user is expected to create the image buffers and pass them to the
encoder. The expected size of the buffer is the product of the height and
imageStride.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 145

9

tmalVencMjpegInstanceSetup_t/ tmalVencMjpegInstanceSetup_t

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 ptmalVencMjpegImageDescription_t ImageDescription;
 tmalVencMjpegBufferType_t BufferType;
}tmalVencMjpegInstanceSetup_t,*ptmalVencMjpegInstanceSetup_t;

Fields

defaultSetup Stores the default values of this application
library.

ImageDescription This describes the image parameters.

BufferType This indicates whether the output data will have
padded data or not. This depends on the memory
available with the application.

Description

This structure contains all the required parameters to initialize the MJPEG video

encoder. Replace “al” by “ol” in information above to get description of

tmolVencMjpegInstanceSetup_t.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

146 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Motion JPEG Encoder API Functions

This section presents the various API functions for the MJPEG Encoder component.

Name Page

tmalVencMjpegGetCapabilities / tmolVencMjpegGetCapabilities 147

tmalVencMjpegOpen / tmolVencMjpegOpen 148

tmalVencMjpegClose / tmolVencMjpegClose 149

tmolVencMjpegGetInstanceSetup 150

tmalVencMjpegInstanceSetup / tmolVencMjpegInstanceSetup 151

tmalVencMjpegStart / tmolVencMjpegStart 152

tmalVencMjpegEncodeFrame 153

tmalVencMjpegStop, tmolVencMjpegStop 154

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 147

9

tmalVencMjpegGetCapabilities / tmolVencMjpegGetCapabilities

tmLibappErr_t tmalVencMjpegGetCapabilities (
 ptmalVencMjpegCapabilities_t *cap
)

tmLibappErr_t tmolVencMjpegGetCapabilities (
 ptmalVencMjpegCapabilities_t *cap
)

Parameters

cap Pointer to a variable in which to return a pointer
to the capabilities data.

Return Codes

TMLIBAPP_OK Success.

MJ_ERR_NULL_POINTER The capabilities pointer is Null.

Description

This function initializes the cap struct with the MJPEG Encoder component’s values.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

148 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVencMjpegOpen / tmolVencMjpegOpen

tmLibappErr_t tmalVencMjpegOpen(
 Int *instance
);

tmLibappErr_t tmolVencMjpegOpen(
 Int *instance
);

Parameters

Pointer to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MEMALLOC_FAILED Unable to allocate memory for compressor.

Description

This function will create an instance of the VencMjpeg component.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 149

9

tmalVencMjpegClose / tmolVencMjpegClose

tmLibappErr_t tmalVencMjpegClose(
 Int instance
);

tmLibappErr_t tmolVencMjpegClose(
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The passed parameter is not a valid instance.

Description

This function invalidates the instance and frees all memory allocated for instance vari-

ables and Decompression Instance.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

150 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVencMjpegGetInstanceSetup

tmLibappErr_t tmolVencMjpegGetInstanceSetup(
 Int instance,
 ptmolVencMjpegInstanceSetup_t setup
);

Parameters

instance Instance value assigned at the call of the MJPEG
Open function.

setup Pointer to the Instance setup structure of Venc-
Mjpeg.

Return Codes

TMLIBAPP_OK Success.

Description

This function assigns the pointer to tmolVencMjpegInstanceSetup_t structure allocated

by the MJPEG Open function to setup.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 151

9

tmalVencMjpegInstanceSetup / tmolVencMjpegInstanceSetup

tmLibappErr_t tmalVencMjpegInstanceSetup (
 Int instance,
 ptmalVencMjpegInstanceSetup_t instanceSetup
);

tmLibappErr_t tmolVencMjpegInstanceSetup(
 Int instance,
 ptmalVencMjpegInstanceSetup_t instanceSetup
);

Parameters

instance Instance value assigned at the call of the MJPEG
Open function.

instanceSetup Pointer to the instanceSetup data structure.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance value is not valid.

TMLIBAPP_ERR_INVALID_SETUP A field in the setup data struct is invalid.

Description

This function registers the setup parameters provided by the user into the internal

instance variables.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

152 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVencMjpegStart / tmolVencMjpegStart

tmLibappErr_t tmalVencMjpegStart(
 Int instance
)

tmLibappErr_t tmolVencMjpegStart(
 Int instance
)

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_DATAIN_FAILED The datain callback function failed.

TMLIBAPP_ERR_DATAOUT_FAILED The dataout callback function failed.

Description

This function does the encoding of the data in a streaming mode.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 153

9

tmalVencMjpegEncodeFrame

tmLibappErr_t tmalVencMjpegEncodeFrame(
 Int instance
)

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_DATAIN_FAILED The datain callback function failed.

TMLIBAPP_ERR_DATAOUT_FAILED The dataout callback function failed.

Description

This function does the encoding of the data in a push mode, one packet at a time.

Chapter 9: TriMedia Motion JPEG Encoder (VencMjpeg) API

154 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVencMjpegStop, tmolVencMjpegStop

tmLibappErr_t tmalVencMjpegStop(
 Int instance
)

tmLibappErr_t tmolVencMjpegStop(
 Int instance
)

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE The instance has not been opened.

TMLIBAPP_ERR_NOT_SETUP The instance has not been set up.

Description

The function merely changes the component’s state variable to STOP. The function calls

tsaDefaultStop.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 155

10
Chapter 10

Natural Motion Video Transformer

(VtransNM) API

Note
This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Topic Page

VtransNM API Overview 156

VtransNM Inputs and Outputs 158

VtransNM Errors 159

VtransNM Progress 160

VtransNM Configuration 160

VtransNM API Data Structures 160

VtransNM API Functions 168

Chapter 10: Natural Motion Video Transformer (VtransNM) API

156 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

VtransNM API Overview

The natural motion video transformer is a high-quality video transformer that trans-

forms standard interlaced signals, such as PAL and NTSC, to a progressive signal. It does

this using either smart deinterlacing techniques or heuristic motion estimation and

compensation techniques tailored to execution in software.

Before starting, VtransNM optionally does a film mode detection algorithm, which

detects 3:2 and 2:2 film modes, or regular interlaced broadcasts. Then it does a motion

estimation processing step and then a deinterlacing step. The details of the algorithm are

proprietary and not disclosed.

There are two distinct processing techniques used in the deinterlacer. The first category

has three options of deinterlacing, in which there is no motion compensation per-

formed. The most sophisticated of these three techniques is the default, known as film

detection. This mode detects film material (originally 24 frames per second) and has a

state-of-the-art deinterlacer using previous and next fields. The result is a very sharp pro-

gressive image. The cheaper modes are field insertion and field insertion with median filter-

ing. The second category is a heuristic in which motion vectors are determined and the

deinterlacer generates the missing fields by interpolation taking the motion vectors into

account. This mode is bound by processing and memory bandwidth requirements. The

heuristic is very good, but on some images where small objects move around the motion

estimator is too coarse, which can lead to artifacts. The positive effects of this mode are

best noticeable on scenes where a camera pans. The motion judder introduced by the 3:2

pull down is completely compensated and the result is very smooth. This mode is not

the default since there are artifacts introduced by the heuristic.

The CPU requirements are input-dependent, but average around 100 MHz for full screen

NTSC, but the maximum computing requirements can exceed the processing power of a

125 MHz TM-1100. In this rare case, a field skip may occur. There are two computation-

ally inexpensive processing modes, in which the input/output behavior of the program

is the same but the amount of processing cycles needed is greatly reduced and fixed.

These modes are the field insertion and median filtering modes. They can be used when

an application needs more CPU power at the cost of reduced image quality. The field

insertion mode needs approximately 31 MHz of a TM-1100 and the median filter approx-

imately 38 MHz. Switching between processing modes does not introduce any artifacts

in the video processing chain.

The delay within the Natural Motion component is 4 fields. That is, after the end of the

captured field, there are four field captures before the ‘deinterlaced frame’ is presented.

The VtransNM module is to be used with a PLL that sets the video-out clock such that

the video buffers, i.e., the buffers that contain the actual video frames, are released just

before the video-in component needs them again. Since memory is a scarce resource,

this PLL is required. The PLL is not part of the VtransNM component and should be sup-

plied by the application. As long as the buffer returned by the output chain is in time to

Chapter 10: Natural Motion Video Transformer (VtransNM) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 157

10

be passed to the input chain VtransNM has enough time and buffers to do its work.

When the PLL is not supplied unexpected results may occur.

Note
The name Natural Motion suggests the deinterlacer does motion
compensation, which is not true for all modes. VtransNM has as default
mode a mode that does not do motion compensated deinterlacing. The
default mode is suggested for products using the current VtransNM library.

Note
VtransNM needs a software PLL that locks the output clock to the input
clock. The PLL should be such that buffers released by the output are just in
time to be passed to the input digitizer. This PLL is application dependent
and therefore not integrated in any TSSA component.

Limitations

Because Natural Motion requires a lot of memory, special care is taken for the memory

allocation. The VtransNM component implements it’s own buffer management for the

video buffers. The regular TSSA interface would lead to too much copying of data and

would strain the algorithm’s computational and memory requirements. These require-

ments lead to several unexpected side effects. For instance, TSSA packets do not have the

same buffer pointers all the time, because VtransNM reassigns buffers to packets. Vtran-

sNM also keeps inspecting the data in the packets that are already sent out to the output

queue, so it expects that these packets are read only by the components in the output

chain. On closing the component VtransNM does not free the memory that was allo-

cated for the buffers. All internal memory is released, but buffers in the empty input

queue need to be released by the application because VtransNM does not know if these

buffers are in use.

It is possible to let the application allocate the buffers. In this case a buffer pointer can be

passed to the component that points to a preallocated buffer big enough to create all the

smaller video buffers from it. In this situation, VtransNM does not allocate new memory

but simply slices the bigger buffer into cache-aligned video buffers. The tmolVtransN-

MGetInstanceSetup function will return the total number of video buffers VtransNM

needs. On tmolVtransNMStop, the memory will not be used until tmolVtransNMStart is

called. The memory can be freed by the application when tmolVtransNMClose is called.

This allows the application to reuse the memory when Natural Motion is stopped.

The buffer reuse scheme requires special care to be taken at tmolVtransNMStop. The buff-

ers are reference counted, and buffers sent to the output chain have a non-zero reference

count (VtransNM is still inspecting them). That means that buffers returned from the

output component need to go through the VtransNM component. Normally on

tmolVtransNMStop there is no problem, because the buffer will come back in the right

queue and will be picked up when the component is restarted. But when VtransNM is

stopped and the queue to the output chain is reconnected to another component, the

administration will be incomplete if VtransNM is ever started again. The correct way to

Chapter 10: Natural Motion Video Transformer (VtransNM) API

158 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

Stop VtransNM and then reconnect the output queue is to stop the output chain first

such that all packets are released and sent back to the TSSA empty queue. Then Stop

VtransNM and all packets are guaranteed to have reference count 0 and reside in the

TSSA empty input queue of the VtransNM component.

Note 1
VtransNM still reads out of the buffers sent to its output, and expects them
to be unmodified.

Note 2
VtransNM wants to allocate it’s own buffers. Deallocation is NOT done by
VtransNM, not even on a call to tmolVtransNMClose. All buffers are cache
aligned. It is possible to pass a pointer to VtransNM from which buffers are
created. The buffer passed to VtransNM cannot be deallocated until the
VtransNM instance is closed. tmolVtransNMStop is not enough because
internal buffers are still known internally at tmolVtransNMStop.

Note 3
Stopping VtransNM does not mean that output queue can be redirected to
another component. If you want to do that, then first the output chain of
components needs to be stopped such that all outstanding buffers on the
output are seen by the VtransNM component. Then VtransNM can be
stopped and the queue can be redirected.

VtransNM Inputs and Outputs

Overview

An overview of the inputs and output of the natural motion video transformer is

depicted in Figure 12. There is one input, which is a stream of digitized video fields.

There is one output, which is the progressive video stream. Via the control input, the

component can be switched into certain processing modes, see tmolVtransNMConfig_t.

Figure 12 Overview of the VtransNM transformer

Control

Digital progressive
video stream

Error reports

VtransNM

Natural Motion
Video Transformer

Digital interlaced
video stream

Progress reports

Chapter 10: Natural Motion Video Transformer (VtransNM) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 159

10

Inputs

The capability format for the input descriptor is set to

The incoming packets are tmAvPackets, which have the format set to type

tmVideoFormat_t. From the packets, the stride is checked against the bufferStride given

at tmolVtransNMGetInstanceSetup of the VtransNM instance. The activeVideoStartY and

activeVideoStartX are taken as starting points in the buffer to start processing. The dein-

terlacing only applies to the region from activeVideoStart up to the imageHeight field

from the instance setup.

The video in, input descriptor has number 0, see inputDescriptors in the

tmalDefaultCapabilities_t.

Outputs

The is only one output of the VtransNM component and that is the upconverted video.

The output capability format is set to:

The output descriptor assignment is:

VtransNM Errors

There are a very limited number of error reports produced by VtransNM. Some reports

have the tsaErrorFlagsFatal set which should lead to termination of the instance.

tmAvFormat_t inFormat = {
 sizeof(tmAvFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcVideo, /* dataClass */
 vtfYUV, /* dataType */
 vdfYUV422Planar, /* dataSubtype */
 vdfFieldInFrame /* description */
};

#define VTRANSNM_MAIN_INPUT 0

tmAvFormat_t videoFormat = {
 sizeof(tmAvFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcVideo, /* dataClass */
 vtfYUV, /* dataType */
 vdfYUV422Planar, /* dataSubtype */
 vdfProgressive /* description */
};

#define VTRANSNM_MAIN_OUTPUT 0

tmLibappErr_t
vtransNMError(Int instId, UInt32 flags, ptsaErrorArgs_t args)

Chapter 10: Natural Motion Video Transformer (VtransNM) API

160 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

VtransNM Progress

There are no progress reports produced by VtransNM that calls back into the application

at this point. The only progress report used is the tsaProgressFlagChangeFormat and this

one is handled internally by TSSA internally.

VtransNM Configuration

The following control modes can be set via calls to tmolVtransNMInstanceConfig:

1. VTRANSNM_CMD_FIELD_INSERTION, switch mode to the computationally least

expensive field insertion processing mode.

2. VTRANSNM_CMD_MEDIAN_FILTER, switch mode to field insertion with median fil-

tering.

3. VTRANSNM_CMD_FILM_DETCTION, switch mode to deinterlacing with film detec-

tion and heuristic deinterlace filtering. This is the default mode resulting in very

sharp progressive output.

4. VTRANSNM_CMD_MOTION_ESTIMATION, switch mode to film detection, motion

estimation and deinterlacing with motion compensation.

These mode changes are asynchronous calls, and apply to the next incoming packet.

Other configuration modes are triggered by format changes on the input packets.

VtransNM API Data Structures

This section describes the VtransNM component data structures.

tmLibappErr_t
vtransMMProgress(Int instId, UInt32 flags, ptsaProgressArgs_t args)

Name Page

tmolVtransNMInstanceSetup_t 161

tmolVtransNMCapabilities_t 162

tmolVtransNMConfig_t 163

tmolVtransNMErrorFlags_t 165

tmolVtransNMControlCommand_t 167

Chapter 10: Natural Motion Video Transformer (VtransNM) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 161

10

tmolVtransNMInstanceSetup_t

typedef struct tmolVtransNMInstance {
 ptsaDefaultInstanceSetup_t defaultSetup;
 ptmolVtransNMConfig_t vtransNMConfig;
} tmolVtransNMInstanceSetup_t, *ptmolVtransNMInstanceSetup_t;

Fields

defaultSetup See TSSA documentation.

vtransNMConfig See tmolVtransNMConfig_t.

Description

Data structure passed to tmolVtransNMInstanceSetup to describe the input and output

connections and other initial values, see tmolVtransNMConfig_t.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

162 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVtransNMCapabilities_t

typedef struct tmalVtransNMCapabilities{
 ptsaDefaultCapabilities_t defaultCaps;
} tmolVtransNMCapabilities_t, *ptmolVtransNMCapabilities_t;

Fields

defaultCaps See TSSA documentation.

Description

For input and output descriptors, see VtransNM Inputs and Outputs on page 158. The text

section of transformer is about 140 kb, the initialized data section is about 6 kb, there is

no bss requirement.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 163

10

tmolVtransNMConfig_t

typedef struct tmolVtransNMConfig {
 UInt32 packetBase
 UInt32 bufferStride;
 UInt32 bufferHeight;
 UInt32 nrofBuffers;
 UInt8 *buffer;
 UInt32 bufferSize;
} tmolVtransNMConfig_t, *ptmolVtransNMConfig_t;

Fields

packetBase VtransNM should install on its TSSA created pack-
ets (value of packet->header->id) for debugging
and packet tracing. Packets are numbered from
packetBase and up. This field is similar to the
packetBase field of tsaInOutDescriptorSetup_t.

bufferStride Fixed stride for the buffers. During the lifetime of
this instance the stride cannot be changed. When
the application needs to switch between NTSC
and PAL the maximum of the two needs to be
taken. The UV buffer strides are taken as half the
bufferStride rounded up to the next multiple of
64 bytes. These strides need to be taken into
account when the buffer is created by the applica-
tion and passed to VtransNM.

bufferHeight Height of the buffers that need to be allocated.
When PAL and NTSC are used in the application
the maximum buffer height (576) needs to be
taken. When the VBI data needs to be captured in
the same buffer those lines need to be added to.

nrofBuffers Returned by tmolVtransNMGetCapabilities as info
when the application wants to create the memory
from which the buffers are created.

buffer Passed to tmolVtransNMInstanceSetup when the
application wants to do the memory allocation.

bufferSize The size of the buffer allocated by the application
(only used when buffer is non-Null). The buffer-
Size is the total size of the buffer, so it should be
nrofBuffers times the size of one buffer. One
buffer for NTSC processing should have cache
aligned Y and UV buffers and the Y buffer should
have size 480 (height) ×768 (stride). There is no
room for VBI data, and PAL cannot be processed
for these buffers. When the stride is made smaller
(for instance 704) the application should allocate

Chapter 10: Natural Motion Video Transformer (VtransNM) API

164 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

enough buffer space to have the UV buffers cache
aligned also (half the Y-stride is not a multiple of
64).

Description

Controls the instance setup and is used by the tmolVtransNMInstanceSetup function.

Applications need to be aware of the different execution modes of the VtransNM compo-

nent. For instance, when PAL and NTSC need to be processed the buffers need to be big

enough to capture the digitized input. When a data slicer needs to process VBI informa-

tion, this needs to be taken into account also, that is, the lines for the VBI data need to

be allocated also. The example program shows some of these issues.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 165

10

tmolVtransNMErrorFlags_t

n the enum below, base is equal to Err_base_VTRANSNM (0x130E0000).

typedef enum {
/* Fatal errors */
 VTRANSNM_ERR_VIDEO_FORMAT_EXPECTED base + 0x0001,
 VTRANSNM_ERR_STRIDE_MODIFIED base + 0x0002,
 VTRANSNM_ERR_PACKETS_ALLOCATED base + 0x0003,
 VTRANSNM_ERR_UNKNOWN_COMMAND base + 0x0004,
 VTRANSNM_ERR_BUFFER base + 0x0005,
 VTRANSNM_ERR_FORMAT_INCORRECT base + 0x0006,
 VTRANSNM_ERR_INVALID_PROCESSOR base + 0x0007,
 VTRANSNM_ERR_ACT_VIDEO_HEIGHT base + 0x0008,
 VTRANSNM_ERR_ACT_VIDEO_WIDTH base + 0x0009,
 VTRANSNM_ERR_INVALID_WIDTH base + 0x000c,
 VTRANSNM_ERR_INVALID_HEIGHT base + 0x000d,
 VTRANSNM_ERR_INTERNAL_ERROR base + 0x01ff
} tmalVtransNMErrorFlags_t;

Fields

The fields here describe fatal errors.

VTRANSNM_ERR_VIDEO_FORMAT_EXPECTED
The packet format is not of type tmVideo-
Format_t.

VTRANSNM_ERR_STRIDE_MODIFIED The stride of the buffers cannot change during
the lifetime of the VtransNM instance. At Instanc-
eSetup this is passed to the component, after that
it cannot change via the packet formats.

VTRANSNM_ERR_PACKETS_ALLOCATED The IODescriptor passed as input IODescriptor
has already allocated packets.

VTRANSNM_ERR_UNKNOWN_COMMAND The command passed to tmolVtransNMInstance-
Config is unknown.

VTRANSNM_ERR_BUFFER The passed-in buffer was too small. Alignment
needs to be taken into account when creating the
buffer.

VTRANSNM_ERR_FORMAT_INCORRECT The format is incorrect; either the stride was
changed or there was an incorrect videoStandard.
The errorFlags.description field is set to the for-
mat.

VTRANSNM_ERR_INVALID_PROCESSOR This program cannot run on a TM-1000, due to
the new instructions of the TM-1100 that it uses.

VTRANSNM_ERR_ACT_VIDEO_HEIGHT Active video endY – startY exceeds the NTSC or
PAL values.

VTRANSNM_ERR_ACT_VIDEO_WIDTH Active video endX – startX exceeds the NTSC or
PAL values.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

166 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

VTRANSNM_ERR_INVALID_WIDTH The image width should be a multiple of 8.

VTRANSNM_ERR_INVALID_HEIGHT The image height should be a multiple of 8.

VTRANSNM_ERR_INTERNAL_ERROR Contact the vendor. Triggered as assert.

Description

These error codes are either triggered as asserts or passed as args.errorCode in the

installed errorFunc.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 167

10

tmolVtransNMControlCommand_t

typedef enum tmolVtransNMControlCommand {
 VTRANSNM_CMD_FIELD_INSERTION = tsaCmdUserBase + 0,
 VTRANSNM_CMD_MEDIAN_FILTER = tsaCmdUserBase + 1,
 VTRANSNM_CMD_FILM_DETECTION = tsaCmdUserBase + 2,
 VTRANSNM_CMD_MOTION_ESTIMATION = tsaCmdUserBase + 3
} tmolVtransNMControlCommand_t;

Fields

VTRANSNM_CMD_FIELD_INSERTION Indicates the processing should be field insertion
without median filtering. This is the computa-
tionally least expensive processing mode avail-
able.

VTRANSNM_CMD_MEDIAN_FILTER Indicates the processing should be field insertion
with median filtering. This is requires a little more
computation than
VTRANSNM_CMD_FIELD_INSERTION but less than
VTRANSNM_CMD_MOTION_ESTIMATION.

VTRANSNM_CMD_FILM_DETECTION Indicates the processing should be film input
detection plus heuristic deinterlacing. This mode
is the default mode. It takes more processing
power than median filtering and does a very good
job in the deinterlacing. There is no motion com-
pensation.

VTRANSNM_CMD_MOTION_ESTIMATION Indicates the processing should be motion esti-
mated and compensated deinterlacing.

Description

These commands can be passed as ‘command’ in a tsaControlArgs_t structure that is

passed to tmolVtransNMInstanceConfig. ‘parameter’ of the tsaControlArgs_t structure has

no meaning.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

168 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

VtransNM API Functions

This section presents the VtransNM component functional interface.

Name Page

tmolVtransNMGetCapabilities 169

tmolVtransNMOpen 170

tmolVtransNMInstanceSetup 171

tmolVtransNMGetInstanceSetup 172

tmolVtransNMStart 173

tmolVtransNMStop 174

tmolVtransNMClose 175

tmolVtransNMInstanceConfig 176

Chapter 10: Natural Motion Video Transformer (VtransNM) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 169

10

tmolVtransNMGetCapabilities

extern tmLibappErr_t tmolVtransNMGetCapabilities(
 ptmolVtransNMCapabilities_t *cap
);

Parameters

cap Pointer to a variable in which to return a pointer
to the capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

This function fills in the pointer of a static structure, tmolVtransNMCapabilities_t, main-

tained by the natural motion video transformer, to describe the capabilities and require-

ments of this library.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

170 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVtransNMOpen

extern tmLibappErr_t tmolVtransNMOpen(
 Int *instance
);

Parameters

instance Pointer to the (returned) instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation failed.

TMLIBAPP_ERR_MODULE_IN_USE No more instances are available. Currently only
one instance is supported, due to the amount of
memory and processing power requirements.

The function can also return any code produced by tsaDefaultOpen.

Description

Opens an instance of the VtransNM component.

The VtransNM task is created with preemption. Usually the task should have low prior-

ity. The default stack size is set to 10 kb.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 171

10

tmolVtransNMInstanceSetup

extern tmLibappErr_t tmolVtransNMInstanceSetup(
 Int instance,
 ptmolVtransNMInstanceSetup_t setup
);

Parameters

instance Instance previously opened by tmolVtransN-
MOpen.

setup Pointer to the setup data. See tmolVtransNM-
InstanceSetup_t.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is not an instance opened with
tmolVtransNMOpen, triggered via tmAssert.

TMLIBAPP_ERR_NOT_OPEN When the instance is not opened with tmol-
VtransNMOpen, triggered via tmAssert.

TMLIBAPP_ERR_MEMALLOC_FAILED No memory could be allocated for one of the
packets or buffers or internal buffer management
structures.

VTRANSNM_ERR_PASSED_IN_BUFFER_TOO_SMALL
A non-Null buffer pointer was passed, but the
buffer was too small. See tmolVtransNMConfig_t.
Triggered as assert.

VTRANSNM_ERR_BUFFER_WIDTH Image width should be a multiple of 8.

VTRANSNM_ERR_BUFFER_HEIGHT Image height should be a multiple of 8.

The function can also return any error code produced by tsaDefaultInstanceSetup, tmos-

TaskCreate, tmosSemaphoreCreate, tmosTaskStart, or tmosTaskSuspend.

Description

The instance previously opened by tmolVtransNMOpen is set up. Memory is allocated for

the TSSA packets and video buffers, and to store all the buffer information; tmolVtrans-

NMInstanceSetup should be called only once for each instance.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

172 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVtransNMGetInstanceSetup

extern tmLibappErr_t tmolVtransNMGetInstanceSetup(
 Int instance,
 ptmolVtransNMInstanceSetup_t *setup
);

Parameters

instance The instance.

setup Pointer to a variable in which to return a pointer
to the setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is not an instance opened with tmol-
VtransNMOpen, triggered via tmAssert.

TMLIBAPP_ERR_NOT_OPEN Instance is not opened with tmolVtransNMOpen,
triggered via tmAssert.

Description

This function is used during initialization of the transformer. It returns the default set-

tings for the transformer’s instance. The setup can then be further initialized by the

application which normally is filling all the queues and the progress and error functions

and then passed to tmolVtransNMInstanceSetup.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 173

10

tmolVtransNMStart

extern tmLibappErr_t tmolVtransNMStart(
 Int instance
);

Parameters

instance Instance previously opened by tmolVtransNM-
Open.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is not an instance opened with
tmolVtransNMOpen, triggered via tmAssert.

TMLIBAPP_ERR_NOT_OPEN Instance is not opened with tmolVtransNMOpen,
triggered via tmAssert.

TMLIBAPP_ERR_NOT_SETUP Instance is not set up with tmolVtransNMInstance-
Setup, triggered via tmAssert.

The function can also return any code produced by tsaDefaultStart.

Description

The previously opened and set up instance of the transformer is started. Because the

transformer creates its own buffers, it is not expected that there are any packets in the

input and output queue.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

174 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVtransNMStop

extern tmLibappErr_t tmolVtransNMStop(
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_ERR_INVALID_INSTANCE Instance is not an instance opened with
tmolVtransNMOpen, triggered via tmAssert.

TMLIBAPP_ERR_NOT_OPEN Instance is not opened with tmolVtransNMOpen,
triggered via tmAssert.

TMLIBAPP_OK Success.

The function can also return any code produced by tsaDefaultStop, tmosSemaphoreP.

Description

The tsaDefaultStop takes care of stopping the instance. The VtransNM instance will do a

tsaDefaultStopPin on the output component (when that pin was not stopped) and restart

it again, to make sure there are no packets left to be displayed. This is done to ensure the

reference counts to all buffers are as low as possible. There can be still some buffers in the

output chain. When the application wants to reconnect the output queue, the output

chain needs to be stopped first (to make sure all buffers are returned to the VtransNM

instance such that the reference counts can be set to 0).

After a call to stop, the VtransNM instance can be restarted via a call to Start.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 175

10

tmolVtransNMClose

extern tmLibappErr_t tmolVtransNMClose(
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is not an instance open with tmolVtrans-
NMOpen, triggered via tmAssert.

TMLIBAPP_ERR_NOT_STOPPED Instance is not stopped before. Triggered via
tmAssert.

The function can also return any code produced by tsaDefaultClose, tmosTaskDestroy, or
tmosSempahoreDestroy.

Description

Closes a stopped VtransNM instance. The instance cannot be used anymore. A new

instance can be created with tmolVtransNMOpen, but all buffers will be allocated again.

So when VtransNM allocated the video buffers (as opposed to the application passing in

a buffer from which the video buffers are allocated from) these have to be deallocated

first to free the memory.

Chapter 10: Natural Motion Video Transformer (VtransNM) API

176 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVtransNMInstanceConfig

extern UInt32 tmolVtransNMInstanceConfig(
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Parameters

instance The instance.

flags Presently ignored.

args args–>command is one of the command codes
from tmolVtransNMControlCommand_t. There are
no other required fields to be set in args.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is not an instance open with tmolVtrans-
NMOpen. Triggered via tmAssert.

TMLIBAPP_ERR_NOT_OPEN Instance is not open. Triggered via tmAssert.

TMLIBAPP_ERR_NOT_SETUP Instance is not set up. Triggered via tmAssert.

Description

Switch between different deinterlacing algorithms.

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 177

11

Chapter 11

MPEG Video Decoder (VdecMpeg) API

Note
This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Note
The VdecMpeg is an implementation of the “Recommendation ITU-T H262,
ISO/IEC 13818-2” standard.

Topic Page

VdecMpeg API Overview 178

VdecMpeg Inputs and Outputs 178

VdecMpeg Errors 181

VdecMpeg Progress 181

VdecMpeg Configuration 181

VdecMpeg API Data Structures 182

VdecMpeg API Functions 196

Chapter 11: MPEG Video Decoder (VdecMpeg) API

178 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

VdecMpeg API Overview

The VdecMpeg component is a software TSSA MPEG-2 video decoder. It accepts MPEG-1

and MPEG-2 MP@ML video elementary streams. VdecMpeg detects and recovers from bit

stream errors but it performs no error concealment. Presentation time stamps (if present)

are attached to the outgoing video packets. Decoding time stamps (if present) are com-

pared with an installed reference clock. The result of this comparison is then used by the

decoder to determine when the decoding of a video frame must be skipped in order to

maintain synchronization with other components. The skipping based on DTS compari-

son is only done for B-frames.

Normally, VdecMpeg requires 4 output frame buffers. A special “still” mode has been

added which allows VdecMpeg to run with 1 output frame buffer. However, in this

mode, VdecMpeg is capable of decoding only 1 I-frame before it must be stopped and

restarted.

The user can request that user data be extracted from the incoming video stream and

passed to a component which resides down stream from the video decoder.

Limitations

VdecMpeg does not run on the TM-1000. The VdecMpeg component uses instructions

supported by the TM-1100 and later processors to reduce the processing load. This

decoder relies on the TM-1xxx family VLD. It will therefore not run on TM-2xxx proces-

sors.

The decoder is not re-entrant, which means that only one decoder can be alive at any

point in time.

VdecMpeg Inputs and Outputs

Overview

The input and outputs of the MPEG video decoder are depicted in Figure 13, following.

The data input should be an MPEG video elementary stream, with optional timestamps.

The two outputs are; (1) the decoded video stream and (2) a data stream that contains

extracted user data. The latter is only sent along on user request. Via the control input,

the component can be controlled.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 179

11

Figure 13 Overview of the Decoder

Inputs

VdecMpeg only operates in data streaming mode. Input packets are requested via the

registered datain callback function. Input packets should be of the type tmAvPacket_t.

Typically, VdecMpeg retains possession of two input packets. To avoid copying the

incoming data, no internal buffering of the input stream is done. Therefore, to ensure

efficient operation, the component immediately upstream from VdecMpeg should main-

tain a rate buffer for the incoming data.

Timestamps are passed in with data packets. The timestamps of packets with the avh-

ValidTimestamp flag set, are used as PTS values, unless also the avhValidDts flag is set, in

which case the timestamp is used as DTS value. DTS timestamps extracted from empty

packets are associated with the next non-empty input packet. The PTS values are

attached to the next decoded video frame and passed to the component immediately

down stream from VdecMpeg along with the decoded video frame. If more than one PTS

is received for a particular video frame, VdecMpeg always uses the last value received.

The capability format for the input descriptor is set to

Outputs

VdecMpeg has two outputs. One output contains the decoded video frames. The other

contains user data which has been extracted from the incoming stream.

tmAvFormat_t input_format = {
 sizeof(tmAvFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcVideo, /* dataClass */
 vtfMPEG, /* dataType */
 vmfMPEG1 | vmfMPEG2 | vmfNone, /* dataSubtype */
 0 /* description */
};

Control

Decoded YUV 420
video stream

Error reports

VdecMP

MPEG video
decoder

MPEG video
elementary

stream

Progress reports

Extracted
user data

Chapter 11: MPEG Video Decoder (VdecMpeg) API

180 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

In the case of video output, each packet contains one entire video frame. In the case of

interlaced frames, one tmAvPacket contains both fields. The top field is located at the

location indicated by the tmAvPacket‘s data pointer. While the bottom field is located at

data pointer + stride (the regular vdfInterlaced format).

PTS values for the video output are located in the timeStamp field of the tmAvPacket. If

the incoming stream contains valid PTS values, the decoder will linearly extrapolate

these PTS values such that every decoded video frame out of the decoder will have a PTS.

The extrapolated PTS values are only used if the incoming video frame does not have a

valid PTS.

The decoded video output has its capability format set to:

The user data output contains user data extracted from the Sequence, GOP and Picture

layers of the bitstream. The user can dynamically enable or disable extraction of these

user data streams via the command interface. However, the I/O descriptors must be ini-

tialized at instance setup. The packets contain un-interpreted data from the bitstream. If

the data does not fit in one packet, an error conditions is signalled. Once such an error

has occurred, the remaining user data is discarded and a full but incomplete user data

packet is sent to the user data output. User data packets are sent out immediately if reor-

dering is not enabled. Otherwise, user data is sent to its output when the corresponding

video frame is sent to the video output.

The data output has the following format:

The output descriptor assignment is:

tmAvFormat_t videoFormat = {
 sizeof(tmAvFormat_t),/* size */
 0, /* hash */
 0, /* referenceCount */
 avdcVideo, /* dataClass */
 vtfYUV, /* dataType */
 vdfYUV420Planar, /* dataSubtype */
 0 /* description */
};

tmAvFormat_t videoFormat = {
 sizeof(tmAvFormat_t),/* size */
 0, /* hash */
 0, /* referenceCount */
 avdcGeneric, /* dataClass */
 avdtGeneric, /* dataType */
 avdsGeneric, /* dataSubtype */
 0 /* description */
};

#define VDECMPEG_OUTPUT 0
#define VDECMPEG_DATA_OUTPUT 1

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 181

11

VdecMpeg Errors

VdecMpeg detects and recovers from a wide variety of bitstream errors. Errors are

reported via the registered error callback function. Errors which are reported with the

tsaErrorFlagsFatal set should result in termination of the instance. Bitstream errors are

never fatal. It is assumed that the incoming data stream is a stream that the decoder

should be able to decode.

Once an error has been reported, the default recovery mechanism is to seek to the next

group of pictures and resume decoding at that point. Video frames in which an error was

encountered part way through the decoding process are sent to the down stream compo-

nent with buffersInUse set to 0. Note that this is the only time which it is acceptable to

return buffers to the video decoder out of order. In all other instances, video frame buff-

ers must be returned to the video decoder in the order in which they were sent.

VdecMpeg Progress

There are three progress reports produced by VdecMpeg. The decoder reports the decode

of a frame (and frame type), the skip of a frame and the sequence information from

which the application can determine what type of bitstream is decoded. The VdecMpeg

component uses the tsaProgressFlagChangeFormat, which is handled by TSSA internally,

to install a format on the Video output queue.

VdecMpeg Configuration

The following control modes can be set via calls to tmolVdecMpegInstanceConfig:

1. Enable extraction of user data. Sending this command will tell the video decoder to

extract user data and send it to the data output. The argument to this command is a

boolean which indicates whether or not to reorder the user data with the decoded

video frames. A value of false causes the user data to be sent down stream immedi-

ately. Note that there are actually 3 separate commands. One each to enable

sequence, GOP and picture user data independently.

2. Disable extraction of user data. Sending this command disables extraction of user

data by the video decoder. Again, there are actually 3 separate commands. One each

to enable sequence, GOP and picture user data independently.

3. Flush. Assumed to be called only when there are no more input packets, In this case a

flush buffer is installed in the VLD, the last data is decoded and then the decoded

frames, if any, are sent out.

4. Ignore DTS, in which case all incoming frames are decoded regardless of their decod-

ing time stamp. This mode can be used to implement trick modes.

tmLibappErr_t
VdecMpegProgress(Int instId, UInt32 flags, ptsaProgressArgs_t args)

Chapter 11: MPEG Video Decoder (VdecMpeg) API

182 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

5. Resume decoding with taking DTS into account, the default operation mode when a

clock is installed.

VdecMpeg API Data Structures

This section describes the VdecMpeg component data structures.

Name Page

tmolVdecMpegInstanceSetup_t, tmalVdecMpegInstanceSetup_t 183

tmolVdecMpegCapabilities_t, tmalVdecMpegCapabilities_t 184

tmolVdecMpegErrorFlags_t 185

tmalVdecMpegControlCommand_t 188

tmalVdecMpegProgressFlags_t 190

tmalVdecMpegSequenceLevel_t 191

tmalVdecMpegSequenceDescription_t 192

tmalVdecMpegPictureInfo_t 193

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 183

11

tmolVdecMpegInstanceSetup_t, tmalVdecMpegInstanceSetup_t

typedef struct tmalVdecMpegInstance {
 ptsaDefaultInstanceSetup_t defaultSetup;
 UInt32 imageStride;
 UInt32 numberOfOutputPackets;
 UInt32 numberOfUserDataPackets;
} tmalVdecMpegInstanceSetup_t, *ptmalVdecMpegInstanceSetup_t;

typedef tmalVdecMpegInstanceSetup_t tmolVdecMpegInstanceSetup_t;
typedef ptmalVdecMpegInstanceSetup_t ptmolVdecMpegInstanceSetup_t;

Fields

defaultSetup See TSSA documentation

imageStride In case the display component that interprets the
video output has a stride restriction, for instance
the ICP. When set to 0, no stride restriction is
assumed and the image width of the decoder pic-
ture is taken as stride.

numberOfOutputPackets Either set to 1 or 4. When set to 1, only one
I frame is decoded.

numberOfUserDataPackets Total number of packets available for user data.

Description

Data structure passed to tmolVdecMpegInstanceSetup or tmalVdegMpegInstanceSetup to

describe the input and output connections and other initial values.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

184 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVdecMpegCapabilities_t, tmalVdecMpegCapabilities_t

typedef struct tmalVdecMpegCapabilities{
 ptsaDefaultCapabilities_t defaultCaps;
} tmalVdecMpegCapabilities_t, *ptmalVdecMpegCapabilities_t;

typedef tmalVdecMpegCapabilities_t tmolVdecMpegCapabilities_t;
typedef ptmalVdecMpegCapabilities_t ptmolVdecMpegCapabilities_t;

Fields

defaultCaps See TSSA documentation.

Description

For input and output descriptors, see VdecMpeg Inputs and Outputs on page 178. The text

section of VdecMpeg is about 100 kb and the initialized data section is about 4 kb. There

is no bss requirement.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 185

11

tmolVdecMpegErrorFlags_t

Err_base_VdecMpeg is 0x13070000.

typedef enum {
/* Fatal errors */
 VDECMPEG_ERR_VLD_OPEN_FAILED Err_base_VDecMpeg + 0x0001,
 VDECMPEG_ERR_INVALID_PROCESSOR Err_base_VdecMpeg + 0x0002,
 VDECMPEG_ERR_NO_PICTURE_INFO_ALLOCATED Err_base_VdecMpeg + 0x0003,

/* Non-fatal errors (action by decoder itself) */
 VDECMPEG_ERR_RESERVED_EXT_STARTCODE_ID Err_base_VdecMpeg + 0x0100,
 VDECMPEG_ERR_UNEXPECTED_STARTCODE Err_base_VdecMpeg + 0x0101,
 VDECMPEG_ERR_ODD_FIELD_PICTURES Err_base_VdecMpeg + 0x0102,
 VDECMPEG_ERR_LAST_FRAME_NOT_COMPLETE Err_base_VdecMpeg + 0x0103,
 VDECMPEG_VLD_ERROR Err_base_VdecMpeg + 0x0104,
 VDECMPEG_ERR_MBA_OVERFLOW Err_base_VdecMpeg + 0x0105,
 VDECMPEG_ERR_MBA_EXCEEDS_PICTURE_SIZE Err_base_VdecMpeg + 0x0106,

 VDECMPEG_ERR_DCT_COEFFS_EXCEED_64 Err_base_VdecMpeg + 0x0107,
 VDECMPEG_ERR_INVALID_MOTION_TYPE Err_base_VdecMpeg + 0x0108,

 VDECMPEG_ERR_AV_BUFFERS_TOO_SMALL Err_base_VdecMpeg + 0x0109,
 VDECMPEG_ERR_ONLY_420_SUPPORTED Err_base_VdecMpeg + 0x010A,
 VDECMPEG_ERR_ONLY_MPML_SUPPORTED Err_base_VdecMpeg + 0x010B,
 VDECMPEG_ERR_SPATIAL_SCALABILITY_NOT_SUPPORTED
 Err_base_VdecMpeg + 0x010C,
 VDECMPEG_ERR_TEMPORAL_SCALABILITY_NOT_SUPPORTED
 Err_base_VdecMpeg + 0x010D,
 VDECMPEG_ERR_INTERNAL_ERROR Err_base_VdecMpeg + 0x01FF
} tmalVdecMpegErrorFlags_t;

Fields

Fatal errors

VDECMPEG_ERR_VLD_OPEN_FAILED The VLD open failed, the interrupt could not be
allocated.

VDECMPEG_ERR_INVALID_PROCESSOR The decoder is executed on a TM-1000 processor.
For speed and compliance reasons, some special
instruction supported by TM-1100 or later proces-
sors are required.

VDECMPEG_ERR_NO_PICTURE_INFO_ALLOCATED
A video packet was taken from the queue and it
did not have a preallocted tmalVdecMpegPicture-
Info_t installed in the userPointer.

VDECMPEG_ERR_RESERVED_EXT_STARTCODE_ID
An unknown extension start code was encoun-
tered. The extension startcode id is returned in
the args.description field. Decoding resumes at
the next start code.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

186 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

VDECMPEG_ERR_UNEXPECTED_STARTCODE
A non-video startcode was encountered. The
startcode is described in the args.description field.
Decoding is restarted at the next GOP.

VDECMPEG_ERR_ODD_FIELD_PICTURES An odd number of field pictures has been encoun-
tered before the current frame picture.

VDECMPEG_ERR_LAST_FRAME_NOT_COMPLETE
An odd number of field pictures was decoded
before a sequence end code was encountered.

VDECMPEG_VLD_ERROR The VLD has detected and illegal Huffman code.

VDECMPEG_ERR_MBA_OVERFLOW A macroblock address increment value has
exceeded the maximum alllowable value (i.e.
number of macroblocks per row). Only valid for
MPEG-2 sequences.

VDECMPEG_ERR_MBA_EXCEEDS_PICTURE_SIZE
The number of macrblocks decoded for the cur-
rent picture has exceeded the picture size speci-
fied in the sequence header.

VDECMPEG_ERR_DCT_COEFFS_EXCEED_64
A block with more than 64 DCT coefficients has
been encountered.

VDECMPEG_ERR_INVALID_MOTION_TYPE
The motion type for the current macroblock is
illegal with respect to the current picture struc-
ture.

VDECMPEG_ERR_AV_BUFFERS_TOO_SMALL
The given YUV output buffers were to small to
decode this bitstream. Decoding is restarted at the
next gop. The user may want to stop the instance,
insert bigger buffers and restart.

VDECMPEG_ERR_ONLY_420_SUPPORTED A chroma format value (see 13818-2) other than 1
has been encountered in the sequence extension.
For MP@ML streams, the chroma format field can
only be 1. Decoding is restarted at the next gop.

VDECMPEG_ERR_ONLY_MPML_SUPPORTED
Only main profile, main level is supported,
decoding isrestarted at the next gop.

VDECMPEG_ERR_SPATIAL_SCALABILITY_NOT_SUPPORTED
A spatial scalable extension (picture or sequence)
has been detected. No such extensions are
allowed in MP@ML streams. Decoding is restarted
at the next GOP.

VDECMPEG_ERR_TEMPORAL_SCALABILITY_NOT_SUPPORTED
A temporal scalable extension (picture or
sequence) has been detected. No such extensions

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 187

11

are allowed in MP@ML streams. Decoding is
restarted at the next gop.

VDECMPEG_ERR_INTERNAL_ERROR Contact the vendor, an internal error has
occurred.

Description

These error codes are passed as args.errorCode in the installed errorFunc. Only when

explicitly mentioned the description field is set. Usually the args.description is set to

Null.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

188 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVdecMpegControlCommand_t

typedef enum {
 VDECMPEG_CMD_FREEZE tsaCmdUserBase + 0,
 VDECMPEG_CMD_UNFREEZE tsaCmdUserBase + 1,
 VDECMPEG_CMD_IGNORE_DTS tsaCmdUserBase + 2,
 VDECMPEG_CMD_NORMAL_DTS tsaCmdUserBase + 3,
 VDECMPEG_CMD_SEQ_UD_ON tsaCmdUserBase + 4,
 VDECMPEG_CMD_SEQ_UD_OFF tsaCmdUserBase + 5,
 VDECMPEG_CMD_GOP_UD_ON tsaCmdUserBase + 6,
 VDECMPEG_CMD_GOP_UD_OFF tsaCmdUserBase + 7,
 VDECMPEG_CMD_PIC_UD_ON tsaCmdUserBase + 8,
 VDECMPEG_CMD_PIC_UD_OFF tsaCmdUserBase + 9,
 VDECMPEG_CMD_FLUSH tsaCmdUserBase + 10
 VDECMPEG_CMD_SKIP_BFRAMES tsaCmdUserBase + 11
} tmalVdecMpegControlCommand_t;

Fields

VDECMPEG_CMD_FREEZE CURRENTLY UNIMPLEMENTED. Indicates the
output picture needs to be frozen. The decoder
will decode I and P frames (if the number of buff-
ers set by instance setup allows this), such that
unfreeze is smooth and quick. When the decoder
was frozen this command has no effect.

VDECMPEG_CMD_UNFREEZE CURRENTLY UNIMPLEMENTED. Unfreezes a fro-
zen decoder. When the decoder is not frozen this
command has no effect.

VDECMPEG_CMD_IGNORE_DTS Decodes all incoming frames regardless of
whether the DTS has expired.

VDECMPEG_CMD_NORMAL_DTS Interpret the DTS, when the DTS has expired, do
not decode the frame. This is the default opera-
tion mode when a valid clock is passed in the
instance setup.

VDECMPEG_CMD_SEQ_UD_ON Enable extraction of user data at the sequence
level. A boolean cast of “parameter” is used to
indicate whether the extracted user data should
be reorderd with the outgoing video frames.

VDECMPEG_CMD_SEQ_UD_OFF Disable extraction of user data at the sequence
level.

VDECMPEG_CMD_GOP_UD_ON Enable extraction of user data at the group of pic-
tures level. A boolean cast of “parameter” is used
to indicate whether the extracted user data
should be reorderd with the outgoing video
frames.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 189

11

VDECMPEG_CMD_GOP_UD_OFF Disable extraction of user data at the group of pic-
tures level.

VDECMPEG_CMD_PIC_UD_ON Enable extraction of user data at the picture level.
A boolean cast of “parameter” is used to indicate
whether the extracted user data should be reor-
derd with the outgoing video frames.

VDECMPEG_CMD_PIC_UD_OFF Disable extraction of user data at the picture level.

VDECMPEG_CMD_FLUSH Decode all data that has been passed to the
decoder. Flush the decoded output pictures. It is
assumed that there is no incoming data anymore.

VDECMPEG_CMD_SKIP_BFRAMES Skip decoding of B-frames.

Description

These commands can be passed as ‘command’ in a ptsaControlArgs_t structure that is

passed to tmolVdecMpegInstanceConfig. Unless otherwise indicated, ‘parameter’ of the

ptsaControlArgs_t structure has no meaning.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

190 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVdecMpegProgressFlags_t

typedef enum {
 VDECMPEG_NEW_SEQUENCE = 0x0001,
 VDECMPEG_DECODED_A_FRAME = 0x0002,
 VDECMPEG_SKIPPED_A_FRAME = 0x0004,
 VDECMPEG_TIMEDIFF = 0x0008
} tmalVdecMpegProgressFlags_t;

Fields

VDECMPEG_NEW_SEQUENCE A new sequence header is encountered, see tmalV-
decMpegSequenceDescription_t.

VDECMPEG_DECODED_A_FRAME A frame was successfully decoded. The
args.description field is set to I_TYPE, P_TYPE, or
B_TYPE and indicates which frame has just been
decoded. I_TYPE etc are defined in the tmalVdec-
Mpeg.h include file.

VDECMPEG_SKIPPED_A_FRAME A frame was skipped because the DTS was expired.
The args.description field is set to B_TYPE since
these are the only type of frames the decoder can
safely skip.

VDECMPEG_TIMEDIFF Reserved for future use.

Description

Used in progress reports, as args.progressCode in the ptsaProgressArgs_t structure.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 191

11

tmalVdecMpegSequenceLevel_t

typedef enum {
 VDECMPEG_MPEG1_SEQ,
 VDECMPEG_MPEG2_SEQ
} tmalVdecMpegSequenceLevel_t;

Fields

VDECMPEG_MPEG1_SEQ Indication of MPEG level 1 sequence.

VDECMPEG_MPEG2_SEQ Indication of MPEG level 2 sequence.

Description

This data structure is used in VDECMPEG_NEW_SEQUENCE progress report. It is passed via

the tmalVdecMpegSequenceDescription_t structure.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

192 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmalVdecMpegSequenceDescription_t

typedef struct{
 UInt32 size;
 tmalVdecMpegSequenceLevel_t level;
 UInt32 imageWidth;
 UInt32 imageHeight;
 UInt32 bitRateValue;
 UInt16 aspectRatio;
 Bool progressiveSequence;
 Bool sequenceDisplayExtensionPresent;
} tmalVdecMpegSequenceDescription_t, *ptmalVdecMpegSequenceDescription_t;

Fields

size Used by TSSA, always the size of the structure.

level Either VDECMPEG_MPEG1_SEQ or
VDECMPEG_MPEG2_SEQ.

imageWidth The width of the decoded fields as indicated in
the sequence header.

imageHeight The height of the decoded fields as indicated in
the sequence header.

bitRateValue The bit rate as indicated in the sequence header.

aspectRatio The aspect ratio as indicated in the sequence
header.

progressiveSequence Whether this bitstream is progressive or inter-
laced.

sequenceDisplayExtensionPresent Whether this sequence has display extension set.

Description

This data structure is passed by reference in the description field of the ptsaProgress-

Args_t structure that is passed to the installed progress function. The progressCode is set

to VDECMPEG_NEW_SEQUENCE.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 193

11

tmalVdecMpegPictureInfo_t

typedef struct{
 UInt32 size;
 UInt32 dataFormat;
 Int16 displayHorizontalSize;
 Int16 displayVerticalSize;
 Int16 frameCentreHorizOffset[3];
 Int16 frameCentreVertOffset[3];
 UInt16 aspectRatio;
 ptmAvFormat userData[MAX_UD_INDEX];
} tmalVdecMpegPictureInfo_t, *ptmalVdecMpegPictureInfo_t;

Fields

size Used by TSSA, the size of this structure.

dataFormat Data format, defined as follows:
dataFormat =

((picture_structure & VO_DF_PS_MASK) << VO_DF_PS_SHIFT) |
((chroma_format & VO_DF_CF_MASK) << VO_DF_CF_SHIFT) |
((matrix_coefficients & VO_DF_COL_CONV_MASK) << VO_DF_COL_CONV_SHIFT) |
((progressive_frame & VO_DF_PROG_FR_MASK) << VO_DF_PROG_FR_SHIFT) |
((top_field_first & VO_DF_TFF_MASK) << VO_DF_TFF_SHIFT) |
((repeat_first_field & VO_DF_RFF_MASK) << VO_RFF_SHIFT) |
((progressive_sequence & VO_DF_PROGSEQ_MASK) << VO_DF_PROGSEQ_SHIFT) |
(((picture_rateÐ1) & VO_DF_FRAME_RATE_MASK) << VO_DF_FRAME_RATE_SHIFT)|
((pict_type) & VO_DF_PTYPE_SHIFT);

picture_structure

 TOP_FIELD 0x1 Frame is encoded in the form of 2 fields and cur-
rent field is the top field.

 BOTTOM_FIELD 0x2 Frame is encoded in the form of 2 fields and cur-
rent field is the bottom field.

 FRAME_PICTURE 0x3 Both fields are encoded as one single frame. This
is also the case for MPEG-1 encoded streams.

chroma_format

This 2 bit integer indicates the chrominance format. For VdecMP, only CHROMA420 is

supported.

 CHROMA420 0x1 4:2:0 format.

 CHROMA422 0x2 4:2:2 format.

 CHROMA444 0x3 4:4:4 format.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

194 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

matrix_coefficients

This 8 bits integer describes the matrix coefficients used to perform RGB to YCrCb con-

version. In the case there is no sequence_display_extension in the bit stream, the matrix

coefficients is determined by the recommendation ITU_R BT.709.

progressive_frame

When set to zero, it indicates that the 2 fields of the frame are interlaced fields. When set

to 1, it indicates that the 2 fields of the frame are from the same time instant as one

another.

progressive_sequence

When set to 1, the video sequence contains only progressive frame-pictures (for instance

as in MPEG-1), when set to 0, video sequence can contain both frame-picture and field-

picture, and frame-pictures may be interlaced or progressive.

top_field_first

If progressive_sequence == 0, top_field_first set to 1 indicates that the top field of the

reconstructed frame is the first field output by the decoding process. If

progressive_sequence == 1, this field, combined with repeat_first_field indicates how

many times the reconstructed frame is output by the decoding process.

repeat_first_field

This flag is applicable only in a frame picture. In case progressive_frame == 1, and

progressive_sequence == 0, if set to 1, then the first field is displayed, then the other

field, and then the first field is repeated.

pict_type

The picture coding type. Not used by any renderer.

All this bit stream information is packed into one 32-bit dataFormat register, as defined

previously, using the following masks:

VO_DF_PS_MASK 0x3 2 bits mask.
VO_DF_CF_MASK 0x3 2 bits mask.
VO_DF_COL_CONV_MASK 0x7 3 bits mask.
VO_DF_PROG_FR_MASK 0x1 1 bit mask.
VO_DF_TFF_MASK 0x1 1 bit mask.
VO_DF_RFF_MASK 0x1 1 bit mask.
VO_DF_PROGSEQ_MASK 0x1 1 bit mask.
VO_DF_LASTFRAME_MASK 0x1 1 bit mask.
VO_DF_FRAME_RATE_MASK 0xF 4 bits mask.
VO_DF_FRAME_SENT_MASK 0x1 1 bit mask (for internal use).
VO_DF_PTYPE_MASK 0x3 2 bits mask.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 195

11

VO_DF_PS_SHIFT 0x0
VO_DF_CF_SHIFT 0x2
VO_DF_COL_CONV_SHIFT 0x4
VO_DF_PROG_FR_SHIFT 0x7
VO_DF_TFF_SHIFT 0x8
VO_DF_RFF_SHIFT 0x9
VO_DF_PROGSEQ_SHIFT 0xA
VO_DF_LASTFRAME_SHIFT 0xB
VO_DF_FRAME_RATE_SHIFT 0xC
VO_DF_FRAME_SENT_MASK 0x10 (for internal use)
VO_DF_PTYPE_SHIFT 0x11

Fields, continued

displayHorizontalSize

displayVerticalSize These two fields define a display rectangle consid-
ered as the intended display area. If it is smaller
than the encoded frame size, then only a portion
of the encoded frame is displayed.

frameCentreHorizOffset

frameCentreVertOffset These two fields indicate the position of the cen-
ter of the display rectangle. If both are 0, the cen-
ter of the display rectangle is located at the center
of the decoded frame. Those 2 fields are in 1/16th
sample units.

aspectRatio This field gives the display aspect ratio: 3/4, 16/9
or 1/2.21.

userData Contains three pointers to memory buffers where
the user data extracted by the decoder will be
stored.

Description

This data structure is passed via the userPointer field of the tmAvHeader_t of each video

packet sent out. The format.description field has the vdfMPEGExtension flag set, which

indicates to the renderer that the packet has an MPEG extension attached to it.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

196 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

VdecMpeg API Functions

This section presents the VdecMpeg component functional interface.

Name Page

tmolVdecMpegGetCapabilities, tmalVdecMpegGetCapabilities 197

tmolVdecMpegOpen, tmalVdecMpegOpen 198

tmolVdecMpegInstanceSetup, tmalVdegMpegInstanceSetup 199

tmolVdecMpegGetInstanceSetup, tmalVdecMpegGetInstanceSetup 200

tmolVdecMpegStart, tmalVdecMpegStart 201

tmolVdecMpegStop, tmalVdecMpegStop 202

tmolVdecMpegClose, tmalVdecMpegClose 203

tmolVdecMpegInstanceConfig 204

tmalVdecMpegInstanceConfig 205

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 197

11

tmolVdecMpegGetCapabilities, tmalVdecMpegGetCapabilities

extern tmLibappErr_t tmolVdecMpegGetCapabilities(
 ptmolVdecMpegCapabilities_t *cap
);

extern tmLibappErr_t tmalVdecMpegGetCapabilities(
 ptmolVdecMpegCapabilities_t *cap
);

Parameters

cap Pointer to variable in which to return a pointer to
the capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

This function fills in the pointer of a static structure, tmolVdecMpegCapabilities_t, tmal-

VdecMpegCapabilities_t, maintained by the decoder, to describe the capabilities and

requirements of this library.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

198 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVdecMpegOpen, tmalVdecMpegOpen

extern tmLibappErr_t tmolVdecMpegOpen(
 Int *instance
);

extern tmLibappErr_t tmalVdecMpegOpen(
 Int *instance
);

Parameters

instance Pointer to the (returned) instance.

Return Codes

TMLIBAPP_ERR_MEMALLOC_FAILED Memory allocation failed.

TMLIBAPP_ERR_MODULE_IN_USE No more instances are available. Currently only
one instance is supported, due to the amount of
memory and processing power needed.

VDECMPEG_ERR_INVALID_PROCESSOR Attempt to run the decoder on a TM-1000. It
needs a TM-1100 (or later) processor.

TMLIBAPP_OK Success.

Or, in case of tmolVdecMpegOpen, any return code produced by tsaDefaultOpen.

Description

Opens an instance of the VdecMpeg component.

The VdecMpeg task is created with preemption. Usually the task should have low prior-

ity. The default stack size is set to 10 kb.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 199

11

tmolVdecMpegInstanceSetup, tmalVdegMpegInstanceSetup

extern tmLibappErr_t tmolVdecMpegInstanceSetup(
 Int instance,
 ptmolVdecMpegInstanceSetup_t setup
);

extern tmLibappErr_t tmalVdecMpegInstanceSetup(
 Int instance,
 ptmolVdecMpegInstanceSetup_t setup
);

Parameters

instance Instance previously opened by tmolVdecMpeg-
Open, tmalVdecMpegOpen.

setup Pointer to the demultiplexer’s setup data struc-
ture, see tmolVdecMpegInstanceSetup_t, tmal-
VdecMpegInstanceSetup_t.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmolVdecMpegOpen, tmalVdecMpegOpen,
triggered via tmAssert.

TMLIBAPP_ERR_NOT_OPEN When the instance is not opened with tmolVdec-
MpegOpen, tmalVdecMpegOpen, triggered via
tmAssert.

TMLIBAPP_ERR_MEMALLOC_FAILED No memory could be allocated for the instance.

TMLIBAPP_ERR_INVALID_SETUP When the numbers of output buffers is not 1 or 4.
See Limitations on page 157.

The function tmolVdecmpegInstanceSetup can return any code produced by tsaDefault-

InstanceSetup.

Description

The instance previously opened by tmolVdecMpegOpen is set up. Memory is allocated

for the internally held buffers that are needed for decoding. tmolVdecMpegInstance-

Setup should be called only once for each instance.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

200 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVdecMpegGetInstanceSetup, tmalVdecMpegGetInstanceSetup

extern tmLibappErr_t tmolVdecMpegInstanceSetup(
 Int instance,
 ptmolVdecMpegInstanceSetup_t *setup
);

extern tmLibappErr_t tmalVdecMpegInstanceSetup(
 Int instance,
 ptmolVdecMpegInstanceSetup_t *setup
);

Parameters

instance The instance.

setup Pointer to a variable in which to return a pointer
to the setup data.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmolVdecMpegOpen, tmalVdecMpegOpen.
Triggered via tmAssert.

TMLIBAPP_ERR_NOT_OPEN When the instance is not opened with tmolVdec-
MpegOpen, tmalVdecMpegOpen. Triggered via
tmAssert.

Description

This function is used during initialization of the decoder. It returns the default settings

for the decoder instance. The setup can then be further initialized by the application

which normally is filling all the queues and the progress and error functions and then

passed to tmolVdecMpegInstanceSetup or tmalVdegMpegInstanceSetup.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 201

11

tmolVdecMpegStart, tmalVdecMpegStart

extern tmLibappErr_t tmolVdecMpegStart(
 Int instance
);

extern tmLibappErr_t tmalVdecMpegStart(
 Int instance
);

Parameters

instance Instance previously opened by tmolVdecMpeg-
Open or tmalVdecMpegOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmolVdecMpegOpen, tmalVdecMpe-
gOpen.Triggered via tmAssert.

TMLIBAPP_ERR_NOT_OPEN When the instance is not opened with tmolVdec-
MpegOpen, tmalVdecMpegOpen. Triggered via
tmAssert.

TMLIBAPP_ERR_NOT_SETUP When the instance is not set up with tmolVdec-
MpegInstanceSetup, tmalVdegMpegInstanceS-
etup. Triggered via tmAssert.

The function tmolVdecMpegStart can return any code produced by tsaDefaultStart.

Description

The previously opened and set up instance of the decoder is started. It is expected that

the empty queues of the video output contains empty video packets, with allocated

tmalVdecMpegPictureInfo_t allocated and assigned to the userPointer of the packets.

Then the decoder starts to wait for input data from the input queue.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

202 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVdecMpegStop, tmalVdecMpegStop

extern tmLibappErr_t tmolVdecMpegStop(
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmolVdecMpegOpen, tmalVdecMpegOpen.
Triggered via tmAssert.

TMLIBAPP_ERR_NOT_OPEN When the instance is not opened with tmolVdec-
MpegOpen, tmalVdecMpegOpen. Triggered via
tmAssert.

The function tmolVdecMpegStop can return any error code produced by tsaDefaultStop.

Description

After a call to Stop, the VdecMpeg instance can be restarted via a call to Start. Stop does

not free the internally claimed memory.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 203

11

tmolVdecMpegClose, tmalVdecMpegClose

extern tmLibappErr_t tmolVdecMpegClose(
 Int instance
);

extern tmLibappErr_t tmalVdecMpegClose(
 Int instance
);

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmolVdecMpegOpen, tmalVdecMpegOpen.
Triggered via tmAssert.

TMLIBAPP_ERR_NOT_STOPPED When the instance is not stopped before closing.
Triggered via tmAssert.

The function tmolVdecMpegClose can return any code produced by tsaDefaultClose.

Description

Closes a stopped VdecMpeg instance.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

204 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

tmolVdecMpegInstanceConfig

extern UInt32 tmolVdecMpegInstanceConfig(
 Int instance,
 UInt32 flags,
 ptsaControlArgs_t args
);

Parameters

instance The instance.

flags Presently ignored.

args args–>command is one of the command codes
from tmalVdecMpegControlCommand_t. There
are no other required fields to be set in args.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmolVdecMpegOpen. Triggered via tmAssert.

TMLIBAPP_ERR_NOT_OPEN When the instance is not opened with tmolVdec-
MpegOpen. Triggered via tmAssert.

TMLIBAPP_ERR_NOT_SETUP When the instance is not set up with tmolVdec-
MpegInstanceSetup. Triggered via tmAssert.

Description

See tmalVdecMpegControlCommand_t for possible control commands.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

©1999 Philips Semiconductors 10/08/99 Book 7—Video Support Libraries, Part B 205

11

tmalVdecMpegInstanceConfig

extern UInt32 tmalVdecMpegInstanceConfig(
 Int instance,
 ptsaControlArgs_t args
);

Parameters

instance The instance.

args args–>command is one of the command codes
from tmalVdecMpegControlCommand_t. There
are no other required fields to be set in args.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE When the instance is not a valid instance open
with tmalVdecMpegInstanceConfig. Triggered via
tmAssert.

TMLIBAPP_ERR_NOT_OPEN When the instance is not opened with tmalVdec-
MpegOpen. Triggered via tmAssert.

TMLIBAPP_ERR_NOT_SETUP When the instance is not set up with tmalVdec-
MpegInstanceSetup. Triggered via tmAssert.

Description

See tmalVdecMpegControlCommand_t for possible control commands. Control com-

mands are handled on all blocking datain and dataout functions.

Chapter 11: MPEG Video Decoder (VdecMpeg) API

206 Book 7—Video Support Libraries, Part B ©1999 Philips Semiconductors 10/08/99

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 7—Video Support Libraries
	Video Processing and Coding
	5: Image Co-Processor (ICP) API
	Image Co-Processor API Overview
	Demonstration Programs
	Using the ICP API
	Limitations
	Image Co-Processor API Data Structures
	icpOutputType_t
	icpFilterType_t
	icpImageHorzVert_t
	icpImageColorConversion_t
	icpOverlaySetup_t
	icpBitMaskSetup_t
	icpCapabilities_t
	icpInstanceSetup_t

	Image Co-Processor API Functions
	icpGetCapabilities
	icpOpen
	icpInstanceSetup
	icpClose
	icpLoadCoeff
	icpMove
	icpVertFilter
	icpHorzFilter
	icpDeinterlace
	icpColorConversion
	icpOverlaySetup
	icpGetOverlaySetup
	icpBitMaskSetup
	icpGetBitMaskSetup

	6: VLD API
	Introduction
	VLD Operation
	VLD Basics
	Macroblock Headers
	DCT Coefficients
	Manipulating the Input Stream
	Reset VLD
	Setup for VLD
	Getting Status Information From VLD
	VLD Multiple Streams (Instances) Decoding

	VLD Example Program
	VLD API Data Structures
	pFnVldEmpty_t
	pFnVldISR_t
	vldCapabilities_t
	vldPictureInfo_t
	vldMVector_t
	vldMV_t
	vldMBHMpeg1_t
	vldMBHMpeg2_t
	vldMBH_Field_t
	vldInstanceSetup_t
	Description

	vldContext_t
	vldInstanceInfo_t

	VLD API Functions
	vldGetCapabilities
	vldOpen
	vldClose
	vldInstanceSetup
	vldCommand
	vldInput
	vldReset
	vldGetBits
	vldShowBits
	vldFlushBits
	vldNextStartCode
	vldSetPictureInfo
	vldGetPictureInfo
	vldFlushOutput
	vldParseMacroblocks
	vldGetMBHeader
	vldSaveContext
	vldRestoreContext

	7: Video Transformer (VtransICP) API
	Video Transformer API Overview
	Video Transformer Functionality
	Limitations

	Using the Video Transformer API
	The AL Layer
	The OL Layer
	Callback Function Requirements
	Packet Formats
	Main Image Input Packet
	Overlay Input Packet
	Output Packet

	Scaling to a Sub-Section of a YUV Buffer
	Buffer Alignment, Stride, and Cache Coherency

	Demonstration Programs
	AL Layer Example
	Running the Example
	exalVtransICP Program Flow

	OL Layer Example
	Running the Example
	exolVtransICP Program Flow

	Video Transformer API Data Structures
	tmalVtransICPOutputType_t
	tmalVtransICPOverlayPosition_t
	tmalVtransICPAlpha_t
	tmalVtransICPBitMaskSetup_t
	tmalVtransICPCapabilities_t
	tmalVtransICPInstanceSetup_t
	tmalVtransICPConfigTypes_t
	tmolVtransICPCapabilities_t
	tmolVtransICPInstanceSetup_t

	Video Transformer API Functions
	tmalVtransICPOpen
	tmalVtransICPClose
	tmalVtransICPGetCapabilities
	tmalVtransICPInstanceSetup
	tmalVtransICPGetInstanceConfig
	tmalVtransICPInstanceConfig
	tmalVtransICPProcessFrame
	tmolVtransICPGetCapabilities
	tmolVtransICPOpen
	tmolVtransICPClose
	tmolVtransICPGetInstanceSetup
	tmolVtransICPInstanceSetup
	tmolVtransICPInstanceConfig
	tmolVtransICPStart
	tmolVtransICPStop

	8: Motion JPEG Decoder API
	Motion JPEG Decoder API Overview
	Performance
	Demonstration Programs
	Overview of the tmolVdecMjpeg / tmalVdecMjpeg Component
	Input Description
	Output Description
	Stopping the VdecMjpeg Component

	Motion JPEG Decoder API Data Structures
	tmalVdecMjpegStates_t
	tmalVdecMjpegStream_t
	tmalVdecMjpegCapabilities_t, tmolVdecMjpegCapabilities_t
	tmalVdecMjpegImageDescription_t
	tmalVdecMjpegInstanceSetup_t, tmolVdecMjpegInstanceSetup_t
	tmalVdecMjpegProgressFlags_t

	Motion JPEG Decoder API Functions
	tmalVdecMjpegOpen, tmolVdecMjpegOpen
	tmalVdecMjpegStart, tmolVdecMjpegStart
	tmalVdecMjpegStop, tmolVdecMjpegStop
	tmalVdecMjpegClose, tmolVdecMjpegClose
	tmalVdecMjpegGetCapabilities, tmolVdecMjpegGetCapabilities
	tmalVdecMjpegInstanceSetup, tmolVdecMjpegInstanceSetup
	tmolVdecMjpegGetInstanceSetup

	9: Motion JPEG Encoder API
	Motion JPEG Encoder API Overview
	Performance
	Demonstration Programs
	Overview of the tmolVencMjpeg / tmalVencMjpeg Component
	Input Description
	Output Description
	Stopping the VencMjpeg Component

	Motion JPEG Encoder API Data Structures
	tmalVencMjpegStates_t
	tmalVencMjpegStream_t
	tmalVencMjpegProgressFlags_t
	tmalVencMjpegBufferType_t
	tmalVencMjpegCapabilities_t, tmolVencMjpegCapabilities_t
	tmalVencMjpegImageDescription_t, tmolVencMjpegImageDescription_t
	tmalVencMjpegInstanceSetup_t/ tmalVencMjpegInstanceSetup_t

	Motion JPEG Encoder API Functions
	tmalVencMjpegGetCapabilities / tmolVencMjpegGetCapabilities
	tmalVencMjpegOpen / tmolVencMjpegOpen
	tmalVencMjpegClose / tmolVencMjpegClose
	tmolVencMjpegGetInstanceSetup
	tmalVencMjpegInstanceSetup / tmolVencMjpegInstanceSetup
	tmalVencMjpegStart / tmolVencMjpegStart
	tmalVencMjpegEncodeFrame
	tmalVencMjpegStop, tmolVencMjpegStop

	10: Natural Motion Video Transformer (VtransNM) API
	VtransNM API Overview
	Limitations

	VtransNM Inputs and Outputs
	Overview
	Inputs
	Outputs

	VtransNM Errors
	VtransNM Progress
	VtransNM Configuration
	VtransNM API Data Structures
	tmolVtransNMInstanceSetup_t
	tmolVtransNMCapabilities_t
	tmolVtransNMConfig_t
	tmolVtransNMErrorFlags_t
	tmolVtransNMControlCommand_t

	VtransNM API Functions
	tmolVtransNMGetCapabilities
	tmolVtransNMOpen
	tmolVtransNMInstanceSetup
	tmolVtransNMGetInstanceSetup
	tmolVtransNMStart
	tmolVtransNMStop
	tmolVtransNMClose
	tmolVtransNMInstanceConfig

	11: MPEG Video Decoder API
	VdecMpeg API Overview
	Limitations

	VdecMpeg Inputs and Outputs
	Overview
	Inputs
	Outputs

	VdecMpeg Errors
	VdecMpeg Progress
	VdecMpeg Configuration
	VdecMpeg API Data Structures
	tmolVdecMpegInstanceSetup_t, tmalVdecMpegInstanceSetup_t
	tmolVdecMpegCapabilities_t, tmalVdecMpegCapabilities_t
	tmolVdecMpegErrorFlags_t
	tmalVdecMpegControlCommand_t
	tmalVdecMpegProgressFlags_t
	tmalVdecMpegSequenceLevel_t
	tmalVdecMpegSequenceDescription_t
	tmalVdecMpegPictureInfo_t

	VdecMpeg API Functions
	tmolVdecMpegGetCapabilities, tmalVdecMpegGetCapabilities
	tmolVdecMpegOpen, tmalVdecMpegOpen
	tmolVdecMpegInstanceSetup, tmalVdegMpegInstanceSetup
	tmolVdecMpegGetInstanceSetup, tmalVdecMpegGetInstanceSetup
	tmolVdecMpegStart, tmalVdecMpegStart
	tmolVdecMpegStop, tmalVdecMpegStop
	tmolVdecMpegClose, tmalVdecMpegClose
	tmolVdecMpegInstanceConfig
	tmalVdecMpegInstanceConfig

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

