

Interrupts, Traps, and Reset - Registers/External Interrupts

8.2 Interrupt Interface Registers

Two registers, a subset of the 1/0 registers discussed in Section 6, monitor and
mask interrupt requests. These registers are summarized below; for more in-
formation, please refer to the register descriptions in Section 6.

The interrupt enable register, INTENB, contains the interrupt mask that se-
lectively enables various interrupts. An interrupt is enabled when the status
IE (global interrupt enable) bit and the appropriate bit in the INTENB register
are both setto 1.

® X7E (bit 1) enables external interrupt 1.

L X2E (bit 2) enables external interrupt 2.

L] HIE (bit 9) enables the host interrupt.

® DIE (bit 10) enables the display interrupt.

[] WVE (bit 11) enables the window violation interrupt.

The interrupt pending register, INTPEND, indicates which interrupts are cur-
rently pending. When an interrupt is requested, the appropriate bit in the
INTPEND register is set.

X1P (bit 1) indicates that external interrupt 1 is pending.

X2P (bit 2) indicates that external interrupt 2 is pending.

HIP (bit 9) indicates that the host interrupt is pending.

DIP (bit 10) indicates that the display interrupt is pending.

WVP (bit 11) indicates that the window violation interrupt is pending.

8.3 External Interrupts

External interrupt requests are received through input pins LINT1 and LINT2.
The two request pins are level-sensitive, active-low inputs. Each pin is dedi-
cated to an individual interrupt, allowing two independent interrupt requests
to be generated. (The pins are not encoded.) The state of the LINT1 and
LINT2 inputs is reflected in the X1P and X2P bits in the INTPEND register.
The register bit is 1 if the corresponding request is active.

The interrupts generated by requests at the LINT1 and LINT2 inputs are referred
to as INT1 and INT2. Interrupts INT1 and INT2 are selectively enabled by
means of the X1E and X2E bits in the INTENB register. [f external interrupt
requests become active at LINT1 and LINT2 at the same time, and both inter-
rupts are enabled, INT1 will be serviced first. If one or both of these interrupts
is disabled, the state of the LINT1 and LINT2 inputs continues to be reflected
in the X1P and X2P bits. These bits may be polled by software to detect
transitions at the interrupt inputs.

Table 8-2 shows the interrupt trap vectors for INT1 and INT2.

8-3

Interrupts, Traps. and Reset - External Interrupts

Table 8-2. External Interrupt Vectors

Input Vector
Name Pin Address
INT1 LINT1 FFFFFFCOh
INT2 CINT2 FFFFFFAOh

Once an interrupt request has been initiated by driving an interrupt request pin
low, the input should continue to be driven low until the interrupt service
routine can respond to the interrupting device. If the interrupt pin is permitted
to go inactive high before it has been recognized by the interrupt service rou-
tine, the request may be missed. If the active level is maintained after returning
from the interrupt service routine, however, the interrupt will be taken once
again.

The RETI instruction restores the ST (status) and PC (program counter) reg-
isters to their original state just prior to the interrupt. (This would not be the
case, however, if for some reason the values for these registers, saved on the
stack, were altered by the interrupt service routine). Assuming that the IE bit
in the restored ST is a 1, interrupts are again enabled by the time the RETI in-
struction finishes executing. If an interrupt request is active during the last
state of the RETI instruction, and the interrupt is enabled in the INTENB reg-
ister, the interrupt will be taken immediately following the RETI.

The interrupt service routine typically writes to the interrupting device to clear
the interrupt request before executing an RETI (return from interrupt) in-
struction. An example of the last three instructions in a typical interrupt service
routine is shown below, where DEVICE is the symbolic address of the inter-
rupting device:

CLR AQ
MOVE A0 ,@DEVICE
RETI

The interrupt request is cleared by the MOVE instruction above, which writes
a 0 to the device address. The maximum asynchronous delay from the end of
the write cycle (measured from the iow-to-high transition of W) to the resuit-
ing low-to-high transition at the GSP’s interrupt request input should be no
more than six local clock periods.

Signals input to the local interrupt pins are assumed to be asynchronous to the
GSP local clocks, and are synchronized internally by the GSP before they are
processed. The GSP samples the state of the LINT1 and LINT2 inputs at each
high-to-low transition of LCLK1, and updates the X1P and X2P bits in the
INTPEND register accordingly (an active-low input is seen as a one in the
appropriate register bit). The delay from the transition at the input to the
corresponding change in the X1P or X2P bit is from one to two states, de-
pending on the transition’s phase relationship to-LCLK1.

Interrupts, Traps, and Reset - Internal Interrupts

8.4 Internal Interrupts

Several internal conditions are associated with specific interrupts. Table 8-3
summarizes these interrupts. If two internal interrupts are requested simul-
taneously, or if two or more internal interrupt requests are pending, the highest
priority interrupt is serviced first; NM| has the highest priority, followed by HI,
DI, and WV. When internal and external interrupts are pending, the internal
interrupts are serviced first (with the exception of the ILLOP interrupt).

Table 8-3. Interrupts Associated with Internal Events

Vect
Name Function Level Locat?(;n Description
NM! | Nonmaskable 8 FFFFFEEOh | The host processor sets the NMI bit in the
interrupt HSTCTL register to a 1.
Hi Host interrupt 9 FFFFFECOh | The host processor sets the INTIN bit in the
HSTCTL register to a 1. o
[s]] Display interrupt 10 FFFFFEAOh | A particular horizontal line on the video display
is being refreshed. The line number is specified
in the DPYINT register.
wv Window violation 11 FFFFFE80h An attempt has been made to move a pixel to a
interrupt destination location that lies inside or outside a
specified window, depending on the selected
windowing mode.
ILLOP| lllegal operand 30 FFFFFC20h | See Section 8.7.
interrupt

The nonmaskable interrupt, or NMI, occurs when a host processor requests
an interrupt by writing a 1 to the NMI bit in the HSTCTL register. This inter-
rupt cannot be disabled, and always occurs as soon as possible following the
request. The NMI is delayed only for completion of an instruction already in
progress, or until the next interruptible point of an interruptible instruction
such as a PIXBLT is reached.

The NMI mode bit in the HSTCTL register determines whether or not context
information is saved on the stack when a nonmaskable interrupt occurs:

® If NMIM = 0, the PC and ST are pushed on the stack before the interrupt
is serviced.

° If NMIM = 1, nothing is saved on the stack before the interrupt is ser-
viced.

The TMS34010 automatically clears the NMI bit at the time it takes the inter-
rupt. After setting the NMI bit, the host processor can determine when the
TMS34010 has taken the interrupt by polling the NMI bit until it changes from
altoa0.

The display interrupt (DI) is used to coordinate processing activity with the
refreshing of particular areas of the display. The display interrupt request be-
comes active when a particular display line, specified in the DPYINT register,
is output to the monitor screen. At the start of each horizontal bianking period,
the VCOUNT register is compared to the DPYINT register. When the vertical
count value in VCOUNT = DPYINT, a display interrupt request is generated.
If enabled, the interrupt is taken.

8-5

Interrupts, Traps, and Reset - Interrupt Processing

8.5 Interrupt Processing

8-6

An interrupt is said to be pending if it has been requested but has not yet been
processed. If a pending interrupt is enabled, and no interrupt of higher priority
is pending at the same time, the interrupt is accepted by the TMS34010 at the
end of the current instruction (or at the next interruptible point in the middle
of a PIXBLT or FILL instruction). When the TMS34010 takes an interrupt, it
performs the following actions:

1) The TMS34010 pushes the PC on the stack.

2) The TMS34010 pushes the ST on the stack. PIXBLT and FILL in-
structions that are interrupted by external, host, and nonmaskable (if
NMIM=0) interrupts set the PBX bit in the ST before pushing the ST.

3) The TMS34010 modifies the contents of the ST as follows:

4) The TMS34010 fetches the interrupt vector from external memory into
the PC.

5) The TMS34010 begins executing the instruction pointed to by the new
PC value.

In step 5, the TMS34010 resumes instruction execution at the entry point of
the interrupt service routine. At the time the first instruction of the service
routine begins execution, the new status register contents imply the following
conditions:

° All interrupts are disabled (except NM! and reset)
° Field O is 16 bits long and is zero extended
L] Field 1 is 32 bits long and is zero extended

The service routine can allow itself to be interrupted by loading a new inter-
rupt-enable mask into the INTENB register and setting status bit IEto 1. The
INTENB mask value is selected to determine which interrupts can interrupt the
currently executing service routine. The service routine can also load new field
sizes if values other than the defaults are required.

The last instruction in any interrupt service routine must be RETI (return from
interrupt). Unlike the RETS (return from subroutine) instruction, which only
pops the PC from the stack, RETI pops both the ST and PC. This restores the
original state of the interrupted program so that execution can proceed from
the point at which the interrupt occurred.

Interrupts, Traps, and Reset - Interrupt Processing

8.5.1

Interrupt Latency

An external interrupt, host interrupt request, or NMI request is delayed by an
amount of time that depends on the instruction in progress and on the local
memory bus traffic at the time of the request.

The delay from an interrupt request to the time that the first instruction of the
interrupt service routine begins execution is the sum of six potential sources
of delay:

1) Interrupt request recognition
2) Screen-refresh cycle

3) DRAM-refresh cycle

4) Host-indirect cycle

5) Instruction interrupt

6) Interrupt context switch

In the best case, items 2 through 5 cause no delay. The minimum delay due
to items 1 and 6 is 17 machine states.

® The interrupt request recognition delay is the time required for a
request to be internally synchronized to the local clock. In the case of
an external interrupt request, the delay is measured from the high-to-low
transition of the TNT1 or INT2 pin. In the case of a host interrupt or NMI
request, the delay is measured from completion of the host's write to the
INTIN or NMI pin.

® The screen-refresh and DRAM-refresh cycles are a potential source
of delay, but in fact occur rarely and are unlikely to delay an interrupt.

L] The likelihood of a delay caused by a host-indirect cycle is small in
most instances, but this depends on the application. The delay due to a
single host-indirect cycle is two machine states, assuming no wait states,
but multiple host-indirect cycies occurring within a brief period of time
could cause additional delays. Theoretically, a fast host processor could
generate so many local memory cycles that the TMS34010 would be
prevented from servicing interrupts for an indefinite period.

® The instruction interrupt time refers to the time required for an in-
struction that was already executing at the time the interrupt request was
received to either complete or to reach the next interruptible point in an
instruction (such as a PIXBLT, FILL, or LINE).

{ The interrupt context switch operation pushes the PC and ST onto
the stack, and fetches the PC for the interrupt service routine from the
appropriate vector in memory.

Table 8-4 shows the minimum and maximum times for each of the six oper-
ations listed. The interrupt latency is calculated as the sum of the numbers in
the six rows. In the best case, the interrupt latency is only 17 machine states.
The worst-case latency can be as high as 22 machine states plus the delays
due to host-indirect cycles and instruetion completion. Table 8-5 shows in-
struction interrupt times for some of the longer, noninterruptible instructions.
Table 8-5 also shows the instruction completion time for a JRUC instruction

8-7

Interrupts, Traps, and Reset - Interrupt Processing

that jumps to itself - the TMS34010 may be executing this instruction if the
software is simply waiting for an interrupt.

Table 8-4. Six Sources of Interrupt Delay

Late In States
Operation - ncy (In States)
Min Max
Interrupt recognition 1 2
Instruction interrupt 0 See Table 8-5
DRAM-refresh cycle 0 2
See Note 2
Screen-refresh cycle 0 2
See Note 2
Host-indirect cycle 0 See Note 1
Interrupt context switch 16 16

Notes: 1) The latency due to host-indirect cycles depends on both the
hardware system and the application. Theoretically, a host pro-
cessor could generate so many local memory cycles that the
TMS34010 coulid effectively be prevented from servicing inter-
rupts. The delay due to a single host-indirect cycle is two machine
states, assuming no wait states.

2) DRAM-refresh and screen-refresh cycle times assume no wait
states.

3) Context switch time assumes that the SP is aligned to a word
boundary; that is, the four LSBs of the SP are 0Os. If the SP is not
aligned, the delay is 28 states.

Table 8-5. Sample Instruction Completion Times

Worst-Case Instruction
Instruction Interrupt Time (In States)
SP Aligned SP Not Aligned
DIVS A0,A2 . 43 43
MMFM SP,ALL 72 144
MMTM SP,ALL 73 169
Wait: JRUC wait 1 1

Notes: 1) The worst-case instruction interrupt time is equal to the instruction
execution time less one machine state (except for PIXBLTs, FILLs,
and LINE).

2) The SP-aligned case assumes that the SP is aligned to a word
boundary in memory.

Interrupts, Traps, and Reset - Traps/lllegal Opcodes

8.6 Traps

The TMS34010 supports 32 software traps, numbered 0 through 31. Soft-
ware traps behave similarly to interrupts, except that they are initiated when
the TMS34010 executes a TRAP instruction. Unlike an interrupt, a software
trap cannot be disabled.

When the TMS34010 executes a TRAP instruction, it performs the same se-
quence of actions that it performs for interrupts. The TRAP 1 through TRAP
31 instructions cause the status register and the PC to be pushed onto the
stack. TRAP O is similar to a hardware reset because it does not push the
status register or PC onto the stack; it differs from a hardware reset because it
does not cause the TMS34010's internal registers to be set to a known initial
state. TRAP 8 is similar to an NM! interrupt, except that the NMIM (NMI
mode) bit in the HSTCTLL register has no effect on instruction execution; the
status register and PC are stacked unconditionally when TRAP 8 is executed.

A 32-bit vector address is associated with each software trap. To determine
the vector address for a trap number A, where N = 0 through 31, subtract
32N from FFFFFFEOh. Figure 8-1 on page 8-2 shows the vector addresses
for the software traps.

8.7 lllegal Opcode Interrupts

The TMS34010 recognizes several reserved opcodes as illegal. When one of
these opcodes is encountered in the instruction stream, the TMS34010 traps
to vector number 30, located at memory address FFFFFC20h. An illegal op-
code is similar in effect to a TRAP 30 instruction. The iliegal opcode interrupt
cannot be disabled. Table 8-6 lists ranges of illegal opcodes.

Table 8-6. lllegal Opcodes Ranges

0200h through 02FFh
0400h through 04FFh
0800h through 08FFh
GAO0Oh through OAFFh
0CO00h through OCFFh
OEOOh through OEFFh
3400h through 37FFh
7000h through 7FFFh
9E0Oh through 9FFFh
BEOOh through BFFFh
D800h through DEFFh
FEOOh through FFFFh

8-9

Interrupts, Traps, and Reset - Reset

8.8 Reset

Reset puts the TMS34010 into a known initial state that is entered when the
input signal at the RESET pin is asserted low. RESET must remain active low
for a minimum of 40 local clock (LCLK1 or LCLK2) periods to ensure that the
TMS34010 has sufficient time to establish its initial internal state. While the
reset signal remains asserted, all outputs are in a known state, no DRAM-
refresh cycles take place, and no screen-refresh cycles are performed.

At the low-to-high transition of the RESET signal, the state of the HCS input
determines whether the TMS34010 is haited (host-present mode) or whether
it begins executing instructions (self-bootstrap mode):

® Host-Present Mode

If HCS is high at the end of reset, TMS34010 instruction execution is
halted and remains halted until the host clears the HLT (halt) bit in
HSTCTL (host control register). Following reset, the eight RAS-only
refresh cycles required to initialize the dynamic RAMs are performed
automatically by the TMS34010 memory control logic. As soon as the
eight RAS-only cycles are completed, the host is allowed access to
TMS34010 memory. At this time, the TMS34010 begins to automat-
ically perform DRAM refresh cycles at regular intervals. The TMS34010
remains haited until the host clears the HLT bit. Only then does the
TMS34010 fetch the level-0 vector address from location FFFFFFEOh
and begin executing its reset service routine.

® Self-Bootstrap Mode

If HCS is low at the end of reset, the TMS34010 first performs the eight
RAS-only refresh cycles required to initialize the DRAMs. Immediately
following the eight RAS-only cycles, the TMS34010 fetches the level-0
vector address from location FFFFFFEQh, and begins executing its reset
service routine.

Unlike other interrupts and software traps, reset does not save previous ST or
PC values. This is because the value of the stack pointer just before a reset is
generally not valid, and saving its value on the stack is unnecessary. A TRAP
0 instruction, which uses the same vector address as reset, similarly does not
save the ST or PC values.

8.8.1 Asserting Reset

8-10

A reset is initiated by asserting the RESET input pin at its active-low level. To
reset the TMS34010 at power up, RESET must remain active low for a mini-
mum of 40 local clock periods after power levels have become stable. At times
other than power up, the TMS34010 is also reset by holding RESET low for a
minimum of 40 clock periods. The 40-clock interval is required to bring
TMS34010 internal circuitry to a known initial state. While RESET remains
asserted, the output and bidirectional signals are driven to a known state.

The TMS34010 drives its RAS signal inactive high as long as RESET remains
low. The specifications for certain DRAM and VRAM devices, including the
TMS4161, TMS4164 and TMS4464 devices, require that the RAS signal be
driven inactive-high for 100 microseconds during system reset. Holding the
RESET signal low for 150 microseconds causes the RAS signal to remain high

interrupts, Traps, and Reset - Reset

for the 100 microseconds required to bring the memory devices to their initial
states. DRAMSs such as the TMS4256 specify an initial RAS high time of 200
microseconds, requiring that RESET be held low for 250 microseconds. In
general, holding RESET low for t microseconds ensures that RAS remains high
initially for t - 50 microseconds.

8.8.2 Suspension of DRAM-Refresh Cycles During Reset

An active-low level at the RESET pin is considered to be a power-up condition,
and DRAM refresh is not performed until RESET goes inactive high. Conse-
quently, the previous contents of the local memory may not be valid after a
reset.

8.8.3 State of VCLK During Reset

In many systems, the VCLK pin continues to be clocked during reset. How-
ever, a system in which VCLK is not clocked during reset should maintain
VCLK at the logic high level while it is not being clocked. This is necessary
to ensure that the video counters are reset properly. In fact, VCLK should be
held at the logic high level when it is not being clocked regardless of whether
the device is being reset. While VCLK is low, storage nodes in the VCOUNT
and HCOUNT registers rely on their internal capacitance to maintain their
state. If VCLK remains low for a sufficiently long period, these registers are
subject to bit errors due to charge leakage.

8.8.4 Initial State Following Reset

While the RESET pin is asserted low, the TMS34010’s output and bidirectional
pins are forced to the states listed in Table 8-7.

Table 8-7. State of Pins During a Reset

Outputs Driven Outputs Driven Bidirectional
To High level To Low Level Pins Driven to
High Impedance
DDOUT BLANK HSYNC
HM T VSYNC
DEN HDO-HD15
LAL_ LADO-LAD15
TR/QE
RAS
CAS
W
_HINT
HLDA/EMUA
Tt HRDY will stay high during reset if the HCS input is also high.

Immediately following reset, all 1/0 registers are cleared (set to 0000h), with
the possible exception of the HLT bit in the HSTCTL register. The HLT bit is
set to 1 if HCS is high just before the low-to-high transition of RESET.

interrupts, Traps, and Reset - Reset

Just before execution of the first instruction in the reset routine, the
TMS34010’s internal registers are in the following state:

(] General-purpose register files A and B are uninitialized.
° The ST is set to 00000010h.

(] The PC contains the 32-bit vector fetched from memory address
FFFFFFEOh.

The instruction cache is in the following state at this time:

® The SSA (segment start address) registers are uninitialized.

e The LRU (least recently used) stack is set to the initial sequence 0,1,2,3,
where 0 occupies the most-recently-used position, and 3 occupies the
least-recently-used position.

° All P (present) flags are cleared to Os.

8.8.5 Activity Following Reset

8-12

Immediately following the low-to-high transition of RESET, the TMS34010
performs a series of eight RAS-only memory cycles to bring the DRAMs and
VRAMs to their initial operating states. These cycles are completed before any
accesses of the TMS34010's memory (by either the TMS34010 or host pro-
cessor) are allowed to occur. if the host processor attempts to access the
TMS34010 memory indirectly before the eight RAS-only cycles have com-
pleted, it receives a not-ready signal from the TMS34010 until the cycles have
completed. The eight RAS-only cycles occur regardless of the initial value to
which the HLT bit in the HSTCTL register is set.

Each of the eight RAS-only cycles is a standard DRAM-refresh cycle. The RF
bus status signal output with the row address is active low. The row address
is all Os.

Following the eight RAS-only cycles, the TMS34010 automatically begins to
initiate a new DRAM-refresh cycle every 32 TMS34010 local clock cycles.
The first DRAM refresh cycle begins approximately 32 local clock periods after
the end of reset. A DRAM-refresh cycle is initiated every 32 TMS34010 clock
cycles until the DRAM-refresh rate is changed by the TMS34010 or host
processor.

The TMS34010 is configured by means of an external signal input on the HCS
pin to either:

[Begin executing instructions immediately after reset is completed (self-
bootstrap mode), or

® Halt until the host processor instructs it to begin executing (host-present
mode).

Interrupts, Traps, and Reset - Reset

8.8.5.1 Self-Bootstrap Mode

In self-bootstrap mode, the TMS34010 begins executing instructions imme-
diately following reset. This mode is typically used in a system in which the
reset vector and reset service routine are contained in nonvolatile memory,
such as a bootstrap ROM. This type of system does not necessarily require a
host processor, and the TMS34010 may be responsible for performing host
processor functions for the system.

The TMS34010 is configured in self-bootstrap mode when the HCS pin is low
just before the low-to-high transition of RESET. The low HCS level forces the
HLT bit to 0. Immediately following the end of reset and the eight RAS-only
cycles, the TMS34010 fetches the level-0 vector address and begins executing
the reset interrupt routine.

At the low-to-high transition of RESET, the HCS input is internally delayed
before being checked to determine how to set the HLT bit. In a system with-
out a host processor, for instance, this permits the HCS and RESET pins to be
tied together, eliminating the need for additional external logic.

Transitions of the ACS and RESET signals are assumed to be asynchronous
with respect to the TMS34010 local clock. HCS and RESET are internally syn-
chronized to the local clock by being held in latches for at least one clock pe-
riod before being used by the TMS34010. The delay through the synchronizer
latch is from one to two local clock periods, depending on the phase of the
signal transitions relative to the clock. To permit the HCS and RESET pins to
be wired together, TMS34010 on-chip logic delays the HCS low-to-high
transition to ensure that it is detected after the RESET low-to-high transition.
The level of the delayed HCS signal at the time the low-to-high RESET transi-
tion is detected determines the setting of the HLT bit.

8.8.5.2 Host-Present Mode

Host-present mode assumes that a host processor is connected to the
TMS34010’s host interface pins. In this mode, the TMS34010 local memory
can be composed entirely of RAM (no ROM). Following reset, the host pro-
cessor must download the initial program code, interrupt vectors, and so on,
before allowing the TMS34010 to begin executing instructions.

The TMS34010 is configured in host-present mode as follows. On the trailing
edge of RESET, the HCS (host interface chip select) input is sampled. If the
HCS pin is inactive high, internal logic forces the HLT (halt) bitto a 1. In this
fashion, the TMS34010 is automatically halted following reset, and does not
begin execution of its reset service routine until the host processor loads a 0
to HLT. In the meantime, the host processor is able to load the memory and
/0O registers with the appropriate initial values before the TMS34010 begins
executing instructions. This may include writing the reset vector and reset
service routine into the TMS34010’s memory, for example.

No additional external logic is required to force HCS high before the low-to-
high transition of RESET. The simple external decode logic typically used
drives the HCS input active low only when one of the TMS34010’s host in-
terface registers is addressed by the host processor. Assuming that the host
processor is not actively chip-selecting the TMS34010 at the end of reset, HCS
is high.

Interrupts, Traps, and Reset

Section 9

Screen Refresh and Video Timing

The TMS34010 generates the synchronization and blanking signals used to
drive a video screen in a graphics system. The GSP can be programmed to
support a variety of screen resolutions and interlaced or noninterlaced video.
If desired, the GSP can be programmed to synchronize to externally generated
video signals. The GSP also supports the use of video RAMs by generating
the memory-to-register cycles necessary to refresh a screen.

This section includes the following topics:

Section

9.1 SCrEEN SHZES ...ooviieeiiiiiereceeer ettt s ar b bt eennennsare s

9.2 Video Timing Signals

9.3 Video Timing Registers

9.4 Relationship Between Horizontal and Vertical Timing Signals 9-5
9.5 Horizontal Video Timingccccriiiininienin st eeaneee s 9-6
9.6 Vertical Video TiMiNgcocooeeremiieicireesiecene e 9-8
9.7 Display INterruptccccoveemcrineneerererer e e 9-13
9.8 DOt RAe .cueceeeiiii ettt et . 9-14
9.9 External SYNC Modeccccvmiieriiiieieeceecete e st 9-156
9.10Video RAM CONLIOl ..c..coiieiiirieeeriteire e seere e e ensias 9-18

9-1

Screen Refresh and Video Timing - Screen Sizes

9.1 Screen Sizes

9-2

The TMS34010's 26-bit word address provides direct addressing of up to 128
megabytes of external memory. This address reach supports very high-
resolution displays. For example, the designer of a large TMS34010-based
system could decide to use the lower half of the address space for display
memory, and use the upper half for storing programs and data. Half of this
memory space, for example, could be used as a display memory, and the re-
maining memory can be used for programs and data. The 64-megabyte dis-
play memory in this example could support the following display sizes:

L] 8192 by 4096 pixels at 16 bits per pixel
° 8192 by 8192 pixels at 8 bits per pixel

® 16,384 by 8192 pixels at 4 bits per pixel
® 16,384 by 16,384 pixels at 2 bits per pixel

® 32,768 by 16,384 pixels at 1 bit per pixel

The video timing registers also support high-resolution displays. The 16-bit
vertical counter register, VCOUNT, directly supports screen lengths of up to
65,5636 lines. The 16-bit horizontal counter register, HCOUNT, does not di-
rectly limit the horizontal resolution. Each horizontal line can be programmed
to be up to 65,5636 VCLK (video clock) periods long. The VCLK period,
however, is an arbitrary number of dot-clock periods in length, depending on
the external divide-down logic used to produce the VCLK signal from the dot
clock. Thus, the number of pixels per line supported by the GSP horizontal
timing registers is limited only by the amount of video memory that is present.

Note that frame buffers in excess of 224 bits may require an external counter
to determine which VRAM serial outputs should be enabled during a scan line.
This external counter would increment upon detecting a 1-to-0 transition of
the logical address bit 23 during successive screen-refresh cycles. To support
applications requiring panning and scrolling of the frame buffer, the initial va-
lue of this counter immediately following vertical retrace should be capabie of
being loaded under program control.

Screen Refresh and Video Timing - Video Timing Signals

9.2 Video Timing Signals

The TMS34010 generates horizontal sync, vertical sync, and blanking signals
(HSYNC, VSYNC, and BLANK) on chip. The GSP’s video timing logic is driven
by the video input clock (VCLK). The sync and blanking signals control the
horizontal and vertical sweep rates of the screen and synchronize the screen
display to data output by the VRAMs.

HSYNC is the horizontal sync signal used to control external video circuitry.
It may be configured as an input or an output via the DXV and HSD
bits in the DPYCTL register. When DXV=0 and HDS=0, external
video is selected and HSYNC is an input. Otherwise, HSYNC is an
output.

VSYNC s the vertical sync signal used to control external video circuitry. It
may be configured as an input or an output via the DXV bit in the
DPYCTL register. If DXV=1, internal video is selected and VSYNC is
an output. If DXV =0, external video is selected and VSYNC is an in-
put.

BLANK is used to turn off a CRT's electron beam during horizontal and
vertical retrace intervals. The signal output at the BLANK pin is a
composite of the internally generated horizontal and vertical blank-
ing signals. BLANK can also be used to control starting and stopping
of the VRAM shift registers.

VCLK s derived from the dot clock of the external video system. VCLK
drives the internal video timing logic.

Holding VCLK low for long periods may cause video counter errors. When
VCLK is not being clocked for long periods, it should be held at the logic high
level. While VCLK is low, the storage nodes within the device rely on their
internal capacitance to maintain state information, and if VCLK is held low for
a sufficiently long time, charge leakage may cause bit errors.

Screen Refresh and Video Timing - Video Timing Registers

9.3 Video Timing Registers

9-4

The video timing registers are a subset of the 1/0 registers described in Section
6. The values in the video timing registers control the video timing signals.
These registers are divided into two groups:

Horizontal timing registers control the timing of the HSYNC signal
and the internal horizontal blanking signal.

HCOUNT counts the number of VCLK periods per horizontal scan
line.

HESYNC specifies the point in a horizontal scan line at which the
HSYNC signal ends.

HEBLNK specifies the endpoint of the horizontal blanking interval.

HSBLNK specifies the starting point of the horizontal blanking
interval.

HTOTAL defines the number of VCLK periods allowed per hori-
zontal scan line.

Vertical timing registers control the timing of the VSYNC signal and
the internal vertical blanking signal.

VCOUNT counts the horizontal scan lines in the screen display.
VESYNC specifies the endpoint of the VSYNC signal.
VEBLNK specifies the endpoint of the vertical blanking interval.

VSBLNK specifies the starting point of the vertical blanking in-
terval.

VTOTAL specifies the value of VCOUNT at which VSYNC may
begin.

Screen Refresh and Video Timing - Horizontal vs. Vertical Signals

9.4 Relationship Between Horizontal and Vertical Timing Signals

Figure 9-1 illustrates the relationship between the horizontal and vertical tim-
ing signals in the construction of a two-dimensional raster display pattern.
The vertical sync and blanking signals span an entire frame. The horizontal
sync and blanking signals span a single horizontal scan line within the frame.

j————Horizontal internal ———)|
- L msvne
— - L — BNk
—P»VCOUNT=0 ; .| .
VESYNC
VEBLNK
Start
Vertical
New
Frame Interval
VEBLNK —¥
L—— VTOTAL

c —

VBLNK

HSBLNK
HTOTAL

VEYN

HCOUNT=0
HESYNC
HEBLNK

i

Start New Llne———J

Figure 9-1. Horizontal and Vertical Timing Relationship

Figure 9-1 illustrates the following terms and phrases, which are used
throughout this section:

HBLNK and VBLNK are /internal horizontal and vertical blanking signals
that combine to form the BLANK signal output. (HBLNK and VBLNK
cannot be accessed at TMS34010 pins.) The display is active (not
blanked) only when HBLNK and VBLNK are both inactive high.

Horizontal front porch refers to the interval between the beginning
of horizontal blanking and the beginning of the horizontal sync signal.

Horizontal back porch is the interval between the end of the hori-
zontal sync signal and the end of horizontal blanking.

Vertical front porch refers to the interval between the beginning of
vertical blanking and the beginning of the vertical sync signal.

Vertical back porch is the interval between the end of the vertical sync
signal and the end of vertical blanking.

Screen Refresh and Video Timing - Horizontal Video Timing

9.5 Horizontal Video Timing

9-6

The following discussion applies to internally generated video timing (the DXV
and HSD bits in the DPYCTL register are set to 1 and O, respectively). Hori-
zontal timing signals are the same for interlaced and noninterlaced video.

The HESYNC, HEBLNK, HSBLNK, and HTOTAL registers control horizontal
signal timing as shown in Figure 9-2. All horizontal timing parameters are
specified as multiples of VCLK. The time between the start of two successive
HSYNC pulses is specified by HTOTAL. HCOUNT counts from O to the value
in HTOTAL and then repeats. The value in HTOTAL represents the number
of VCLK periods, minus one, per horizontal scan line. The value in HESYNC
represents the duration of the sync pulse, minus one. The values in HEBLNK
and HSBLNK specify the beginning and end points of the horizontal blanking
interval.

e U o

T

l——————HeBLNKe1 —_

e HTOTALHl————)

Figure 9-2. Horizontal Timing

Figure 9-3 shows the internal logic used to generate the horizontal timing
signals. HCOUNT is incremented once each VCLK period (on the high-to-low
transition) until it equals the value in HTOTAL. On the next VCLK period
following HCOUNT=HTOTAL, HCOUNT is reset to 0, and begins counting
again.

The limits of the horizontal sync pulse are defined by the values in HESYNC
and HTOTAL. HSYNC is driven active low when HCOUNT=HTOTAL; it is
driven inactive high when HCOUNT=HESYNC. After HCOUNT becomes
equal to HTOTAL or HESYNC, there is a one-clock delay before the
active/inactive transition takes place at the HSYNC pin.

The internal HBLNK signal is driven active low after HCOUNT=HSBLNK; it is
driven inactive high after HCOUNT=HEBLNK. HBLNK is logically ORed (ne-
gative logic) with VBLNK to produce the BLANK signal; that is, BLANK goes low
when either HBLNK or VBLNK is low. After HCOUNT becomes equal to
HSBLNK or HEBLNK, there is a one-clock delay before the transition takes
place at the BLANK pin.

Screen Refresh and Video Timing - Horizontal Video Timing

VCLK

Figure 9-3. Horizontal Timing Logic - Equivalent Circuit

Figure 9-4 illustrates horizontal signal generation. In this example,
HTOTAL=N, HSBLNK=N-2, HESYNC=2, and HEBLNK=4. Signal transitions
at the HSYNC and BLANK pins occur at high-to-low VCLK transitions. After
HCOUNT becomes equal to HTOTAL, HSBLNK, HESYNC, or HEBLNK, there
is a one-clock delay before the transition takes place at the HSYNC or BLANK
pin. When HCOUNT=HSBLNK (shortly before the end of the horizontal
scan), horizontal blanking begins. At this time, the DIP (display interrupt) bit
in the INTPEND register is set to 1 if VCOUNT=DPYINT. The next screen-
refresh cycle may also occur at this time — the GSP can be programmed to re-
fresh the screen after one, two, three, or four scan lines.

VCLK

HCOUNT X N-EXN-4 X N-8XN-2XN-DXN X0 X1 X2 X8 X4 X5 X 6)
ASYNC N |
BLANK l\ /

Vv A4 A\
Horlzontal Horlzontal Horizontal
Front Porch Sync Puise Back Porch

HEBLNK = N-2 HTOTAL = N
HESYNC = 2 HEBLNK = 4

Figure 9-4. Example of Horizontal Signal Generation

9-7

Screen Refresh and Video Timing - Vertical Video Timing

9.6 Vertical Video Timing

9-8

The following discussion applies to internally generated video timing (the DXV
bit in the DPYCTL register is set to 1).

The VESYNC, VEBLNK, VSBLNK, and VTOTAL registers control vertical signal
timing as shown in Figure 9-5. All vertical timing parameters are specified as
multiples of the horizontal sweep time H, where

H = (HTOTAL + 1) x (VCLK period)

VTOTAL specifies the time interval between the start of two successive vertical
sync pulses; this value is the number of H intervals, less one, in each vertical
frame. VESYNC represents the duration of the VSYNC pulse, less one, in each
vertical frame. VSYNC's high-to-low and low-to-high transitions coincide with
high-to-low transitions at the HSYNC pin.

VSBLNK and VEBLNK specify the starting and ending points of vertical
blanking. Blanking begins when VCOUNT=VSBLNK and ends when
VCOUNT=VEBLNK. Assuming that horizontal blanking is active at the start
of each HSYNC puise, transitions of the internal vertical blanking signal,
VBLNK, occur while horizontal blanking is active.

= T\ [T e

I vert | I vel
| Front | Yert | ga
|

33
27

| Porch | SYM© | por

s

A
o

) W

VESYNC+1
[—

le— VEBLNIH —

l—————veBLNKs 1 ————)

e—— VIOTALHI——

Figure 9-5. Vertical Timing for Noninterlaced Display

:

Figure 9-6 shows the internal logic that generates the vertical timing signals.
VCOUNT increments at the beginning of each HSYNC pulse until it equals the
value in VTOTAL. When VCOUNT=VTOTAL, VCOUNT is reset to O and be-
gins counting again. VSYNC is driven active low after VCOUNT=VTOTAL; it
is driven inactive high after VCOUNT=VESYNC. The internal VBLNK signal is
driven active low after VCOUNT=VSBLNK; it is driven inactive high after
VCOUNT=VEBLNK. VBLNK is logically ORed (negative logic) with HBLNK to
produce the BLANK signal. This description applies to a noninterlaced display.
The vertical timing changes slightly for an interlaced display.

Screen Refresh and Video Timing - Vertical Video Timing

HEYNC

Figure 9-6. Vertical Timing Logic - Equivalent Circuit

9.6.1 Noninterlaced Video Timing

Noninterlaced scan mode is selected by setting the NIL bit in the DPYCTL
register to 1. In this mode, each video frame consists of a single vertical field.
Figure 9-7 shows the path traced by the electron beam on the screen. Box A
shows the vertical retrace, which is an integral number of horizontal scan lines
in duration. Box B shows the active portion of the frame. Solid lines represent
lines that are displayed; dashed lines are blanked.

Monitor Screen Monltor Screen

Figure 9-7. Electron Beam Pattern for Noninterlaced Video

Figure 9-8 illustrates the video timing signals that generate the display. In this
example, VSBLNK=8, VTOTAL=9, VESYNC=1, and VEBLNK=2. (in actual

9-9

Screen Refresh and Video Timing - Vertical Video Timing

applications, much larger values are used; these values were chosen for illus-
tration only.) Each horizontal scan line is preceded by a horizontal retrace.
The horizontal scan pattern repeats until VCOUNT=VTOTAL; VCOUNT is then
reset to 0, and vertical retrace returns the beam to the top of the screen. BLANK
is active low during both horizontal and vertical retrace intervals.

VCOUNT is incremented each time HCOUNT is reset to O at the end of a scan
line. The VSYNC output begins when VCOUNT=VTOTAL, coinciding with the
start of HSYNC. The VSYNC output ends when VCOUNT=VESYNC; this also
coincides with the start of an HSYNC pulse.

The starting screen-refresh address is loaded from DPYSTRT into DPYADR

at the end of the last active horizontal scan line preceding vertical retrace. This
load is triggered when HCOUNT=HSBLNK and VCOUNT=VSBLNK.

66660666666

|
|
|
|
|
]
|
|
Vertical /—N —N——
Sweep :
Horizontal___A_A_AAAAAAAAAA
Sweep |

VSBLNK =+8 VTOTAL
VESYNC = 1 VEBLNK

Figure 9-8. Noninterlaced Video Timing Waveform Example

9-10

Screen Refresh and Video Timing - Vertical Video Timing

9.6.1.1 Interlaced Video Timing

Interlaced scan mode is selected when the NIL bit in the DPYCTL register is
set to 0. In this mode, each display frame is composed of two fields of hori-
zontal scan lines. The display consists of alternate lines from the two fields.
This doubles the display resolution while only slightly increasing the frequency
with which data is supplied to the screen.

Figure 9-9 illustrates the path traced by the electron beam on the screen.
Figure 9-10 shows the timing waveforms used to generate the display in Fig-
ure 9-9. In this example, VSBLNK=6, VTOTAL=7, VESYNC=1, and
VEBLNK=2. (In actual applications, much larger values are used; these values
were chosen for illustration only.)

In interlaced mode, two separate vertical scans are performed for each frame -
one for the even line numbers (even field) and one for the odd line numbers
(odd field). The even field is scanned first, starting at the top left of the screen
(see Figure 9-9 b). When VCOUNT=VTOTAL, the vertical retrace returns the
beam to the top of the screen, and the odd field is scanned (Figure 9-9 d).
The electron beam starts scanning the odd and even fields at different points.
The reason for this is illustrated in Figure 9-10. The end of the VSYNC pulse
that precedes the even field coincides with start of an HSYNC pulse; however,
the VSYNC pulse that precedes the odd field ends exactly halfway between two
HSYNC pulses

Even Fleld 0Odd Fleld
A\ A\

/

\ /

Monlitor Screen Monltor Screen

Monitor Screen Monlitor Screen

i d

monitor screen.

Juxtaposition of even
and odd flelds on /*%

Figure 9-9. Electron Beam Pattern for Interlaced Video

In interlaced mode, video timing logic operation is altered so that the odd field
begins when HCOUNT=HTOTAL/2. The beam is thus positioned so that
horizontal scan lines in the odd field fall between horizontal scan lines in the
even field. To place each line of the odd field precisely between two lines of
the even field, load HTOTAL with an odd number.

Screen Refresh and Video Timing - Vertical Video Timing

The transition from d to a in Figure 9-9 shows that the vertical retrace at the
end of the odd field begins at the end of a horizontal scan line; that is, it co-
incides with the start of an HSYNC pulse, which results from the condition
HCOUNT=HTOTAL. The VSYNC pulse duration is an integral number of hor-
izontal scan retrace intervais. When vertical retrace ends and the active portion
of the next even field begins, the beam is positioned at the beginning of a
horizontal scan line.

Horizontal timing is similar for interlaced and noninterlaced displays.
HCOUNT is reset to O at the end of each horizontal scan line. A screen-refresh
cycle begins before the end of the line, coinciding with the start of the hori-
zontal blanking interval. Assuming that the starting corner of the display is the
upper left corner, the DUDATE field of the DPYCTL register is added to the
screen-refresh address (SRFADR in the DPYADR register) to generate the row
address for the next screen-refresh cycle. In interlaced mode, the DUDATE
value must be twice that of the value needed to produce the same display in
noninterlaced mode (that is, two times the difference in addresses between
consecutive scan lines). This causes the screen refresh to skip alternate lines
during the odd and even fields.

At the beginning of each vertical blanking interval, the screen-refresh address
(SRFADR in the DPYADR register) is loaded with the starting value specified
by the DPYSTRT register. When vertical blanking precedes an even field, the
new DPYADR row address is incremented by half the value in the DUDATE
field. This is in preparation to display line 2 (Figure 9-9 b). When vertical
blanking precedes an odd field, the row address loaded into DPYADR from
DPYSTRT is not incremented. In this case, the starting row address in
DPYSTRT points to the beginning of line 1 (Figure 9-9 d).

veount X 7 X0 X1 X2 X3 X4 X 5 X8 X7 X o XiXaX @ X 4 X5 X & X7
4 [

- H > 2

FSYNC
|

VSYNC

8 peeit-H/2 N2

(o)
LT U U U U U
L

S

! |
|

Vertical "]

9-12

s |____/\i///\

Even Field VSBLNK =
VESYNC =

VTOTAL = 7 0dd Field
VEBLNK = 2

Figure 9-10. Interlaced Video Timing Waveform Example

Screen Refresh and Video Timing - Display Interrupt

9.7 Display Interrupt

The TMS34010 can be programmed to interrupt the display when a specified
line is displayed on the screen. This is called a display interrupt. ltis ena-
bled by setting the DIE bit in the INTENB register to 1 and loading the DPY-
INT register with the desired horizontal scan line number. When VCOUNT =
DPYINT, the interrupt request is generated to coincide with the start of hori-
zontal blanking at the end of the specified line.

The display interrupt request can be polled by disabling the interrupt (setting
DIE=0) and checking the value of the DIP bit in the INTPEND register.
Writing a 0 to DIP clears the request.

The display interrupt has several applications. It can be used to coordinate
modifications of the bit map with the display of the bit map’s contents, for
example. While the bottom half of the screen is displayed, the GSP can modify
the bit map of the top half of the screen, and vice versa.

Another use for the display interrupt is in maintaining a cursor on the monitor
screen. The cursor image resides in the on-screen memory only during the
time the electron beam is scanning the lines containing the cursor. The cursor
remains free from flicker even during periods in which the TMS34010 busy
drawing to the screen. The technique is to load the DPYINT register with the
VCOUNT value of a scan line just above where the top of the cursor is to ap-
pear. When the display interrupt occurs, the interrupt service routine performs
the following tasks:

L] Sets DPYINT to the scan line just below the cursor,
(] Saves the portion of the screen where the cursor is to appear, and
° PixBlts the cursor onto the screen.

The cursor remains on the screen until the electron beam reaches the bottom
of the cursor, at which time a second interrupt request occurs. The original
screen is then restored, and the TMS34010 can resume drawing to the screen.

The display interrupt is also useful in split screen applications. By modifying
the contents of the DPYADR register halfway through a frame, different parts
of the bit map can be displayed on the top and bottom halves of the screen.
No special steps are necessary to ensure that loading a new value to DPYADR
does not interfere with an ongoing screen-refresh cycle. The display interrupt
is requested at the beginning of the horizontal blanking interval. If a screen-
refresh cycle occurs during the same horizontal blanking interval, the GSP
cannot respond to the interrupt request until the refresh cycle and subsequent
updating of DPYADR are complete. This is true whether the interrupt is taken
or the GSP simply polls the DIP bit and detects a 0-to-1 transition. After DIP
has been set to 1, DPYADR can be loaded with a new value to achieve the
split screen anytime before the next screen-refresh cycle.

In interlaced mode, the display interrupt can be used to detect the start of the
even field. For this purpose, the DPYINT register is loaded with the value from
the VESYNC register. Figure 9-10 (page 9-12) shows that during the odd
field, VCOUNT is incremented by 1 halfway through the horizontal interval
when the condition VCOUNT=VESYNC is detected. @ Assuming that
HSBLNK=HTOTAL/2, VCOUNT contains the value VESYNC+1 by the time
horizontal blanking begins. This means that if DPYINT=VESYNC, the display
interrupt is effectively prevented from occurring during the odd field.

Screen Refresh and Video Timing - Dot Rate

9.8 Dot Rate

A typical screen must be refreshed 60 times per second for a noninterlaced
scan or 30 times per second for an interlaced scan. For a noninterlaced dis-
play, the dot period (time to refresh one pixel) is estimated as:

(0.8)(1/60 second)
(pixels/line) x (lines/frame)

Dot Period =

For an interlaced display, the dot period is estimated as

(0.8) (1/30 second)
(pixels/line) x (lines/frame)

Dot Period =

The 0.8 factor in the numerator accounts for the fact that the display is typi-
cally blanked for about 20% of the duration of each frame. This factor varies
somewhat from monitor to monitor.

During each dot period, the complete information for one pixel must be ob-
tained from the display memory (or frame buffer). Thus, the rate at which vi-
deo data must be supplied from the display memory (which is usually the
limiting factor for large systems) is a function of pixel size as well as screen
dimensions.

Screen Refresh and Video Timing - External Sync Mode

9.9 External Sync Mode

External sync mode allows the TMS34010 to use horizontal and vertical sync
signals from an external source. This permits graphics images generated by
the GSP to be superimposed upon or mixed with images from external
sources.

External sync mode is selected by setting the DXV and HSD bits in the
DPYCTL register to 0. HSYNC and VSYNC are now configured as inputs. (Al-
ternately, HSYNC can be configured as an output and VSYNC as an input by
setting DXV=0 and HSD=1.) When an active-low sync pulse is input to one
of these pins, the corresponding counter (HCOUNT or VCOUNT) is forced to
alt 0s. By forcing the counters to follow the external sync signals, the blanking
intervals and screen-refresh cycles are also forced to follow the external video
signals.

The HSYNC and VSYNC inputs are sampled on each VCLK rising edge.
HCOUNT or VCOUNT are cleared 2.5 clock periods (on a VCLK falling edge)
following a high-to-low transition at the HSYNC or VSYNC pin, respectively.
BLANK remains an output, but its timing is affected because the point at which
HCOUNT and VCOUNT are cleared is controlled by the external sync signals.
The 2.5-clock delay must be considered when selecting values for the
HSBLNK and HEBLNK registers.

9.9.1 A Two-GSP System

One GSP can generate video timing for two GSPs. As Figure 9-11 shows,
GSP #1 is configured for internal sync mode (DXV=1) and generates the sync
timing. GSP #2 is configured for external sync mode (DXV=0 and HSD=0),
and receives the HSYNC and VSYNC inputs from GSP #1. Assume that the vi-
deo timing registers of the two devices are named as follows:

GSP #1 GSP#2
HCOUNT1 HCOUNT2
HESYNC1 HESYNC2
HSBLNK1 HSBLNK2
HEBLNK1 HEBLNK2
HTOTAL1 HTOTAL2
VCOUNT1 VCOUNT2
VESYNC1 VESYNC2
VSBLNK1 VSBLNK2
VEBLNK1 VEBLNK2
VTOTAL1 VTOTAL2

GSP #2's registers should be programmed in terms of the values in GSP #1's
registers, as shown in Table 9-1. The BLANK signals from GSP #1 and GSP
#2 are the same, and switch in unison on the same VCLK edges. When
HCOUNT1 is cleared on a VCLK falling edge, HCOUNT2 is cleared three full
VCLK periods later. For short horizontal blanking periods, HEBLNK2 may
need to be loaded with a value that is less than zero. For example, assume that
HSBLNK1=HTOTAL1-4 and HEBLNK1=1 (that is, the horizontal blanking
interval is six VCLK periods). To ensure that GSP #2's horizontal blanking
interval begins and ends at the same time as GSP #1's, GSP #2's registers
must be loaded with values so that HSBLNK2=HTOTAL1-8 and
HEBLNK2=HTOTAL1-2.

Screen Refresh and Video Timing - External Sync Mode

|
HCOUNT XN-1XN:X|0X1X2X3X4

HSYNC)\
(Output to GSP #2) . |

. le———2.5 Clooks —|
i)

Clear
GSP #2: | HCOUNT

HCOUNT XN—4XN—3XN-2XN-1XN§<OX1

Figure 9-11. External Sync Timing - Two GSP Chips

The values in HTOTAL2 and VTOTAL2 must be large enough so that the
conditions HCOUNT=HTOTAL and VCOUNT=VTOTAL do not cause
HCOUNT and VCOUNT, respectively, to be cleared before the leading edges
of the external horizontal and vertical sync pulses occur. In the example in
Table 9-1, HTOTAL2 and VTOTAL2 are set to their maximum values. The
value of HESYNC2 must be such that HCOUNT=HESYNC2 occurs between
the end of an external HSYNC pulse and the beginning of the next external
HSYNC pulse. The value of VESYNC2 must be such that VCOUNT=VESYNC2
occurs between the end of an external VSYNC pulse and the beginning of the
next external VSYNC pulse.

Tabile 9-1. Programming GSP #2 For External Sync Mode

HEBLNK2 = HEBLNK1 -3

HSBLNK2 = HSBLNK1 -3

HTOTAL2 = 65535

HESYNC2 = (HEBLNK2 + HSBLNK2)/2t
VEBLNK2 = VEBLNK1

VSBLNK2 = VSBLNK1

VTOTAL2 = 65535

VESYNC2 = (VEBLNK2 + VSBLNK2)/2 1

T Suggested value; see description in text.

Since the internal counter can only be resolved to the nearest VCLK edge,
precise synchronization with an external video source can be achieved only
when VCLK is harmonically related to the external horizontal sync signal. In
general, however, the HSYNC and VSYNC inputs are allowed to change asyn-
chronously with respect to VCLK, although the precise VCLK edge at which
an external sync pulse is recognized can be guaranteed only if the setup and
hold times specified for sync inputs are met.

Screen Refresh and Video Timing - External Sync Mode

9.9.2 External Interlaced Video

External sync mode can be used for both interlaced and noninterlaced dis-
plays. When locking onto external interlaced sync signals, the GSP discrimi-
nates between the odd and even fields of the external video signals based on
whether its internal horizontal blanking is active at the time that the start of the
external vertical sync pulse is detected. In Figure 9-10, for example, the even
field begins at a point where HBLNK is active low, and the odd field begins
while HBLNK is high.

In interlaced mode, the discrimination between the even and odd fields of an
external video source is based on the value of HCOUNT at a point two VCLK
periods past the rising VCLK edge at which the GSP detects the VSYNC input’s
high-to-low transition. If HCOUNT contains a value greater than the value in
HEBLNK, but less than or equal to the value in HSBLNK, the GSP assumes
that the vertical sync pulse precedes the start of an odd field. Otherwise, the
next field is assumed to be even. Alternatively, the GSP can be placed in
noninterlaced mode, even though the external sync signals it is locking onto
are for an interlaced display. In this case, the GSP simply causes identical
display information to be output to the monitor during the odd and even fields.

The program can determine at any time whether an even or odd field is being
scanned by inspecting the least significant bits of the DPYADR register to
determine whether they have been incremented by DUDATE/2. Recall that
that at the start of an even field, the initial address loaded into DPYADR from
the DPYSTRT register is automatically incremented by DUDATE/2 (that is,
incremented by half the value specified in the DUDATE field of the DPYCTL
register). At all other times, DPYADR is incremented by DUDATE rather than
DUDATE/2.

Screen Refresh and Video Timing - Video RAM Control

9.10 Video RAM Control

The TMS34010 automatically schedules the VRAM (video RAM) memory-
to-register cycles needed to refresh a video monitor screen. These cycles are
referred to as screen-refresh cycles.

In addition to automatic screen-refresh cycles, the GSP can be configured to
perform memory-to-register and register-to-memory cycles under the explicit
control of software executing on the GSP’s internal processor. One of the
primary uses for this capability is to facilitate nearly instantaneous clearing of
the screen. The screen is cleared in 256 memory cycles or less by means of a
technique referred to here as bulk initialization of the display memory.

9.10.1 Screen Refresh

A screen-refresh cycle ioads the VRAM shift registers with a portion of the
display memory corresponding to a scan line of the display. The internal re-
quests for these cycles occur at regular intervals coinciding with the start of
the horizontal blanking intervals defined by the video timing registers. When
horizontal blanking ends, the contents of the shift registers are clocked out
serially to drive the video inputs of a monitor. A screen-refresh cycle typically
occurs prior to each active line of the display.

9.10.1.1 Display Memory

9-18

The display memory is the area of memory which holds the graphics image
output to the video monitor. This memory is typically implemented with
VRAMs. During a screen-refresh cycle, a portion of the display memory cor-
responding to one (or possibly more) scan lines of the display are loaded into
the VRAM shift registers. Depending on the screen dimensions selected, not
all portions of the display memory are necessarily output to the monitor.

The width of the display memory is referred to as the screen pitch, which is the
difference in 32-bit memory addresses between two vertically-adjacent pixels
on the screen. The screen pitch is aiso the difference in starting memory ad-
dresses of the video data for two consecutive scan lines. When XY addressing
is used, the screen pitch must be a power of two to facilitate the conversion
of XY addresses to memory addresses. The value loaded into the DUDATE
field of the DPYCTL register represents the screen pitch, and is the amount
by which the screen-refresh address is incremented (or decremented) follow-
ing each screen-refresh cycle.

The portion of display memory that is actually output to the monitor is referred
to as the on-screen memory. The starting location of the on-screen memory
is specified by the SRFADR field in the DPYSTRT register.

The starting screen-refresh address is output during the screen-refresh cycle
that occurs at the start of each frame. At the end of the screen-refresh cycle,
the address is incremented to point to the area of memory containing the pixels
for the second scan line. The process is repeated for each subsequent scan
line of the frame.

Screen Refresh and Video Timing - Video RAM Control

A screen-refresh cycle typically affects all video RAMs in the system. A me-
mory-to-register cycle transfers data from a selected row of memory to the
internal shift register of each VRAM. The data is then shifted out to refresh the
display.

A screen-refresh cycle takes place during the horizontal blanking interval that
precedes a scan line to be displayed. Typically, the shift registers containing
the video data for the line are clocked only during the active portion of the
scan line, that is, when the BLANK output is high. At higher dot rates, the pixel
clock or dot clock used to shift video data to the monitor is run through a
frequency divider to create the VCLK signal input to the GSP.

The 8-bit row address output during the screen-refresh cycle specifies the row
in memory to be loaded into the shift register internal to the VRAM. The
number of bits of video data transferred to the shift registers of ali the VRAMs
in the system during a single screen-refresh cycle is calculated by multiplying
the number of VRAMSs times the length of the shift register in each VRAM.
For example, 64 TMS4161 (64K-by-1) VRAM devices are sufficient to con-
tain the bit map for a 1024-by-1024-pixel display with four bits per pixel. The
length of the shift register in each TMS4161 is 256 bits. Thus, in a single
screen-refresh cycle, a total of 64 times 256, or 16,384, bits are loaded. This
is enough data to refresh four complete scan lines of the display. In general,
a single screen-refresh cycle performed during a horizontal blanking interval
is sufficient to supply one or more complete scan lines worth of data to the
video monitor screen.

9.70.1.2 Generation of Screen-Refresh Addresses

The DPYADR, DPYCTL, DPYSTRT, and DPYTAP registers are used to gener-
ate the addresses output during screen-refresh cycles. Figure 9-12 shows
these four registers, and indicates the register fields which determine the way
in which screen-refresh addresses are generated.

15
DPYADR [=~ = =~ SRFADR

DPYSTRT [. - eReiRT

Screen Refresh and Video Timing - Video RAM Control

9-20

° DPYADR contains the SRFADR field, which is a counter that generates
the addresses output during screen-refresh cycles.

® DPYSTRT contains the SRSTRT field, the starting address loaded into
SRFADR at the beginning of each frame.

° DPYCTL contains several fields that affect screen-refresh addresses. The
8-bit DUDATE field is loaded with seven Os and a single 1 that points
to the bit position within SRFADR (bits 2-9 of DPYADRY) at which the
address is to be incremented (or decremented) at the end of each
screen-refresh cycle. The ORG bit determines whether the screen-
refresh address is incremented or decremented. If ORG=0, the screen
origin is located at the top left corner of the screen and the address is
incremented; otherwise, it is decremented. The NIL bit determines
whether the GSP is configured to generated an interlaced (NIL=0) or
noninterlaced (NIL=1) display. The generation of screen-refresh ad-
dresses can be modified to accommodate either type of display.

® The DPYTAP register is used to specify screen-refresh address bits to
right of the position at which DUDATE increments the address. DPY-
TAP provides the additional control over screen-refresh address gener-
ation necessary to allow the screen to pan through the display memory.

Bits not directly involved in address generation are shaded in Figure 9-12.

The address output during a screen-refresh cycle identifies the starting pixel
on the scan line about to be output to the monitor. Figure 9-13 (page 9-21)
shows a 32-bit logical address of the first pixel on one of the scan lines ap-
pearing on the screen. The screen-refresh address consists of bits 4-23 of the
logical address, which are generated by combining the values contained in
SRFADR and DPYTAP. Where SRFADR and DPYTAP overlap (bits 10-17
of the logical address), the address bits are generated by logical ORing the
corresponding bits of SRFADR and DPYTAP. The 8-bit DUDATE value con-
tains seven Os and a single 1 pointing to the position at which SRFADR is to
be incremented (or decremented). The DPYTAP register should be loaded
with the portion of the pixel address in Figure 9-13 lying to the right of the
position indicated by the DUDATE pointer bit. SRFADR contains the portion
of the pixel address that is incremented by the DUDATE pointer bit.

Following system power up, the software should load the starting screen-
refresh address into the SRSTRT field of the DPYSTRT register, and load the
increment to the screen-refresh address into the DPYCTL register. For a typi-
cal CRT display, the starting address is the address in memory of the pixel that
appears in the upper left corner of the display. If ORG bit in DPYCTL is O, the
1s complement of the starting address should be loaded into DPYSTRT. If
ORG=1, the starting address loaded into DPYSTRT shouid not be comple-
mented.

DPYADR is automatically loaded with the starting display address from
DPYSTRT prior to the start of each frame. As shown in Figure 9-14 a, bits
2-15 of DPYSTRT (SRSTRT) are loaded into bits 2-15 of DPYADR
(SRFADR). The load occurs coincident with the start of the horizontal
blanking interval that occurs just at the end of the last active scan line of the
preceding frame.

Screen Refresh and Video Timing - Video RAM Control

Output During Row Address Time
o\

{ —\ Output Durin
5 E Column Addrness Time
J\
' { | N
] 1] 1
] 1] 1
1)] :
31 28 241 20 18 12i 8 4
[32-Bit Logioal Plxel Address C J

1 M
¢ SRFADR N
| (DPYADR Bits 2-15)

Figure 9-13. Logical Pixel Address

The address output during each screen-refresh cycle is contained in bits 2
through 15 of the DPYADR register (the 14-bit SRFADR field). As shown in
Figure 9-14 b, DPYADR bits 4-15 are output at the LADO-LAD11 pins during
the row address time of the screen-refresh cycle. If ORG=0, the DPYADR bits
are inverted before being output; otherwise, they are output unaltered. Zeros
(logic-low levet) are output on LAD12-LAD14, and a one (logic-high level)
is output on LAD15; this is the RF status bit.

During the column address time of the screen-refresh cycle, bits 2-6 of
DPYADR are output at LAD6~LAD10. If ORG=0, the DPYADR bits are in-
verted before being output. DPYTAP bits 6-11 are ORed with DPYADR bits
2-7 and output at LAD6-LAD11. Bits 0-5 and 12-13 of DPYTAP are output
at LADO-LAD5 and LAD11-LAD13, respectively. Zeros are output at
LAD14-LAD15 (the TR and |AQ status bits).

After the row and column addresses have been output, the address in
DPYADR bits 2-15 is decremented by the 8-bit value in DPYCTL bits 2-9 (the
DUDATE field). This is done in preparation for the next screen-refresh cycle.
The 8-bit DUDATE value is a binary number consisting of seven 0s and a
single 1. This single 1 indicates the position at which DPYADR is decre-
mented. If ORG=0, the screen-refresh address in DPYADR is effectively in-
cremented; the 1s complement of the address contained in DPYADR s
decremented by the DUDATE amount, but is inverted before being output.
This is equivalent to incrementing the address. If ORG=1, the address is de-
cremented.

9-21

Screen Refresh and Video Timing - Video RAM Control

SRSTRT
A
16 14 13 121110 9 8 7 6 5§ 4 3 2 1 0
Register ‘ 1. 7.ttt 070,000 0 | L
L) L} l""'l‘l'l 'I T L l" T’ T
R’gm‘rllllllllllllilll1
SRFADR

(a) Display-Address Initial Value

141312110 0 8 7 6 6§ 4 3 210
LUPULEDWL RV B AR [RGL RO R R B S T
wate[I 1 L 'l L 1 L L L Ll 1 1 1 | 1

ORG

Y

(b) Row-Address Time

Figure 9-14. Screen-Refresh Address Generation

9-22

Screen Refresh and Video Timing - Video RAM Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DPYADR T Y T T Y T T T Y T T T T I T I
1

Register 1 1 1 N L 1 i L A 2N
ORG EI—

AAN L

S
l A
0
{
i -1 I
DPYTAP I i
Register | w2
5[] |
14 |r -3
13| @ | w4
12| ® :
11| @& i 5

b
10| e — l»6 :
9l e - {
8l o] 7

[1 I i
71 &

R] 8 |
6le :
5| @ '_’9 |

N |
4_‘_ —a 10 |
3l e {
2 — 11 |

" |
1- . > 12 |
0 |

L i

Ir>13 |
|
0—4—»14(TR) |
|
0——-15(IAQ)=
e

(c) Column-Address Time

Figure 9-14. Screen-Refresh Address Generation {Continued)

9-23

Screen Refresh and Video Timing - Video RAM Control

ool |
Carry In]<—1
|

)
-
~
™
L <¢| @
vle
e
o|le®
-
NF'.
LI g
- 4 g
- ole <
> O
2le
- —
-
> Cle
oF >
> | & —
Cle
> el b
4 —d
- 0
ve
I | gug
-
O__ §.§ -
[-d
o
- G
| o
™| @
< | o
w L]
: o | 0
g L]
g ©o| e
*
~1 e
o | 0
o | e+
)
-
A
-
L 4
~
-
©
-
<
-
-]
-
-
[1
]
o
a
&

(d) Display-Address Update

Figure 9-14. Screen-Refresh Address Generation (Concluded)

9-24

Screen Refresh and Video Timing - Video RAM Control

9.10.1.3 Screen Refresh for Interlaced Displays

The size of the DUDATE increment specified for an interlaced display should
be twice that required for a noninterlaced display of the same dimensions.
This allows every other line to be skipped during the even or odd field of an
interlaced frame. Before the start of the even field, half the value of the DU-
DATE increment is added to the starting address loaded into DPYADR to ob-
tain the necessary starting displacement. The SRSTRT field in DPYSTRT
points to the area of memory containing the video data for scan line 1 in the
example of Figure 9-9 on page 9-11.

9.10.1.4 Panning the Display

The DPYTARP register supports horizontal panning of the screen across a dis-
play memory that is larger than the screen. The value contained in the low-
order bits of DPYTAP furnish the LSBs of the column address output during
the screen-refresh cycle. Incrementing this value results in panning to the
right; decrementing this value results in panning to the left.

9.70.1.5 Scheduling Screen-Refresh Cycles

The internal request for a screen-refresh cycle is generated when horizontal
blanking begins. This gives the GSP essentially the entire horizontal blanking
interval in which to perform the screen-refresh cycle. The delay from the start
of horizontal blanking to the start of the screen-refresh cycle is called the
screen-refresh latency, and is determined by the internal memory controller.

The best and worst case screen-refresh latencies are given in Table 9-2. In the
best case, the delay from the high-to-low transition of the BLANK output to the
start of the screen-refresh cycle (the time the row address is output) is only
3.25 machine states (or local clock periods). In the worst case, the delay is
(7.25 + 2W) states, where W represents the number of wait states required
per memory cycle. The worst case number is based on the fact that the start
of the screen-refresh cycle can be delayed by up to three states if a read-
modify-write operation began one state before the memory controller received
the request for the screen-refresh cycle. A screen-refresh request is given
higher priority than requests for DRAM-refresh, host-indirect or GSP CPU
cycles; hence, no further delays occur unless an external device generates a
hold request.

Table 9-2. Screen-Refresh Latency

Min Max
3.25 states (7.25 + 2W) states

Note: W is the number of wait states per memory
cycle.

The horizontal blanking interval should be sufficiently long in duration for the
screen-refresh cycle to be completed before blanking ends. The required mi-
nimum blanking interval is therefore about (9.25 + 3W) machine states, de-
pending on how soon after the end of blanking the external video logic begins
clocking the VRAM shift registers. Of course, this time must be transiated from

9-25

Screen Refresh and Video Timing - Video RAM Control

machine states (local clock periods) to VCLK periods to program the HEBLNK
register.

The horizontal sync pulse is permitted to be as small as a single VCLK period
in duration.

No screen-refresh cycles are performed during vertical blanking until nearly the
end of vertical blanking - at the start of the horizontal blanking interval that
precedes the first active scan line of the new frame.

The screen-refresh latency specified in Table 9-2 assumes that a local bus hold
request (HOLD low) is not asserted between the start of blanking and the start
of the screen-refresh cycle. If a hold request prevents the TMS34010 from
initiating a scheduled screen-refresh cycle during this time, the TMS34010 is
forced to delay its screen-refresh cycle until the bus is released by the external
device asserting the hold request. A hold request occurring during the hori-
zontal blanking interval preceding an active scan line on the display should
be deasserted in time to allow the TMS34010 to complete the pending
screen-refresh cycle before blanking ends. If a screen-refresh cycle is pending
at the time the external device releases the bus, the screen-refresh cycle is the
first cycle performed by the TMS34010 after it regains control of the bus.

9.10.2 Video Memory Bulk Initialization

9-26

VRAMs may be rapidly loaded with an initial value using a special GSP feature
that converts pixel accesses to register transfers. This rapid loading method
is referred to as bulk initialization of the video memory, and can be used with
VRAMs such as the TMS4461. When the SRT (shift register transfer) bit in
the DPYCTL register is set to a 1, all reads and writes of pixel data are con-
verted at the memory interface of the GSP to register-transfer cycles. When
SRT=0, pixel accesses are performed in normal fashion.

When SRT=1, the processor can initiate register-transfer cycles under explicit
program control. By performing a series of such cycles, some or all of the
display memory can be set to an initial background color or pattern very rapidly
(in a small fraction of one frame time). First, the VRAM shift registers are
loaded with the initial value. The video memory is then set to the initial color
or pattern one row at a time by writing the shift register contents to the me-
mory.

During a register-transfer cycle (when SRT=1), the row and column addresses
are output in unaltered form; that is, the address is not affected by the state
of SRT. The 8-bit row address output during the cycle designates which row
in memory is involved in the transfer. The direction of the transfer is deter-
mined by whether the cycle is a read or a write. A write cycle such as a PIXT
transfer from a general-purpose register to memory is converted to a VRAM
register-to-memory cycle. Similarly, a read cycle such as a PIXT transfer from
memory to a general-purpose register is converted to a VRAM memory-to-
register cycle.

Only pixel transfers are affected by the SRT bit. The manner in which ali other
data accesses and instruction fetches are performed is not affected.

Screen Refresh and Video Timing - Video RAM Control

Before bulk initialization of the display memory, the VRAM shift registers are
loaded with the solid color or pattern with which the display memory is
loaded. This can be done in one of two ways, by either:

L] Serially shifting bits into the shift register
or

® First loading a row of display memory with the color or pattern using a
series of “normal” pixel writes (when SRT=0), and then loading the
contents of this row into the shift register by means of a PIXT memo-
ry-to-register instruction (executed while SRT=1).

To speed up the bulk initialization operation further, a series of transfers can
be made more rapidly by using a single FILL instruction in place of a series of
PIXT instructions. The fill region is selected so that each pixel write cycle
generates a new row address. The fill region is specified to be precisely 16
bits wide, the width of the memory data bus. Also, plane masking is disabled,
transparency is turned off, and the pixel processing replace operation is se-
lected. This ensures that each row is addressed only once during the course
of the fill operation.

The number of bits of the display memory that are altered by a single regis-
ter-to-memory transfer cycle is calculated by multiplying the number of VRAM
devices by the number of shift register bits in each device. The entire frame
buffer is loaded with the initial color or pattern in 256 memory cycles.

9-27

Screen Refresh and Video Timing

9-28

Section 10

Host Interface Bus

A host processor can communicate with the TMS34010 by means of an in-
terface bus consisting of a 16-bit data path and several transfer-control sig-
nals. The TMS34010’s host interface provides a host with access to four
programmable 16-bit registers (resident on the TMS34010), which are
mapped into four locations in the host processor's memory or |/O address
space. Through this interface, commands, status information, and data are
transferred between the TMS34010 and host processor.

A host processor may read from or write to TMS34010 local memory indirectly
via an autoincrementing address register and data port. This optional autoin-
crement feature supports efficient block moves. The TMS34010 and host can
send interrupt requests to each other. A pin is dedicated to the interrupt re-
quest from the TMS34010 to the host. To allow block moves initiated by a
host to take place more efficiently, the host may suspend TMS34010 program
execution to eliminate contention with the TMS34010 for local memory.
DRAM-refresh and screen-refresh cycles continue to occur while the
TMS34010 is halted.

This section includes the following topics:

Section
10.1 Host Interface Bus PinsScccccvioeiiieiriiinrevsieiieecteene s sreesisssseseseessienes
10.2 Host Interface Registers

10.3 Host Register Reads and Writes
10.4 Bandwidthcccoeovrieiciieie,
10.5 Worst-Case Delay

10-1

Host Interface Bus - Pins/Registers

10.1 Host Interface Bus Pins

The TMS34010's host interface bus consists of a 16-bit bidirectional data bus
and nine control lines. These signals are described in detail in Section 2.

HDO-HD15
form a 16-bit bidirectional bus, used to transfer data between the
TMS34010 and a host processor.

HCS is the host chip select signal. It is driven active low to allow a host
processor to access one of the host interface registers.
HFSO0, HFS1

are function select pins. They specify which of four host interface
registers a host can access (see Section 10.2).

HREAD s driven active low to allow a host processor to read the contents
of the selected host interface register, output on HDO-HD15.

HWRITE is driven active low to allow a host processor to write the contents
of HDO-HD15 to the selected host interface register.

HLDS is driven low to enable a host processor to access the lower byte
of the selected host interface register.

HUDS is driven low to enable a host processor to access the upper byte
of the selected host interface register.

HRDY informs a host processor when the TMS34010 is ready to com-
plete an access cycle initiated by the host.

HINT transmits interrupt requests from the TMS34010 to a host proces-
sor.

10.2 Host Interface Registers

10-2

The host interface registers are a subset of the 1/0 registers discussed in Sec-
tion 6. The host interface registers can be accessed by both the TMS34010
and the host processor. These registers occupy four 16-bit locations in the
host processor’'s memory or |/O address map. One of these four locations is
selected by placing a particular code on the two function select inputs, HFSO
and HFS1, as shown in Table 10-1.

Table 10-1. Host Interface Register Selection

HFS1 | HFSO| Selected
Register
0 0 HSTADRL
0 1 HSTADRH
1 0 HSTDATA

1 1 HSTCTL

A 16-bit host processor typically connects two of its low-order address lines
to HFSO and HFS1. An 8-bit processor typically connects two low-order ad-
dress lines to HFSO-HFS1 and uses a third low-order address bit to enable
either the upper or lower byte of the selected register by activating one of the

Host Interface Bus - Registers

byte select inputs, HUDS or HLDS. In the second case, the registers occupy
eight 8-bit locations in the host processor's memory map.

[] The HSTADRL and HSTADRH registers contain the 16 LSBs and 16 MSBs,
respectively, of a 32-bit pointer address. A host processor uses this address
to indirectly access TMS34010 local memory.

® The HSTDATA register buffers data that is transferred through the host inter-
face between TMS34010 local memory and a host processor. HSTDATA
contains the contents of the address pointed to by the HSTADRL and
HSTADRH registers.

[] The HSTCTL register is accessible to the TMS34010 as two separate |/0 re-
gisters, HSTCTLL and HSTCTLH, but is accessed by a host processor as a
single 16-bit register. HSTCTL contains several programmable fields that
control host interface functions.

- NMI (nonmaskable interrupt, bit 8): Allows a host processor to interrupt
TMS34010 execution.

- NMIM (NMI mode, bit 9): Specifies if the context of an interrupted
program is saved when a nonmaskable interrupt occurs.

- CF (cache flush, bit 14): Setting this bit flushes the contents of the
TMS34010 instruction cache. A host processor can force the TMS34010
to execute new code after a downioad by flushing old instructions out
of cache.

— LBL (lower byte last, bit 13): Specifies which byte of a register an 8-bit
host processor accesses first.

— INCR (increment address before local read, bit 12): Controls whether the
32-bit pointer in the HSTADR registers is incremented before being used
in a local read cycle that updates the HSTDATA register.

- INCW (increment address after local write, bit 11): Controls whether the
32-bit pointer in the HSTADR registers is incremented after being used
in a local write cycle that transfers the contents of the HSTDATA register
to memory.

— HLT (halt TMS34010 program execution, bit 156): A host processor can
halt the TMS34010’s on-chip processor by setting this bit to 1.

- MSGIN (message in, bits 0-2): Buffers a 3-bit interrupt message from a
host processor to the TMS34010.

= INTIN (input interrupt bit, bit 3): A host must load a 1 into this bit to
generate an interrupt request to the TMS34010.

- MSGOUT (message out, bits 4-6): Buffers a 3-bit interrupt message
from the TMS34010 to a host.

— INTOUT (Interrupt out, bit 7): The TMS34010 must load a 1 to this bit
to send an interrupt request to a host processor.

10-3

Host Interface Bus - Reads and Writes

10.3 Host Register Reads and Writes

10-4

Host interface read and write cycles are initiated by the host processor and are
controlled by means of the HCS, HAWRITE, HREAD, HUDS, and HLDS signals.
Host-initiated accesses of the register selected by the function-select code
input on HFSO and HFS1 are controlled as follows:

® While HCS, HLDS, and HWRITE are active low, the contents of HDO-HD7
are latched into the lower byte of the selected register.

® While HCS, HUDS, and HWRITE are active low, the contents of
HD8-HD15 are latched into the upper byte of the selected register.

® While HCS, HLDS, and HREAD are active low, the contents of the lower
byte of the selected register are driven onto HDO-HD?7.

® While HCS, HUDS, and HREAD are active low, the contents of the upper
byte of the selected register are driven onto HD8-HD15.

As this list indicates, at least three control signals must be active at the same
time to initiate an access. The last of the three signals to become active begins
the access, and the first of the three signals to become inactive signais the end
of the access. A signal that begins or completes an access is referred to in the
following discussion as the strobe signal for the cycle. Any of the signals
listed above may be a strobe. Figure 10-1 shows a functional representation
of the logic that controls the TMS34010’s host interface.

TM834010

HACS Wrtte t
FWRITE [byt of selectea
register

Write to |
’—D_ J_L Mo?:t o? nmed
HLDS register

Read from upper

I I byte of selected
register

Read from lower
| | byte of selected
register

Figure 10-1. Equivalent Circuit of Host Interface Control Signals

Host Interface Bus - Reads and Writes

The designer must ensure that HREAD and HWRITE are never active low si-
multaneously during an access of a host interface register; this may cause in-
ternal damage to the device.

10.3.1 Functional Timing Examples

The functional timing examples in this section are based on the circuit shown
in Figure 10-1.

L] The HCS input is the strobe in Figure 10-2 and Figure 10-3.
® The HWRITE signal is the strobe in Figure 10-4.

® The HREAD signal is the strobe in Figure 10-5.
[]

The HUDS and HLDS signals are strobes in Figure 10-6 and Figure 10-7.

l'v‘b‘b"'l.v"‘v‘\ 0’#’0‘0‘0’0‘0’0’0‘!’t‘t’.‘b’n“'ﬁ”"’»‘t‘h
HFSO0-HFS1 o Valid Funotion Select N

G0N0

|\
—

—/
—\

s\ Enavle Witte to LowerByte /
__/ iwhorwietoUpperByte \

HUDS

I N

R OOOCOOCOTRROCODIUCOO0Y

OO XXX XXX XXNIXS
DO OO OO0

DOO000SIOAO000OR00
(OO0 OO0
PRI

2.

vy
HDO~-HD156 :;:.:,:.}:‘:':.:‘:,:....':q..:o:.:.:-}:{{-’.:»:.:.:.:.:. Valid Data In

RN Y

HRDY (High)

Figure 10-2. Host 8-Bit Write with HCS Used as Strobe

10-5

Host interface Bus - Reads and Writes

vnnnv'nnuunn
GO OO

COUMUOLOROTOROLO
DO

Valild Function Select

g

Inhibit Read from Lower Byte \
Enable Read from Upper Byte /

T\ /

HDO-HD1 - ———— e ——— (valdDataot H»———————

—/

HREAD_\ /————
7/
A\

HRDY (High)

Figure 10-3. Host 8-Bit Read with HCS Used as Strobe

Q0000 SIS s b
QOO 0 Q000
R alld Fun Seleot DX
HFSO-HFE1 XX Valid Function Sele

00000

HLDS \ Enable Read from Lower Byte /
HUDS \ Enable Read from Upper Byte {

HDO-HD15 ~— — — — ———— — (valdpstaott Y———————

HRDY (High)
Figure 10-4. Host 16-Bit Read with HREAD Used as Strobe

10-6

Host Interface Bus - Reads and Writes

DOOOO0 ‘""v OO0 ‘0'1 + h.l‘q + .‘nlc 0.0‘5 OO
A, Valid Function Select A
SRR BRI
HFS0-HFS1 XU nction Sele KA
N S

o 7 —
s\ [
U
WOE \ EnavewmetouUpperiyte /-

ARy
GO XK AX KNI
OX0000000000000N0
nuuunuunnnnu
DRI

N ey
onyn-un-uunnn-unun
OO AK NS
.u e o
I

Valid Data In

HRDY (High)

Figure 10-5. Host 16-Bit Write with HWRITE Used as Strobe

SO e
nnuiu-nnunnu
RO
QOOOCCROCR XD
WA

"0'0'0\‘0'! 4
HFS0-HFE1 Valid Function Select

HWRITE

—/
s\ [
A\

iDs Strobe Low Byte

HOBE Strobe High Byte

HDO-HD15 Valid Data In

QOCO0000000 uuunuuunt g
AN

HRDY (High)

Figure 10-6. Host 16-Bit Write with HLDS, HUDS Used as Strobes

10-7

Host Interface Bus - Reads and Writes

l’O’"O‘I'0‘0'0’0'0'!‘;%'ﬁ‘v‘v"’l‘i‘l‘b‘l
Valid Funotion Seleoct QRO

T\ o/
HDO-HD1§ -————————— (vadpataout »}———————
HRDY (High)

Figure 10-7. Host 16-Bit Read with HLDS, HUDS Used as Strobes

10.3.2 Ready Signal to Host

10-8

The default state of the bus ready output pin, HRDY, is active high. HRDY is
driven inactive low to force the host processor to wait in circumstances in
which the TMS34010 is not prepared to allow a host-initiated register access
to be completed immediately.

HRDY is always driven low for a brief period at the beginning of a read or write
access of the HSTCTL register. When the host attempts to read from or write
to the HSTCTL register, HRDY is driven low at the beginning of the access,
and is driven high again after a brief interval of one to two local clock cycles.

When the host processor performs certain types of host interface register ac-
cesses, a local memory cycle results. For example, in reading from or writing
to the HSTDATA register, a read or write cycle on the local bus results. If the
host processor attempts to perform an access that initiates a second local
memory cycle before the TMS34010 has had sufficient time to complete the
first, the TMS34010 drives its HRDY output low to indicate that the host must
wait before completing the access. When the TMS34010 has completed the
local memory cycle resulting from the previous access, it drives HRDY high to
indicate that the host processor can now complete its second access.

A data transfer through the host interface takes place only when some com-
bination of HCS, HREAD, HWRITE, HUDS, and HLDS are active simultaneously;
however, the HRDY signal is activated by the HCS input alone. HRDY can be
active-low only while the TMS34010 is chip-selected by the host processor,

Host Interface Bus - Reads and Writes

that is, while HCS is active low. A high-to-low transition on HRDY follows a
high-to-low transition on HCS. The benefit of this mode of operation is that
HRDY becomes valid as soon as HCS goes low, which typically is early in the
cycle. HRDY is always driven high when HCS is inactive high.

A transient low level on the HCS input may cause a corresponding low pulse
on the HRDY output. Systems that cannot tolerate such transient signals must
be designed to prevent HCS from going low except during a valid host inter-
face access.

In summary, the following rules govern the HRDY output:

1)

2)

3)

If a high-to-low HCS transition occurs while the TMS34010 is still
completing a local memory cycle resulting from a previous host-indirect
access, HRDY goes low. If the register selected is HSTDATA, HSTADRL
or HSTADRH, HRDY remains low until the local memory cycle is com-
pleted. If the register selected is HSTCTL, the HRDY output remains low
for one to two local clock periods.

If the host is given a ready signal (HRDY high) to allow it to complete
a register access that causes a local memory read or write cycle, HRDY
stays high to the end of the access. The access ends when the strobe
for the cycle ends. The strobe ends when HREAD and HWRITE are both
inactive high, or when HLDS and HUDS are both inactive high, or when
HCS is inactive high, whichever is the first to occur. As soon as the
strobe ends, a low level on HCS allows HRDY to go low again. If the
strobe is an input other than HCS, and HCS remains low after the strobe
ends, HRDY can go low as a delay from the end of the strobe. If HCS is
the strobe for the access, the access ends when HCS goes high, and
HRDY can go low again as soon as HCS goes low again.

If HSTCTL is selected (FSO = FS1 = 1) at the high-to-low transition
of ACS, HRDY goes low as a delay from the fall of HCS, and remains low
for one to two local clock periods. To avoid a low-going pulse on HRDY
when accessing a register other than HSTCTL, FSO and FS1 should be
valid prior to the high-to-low transition of HCS.

Figure 10-8 and Figure 10-9 (page 10-10) show examples of host interface
register accesses in which HRDY is driven low.

10-9

Host Interface Bus - Reads and Writes

oo B v s Y
wes] -
s T\ V
e T\ S
woy \ -/
T B

HFS0-HFE1 W Valid Function Select

e/

Figure 10-9. Host Interface Timing - Read Cycle With Wait

10-10

Host Interface Bus - Reads and Writes

10.3.3 Indirect Accesses of Local Memory

The host processor indirectly accesses TMS34010 local memory by reading
from or writing to the HSTDATA register. HSTDATA buffers data written to
or read from the local memory. The word in local memory that is accessed is
the word pointed to by the 32-bit address contained in the HSTADRL and
HSTADRH registers. The pointer address is loaded into HSTADRL and
HSTADRH by the host processor before performing one or more indirect ac-
cesses of local memory using the HSTDATA register.

The four LSBs of HSTADRL are forced to Os internally so that the address
formed by HSTADRL and HSTADRH always points to a word boundary in
local memory. Between successive indirect accesses of local memory using
the HSTDATA register, the local memory address contained in the HSTADR
registers can be autoincremented by 16. This allows the host processor to
access a block of sequential words in local memory without the overhead of
loading a new address prior to each access.

During a sequence of one or more indirect reads of local memory by the host,
the TMS34010 maintains in HSTDATA a copy of the local memory word cur-
rently addressed by the HSTADRL and HSTADRH registers. Reading from
HSTDATA returns the word prefetched from the local memory location
pointed to by the HSTADRL and HSTADRH registers, and causes HSTDATA
to be updated from local memory again. Writing to HSTDATA causes the
word written to HSTDATA to subsequently be written to the location in local
memory pointed to by the HSTADRL and HSTADRH registers.

Two increment-control bits, INCR and INCW (contained in the HSTCTL reg-
ister), are set to 1 to cause the pointer address in HSTADRL and HSTADRH
to be incremented by 16 during reads and writes, respectively. In preparing
to use the autoincrement feature, the appropriate increment-control bit, INCR
or INCW, is loaded with a 1, and the HSTADRL and HSTADRH registers are
set up to point to the first location of a buffer region in the local memory.

e When INCR=1, a read of HSTDATA causes the address in HSTADRL
and HSTADRH to be incremented before it is used in the local memory
read cycle that updates HSTDATA.

® When INCW=1, a write to HSTDATA causes the address in HSTADRL
and HSTADRH to be incremented after it is used in the local memory
read cycle that writes the new contents of HSTDATA to local memory.

Loading the pointer address automatically triggers an update of HSTDATA to
the contents of the local memory word pointed to. No increment of HSTADRL
and HSTADRH takes place at this time regardless of the state of the increment
bits. Each subsequent host access of HSTDATA causes HSTADRL and
HSTADRH to be automatically incremented (assuming INCR or INCW is set)
to point to the next word location in the local memory. In this manner, a series
of contiguous words in local memory can be accessed following a single load
of the HSTADRL and HSTADRH registers without additional pointer-
management overhead.

10-11

Host Interface Bus - Reads and Writes

10.3.3.1 Indirectly Reading from a Buffer

10-12

Figure 10-10 illustrates the procedure for reading a block of words beginning
at local memory address V. Assume that the INCR bit in the HSTCTL register
is set to 1 and the LBL bit in HSTCTL is set to 0.

In Figure 10-10 a, the host processor loads the 32-bit address NV into
HSTADRL and HSTADRH.

The loading of the second half of the address into HSTADRH causes the
TMS34010 host interface control logic to automatically initiate a read
cycle on the local bus. This read cycle, shown in Figure 10-10 b,
transfers the contents of memory address N to the HSTDATA register.

In ¢, the host processor reads the HSTDATA register, fetching the data
previously read from address V.

The read of HSTDATA by the host processor causes the TMS34010 to
automatically increment the contents of HSTADRL and HSTADRH by
16, as shown in d.

The contents of the new address are read into HSTDATA, as shown in
Figure 10-10 e. This data will be available in HSTDATA the next time
it is read by the host processor.

The process shown in ¢ through e repeats for every word read from
TMS34010 local memory.

Host Interface Bus - Reads and Writes

(a)

()

(c)

(d)

(e)

Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
2
HSTDATA
Host Host Local
Processor interface Memory
Registers
HSTADRH HSTADRL
i [T A |
HETDATA /
Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
s T—— A]
\ HSTDATA
Host Host Local
Processor Interface Memory
Reglsters
HSTADRH, HSTADRL
HSTDATA
Host Host Local
Processor Interface Memory
Registers
HSTADRH HSTADRL
— s —— B
/ :
HSTDATA]

N+18
N

N+168
N

N+168
N

N+16
N

N+18

0

Figure 10-10. Host Indirect Read from Local Memory (INCR=1)

10-13

Host interface Bus - Reads and Writes

10.3.3.2 Indirectly Writing to a Buffer

10-14

Figure 10-11 illustrates the procedure for writing a block of words to
TMS34010 local memory. The block begins at address /. Assume that the
INCW bit is set to 1 and the LBL bit is set to 0.

In Figure 10-11 a, the host processor loads the 32-bit address N into
HSTADRL and HSTADRH.

The loading of the second half of the address into HSTADRH causes the
TMS34010 host interface control logic to automatically initiate a read
cycle on the local bus. This read cycle, which takes place in Figure
10-11 b, fetches the contents of memory address N into HSTDATA.

The data loaded into this register is not used, however. Instead, the host
processor writes to the HSTDATA register in Figure 10-11 ¢, overwriting
its previous contents.

In response to the host’s write to HSTDATA, the TMS34010 automat-
ically initiates a write cycle to transfer the contents of HSTDATA to the
local memory address NV as shown in d.

Following the write, the TMS34010 automatically increments the ad-
dress in HSTADRL and HSTADRH to point to the next word, as shown
in e. At this point the host interface registers are ready for the host pro-
cessor to write the next word to HSTDATA.

The process shown in ¢ through e repeats for every word written to
TMS34010 local memory.

Host Interface Bus - Reads and Writes

(2)

(b)

(c)

(@)

Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
A]
STDATA
Host Host Local
Prooessor interface Memory
Registers
HSTADRH HSTADRL
[T— 8|
A
HSTDATA
Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
[mm—— —
\ HSTDATA
Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
—§ — 5
HSTDATA e
Host Host Local
Processor interface Memory
Registers
HSTADRH, HETADRL
HSTDATA

N+16
N

N+16
N

N+16

N+16

N+16
N

0

Figure 10-11. Host Indirect Write to Local Memory (INCW=1)

10-15

Host interface Bus - Reads and Writes

70.3.3.3 Combining Indirect Reads and Writes

10-16

If the HSTDATA register in Figure 10-11 is read by the host processor fol-

lowing step e, the value returned is the value that the host previously loaded
into the register. The host must read HSTDATA a second time to access data
from TMS34010 local memory. This principle is illustrated in Figure 10-12,
which shows how the host interface performs when a write is followed by two

reads. For this example, INCW=1 and INCR=0.

® In Figure 10-12 a, HSTADRL and HSTADRH together point to location
N in the TMS34010’s local memory. The host processor is shown writ-

ing to HSTDATA.

In b, the data buffered in HSTDATA is written to location NV in memory.

[] The address registers are incremented in c.

® In d, the host processor reads the HSTDATA register, which returns the

value that the host loaded into the register in step a.

L] Reading HSTDATA causes a memory read cycle to take place in e, which

loads the value from memory address N+16 into HSTDATA.

° In £, a second read of HSTDATA by the host processor returns the value

from memory address N+16.

Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
@ [m—— ——
\ HSTDATA
Host Host Local
Processor Interface Memory
Registers
HSTADRH HSTADRL
[— B |
() N
HSTDATA

N+16
N

N+18

0

Figure 10-12. Indirect Write Followed by Two Indirect Reads
(INCW=1, INCR=0)

Host Interface Bus - Reads and Writes

(c)

(d

(e)

(1]

Host Host Local
Processor Interface Memory
Reglsters
HSTADRH, HSTADRL
|———¥ " B N+16
[N
HSTDATA
]
Host Host Local
Processor interface Memory
Registers
HSTADRH HSTADRL
N+1 B N+16
[N
\ HETDATA
0
Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
(- B |N+t8
C N
HSTDATA
B]
0
Host Host Local
Prooessor Interface Memory
Registers
HSTADRH, HSTADRL
C_NsE ——
C N
\ HSTDATA
]

Figure 10-12. Indirect Write Followed by Two Indirect Reads (INCW=1,
INCR=0) (Concluded)

10-17

Host interface Bus - Reads and Writes

10.3.3.4 Accessing Host Data and Address Registers

When the TMS34010 internal processor accesses the HSTDATA, HSTADRL,
or HSTADRH register, no subsequent cycle occurs to transfer data between
HSTDATA and local memory. Also, the address in HSTADRL and HSTADRH
is not incremented, regardless of the state of the INCR and INCW bits.

The host processor can indirectly access any register in the TMS34010’s in-
ternal 1/0 register file by first loading HSTADRL and HSTADRH with the ad-
dress of the register, and they writing to or reading from HSTDATA.

No hardware mechanism is provided to prevent simultaneous accesses of the
HSTDATA, HSTADRL and HSTADRH registers by the host processor and by
the TMS34010 internal processor. Software must be written to avoid simul-
taneous accesses, which can result in invalid data being read from or written
to these registers.

710.3.3.5 Downloading New Code

10-18

The TMS34010 host interface provides a means of efficiently downloading
new code from a host processor to TMS34010 local memory. The host initi-
ates this operation through the following process:

L Before downloading, the host interrupts and halts the TMS34010 by
writing 1s to the HLT and NMI bits in the HSTCTL register. The host
processor should then wait for a period of time equal to the TMS34010
interrupt latency. (TMS34010 hardware resets the NMI bit if the non-
maskable interrupt is initiated before the halt occurs.)

L] The code is then downloaded using the auto-increment features of the
host interface registers.

® After downloading the code, the host should flush the cache as de-
scribed in Section 5.4.5, Flushing the Cache (page 5-23).

e The nonmaskable interrupt vector is written through the host port to lo-
cation FFFFFEEOh so that the new code begins execution at the vec-
tored address.

® The NMI bit in the HSTCTL register should be set to 1 to initiate a non-
maskable interrupt. At the same time, the NMIM bit in the HSTCTL re-
gister should be set to 1. If the host does not need the current context
to be stored on the stack, or if the nonmaskable interrupt was taken in
the first step, the NMIM bit should be set to 1. Otherwise, NMIM should
be set to 0.

{ The host restarts the TMS34010 by writing a O to the HLT bit in the
HSTCTL register.

Setting the HLT and NMI bits to 1 simultaneously reduces the worst-case
delay (compared to setting HLT only). NMI latency is the delay from the O-
to-1 transition of the NMI bit and the start of execution of the first instruction
of the NMI service routine. Halt latency is the delay from the 0-to-1 transition
of the HLT bit and the time at which the TMS34010 actually halts (see Sec-
tion 10.3.4). The maximum NMI latency may be much less than the halt la-

Host Interface Bus - Reads and Writes

tency if a PIXBLT, FiLL, or LINE instruction is in progress at the time of the
NMI or halt request. An NMI request interrupts instruction execution at the
next interruptible point, but a halt request is ignored until the executing in-
struction completes or is interrupted. When NMI and HLT are set to 1 simul-
taneously, the TMS34010 halts before beginning execution of the first
instruction in the NM! service routine. Therefore, the delay from the setting
the NMI and HLT bits to the time that the TMS34010 actually halts is simply
the NMI latency.

10.3.4 Halt Latency

The TMS34010 may be halted by a host processor via the HLT bit in the
HSTCTL register. The delay from the receipt of a halt request to the time that
the TMS34010 actually halts is the sum of five potential sources of delay:

1) Halt request recognition
2) Screen-refresh cycle

3) DRAM-refresh cycle

4) Host-indirect cycle

5) Instruction completion

In the best case, items 2 through 5 cause no delay. The minimum delay to due
to item 1 is one machine state.

(] The halt request recognition delay is the time required for the setting
of the HLT bit to be internally synchronized after the low-to-high transi-
tion of the HRDY pin.

® The screen-refresh and DRAM-refresh cycles are a potential source
of delay, but in fact occur rarely and are unlikely to delay a halt.

e The likelihood of a delay caused by a host-indirect cycle is small in
most instances, but this depends largely on the application. It would
only occur if the host had written to the data register just prior to writing
to the HLT bit. The delay due to a single host-indirect cycle is two ma-
chine states, assuming no wait states.

® The instruction completion time refers to the time required for an in-
struction that was already executing at the time the halt request was re-
ceived to complete. Note that the TMS34010 halt condition is entered
only on instruction boundaries. This means that a PIXBLT, FILL, or
LINE instruction that is already in progress runs to completion before the
TMS34010 halts.

Table 10-2 shows the minimum and maximum times for each of the five op-
erations listed. The halt latency is calculated as the sum of the numbers in the
five rows. In the best case, the halt latency is only one machine state. The
worst-case latency is six machine states plus the delays due to host-indirect
cycles and instruction completion. Table 10-3 shows instruction completion
times for some of the longer instructions. However, a PIXBLT, FILL, or LINE
instruction may take longer than the times shown in Table 10-3, depending
on the size of the pixel array or line specified. Table 10-3 also shows the in-
struction completion time for a JRUC instruction that jumps to itself - the
TMS34010 may be executing this instruction if the software is simply waiting
for a halt.

10-19

Host Interface Bus - Reads and Writes

Table 10-2. Five Sources of Halt Delay

L I
Operation at.ency (In States)
Min Max
Halt recognition 1 2
Instruction completion 0 See Table 10-3
DRAM-refresh cycle 0 2
See Note 2
Screen-refresh cycle 0 2
See Note 2
Host-indirect cycle 0 See Note 1

Notes: 1) The latency due to host-indirect cycles depends
on both the hardware system and the application.
The delay due to a single host-indirect cycle is two
machine states, assuming no wait states.
2) DRAM-refresh and screen-refresh cycle times as-
sume no wait states.

Table 10-3. Sample Instruction Completion Times

Instruction

Worst-Case Instruction
Completion Time (In States)

SP Aligned SP Not Aligned
DIVS A0,A2 43 43
MMFM SPALL 72 144
MMTM SPALL 73 169
PIXBLT, FILL, and LINE See Note 1 See Note 1

Wait: JRUC wait

1

1

Notes:

1) The worst-case instruction completion time is equal to the in-

struction execution time less one machine state.

2) The SP-aligned case assumes that the SP is aligned to a word
boundary in memory.

10.3.56 Accommodating Host Byte-Addressing Conventions

10-20

Processor architectures differ in the manner in which they assign addresses to
bytes. The TMS34010 host interface logic can be programmed to accommo-
date the particular byte-addressing conventions used by a host processor.

This ability is important in ensuring software compatibility between 8- and
16-bit versions of the same processor, such as the 8088 and 8086 or the
68008 and 68000. The 8088 transfers a 16-bit word as a series of two 8-bit
bytes, low byte first, high byte second. The 68008 transfers the high byte first,
and low byte second.

The HSTCTL register's LBL bit is used to configure the TMS34010 host in-
terface to accommodate different byte-accessing methods. The host interface
is configured to operate according to the following two principles:

Host Interface Bus - Reads and Writes

1)

First, when a host processor with an 8-bit data bus reads from or writes
to the HSTDATA register, it accesses the high and low bytes of the reg-
ister in separate cycles. The TMS34010 does not initiate its local mem-
ory access until both bytes of HSTDATA have been accessed.

2) Second, when HSTADRH and HSTADRL are loaded by the host, the
TMS34010 must not initiate its read of the local memory until the com-
plete pointer address has been ioaded into HSTADRL and HSTADRH.

When LBL=0:

® A local memory read cycle is intitiated by the TMS34010 when the host
processor reads the high byte of HSTDATA, or writes to the high byte
of HSTADRH.

° A local memory write cycle is initiated by the TMS34010 when the host
processor writes to the high byte of HSTDATA.

When LBL=1:

° A local memory read cycle is initiated by the TMS34010 when the host
processor reads the low byte of HSTDATA, or writes to the low byte of
HSTADRL.

e A local memory write cycle is initiated by the TMS34010 when the host

processor writes to the low byte of HSTDATA.

When the host processor is an 8088, for example, the TMS34010 is typically
configured by setting the LBL bit of the HSTCTL register to 0. When config-
ured in this manner, the TMS34010 expects the HSTADRL register to be
loaded first, and HSTADRH loaded second. Furthermore, the high byte of the
HSTADRH register is expected to be loaded after the low byte. When LBL is
set to 0, a local read cycle is initiated when the upper byte of the HSTADRH
register is written to by the host processor. This permits the lower byte of
HSTADRH to be loaded first without causing side effects.

10-21

Host Interface Bus - Bandwidth

10.4 Bandwidth

10-22

One measure of the performance of the host interface is its data rate, or
bandwidth. The bandwidth is the number of bits per second that can be
transferred through the host interface during a block transfer of data to or from
TMS34010 memory. Assume that the host interface address register is pro-
grammed to autoincrement. The maximum data rate through the host interface
can be expected to approach the bandwidth of the TMS34010’s memory. For
example, assume a 50-MHz TMS34010 and a memory requiring no wait
states. The memory cycle time is about 320 nanoseconds (bandwidth = 50
megabits/second). The host’s access cycle time at the host interface is so-
mewhat longer than this due to certain additional delays inherent in the oper-
ation of the TMS34010’s internal host interface logic. Also, the throughput
of the host interface may depend on whether or not the TMS34010 is halted.

The bandwidth is calculated as the width of the host data path (16 bits) times
the frequency of access cycles through the host interface. Given a continuous
series of word accesses, with successive accesses occurring at regular inter-
vals, what is the minimum interval between host accesses that the interface
can sustain without having to send not-ready signals to the host? (The
TMS34010 drives its HRDY output low temporarily to inform the host when
the TMS34010 is not yet ready to complete the host’s current access.)

First, when the TMS34010 is halted, the host interface should support con-
tinuous accesses occurring at regular intervals no less than about 400 nano-
seconds apart. As long as the host attempts to maintain a throughput no
greater than this limit, delays due to not-ready signals occur rarely, if at all.
The bandwidth for this case is calculated in Table 10-4 a as approximately 40
megabits per second. This value can be expected to vary slightly with sys-
tem-dependent conditions such as the frequency of DRAM-refresh and
screen-refresh cycles.

When the TMS34010 is running, the host interface should support continuous
accesses occurring at regular intervals no less than approximately 550 nano-
seconds. The bandwidth for this case is calculated in Table 10-4 as approxi-
mately 29 megabits per second. This value varies slightly with conditions such
as the frequency of DRAM-refresh and screen-refresh cycles, and also with the
characteristics of the program being executed by the TMS34010.

Table 10-4. Host Interface Estimated Bandwidth

Assumptions Approximate Throughput
TMS34010 halted 16 bits/transfer i
50-MHz TMS34010 ————— = 40 megabits/s
No wait states 400 ns/transfer
TMS34010 running 16 bits/transfer .
50-MHz TMS34010 = = 29 megabits/s

550 ns/transfer

No wait states

Host Interface Bus - Worst-Case Delay

10.5 Worst-Case Delay

In some applications, designers must determine not only the effective
throughput of the host interface, but also the delays that can occur under
worst-case conditions. These conditions occur too rarely to affect overall
throughput, but the important consideration here is not how often they occur,
but that they can occur at all. First, with the TMS34010 halted, the worst
delay is given by the formula (6 + 2N)T, where N is the number of wait states
per TMS34010 memory cycle, and T is the local clock period (nominally 160
nanoseconds for a 50-MHz TMS34010). Second, with the TMS34010 run-
ning, the worst delay is given by the formula (9 + 4N)7. The derivation of
these formulas, summarized in Figure 10-13, may be helpful in illustrating the
mechanisms of the host interface.

27 Synchronization delay
(2 + V)T Screen-refresh cycle
+(2+N)T DRAM-refresh cycle
(6 + 2NM)T Worst-case delay (total)
(a) Worst-Case Delay with TMS34010 Halted
27 Synchronization delay
1 +MT TMS34010 CPU read
2+N)T TMS34010 CPU write
2+NT Screen-refresh cycle
+(2+N)T DRAM-refresh cycle
(9 +4N)T Worst-case delay (total)
(b) Worst-Case Delay with TMS34010 Running
N = Number of wait states per memory cycle
T = Local clock period (nominal 160 nanoseconds for 50-MHz device)

Note: These are worst-case delays and have negligible effect on performance. The case
shown in a, for example, could be expected to occur less than once per thousand
(0.1 percent of) host accesses in a typical system.

Figure 10-13. Calculation of Worst-Case Host Interface Delay

Consider case a, in which the TMS34010 is halted, first; the worst-case delay
is calculated as the sum of the three delays. The first of these delays is the time
required to internally synchronize the host interface cycle to the TMS34010
local clock. The host's signals are generally not synchronous to the
TMS34010 local clocks. A signal from the host must therefore be passed
through a synchronizer latch (part of the TMS34010 on-chip host interface
logic) before being used by the TMS34010. The delay through the syn-
chronizer is from one to two local clock periods (17 to 2T), depending on the
phase of the host clock relative to the TMS34010’s local clock. The second
and third delays in Figure 10-13 represent the time needed to perform a
screen-refresh cycle followed by a DRAM-refresh cycle. The arbitration logic
internal to the TMS34010 assigns these two types of cycles higher priorities
than host-requested indirect accesses. (Screen refresh has a higher priority
than DRAM refresh.) Thus, a host access requested at the same time as one
of these cycles must wait. The worst-case assumption is that a screen-refresh
cycle is generated internal to the TMS34010 on the same clock edge at which
the request for the host access arrives. Furthermore, a DRAM-refresh cycle is

10-23

Host Interface Bus - Worst-Case Delay

10-24

requested during this same clock edge or during the next 1 + N clock edges.
An equivalent delay occurs in the case in which a DRAM refresh and host
access are requested on the same clock edge (the DRAM refresh wins), and
a screen refresh is requested on a later clock edge before the host access can
begin. This case is not shown in Figure 10-13, but the delay in this instance
is also (6 + 2N)T. In a typical system, DRAM-refresh cycles consume about
2 percent of the available memory bandwidth, and screen-refresh cycles take
about 1.5 percent (using VRAMs). The probability of either sequence of
events is therefore very small (less than one in a thousand, assuming N = O;
that is, no wait states), and the performance degradation due to these unlikely
events is negligible.

Now consider the case in which the TMS34010 is running. Host accesses are
of higher priority than TMS34010 instruction fetches and data accesses, but
still of lower priority than DRAM-refresh or screen-refresh cycles. The worst-
case delay is calculated as the sum of the five delays indicated in Figure 10-13
b. This assumes that the TMS34010 begins a read-modify-write operation
on a memory word (this is performed as a read cycle followed by a separate
write cycle) just one clock before the TMS34010 receives the host access re-
quest. The TMS34010 CPU read cycle is actually (2 + N)T in duration, but
since it begins one clock before the host access is requested, only (1 + N)T
is left in the cycle. The TMS34010’s local memory controller treats a read-
modify-write operation as indivisible; once the read has started, no other re-
quest can be granted until the write completes. The write cycle is (2 + N)T
in duration. Again, assume that sometime before the write cycle does com-
plete, screen-refresh and DRAM-refresh cycles are also requested. The prob-
ability of this case is somewhat more difficuit to calculate than that of Figure
10-13 a, since the frequency of read-modify-write operations is very program
dependent. This sequence of events rarely occurs, however.

Section 11

Local Memory Interface

The TMS34010 local memory interface consists of a triple-multiplexed
address/data bus and associated control signals. Several types of memory
cycles, including read, write, screen-refresh, and DRAM-refresh cycles are
supported. During a memory cycle, the row address, column address, and data
are transmitted over the same physical bus lines. The row and column ad-
dresses necessary to address DRAMs and VRAMs are available directly at the
address/ data pins, eliminating the need for external multiplexing hardware.

The TMS34010 interfaces directly to DRAMs (such as the TMS4256 and
TMS4C1024) and VRAMs (such as the TMS4461), and can be programmed
to perform DRAM-refresh cycles at regular intervals. CAS-before-RAS or
RAS-only refresh cycles may be selected. The TMS34010 can also be pro-
grammed to perform screen refresh by scheduling VRAM register-transfer cy-
cles to occur at regular intervals.

The local memory interface provides a hold/hold acknowledge capability that
allows external devices to request control of the bus. After acknowledging a
hold request, the TMS34010 releases the bus by driving its address/data bus
and control outputs into high impedance.

Section Page
11.1 Local Memory Interface Pinscccoceeiiicriiieseeeccecreee e 11-2

11.2 Local Memory Interface Registers ... 11-3
11.3 Memory Bus Request Priorities 11-4
11.4 Local Memory Interface Timing 11-5

11.5 Addressing Mechanismscccocrimiiiinininece s 11-23

Local Memory Interface Bus - Local Memory Interface Pins

11.1 Local Memory Interface Pins

Section 2 describes TMS34010 pin functions in detail. This section briefly
summarizes the local memory interface pins.

LADO-LAD15

DEN

DDOUT

(2]
g 2
wn

3
2
o

LRDY
INCLK
LCLK1,
LCLK2

oy
2
purt
=

[
2
-
N

These pins form the local multiplexed address/data bus.

The local data enable signal is driven active low to allow data to
be written to or read from LADO-LAD15. (Connects to the G pins
of a pair of optional '245-type octal bus transceivers.)

The local data direction out signal is driven high to enable data to
be output on LADO-LAD15. It is driven low to enable data to be
input on LADO-LAD15. (Connects to the DIR pins of a pair of
optional '245-type octal bus transceivers.)

The high-to-low transition of the local address latched signal is
used by an external ‘373-type latch to capture the column address
from LADO-LAD15.

The local row address strobe signal drives the RAS inputs of
DRAMs and VRAMs.

The local column address strobe signal drives the CAS inputs of
DRAMs and VRAMs.

The local write strobe signal drives the W inputs of DRAMs and
VRAMs.

The local register transfer/output enable signal connects to the
TR/QE (or DT/OE) pins of a VRAM.

The local ready signal is driven low by external circuitry to inhibit
the TMS34010 from completing a local memory cycle.

TMS34010 processor functions are synchronous to this input
clock signal. (Video timing is controlled by VCLK.)

These output clocks are available to the board designer for syn-
chronous control of external circuitry.

Interrupt requests are transmitted to the TMS34010 on these pins.

Local Memory Interface Bus - Local Memory Interface Registers

11.2 Local Memory Interface Registers

The local memory interface registers are summarized below. These registers
are a subset of the 1/0 registers which are detailed in Section 6.

The memory CONTROL register contains several programmable param-
eters that provide control of the local memory interface:

- RM (DRAM refresh mode, bit 2): Selects RAS-only or

CAS-before-RAS refresh cycles.

— RR (DRAM refresh rate, bits 3 and 4): Controls the frequency of
DRAM refresh cycles.

- T (transparency enable, bit 5): Enables or disables the pixel attri-
bute of transparency.

- W (window violation detection mode, bits 6 and 7): Selects the
course of action the TMS34010 follows when it detects a window
violation.

- PBH (PIXBLT horizontal direction, bit 8): Determines the hori-
zontal direction (increasing X or decreasing X) for pixel operations.

- PBYV (PIXBLT vertical direction, bit 9): Determines the vertical di-
rection (increasing Y or decreasing Y) for pixel operations.

- PPOP (pixel processing operation select, bits 10-14): Selects
among several Boolean and arithmetic pixel processing options.

— CD (instruction cache disable, bit 15): Enables or disables the in-
struction cache.

The CONVDP register contains the destination pitch conversion factor
that is used during XY-to-linear conversion of a destination pixel ad-
dress.

The CONVSP register contains the source pitch conversion factor that
is used during XY-to-linear conversion of a source pixel address.

The PMASK (plane mask) register selectively disables or enables vari-
ous planes in a multiple-bit-per-pixel bit map display.

The PSIZE (pixel size) register specifies the number of bits per pixel.
The REFCNT (refresh count) register generates the addresses output

during DRAM-refresh cycles and counts the intervals between succes-
sive DRAM-refresh cycles.

Local Memory Interface Bus - Memory Bus Request Priorities

- 11.3 Memory Bus Request Priorities

The TMS34010’s local memory interface controller assigns priorities to re-
quests from various sources, both on and off chip, for local memory cycles.
Table 11-1 lists these priorities (priority 1 is highest).

Table 11-1. Priorities for Memory Cycle Requests

Priority Memory Cycle Requested
1 Hold request from external bus master device
2 Screen-refresh cycle
3 DRAM-refresh cycle
4 Host-initiated indirect read or write cycle
5 TMS34010 CPU memory cycle

A TMS34010 CPU memory cycle is a read or write performed by the
TMS34010's on-chip 32-bit processor. Insertion of a field (or a portion of a
field spanning multiple words) into a word requires two CPU memory cycles
when the field does not begin and end on word boundaries. The two cycles
are a read followed by a write. This sequence is called a read-modify-write
operation. The read and write are performed as separate memory cycles, but
are treated as indivisible; that is, the memory controller does not permit another
memory request to be serviced between the read and its accompanying write.
The only exception to this statement is the hold request. If a read-modify-
write is interrupted by a hold, the entire read-modify-write operation is re-
started after the hold is released.

While a read-modify-write operation on an individual memory word is indi-
visible, the accesses necessary to extract or insert a field spanning multiple
memory words are not. For example, if a field spans portions of two memory
words, a higher priority access such as a host-indirect cycle can occur be-
tween the two read-modify-write operations required to insert the field.

The hold request has the highest priority. An external device requests control
of the bus by signalling a hold request to the TMS34010. The externai device
may perform multiple memory cycles following acknowledgment from the
TMS34010. However, the device should not control the bus for so long that
necessary screen-refresh and DRAM-refresh cycles are prevented from occur-
ring. Indirect accesses initiated by a host processor are blocked as long as the
external device continues to control the bus. If the host processor attempts
to initiate another indirect access during this time, the host is forced to wait
at the host interface (the TMS34010 sends it a not-ready signal) until the
external device releases the local bus.

A memory cycle already in progress is always permitted to complete, even if a
higher priority request is received while the cycle is still in progress.

Local Memory Interface Bus - Local Memory Interface Timing

11.4 Local Memory Interface Timing

The TMS34010 memory interface contains a triple-multiplexed address/data
bus on which row addresses, column addresses and data are transmitted.
Figure 11-1 illustrates multiplexing of addresses and data.

GeP Ae?d?:'ss b Data
RF 1AQ 15
26 TR 14
25 29 13

Bit 31 Bto BIit15 Bit 0
(MsB) (LsB) (MsB) (LSB)
RF = DRAM-Refresh bus status bit

IAQ = Instruction acquisition bus status bit

TR = VRAM 8hift-Register-Transfer bus status blit

Figure 11-1. Triple Multiplexing of Addresses and Data

The TMS34010 LAD pins directly provide the multiplexed row and column
addresses needed to drive dynamic RAMs (like the TMS4256) and video
RAMs (such as the TMS4461). Any eight adjacent pins in the range
LADO-LAD10 provide 16 contiguous logical address bits; the eight MSBs are
output as part of the row address, and the eight LSBs are output as part of the
column address. For example, Figure 11-1 shows that logical address bits
5-20 are output at LAD1-LADS.

The control signals output to memory support direct interfacing to DRAMs
and VRAMs. At the beginning of a memory cycle, the address is output in
multiplexed fashion as a row address followed by a column address. The re-
mainder of the cycle is used to transfer data between the TMS34010 and
memory. Figure 11-2 (page 11-6) illustrates general timing (the local
address/data pins are identified as the LAD Bus)

11-56

Local Memory Interface Bus - Local Memory Interface Timing

CAS \ ’

Figure 11-2. Row and Column Address Phases of Memory Cycle

Figure 11-3 through Figure 11-8 show functional timing of the local memory
interface. Several timing features are common to the memory read and write
cycles in Figure 11-3 and Figure 11-4, and to the register-transfer cycles in
Figure 11-6 and Figure 11-7. A row address is output on LADO-LAD15 at the
start of the cycle, and is valid before and after RAS falls. A column address is
then output on LADO-LAD15. The column address is valid briefly before and
after the falling edge of TAL, but is not valid at the falling edge of CAS. The
column address is clocked into an external transparent latch (such as a
74AS373 octal latch) on the falling edge of TAL to provide the hold time on
the column address required for DRAMs and VRAMs. A transparent latch is
required so that the row address is available at the outputs of the latch during
the start of the cycle.

Local Memory Interface Bus - Local Memory Interface Timing

11.4.1 Local Memory Write Cycle Timing

Figure 11-3 illustrates a memory write cycle. Data are output on
LADO-LAD15 following the latching of the column address. DEN goes active
low at the same time the data become valid, and remains low as long as the
data remain valid. In a large system that requires buffering of the data bus to
memory, DEN is typically used as the enable signal to an external bidirectional
buffer (such as a 74AS245 octal buffer). DDOUT is used as the direction
control signal to the buffer. The write strobe, W, goes active low after the data
have become valid and CAS is low. This is interpreted as a “late write” cycle
by the DRAMs and VRAMs, which are prevented by the inactive-high TR/QE
signal from enabling their read drivers. Because the data are valid on both
sides of the W write strobe, external devices can latch the data on either the
high-to-low or low-to-high edge of W.

|01|02|03|Q4|Q1|02|03l04|01|
| |

LCLK1

LCLK2

SE

Data

1

1

| |
LRDY &

[
A
|'|| {El
= | |
LAL o 1N A
N S S I -
NERERCe s/
1 i L
WIiII;I|II:}l
!l!!E! ! | |'.1!
TRGE| | g | ¢ 1 | L Il
N N N A (O S A N
o | TN i/
A S I T T T I S
1 1L | L
boouT R
IR I .

Figure 11-3. Local Bus Write Cycle Timing

Local Memory Interface Bus - Local Memory Interface Timing

11.4.2 Local Memory Read Cycle Timing

Figure 11-4 iliustrates a memory read cycle. LADO-LAD15 are forced to high
impedance following the latching of the column address. DEN and TR/QE both
go active low after CAS becomes low in order to enable read data from the
the output drivers of the DRAMSs and
VRAMs. DEN enables the external bidirectional buffers needed with memories
so large that external buffering (using a device such as a 74AS245 octal buf-
fer) of the data bus is required. The DDOUT signal serves as the direction
control for the external bidirectional buffers, and is low well in advance of the
high-to-low transition of DEN, and remains low well after the low-to-high
transition of DEN. The data that is read from memory must be valid during the
middle of the Q4 clock phase, as indicated in Figure 11-4. The low-to-high
transitions of TR/QE and DEN occur well in advance of the time at which the
LAD drivers turn on to output the row address of the next cycle. This prevents

memory to the LAD pins. TR/QE enables

bus conflicts.

|01|02|03|04|Q1]02|03[0I4|01!

LCLK1

(High)

i
H

N

XXX KX RXKXKXKKY
LAY X RRRIKRIRRKY

"V’V’V"""" “V’ v‘v.v‘v'v.v‘v‘v'v’v
RRRKRRRRRRRLRKS

@

Figure 11-4. Local Bus Read Cycle Timing

11-8

Local Memory Interface Bus - Local Memory Interface Timing

11.4.3 Local Register-to-Memory Cycle Timing

A register-to-memory cycle is a special type of cycle used in systems with
VRAMSs. The cycle transfers the contents of the VRAM's internal serial-data
register to a selected row of its internal memory array. The cycle typically af-
fects all VRAMs in the system. During the register-to-memory cycle shown
in Figure 11-5, both TR/QE and W are low during the fall of RAS. VRAMs re-
cognize this timing as the beginning of a register-to-memory cycle. Conven-
tional DRAMs may need to be de-selected (by withholding the row or column
address strobe, for example) to prevent them from interpreting the cycle as a
conventional read cycle. Alternately, the output enable signal required by a
DRAM such as the TMS4464 can be synthesized by connecting DEN and
DDOUT to the inputs of a two-input OR gate. (In fact, any pair of the signals
DEN, DDOUT, and TR/QE will work.) The low-to-high transition of TR/QE
occurs after the fall of CAS but prior to the rising edge of RAS. This timing
provides compatibility with a variety of VRAMSs.

The TMS34010 performs a register-to-memory cycle when writing to a pixel
while the DPYCTL register's SRT bit is set to 1. For example, the instruction
PIXT AO,*Al writes the pixel in AO to the address pointed to by A1. The
PSIZE register should contain the value 16 so that the write cycle is not pre-
ceded by a read cycle. When SRT is set to 1, this write is converted to the
register-to-memory cycle shown in Figure 11-5. The row address is selected
from bits 12-26 of A1, which are output on LADO-LAD14 during the cycle.

I01102l03:04:o1|02I03I04:01|
LCLK1 H— ' : |

']
)]
1 1
ez | L LN
| ‘
LADO-LAD15 X Row Undefined X
i

N

[l
[
1
1
1
1
[l
1
]
L
T
]
]
1
1
T
]
1
i
[

Local Memory Interface Bus - Local Memory Interface Timing

11.4.4 Local Memory-to-Register Cycle Timing

A memory-to-register cycle is a special type of cycle used in systems with
VRAMs. The cycle transfers the contents of a selected row of a video RAM's

memory array to its internal shift register.

VRAM memory-to-register cycles are primarily used to refresh the screen of a
CRT monitor. The cycles referred to elsewhere in this document as screen-
refresh cycles are in fact memory-to-register cycles. The TMS34010 also
performs a memory-to-register cycle when reading a pixel (for example, by
executing a PIXT *A0,Al instruction) while the SRT bit of the DPYCTL reg-

ister is set to 1.

During the memory-to-register cycle shown in Figure 11-6, TR/QE is low
during the fall of RAS, but W remains high. VRAMSs recognize this timing as
the beginning of a memory-to-register cycle, and their data outputs remain in
high impedance. Conventional DRAMs may need to be de-selected to prevent
them from interpreting the cycle as a memory read cycle. Alternately, the
output enable signal required by a DRAM such as the TMS4464 can be syn-
thesized by connecting DEN and DDOUT to the inputs of a two-input OR gate.
The low-to-high transition of TR/QE occurs after the fall of CAS but prior to the
rising edge of RAS. This timing provides compatibility with a variety of

VRAMs.

|01I02I03:04=Q1|02|03:04:O1|

Figure 11-6. Local Bus Memory-to-Register Cycle Timing

11-10

Local Memory Interface Bus - Local Memory Interface Timing

11.4.5 Local Memory RAS-Only DRAM Refresh Cycle Timing

During the RAS-only DRAM refresh cycle shown in Figure 11-7, RAS and TAL
are the only active control signals. All other signals, including CAS, W, and
TR/QE, remain inactive high through the cycle. The row address, output on the
LAD pins during the high-to-low transition of RAS, is generated by the
REFCNT (DRAM-refresh counter) register.

| Q1] 02| Q3 | Q4| Q1 Q2| Q3] Q4| Qi
et '

ST

3

o
&

{High)

8l =

3

g
o
ul

1
]
1
1
1
1
[
)
1
1
]
I
]
1
]
]
]
1
i
[
]
1
'
L
T
1
1
]
]

LRDY

Figure 11-7. Local Bus RAS-Only DRAM-Refresh Cycle Timing

11-11

Local Memory Interface Bus - Local Memory Interface Timing

11.4.6 Local Memory CAS-before-RAS DRAM Refresh Cycle Timing

11-12

During the CAS-before-RAS DRAM-refresh cycle shown in Figure 11-8, CAS
goes low before RAS goes low. Certain types of DRAMs (like the TMS4256
and TMS4C1024) and VRAMs (such as the TMS4461) recognize this as the
beginning of a DRAM-refresh cycle in which the address of the row to be re-
freshed is generated by a counter on the RAM chip itself, rather than by an
external device such as the TMS34010. The row address output by the
TMS34010 during the cycle is the same as would be output if the TMS34010
were configured to perform a RAS-only refresh cycle rather than a
CAS-before-RAS cycle. The address bits output on LADO-LAD15 remain sta-
ble from the start of the row address time (start of Q2) to the end of the col-
umn address time (end of Q4). LAD15, on which the RF bus status bit is
output, is low during the row address times. In contrast to other types of cy-
cles in which RAS goes low, the TAL output goes low at the start of Q3, after
the fall of CAS and before the fall of RAS. The timing of TAL is designed to
support the use of decode circuitry which latches the state of selected
address/data pins during the fall of TAL, and which recognizes a
CAS-before-RAS cycle by detecting a high level at the RAS output during the
fall of TAL.

lm 0203|04]01 Q2 03|04|n1 Q2
LCLK1

I I
Undefined X

LY
l
|

5
g
3
g

— L
H

— L

8

[(High) |

|
I
i " High) *
I

|
|
|
| A
|
|
|

_tt——t — 4+ —] —+ — 4— —

VAVAY AV AVATAY VAV AV A vavAvAvAvAv AT,
LRDY ;0‘0‘0’0‘0.0QO‘QMO‘O‘O‘Q’O’V

R T IRRLS
KRR L Care KRR KRR on Eoron0XCRXX

Figure 11-8. Local Bus CAS-before-RAS DRAM-Refresh Cycle
Timing

Local Memory Interface Bus - Local Memory Interface Timing

11.4.7 Local Memory Internal Cycles

When the TMS34010 is not performing one of the memory operations shown
in Figure 11-3 through Figure 11-8, its memory interface control signals re-
main inactive, as shown in Figure 11-9. This is called an internal cycle. Figure
11-9 shows two sequential internal cycles. During internal cycles, the LRDY
input is ignored.

|o1102|03:o4| o1|oz|oa=o4=o1|

LCLK1 | o | i I

]

[]

]
tewkz | ! - oo ! l:' !

'

{
Undefined

M

1

411

CAS

=|

TR/QE

BEN |

DDOUT

“T-1"1T"1T T 71T 1
HERENEE

___[___ ___',__.;,__]
SN W S I S N —
S A

__T__+__L__L_______L_

———— -]

LRDY

Figure 11-9. Local Bus Internal Cycles Back to Back

11.4.8 1/0O Register Access Cycles

A special memory read or write cycle is performed when the TMS34010 ad-
dresses an on-chip |/0 register. During this cycle, the external RAS signal falls,
but the external CAS remains inactive high for the duration of the cycle. 1/0
register locations begin at address CO000000h, and all 32 bits of the 1/0 reg-
ister address are decoded internally. The two MSBs of the 32-bit logical ad-
dress are not output at the LADO-LAD15 pins.

Figure 11-10 shows an I/0 register read cycle and Figure 11-11 shows an 1/0
register write cycle. These cycles occur when one of the TMS34010’s on-chip
1/0 registers is accessed by the on-chip processor or by the host processor via
a host-indirect access. An address in the range CO000000h to CO0001FFh is
interpreted as an 1/0 register access by on-chip decode logic, and the read or
write cycle is modified as shown in Figure 11-10 or Figure 11-11. The two

11-13

Local Memory Interface Bus - Local Memory Interface Timing

MSBs of the internal address (bits 30 and 31) are available internally and are
included in the internal decoding operation.

An 1/0 register read or write cycle is always two clock periods in duration, and
LRDY is ignored. The only control outputs that are active low during the cycle
are RAS and LAL. The CAS, W, TR/QE, DEN and DDOUT outputs all remain in-
active high. The row and column addresses output at the LADO-LAD15 pins
are all 0s. All three bus status bits are inactive (RF is high, IAQ is low, and TR
is high). During the read cycle shown in Figure 11-10, the LADO-LAD15 pins
are driven to high impedance during the data phase of the cycle. During the
write cycle shown in Figure 11-11, the LADO-LAD15 pins contain the valid
data being written to the 1/0 register.

1@1/02/031Q410Q1,02) 03] 0401
Ltk f Y l/ N !
b

g
ig <
I -
L1
P
%‘" L
iae

A N Y I
——h | b

RAS | P L |1|:: :

ooy b e :

e |||
oy T TN LY
[T e A S O N I A
CASI g T 1 T DT
| | l|||||||l |
IR SN NN S S | | I j I |
W! | (High) | | Feero el
I i o T T T T O B
i | R R I J) B |
TRAGE| | (High) |, ; | | 1 1 |
I R A A I S N
BN T
I N A N I R O
| L Tl |
Dbout R
[I S O B

Figure 11-10. 1/0 Register Read Cycle Timing

11-14

Local Memory Interface Bus - Local Memory Interface Timing

Q1020304 ; Q1j0Q2]0Q
]

LCLK1

LCLK2

|

i
N

LADO-LAD1S

i

:

I}

e

8l

e e e

(Hllgh)

%

(High)

Rl

[ENUONNS I NPy G

(l-lllah)

——-—+-1--

o o B 1
e

T
I

2 g
-

SN U N VN I

_-.__.___+]

—
7

]
1T

HENNNIN.

Figure 11-11. /O Register Write Cycle Timing

11.4.9 Read-Modify-Write Operations

The TMS34010’s read-modify-write operation, which consists of separate
read and write cycles, is not the same as the read-modify-write cycle specified
for some DRAMs. As explained in Section 5, when inserting a field into me-
mory that is not aligned to 16-bit word boundaries, the TMS34010 memory
interface logic may be required to perform read-modify-write (RMW) oper-
ations on one or more words in memory. A RMW operation consists of the
following sequence of steps:

1) A word is read from memory.

2) The portion of that word corresponding to the field being inserted is
loaded with the new value.

3) The modified word is written back to memory.

The read cycle is as shown in Figure 11-4 (page 11-8), and the write cycle is
as shown in Figure 11-3 (page 11-7).

A local bus request (HOLD low) may cause the TMS34010 to release the bus
after the read cycle of a RMW operation has completed, but before the ac-
companying write cycle has begun. When the TMS34010 later regains control
of the bus, it performs both the read and the write cycles of the RMW opera-
tion. The RMW operation is performed only when it is the highest priority bus
operation pending. Any pending screen-refresh, DRAM-refresh, or host-
indirect cycle has higher priority, and is performed first.

11-15

Local Memory Interface Bus - Local Memory Interface Timing

11.4.10 Local Memory Wait States

The timing shown in Figure 11-3 through Figure 11-8 assumes that the LRDY
input remains high during the cycle. The LRDY pin is pulled low by slower
memories requiring a longer cycle time. The TMS34010 samples the LRDY
input at the end of Q1, as indicated in the figures. If LRDY is low, the
TMS34010 inserts an additional state, called a wait state, into the cycle.
Wait states continue to be inserted until LRDY is sampled at a high level. The
cycle then completes in the manner indicated in Figure 11-3 through Figure
11-8.

The LRDY input is ignored by the TMS34010 during internal cycles, as indi-
cated in Figure 11-9.

Figure 11-12 shows an example of a read cycle extended by one wait state.
The first time LRDY signal is sampled, a low level is detected by the
TMS34010, causing the cycle to be delayed by a wait state. When LRDY is
sampled again one local clock period later, a high level is detected, permitting

DDOUT remain low is extended by one state (one local bus clock period).

ro—Wuitsnte—ul

Q1 Q2| Q31 Q4] Q| Q2| Q3| Q4| Q1| Q2 | Q3 | Q4
“3'-'“_/ VAR |/ AN
I

|

|

LCLK2 / 1

|
1
I
|
] | N R S Ey |
LADOQ-LAD7 X_Row ol. H-Z Don’t Car Data
} AXXA
|
I
t
|
[

7

g

__7J___

: I A
LRDY Don’t Care | Don’t Care
|

Figure 11-12. Local Bus Read Cycle with One Wait State

Local Memory Interface Bus - Local Memory Interface Timing

Figure 11-13 is an example of a write cycle extended by one wait state. The
first time LRDY signal is sampled, a low level is detected by the TMS34010,
causing the cycle to be delayed by a wait state. When LRDY is sampled again
one local clock period later, a high level is detected, permitting the cycle to
complete. The time during which RAS, CAS, TAL, W and DEN remain low is
extended by one state.

'-— Wait State ——‘
a2z Q3

Qi Q21 a3 Q4 Qa1 Q4 a Q2 Q3 a4 Q1 Q2
ekt |/ N\
i
” |
LCLK2
i ! ! 1
LADO-LAD15 Row >@(Data X
T H T T
| | ! 1 |
I I | |
RAS : |
T
I
} e
A !
~
oA i
w
1
|
TR/GE THigh)
I
I |
[|
H H
=/ AN
|
P
DDOUT
| .
|
| H ! [
LRDY Don‘t Care Don’t Care

Figure 11-13. Local Bus Write Cycle with One Wait State

Figure 11-14 is an example of a register-to-memory cycle extended by one
wait state. The first time the LRDY signal is sampled, a low level is detected
by the TMS34010, causing the cycle to be delayed by a wait state. When
LRDY is sampled again one local clock period later, a high level is detected,
permitting the cycle to complete. The time during which RAS, CAS, and TAL
remain low is extended by one state. The W and TR/QE low times are not ex-
tended, however. Similarly, during a memory-to-register cycle, TR/QE is not
extended.

11-17

Local Memory Interface Bus - Local Memory Interface Timing

'g—th Snla—-1
Q1 Q2 | a3 : a4 | Q1 Q2 | a3 Q4 | Q1 Q: Q| Q4| a1 Q2

— i

LCLK1 N\ ' /
|
I
|

LCLK2 I //’
I
|

LADO-LAD15 Row Col. Undefined
T T T
1 | | | 1
| 1 |
RAS
AT \
CAS
w

TR/GE :\

"

b ———

LRDY Don‘t Care Don’t Care:

Figure 11-14. Local Bus Register-to-Memory Cycle with One Wait
State

11.4.11 Hold Interface Timing

11-18

The TMS34010 includes a hold interface through which external bus-master
devices can request control of the local memory bus. When the TMS34010
grants a hold request, it drives its local memory address/data bus and control
outputs to high impedance, and the requesting device becomes the new bus
master. When the requesting device no longer requires the bus, it removes its
hold request, and the TMS34010 again assumes control of the local bus.

Figure 11-15 shows the TMS34010 releasing control of the local bus in re-
sponse to a hold request. The TMS34010 samples the state of the HOLD input
at each LCLK2 rising edge (at the end of the Q1 phase of the clock). HOLD
is a synchronous input, and must not change during the time that the
TMS34010 samples it; refer to the TMS34070 Data Sheet for HOLD setup and
hold times. The state of the hold acknowledge signal (active or inactive) is
output on the HLDA/EMUA pin during the Q3 and Q4 clock phases (LCLK1
low). During the first (or leftmost) LCLK2 rising edge, the hold request is
inactive. Consequently, the hold acknowledge signal remains inactive during

Local Memory Interface Bus - Local Memory Interface Timing

the first LCLK1 low phase. By the second LCLK2 rising edge, the hold request
has been activated, and the TMS34010 responds by acknowledging the hold
request during the next LCLK1 low phase. The address/data lines and ma-
jority of the control lines are driven to high impedance at the start of the next
Q2 phase (LCLK2 rising edge). The DDOUT and DEN pins are driven to high
impedance a quarter clock later.

Figure 11-16 shows the TMS34010 resuming control of the local bus after
deactivation of the hold request. Again, the TMS34010 samples the state of
the HOLD input at each LCLK2 rising edge. During the first LCLK2 rising edge,
the hold request is still active, and the TMS34010 responds during the next
LCLK1 low phase with an active hold acknowledge signal. By the second
LCLK2 rising edge, the hold request has been removed. The TMS34010 re-
sponds by outputting an inactive hold acknowledge signal during the next
LCLK1 low phase. At the next LCLK2 rising edge, the TMS34010 begins to
drive its address/data pins and the majority of its control pins to logic-high or
logic-low levels. The DEN and DDOUT signals remain in high impedance for
one additionai quarter clock before they too begin to be driven.

lat {02)03 ias{a1{02]a3)as|ar|az|as]as
| | | |
LoLK1 f ! ! N\ |
| | |
| ! |
LeLk2 1 !
N I -
1 ' L . |
LADO-LAD15 Row Col. Data _7-——.%"..1_ ———
|
|
RAS 'T"‘ll'""zﬂ""
|
|
AL | —T——Tm11—~—
|
Al
CAS | —/; \—1-——1'-1-“-1-1 J—
I | 1 t
{ || | ! :]
|
w | _l—‘_/__}\——+——+ul-24___
|
| | 1 |
+ } 3 i
TRIGE { : : N L-—-+u|-zJ‘--—-
N Y S S E— | {
DEN | ! | _ —
. i \ ! \- Jl-m-z+
! ! | |
I I |
poout |]]
1 { | 1 *J'""IT——'
I L) L I

-5k

! i
| I
FISREMOR | | hee o/
o i
e]
Ack

Figure 11-15. TMS34010 Releases Control of Local Bus

In Figure 11-15, the first active-low pulse of the HLDA/EMUA output is an
early acknowledgment, and the bus is not released for another three quarters

11-19

Local Memory Interface Bus - Local Memory Interface Timing

11-20

of a clock. The early acknowledgment gives advance warning to the device
requesting the hold that the bus is about to be released by the TMS34010,
allowing the device time to prepare to become the new bus master. The
TMS34010 outputs the active hold acknowledge signal only when it is pre-
pared to release the bus within the next clock period. If the TMS34010 must
wait longer than this to release the bus, its hold acknowledgment is withheld
until it can release the bus.

For instance, if the LRDY signal in Figure 11-15 were low instead of high at
the second rising edge of LCLK2, the TMS34010 would be forced to wait, and
would therefore not acknowledge the hold request until later, when the not-
ready condition was removed. Also, if the hold request in Figure 11-15 was
asserted initially during the first LCLK2 rising edge rather than the second, the
TMS34010 would delay its hold acknowledgment until the second LCLK1 low
clock phase, knowing that the cycle in progress would not be completed until
the third Q2 phase in the diagram.

A hold request has a higher priority than any internally generated memory cy-
cle requests, including:

® Screen refresh

° DRAM refresh

® Indirect access by the host processor

® TMS34010 instruction fetch or data access

A hold request is delayed only to allow a memory cycle already in progress to
complete.

External devices can activate or deactivate the HOLD input during any clock
of an ongoing cycle, as long as the input is stable during the rising edge of
LCLK2. The HOLD input is synchronous and is required to meet specified
setup and hold times to ensure that the TMS34010 operates correctly. After
the TMS34010 grants the bus to an external device (via an active-low level
on the HLDA/EMUA output during the Q3 clock phase), it continues to ac-
knowledge the hold request during the Q3 phases of subsequent clock cycles.
The external device retains control of the bus until it deactivates its hold re-
quest.

External devices should avoid placing the TMS34010 in hold for long periods.
While the TMS34010 is in hold, it can perform neither screen-refresh nor
DRAM-refresh cycles. Furthermore, a host processor attempting to access the
TMS34010's local memory through the host interface registers while the
TMS34010 is in hold may receive a not-ready signal. When this occurs, the
host is forced to wait to complete its access until the TMS34010 leaves the
hold state. (Refer to Section 9.10.1.5, Scheduling Screen-Refresh Cycles, on
page 9-27 for more information.)

If a request for a DRAM-refresh or screen-refresh cycle is generated within the
TMS34010 while an external device controls the bus, the TMS34010 retains
the request and perform the DRAM-refresh or screen-refresh cycle after the
external device has returned control of the bus to the TMS34010. However,
if a requested DRAM-refresh cycle is prevented from occurring for so long that
a second DRAM-refresh cycle is requested before the first DRAM-refresh cy-
cle can occur, the first DRAM-refresh request is lost. Similarly, if a screen-
refresh request is prevented from occurring for so long that a second

Local Memory Interface Bus - Local Memory Interface Timing

screen-refresh cycle is requested before the first screen-refresh cycle can oc-
cur, the first screen-refresh request is lost.

The HLDA/EMUA output is multiplexed between the hold acknowledge
(HLDA) and emulate acknowledge (EMUR) signals. The HLDA signal is output
during the LCLK1 low phase, and the EMUA signal is output during the LCLK1
high phase.

)
H
0
w
3

LCLK1

R
)
N
8
R
e
N
8

|
|
i_____ _—

;

LCLK2

Y

|
|
| ! } l
R NN N0
| | ! | [| |
| | | | } -i | { l
L e e =111 | l
A I B g n
| |
T B e e e e e (R I BN
o I A T S O S
T A A s A T AN
| | | | | | | | | | |
= | | | 1 | | | | 4 4 4
R R et R A A e e |
o PR L L
[| |
| | | | | | | | |t
5 T S S R s S S
|
B N L e B A |
B 10400 00 0 e a0 0 et 00 0ttt et

.0.0&0.0&&&0&)&.0&.OAAQ.O.AQ.

|]
I [| | | | |
HOLD M’l Aofofofofofofofofo‘ Roq ‘o’ofofofofofofo’ CLRLLREILLRK
| |

'

Figure 11-16. TMS34010 Resumes Control of Local Bus

11-21

Local Memory Interface Bus - Local Memory Interface Timing

11.4.12 Local Bus Timing Following Reset

Figure 11-17 shows the timing of the local bus signals following reset. At the
end of reset, the TMS34010 automatically performs a series of eight RAS-only
refresh cycles, as required to initialize certain DRAMs (such as the TMS4256
and TMS4464) and VRAMs (such as the TMS4461) following power-up.
The asynchronous low-to-high transition of RESET is sampled at the second
high-to-low LCLK1 transition in Figure 11-17. In less than two local clock
periods following this LCLK1 transition, the first of the eight RAS-only cycles
begins, as shown at the right side of Figure 11-17.

Each of the eight RAS cycles following reset is two clock periods in duration,
but can be extended by a not-ready signal (LRDY low). The timing for each
cycle is identical to that of a RAS-only DRAM-refresh cycle, including the bus
status codes output during the row and column address times. The row ad-
dress for each of the eight RAS-only cycles is all Os.

RESET HIGH LEVEL FIRST OF 8 RAS-ONLY
1S LATCHED INTERNALLY _ Ta . / CYCLES BEGINS
: Q1 Q2 : Q3 04|I Q1 Q2 : Q3 | Q4 : Q1§ 02| Q3| Q4 I| a1l 02 03: Q4
| /TN [s N | | |
LCLK1 —/— : | : | : 1 / |
| i | i i I I T
I N ! | |
LCcLk2 | : | I \ | : \ 1 /_ :
| | | | | |] [
: ! | | | | I |
T LS RN T | T
RESET | | / i i | I i
1 1 | |] I I
]] T | |] P |
| | ! |] | [|
byl 1 | [[Lol -
Umoums1Hur——r-1——I——r—1——T——f—~r—1——T——r—$CEmN
[' | | ! Lol T
Loy 1 ! I ! I ! :
AAS | (HIGHI l i i i i l
] I ! | |] [| L
| | ! | i | I
{ | ! I [I Il !
TAr | (HIGHI | i i i i Lo I
I I : I | I [by
TAS, W, TRIGE. _| ' 1 ! ! ! L f
BEN, DDOUT + (HIGH} ! : . : N !

11-22

Figure 11-17. Local Bus Timing Following Reset

Local Memory Interface Bus - Addressing Mechanisms

11.5 Addressing Mechanisms

The TMS34010 addresses memory by means of a 32-bit logical address. As
explained in Section 3, each 32-bit logical address points to a bit in memory.

Logical address bits are numbered from O to 31, where bit 0 is the LSB and
bit 31 is the MSB. Figure 11-18 illustrates the manner in which address bits
4-29 are output to physical memory. Each column in the figure indicates an
address/data bus pin, LADO-LAD15, and below it is the corresponding bit of
the logical address output at the LAD pin during the fall of RAS and during the
fall of CAS. Bus status bits RF, TR, and IAQ are output on LAD14~-LAD15.

LAD Pin Numbers
15{14|13|12|11|10|9{8|7 |6 |5|4|3|2|(1|0

TMS34010| At Fall |RF|26]/25/24|23|22]/21]|20]{19]18{17|16{15|14[13]12
Logical of RAS

gdtd;ess At Fall [IAQTR|29(28[27|14|13[12]11]|10]{ 9|87 |6|5]| 4
its of CAS

T Bus status signals:
RF — DRAM refresh cycle
1AQ - Instruction acquisition cycle
TR - Register-transfer cycle

Figure 11-18. External Address Format

Key features of the local bus addressing mechanism include the following:

[The two MSBs of the 32-bit logical address (bits 30 and 31) are not
output.

[The four LSBs of the 32-bit logical address (bits O to 3) are not output,
but are used internally to designate a bit boundary within a 16-bit word
accessed in the external memory.

® The address bits output on LADO-LAD10 during the falling edges of RAS
and CAS are aligned so that 16 consecutive bits from the logical address
are available at any eight consecutive pins in the range LADO to LAD10.
The address bits are output in this way in order that the 8-bit row ad-
dress and 8-bit column address presented to the dynamic RAMs can al-
ways be taken from the same eight address/data pins. This eliminates
the need for external address multiplexers.

[] Logical address bits 12-14 are output twice during a memory cycle -
during both the RAS and CAS falling edges - but at different pins. This
allows a variety of memory organizations and decoding schemes to be
used.

Pins LADO-LAD10 form an 11-bit zone in which logical address bits 12-14
are overlapped (that is, they are issued in both cycles, but on different pins).
The row and column address bus is connected to any eight consecutive pins
within this zone. The actual position is determined by the bank-decoding
scheme selected for a particular memory organization.

11-23

Local Memory Interface Bus - Addressing Mechanisms

Output along with the address are three bus status signals:

® The RF (DRAM refresh) bit is output on LAD15 during the fall of RAS.
It is low if the cycle that is just beginning is a DRAM-refresh cycle (ei-
ther RAS-only or CAS-before-RAS); otherwise, RF is high.

® The TR (VRAM register transfer) bit is output on LAD14 during the fall
of CAS, and is low if the cycle in progress is a video RAM register
transfer. Otherwise, TR is high. In either event, the state of the TR bit
reflects the state of the TR/QE output during the falling edge of RAS
within the same cycle.

® The |AQ bit is output on LAD15 during the fall of CAS, and is high if the
cycle is an instruction fetch; otherwise, IAQ remains low. The term /n-
struction fetch includes not only reads of opcodes, but also immediate
data, immediate addresses, and so on.

IAQ is active high when words are fetched from memory to load the in-
struction cache. A cache subsegment (a block of four words) is loaded in a
series of read cycles, during which IAQ is active high. The PC points to an
instruction word within the block, but the block may contain data as well as
instruction words (opcodes, immediate addresses, immediate data, and so on).
Only during execution can the TMS34010 distinguish instruction words from
data words residing in the cache. Instruction words are fetched from the
cache as they are needed, but data inadvertently loaded into the cache is ig-
nored and all memory data reads or writes result in accesses of the memory
rather than the cache.

When the cache is disabled, 1AQ is active high only when the first word of an
instruction is fetched; in the case of a multiple-word instruction, |AQ is inac-
tive while the additional words are fetched.

11.5.1 Display Memory Hardware Requirements

11-24

The minimum number of bits of memory required to implement the display
memory is the product of the total number of pixels (on-screen and off-screen
areas combined) and the number of bits per pixel. The minimum number of
VRAMs required to contain the display memory is calculated as follows:

(pixels per line) x (lines per frame) x (bits per pixel)
Number of bits per VRAM

This caiculation yields the minimum number of VRAMs needed, but additional
VRAMs may be required in some applications. For instance, XY addressing
can be supported by making the number of pixels per line of the display me-
mory a power of two, but this may require more than the minimum number of
VRAMs needed to contain the display.

Number of VRAMs =

Local Memory Interface Bus - Addressing Mechanisms

11.56.2 Memory Organization and Bank Selecting

During a single local memory cycle, one data word (16 bits) is transferred
between the TMS34010 and the selected bank of memory. The memory is
partitioned into a number of banks, where each bank contains the number of
memory devices that can be accessed in a single memory cycle. The number
of devices per bank is therefore determined by dividing the width of the data
bus by the number of data pins per device. The TMS34010 data bus is 16 bits
wide, and can access 16 memory data pins during a single cycle. This means,
for example, that a bank composed of 64K-by-1 RAMs contains 16 RAM de-
vices. A bank composed of 64K-by-4 RAMs contains 4 RAM devices.

In a typical system, the local memory is divided into two parts, one consisting
of the display memory and the other consisting of additional DRAMs needed
to store programs and data. This additional RAM can be called the system
memory. A high-order address bit is typically used to select between the dis-
play memory and system memory. Within the display memory or system me-
mory, some address bits are provided as the row and column addresses to the
selected bank, while other address bits are used to select one of the banks.

The number of banks of VRAM needed for the display memory is calculated
by dividing the total number of VRAMSs by the number of VRAMs per bank.
This in turn determines how many bank select bits must be decoded.

11.5.3 Dynamic RAM Refresh Addresses

DRAMs (and VRAMSs) require periodic refreshing to retain their data. The
TMS34010 automatically generates DRAM-refresh cycles at regular intervals.
The interval between refresh cycles is programmable, and DRAM refreshing
can be disabled in systems that do not require it.

The TMS34010 can be configured to generate one of two types of DRAM-
refresh cycle timing:

® RAS-only (see Figure 11-7) or
® CAS-before-RAS (see Figure 11-8).

During a RAS-only refresh cycle, the TMS34010 provides the 8-bit row ad-
dress needed to refresh a particular row within each of the DRAMs in the
memory system. DRAMs that support CAS-before-RAS cycles each contain
an on-chip counter which generates the row address needed during the cycle.
In other words, these devices do not rely on the TMS34010 to provide the row
address during the CAS-before-RAS cycle.

The row address output by the TMS34010 dunng a DRAM-refresh cycle is the
same regardless of whether the TMS34010 is configured for RAS-only or
CAS-before-RAS refresh timing. Since the TMS34010 outputs a valid row
address during a CAS-before-RAS cycle, a system can contain some DRAMs
that use CAS-before-RAS refresh timing and others that use RAS-only timing.
This hybrid approach configures the TMS34010 to perform CAS-before-RAS
refresh, and relies on external decode logic to prevent the active-low column
address strobe from reaching those DRAMs that require RAS-only refreshing.
The decode logic detects the fact that CAS falls before RAS during a CAS-be-
fore-RAS cycle, and uses this to inhibit transmitting the CAS signal to the
RAS-only DRAMSs.

11-25

Local Memory Interface Bus - Addressing Mechanisms

11-26

Several bits in the CONTROL register determine the manner in which the
TMS34010 performs DRAM refreshing. The RM bit selects the type of
DRAM-refresh cycle:

[J RM=0 selects RAS-only cycles
{ RM=1 selects CAS-before-RAS cycles

The RR bits determine the interval between DRAM-refresh cycles:

® RR=00, selects refreshing every 32 local clock periods.
[] RR=01, selects refreshing every 64 local clock periods.
(] RR=10 is a reserved code.

(RR=115 inhibits DRAM refreshing.

At reset, internal logic forces the RM bit to O and the RR field to 003. While
the RESET signal to the TMS34010 is active, no DRAM-refresh cycles are
performed. Following reset, the TMS34010 begins to automatically perform
DRAM-refresh cycles at regular intervais.

Both the interval between DRAM-refresh cycles and the addresses output
during the cycles are generated within the REFCNT (DRAM-refresh count)
register. Bits 2-15 of REFCNT form a continuous binary counter. The RINTVL
field occupies bits 2-7, and counts the length of the interval between succes-
sive internal requests for DRAM-refresh cycles. The eight MSBs of REFCNT
form the ROWADR field, containing the row address output to memory during
the DRAM-refresh cycle.

Local Memory Interface Bus - Addressing Mechanisms

GSP

i ey

LAD14[_] ROWADRE = REFCNT4
LAD13[] ROWADRE = REFCNT13
LAD12[_] ROWADR4 = REFCNT12, etc.
LAD11[_| ROWADR3
LAD10[_} ROWADR2
LAD® [] ROWADR1 Y
LAD8 [] ROWADRO
LAD7 [} ROWADR7

LADS [] ROWADR | FABBoCADE provide the
8-bit row address to a
LAD4 [| ROWADR4
LAD3 [| ROWADR3
LAD2 [] ROWADR2 J
LAD1 [| ROWADR1
LADO [} ROWADRO

Figure 11-19. Row Address for DRAM-Refresh Cycle

P
LADS [] ROWADRS [higok of DRAMs of VRAMS.

During a DRAM-refresh cycle, the 8-bit row address in the ROWADR field of
the REFCNT register is output on the LAD pins during the high-to-low tran-
sition of RAS. As shown in Figure 11-19, the eight bits of ROWADR are out-
put on LADO-LAD7. The seven LSBs of ROWADR are also output on
LAD8-LAD14. LAD15 transmits the RF bus status signal, fow during the fall

of RAS.

Assume that LAD2-LADS are used as the 8-bit row address by a bank of
DRAMs, as indicated in Figure 11-19. The address bits output on
LAD2-LLAD9 are the same eight bits output on LADO-LAD7, but in a different
order. During a series of 266 DRAM-refresh cycles, the row addresses output
on LADO-LAD7 and LAD2-LADS contain the same bits. Thus, if the ad-
dresses output on LADO-LAD7 cycle through all 256 row addresses then the
addresses output on LAD2-LADSY also cycle through all 256 row addresses,

but in a different order.

11-27

Local Memory Interface Bus - Addressing Mechanisms

11.6.4 An Example - Memory Organization and Decoding

As an example, consider a memory organization based on the address decod-
ing scheme shown in Figure 11-20. Three logical address bits (4, 21, and 26)
are used as bank-select bits. Logical address bits 5-12 are used as the 8-bit
column address, and bits 13-20 are used as the 8-bit row address. Referring
to Figure 11-18, the row and column addresses are multiplexed out on the
same eight pins, LAD1-LAD8. The total number of address bits used to ad-
dress external memory is 19, for a total address reach of one megabyte. The
remaining address bits output by the TMS34010 are not used for this example.

l,: 32-Bit Logical Address =||
31302082827 2625242322212019 18 17 16 6 4 13121110 0 8 7 6 5 4 3 2 1 0
[[1 [1 I [l]
\ \ / A\ ——r — /s v K S ——
Don't Don't 8-Bit Row 8-Bit Column Bit
Care Ceare Address Address Select
Bank Bank Bank
Select Select Select
Bit 2 Bit 1 Bit 0
(882) B8s1) (8S0)

11-28

Figure 11-20. Address Decode for Example System

Bank select bit 2 (BS2) in Figure 11-20 selects between the display memory
(BS2=0) and the system memory (BS2=1). System memory is a block of
conventional DRAM (such as the TMS4256 and TMS4C1024) used for pro-
gram and data storage. BS2 becomes valid before RAS fails, and thus can be
used to determine whether the row-address strobe is gated to the dispiay
memory or to the system memory. The average power dissipation is reduced
because only one or the other (the display memory or the system memory) is
enabled during a particular memory read or write cycle.

Figure 11-21 shows the structure of the display memory. Its dimensions are
1024 by 1024 at four bits per pixel. Bank select bit 1 (BS1) selects between
the top (BS1=0) and bottom (BS1=1) halves of the display memory. Since
BS1 becomes valid before the fall of RAS, it can be used to gate RAS to either
the upper or lower half of the display memory during a memory read or write
cycle. By transmitting the row address strobe to only half of the display me-
mory, the power dissipation for the cycle is significantly reduced.

Bank select bit 0 (BSO) selects between the even word and odd word of each
pair of adjacent words in the display memory. Each word contains four adja-
cent pixels. Odd and even words are stored in two separate banks of VRAMSs,
and the decode logic gates the column address strobe to the selected bank
only. The row address strobe is gated to both banks (odd and even words).
This increases the power dissipation over that required if only one bank were
active. A compensating benefit of this organization, however, is that it reduces
the rate at which each VRAM must supply serial data to refresh the screen.
During screen refresh, the bank containing the even words and the bank con-
taining the odd words alternately provide data to the video monitor. Alter-
nating between the two banks in this fashion reduces the data bandwidth

Local Memory Interface Bus - Addressing Mechanisms

requirements of each bank to about 10 MHz, which is an eighth of the video
bandwidth.

Even Word Odd Word
(Bs0=0) (BSO=1)

(

\ _Z/[[/

[Y [v |
512 Lines
(BS1 = 0)
612 Lines
B81=1)

—— 1024 Pixels per Line— ¥4 Bits
per Pixel

Figure 11-21. Display Memory Dimensions for the Example

The decode logic must be capable of more than just selecting a particular bank
of the display memory or system memory during a memory read or write cycle.
It must also be capable of enabling all DRAMs and VRAMs during a
DRAM-refresh cycle, and enabling all VRAMs during a screen-refresh (me-
mory-to-register) cycle. This means that the decode logic must distinguish
DRAM-refresh and screen-refresh cycles from memory access cycles, and
during a refresh cycle broadcast the row and column address strobes to all
devices that require them. The timing of the RF and TR bus status bits has
been designed to make these signals convenient for the design of the decode
logic.

During a read or write cycle, the value of BS2, output with the row address,
determines whether RAS is gated to the display memory or to system memory.
During a DRAM-refresh cycle, the decode logic must broadcast the row-
address strobe to all dynamic RAMs (including the VRAMs). The decode
logic must be able to determine prior to the fall of the row address strobe
whether the cycle that is beginning is a DRAM-refresh cycle, or a memory read
or write cycle. This is the reason the TMS34010 outputs the RF bus status
signal prior to the fall of RAS.

The decode logic uses the value of BS1 to determine whether the top or bot-
tom half of the display memory receives an active row-address strobe during
a memory read or write cycle. The same logic must also be capable of broad-
casting RAS to all VRAMs during either a DRAM-refresh cycle or a register-
transfer cycle. The decode logic therefore monitors the state of the
TMS34010°s TR/QE output prior to the fall of RAS. A low level on TR/QE in-
dicates that the cycle just beginning is a register-transfer cycle, and that RAS
should be broadcast.

11-29

Local Memory Interface Bus - Addressing Mechanisms

While the decode logic uses the value of BSO to determine whether the even
or odd word receives a column-address strobe during a read or write cycle
involving the display memory, the same logic must be capable of broadcasting
CAS to all VRAMs during a screen-refresh cycle. Rather than require an ex-
ternal latch to capture the state of the TR/GE during the fall of RAS, the
TMS34010 outputs the same information a second time in the form of the TR
bus status signal, which is valid prior to and during the fall of CAS.

11-30

Section 12

TMS34010 Instruction Set

This section contains the TMS34010 instruction set (in alphabetical order).
Related subjects, such as addressing modes, are presented first.

Section

12.1 Style and Symbol CONVENLIONSccecocerrriereiierriinrcrereeirecesreeessnaes

12.2 Addressing Modes and Operand FOrmatscccccoceecevvecenverccenrnnnne

12.3 Instruction Set Summary Tablecccoceeinicecnee.

12.4 Arithmetic, Logical, and Compare Instructions

12.5 Move Instructions SUMMAryYcccoceeeveenvinniccnnneen.

12.6 Graphics Instructions SUMMATNYcccocieiiiiinicne e

12.7 Program Control and Context Switching Instructions 12-29

12.8 Shift Instructions
12.9 XY INStructionscccoceevveeecvenreieecceee e,
12.10 Alphabetical Reference of InStructionsccccoecvviviiiccieenicienen, 12-34

12-1

Instruction Set - Style and Symbol Conventions

12.1 Style and Symbol Conventions

Table 12-1 defines symbols and abbreviations that are used throughout this
section; the list following the table describes style conventions used in the
instruction set descriptions. Section 12.2 (page 12-4) defines the symbols
that indicate various addressing modes.

Table 12-1. Instruction Set Symbol and Abbreviation Definitions

Symbol Definition Symbol Definition
Rs Source register Rd Destination register
RsX X half of source register RsY Y half of source register
RdX X half of destination register RdY Y half of destination register
An Register n in register file A Bn Register n in register file B
PC Program counter PC’ PC prime, specifies the address of
Rp Pointer register e the Caront Faetretion)
ST Status Register SP Stack pointer (A15 or B15)
(o} Carry bit N Sign bit
\ Overflow bit Z Zero bit
IE Global interrupt enable bit TOS Top of stack
SAddress Source address DAddress Destination address
SOffset Source offset DOffset Destination offset
LSB Least significant bit MSB Most significant bit
MSW Most significant word LSW Least significant word
W 16-bit immediate value IL 32-bit immediate value
K 5-bit constant cec Condition code for a jump
F Optional field select parameter R Register file select, indicates
for MOVE instructions, which register file (A or B) the
F=0 selects FSO/FEO, and operand registers are in. R=0
F=1 selects FS1/FE1 specifies register file A, R=1

specifies register file B

Program listings, coding examples, filenames, and symbol names are shown
in a special font. Some examples and listings use a bold version of
the special font for emphasis. Here is a sample program listing:

0011 00000210 0001 .field 1, 2
0012 00000212 0003 .field 3, 4
0013 00000215 0006 .field 6, 3
0014 00000220 .even

In syntax descriptions, the font indicates which parts of the syntax must
be entered as shown, and which parts act as place holders indicating the type
of information that should be entered. In addition, square brackets identify
optional parameters.

® The instruction and any part of the instruction that should be entered as
shown are in a bold face. Parameters that describe the type of infor-
mation that should be entered are in jtalics. Here is an example of an
instruction syntax:

12-2

Instruction Set - Style and Symbol Conventions

CVXYL Rs, Rd

CVXYL is an instruction that has two parameters, Rs and Rd Rs and Rd
are abbreviations for source register and destination register, when you
use CVXYL, these parameters must be real register names (such as AQO,
B1, etc.). Applying these rules, a valid CVXYL instruction is CVXYL A0,
A3.

Another example of an instruction syntax is:
PIXBLT B,XY

In this case, B and XY do not specify values or data; they specify the
type of PIXBLT instruction, and the instruction should be entered as
shown: PIXBLT B,XY.

(] Square brackets ([and]) identify an optional parameter. Here's an
example of an instruction that has an optional parameter:

CMPI /W, Rd [, W]

The CMPI instruction has three parameters. The first two parameters,
/W and Rd, indicate a 16-bit value and a destination register; these pa-
rameters are required. The third parameter, W, is optional. As this syntax
shows, if you use the optional third parameter, you must precede it with
a comma.

Each instruction contains an instruction execution field that describes the
actions that occur during instruction execution. These descriptions the fol-
lowing symbols and conventions:

[] The — symbol means becomes the contents of. For example, Rs = PC
means that the contents of the source register become the contents of
the PC; that is, the contents of the source register are copied into the
PC.

The | | symbols indicate an absolute value.

® The : symbol indicates concatenation. For example, Rd:Rd+7 identifies
the concatenation of two consecutive registers, such as A0 and A1.

Numeric constants such as hexadecimal, octal, and binary numbers are
identified by a letter suffix. Valid suffixes include:

® b or B (binary)
{ q or Q (octal)
L] h or H (hexadecimal)

Decimal constants have no suffix. Note that all constants must start with a
numeral; for example, ABCDh is an illegal constant; OABCDh is the legal form.

12-3

Instruction Set - Addressing Modes

12.2 Addressing Modes and Operand Formats

12.21

12-4

The TMS34010 instruction set supports eight addressing modes. Most in-
structions have register-direct operands or a combination of register-direct and
immediate operands; however, the move and graphics instructions use more
complex combinations of operands. This section discusses the TMS34010
addressing modes, and defines the symbols used in instruction syntax to in-
dicate an addressing mode.

Immediate Values and Constants

An instruction syntax may use one of these symbols to indicate an immediate
source operand:

IW is a 16-bit (short) signed immediate vaiue.
IL is a 32-bit (long) signed immediate value.
K is a b-bit constant.

Instructions that have immediate source operands have register-direct desti-
nation operands. Many instructions that have an immediate value can use ei-
ther a short or a long value.

Figure 12-1 illustrates a MOVI (move immediate) instruction whose first op-
erand is a 32-bit immediate value. The syntax for this MOV is:

MOVI /L, Rd[L]
The instruction in Figure 12-1 is:
MOVI OFCOh, A2, L

Figure 12-1 shows the object code (at address V) in memory and the effect
of the instruction on the CPU registers. The value OFCOh is copied into reg-
ister A2 as a zero-extended 32-bit value. (Note that this is a 2-word in-
struction; the next instruction to be executed is at address N=2.)

Memory CPU Registers
0 31 o
15 e

r— | |A0

| Al
a2

~[09E2h :

MOVI OFCOON, A2,I.{ I |

N+2 next Al4

instruction BO

7 .

SN B14
ST
sP
N PC PC'=N+2

Figu‘re 12-1. An Example of Immediate Addressing

Instruction Set - Addressing Modes

12.2.2 Absolute Addresses

An instruction syntax may use one of these symbols to indicate an absolute
operand:

@SAddress is a source address that contains the source data.
@DAddress is a destination address.

Note that the @ character is entered as part of the operand (this distinguishes
it from an immediate operand).

Figure 12-2 illustrates a MOVB (move byte) instruction that has an absolute
operand (the first parameter is a 32-bit source address). The syntax for this
MOVB is:

MOVB @SAddress, Rd
The instruction in Figure 12-2 is:
MOVB @RoutineA, Al3

Figure 12-2 shows the object code (at address V) in memory and the effect
of the instruction on the CPU registers. @RoutineA is the address of a byte;
this MOVB instruction copies the byte at address Routinea into register A13.
(Note that this is a 3-word instruction; the next instruction to be executed is
at address N=3.)

Memory CPU Registers
31 0
15 ~TTTSG 0 jA0
.--—’/ Ny }
N O07EDh)
MOVB@RoutineA, m{ N+ 1| RoutineA (MSW) 00000 ::i
N+2 RoutineA (LSW) B0
N+3 next N
instruction | :
B14
RoutineA 55h g;
e N PC PC'=N+3
-
e

Figure 12-2. An Example of Absolute Addressing

12-5

Instruction Set - Addressing Modes

12.2.3 Register-Direct Operands

12-6

An instruction syntax may use one of these symbols to indicate a register-
direct operand:

Rs is a source register that contains the source data.
Rd is a destination register that will contain the result.

When both operands of an instruction are register-direct operands, the regis-
ters must be in the same file. (The MOVE Rs,Rd instruction is an exception
to this rule.)

Figure 12-3 illustrates a MOVE (move field) instruction that has two regis-
ter-direct operands. The syntax for this MOVE is:

MOVE Rs, Rd /[F]

The example shows this instruction:

MOVE A0, Bl

Figure 12-3 shows the object code (at address V) in memory and the effect
of the instruction on the CPU registers. Assume that the field size for the move
is 32 bits; the entire contents of register AO are copied into register B1. (Note
that this is a 1-word instruction; the next instruction to be executed is at ad-
dress N=1.)

CPU Registers

31 0
FCOOOCOOhR A0
Memory o I :
LI 3 Al4
! BO
| 000CO0O B1
MOVE A0, 131{ ~|[aEoin :
next l .
N+1 instruction B14
(ST
- SP
N N PC PC'=N+1

Figure 12-3. An Example of Register-Direct Addressing

Instruction Set - Addressing Modes

12.2.4 Register-Indirect Operands

An instruction syntax may use one of these symbols to indicate a register-
indirect operand:

*Rs is a register that contains the address of the source data.
*Rd is a register that contains the destination address.

Note that the * character is entered as part of the operand (this distinguishes
it from a register-direct operand).

Figure 12-4 illustrates a MOVE (move field) instruction that has two regis-
ter-indirect operands. The syntax for this MOVE is:

MOVE *Rs, *Rd
The example shows this instruction:
MOVE *A4, *A3

Figure 12-4 shows the object code (at address NV) in memory and the effect
of the instruction on the destination address. The contents of register A4
specify the address of data to be moved; the contents of register A3 specify
the destination address. Assume that the field size for the move is 16 bits; the
16 bits of data at *A4 is moved to the location at *A3.. (Note that this is a
1-word instruction; the next instruction to be executed is at address N=1.)

Memory

-0
15 /// \\
r= a1 CPU Registers o
MOVE A4, *A3 { N[8883h
next Ao
N+1 instruction
L——\\ | 0000A000h _|A3
r“\\~,l 0000CO080h |Aa
| N | i
|
| Al4
BO
0000A000h 1111h

B14
0000C080kh m.ln—— ST

{ Pl SP
\N._’ N PC PC'=N+1

L

Figure 12-4. An Example of Register-Indirect Addressing

12-7

Instruction Set - Addressing Modes

12.2.5 Register-Indirect with Offset

12-8

An instruction syntax may use one of these symbols to indicate a register-
indirect operand that uses a signed offset:

*Rs(offset) is a source address formed by adding an offset to the contents
of the source register.

*Rd(offset) is a destination address formed by adding an offset to the
contents of the destination register.

The offset is only used to form an address — the contents of the register are
not affected. Note that the * character is entered as part of the operand. If
both operands use offsets, the syntax may list the operands as *Rs(SOffset)
or *Rd(DOffset).

Figure 12-5 illustrates a MOVE (move field) instruction; the first operand of
this instruction is a register-direct operand; the second operand is a register-
indirect operand with an offset. The syntax for this MOVE is:

MOVE Rs, *Rd(offset) [, F]
The example shows this instruction:
MOVE B5, *B7(32)

Figure 12-5 shows the object code (at address V) in memory and the effect
of the instruction on the destination location. The destination address is spe-
cified by adding the offset (32 bits, which is equivalent to 2 words) to the
contents of register B7; this yields a destination location of 05020h. Assume
that the field size for the move is 16 bits; the 16 LSBs in register B5 are copied
into the destination location. (Note that this is a 2-word instruction; the next
instruction to be executed is at address N=2.)

Memory

0
5 _~ \

ST a1 CPU Registers o
MOVE B5,*B7(32),1 { N+’;’ S 20
next .
N+2]| . . :
instruction A1a
TS BO
- h
r \\\
N s .
1234ABCDhNh B85
B6
00005000h 00005000h B?
+20h .
B14
00005020h ST
! -~ -l sP)
\\a, N PC PC'=N+2

Figure 12-5. An Example of Register-indirect with Offset
Addressing

Instruction Set - Addressing Modes

12.2.6 Register-Indirect with Postincrement

An instruction syntax may use one of these symbols to indicate a register-
indirect operand that is postincremented:

*Rs+ is a register that contains the address of the source data.
*Rd+ is a register that contains the destination address.

After the operation is performed, the contents of the specified source or des-
tination register are incremented by the field size used for the operation.

Note that the * and + characters are entered as part of the operand.

Figure 12-6 illustrates a MOVE (move field) instruction; both the source and
the destination operands are postincremented register-indirect operands. The
syntax for this MOVE is:

MOVE *Rs+, *Rd+ [, F]
The example shows this instruction:
MOVE *B4+, *Bl4+

Figure 12-6 shows the object code (at address V) in memory and the effect
of the instruction on the destination location and the CPU registers. The
contents of register B4 are the address of the source data; the contents of re-
gister B14 specify the destination address. Assume that the field size for the
move is 16 bits; the 16 bits of data at the source address are copied into the
destination location. After the move, both registers are incremented by 16 bits
(1 word). (Note that this is a 1-word instruction; the next instruction to be
executed is at address N=1.)

Memory o
-
’ CPU Regist
15_’/ \ 31 gisters o
(R
MOVE XB4 + ,%B14 + { ~|_989ER A0
next .
N+11 instruction A4
B0
e— .
F=~a_ TR TI ERL) ©0001030h
_ pE . After Move
00001020h| ABCDh 2 ARLE
sp
N PC PC’'=N+1
0000200 h
i Pt
\\f,

Figure 12-6. An Example of Register-Indirect with Postincrement
Addressing

12-9

Instruction Set - Addressing Modes

12.2.7 Register-indirect with Predecrement

MOVE A4,*A3 < N A083h

12-10

B14
00005150h MH ST
{ sP

An instruction syntax may use one of these symbols to indicate a register-
indirect operand that is predecremented.

Before the operation is performed, the contents of the specified source or
destination register are decremented by the field size used for the operation.

*.Rs the decremented register contents are the address of the source data.
*.Rd the decremented register contents specify the destination address.

Note that the * and - characters are entered as part of the operand.

Figure 12-7 illustrates a MOVE (move field) instruction; the source operand
is a register-direct operand the the destination operand is a predecremented
register-indirect operand. The syntax for this MOVE is:

MOVE Rs, *-Rd [FJ]
The example shows this instruction:
MOVE A4, *-A3

Figure 12-7 shows the object code (at address V) in memory and the effect
of the instruction on the destination location and the CPU registers. Assume
that the field size for the move is 16 bits. Register A4 contains the source data.
The contents of register A3, minus the field size (16 bits, or 1 word) form the
destination address - 5150h. The 16 LSBs in A4 are copied to address 5150h.
(Note that this is a 1-word instruction; the next instruction to be executed is
at address N=1.)

Memory
e .
15__, \ 31 CPU Registers o
|] A0
next { -
N+ 1] insoution | A3 000051600] -10n 0000 0 A3
Before Move ABCD2222h A4
-~ Al4
o .

\
1 ~/|

/’
AN N PC PC'=N+1

Figure 12-7. An Example of Register-Indirect with Predecrement
Addressing

Instruction Set - Addressing Modes

12.2.8 Register-Indirect in XY Mode

An instruction syntax may use one of these symbols to indicate that the a re-
gister operands contains an XY address.

*Rs.XY is a register that contains the XY address of the source data.
*Rd.XY is a register that contains the XY destination address.

Note that the * and .XY characters are entered as part of the operand. Here's
an example that uses an indirect-XY destination operand:

PIXT A0, *A6.XY

This instruction moves the contents of register AO into the XY address speci-
fied by the contents of register A6.

12-11

Instruction Set - Summary Table

12.3 Instruction Set Summary Table

Arithmetic, Logical, and Compare Instructions

Decrement register

Machi 16-Bit d
Syntax and Description Words sat:t:;e MSB 6-Bit Opcode LSB

ABS Rd 1 1,4 0000 0011 100R DDDD
Store absolute value

ADD ARs, Rd 1 1.4 0100 000S SSSR DDDD
Add registers

ADDC Rs, Rd 1 1.4 0100 001S SSSR DDDD
Add registers with carry

ADDI /W, Rd 2 2,8 0000 1011 OOOR DDDD
Add immediate (16 bits)

ADDI1 /L, Rd 3 3,12 |0000 1011 O01R DDDD
Add immediate (32 bits)

ADDK K, Rd 1 1.4 0001 O00KK KKKR DDDD
Add constant (5 bits)

ADDXY Rs, Rd 1 1,4 1110 000S SSSR DDDD
Add registers in XY mode

AND Rs, Rd 1 1.4 0101 000S SSSR DDDD
AND registers

ANDI /L, Rd 3 3,12 10000 1011 100R DDDD
AND immediate (32 bits)

ANDN Rs, Rd 1 1,4 0101 001S SSSR DDDD
AND register with complement

ANDNI /L, Rd 3 3,12 |0000 1011 100R DDDD
AND not immediate (32 bits)

BTST K, Rd 1 1.4 0001 11KK KKKR DDDD
Test register bit, constant

BTST Rs, Rd 1 2,5 0100 101S SSSR DDDD
Test register bit, register

CLR Rd 1 1.4 0101 011D DDDR DDDD
Clear register

CLRC 1 1.4 0000 0011 0010 000O
Clear carry

CMP Rs, Rd 1 1,4 0100 100S SSSR DDDD
Compare registers

CMPI /W, Rd 2 2,8 0000 1011 O10R DDDD
Compare immediate (16 bits)

CMPI /L, Rd 3 3,12 10000 1011 011R DDDD
Compare immediate (32 bits)

CMPXY As, Rd 1 3,6 1110 010S SSSR DDDD
Compare X and Y halves of registers

DEC Rd 1 1,4 0001 0100 0O0O1R DDDD

12-12

Instruction Set - Summary Table

Arithmetic, Logical, and Compare Instructions (Continued)
Machi 16-Bi d
Syntax and Description Words si‘;t;:e MSB 6-Bit Opcode LSB

DIVS Rs, Rd 1 40,43 , 10101 100S SSSR DDDD
Divide registers signed 39424

DIVU Rs, Rd 1 37,40 0101 101S SSSR DDDD
Divide registers unsigned

LMO ARs, Rd 1 1.4 0110 101S SSSR DDDD
Leftmost one

MODS Rs, Rd 1 40,43 |0110 110S SSSR DDDD
Modulus signed

MODU Rs, Rd 1 3538 |0110 111S SSSR DDDD
Modulus unsigned

MPYS Rs, Rd 1 20,23 {0101 110S SSSR DDDD
Multiply registers (signed)

MPYU Rs, Rd 1 21,24 0101 111S SSSR DDDD
Multiply registers (unsigned)

NEG Rd 1 1.4 0000 0011 101R DDDD
Negate register

NEGB Rd 1 1.4 0000 0011 110R DDDD
Negate register with borrow

NOT Rd 1 1,4 0000 0011 111R DDDD
Complement register

OR Rs, Rd 1 1,4 0101 010S SSSR DDDD
OR registers

ORI /L, Rd 3 3,12 |0000 1011 101R DDDD
OR immediate (32 bits)

SETC 1 1,4 0000 1101 1110 0000
Set carry

SEXT Rd, F 1 3.6 0000 O1F1 OOOR DDDD
Sign extend to long

SUB Rs, Rd 1 1.4 0100 010S SSSR DDDD
Subtract registers

SUBB Rs, Rd 1 1,4 0100 011S SSSR DDDD
Subtract registers with borrow

SUBI /W, Rd 2 2,8 0000 1011 111R DDDD
Subtract immediate (16 bits)

SUBI /L, Rd 3 3,12 |0000 1101 O0OR DDDD
Subtract immediate (32 bits)

SUBK K, Rd 1 1.4 0001 01KK KKKR DDDD
Subtract constant (5 bits)

SUBXY Rs, Rd 1 1.4 1110 001S SSSR DDDD
Subtract registers in XY mode

XOR Rs, Rd 1 1.4 0101 011S SSSR DDDD
Exclusive OR registers

XORI /L, Rd 3 3,12 0000 1011 110D DDDD
Exclusive OR immediate value (32 bits)

ZEXT Rd, F 1 1,4 0000 O01Ft OO1R DDDD
Zero extend to fong

A Rd even/Rd odd

12-13

Instruction Set - Summary Table

Move Instructions
Syntax and Description Words Néa;t;it\;r;e MSB 16-Bit Opcode LSB

MMFM RAs /[, List] 2 t 0000 1001 101R DDDD
Move multiple registers from memory

MMTM Rs [, List] 2 t 0000 1001 100R DDDD
Move multiple registers to memory

MOVB Rs, *Rd 1 w 1000 110S SSSR DDDD
Move byte, register to indirect

MOVB *Rs, Rd 1 w 1000 111S SSSR DDDD
Move byte, indirect to register

MOVB *Rs, *Rd . 1 A 1001 110S SSSR DDDD
Move byte, indirect to indirect

MOVB Rs, *Rd(offset) 2 w 1010 110S SSSR DDDD
Move byte, register to indirect with offset

MOVB *Rs(offset), Rd 2 T 1010 111S SSSR DDDD
Move byte, indirect with offset to register

MOVB *Rs(SOffset), * Rd(DOffset) 3 w 1011 110S SSSR DDDD
Move byte, indirect with offset to
indirect with offset

MOVB Rs, @DAddress 3 T 0000 0101 111R SSSS
Move byte, register to absolute

MOVB @SAddress, Rd 3 T 0000 0111 111R DDDD
Move byte, absolute to register

MOVB @SAddress, @DAddress 5 w 0000 0011 0100 0000
Move byte, absolute to absolute

MOVE Rs, Rd 1 1.4 0100 11MS SSSR DDDD
Move register to register

MOVE Rs, *Rd [, F] 1 T 1000 OOFS SSSR DDDD
Move field, register to indirect

MOVE Rs, -*Rd [, F] 1 il 1010 OOFS SSSR DDDD
Move field, register to indirect (predecrement)

MOVE Rs, *Rd+ [, F] 1 w 1001 OOFS SSSR DDDD
Move field, register to indirect (postincrement)

MOVE *Rs, Rd [, F] 1 i) 1000 01FS SSSR DDDD
Move fieid, indirect to register

MOVE -*Rs, Rd [, F] 1 T 1010 O1FS SSSR DDDD
Move field, indirect (predecrement) to register

MOVE *Rs+, Rd [, F] 1 w 1001 O1FS SSSR DDDD
Move field, indirect (postincrement) to register

t See instruction
T See Section 13.2, MOVE and MOVB Instructions Timing

12-14

Instruction Set - Summary Table

Move Instructions (Continued)
Machi 16-Bit d
Syntax and Description Words Sigt:;e MSB 6-Bit Opcode LSB

MOVE *Rs, *Rd [, F] 1 T 1000 10FS SSSR DDDD
Move field, indirect to indirect

MOVE -*Rs, -*Rd [, F] 1 bl 1010 10FS SSSR DDDD
Move field, indirect (predecrement) to
indirect (predecrement)

MOVE *Rs+, *Rd+ [, F] 1 w 1001 10FS SSSR DDDD
Move field, indirect (postincrement) to
indirect (postincrement)

MOVE Rs, *Rd(offset) [, F] 2 T 1011 QOOFS SSSR DDDD
Move field, register to indirect with offset

MOVE * Rs(offset), Rd [, F] 2 T 1011 01FS SSSR DDDD

Move field, indirect with offset to register

MOVE *Rs(offset), *Rd+ [, F] 2 1) 1101 OOFS SSSR DDDD
Move field, indirect with offset to
indirect (postincrement)

MOVE * Rs(SOffset), *Rd(DOffset) [, F] 3 A1) 1011 10FS SSSR DDDD
Move field, indirect with offset to
indirect with offset

MOVE Rs, @DAddress [, F] 3 w 0000 O1F1 1O00R SSSS
Move field, register to absolute

MOVE @SAddress, Rd [, F] 3 bl 0000 01F1 101R DDDD
Move field, absolute to register

MOVE @SAddress, *Rd+ [, F] 3 w 1101 01FO OOOR DDDD
Move field, absolute to indirect (postincrement

MOVE @SAddress, @DAddress [, F] 5 1) 0000 O01F1 1100 0000
Move field, absolute to absolute

MOVI /W, Rd 2 2,8 0000 1001 110R DDDD
Move immediate (16 bits)

MOVI /L, Rd 3 3,12 0000 1001 111R DDDD
Move immediate (32 bits)

MOVK K, Rd 1 1.4 0001 10KK KKKR DDDD
Move constant (5 bits)

MOVX Rs, Rd 1 1.4 1110 110S SSSR DDDD
Move X half of register

MOVY Rs, Rd 1 1.4 1110 111S SSSR DDDD
Move Y half of register

T See instruction

T See Section 13.2, MOVE and MOVB Instructions Timing

12-15

Instruction Set - Summary Table

Graphics Instructions

Pixel transfer, indirect XY to indirect XY

Machi 16-Bit d
Syntax and Description Words szgtége MSB 't Opcode LSB

CPW Rs, Rd 1 1.4 1110 011S SSSR DDDD
Compare point to window

CVXYL Rs, Rd 1 3.6 1110 100S SSSR DDDD
Convert XY address to linear address

DRAV Rs, Rd 1 t 1111 011S SSSR DDDD
Draw and advance

FILL L 1 ¥ 0000 1111 1100 0000
Fill array with processed pixels, linear

FILL XY 1 t 0000 1111 1110 0000
Fill array with processed pixeis, XY

LINE [0, 1] 1 t 1101 1111 2001 1010
Line draw

PIXBLT B, L 1 i 0000 1111 1000 0000
Pixel block transfer, binary to linear

PIXBLT B, XY) 1 1 0000 1111 1010 0000
Pixel block transfer and expand, binary to XY

PIXBLT L, L 1 § 0000 1111 0000 0000
Pixel block transfer, linear to linear

PIXBLT L, XY 1 § 0000 1111 0010 0000
Pixel block transfer, linear to XY

PIXBLT XY, L 1 § 0000 1111 0100 0000
Pixel block transfer, XY to linear -

PIXBLT XY, XY 1 § 0000 1111 0110 0000
Pixel block transfer, XY to XY

PIXT Rs, *Rd 1 T 1111 100S SSSR DDDD
Pixel transfer, register to indirect

PIXT Rs, *Rd.XY 1 t 1111 000S SSSR DDDD
Pixe! transfer, register to indirect XY

PIXT *Rs, Rd 1 T 1111 101S SSSR DDDD
Pixel transfer, indirect to register

PIXT *Rs, *Rd 1 t 1111 110S SSSR DDDD
Pixel transfer, indirect to indirect

PIXT *Rs.XY, Rd 1 t 1111 001S SSSR DDDD
Pixel transfer, indirect XY to register

PIXT *Rs.XY, *Rd.XY 1 t 1111 010S SSSR DDDD

T See instruction
t See Section 13.3, FILL Instructions Timing

11 See Section 13.5, PIXBLT Expand Instructions Timing

§ See Section 13.4, PIXBLT Instructions Timing

12-16

Instruction Set - Summary Table

Program Control and Context Switching Instructions
hi 16-Bi d
Syntax and Description Words Msz:gt:s\e MSB it Opcode LSB

CALL Rs 1 3+(3).9 0000 1001 OO1R DDDD
Call subroutine indirect 3+(9),159

CALLA Address 3 4+(2)15_10000 1101 0101 1111
Call subroutine address 4+(8),21e

CALLR Address 2 3+(2),11_J0000 1101 0011 1111
Call subroutine relative 3+(8).17°

DINT 1 3,6 0000 0011 0110 0000
Disable interrupts

EINT 1 3,6 0000 1101 0110 0000
Enable interrupts

EMU 1 6,9 0000 0001 0000 00O0O
Initiate emulation

EXGF Rd, F 1 1,4 1101 01F1 OOOR DDDD
Exchange field size

EXGPC Rd 1 2,5 0000 0001 001R DDDD
Exchange program counter with register

GETPC Rd 1 1.4 0000 0001 010R DDDD
Get program counter into register

GETST Rd 1 1.4 0000 0001 100R DDDD
Get status register into register

NOP 1 1.4 0000 0011 0000 0000
No operation

POPST 1 8,11 10000 0001 1100 0000
Pop status register from stack 101 30

PUSHST 1 2+(3).8 0000 0001 1110 0000
Push status register onto stack 2+(8)1 3@

PUTST Rs 1 3,6 0000 000t 101R DDDD
Copy register into status

RETI 1 11,14_|0000 1001 0100 0000
Return from interrupt 151 g®

RETS /NJ 1 710 _|10000 1001 011N NNNN
Return from subroutine 9,129

REV Rd 1 1.4 0000 0000 OO1R DDDD
Find TMS34010 revision level

SETF FS, FE, F 1 1.4 t 0000 O1F1 O1FS SSSS
Set field parameters 2,6

TRAP N 1 16,19 {0000 1001 OOON NNNN
Software interrupt 30,339

t See instruction

© First values for SP aligned, second values for SP nonaligned

12-17

Instruction Set - Summary Table

Jump Instructions

Shift right logical, register

Machi -Bi
Syntax and Description Words satta:t:;e MSB 16-Bit Opcode LSB

DSJ Rd, Address 2 3.9 0000 1101 100R DDDD
Decrement register and skip jump 28 N

DSJEQ Rd, Address 2 3.9 0000 1101 101R DDDD
Conditionally decrement register and 28 N
skip jump

DSJNE Rd, Address 2 3.9 0000 1101 110R DDDD
Conditionally decrement register and 281
skip jump

DSJS Rd, Address ! 1 2,5 0011 1Dxx xxxR DDDD
Decrement register and skip jump short 36 N

JAcc Address 3 3,6 1100 code 1000 0000
Jump absolute conditional 47 N

JRcc Address 2 3.6 1100 code 0000 0000
Jump relative conditional 14 1

JRcc Address 1 2,56 1100 code xxxx XXXX
Jump relative conditional short 25 M

JUMP As 1 2,5 0000 0001 011R DDDD
Jump indirect

Shift Instructions
i 16-Bi
Syntax and Description Words l\/lsa:gtt):;e MSB it Opcode LSB

RL K, Rd 1 1.4 0011 00KK KKKR DDDD
Rotate left, constant

RL Rs, Rd 1 1.4 0110 100S SSSR DDDD
Rotate left, register

SLA K, Rd 1 36 |0010 O0KK KKKR DDDD
Shift left arithmetic, constant

SLA Rs, Rd 1 3.6 0110 000S SSSR DDDD
Shift left arithmetic, register

SLL K, Rd 1 14 0010 01KK KKKR DDDD
Shift left logical, constant

SLL Rs, Rd 1 1.4 0110 001S SSSR DDDD
Shift left logical, register

SRA K, Rd 1 1.4 0010 10KK KKKR DDDD
Shift right arithmetic, constant

SRA Rs, Rd 1 14 0110 010S SSSR DDDD
Shift right arithmetic, register

SRL K, Rd 1 14 0010 11KK KKKR DDDD
Shift right logical, constant

SRL ARs, Rd 1 1.4 0110 011S SSSR DDDD

M First values for jump, second values for no jump

12-18

Instruction Set - Arithmetic, Logical, and Compare Instructions

12.4 Arithmetic, Logical, and Compare Instructions

The TMS34010 supports a full range of arithmetic, logical, and compare in-
structions. Most of these instructions use register-direct operands; some use
a combination of immediate and register-direct operands. Some instructions
have several versions; each uses a different operand format. For example, the

ADD instruction has several versions:

(] The ADD instruction uses register-direct operands for both the source

and destination operands.

® The ADDI instruction uses an immediate source with a destination reg-

ister.

® The ADDK instruction uses a 5-bit constant as the source operand with

a destination register.

® The ADDXY instruction is similar to the ADD instruction - both oper-
ands are register-direct operands — however, the registers contain XY

values.

Some instructions that have immediate values as source operands (such as the
ADDI instruction) have two forms: a short form and a long form. In the short
form, the source operand is a 76-bjt immediate value and the instruction oc-
cupies two words. In the long form, the source operand is a 32-bit inmediate
value and the instruction occupies three words. Each form of the instruction
has an optional third operand: W for short and L for long. If you don't use the
W or L operand, the assembler chooses the short or the long form, depending
on the size of the source operand. Using W or L forces the assembler to use
the short or long form, respectively. If you use W and the source value is
greater than 16 bits, the assembler discards all but the 16 LSBs and issues a
warning message. |f you use L and the source value is less than 32 bits, the

assembler sign-extends the value to 32 bits.

Some instructions that use immediate operands have only one version. In this

case, the operand is long (32-bits).

Note:

Rs, Rd instruction is an exception to this rule.)

When an instruction’s source and destination operands are both regis-
ter-direct operands, the registers must be in the same file. (The MOVE

12-19

Instruction Set - Move Instructions

12.5 Move Instructions Summary

The TMS34010 supports a variety of move instructions, allowing you to move
immediate values into registers, move data between registers, and move data
between registers and memory. Table 12-2 summarizes the various types of
move instructions.

Table 12-2. Summary of Move Instructions

Move Type Mnemonic Description
Register MOVE Move register to register
Constant MOVK Move constant (5 bits)
MOVI Move immediate (16 bits)
MOVI Move immediate (32 bits)
XY MOVX Move 16 LSBs of register (X half)
MOVY Move 16 MSBs of register (Y half)
Multiple register MMFM Move multiple registers from memory
MMTM Move multiple registers to memory
Byte MOVB Move byte (8 bits, 9 addressing modes)
Field MOVE Move field to/from memory/register
(15 addressing modes)

12.5.1 Register-to-Register Moves

The MOVE Rs,Rd instruction is a register-to-register move; it moves a full 32
bits of data between any two general-purpose registers. This is the only
MOVE instruction that allows you to move data between register files A and
B.

12.5.2 Value-to-Register Moves

The MOVI and MOVK instructions move immediate values into registers.
MOVK moves a zero-extended value into a register; the value must be in the
range of 1 to 32. The MOVI instruction has two forms; it can move a 16-bit
or a 32-bit immediate value.

12.56.3 XY Moves

The MOVX and MOVY instructions move values into the 16 LSBs or 16
MSBs, respectively, of a register.

12-20

Instruction Set - Move Instructions

12.5.4 Muitiple-Register Moves

The MMTM and MMFM instructions use register-direct operands. MMTM
allows you to save several register values in memory; MMFM allows you to
retrieve register values from memory. Both instructions have two types of
operands:

® The Rp operand is a register pointer. For the MMTM instruction, Rp
contains the memory address where MMTM stores the register values.
For the MMFM instruction, Rp contains the memory address from which
MMFM loads the stored register values.

® The register list operand is an optional list of registers. It specifies which
registers are stored or retrieved, and also indicates the storing or retrieval
order.

Note that Rp and all the registers in the list must be in the same register file.

12.56.5 Byte Moves

The MOVB instruction is a special form of the MOVE instruction; when you
use MOVB, the field size is restricted to 8 bits. MOVB supports nine combi-
nations of operand formats. There are three basic combinations:

{ Register to memory (requires a field insertion),
{ Memory to register (requires a field extraction), and
° Memory to memory (requires both field insertion and extraction).

Note that the MOVB instruction does not move data between registers.

The MOVB instruction allows a byte to begin on any bit boundary in memory.
The byte’'s memory address points to the LSB of the byte. When a byte is
moved into a register, the byte’s LSB coincides with the register’'s LSB; the
byte is sign-extended into the 24 MSBs of the register.

Table 12-3 lists the valid combinations of operand formats for the MOVB in-
struction.

Table 12-3. Summary of Operand Formats for the MOVB
Instruction

Destination
Source Rd *Rd * Rd(DOffset] @DAddress
Rs v N J
*Rs vV v
* Rs(SOffset) J v
@SAddress || J

Sequences of byte moves are more efficient if the byte addresses are aligned
on even 8-bit boundaries. Twice as many memory cycles are required to ac-
cess a byte that straddles a word boundary.

12-21

Instruction Set - Move Instructions

12.5.6 Field Moves

The MOVE instruction supports eighteen combinations of operand formats.
There are four basic combinations:

® Register to register,
® Register to memory,
® Memory to register, and
[] Memory to memory.

The MOVE instruction moves a field. A field is a configurable data structure
that is identified by its starting address and its length. Field lengths can range
from 1 to 32 bits. A field’s memory address points to the LSB of the field; the
field occupies contiguous bits. A field in a register is right-justified within the
register; the field’s LSB coincides with the register’'s LSB.

Note that all forms of the MOVE instruction have an optional F parameter.
(MOVE ARs,Rd is an exception to this; it doesn’t have an F parameter because
it always moves 32 bits.) F selects the field size and field extension for the
MOVE:

[] If F=0, FSO and FEO determine the field size and extension.

[] If F=1, FS1 and FE1 determine the field size and extension.

If you don’t specify O or 1, O is used as the default. The selected field size
determines the size of the field that is moved. A moved field is either sign-
extended or zero-extended, depending on the value of the appropriate field
extension bit. You can use the SETF instruction to set the field size and ex-
tension.

Table 12-4 summarizes the valid combinations of operand formats for the
MOVE instruction.

Table 12-4. Summary of Operand Formats for the MOVE Instruction

Destination
Source Rd *Rd *Rd+ -*Rd [*Rd(DOffset) @DAddress
Rs YV v Y N N N
*Rs v v
*Rs+ N N
-*Rs J J
*Rs(SOffset)] \/ J J
@SAddress | J 7

12-22

Instruction Set - Move Instructions

72.5.6.1 Register-to-Memory Field Moves

Figure 12-8 illustrates the register-to-memory move operation. In this type
of move, the source register contains the right-justified field data (width is
specified by the field size). The destination location is the bit position pointed
to by the destination memory address. The address consists of a portion de-
fining the starting word in which the field is to be written and an offset into
that word, the bit address. Depending on the bit address within this word and
the field size, the destination location may extend into two or more words.

Move from Register to Memory

31 43 0
Destination Memory Address l Word Address l Addrl ess l
31 0

Source Register N\\\\\\\\\\\\\\\\\\\\\\\\\\\\&\ Fleld Data

{¢—Fleld Size —»

Word Address + 16 \ Word Address -\
9

016

Destination Memory Location m Fleld Data &\\\\\\\\\\\\\\\\\\\

l¢— Fleld Size —pj¢———Bit Address ——»

Fleld Size = 1 to 32 bits

Figure 12-8. Register-to-Memory Moves

12-23

Instruction Set - Move Instructions

12.5.6.2 Memory-to-Register Field Moves

12-24

Figure 12-9 shows the memory-to-register move operation. The source me-
mory location is the bit position pointed to by the source address. The address
consists of a portion defining the starting word in which the field is to be
written and an offset into that word, the bit address. Depending on the bit
address within this word and the field size, the source location may extend
into two or more words. After the move, the destination register LSBs contain
the right-justified field data (width is specified by the field size). The MSBs
of the register contain either all 1s or all Os.

Move from Memory to Register

31 43 0
Source Memory Address | Word Address | Address l

. Word Address + 16}15 Word Address ﬂo
Source Memory Location N\\\\\\\\\\\‘\\ Fleld ' Data &\\\\\\\\\\\‘\\\\

l4— Fleld Size —»{¢———Bit Address —

31 0

Destination Register, FEX0 §0000........... 000| FeldData |
Sign Bit

31 1 0

Destnation Reglster, FE=1 fe Sign Bit o FeldData |

Fleld size = 1 to 32 bits

Figure 12-9. Memory-to-Register Moves

Instruction Set - Move Instructions

12.5.6.3 Memory-to-Memory Field Moves

Figure 12-10 shows a memory-to-memory field move operation. The source
memory location is the bit position pointed to by the source address. The
destination location is the bit position pointed to by the destination memory
address. Depending on the bit addresses within the respective words and the
field size, either the source location or destination locations may extend into
two or more words. After the move, the destination location contains the field
data from the source memory location.

Move from Memory to Memory

31 4 3 0

Source Memory Address | Word Address A I Ad?dr} ” I
Word Address A+16 Word Address A \

16 0]15 0

source Memory Loczion AMAzMAMMKY A tets NN

Source
l¢— Fleld SIze—n——B't Address "

31 43]
Destination Memory Address I Word Addros% B l Aad:t; l
Word Address B+16 Word Address B \
15 }15 0
Destination Memory Location Fleld Data

Destination _______
i¢— Fleld Size —pj¢—— Bit Address

Fleld size = 1to 32 bits

Figure 12-10. Memory-to-Memory Moves

12-25

Instruction Set - Graphics Instructions

12.6 Graphics Instructions Summary

12.6.1

12.6.2

12.6.3

12.6.4

12.6.5

12-26

The TMS34010 instruction set supports several fundamental graphics drawing
operations.

Comparing a Point to a Window

The CPW instruction compares a point to the window limits defined by the
WSTART and WEND registers. The source operand Rs contains an XY ad-
dress. After the compare operation is performed, bits 5-8 contain a code that
indicate the point’s location with respect to the window limits. The de-
scription of the CPW instruction shows these point codes.

Converting an XY Address to a Linear Address

The CVXYL instruction converts an XY address to a 32-bit linear address. The
source register contains the XY address; the linear address is put in the desti-
nation register.

Drawing a Pixel and Advancing to the Next Pixel Address

The DRAYV instruction draws the pixel value in the COLOR1 register to the
XY address specified by the destination register. After the pixel is drawn, the
Y half of Rs is added to the Y half of Rd, and the X half of Rs is added to the
X half of Rd.

Draw a Line

The LINE instruction performs the inner loop of Bresenham’s line-drawing
algorithm to draw an arbitrarily oriented, straight line. The optional operand
may be a 0 or a 1; this selects one of two algorithms. The default for this op-
erand is O.

Filling a Pixel Block

The FILL instruction fills a two-dimensional pixel array with the value in the
COLOR1 register. Note that L and XY are not actually operands; they are part
of the instruction mnemonic, identifying the form of the FILL instruction. FILL
L specifies that the array has a linear starting address; FILL XY specifies that
the array has an XY starting address.

Instruction Set - Graphics Instructions

12.6.6 Moving a Single Pixel

The PIXT instruction transfers a pixel from one location to another. PIXT can
transfer a pixel:

® From a register to memory,

® From memory to a register, or

)] From memory to memory.

Table 12-5 summarizes the valid combinations of operand formats for the PIXT
instruction. Note that all addresses are linear unless the operand is suffixed
with .XY.

Table 12-5. Summary of Operand Formats for the PIXT Instruction

Destination Pixel
Source Rd *Rd *Rd. XY
Pixel
Rs \/ \/
*Rs J v
*Rs. XY N N,

12.6.7 Moving a Two-Dimensional Block of Pixels

The PIXBLT instruction moves a two-dimensional block of pixels from one
memory location to another. Note that B, L, and XY are not actually
operands; instead, they identify the source or destination array starting ad-
dresses as binary, linear, or XY addresses. The source and destination ad-
dresses of the arrays are designated by the SADDR and DADDR registers,

respectively.
Table 12-6 summarizes the various combinations of pixel block transfers.

Table 12-6. Summary of Array Types for the PIXBLT Instruction

Destination Array
Source Linear XY
Array
Binary Vv N
Linear v N
XY N N

The graphics instructions use the B-file registers and several 1/0 registers as
implied operands. These registers must be loaded with appropriate values
before the instruction is executed. The TMS34010 obtains information from
these registers during instruction execution. Table 12-7 summarizes the im-
plied operands that are used by the graphics instructions. The 7MS34070
User's Guide contains a complete discussion of these registers and describes
the types of information they should contain.

12-27

Instruction Set - Graphics Instructions

12;6.8 Implied Operands

The graphics instructions require additional information that you supply by
loading appropriate values into specific B registers and 1/O registers. When
these registers are used for this purpose, they are called implied operands.
Section 5 discusses the functions of B registers as implied operands; Section
5 discusses the functions of 1/0 registers as implied operands.

Note that the LINE instruction uses registers B10-B13 as implied operands;
as implied operands, these registers have the following functions:

B10: COUNT register B12: INC2 register
B11: INC1 register B13: PATTRN register

Table 12-7 identifies the implied operands that each graphics instruction uses.

Table 12-7. Implied Operands Used by Graphics Instructions

B File Registers 1/0 Registers
[

. olw clc olclc
s|s|D|lD|F]s oo N|lolo]|pr|P
AlplajeiFliT|w|D|L]L TIN|N|S|M
pjT|{p|{Tls|{A{E|Y|o]lo}|BfB]|B|{B|B|R|V|IV]|I]|A
plc|o|c|E|R{N|D|R|R]T|1T]1]1]1]ols]|D]|z}|Ss
Ri{H|R|H]|T|T|{D|Xx]o|1}o|1}2|3]a|L|P|P|E|K

CPW Rs, Rd XY | Xy
CVXYL Rs, Rd L)L NI
DRAV Rs, Rd Lo Ixy]xy P JIVIY
FILL L L P NN
FILL XY L] P JIVI]Y
LINE [0, 1] L B NININ
PIXBLT B, L L P NIN
PIXBLT B, XY i P JIV]Y
PIXBLT L, L L SIEINN
PIXBLT L. XY Ll VIVIVIY
PIXBLT XY. L Lit JIVIVIY
PIXBLT XY, XY Ll JIVIVIY
PIXT Rs, *Rd N
PIXT Rs, *Rd. XY L] xy|xy ™) JIVIY
PIXT *Rs, Rd : N
PIXT *Rs, *Rd @ vy
PIXT *Rs.XY, Rd ol V V1Y
PIXT *Rs.XY, *Rd.XY L L] x| xy OlVIVIVIY

Changed by instruction execution t Changed as a result of common rectangle func-
v Used; no particular format tion with window hit operation (W=1)
XY Register is in XY format (1) CONTROL bits used: PP, W, T
L Register is in linear format (2) CONTROL bits used: PP, T
P Register is in pixel format (3) CONTROL bits used: PP, W, T, PBH, PBV
pat Register is in pattern format (4) CONTROL bits used: PP, T, PBH, PBV

(5) Used when PBV=1

12-28

Instruction Set - Program Control and Context Switching Instructions

12.7 Program Control and Context Switching Instructions

The TMS34010 supports a variety of instructions that allow you to control
program flow and to save and restore information by letting you:

[] Call and return from subroutines,

® Enable or disable interrupts,

® Set software interrupts,

[] Set, save, or restore status information, and

{ Use jump instructions to redirect program flow.

Most of these instructions use register-direct or absolute operands; however,
several of them have no operands.

12.7.1 Subroutine Calls and Returns
The TMS34010 allows you to call a subroutine in three ways:

[] Indirectly, by loading an address into a register;
® Directly, by using an absolute address; and
o Relatively, by specifying an address that is an offset.

These CALL instructions automatically save status information on the stack.
The RETS (return from subroutine) instruction pops status information off of
the stack and returns control to the program or routine that called the sub-
routine.

12.7.2 Interrupt Handling

The TMS34010’s EINT and DINT instructions allow you to enable or disable
hardware interrupts by providing control of the IE (global interrupt enable)
status bit. The TMS34010 also supports a TRAP instruction that provides you
with control over 32 software interrupts.

12.7.3 Setting, Saving, and Restoring Status Infprmation

Although some instructions automatically save or restore status information,
you will often want explicit control over these functions. The TMS34010
supports several instructions that allow you to save and restore PC and ST
information. The TMS34010 also supports a SETF instruction that allows you
to set field-0/field-1 information in the status register.

12-29

Instruction Set - Program Control and Context Switching Instructions

12.7.4 Jump Instructions

12-30

The TMS34010 supports both conditional and unconditional jumps. The
conditional jumps use absolute operands or a combination of register-direct
and absolute operands.

® There are four DSJ instructions:

- DSJ and DSJS decrement the contents of a register and jump to
the specified address if the new contents of Rd do not equal 0. If
Rd is decremented to O, then execution continues with the next
instruction.

DSJ provides a jump range of -32,768 to +32,767 words; DSJS
provides a jump range of +32 words (excluding 0).

- The operation of DSJEQ and DSJNE depends on the value of the
Z (zero) status bit.

DSJEQ decrements the contents of Rd when Z=1 and jumps to
the specified address if the new contents of Rd do not equal 0. If
Rd is decremented to O, then execution continues with the next
instruction. If Z=0, DSJEQ skips the jump and execution contin-
ues with the next instruction.

DSJNE decrements the contents of Rd when Z=0 and jumps to
the specified address if the new contents of Rd do not equal 0. If
Rd is decremented to O, then execution continues with the next
instruction. |f Z=0, DSJNE skips the jump and execution contin-
ues with the next instruction.

The address specified for the DSJ instructions is relative; the assembler
uses this address automatically to calculate a displacement, and then it
inserts the displacement into the instruction.

[] The JUMP instruction is unconditional. The source register contains
the address for the jump.

® The conditional jump instructions, JAcc and JRcc, use the condition
codes listed Table 12-8.

The JRcc instruction has a long and a short form. The short form sup-
ports a jump range of +127 words (excluding 0). The long form sup-
ports a jump range of +32K words (excluding 0).

The 32-bit address specified for the JAcc instruction is absolute; the assembler
inserts this address into words 2 and 3 of the instruction. The address speci-
fied for the JRcc instructions is relative; the assembler uses this address auto-
matically to calculate a displacement, and then it inserts the displacement into
the instruction. The short form has an 8-bit displacement that is inserted into
bits 0-7 of the opcode; the opcode is 1 word long. The long form has 16-bit
displacement; the opcode is 2 words long, and the displacement occupies the
entire 16 bits of the second word.

Table 12-8 lists the condition codes used with the JRcc and JAcc in-
structions. (To use the codes, replace the cc with the appropriate mnemonic
code; for example, JRUC, JALS, JRYGT, etc.) Before using one of these jump
instructions, use the CMP, CMPI, or CMPXY instruction; the compare in-
structions set the condition codes for the jump by subtracting a source value

~

Instruction Set - Program Control and Context Switching Instructions

from a destination value. The first mnemonics code column in Table 12-8 lists
the codes that can be used for a jump following a CMP or CMPI. The second
mnemonics code column list codes that can be used for a jump following a
CMPXY (codes that are preceded with an X can be used with the result of the
X comparison and codes that are preceded with a Y can be used with the result
of the Y comparison).

Table 12-8. Condition Codes for JRcc and JAcc Instructions

M"&',‘L‘;"'c Result of Compare Status Bits Code

Unconditional | yc - | Unconditional don't care 0000
Compares

Unsigned || LO (C) - Dst lower than Src (o} 0001

Compares LS YLE | Dst lower or same as Src C+2Z 0010

HI [YGT| Dst higher than Src C-7Z 0011

HS (NC)| - Dst higher or same as Src C 1001

EQ (2) - Dst = Src Z 1010

NE (NZ2)| - Dst # Src 4 1011

Signed LT |[XLE| Dst<Src (N-V)+(N-V) 0100

Compares LE - Dst < Src (N-V+(N-V)+Z_ 0110

GT - Dst > Src (N-V-2)+(N-V-2)| 0111

GE XGT| Dst > Src (N-V)+(N-V) 0101

EQ (2) - Dst = Src 4 1010

NE (NZ)| - Dst # Src 4 1011

Compare to Y4 YZ Result = zero Z 0101

Zero NZ YNZ | Result # zero _Z_ 1011

P - Result is positive N-2Z 0001

N XZ Result is negative N 1110

NN XNZ| Result is nonnegative N 1111

General Z YZ Result is zero Z 1010

Arithmetic NZ YNZ| Result is nonzero z 1011

C YN Carry set on result o] 1000

NC YNN]| No carry on result C 1001

B (C) - Borrow set on result c 1000

NB (NC)} - No borrow on result C 1001

vt XN | Overflow on resut) 1100

NVt |XNN| No overflow on result Vv 1101

Note: A mnemonic code in
Also used for window clipping

Logical OR
Logical AND
Logical NOT

le + =+

parentheses is an alternate code for the preceding code.

12-31

Instruction Set - Shift Instructions

12.8 Shift Instructions

The TMS3410 supports several instructions that left-rotate, left-shift, or
right-shift the contents of the destination register. These instructions use re-
gister-direct operands or a combination of register-direct and immediate op-
erands; the shift amount is specified by the value of a 5-bit constant or by the
value specified in the 5 LSBs of a source register. (Note that the SRA Rs, Rd
and SRL Rs, Rd use the 2s compiement value of the 5 LSBs in Rs.)

12-32

The RL instruction left-rotates the contents of the destination register
by. (This rotation is a barrel shift.) The bits shifted out of the MSB are
shifted into the LSB. The C (carry) bit is set to the final value shifted
out of the MSB.

The SLA instruction left shifts the contents of the destination register.
Os are shifted into the LSBs. The MSBs are shifted out through the C
(carry) bit so that the C bit is set to the final value shifted out of the
MSB. If either the N (sign) bit or any of the bits shifted out differ from
the original sign bit, the V (overflow) bit is set.

The SLL instruction left shifts the contents of the destination register.
Os are shifted into the LSBs. The MSBs are shifted out through the C
(carry) bit so that the C bit is set to the final value shifted out of the
MSB. The main difference between SLL and SLA is that SLL does not
check to see if the sign bit changes.

The SRA instruction right shifts the contents of the destination register.
The value of the sign bit is shifted into the MSBs; this sign-extends the
value and preserves the original value of the sign bit. The LSBs are
shifted out through the C (carry) bit so that the C bit is set to the final
value shifted out of the LSB.

The SRL instruction right shifts the contents of the destination register.
Os are shifted into the MSBs, beginning with bit 31. The LSBs are
shifted out through the C (carry) bit so that the C bit is set to the final
value shifted out of the LSB. The main difference between SRL and SRA
is that SRL does not preserve the original value of the sign bit.

Instruction Set - XY Instructions

12.9 XY Instructions

The TMS34010 allows you to use XY addresses. This is useful for specifying
pixel addresses on the screen. Many of the graphics instructions use XY ad-
dressing; the TMS34010 instruction set also supports several other in-
structions that allow you to manipulate XY addresses.

An XY address is a 32-bit address that is divided into two parts. The 16 LSBs
of the address are the X half of the address or register; the 16 MSBs of the
address are the Y half of the address or register. The two parts are treated as
completely separate values; for example, using the ADDXY instruction, the X
half does not propagate into the Y half.

Table 12-9 summarizes the instructions that use XY addresses.

Table 12-9. Summary of XY Instructions

mode

Instruction Description Instruction Description
ADDXY Rs, Rd Add registers in XY PIXBLT B, XY Pixel block transfer
(binary to XY)
CPW Rs, Rd Compare point to window || PIXBLT L, XY Pixel block transfer
(linear to XY)
CMPXY Rs, Rd Compare registers in XY PIXBLT XY, L Pixel block transfer (XY

to linear)

CVXYL As, Rd Convert XY address to PIXBLT XY, XY Pixel block transfer (XY
linear address to XY)
DRAV RAs, Rd Draw and advance PIXT Rs, *Rd. XY Pixel transfer (register to
indirect XY)
FILL XY Fill array with processed [PIXT *Rs.XY, Rd Pixel transfer (indirect XY
pixels to register)
LINE [0, 1] Line draw with XY PIXT *Rs.XY, *Rd.XY | Pixel transfer (indirect XY
addressing to indirect XY)
MOVX Rs, Rd Move X half of Rs to X SUBXY Rs, Rd Subtract registers in XY
half of Rd mode
MOVY Rs, Rd Move Y half of Rsto Y
haif of Rd
® The PIXBLT and FILL instructions in Table 12-9 use XY source and/or
destination addresses.
[] The PIXT instructions in Table 12-9 use the contents of registers as XY
addresses.
[] The LINE instruction draws a line along points that are calculated as XY
addresses.
[The move instructions in Table 12-9 (MOVX and MOVY) move the X
or Y half of a source register into the X or Y half of a destination register.
[] The arithmetic and logical instructions in Table 12-9 (ADDXY, SUBXY,

and CMPXY) add, subtract, or compare the X and Y halves of the regis-
ters separately.

12-33

Instruction Set - Alphabetical Reference

12.10 Alphabetical Reference of Instructions

The remainder of this section is an alphabetical reference of the TMS34010
assembly language instructions. Each instruction discussion begins on a new
page, and contains the following information:

12-34

Syntax: Shows you how to enter an instruction. (Section 12.1, page
12-2, describes the symbols used in instruction syntaxes.)

Exacution: lllustrates the effects of instruction execution on CPU reg-
isters and memory.

Instruction Words: Shows the object code generated by an in-
struction.

Description: Discusses the purpose of the instruction and any other
general information related to the instruction.

Machine States: Lists the instruction cycle timing. Two timings are
listed for each instruction; the first number is the cache-enabled case, the
second number is the cache-disabled case.

Status Bits: Lists the effects of instruction execution on the status bits
(N, C, Z, and V).

Examples: Show the effects of the instruction on memory and registers
using various sets of data and initial conditions.

Several instructions discuss additional topics; for example, the conditional
jump instructions list the conditions codes and mnemonics for various jumps,
and the graphics instructions list the implied operands that they use.

Store Absolute Value

ABS

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

ABS Rd
IRd| - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0o 0o 0o 0o o 1 1 1 0 OJR| Rd |

ABS stores the absolute value of the contents of the destination register
back into the destination register. This is accomplished by:

® Subtracting the contents of the destination register data from O and

® Storing the result back into Rd if status bit N indicates that the result
is positive.

If the result of the subtraction is negative, then the original contents of the
destination register are retained.

1
N Set to the sign of the result of 0 - Rd; typically, N=0 if the original
contents of Rd are negative (unless Rd = 80000000h), 7 otherwise

C Unaffected

Z 1 if the original data is O, 0 otherwise

V 17 if there is an overflow, O otherwise; an overflow occurs if Rd contains
80000000h (80000000h is returned)

Code Before After
A1l NCZV A1

ABS Al 7FFFFFFFh 1x00 7FFFFFFFh
ABS Al FFFFFFFFh 0x00 00000001h
ABS Al 80000000h 1x01 80000000h
ABS Al 80000001h 0x00 JFFFFFFFh
ABS Al 00000001h 1x00 00000001h
ABS Al 00000000h 0x10 00000000h
ABS Al FFFAQO11h 0x00 O005FFEFh

12-35

ADD Add Registers

Syntax ADD RAs, Rd

Execution Rs + Rd —» Rd

Instruction

Words 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
[o 1+ 0 o o o0 o] Rs [R | Rd]

Description ADD adds the contents of the source register to the contents of the desti-
nation register, and stores the result in the destination register.
You can is the ADD instruction with the ADDC instruction to perform
multiple-precision arithmetic.
Rs and Rd must be in the same register file.

Machine

States 1.4

Status Bits N 7 if the result is negative, 0 otherwise
C 1 if there is a carry, 0 otherwise
Z 7 if the result is 0, 0 otherwise
V 7 if there is an overflow, 0 otherwise

Examples Code Before After

Al A0 NCZV A0

ADD Al,A0 FFFFFFFFh FFFFFFFFh 1100 FFFFFFFEh
ADD Al,A0 FFFFFFFFh 00000001h 0110 00000000h
ADD Al,AO FFFFFFFFh 00000002h 0100 00000001h
ADD Al,AO FFFFFFFFh 80000000h 0101 7FFFFFFFh
ADD Al,A0 FFFFFFFFh 80000001h 1100 80000000h
ADD Al,A0 7FFFFFFFh 80000001h 0110 00000000h
ADD Al,AO 7FFFFFFFh 80000000h 1000 FFFFFFFFh
ADD Al1,A0 7FFFFFFFh 00000001h 1001 80000000h
ADD Al,AO 00000002h 00000002h 0000 00000004h

12-36

Add Register with Carry ADDC

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

ADDC ARs, Rd
Rs + Rd + C - Rd

15 14 .13 12 11 10 9 8 7 6 5 4 3 2 1 O
[o 1 0 o o o 1] Rs [R] Rd |

ADDC adds the contents of the source register, the carry bit, and the con-
tents of the destination register, and then stores the result in the destination
register. Note that the status bits are set on the final result.

Rs and Rd must be in the same register file.

1,4
N 7 if the result is negative, 0 otherwise
C 1 if there is a carry, 0 otherwise
Z 1 if the result is 0, O otherwise
V 7 if there is an overflow, 0 otherwise
Code Before . After

[+ A1l A0 NCZV A0
ADDC A1l1l,AO0 1 FFFFFFFFh FFFFFFFFh 1100 FFFFFFFFh
ADDC Al,A0 1 FFFFFFFFh 00000001 h 0100 00000001h
ADDC Al,AO0 1 FFFFFFFFh 00000002h 0100 00000002h
ADDC Al,AO0 1 FFFFFFFFh 80000000h 1100 80000000h
ADDC Al,AO 1 FFFFFFFFh 80000001h 1100 80000001h
ADDC Al,AO0 1 FFFFFFFFh 80000001h 0100 80000001h
ADDC Al,AO0 1 FFFFFFFFh 80000000h 0110 00000000h
ADDC Al,A0 1 TJFFFFFFFh 00000001h 1001 80000001h
ADDC Al,A0 1 00000002h 00000002h 0000 00000005h
ADDC Al,A0 0 FFFFFFFFh FFFFFFFFh 1100 FFFFFFFEh
ADDC Al,AO0 0 FFFFFFFFh 00000001h 0110 00000000h
ADDC A1l,A0 0 FFFFFFFFh 00000002h 0100 00000001h
ADDC Al1l,AO 0 FFFFFFFFh 80000000h 0101 TFFFFFFFh
ADDC Al,2A0 0 FFFFFFFFh 80000001h 1100 80000000h
ADDC Al,AO 0 TFFFFFFFh 80000001h 0110 00000000h
ADDC Al,AO 0 7FFFFFFFh 80000000h 1000 FFFFFFFFh
ADDC Al,AO0 0 7FFFFFFFh 00000001 h 1001 80000000h
ADDC Al,AO 0 00000002h 00000002h 0000 00000004 h

12-37

ADDI Add Immediate - 76 Bits

Syntax ADD! /W, Rd [, W]

Execution IW + Rd =+ Rd

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 0 0 O0]JR] Rd
16-bit value

Description This ADDI instruction adds a sign-extended, 16-bit immediate value to the
contents of the destination register, and stores the result in the destination
register. (The symbol /W in the syntax above represents a 16-bit, sign-
extended immediate value.)
The assembler uses the short (16-bit) add if the immediate value is previ-
ously defined and is in the range -32,768 to 32,767. You can force the
assembler to use the short form by following the register operand with a
\\'H
ADDI IW,Rd4,W
If you use the W parameter and the value is outside the legal range, the
assembler discards all but the 16 LSBs and issues an appropriate warning
message.
You can use the ADDI instruction with the ADDC instruction to perform
multiple-precision arithmetic.

Machine

States 2,8

Status Bits N 7 if the result is negative, 0 otherwise
C 1 if there is a carry, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Examples Code Before After

. A0 NCzZV A0

ADDI 1,A0 FFFFFFFFh 0110 00000000h
ADDI 2,A0 - FFFFFFFFh 0100 00000001h
ADDI 1,30 7FFFFFFFh 1001 80000000h
ADDI 2,A0 00000002h 0000 00000004h
ADDI 32767,A0 00000002h 0000 00008001h
ADDI OFFFF0010h,A0,W FFFFFFFOh 0110 00000000h

12-38

Add Immediate - 32 Bits ADDI

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

ADDY /L,Rd /[, L]
IL+Rd - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6o 0 0 0 1 o0 1 1 0 0 1[RrR] Rd

16 LSBs of IL

16 MSBs of IL

This ADDI instruction adds a 32-bit, signed immediate value to the con-
tents of the destination register, and stores the result in the destination re-
gister. (The symbol /L in the syntax above represents a 32-bit, signed
immediate value.)

The assembler uses the long (32-bit) ADDI if it cannot use the short form.
You can force the assembler to use the long form by following the register
operand with an L:

ADDI IL,R4,L

312

N 7 if the result is negative, 0 otherwise
C 7 if there is a carry, 0 otherwise

Z 1 if the result is 0, 0 otherwise

V 7 if there is an overflow, 0 otherwise

Code Before After

A0 NCZV A0
ADDI OFFFFFFFFh,A0 FFFFFFFFh 1100 FFFFFFFEh
ADDI 80000000h,AQ FFFFFFFFh 0101 7FFFFFFFh
ADDI 80000000h,A0 7FFFFFFFh 1000 FFFFFFFFh
ADDI 32768,A0 7FFFFFFFh 1001 80007FFFh
ADDI 2,A0,L FFFFFFFFh 0100 00000001h

12-39

ADDK Add Constant (5 Bits)
Syntax ADDK K, Rd
Execution K+ Rd - Rd
Instruction
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 0o o 1 o o] K [r] Rd |
Description ADDK adds a 5-bit constant to the contents of the destination register and
stores the result in the destination register. (The symbol K in the syntax
above represents a 5-bit constant.)
The constant is treated as an unsigned number in the range 1-32; if the or-
iginal value of K=32, then K is converted to O in the opcode. The assembler
issues an error if you try to add O to a register.
You can use the ADDK instruction with the ADDC instruction to perform
multiple-precision arithmetic.
Machine
States 1.4
Status Bits N 7 if the result is negative, 0 otherwise
C 7 if there is a carry, 0 otherwise
Z 7 if the result is O, O otherwise
V 7 if there is an overflow, 0 otherwise
Examples Code Before After
A0 NCZV A0
ADDK 1,A0 FFFFFFFFh 0110 00000000h
ADDK 2,A0 FFFFFFFFh 0100 00000001h
ADDK 1,A0 7FFFFFFFh 1001 80000000h
ADDK 1,A0 80000000h 1000 80000001h
ADDK 32,A0 80000000h 1000 80000020h
ADDK 32,A0 00000002h 0000 00000022h

12-40

Add Registers in XY Mode ADDXY

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

ADDXY Rs, Rd

RsX + RdX - RdX
RsY + RdY - RdY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
{1 1 1 o o o o Rs | R | Rd |

ADDXY adds the signed source X value to the signed destination X value,
adds the signed source Y value to the signed destination Y value, and stores
the result in the destination register. The source and destination registers
are treated as if they contained separate X and Y values. Any carry out from
the lower (X) half of the register does not propagate into the upper (Y) half.

If you only want to add the X halves together, then one of the Y values must
be 0 (the method for adding the Y halves is similar).

You can use this instruction to manipulate XY addresses in the reéisfel_f file;
ADDXY is also useful for incremental figure drawing.

Rs and Rd must be in the same register file.

1.4

N 7 if resulting X field is all Os, O otherwise
C The sign bit of the Y half of the result

Z 1Y field is all Os, O otherwise

V The sign bit of the X half of the result

Code Before After

A1 A0 A0 NCzZV
ADDXY Al,A0 00000000h 00000000h 00000000h 1010
ADDXY Al,A0 00000000h 00000001h 00000001h 0010
ADDXY Al,A0 00000000h 00010000h 00010000h 1000
ADDXY Al,A0 00000000h 00010001h 00010001h 0000
ADDXY Al,A0 O00OFFFFh 00000001h 00000000h 1010
ADDXY Al,A0 000QFFFFh 00010001h 00010000h 1000
ADDXY Al,A0 000OFFFFh 00000002h 00000001h 0010
ADDXY Al,A0 O000FFFFh 00010002h 00010001h 0000
ADDXY Al,A0 FFFFO000h 00010000h 00000000h 1010
ADDXY Al,A0 FFFFOOOOh 00010001h 00000001h 0010
ADDXY Al,A0 FFFFO000h 00020000h 00010000h 1000
ADDXY Al,A0 FFFFOO00h 00020001h 00010001h 0000
ADDXY Al,A0 FFFFFFFFh 00010001h 00000000h 1010
ADDXY Al,A0 FFFFFFFFh 00010002h 00000001h 0010
ADDXY Al,A0 FFFFFFFFh 00020001h 00010000h 1000
ADDXY Al,A0 FFFFFFFFh 00020002h 00010001h 0000

12-41

AND AND Registers

Syntax AND Rs, Rd

Execution Rs AND Rd - Rd

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

fo 1+ o 1 o o o Rs [R | Rd |

Description AND bitwise-ANDs the contents of the source register with the contents
of the destination register and stores the result in the destination register.
Rs and Rd must be in the same register file.

Machine
States 1.4

Status Bits N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Examples Code Before After
A1 A0 NCZVv A0
AND Al,A0 FFFFFFFFh FFFFFFFFh xx0x FFFFFFFFh
AND Al,A0 FFFFFFFFh 00000000h xx1x 00000000h
AND Al,A0 00000000h 00000000h xx1x 00000000h
AND Al,A0 AAAAAAAAR 55555555h xx1x 00000000h
AND A1l,A0 AAAAAAAAR AAAAAAAAQ xx0x AAAAAAAAh
AND A1l,A0 556565555h 55555555h xx0x 55555555h
AND Al,A0 55555555h AAAAAAAAR xx1x 00000000h

12-42

AND Immediate (32 Bits) ANDI

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

ANDI /L, Rd
ILAND Rd - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0o 0 0 o0 1 o0 1 1 1 o0 OfR| Rd

1s complement of 16 LSBs of IL

1s complement of 16 MSBs of IL

ANDI bitwise-ANDs the value of a 32-bit immediate value with the con-
tents of the destination register, and stores the result in the destination re-
gister. (The symbol /L in the syntax above represents a 32-bit immediate
value.)

This is an alternate mnemonic for ANDNI| /L,Rd. Note that the assembler
stores the 1s complement of IL in the two extension words.

312

N Unaffected
C Unaffected
Z 1 if the result is 0, O otherwise
V Unaffected

Code Before After
A0 NCZV A0

ANDI OFFFFFFFFh,AQ FFFFFFFFh xx0x FFFFFFFFh
ANDI OFFFFFFFFh,A0Q 00000000h xx1x 00000000h
ANDI 00000000Ch,A0 00000000h xx1x 00000000h
ANDI OAAAAAAAAM,AQ 55555555h xx1x 00000000h
ANDI OAAAAAAAAL,AOQ AAAAAAAAR xx0x AAAAAAAAR
ANDI 55555555h,A0 55555555h xx0x 55555555h
ANDI 55555555h,A0 AAAAAAAAR xx1x 00000000h

12-43

ANDN AND Register with Complement

Syntax ANDN Rs, Rd

Execution (NOT Rs) AND Rd — Rd

Instruction

Words 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
lo t o 1 0o o 1] Rs IR | Rd |

Description ANDN bitwise-ANDs the 1s complement of the contents of Rs with the
contents of Rd, and stores the result in the destination register.
Rs and Rd must be in the same register file. Note that ANDN Rn,Rn has the
same effect as CLR Rn.

Machine

States 1,4

Status Bits N Unaffected
C Unaffected

Examples

12-44

Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before After
Al A0 NC ZV AC

ANDN Al1,RA0 FFFFFFFFh FFFFFFFFh xx 1x 00000000h
ANDN Al,A0 FFFFFFFFh 00000000h xx 1x 00000000h
ANDN Al,A0 00000000h 00000000h xx 1x 00000000h
ANDN A1l,AO0 AAAAAAAAH 55555555h xx O0x 55555555h
ANDN Al,A0 AAAAAAAAR AAAAAAAAR xx 1x 00000000h
ANDN A1,A0 55555555h 55555555h xx 1x 00000000h
ANDN Al,A0 55555555h AAAAAAAAR xx Ox AAAAAAAAh

AND Not Immediate (32 Bits)

ANDNI

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

ANDNI /L, Rd
(NOT IL) AND Rd - Rd

15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 O

0 0 0 0 1 0 1 1 1 0 OfR]| Rd

16 LSBs of IL

16 MSBs of IL

ANDNI bitwise-ANDs the 1s complement of a 32-bit immediate value with
the contents of the destination register, and stores the result in the desti-
nation register. (The symbol /L in the syntax above represents a 32-bit
immediate value.) ANDI also uses this opcode.

312

N Unaffected
C Unaffected
Z 17 if the result is 0, 0 otherwise
V Unaffected

Code Before After
A0 NCZV A0

ANDNI OFFFFFFFFh,AO FFFFFFFFh xx1x 00000000h
ANDNI OFFFFFFFFh,AQ 00000000h xx1x 00000000h
ANDNI 00000000h,A0Q 00000000h xX1x 00000000h
ANDNI OAAAAAAAAh,AQ 55555555h xx0x 55555555h
ANDNI OAAAAAAAAh,AQ AAAAAAAAR xx1x 00000000h
ANDNI 55555555h,A0 55555555h xX1x 00000000h
ANDNI 55555555h,A0 AAAAAAAAR xx0x AAAAAAAAN

|
12-45
|

BTST

Test Register Bit - Constant

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

12-46

BTST K, Rd

Set status on value of bit K in Rd

1514 13 12 11 10 9 8 7 6 65 4 3 2 1 0
[0 0o o 1 1+ 1} ~K [R] Rd |

BTST tests a bit in the destination register bit and sets status bit Z accord-
ingly. This form of the BTST instruction uses a 5-bit constant to specify the
bit in Rd that is tested (the symbol K in the syntax above represents a 5-bit
constant). The K value must be an absolute expression that evaluates to a
number in the range O to 31; if the value is greater than 31, the assembier
issues a warning and truncates the K operand value to the five LSBs.

Note that the assembler 1s-complements the value of K before inserting it
into the opcode.

1.4
N Unaffected
C Unaffected
Z 1 if the bit tested is 0, 0 if the bit tested is 1.
V Unaffected
Code Before After
A0 NCZV
BTST 0,A0 55555555h xx0x
BTST 15,A0 55555555h XX 1x
BTST 31,A0 55555555h xx1x
BTST 0,A0 AAAAAAAAR xx1x
BTST 15,A0 AAAAAAAAD xx0x
BTST 31,A0 AAAAAAAAD xx0x
BTST 0,A0 FFFFFFFFh xx0x
BTST 15,A0 FFFFFFFFh xx0x
BTST 31,A0 FFFFFFFFh xx0x
BTST 0,A0 00000000h xx1x
BTST 15,A0 00000000h xx1x
BTST 31,A0 00000000h xx1x

Test Register Bit - Register

BTST

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

BTST

Rs, Rd

Set status on value of specified bit in Rd

15 14 13

12 11 10 9

8 7 6

3

2 1 0

[o

1 0

0 1 0 1]

5 4
Rs | r |

Rd |

BTST tests a bit in the destination register bit and sets status bit Z accord-
ingly. This form of the BTST instruction uses the 5 LSBs of the source re-
gister to specify the bit in Rd that is tested (the symbol Rs in the syntax

above represents the source register).

ignored.

Rs and Rd must be in the same register file.

25

N Unaffected
C Unaffected
Z 17 if the bit tested is O, O if the bit tested is 1
V Unaffected

Code

BTST
BTST
BTST
BTST
BTST
BTST
BTST
BTST
BTST
BTST
BTST
BTST
BTST

Al,A0
Al,A0
Al,AO
Al,A0
Al,A0
Al,A0
Al,A0
Al,AO
Al,AO
Al,AO
Al,AO
Al,AO
Al,AO

Before

A1

00000000h
0000000Fh
0000001Fh
00000000h
0000000Fh
0000001 Fh
FFFFFF8Fh
00000000h
0000000Fh
0000001Fh
00000000h
0000000Fh
0000001Fh

A0

55555555h
55555555h
55555555h
AAAAAAAAR
AAAAAAAAR
AAAAAAAAR
FFFF7FFFh
FFFFFFFFh
FFFFFFFFh
FFFFFFFFh
00000000h
00000000h
00000000h

After

NCZV
xx0x
xx1x
xx1x
xx1x
xx0x
xx0x
xx0x
xx0x
x x0x
x x0x
xx1x
xx1x
xx1x

Note that the 27 MSBs of Rs are

12-47

CALL

Call Subroutine - Indirect

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Example

12-48

CALL Rs

PC’ - TOS
Rs - PC
SP-32 - SP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o o 1 o o0 1 0 0 1]R]| Rs |

CALL pushes the address of the next instruction (PC’) onto the stack, then
jumps to a subroutine whose address is contained in the source register.
You can use this instruction for indexed subroutine calls. Note that when
Rs is the SP, Rs is decremented after being written to the PC (the PC
contains the original value of Rs).

The TMS34010 always sets the four LSBs of the program counter to 0, so
instructions are always word aligned.

The stack pointer (SP) points to the top of the stack; the stack is located
in external memory. The stack grows in the direction of decreasing linear
addresses. PC’ is pushed onto the stack and the SP is predecremented by
32 before the return address is loaded onto the stack. Stack pointer align-
ment affects timing as indicated in Machine States, below.

Use the RETS instruction to return from a subroutine.

3+(3).9 (SP aligned)
3+(9),15 (SP nonaligned)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

CALL A0
Before After

A0 PC SP PC SP
01234560h 04442210h FO00020h 01234560h FOO0000h

Memory contains the following values after instruction execution:

Address Data
FO00010h 2220h
FO00020h 0444h

Call Subroutine - Absolute CALLA

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Example

‘CALLA Address

PC’' - TOS
Address - PC

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0O 0 0 0 1 1 0 1 0o 1 o 1 1 1 1 1

16 LSBs of Address

16 MSBs of Address

CALLA pushes the address of the next instruction (PC’) onto the stack,
then jumps to the address contained in the two extension words. The Ad-
dress operand is a 32-bit absolute address. This instruction is used for long
(greater than +32K words) or externally referenced calls.

The lower four bits of the program counter are always set to 0, so in-
structions are always word-aligned.

The stack pointer (SP) points to the top of the stack; the stack is located
in external memory. The stack grows in the direction of decreasing linear
address. PC’ is pushed onto the stack and the SP is predecremented by 32
before the return address is loaded onto the stack. Stack pointer alignment
affects timing as indicated in Mlachine States, below.

Use the RETS instruction to return from a subroutine.
4+(2),15 (SP aligned)
4+(8),21 (SP nonaligned)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

CALLA 01234560h

Before After

PC SP PC SP

04442210h 0F000020h 01234560h OF000000h
Memory contains the following values after instruction execution:
Address Data

FO00010h 2240h
F000020h 0444h

12-49

CALLR

Call Subroutine - Relative

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

12-50

CALLR Address

PC’ - TOS
PC’ + (offsetx16) = PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0 0 O 1 1 0 1 0 0 1 1 1 1 11

offset

CALLR pushes the address of the next instruction (PC’) onto the stack,
then jumps to the subroutine at the address specified by the sum of the next
instruction address and the signed word offset. This instruction is used for
calls within a specified module or section.

The Address operand is a 32-bit address within +32K words (-32,768 to
32,767) of the PC. The address must be defined within the current section;
the assembler does not accept an address value that is externally defined
or defined within a different section than PC’. The assembler calculates the
offset value for the opcode as (Address - PC’)/16.

The lower four bits of the program counter are always set to 0, so in-
structions are always word aligned.

The stack pointer (SP) points to the top of the stack; the stack is located
in external memory. The stack grows in the direction of decreasing linear
address. The PC is pushed on to the stack and the SP is predecremented
by 32 before the return address is loaded onto the stack. Stack pointer
alignment affects timing as indicated in Machine States, below.

Use the RETS instruction to return from a subroutine.

3+(2),11 (SP aligned)
3+(8),17 (SP nonaligned)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before After

PC SP PC SP
CALLR 0447FFFOh 04400000h OF000020h O447FFFOh OF00000Ch
CALLR 04480000h 04400000h OF000020h 04480000h OF000000h

Memory contains the following values after instruction execution:

Address Data
FO00010h 0000h
FO00020h 0440h

Clear Register

CLR

Syntax

Execution

Instruction
Words

Description
Machine
States
Status Bits

Examples

CLR Rd
Rd XOR Rd — Rd

10 9 8 7 6 5 4 3 2 1.0
[r | Rd |

15 14 13 12 11
fo 1 0o 1 0o 1 1] Rd

CLR clears the destination register by XORing the contents of the register
with itself. This is an alternate mnemonic for XOR Rd,Rd.

1.4

N Unaffected
C Unaffected

zZ 17
V Unaffected
Code Before After

A0 A0 NCzZV
CLR AO FFFFFFFFh 00000000h Xx1x
CLR AOD 00000001h 00000000h xx1x
CLR AO 80000000h 00000000h XX 1x
CLR AO AAAAAAAAD 00000000h xx1x

12-51

CLRC Clear Carry

Syntax CLRC

Execution 0-C

Instruction

Words 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo o o o o 0o 1 1 0 0 1 0 0 O 0 Of

Description CLRC sets the C (carry) bit in the status register to Q; the rest of the status
register is unaffected. (Note that the SETC instruction sets the C bit.)
This instruction is useful for returning a true/false value (in the carry bit)
from a subroutine without using a general-purpose register.

Machine

States 1.4

Status Bits N Unaffected
C 0

Examples

12-52

Z Unaffected
V Unaffected

Code Before After

ST NCz ST NCzV
CLRC FO000000h 1111 BOO0000OOh 1011
CLRC 40000010h 0100 00000010h 0000
CLRC BOOOOO1Fh 1011 BO00001Fh 1011

Compare Registers

CMP

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

CMP RAs, Rd
Set status bits on the result of Rd - Rs

10 9 8 7 6 5 4 3 2 1 0

0 | Rs [R] Rd |

CMP sets the status bits on the result of subtracting the contents of Rs from
the contents of Rd. This is a nondestructive compare; the contents of the
registers are not affected. This instruction is often used in conjunction with
the JAcc or JRce conditional jump instructions.

15 14 13 12 11
fo 1+ o o0 1 o0

Rs and Rd must be in the same register file.

1,4
N 7 if the result is negative, 0 otherwise
C 7 if a there is a borrow, 0 otherwise
Z 7 if the result is 0, 0 otherwise
V 7 if there is an overflow, 0 otherwise
Code Before After Jumps Taken

A1 AO NCzVv
CMP Al1l,A0 00000001h 00000001h 0010 UC,NN,NCZNV,LS,GELEHS
CMP Al,A0 00000001h 00000002h 0000 UC,NN,NC,NZ,NV,P,HI,GE,GTHS
CMP Al,AO0 00000001h FFFFFFFFh 1000 UC,N,NC,NZNV,P,HILTLEHS
CMP Al,A0 00000001h 80000000h 0001 UC,NN,NC,NZV,HI LTLEHS
CMP Al,A0 FFFFFFFFh 7FFFFFFFh 1101 UCN,C,NZV,LS,GEGT,LO
CMP Al,A0 FFFFFFFFh 80000000h 1100 UC,N,C,NZNV,LS,LTLELO
CMP Al,A0 80000000h 7FFFFFFFh 1101 UC,N,C,NZV,LS,GE,GT,LO

12-53

CMPI

Compare Immediate - 76 Bits

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

12-54

CMPI /W, Rd [, W]
Set status bits on the result of Rd - IW

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0 0 0 1 0 1 1 0 1 o|R | Rd

1s complement of IW

CMPI sets the status bits on the result of subtracting a 16-bit, sign-
extended immediate value from the contents of the destination register.
(The symbol /W in the syntax above represents a 16-bit, signed immediate
value.) This is a nondestructive compare; the contents of the destination
register are not affected. This instruction is often used in conjunction with
the JAcc or JRec conditional jump instructions.

Note that the assembler inserts the 1s complement of the 16-bit value into
the second instruction word.

The assembler uses the short form of the CMPI instruction if the immediate
value is previously defined and is in the range -32,768 to 32,767. You can
force the assembler to use the short form by following the register operand

with W:
CMPI IW,R4,W

The assembler truncates the upper bits and issues an appropriate warning
message if the value is greater than 16 bits.

8

g

7 if the result is negative, 0 otherwise
7 if there is a borrow, 0 otherwise
7 if the resuit is 0, 0 otherwise

7 if there is an overflow, O otherwise

0O <NOZ2

Before After Jumps Taken

A0 NCZV

00000002h 0000 UC,NN,NC,NZ,NV,P,Hi,GE,GT,HS
00000001h 0010 UC,NN,NC,2Z NV, LS GELEHS
00000000h 1100 UC.N,C,NZNV,LS,LT,LELO
FFFFFFFFh 1000 UC,N,NC,NZ,NV,P,H!LTLEHS
80000000h 0001 UC,NN,NC,NZV,Hi,LT,LEHS
00000000h 0100 UC,NN,C,NZNV,P,LS,GEGT,LO
FFFFFFFFh 0000 UC,NN,NC,NZ NV,P,LI1,GE.GTHS
FFFFFFFEh 0010 UC,NN,NC.ZNV,LS,GELEHS
FFFFFFFDh 1100 UC,N,C,NZNV,LSLT,LELO
7FFFFFFFh 1101 UC,N,C,NZV,LS,GE,GT,LO

ode

CMPI 1,A0
CMPI 1,A0
CMPI 1,30
CMPI 1,A0
CMPI 1,A0
CMPI ~-2,A0
CMPI -2,A0
CMPI -2,A0
CMPI -2,A0
CMPI ~1,A0

Compare Immediate - 32 Bits

CMPI

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

CMPI /L,Rd /[, L]
Set status bits on the result of Rd - IL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 0 1 1]|R] Rd

1s complement of 16 LSBs of IL

1s complement of 16 MSBs of IL

CMPI sets the status bits on the result of subtracting a 32-bit, signed im-
mediate value from the contents of the destination register. (The /L symbol
in the syntax above represents a 32-bit, signed immediate value.) This is a
?ondestructive compare; the contents of the destination register are not af-
ected.

Note that the assembler inserts the 1s complement of the 16 LSBs of the
value into the second instruction word, and inserts the 1s complement of
the 16 MSBs of the value into the third instruction word.

The assembler uses this form of the CMPI instruction if it cannot use the
short form. You can force the assembler to use the fong form by following

the register operand with an L:
CMPI IL,Rd,L

This instruction is often used in conjunction with the JAcc or JRcc condi-
tional jump instructions.

312

N 7 if the result is negative, 0 otherwise
C 17 if there is a borrow, 0 otherwise
Z 17 ifthe result is 0, 0 otherwise

V 7 if there is an overflow, 0 otherwise
Cod Before After Jumps Taken

A0 NCzVv
CMPI 8000h,A0 00008001th 0000 UC,NN,NC,NZNV,P,HI,GE,GT,HS
CMPI 8000h,A0D 00008000h 0010 UC,NN,NC,Z,NV,LS,GE,LE,HS
CMPI 8000h,A0 00007FFFh 1100 UC,N,C,NZ,NV,LS,LT,LELO
CMPI 8000h, A0 FFFFFFFFh 1000 UC,N,NC,NZNV,P,HILT,LEHS
CMPI 8000h, A0 80007FFFh 0001 UC,NN,NC,NZ,V,HI,LT,LE,HS
CMPI OFFFF7FFFh,A0 00000000h 0100 UC,NN,C,NZ,NV,P,LS,GE,GT,LO
CMPI OFFFF7FFEh,AO FFFF7FFFh 0000 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
CMPI OFFFF7FFEh,AO0 FFFF7FFEh 0010 UC,NN,NC,ZNV,LS,GELE HS
CMPI OFFFF7FFEh,A0 FFFF7FFDh 1100 UC,N,C,NZ NV,LS,LT,LELO
CMPI OFFFF7FFFh,AO0 7FFF7FFFh 1101 UC,N,C,NZ,V,LS,GE,GT,LO

12-55

CMPXY Compare X and Y Halves of Registers
Syntax CMPXY Rs, Rd
Execution Set status bits on the resuits of:
RdX - RsX
RdY - RsY
Instruction N
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
{t 1+ 1 o o 1 o] Rs [R | Rd |
Description = CMPXY compares the source register to the destination register in XY mode
and sets the status bits as if a subtraction had been performed. This is a
nondestructive compare; the contents of the register are not affected. The
source and destination registers are treated as signed XY registers. Note
that no overflow detection is provided.
Rs and Rd must be in the same register file.
Machine
States 1,4

Status Bits

Examples

12-56

N 7 if source X field = destination X field, O otherwise
C Sign bit of Y half of the result
Z 17 ifsource Y field = destination Y field, O otherwise
V Sign bit of X half of the result

Code Before After Jumps Taken

A1 A0 NCZV
CMPXY A1,A0 00090009h 00010001h 0101 NN,C,NZV,LS.LT
CMPXY Al,A0 00090009h 00090001h 0011 NN,NC,ZV,LSLT
CMPXY A1l,A0 00090009h 00010009k 1100 N,C,NZ,NV,LSLT
CMPXY Al,A0 00090009h 0009000%h 1010 N,NC.ZNV,LSLT
CMPXY A1l,A0 00090009h 00000010h 0100 NN,C,NZ,NV,LS,GE
CMPXY Al,A0 00090009h 00090010h 0010 NN,NC,ZNV,LS,GE
CMPXY Al,A0 00090009h 00100000h 0001 NN,NC,NZV, HLLT
CMPXY Al,A0 0009000%h 00100009h 1000 N,NC,NZ,NV,HLLT
CMPXY Al,A0 00090009h 00100010h 0000 NN,NC,NZ NV,HI,GE

Compare Point to Window

cPwW

Syntax

Execution

Instruction
Words

Description

Implied
Operands

. signed X and Y values.

CPW Rs, Rd

point code - Rd

15 14 13 12 11
(1 1 1 o o 1 1] Rs

10 9 8 7 6 6 4 3 2 1 0

[r] Rd |

CPW compares a point represented by an XY value in the source register to
the window limits in the WSTART and WEND registers. The contents of
the source register are treated as an XY address that consists of 16-bit
WSTART and WEND are also treated as signed
XY-format registers. WSTART and WEND must contain positive values;
negative values produce unpredictable resuits. The location of the point
with respect to the window is encoded as shown below; the code is loaded
into the destination register.

Codes:
0101 . 0100 0110
Window 31 98 54 O
0001 | oooo | o010 |000....000 | cobE | 06000] Rd
+X
1001 1000 @ 1010

¥y

The following list describes the contents of the destination register after
CPW execution:

Bit Postion: Contents:
04

S
5 1 if WSTART.X > Rs.X, O otherwise
6 1 if Rs.X > WEND.X, O otherwise

7 1 if WSTART.Y > Rs.Y, O otherwise
8 1 if Rs.Y > WEND.Y, 0 otherwise
9-31 Os

This instruction can also be used to trivially reject lines that do not intersect
with a window. The CPW codes for the two points defining the line are
ANDed together. If the result is nonzero, then the line must lie completely
outside the window (and does not intersect it). A O result indicates that the
line may intersect the window, and a more rigorous test must be applied.

Rs and Rd must be in the same register file.

B File Registers

Register Name Format Description
B5 WSTART XY Window start. Defines inclusive starting
corner of window (lesser value corner).
B6 WEND XY Window end. Defines inclusive ending
corner of window (greater value corner).

12-57

cPwW Compare Point to Window

Machine
States 1.4

Status Bits N Unaffected
C Unaffected
Z Unaffected
V 17 if point lies outside window, 0 otherwise

Examples You must select appropriate implied operand values before executing the
CPW instruction. In this example, the implied operands are set up as fol-
lows, specifying a block of 36 pixels.

WSTART =55
WEND =AA
CPW A1,A0
Before After

A1l NCZV A0 NCZV
00040004h xxx0 000000AOh xxx1
00040005h xxx0 00000080h xxx1
0004000AhR xxx0 00000080h xxx1
0004000Bh XXX 000000COh xxx1
00050004h xxx1 00000020h xxx1
00050005h xxx0 00000000h xxx0
0005000Ah xxx0 00000000h xxx0
0005000Bh xxx0 00000040h xxx1
000A0004h xxx0 00000020h xxx1
000A0005h xxx1 00000000h xxx0
000AO000Ah xxx1 00000000h xxx0
000A000Bh xxx0 00000040h xxx1
000B0004h xxx0 00000120h xxx1
000B0005h xxx0 00000100h xxx1
000BO0O0OAh xxx0 00000100h xxx1
000B0O00OBh xxx0 00000140h xxx1

12-58

Convert XY Address to Linear Address

CVXYL

Syntax

Execution

Instruction
Words

Description

Implied
Operands

Machine
States

Status Bits

CVXYL Rs, Rd
RsXY - linear address in Rd

10 9 8 7 6 5 4 3 2 1 0

[r | R& |

15 14 13 12 11
[+ 1 1 0o 1 o of Rs

CVXYL converts an XY address to a linear address:

o The source register contains an XY address. The signed X value oc-
cupies the 16 LSBs of the register and the signed Y value occupies
the 16 MSBs. The X value must be positive.

® The XY address is converted into a 32-bit linear address which is
stored in the destination register.

The following conversion formula is used:
Address = [(Y x Display Pitch) OR (X x Pixel Size)] + Offset

Since the TMS34010 restricts the screen pitch and pixel size to powers of
two (for XY addressing), the multiply operations in this conversion are ac-
tually shifts. The offset value is in the OFFSET register. The CONVDP value
is used to determine the shift amount for the Y value, while the PSIZE reg-
ister determines the X shift amount.

Rs and Rd must be in the same register file.

B File Registers
Register Name Format Description
B3 DPTCH Linear Destination pitch
B4 OFFSET Linear Screen origin (location 0,0)
1/0 Registers
Address Name Description and Elements (Bits)
C0000140h | CONVDP XY-to-linear conversion (destination pitch)
C0000150h | PSIZE Pixel size (1,2,4,8,16)

Due to the pipelining of memory writes, the /ast 1/0 register that you write
to may not, in some cases, contain the desired value when you execute the
CVXYL instruction. To ensure that this register contains the correct value
for execution, you may want to follow the write to that location with an
instruction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

3,6

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-59

CVXYL Convert XY Address to Linear Address

Examples

Code Before After

A0 OFFSET PSIZE CONVDP A1
CVXYL AO,Al 00400030h 00000000h 0010h 0014h 00020300h
CVXYL A0,Al 00400030h 00000000h 0008h 0014h 00020180h
CVXYL AO,Al 00400030h 00000000h 0004h 0014h 00020000h
CVXYL A0,Al 00400030h 00008000h 0004h 0014h 00028000h
CVXYL A0,Al 00400030h OF000000h 0004h 0014h OF020000h
CVXYL AO,Al 00400030h 00000000h 0002h 0014h 00020060h
CVXYL AO,Al 00400030h 00000000h 0001h 0014h 00020030h
CVXYL RAO,Al 00400030h 00000000h 0001h 0013h 00040030h
CVXYL AO,Al 00400030h 00000000h 0001h 0015h 00010000h

CONVDP = 0013h corresponds to DPTCH = 00001000h
CONVDP = 0014h corresponds to DPTCH = 00000800h
CONVDP = 0015h corresponds to DPTCH = 00000400h

12-60

Decrement Register DEC

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

DEC Rd
Rd-1 - Rd

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
fo o o 1 0o 1 o0 0 o0 0 1]|R]| Rd |

DEC subtracts 1 from the contents of the destination register and stores the
result in the destination register. This instruction is an alternate mnemonic
for SUBK 1,Rd.

You can use the DEC instruction with the SUBB instruction to perform
multiple-precision arithmetic.

1
N 7 if the result is negative, 0 otherwise
C 17 if there is a borrow, 0 otherwise

Z 17 if the result is 0, 0 otherwise

V 7 if there is an overflow, O otherwise
o

ode Before After
Al A1 NCZV
DEC Al 00000010h 0000000Fh 0000
DEC Al 00000001h 00000000h 0010
DEC Al 00000000h FFFFFFFFh 1100
DEC Al FFFFFFFFh FFFFFFFEh 1000
DEC Al 80000000h 7FFFFFFFh 0001

12-61

DINT Disable Interrupts
Syntax DINT
Execution 0 - |E
Instruction
Words 1% 14 13 12 11 190 9 8 7 6 5 4 3 2 1 O
fo o o o o o 1 1 0 1 1 0 O 0O 0 Of
Description DINT disables interrupts by setting the global interrupt enable bit (IE, status
bit 21) to 0. All interrupts except reset and NMI are disabled; the interrupt
enable mask in the INTENB register is ignored. The remainder of the status
register is unaffected.
The EINT instruction enables interrupts.
Machine
States 3.6
Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected
IE 0
Examples Code Before After
ST ST
DINT 00000010h 00000010h
DINT 00200010h 00000010h

12-62

Divide Registers - Signed DIVS

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

DIVS Rs, Rd

Rd Even: Rd:Rd+1/Rs - Rd, remainder —» Rd+1
Rd Odd: Rd/Rs - Rd

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo 1 o 1 1 0 o] Rs [R | Rd |

DIVS performs a signed 32-bit or 64-bit divide. The source register con-
tains the 32-bit signed divisor. The destination register contains a 32-bit
signed dividend or the most significant half of a 64-bit signed dividend,
depending on whether Rd is an odd register (for example, A1 or B3) or an
even register (for example, A8 or B2):

Rd Even DIVS performs a signed divide of the 64-bit operand contained
in the two consecutive registers, starting at the specified desti-
nation register, by the 32-bit contents of the source register.
The specified even-numbered destination register, Rd, contains
the 32 MSBs of the dividend. The next consecutive register
(which is odd-numbered) contains the 32 LSBs of the divi-
dend. The quotient is stored in the destination register, and the
remainder is stored in the following register (Rd+1). The re-
mainder is always the same sign as the dividend (in Rd:Rd+1).
Avoid using A14 or B14 as the destination register, since this
overwrites the SP; the assembler issues a warning in this case.

Rd Odd DIVS performs a signed divide of the 32-bit operand contained
in the destination register by the 32-bit value in the source re-
gister. The quotient is stored in the destination register; the re-
mainder is not returned.

Rs and Rd must be in the same register file.

Rd Odd Rd Even
Normal 39,42 40,43
Result = 80000000h 41,44 41,44
Rs =0 710 7,10
Rd > Rs treated as normal 7,10

N 0if:

® Rs =0, or
[] Rd is even and Rd > Rs, or
(] Quotient is nonnegative.

® Result = 80000000h or
® Quotient is negative.

C Unaffected
Z 0 if:

e Rs =0, or
® Rd is even and Rd > Rs, or

12-63

DIVS Divide Registers - Signed

® Result = 80000000h, or
® Quotient # 0.

7 if:
® Quotient = 0.
V 7 if quotient overflows (cannot be represented by 32 bits), 0 other-

wise
The following conditions cause an overflow and set the overflow flag:

° Divisor (Rs) is O
® Quotient cannot be contained within 32 bits

Example 1 This example divides the contents of register AO by the contents of register
A2, and stores the result in register AQ. Note that the contents of reg-
ister A2 are not affected by instruction execution.

DIVS A2,AQ

Before After

A0 Al A2 A0 A1 A2 NCzVv
12345678h 87654321h 87654321h D95BC60Ah 15CA1DD7h 87654321h 1x00
EDCBA987h 78%ABCDFh 87654321h 26A439F6h EA35E229h 87654321h = 0x00
EDCBA987h 789ABCDFh 789ABCDFh D95BC60Ah EA35E229h 789ABCDFh 1x00
12345678h 87654321h 789ABCDFh 26A439F6h 15CA1DD7h 789ABCDFh 0x00
12345678h 87654321h 00000000h 12345678h 87654321h 00000000h 0x01
00000000h 00000000h 00000000h 00000000h 00000000h 00000000h 0x01
00000000h 00000000h 87654321h 00000000h 00000000h 87654321h 0x10
87654321h 00000000h 87654321h 87654321h 00000000h 87654321h 0x01

Example 2 This example divides the contents of register A1 by the contents of of reg-
ister A2, and stores the result in register AO. Note that the contents of
register A2 are not affected by instruction execution.

DIVS A2,Al
Before After
A0 A1l A2 A0 Al A2 NCzV
00000000h 87654321h 12345678h 00000000h FFFFFFFAhQ 12345678h 1x00

00000000h 87654321h OEDCBA988h 00000000h 00000006h EDCBA988h 0x00
00000000h 789ABCDFh OEDCBA988h 00000000h FFFFFFFAh EDCBA988h 1x00

00000000h 789ABCDFh 12345678h 00000000h 00000006h 12345678h 0x00
00000000h 87654321h 00000000h 00000000h 87654321h 00000000h OxO01
00000000h 00000000h 00000000h 00000000h 00000000h 00000000h 0xO1

12-64

-

Divide Registers - Unsigned DIVU

Syntax DIVU RAs, Rd
Execution Rd Even: Rd:Rd+1/Rs - Rd, remainder - Rd+1
Rd Odd: Rd/Rs — Rd
Instruction
Words 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[o 1 0o 1 1 o 1] Rs [R] Rd |

Description DIVU performs an unsigned 32-bit or 64-bit divide. The source register
contains the 32-bit divisor. The destination register contains a 32-bit divi-
dend or the most significant half of a 64-bit dividend, depending on
whether Rd is an odd register (for example, A1 or B3) or an even register
(for example, A8 or B2):

Rd Even DIVU performs an unsigned divide of the 64-bit operand con-
tained in the two consecutive registers, starting at the destina-
tion register, by the 32-bit contents of the source register. The
specified even-numbered destination register, Rd, contains the
32 MSBs of the dividend. The next consecutive register
(which is odd-numbered) contains the 32 LSBs of the divi-
dend. The quotient is stored in the destination register, and the
remainder is stored in the following register (Rd+1). Avoid
using A14 or B14 as the destination register, since this over-
writes the SP; the assembler issues a warning in this case.

Rd Odd DIVU performs an unsigned divide of the 32-bit operand con-
tained in the destination register by the 32-bit value in the
source register. The quotient is stored in the destination regis-
ter; the remainder is not returned.

Rs and Rd must be in the same register file.

Machine

States Rd Odd Rd Even
Normal 37,40 -~ 37,40
Rs =0 5,8, 5,8
Rd > Rs treated as normal 5,8

Status Bits N Unaffected
C Unaffected
Z 0if:
[Rs = 0, or

® Rd is even and Rd > Rs, or
® Quotient # 0.

7 if:
® Quotient = 0.
V 7 if quotient overflows (cannot be represented by 32 bits), O other-

wise
The following conditions cause an overflow and set the overflow flag:

® Divisor (Rs) is O

12-65

-

DIVU Divide Registers - Unsigned

® Quotient cannot be contained within 32 bits

Example 1 This instruction divides the contents of register AO by the contents of reg-
ister A2, and stores the unsigned result in register AO. Note that the
contents of register A2 are not affected by instruction execution.

DIVU A2,A0

Before After

A0 Al A2 AQ A1 A2 NCzZV
12345678h 87654321h 783ABCDFh 26A439F6h 15CA1DD7h 789ABCDFh xx00
12345678h 87654321h 00000000h 12345678h 87654321h 00000000h xx01
00000000h 00000000h 00000000h 00000000h 00000000h 00000000h xx01
00000000h 00000000h 87654321h 00000000h 00000000h 87654321h xx10
87654321h 00000000h 87654321h 87654321h 00000000h 87654321h xx01

Example 2 This instruction divides the contents of register A1 by the contents of reg-
ister A2, and stores the unsigned result in register A1. Note that the
contents of register A2 are not affected by instruction execution.

DIVU A2,Al

Before After

AO Al A2 AO A1 A2 NCzV
00000000h 789ABCDFh 12345678h 00000000h 00000006h 12345678h xx00
00000000h 12345678h 00000000h 00000000h 12345678h 00000000h xx01
00000000h 00000000h 00000000h 00000000h 00000000h 00000000h xx01
00000000h 00000000h 87654321h 00000000h 00000000h 87654321h xx10
00000000h 87654321h 87654321h 00000000h 00000001h 87654321h xx00

12-66

Draw and Advance

DRAV

Syntax

Execution

Instruction
Words

Description

Implied
Operands

Pixel
Processing

DRAV Rs, Rd

COLOR1 pixels — *Rd
RsX + RdX - RdX
RsY + RdY - RdY

10 9 8 7 6 5 4 3 2 1.0
LR Rd_ |

15 14 13 12 11
[+ 1+ 1 1 0o 1 1] Rs

DRAV writes the pixel value in the COLOR1 register to the location pointed
to by the XY address in the destination register. Following the write, the
XY address in the destination register is incremented by the value in the
source register: the X half of Rs is added to the X half of Rd, and the Y half
of Rs is added to the Y half of Rd. Any carry out from the lower (X) half
of the register does not propagate into the upper (Y) half.

COLOR1 bits 0-15 are output on data bus lines 0-15, respectively. The
pixel data used from COLOR1 is that which aligns to the destination lo-
cation, so 16-bit patterns can be implemented. Rs and Rd must be in the
same register file.

B File Registers
Register Name Format Description
B3 DPTCH Linear Destination pitch
B4 OFFSET Linear Screen oarigin (location 0,0)
B5 WSTART XY Window starting corner
B6 WEND XY Window ending corner
B9 COLOR1 Pixel Pixel color
1/0 Registers
Address Name Description and Elements (Bits)
C00000BOh | CONTROL | PP~ Pixel processing operations (22 options)
W -Window checking operation
T -Transparency operation
C0000140h | CONVDP XY-to-linear conversion (destination pitch)
C0000150h | PSIZE Pixel size (1,2,4,8,16)
C0000160h | PMASK Plane mask — pixel format

Due to the pipelining of memory writes, the /ast |/0 register that you write
to may not, in some cases, contain the desired value when you execute the
DRAV instruction. To ensure that this register contains the correct vaiue for
execution, you may want to follow the write to that location with an in-
struction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

Set the PPOP field in the CONTROL register to select a pixel processing
operation. This operation is applied to the pixel as it is moved to the des-
tination location. At reset, the default pixel processing operation is rep/ace
§S1; D). For more information, see Section 7.7, Pixel Processing, on page

12-67

DRAV Draw and Advance

Window

Checking Select a window checking mode by setting the W bits in the CONTROL
register. If you select an active window checking mode (W = 1, 2, or 3),
the WSTART and WEND registers define the XY starting and ending corners
of a rectangular window. The X and Y values in both WSTART and WEND
must be positive.

When the TMS34010 attempts to write a pixel inside or outside a defined
value, the following actions may occur:

W=0 No window operation. The pixel is drawn and the WVP and V bits
are unaffected.

W=1 Window hit. No pixels are drawn. The V bit is set to O if the pixel lies
within the window; otherwise, it is set to 1. The WVP bit is set to 1
if the pixel lies within the window; otherwise, it is not affected.

W=2 Window miss. If the pixel lies outside the window, the WVP and V
bits are set to 1 and the instruction is aborted (no pixel is drawn).
Otherwise, the pixel is drawn, the V bit is set to 0, and the WVP bit
is unaffected.

W=3 Window clip. If the pixel lies outside the window, the V bit is set to
1 and the instruction is aborted (no pixels are drawn). Otherwise,
the pixel is drawn and the V bit is set to 0.

For more information, see Section 7.10, Window Checking, on page 7-27.

Transparency You can enable transparency for this instruction by setting the T bit in the
CONTROL 1/0 register to 1. The TMS34010 checks for O (transparent)
source pixels after it processes the source data. At reset, the default case
for transparency is off.

Plane Mask The plane mask is enabled for this instruction.

Shift Register

Transfers When this instruction is executed and the SRT bit is set, normal memory
read and write operations become SRT reads and writes. Refer to Section
9.10.2, Video Memory Bulk Initialization, on page 9-28 for more informa-

tion.
Machine
States The states consumed depend on the operation selected, as indicated below.
Pixel Processing Operation Window
goe ' Violation

PSIZE | Replace | Boolean| ADD ADDS SUB SUBS |MIN/MAX|W=1|W=2|W=3
5
5

1,2,4,8|4+(3),10[6+(3),12]7+(3),13|7+(3),13|7+(3),13|8+(3),14| 7+(3),13 8] 36| 58
16 4+(1),8 |6+(1),10]6+(1),10|7+(1),11|7+(1),11{8+(1),12] 7+(1),11 8]136] 58

Status Bits N Unaffected

C Unaffected
Z Unaffected
V 1 if a window violation occurs, 0 otherwise; unaffected if window

clipping is not used.

12-68

Draw and Advance

DRAV

Examples

DRAV
DRAV
DRAV
DRAV
DRAV
DRAV
DRAV
DRAV
DRAV

Al,AO
Al,AD
Al,AQ
A1,A0
Al,A0
Al,A0
Al,AO
Al,A0
Al,A0

These DRAV examples use the following implied operand setup.

Register File B:
DPTCH (B3) = 200h

OFFSET (B4) = 00010000h
WSTART (B5) = 00100000h

WEND (B6)
COLOR1 (B9)

003C0040h
FFFFFFFFh

I/O Registers:
CONVDP = 0016h

Assume that memory contains the following values before instruction exe-

cution:
Address Data
00018040h 8888h
Before
A0 Al

00400040h 00100010h
00400020h 00100010h
00400010 00100010h
00400008 00100010h
00400004 00100010h
00400004 O0000FFFFh
00400004 FFFFOO0Ch
00400004 00010001h
00400004h 00400004h

PSIZE
0001h
0002h
0004h
0008h
0010Ch
0010h
0010h
0010h
0010h

PP
00000
00000
00000
00000
00000
01010
10011
00000
00000

After

PMASK A0

0000h
0000h
0000h
0000h
0000h
0000h
0000h
0000h
O0FFh

00500050h
00500030h
00500020h
00500018h
00500014h
00400003h
003F0004h
00410005h
00800008h

@18040h
8888h
888Bh
888Fh
88FFh
FFFFh
0000h
0000h
0000h
FFOOh

12-69

DSJ Decrement Register and Skip Jump
Syntax DSJ Rd, Address
Execution Rd -1 - Rd
If Rd # 0, then (offsetx16) + PC' = PC
If Rd = O, then go to next instruction
Instruction
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
60 0 0 0 1 1 0 1 1 0 O]R| Rd
offset
Description DSJ decrements the contents of the destinatioh register by 1. Depending
on the decremented value of Rd, the TMS34010 either jumps or skips the
jump:
° Rd-1%0 .
The TMS34010 jumps. The current PC points to the instruction word
that immediately follows the second word of the DSJ instruction. The
signed word offset is converted to a bit offset by muitiplying by 16.
The new PC address is then obtained by adding the resuiting signed
offset (offset x 16) to the address of the next instruction.
] Rd-1=0
The TMS34010 skips the jump and continues and program execution
with the next sequential instruction.
The Address operand is a 32-bit address. The assembler calculates the
offset as (Address - PC’}/16; this results in a jump range of -32,768 to
+32,767 words. (The offset is the second instruction word of the opcode.)
The DSJ instruction is useful for large loops involving a counter. For
shorter loops, the assembler transiates this into a DSJS instruction.
Machine
States 3,9 (Jump)
2,8 (No jump)
Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected
Examples Cod Before After
A5 A5 Jump taken?
DSJ AS5,LOOP 00000009%h 00000008h Yes
DSJ AS5,LOOP 00000001h 00000000h No
DSJ AS5,LOOP 00000000h FFFFFFFFh Yes

12-70

Conditionally Decrement Register
and Skip Jump DSJEQ

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

DSJEQ Rd, Address

fZ=1,thenRd-1 - Rd
If Rd # O, then PC’ + (offsetx16) - PC
If Rd = 0, then go to next instruction

If Z = 0, then go to next instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 1 0 1]R| Rd

offset

The DSJEQ instruction evaluates the status Z bit. Depending on the value
of that bit, the TMS34010 either skips the jump, or decrements Rd and then
makes a decision to jump or skip the jump:

e Z=1

The TMS34010 decrements the contents of the destination register
by 1.

- Rd-1=20

The TMS34010 jumps relative to the current PC. The current
PC points to the instruction word that immediately follows the
second word of the DSJEQ instruction. The signed word offset
is converted to a bit offset by multiplying by 16. The new PC
address is then obtained by adding the resulting signed offset
(offset x 16) to the address of the next instruction.

- Rd-1=0

The TMS34010 skips the jump and continues program exe-
cution at the next sequential instruction.

e Z=0

The TMS34010 skips the jump and continues program execution at
the next sequential instruction.

The Address operand is a 32-bit address. The assembler calculates the
offset as (Address - PC’)/16; this results in a jump range of -32,768 to
+32,767 words. (The offset is the second instruction word of the opcode.)

You can use this instruction after an explicit or implicit compare to 0. Ad-
ditional information on these types of compares can be obtained in the
CMP and CMPI, and MOVE-to-register instructions, respectively.

3,9 (Jump)
2,8 (No jump)
z

N Unaffected
C Unaffected
Unaffected
V Unaffected

12-71

Conditionally Decrement Register

DSJEQ and Skip Jump
Examples Code Before After
A5 NCzV A5 Jump taken?

DSJEQ AS5,LOOP 00000008h xx1x 00000008h Yes
DSJEQ AS5,LOOP 00000001h xx1x 00000000h No
DSJEQ A5,LOOP 00000000h xx1x FFFFFFFFh Yes
DSJEQ A5,LOOP 00000009h xxOx 00000009h No
DSJEQ A5,LOOP 00000001h xxOx 00000001 h No
DSJEQ A5,LOOP 00000000h xxOx 00000000h No

12-72

Conditionally Decrement Register
and Skip Jump DSJNE

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

DSJNE Rd, Address

fZ=0,thenRd-1 - Rd
If Rd # O, then PC’ + (offsetx16) — PC
If Rd = 0, then go to next instruction

If Z =1, then to to next instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o 0o 0 o0 1t 1 0 1t 1 1 OfR] Rd

offset

The DSJNE instruction evaluates the status Z bit. Depending on the value
of that bit, the TMS34010 either skips the jump, or decrements Rd and then
makes a decision to jump or skip the jump:

® Z=0,

The TMS34010 decrements the contents of the destination register
by 1.

- Rd-1#0

The TMS34010 jumps relative to the current PC. The current
PC points to the instruction word that immediately follows the
second word of the DSJNE instruction. The signed word offset
is converted to a bit offset by multiplying by 16. The new PC
address is then obtained by adding the resulting signed offset
(offset x 16) to the address of the next instruction.

- Rd-1=0

The TMS34010 skips the jump and continues program exe-
cution at the next sequential instruction.

L] Z=1

The TMS34010 skips the jump and continues program execution at
the next sequential instruction.

The Address operand is a 32-bit address. The assembler calculates the
offset as (Address - PC’)/16; this results in a jump range of -32,768 to
+32,767 words. (The offset is the second instruction word of the opcode.)

You can use this instruction after an explicit or implicit compare to 0. Ad-
ditional information on these types of compares can be obtained in the
CMP, CMPI, and MOVE-to-register instructions.

3.9 (Jump)
2,8 (No jump)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-73

Conditionally Decrement Register

DSJNE and Skip Jump
Examples Code Before After
A5 NCZV A5 Jump taken?

DSJNE AS5,LOOP 00000009h xx1x 00000009h No
DSJINE AS5,LOOP 00000001h xx1x 00000001 h No
DSJNE A5,LOOP 00000000h xx1x 00000000h No
DSJNE AS5,LOOP 00000009h xx0x 00000008h Yes
DSJNE A5,LOOP 00000001h xxOx 00000000h No
DSJNE AS5,LOOP 00000000h xx0x FFFFFFFFh Yes

12-74

Decrement Register and Skip Jump - Short DSJS

Syntax

Execution

Instruction
Words

Fields

Description

Machine
States

Status Bits

Examples

DSJS Rd, Address

Rd -1 - Rd
If Rd # 0, then PC’' + (offsetx16) - PC
If Rd = 0, then go to next instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 o 1 1 1]D | offset iR | Rd |

D is a 1-bit direction bit (from PC’ to Address):
D=0 - forward jump
D=1 - backward jump

DSJS decrements the contents of the destination register by 1. Depending
on the result, the TMS34010 either jumps or skips the jump:

] Rd-1#0

The TMS34010 jumps relative to PC’. PC’ points to the instruction
word that immediately follows the DSJS instruction. Internally, the
5-bit offset is multiplied by 16 to convert it to a bit offset. This allows
a jump range of -30 to +32 words from the PC.

- If direction bit D = 0

The new PC address is obtained by adding the resulting offset
to PC".

- If direction bit D =1

The new PC address is obtained by subtracting the resulting
offset from PC'.

(Rd-1=0

The TMS34010 skips the jump and continues program execution at
the next sequential instruction.

The Address operand is a 32-bit address. The assembler calculates the
offset as (Address - PC’)/16; this results in a jump range of -30 to +32
words from the PC. (The offset is encoded as part of the instruction word.)

This instruction is useful for coding tight loops for cache-resident routines.

2,5 (Jump)
3,6 (No jump)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before After

A5 A5 Jump taken?
DSJS AS5,LOOP 00000009h 00000008h Yes
DSJS A5,LOOP 00000001h 00000000h No
DSJS A5, LOOP 00000000h FFFFFFFFh Yes

12-75

EINT Enable Interrupts
Syntax EINT
Execution 1 = IE
Instruction
Words 16 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O
l[o o o o 1 1 o0 1 0 1 1 0 0 O 0 Of
Description EINT sets the global interrupt enable bit (IE) to 1, allowing interrupts to be
enabled. When IE=1, individual interrupts are enabled by setting the ap-
propriate bits in the INTENB interrupt mask register. The rest of the status
register is unaffected.
The DINT instruction disables interrupts.
Machine
States 3.6
Status Bits Unaffected
C Unaffected
Z Unaffected
V Unaffected
IE 7
Examples Code Before After
ST ST
EINT 00000010h 00200010h
EINT 00200010h 00200010h

12-76

Initiate Emulation EMU

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

EMU

ST - Rd and conditionally enter emulator mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0o o o o o 0 1 0 0 O O O O 0 O]

The EMU instruction pulses the EMUA pin and samples the RUN/EMU pin.
If the RUN/EMU pin is in the RUN state, the EMU instruction acts as a NOP.
If the pin is in the EMU state, emulation mode is entered. This instruction
is not intended for general use; refer to the 7TMS34070 XDS/22 User's
Guide for more information.

8,11 (or more if EMU mode is entered)

N iIndeterminate
C Indeterminate
Z Indeterminate
V Indeterminate

12-77

EXGF Exchange Field Definition
Syntax EXGF Rd/[,.FJ]
Execution Rd - FSO, FEO or Rd — FS1, FE1
FSO, FEO - Rd or FS1, FE1 - Rd
Instruction
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[+ 1+ o 1 o 1[F] 1 o o of Rd |
Description EXGF exchanges the six LSBs of the destination register with the selected

Status Bits

Examples

12-78

six bits of field information (field size and field extension). Bit5 of the 6-bit

quantity in Rd is exchanged with the field extension value. The upper 26

bits of Rd are cleared.
31302028272625242322212019 18 17 815 4 13121109 B 7 8

F&1

43210
F80

ommjn

Status Register

EXGF’s F parameter is optional:

F=0 selects FSO, FEO to be exchanged
F=1 selects FS1, FE1 to be exchanged

If you do not specify an F parameter, the default is O.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before After

A5 ST A5 ST
EXGF A5,0 FFFFFFCOh FOOOOFFFh 0000003Fh FOOOOFCOh
EXGF AS5,1 FFFFFFCOh FOOOOFFFh 0000003Fh FOOOO003Fh

Exchange Program Counter EXGPC

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

EXGPC Rd
Rd - PC, PC' - Rd

%5 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
[0 o 0o o o o o 1 o 0 1]|R| Rd |

EXGPC exchanges the next program counter value with the destination re-
gister contents. After this instruction has been executed, the destination
register contains the address of the instruction immediately following the
EXGPC instruction.

Note that the TMS34010 sets the four LSBs of the program counter to 0
(word aligned).

This instruction provides a “quick call” capability by saving the return ad-
dress in a register (rather than on the stack). The return from the call is
accomplished by repeating the instruction at the end of the "subroutine.”
Note that the subroutine address must be reloaded following each call-
return operation.

2,5
N Unaffected
C Unaffected
Z Unaffected
V Unaffected
Code Before After
A1 PC A1 PC

EXGPC Al 00001C10h 00002080h 00002090h 00001C10h
EXGPC Al 00001C50h 00002080h 00002090h 00001C50h

12-79

FILL

Fill Array with Processed Pixels - Linear

Syntax

Execution

Instruction
Words

Description

Implied
Operands

Destination
Array

12-80

FILL L
COLORT1 pixels — pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 0o o 1 1 1 1 1 1 0 0 0 0 0 Of

FILL processes a set of source pixel values (specified by the COLOR1 reg-
ister) with a destination pixel array.

This instruction operates on a two-dimensional array of pixels using pixels
defined in the COLOR?1 register. As the FILL proceeds, the source pixels
are combined with destination pixels based on the selected graphics oper-
ations.

Note that the L parameter in the instruction syntax does not represent a
value or a register - the L is entered as part of the instruction and identifies
the starting address of the pixel array as an L address. That is, the in-
struction is entered as FILL L.

The following set of implied operands govern the operation of the in-
struction and define both the source pixels and the destination array.

B File Registers
Format Description
B2t DADDR Linear Pixel array starting address
B3 DPTCH Linear Pixel array pitch
B7 DYDX XY Pixel array dimensions (rows:columns)
B9 COLOR1 Pixel Fill color or 16-bit pattern
B10-B14t Reserved registers
I/0 Registers
Description and Operations

PP- Pixel processing operations (22 options)
T =Transparency operation

C0000150h | PSIZE Pixel size (1,2,4,8,16)
C0000160h PMASK Plane mask - pixel format
t Changed by FILL during execution.

Register Name

Address
C00000BOh

Name
CONTROL

Due to the pipelining of memory writes, the /ast I/0 register that you write
to may not, in some cases, contain the desired value when you execute the
FILL instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an in-
struction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

The contents of the DADDR, DPTCH, and DYDX registers define the lo-
cation of the destination pixel array:

e At the outset of the instruction, DADDR contains the linear address
“of the pixel with the lowest address in the array.

Fill Array with Processed Pixels - Linear FILL

Pixel
Processing

Window
Checking

Corner Adjust

Transparency

Interrupts

Plane Mask

Shift Register
Transfers

Machine
States

During instruction execution, DADDR points to the next pixel (or
word of pixels) to be modified in the destination array. When the ar-
ray transfer is complete, DADDR points to the linear address of the
pixel following the last pixel written.

[] DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array. DPTCH must be a multiple of
16, except when a single pixel-width line is drawn (DY=1). In this
case, DPTCH may be any value.

{ DYDX specifies the dimensions of the destination array in pixels. The
DY portion of DYDX contains the number of rows in the array, while
the DX portion contains the number of columns.

Set the PPOP field in the CONTROL register to select a pixel processing
operation. This operation is applied to the pixel as it is moved to the des-
tination location. There are 16 Boolean and 6 arithmetic operations; the
default operation at reset is replace (S = D). Note that the destination data
is read through the plane mask and then processed. The 6 arithmetic op-
erations do not operate with pixel sizes of one or two bits per pixel. For
more information, see Section 7.7, Pixel Processing, on page 7-15.

Window checking cannot be used with this instruction. The contents of
the WSTART and WEND registers are ignored.

There is no corner adjust for this instruction. The direction of the FILL is
fixed as increasing linear addresses.

You can enable transparency for this instruction by setting the T bit in the
CONTROL 1/0 register to 1. The TMS34010 checks for 0 (transparent)
source pixels after it processes the source data. At reset, the default case
for transparency is off.

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the FILL is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH and B10-B14 contain intermediate values. DADDR
points to the linear address of the next word of pixels to be modified after
the interrupt is processed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the FILL cor-
rectly.

The plane mask is enabled for this instruction.

If the SRT bit in the DPYCTL register is set, each memory read or write in-
itiated by the FILL generates a shift register transfer read or write cycle at
the selected address. This operation can be used for bulk memory clears

or transfers. (Not all VRAMs support this capability.) See Section 9.10.2,
Video Memory Bulk Initialization, on page 9-28 for more information.

See Section 13.3, FILL Instructions Timing.

12-81

FILL

Fill Array with Processed Pixels - Linear

Status Bits

Examples

Example 1

Example 2

Example 3

12-82

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

These FILL examples use the following implied operand setup.

Register File B: 1/0 Registers:
DADDR (B2) = 00002010h PSIZE = 0008h
DPTCH (B3) = 00000080h

DYDX (B7) = 0002000Dh

COLOR1 (B9) = 30303030h

Assume that memory contains the following values before instruction exe-
cution.

Linear Data

Address

02000h 1100h, 3322h, 5544h, 7766h, 9988h, BBAAh,DDCCh, FFEEh
02080h 1100h, 3322h, 5544h, 7766h, 9988h, BBAAh,DDCCh, FFEEh

This example uses the pixel processing replace (S = D) operation. Before
instruction execution, PMASK = 0000h and CONTROL = 0000h (T=0,
PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 1100h, 3030h, 3030h, 3030h, 3030h, 3030h, 3030h, FF30h
02080h 1100h, 3030h, 3030h, 3030h, 3030h, 3030h, 3030h, FF30h

This example uses the (S and D) — D pixel processing operation. Before
instruction execution, PMASK = 0000h and CONTROL = 2C00h (T=0,
PP=01010).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 1100h, 0302h, 4544h, 4746h, 8988h, 8B8Ah, CDCCh,FFCEh
02080h 1100h, 0302h, 4544h, 4746h, 8988h, 8B8Ah, CDCCh,FFCEh

This example uses transparency and the (S and D) - D pixel processing
operation. Before instruction execution, PMASK = 0000h and CONTROL
= 0420h (T=1, PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 1100h, 3020h, 1044h, 3020h, 1088h, 3020h, 10CCh, FF20h
02080h 1100h, 3020h, 1044h, 3020h, 1088h, 3020h, 10CCh, FF20h

Fill Array with Processed Pixels - Linear FILL

Example 4

This example uses plane masking — the four MSBs are masked. Before in-
struction execution, PMASK = OFOFOh and CONTROL = 0000h (T=0,
PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 1100h, 3020h, 5040h, 7060h, 9080h, BOAOh, DOCGOh, FFEOhA
02080h 1100h, 3020h, 5040h, 7060h, 9080h, BOAOh, DOCOh, FFEOh

12-83

FILL

Fill Array with Processed Pixels - XY

Syntax

Execution

Instruction
Words

Description

Implied
Operands

12-84

FILL XY
COLOR?1 pixels — pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo o o o 1t 1 1 1 1 1 1 0 0 0 0 O0f

FILL processes a set of source pixel values (specnfled by the COLOR1 reg-
ister) with a destination pixel array.

This instruction operates on a two-dimensional array of pixels using pixels
defined in the COLOR1 register. As the FILL proceeds, the source pixels
are combined with destination pixels based on the selected graphics oper-
ations.

Note that the XY parameter in the instruction syntax does not represent a
value or a register - it is entered as part of the instruction and identifies the
starting address of the pixel array as an XY address. That is, the instruction
is entered as FILL L,XY.

The following set of implied operands govern the operation of the in-
struction and define both the source pixels and the destination array.

B File Registers
Register Name Format Description
B21t DADDR XY Pixel array starting address
B3 DPTCH Linear Pixel array pitch
B4 OFFSET Linear Screen origin (address of 0,0)
B5 WSTART XY Window starting corner
B6 WEND XY Window ending corner
B7tt DYDX XY Pixel array dimensions (rows:columns)
B9 COLOR1 Pixel Fill color or 16-bit pattern
B10-B14t Reserved registers
1/0 Registers
Address Name Description and Elements (Bits)
C00000BOh | CONTROL | PP~ Pixel processing operations (22 options)
W -Window checking operation
T =Transparency operation
C0000140h | CONVDP XY-to-linear conversion (destination pitch)
C0000150h | PSIZE Pixel size (1,2,4,8,16)
C0000160h | PMASK Plane mask — pixel format

t Changed by FILL during execution.
 Used for common rectangle function with window hit operation (W=1).

Due to the pipelining of memory writes, the /ast 1/O register that you write
to may not, in some cases, contain the desired value when you execute the
FILL instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an in-
struction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

Fill Array with Processed Pixels - XY FILL

Destination
Array

Pixel
Processing

Window
Checking

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers. At the outset
of the instruction, DADDR contains the XY address of the pixel with the
lowest address in the array. It is used with OFFSET and CONVDP to cal-
culate the linear address of the starting location of the array. DPTCH con-
tains the linear difference in the starting addresses of adjacent rows of the
destination array (typically this is the screen pitch). DPTCH must be a
power of two (greater than or equal to 16) and CONVDP must be set to
correspond to the DPTCH value. CONVDP is computed by operating on
the DPTCH register with the LMO instruction; it is used for the XY calcu-
lations involved in XY addressing and window clipping. DYDX specifies
the dimensions of the destination array in pixels. The DY portion of DYDX
contains the number of rows in the array, while the DX portion contains the
number of columns. During instruction execution, DADDR points to the
next pixel (or word of pixels) to be modified in the destination array. When
the array transfer is complete, DADDR points to the linear address of the
pixel following the last pixel written. This is that pixel on the last row that
would have been written had the array transfer been wider in the X dimen-
sion.

Pixel processing can be used with this instruction. The PPOP field of the
CONTROL register specifies the pixel processing operation that is applied
to pixels as they are processed with the destination array. There are 16
Boolean and 6 arithmetic operations; the default case at reset is the rep/ace
(S = D) operation. Note that the destination data is read through the plane
mask and then processed. The 6 arithmetic operations do not operate with
pixel sizes of one or two bits per pixel. For more information, see Section
7.7, Pixel Processing, on page 7-15.

The window operations described in Section 7.10, Window Checking, on
page 7-27. can be used with this instruction. You can select window pick,
violation detect, or preclipping by setting the W bits in the CONTROL reg-
ister to 1, 2, or 3, respectively. Window pick modifies the DADDR and
DYDX registers to correspond to the common rectangle formed by the
destination array and the clipping window defined by WSTART and WEND.
DADDR is set to the XY address of the pixel with the lowest address in the
common rectangle, while DYDX is set to the X and Y dimensions of the
rectangle. If no window operations are selected, the WSTART and WEND
registers are ignored. At reset, no window operations are enabled.

Corner Adjust There is no corner adjust for this instruction. The direction of the FILL is

Transparency

Interrupts

fixed as increasing linear addresses.

You can enable transparency for this instruction by setting the T bit in the
CONTROL /0 register to 1. The TMS34010 checks for O (transparent)
source pixels after it processes the source data. At reset, the default case
for transparency is off.

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the FILL is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on At this time,
DPTCH and B10-B14 contain intermediate values. DADDR points to the
linear address of the next word of pixels to be modified after the interrupt
is processed.

12-85

FILL Fill Array with Processed Pixels - XY

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the FiLL cor-
rectly.

Plane Mask The plane mask is enabled for this instruction.

Shift Register
Transfers If the SRT bit in the DPYCTL register is set, each memory read or write in-
itiated by the FILL generates a shift register transfer read or write cycle at
the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.) See Section 9.10.2,
Video Memory Bulk Initialization, on page 9-28 for more information.
Machine
States See Section 13.3, FILL Instructions Timing.
Status Bits N Unaffected
C Unaffected
Z Unaffected
V 7 if a window violation occurs, 0 otherwise; unaffected if window
clipping is not enabled
Examples These FILL examples use the following implied operand setup.
Register File B: 1/0 Registers:
DADDR (B2) = 00520007h CONVDP = 0017h
DPTCH (B3) = 00000100h PSIZE = 0004h
OFFSET (B4) = 00010000h PMASK = 0000h
WSTART (B5) = 0030000Ch CONTROL = 0000h
WEND (B6) = 00530014h (W=00, T=0, PP=00000)
DYDX (B7) = 00030012h
COLOR1 (B9) = FFFFFFFFh
Assume that memory contains the following values before instruction exe-
cution.
Linear Data
Address
156200h 3210h, 7654h, BA98h, FEDCh, 3210h, 7654h, BAS8h, FEDCh
156300h 3210h, 7654h, BA98h, FEDCh, 3210h, 7654h, BA98h, FEDCh
15400h 3210h, 7654h, BA98h, FEDCh, 3210h, 7654h, BA98h, FEDCh
Example 1 This example uses the rep/ace (S = D) pixel processing opefation. Before
instruction execution, PMASK = 0000h and CONTROL = 0000h (T=0,
W=00, PP=00000).
After instruction execution, memory contains the following values:
Linear Data
Address

15200h 3210h, F654h, FFFFh, FFFFh, FFFFh, FFFFh, BASFh, FEDCh
156300h 3210h, F654h, FFFFh, FFFFh, FFFFh, FFFFh, BA9Fh, FEDCh
15400h 3210h, F654h, FFFFh, FFFFh, FFFFh, FFFFh, BA9Fh, FEDCh

12-86

Fill Array with Processed Pixels - XY FILL

Example 2

Example 3

XY Addressing

0000000000
0123456789

X Address
0000001111111111111111
ABCDEF0123456789ABCDEF
52 0123456FFFFFFFFFFFFFFFFFFO9ABCDEF
53 0123456FFFFFFFFFFFFFFFFFFO9ABCDEF

54 0123456FFFFFFFFFFFFFFFFFFO9ABCDEF

vueo=~oaP =<

This example uses the (D XOR S) — D pixel processing operation. Before
instruction execution, PMASK = 0000h and CONTROL = 2800h (T=0,
w=00, PP=01010).

After instruction execution, memory contains the following values:

X Address
0000001111111111111111
ABCDEF0123456789ABCDEF

0000000000
3456789

52 0123456876543210FEDCBA9879ABCDEF
53 0123456876543210FEDCBA9879ABCDEF

54 0123456876543210FEDCBA9879ABCDEF

w0 <

This example uses transparency, the (D subs §) = D pixel processing op-
eration. Before instruction execution, COLOR1 = 88888888h, PMASK =
0000h, and CONTROL = 4C20h (T=1, W=00, PP=10011).

After instruction execution, memory contains the following values:

X Address
0000001111111 111111111
ABCDEF0123456789ABCDEF

000000
4567889
62 01234567812345670123456789ABCDEF
53 01234567812345670123456789ABCDEF

54 01234567812345670123456789ABCDEF

veo~aar <

12-87

FILL Fill Array with Processed Pixels - XY

Example 4 This example uses window operation 3 - the destination is clipped. Before
instruction execution, PMASK = 0000h and CONTROL = 00COh (T=0,
W=11, PP=00000).

After instruction execution, memory contains the following values:

X Address
0000000000001T1T1111T1111111111
456789ABCDEF0123456789ABCDEF
62 0123456 789ABFFFFFFFFF56789ABCDEF
63 0123456 789ABFFFFFFFFF56789ABCDEF

564 0123456789ABCDEF0123456789ABCDEF

v o=soaadP <

Example 5 This example uses plane masking — the most significant bit is masked. Be-
fore instruction execution, PMASK = 8888h and CONTROL = 0000h
(T=0, W=00, PP=00000).

After instruction execution, memory contains the following values:

X Address
000000O1T71T1T111T1111111111
ABCDEF0123456789ABCDEF
52 0123456 7FFFFFFFF77777777F9ABCDEF
53 0123456 7FFFFFFFF77777777F9ABCDEF

564 0123456 7FFFFFFFF77777777F9ABCDEF

0000000000
0123456789

veoraad <

12-88

Get Program Counter into Register

GETPC

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

GETPC Rd
PC’ - Rd

12 11 10 9 8 7 6 5 4 3 2 1 0
o|R | Rd |

15 14 13
[0 0 0o 0o 0o o 0 1 0 1

GETPC increments the PC contents by 16 to point past the GETPC in-
struction, and copies the value into the destination register. Execution
continues with the next instruction. You can use GETPC with the EXGPC
and JUMP instructions for quick call on jump operations. You can also use
GETPC to access relocatable data areas whose position relative to the code
area is known at assembly time.

1.4

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before After

PC Al
GETPC Al 00001BDOh 00001BEOh
GETPC Al 00001C10h 00001C20h

12-89

GETST Get Status Register into Register
Syntax GETST Rd
Execution ST -» Rd
Instruction
Words 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0

[o 0o o o o o o 1 1t o O]|R]| Rd |
Description GETST copies the contents of the status register into the destination regis-

ter.

31302028272625242322212019 1817716 154 13121110 9 8 7 6 6 4 3 2 1 0
F
F&1 E Fso
— 0 ——
Status Register

Machine
States 1,4
Status Bits N Unaffected

C Unaffected

Z Unaffected

V Unaffected
Examples Code Before After

PC A1
GETST Al 20200010h 20200010h
GETST Al 00000010h 00000010h

12-90

Increment Register INC

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

INC Rd
Rd +1 - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 o 0o 1. 0 0 0 0 0 0 1|R] Rd |

INC adds 1 to the contents of the destination register and stores the result
in the destination register. This instruction is an alternate mnemonic for
ADDK 1,Rd.

You can accomplish multiple-precision arithmetic by using INC in con-
junction with the ADDC instruction.

N 7 if the result is negative, 0 otherwise
C 1 if there is a carry, 0 otherwise

Z 1 if the result is 0, O otherwise

V 7 if there is an overflow, O otherwise
C

ode Before After
Al A1l NCZV
INC Al 00000000h 00000001h 0000
INC Al 0000000Fh 00000010h 0000
INC Al FFFFFFFFh 00000000h 0110
INC Al FFFFFFFEh FFFFFFFFh 1000
INC Al 7FFFFFFFh 80000000h 1001

12-91

JAcc

Jump Absolute Conditional

Syntax JAcc Address
Execution If condition true, then Address = PC
If condition false, then go to next instruction
Instruction
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 0 0] code [T+ o o o o o0 0 O
16 LSBs of Address
16 MSBs of Address
Fields code is a 4-bit digit that identifies the condition for the jump within
the opcode. (See the condition codes table below.)
Dascription The JAcc instruction conditionally jumps to an absolute address. The cc
is part of a mnemonic that represents the condition for the jump; for exam-
ple, if cc is UC, then the instruction is JAUC. (See the condition mne-
~monics and codes listed below.) If the specified condition is true, the
TMS34010 jumps to the address and continues execution from that point.
If the specified condition is false, the TMS34010 skips the jump and con-
tinues execution at the next sequential instruction. Note that the lower four
bits of the program counter are set to O (word aligned).
The Address operand in the syntax represents the 32-bit absolute address.
Note that the second and third instruction words contain the address for the
jump.
The JAcc instructions are usually used in conjunction with the CMP and
CMPI instructions. The JAV and JANV instructions can also be used to
detect window violations or CPW status.
Condition
Codes Mnemonic Result of Compare Status Bits Code
Unconditional | JAUC - Unconditional don’t care 0000
Compares
Unsigned | JALO| - Dst lower than Src c 0001
Compares || (JAC)
JALS | JAYLE | Dst lower or same as Src cC+2Z 0010
JAHI [JAYGT| Dst higher than Src Cc-.2Z 0011
JAHS - Dst higher or same as Src C 1001
JANC
JAEQ - Dst = Src z 1010
(JAZ) =
JANE - Dst # Src 4 1011
(JANZ)| .
Signed]| JALT | JAXLE| Dst < Src (N V) +(N - V) 0100
Compares || JALE - Dst < Src (N-V+(N-V)Y+Z_ | 0110
JAGT| - Dst > Src (N-V-Z)y+(N-V-2Z)| 01
JAGE | JAXGT| Dst > Src (N-V)y+(N-V) 0101
JAEQ - Dst = Src 4 1010
(JAZ)
JANE| - Dst # Src Z 1011
(JANZ) .
Compare to || JAZ | JAYZ | Result = zero Z 0101
Zero || JANZ | JAYNZ| Result # zero _Z _ 1011
JAP - Result is positive N-2Z 0001
JAN | JAXZ | Result is negative N 1110
JANN|JAXNZ| Result is nonnegative N 1M1

12-92

Jump Absolute Conditional JAcc
Condition
Codes
(continued) Mnemonic Result of Compare Status Bits Code
General | JAZ | JAYZ | Result is zero r4 1010
Arithmetic || JANZ |JAYNZ| Result is nonzero 4 1011
JAC | JAYN | Carry set on result [} 1000
JANC {JAYNN| No carry on result C 1001
JAB - Borrow set on result C 1000
(JAC) —
JANB - No borrow on result C 1001
JANC
JAVT 1 JAXN | Overflow on result Vv 1100
JANVT|JAXNN]| No overflow on result Vv 1101

Note: A mnemonic code in parentheses is an alternate code for the preceding code.

t Also used for window clipping

+ Logical OR

- Logical AND

Logical NOT

Machine

States 3,6 (Jump)
4,7 (No jump)

Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples Cod Flags for Branch

NCZV NCZV NCzZV

JAUC HERE XXXX
JAP HERE OxOx
JALS HERE xx1x x1xx
JAHI HERE x00x
JALT HERE Oxx1 1xx0
JAGE HERE Oxx0 1xx1
JALE HERE Oxx1 1xx0 xx1x
JAGT HERE O0x00 1x01
JAC HERE xTxx
JANC HERE xOxx
JAZ HERE xg1x

Code

JAV
JANZ
JANN
JANV
JAN

JAB

JANB
JALO
JAHS
JANE
JAEQ

HERE
HERE
HERE
HERE
HERE
HERE
HERE
HERE
HERE
HERE
HERE

Flags for Branch

NCZV NCZV NCzV
xxx1
xx0x
Oxxx
xxx0
Txxx
x1xx
xO0xx
x1xx
x00x
xx0x
xx1x

xx1x

Note that the TMS34010 jumps when any one or more of the Flags for
Branch listed above are set as indicated.

12-93

JRcc

Jump Relative Conditional - +727 Words

Syntax JRcc Address
Execution If condition true, then offset + PC' - PC
If condition fa/se, then go to next instruction
Instruction
Words i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I 1 1 0 0 I code l offset AJ
Fields code is a 4-bit digit that identifies the condition for the jump within
the opcode. (See the condition codes table below.)
Description The JRcc instruction conditionally jumps to an address that is relative to the
current PC. The cc is part of a mnemonic that represents the condition for
the jump; for example, if cc is UC, then the instruction is JAUC. (See the
condition mnemonics and codes listed below.) |f the specified condition
is true, the TMS34010 jumps to a new location. The assembler calculates
the address of this location by adding the address of the next instruction
(PC’) to the signed word offset. The TMS34010 then continues execution
from this point. If the specified condition is false, the TMS34010 skip the
jump and continues execution at the next sequential instruction.
The Address operand in the syntax represents the 32-bit relative address.
The assembler calculates the offset as (Address - PC’)/16 and inserts the
resulting 8-bit offset into the opcode. The range for this form of the JRec
instruction is +127 words (excluding 0).
If the offset is outside the range of +127 words, the assembler automat-
ically substitutes the longer form of the JRcc instruction. If the offset is O,
the assembler substitutes a NOP instruction. The assembler does not ac-
cept an address which is externally defined or an address which is relative
to a different section than the PC. Note that the four LSBs of the program
counter are always O (word aligned).
The JRcc instructions are usually used in conjunction with the CMP and
CMPI instructions. The JRV and JRNYV instructions can also be used to
detect window violations or CPW status.
Condition
Codes Mnemonic Result of Compare Status Bits Code
Unconditional || JRUC - Unconditional don’t care 0000
Compares
Unsigned || JRLO - Dst lower than Src [} 0001
Compares || (JRC) :
JRLS | JRYLE| Dst lower or same as Src C+2 0010
JRHI [JRYGT| Dst higher than Src C-Z 0011
JRHS - Dst higher or same as Src C 1001
JRNC
JREQ - Dst = Src z 1010
(JRZ) =
JRNE - Dst # Src Z 1011
liiurnZ)

12-94

Jump Relative Conditional - +727 Words JRcc

Condition
Codes
(continued) Mnemonic Result of Compare Status Bits Code
Signed || JRLT |JRXLE| Dst < Src (N- V) +(N-V) 0100
Compares || JRLE - Dst < Src (N - V + (N - V) + + Z_ 0110
JRGT - Dst > Src (N-V- Z) +(N-V-2)|0111
JRGE | JRXGT| Dst > Src (N-V)+(N-V) 0101
JREQ - Dst = Src V4 1010
(JRZ) -
JRNE - Dst # Src 4 1011
(JRNZ)
Compare to | JRZ | JRYZ | Result = zero V4 0101
Zero || JRNZ |JRYNZ| Result # zero _Z_ 1011
JRP - Result is positive N-2Z 0001
JRN | JRXZ | Result is negative N 1110
JRNN|JRXNZ| Result is nonnegative N 1111
General | JRZ | JRYZ | Result is zero Z 1010
Arithmetic || JRNZ JRYNZ| Result is nonzero V4 1011
JRC | JRYN | Carry set on result C 1000
JRNC|JRYNN| No carry on result [} 1001
JRB - Borrow set on result C 1000
(JRC) ~
JRNB - No borrow on result C 1001
JRNC
JRVT | JRXN [Overflow on result \'4 1100
JRNVT|JRXNN| No overflow on result \Y 1101
Note: A mnemonic code in parentheses is an alternate code for the preceding code.
t Also used for window clipping
+ Logical OR
- Logical AND
Logical NOT
Machine
States 2,5 (Jump)
1,4 (No jump)
Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected
Examples Cod Flags for Branch Code Flags for Branch
NCZV NCZV NCzV NCZV NCzV NCzV
JRUC HERE XXXX JRC HERE x1xx
JRP HERE OxOx JRNC HERE x0xx
JRLS HERE xx1x x1xx JRZ HERE xx1x
JRHI HERE x00x JRNZ HERE xx0x
JRLT HERE Oxx1 1xxO0 JRV HERE xxx1
JRGE HERE Oxx0 1xx1 JRNV HERE xxx0
JRLE HERE Oxx1 1xx0 xx1x JRN HERE 1xxx
JRGT HERE 0x00 1x01 JRNN HERE Oxxx

Note that the TMS34010 jumps when any one or more of the Flags for
Branch listed above are set as indicated.

12-95

JRce

Jump Relative Conditional - +32K Words

Syntax JRcc Address
Execution If condition true, then offset + PC’' = PC
If condition false, then go to next instruction
Instruction
Words 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0} code | o o 0o o o o0 0 O
offset
Fields code is a 4-bit digit that identifies the condition for the jump within
the opcode. (See the condition codes table below.)
Description The JRcc instruction conditionally jumps to an address that is relative to the
current PC. The cc is part of a mnemonic that represents the condition for
the jump; for example, if cc is UC, then the instruction is JAUC. (See the
condition mnemonics and codes listed below.) If the specified condition
is true, the TMS34010 jumps to a new location. The assembler calculates
the address of this location by adding the address of the next instruction
(PC’) to the signed word offset. The TMS34010 then continues execution
from this point. If the specified condition is false, the TMS34010 skips the
jump and continues execution at the next sequential instruction.
The Address operand in the syntax represents the 32-bit relative address.
The assembler calculates the offset as (Address - PC')/16 and inserts the
resulting offset into the second instruction word of the opcode. The range
for this form of the JRcc instruction is -32,768 to +32,767 words (ex-
cluding 0).
If the offset is 0, the assembler substitutes a NOP instruction. If the address
is out of range, the assembler uses the JAcc instruction instead. The as-
sembler does not accept an address which is externally defined or an ad-
dress which is relative to a different section than the PC. Note that the four
LSBs of the program counter are always O (word aligned).
The JRce instructions are usually used in conjunction with the CMP and
CMPI instructions. The JRV and JRNV instructions can also be used to
detect window violations or CPW status.
Condition
Codes Mnemonic Result of Compare Status Bits Code
Unconditional | JRUC - Unconditional don’t care 0000
Compares
Unsigned || JRLO - Dst lower than Src C 0001
Compares || (JRC)
JRLS | JRYLE| Dst lower or same as Src cC+2 0010
JRHI |JRYGT| Dst higher than Src C-Z 0011
JRHS| - Dst higher or same as Src C 1001
JRNC
JREQ - Dst = Src z 1010
(JRZ) =
JRNE - Dst # Src z 1011
flurNZ)

12-96

Jump Relative Conditional - +32K Words JRcce

Condition
Codes
(continued) Mnemonic Result of Compare Status Bits Code
Signed || JRLT [JRXLE| Dst < Src (N-V)+(N-V) 0100
Compares || JRLE - Dst < Src (N-V+(N-V)+2Z 0110
JRGT - Dst > Src N-V-Z)+(N-V-2)]0111
JRGE | JRXGT| Dst > Src (N-V)+(N-V) 0101
JREQ - Dst = Src Z 1010
(JRZ) -
JRNE - Dst # Src z 1011
(JRNZ)
Compare to || JRZ | JRYZ Result = zero 2 0101
Zero || JRNZ | JRYNZ| Result # zero Z_ 1011
JRP - Result is positive N-Z 0001
JRN | JRXZ Result is negative N 1110
JRNN|JRXNZ| Result is nonnegative N 1111
General | JRZ | JRYZ | Resultis zero z 1010
Arithmetic || JRNZ |JRYNZ{ Result is nonzero z 1011
JRC | JRYN | Carry set on result [} 1000
JRNC |JRYNN/| No carry on result ol 1001
JRB - Borrow set on result Cc 1000
(JRC) =
JRNB - No borrow on result [} 1001
L JRNC
JRVT I JRXN | Overflow on result Vv 1100
JRNVTIJRXNN]| No overflow on result vV 1101
Note: A mnemonic code in parentheses is an alternate code for the preceding code.
t Also used for window clipping
+ Logical OR
~ Logical AND
Logical NOT
Machine
States 3,6 (Jump)
4,7 (No jump)
Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected
Examples Cod Flags for Branch Code Flags for Branch
NCZV NCZV NCczVv NCzZV NCzZV NCzV
JRUC HERE XXXX JRV HERE xxx1
JRP HERE OxOx JRNZ HERE xxO0x
JRLS HERE Xxx1x XxTxx JRNN HERE Oxxx
JRHI HERE x00x JRNV HERE xxx0
JRLT HERE Oxx1 1xx0 JRN HERE TxxXx
JRGE HERE Oxx0 1xx1 JRB HERE x1xx
JRLE HERE Oxx1 1xx0 xx1x JRNB HERE xOxx
JRGT HERE Ox00 1x01 JRLO HERE x1xx
JRC HERE x1Txx JRHS HERE x00x xx1x
JRNC HERE x0Oxx JRNE HERE xx0x
JRZ HERE Xxx1x JREQ HERE xXx1x

Note that the TMS34010 jumps when any one or more of the Flags for
Branch listed above are set as indicated.

12-97

JUMP

Jump Indirect

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

12-98

JUMP Rs
Rs - PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo o o o o o o0 1 0 1 1[R] Rs |

JUMP jumps to the address contained in the source register. The
TMS34010 sets the four LSBs of the program counter to O (word aligned).
This instruction can be used in conjunction with the GETPC and/or EXGPC
instructions.

2,5

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before After

Al PC PC
JUMP Al 00001EEOh 00555550h 00001 EECh
JUMP Al 00001 EE5h 00555550h 00001 EEOh
JUMP Al FFFFFFFFh 00555550h FFFFFFFOh

Line Draw with XY Addressing LINE

Syntax

Execution

Instruction
Words

Fields

Description

LINE {0, 1}

The two execution algorithms for the LINE instruction are explained below.
These algorithms are similar, varying only in their treatment of d=0.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fv+ 1 0o 1 1 1 1 1lzfo o 1 1 o 1 0]

The assembler sets bit 7 in the instruction word (the Z bit) to O or 1, de-
pending on which LINE algorithm you select:

Z2=0 selects algorithm 0
Z=1 selects algorithm 1

LINE performs the inner loop of Bresenham'’s line-drawing algorithm. This
type of line draw plots a series of points (x;,y;) either diagonally or laterally
with respect to the previous point. Movement from pixel to pixel always
proceeds in a dominant lateral direction. The algorithm may or may not also
increment in the direction with the smaller dimension (this produces a di-
agonal movement). Two XY-format registers supply the XY increment val-
ues for the two possible movements. The LINE instruction maintains a
decision variable, d, that acts as an error term, controlling movement in ei-
ther the dominant or diagonal direction. The algorithm operates in one of
two modes, depending on how the condition d=0 is treated.

During LINE execution, some portion of a line [(xq.yg)(x1.y1)] is drawn.
The line is drawn so that the axis with the largest extent has dimension a
and the axis with the least extent has dimension b. Thus, a is the larger (in
absolute terms) of y1 - yg or x1 - xg and b is the smaller of the two. This
means thata > b > 0.

The following values must be supplied to draw a line from (xg,yg) to
(x1.y1):

1) Set the XY pointer (x;y;) in the DADDR register to the initial value
of (x0.y0)-

2) Use the line endpoints to determine the major and minor dimensions
(a and b, respectively) for the line draw; then set the DYDX register
to this value (b:a).

3) Place the signed XY increment for a movement in the diagonal (or
minor) direction (d > 0 for Z=0, d > 0 for Z=1) in the INC1 register.

4) Place the signed XY increment for a movement in the dominant (or
major) direction (d < 0 for Z=0, d < 0 for Z=1) in the INC2 register.

5) Set the initial value of the decision variable in register BO to 2b - a.
6) Set the initial count value in the COUNT register to a + 1.

7) Set the LINE color in the COLOR1 register.

8) Set the PATTRN register to all 1s.

12-99

LINE

Line Draw with XY Addressing

Implied
Operands

12-100

The LINE instruction may use one of two algorithms, depending on the
value of Z:

Aigorithm 0 (Z=0):

While COUNT > 0
COUNT = COUNT -1
Draw the next pixel
Ifd>0
= d+ 2b-2a

POINTER = POINTER + INC1
Else d = d + 2b;

POINTER = POINTER + INC2

Algorithm 1 (Z=1):

While COUNT > 0
COUNT = COUNT -1
Draw the next pixel
fd>0
d=d+ 2b - 2a
POINTER = POINTER + INC1
Else d = d + 2b;
POINTER = POINTER + INC2

LINE 1 is commonly used to draw lines with decreasing y values; LINE O
is uLsed to draw lines with increasing y values. For horizontal lines, use FILL
or LINE O.

B File Registers
Register Name Format Description
BOt SADDR Integer | Decision variable, d
B2t DADDR XY Starting point (yj:x;), usually (yg:xg)
B4 OFFSET Linear Screen origin (0,0)
B5 WSTART XY Window starting corner
B6 WEND XY Window ending corner
B7 DYDX XY b:a minor:major line dimensions
B9 COLOR1 Pixel Pixel color to be replicated
B1ot COUNT Integer | Loop count
B11 INC1 XY Minor axis (diagonal) increment, INC1
B12 INC2 XY Major axis (dominant) increment, INC2
B13f PATTRN Pattern Future pattern register, must be set to all 1
B14 TEMP - Temporary register
I/0 Registers
Address Name Description and Elements (Bits)
C00000B0Oh | CONTROL | PP-Pixel processing operations
W = Window clipping operation
T -Transparency operation
C000014Gh | CONVDP XY-to-linear conversion (destination pitch)
C0000150h | PSIZE Pixel size (1,2,4,8,16)
C0000160h PMASK Plane mask — pixel format

t These registers are changed by instruction execution

Line Draw with XY Addressing LINE

Pixel
Processing

Window
Checking

Transparency

Plane Mask

Interrupts

Due to the pipelining of memory writes, the /ast I/0 register that you write
to may not, in some cases, contain the desired value when you execute the
LINE instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an in-
struction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

The PP field in the CONTROL 1/0 register specifies the operation to be
applied to the pixel as it is written. There are 22 operations; the default case
at reset is the pixel processing rep/ace (S = D) operation. For more infor-
mation, see Section 7.7, Pixel Processing, on page 7-15.

Window clipping or pick is selected by setting the W bits in the CONTROL
1/0 register to the appropriate value. The WSTART and WEND registers
define the window in XY-coordinate space.

Options include:

0 No window clipping. LINE draws the entire line. Neither the WVP or
V bit are affected. WSTART and WEND are ignored.

1 Window hit. The instruction calculates points but no pixels are actually
drawn. As soon as the pixel to be drawn lies inside the window, the
WVP bit is set, the V bit is cleared, and the instruction is aborted. At
this point, registers BO, B2, B10, B13, and B14 are set so as to draw
the next pixel in the line; BO is set to the value for the pixel beyond the
next pixel on the line. [f the line lies entirely outside the window, then
the WVP bit is not affected, the V bit in the status is set, and the in-
struction completes execution.

2 Clip and set WVP. LINE draws pixels until the pixel to be drawn lies
outside the window. At this point, the WVP bit is set, the V bit is set,
and the instruction is aborted. At this point, registers BO, B2, B10, B13,
and B14 are set so as to draw the next pixel in the line; BO is set to the
value for the pixel beyond the next pixel on the line. If the entire line
lies within the window, then the WVP bit is not affected, the V bit
is cleared and the instruction completes execution. The initial vaiue of
WVP does not affect instruction execution.

3 Clip. LINE calculates all the points, but only draws the points that lie
inside the window. The V bit tracks the state of the last pixel. If the
pixel was outside the window, V is set to 1; otherwise, it is 0. The in-
struction traverses the entire line.

The default case at reset is no window clipping. For more information, see
Section 7.10, Window Checking, on page 7-25.

You can enable transparency for this instruction by setting the T bit in the
CONTROL 1/0 register to-1. The TMS34010 checks for O (transparent)
source pixels after it processes the source data. At reset, the default case
for transparency is off.

The plane mask is enabled for this instruction.

LINE may be interrupted after every pixel in the line draw except for the last
pixel. If the instruction is interrupted, the PC is decremented by 16 to point
back to the LINE instruction (the one being executed) before the PC is

12-101

LINE

Line Draw with XY Addressing

Machine
States

12-102

pushed on the stack. Thus, the LINE instruction is resumed upon return
from the interrupt. In order for the LINE to be resumed correctly, any B-file
registers that are modified by the interrupting routine must be restored, and
the RETI instruction must be executed. Note that a LINE instruction that
is aborted because of window checking options 1 or 2 does not decrement
the PC before pushing it on the stack. In this case, the LINE is not resumed
after returning from the interrupt service routine.

The total LINE instruction timing is obtained by adding a setup time to a
transfer time:

LINE time = LINE setup time + LINE transfer time

(] LINE setup time is the overhead incurred from initiating the LINE
instruction. The setup sequence executes an initialization sequence,
performing any necessary setup operations and translations. The
setup time is always 4 machine states.

L The transfer sequence performs the actual data transfer from the
source register to the destination pixels. Table 12-10 shows LINE
transfer timing. LINE transfer timing may be influenced by window
and pixel processing operations; their affects are discussed in the list
that follows Table 12-10.

Table 12-10. LINE Transfer Timing

Window Option
3 w=1 W=2, Interrupt wW=3
Instruction w=0 (Off) Window Hit On Clip Clipping
LINE O (3+P)E 5g +5 (3+ P)ET (3+ P)E + bg
LINE 1 (3+P)E 5g +5 (3+ P)ET (3+ P)E + Bq
t Add 5 for a window violation
Key:
E Number of pixels written
g Number of pixels calculated, but not written
P Selected pixel processing operation

Although window operations affect the setup time of most instructions,
they are performed during transfer execution of the LINE instruction, af-
fecting it on a per-pixel basis. Window operations that affect the LINE in-
struction include:

° No window checking
® Window clip: V flag set, LINE aborted on first write outside window

® Window hit: WVP flag set, V flag cleared, abort LINE on first write
inside window

Pixel processing operations influence the LINE transfer timing. (The effects
of other graphics operations, such as plane masking and transparency, are
already included.) Pixel processing consumes 2, 4, 5, or 6 machine states
per pixel, depending on the operation selected. Table 12-11 shows the
effects of pixel processing on LINE timing.

Line Draw with XY Addressing

LINE

Table 12-11. Per-Word Timing Values for Pixel Processing (P)
Other ADDS,SUBS
Replace Boc:erSBs MAX or MIN SuUBS
2 4 5 6

Figure 12-11 illustrates timing for a LINE 0, drawing a line from (3h,52h)

to (19h,55h).

kkkkkkhkkhkhkhkhkhkhkhkhkhkhkhkhkdhkhhkhkkhkrhdhhkhhkhkhhhkhhkkhkkkhhkkdhx

* Implied operand setup for LINE example (assume *
* that B register and I/O register names are *

* equated with the proper registers) *
kkhkkkkkhkhkhkkhkhkhkkkkhkhkhkhkhkkhhkhdhkhkhdhdhhkhkdhdhhhkhkhkkhkhkhkkdkkkkkkx

MOVI OFFFFFFFOh, BO ; Decision variable d=2b-a=-16
MOVI 00520003h, B2 ; DADDR
MOVI 00000800h, B3 ; DPTCH (CONVDP=14)
MOVI 00000100h, B4 ; OFFSET
MOVI 00300003h, BS5 ; WSTART
MOVI 00550025h, B6 ; WEND
MOVI 00030016h, B7 ; b:a; b=3 and a=22
MOVI 44444444h, B9 ; COLOR1 (color of the line)
MOVI 00000017h, B10 ; COUNT (a+l)
MOVI 00010001h, B11l ; Diagonal increment (+1,+1)
MOVI 00000001h, Bl2 ; Nondiagonal increment (0,+1)
MOVI OFFFFFFFFh, B13 ; PATTRN (all 1s)
MOVI 00COh, A0
MOVE A0, Q@CONTROL ; W=3, T=0, PP=0,
CLR AQ
MOVE A0O, @PMASK ; No plane masking
Figure 12-11. Implied Operand Setup for LINE Timing Example
1/2:3:4:5:8i7:8:9:AIBICIDIEIF 10i11121314115/16117:18: 191A

:0N:N

gm

oo
;Do

Figure 12-12. LINE Timing Example

Follow these steps to determine the number of machine states consumed
by this LINE example:

1)
2)

The setup time for a LINE instruction is always 4 machine states.

Determine the transfer time. Transfer time comprehends window-

ing, the number of pixels drawn, and graphics operations.

a) Windowing:

is on for this LINE O instruction; as Table 12-10

shows, the transfer timing is (3+P)E + 5Q.

b)

Graphics operations: The pixel processing rep/ace operation has

been selected; according to Table 12-11, P=2.

12-103

LINE

Line Draw with XY Addressing .

Status Bits

12-104

c) Number of pixels drawn: Register B10 indicates the total num-
ber of pixels in the line (23). Since the line fits within the win-
dow, all pixels calculated are drawn; thus, £ = 23 and Q=0.

The total machine states required for this instruction are:

LINE time = LINE setup time + LINE transfer time
=4 + (3+P)E + 5Q
=4 + (3+2) x 23+ 0
= 119 states

119 states are needed to draw these 23 pixels.

The LINE instruction may be interrupted on any pixel boundary during the
transfer portion of the algorithm. The context of the LINE is saved in re-
served registers; the PC is decremented before it is pushed on the stack, so
that execution returns to the LINE opcode. This operation takes 20 ma-
chine states for the interrupt to be recognized. The time for the context
switch must be added; see the TRAP instruction for context switch timing.

N Undefined
C Undefined
Y4 Undefined

V Set depending upon window operation.

Line Draw with XY Addressing LINE

Linedraw Code

The following code segment shows setup and execution of the LINE in-
struction.

khkhkkhkhkhkkhkhkhkhkhhkhkhhkhkhhkhkhkhkhkhkhkhkhhkhkhhkhkdhkhdhhkhkhkhkhkhhkkhkrhhkhhkhkhhkhkhkkhkkikkhkk*x

* Draw a line from point (xs,ys) to point (xe,ye) using Bresenham's *
* algorithm. When _draw-line 1s called, xs is in the 16 LSBs of B2, *
s is in the 16 MSBs of B2, xe is in the 16 LSBs of BO, and ye is *

*

* in the 16 MSBs of BO.
(22 SR RS AR R RS R SRR R R R R SRR RS RR SRR R RS R RRRR SRR Rttt st R AR S S

.global _draw-line
—draw—line:
SUBXY B2, BO ; Calculate a and b

* Now set up B7 = (a,b) and B1ll = (dx-diag,dy-diag). Assume that
* 2 < 0 and b < 0; if a >= 0 or b >= 0, make corrections later.
* Register B1ll (INC1l) contains dy-diag::dx..diag

* Register B1l2 (INC2) contains dy-nondiag::dx nondiag

MOVI -1, Bl1l ; dx—diag = dy-diag - 1
MOVK 1, B12 ; Constant = 1
CLR B7
SUBXY BO, B7 ; B7 = (-a,-b)
JRNC L1l ; Jump if b < O
* Handle case where b >= O:
MOVY BO, B7 ; Make a in B7 positive
SRL 15, Bl1l ; Change dy--diag to +1
Ll:
JRNV L2 ; Jump if a < 0
* Handle case where a >= 0:
MOVX BO, B7 ; Take absolute value of a
MOVX B1l2, Bll ; Change dx—diag to +1
L2:
MOVX B11l, Bl2 ; dx-nondiag=dx—diag, dy-nondiag=0

* Compare magnitudes of a and b:

MOVE B7, ; Copy a and b

SRL 16, BO ; Move b into 16 LSBs
CMPXY BO, B7 ; Compare a and b
JRNV L3 ; Jump if a >= Db

* Handle case where a < b; must swap a and b so that a >= b:

MOVX B7, BO ; Copy b into BO

RL 16, B7 ; Swap a and b halves of B7

CLR B12

MOVY B11l, Bl2 ; dx-nondiag=0, dy-nondiag=dy-diag

* Calculate initial values of decision variable (d) and
* loop counter:

L3: ADD BO, BO ; BO=2 x b
MOVX B7, B1O ; B10 = a
SUB B10, BO ; BO=d (2 x b - a)
ADDK 1, B1O ; Loop count = a + 1 (in B10)
* Draw line and return to caller:
LINE 0 ; Inner loop of line algorithm
RETS 0 ; Return to caller

12-105

LINE

Line Draw with XY Addressing

Example 1

12-106

This example draws a line from (3,52) to (19,55). Window checking is off,
transparency and the pixel processing replace operation are selected, and
plane masking is disabled. Assume the following registers have been
loaded with these values:

BO = FFFFFFF1h Decision variabled = 2b - a = -156
B2 = 00520003h DADDR

B3 = 00000800h DPTCH (CONVDP=13)

B4 = 00000100h OFFSET

B5 = 00300003h WSTART

B6 = 00550025h WEND

B7 = 00030016h b:a; b=3 and a=22

B9 = 44444444h COLOR?1 (color of the line)
B10 = 00000017h COUNT (a+1)

B11 00010001h Diagonal increment (+1,+1)
B12 = 00000001h Nondiagonal increment (0,+1)
B13 = FFFFFFFFh PATTRN (all 1s)

This line is shown in Figure 12-13, represented by @®s.

Before LINE execution, DADDR contains the first pixel to be drawn. During
LINE execution, DADDR is updated so that it always points to the next
pixel to be drawn. After this example is completed, DADDR equals
0055001Ah. Register B7 contains the X and Y dimensions of the line.
Register B10 indicates the number of pixels that are drawn; if you want the
endpoint to be drawn (in this case, (19,65)), B10 should equal a+1.

B11 contains the XY increment for diagonal moves. You can see the line
progressing in a diagonal direction when it moves from (6,562) to (7,53); it
is incremented by 1 in both the X and the Y dimensions. B12 contains the
XY increment for nondiagonal moves. You can see the line progressing in
a nondiagonal direction when it moves from (3,52) to (4,62); it is incre-
mented by 1 in the X dimension.

61 0:1.2:8:4:5:6:7:8:9:AIBICiD: EiF H0:M1213:4 1516 117:18:11A
b2 eisisie KKK
53 sieieiereiel el R IKIXIXIN KX b=a
54 KX K K Heieieieiaele
28 XiXiXiX eieieie
&6
\ /
\'A
a=22

Figure 12-13. LINE Examples

Line Draw with XY Addressing LINE

Example 2

This example draws a line from (19,562) to (3,55). Window checking is off,
transparency and the pixel processing replace operation are selected, and
plane masking is disabled. Assume the following registers have been
loaded with these values:

BO = FFFFFFF1h Decision variable d = 2b - a = -15
B2 = 00520019h DADDR

B3 = 00000800h DPTCH (CONVDP=13)

B4 = 00000100h OFFSET

B5 = 00300003h WSTART

B6 = 00550025h WEND

B7 =00030016h b:a; b=3 and a=22
B9 =22222222h COLOR1 (color of the line)
B10 = 00000017h COUNT (a+1)

B11 = 0001FFFFh Diagonal increment (+1,-1)
B12 = O00OFFFFh Nondiagonal increment (0,-1)
B13 = FFFFFFFFh PATTRN (all 1s)

This line is shown in Figure 12-13, represented by Xs.

Before LINE execution, DADDR contains the first pixel to be drawn. During
LINE execution, DADDR is updated so that it always points to the next
pixel to be drawn. After this example is completed, DADDR equals
00550002h. Register B7 contains the X and Y dimensions of the line.
Register B10 indicates the number of pixels that are drawn; if you want the
endpoint to be drawn (in this case, (3,65)), B10 should equal a+1.

B11 contains the XY increment for diagonal moves. You can see the line
progressing in a diagonal direction when it moves from (F,53) to (E,54); it
is decremented by 1 in the X dimension and incremented by 1 in the Y di-
mension. B12 contains the XY increment for nondiagonal moves. You can
see the line progressing in a nondiagonal direction when it moves from
(14,53) to (13,53); it is decremented by 1 in the X dimension.

12-107

LMO Find Leftmost One
Syntax LMO Rs, Rd
Execution 31 - (bit number of leftmost 1 in Rs) — Rd
Instruction
Words % 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
f[o 1 1 0 1 o 1} Rs | r | Rd |
Description LMO locates the leftmost (most significant) 1 in the source register. It then
loads the 1s complement of the bit number of the leftmost-1 bit into ttie
five LSBs of the destination register. The 27 MSBs of the destination reg-
ister are loaded with Os. Bit 31 of Rs is the MSB (leftmost) and bit O is the
LSB. If the source register contains all Os, then the destination register is
loaded with all Os and status bit Z is set.
You can normalize the contents of the source register by following the LMO
instruction with an RL Rs,Rd instruction, where Rs is the destination reg-
ister of the LMO instruction and Rd is the source register.
Rs and Rd must be in the same register file.
Machine
States 1.4
Status Bits N Unaffected
C Unaffected
Z 1 if the source register contents are 0, 0 otherwise
V Unaffected
Examples Code Before After
A0 NCzZV A1
LMO AO,Al 00000000h XX1x 00000000h
LMO AO,Al 00000001h xx0x 0000001Fh
LMO AO,Al 00000010h xx0x 0000001 Bh
LMO AO,Al 08000000h xx0x 00000004h
LMO AO,Al 80000000h xx0x 00000000h

12-108

Move Multiple Registers from Memory MMFM

Syntax

Execution

Instruction
Words

Description

or

MMFM Rp, register list

For each register Rn in the register list,
32 bits of data at the address specified in Rp = Rn
Rp + 32 - Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o 0 0 0 1 0 0 1 1 0 1]|R| Rs

binary representation of the register list

MMFM loads the contents of a specified list of either A or B file registers
(not both) from a block of memory.

{ The Rp operand is a register that points to the first location in the
block of memory.

{ The register list is a list of registers separated by commas (such as AQ,
A1, A9). These are the registers that MMFM loads new values into.

The MMTM and MMFM instructions are “stack” instructions for storing
multiple registers in memory and then retrieving their values. Both in-
structions use Rp as a "stack pointer” that contains the bit address of the
top of the stack. The stack grows toward lower addresses so that the bot-
tom of the stack is the highest address in the stack. MMTM stores the re-
gisters in memory. MMFM reverses the action of the MMTM instruction
by “popping” register values from memory. At the outset of the MMFM
instruction, Rp must contain the address of the 16 LSBs of the highest or-
der register in the list. The LSW is moved into the register, and then the
contents of the next consecutive word are moved into the MSW of the re-
gister. After a register is “popped”, the contents of Rp are incremented by
32 to point to the address of the LSW of the next register to be restored.

Rp and the registers in the list must all be in the same register file. The re-
gisters in the list can be specified in any order; the highest order register is
always restored first (that is, the value at the top of the stack - the lowest
address in the stack - is loaded into the highest order register). Don't in-
clude Rp as one of the registers in the register list, because this produces
unpredictable results. The original contents of Rp should be aligned on a
word-boundary; the alignment of Rp affects the instruction timing as indi-
cated in Machine States, below.

The second word of the MMFM instruction is a binary-mask representation
of the registers in the list. The R bit (bit 4) in the first word indicates which
register file is affected; the bits that are set to 1 in the mask indicate which
registers are restored. The bit assignments in the mask are:

SPIA141A131A12]A11]A10] A9 | A8 | A7 A6 | AB | Ad| A3 | A2} A1 | AO

SP|B14(B13|B12[{B11]B10{ B9 | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | BO

15(MSB) o(LSB)

12-109

MMFM Move Multiple Registers from Memory
Machine
States Cache Enabled Cache Disabled

Status Bits

Examples

12-110

Rp Aligned: 3+4n+(2)
Rp Nonaligned: 3 + 6n + (4)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

11 + 4n
13 + 6n

This example restores several B-file registers:
MMFM BO,B1,B2,B3,B7,B12,B13,B14,SP

This instruction uses register BO as the stack pointer. Assume that BO =
00010000h; this is the address of the top of the stack. MMFM moves the
data at this location into the LSW of the SP (which is the highest order
register listed in this example). Assume that memory contains the following

values before instruction execution:

Address Data Address Data
000100FOh 1111h 00010070h CCCCh
000100EOh 01B1h 00010060h BCBCh
000100D0Oh 2222h 00010050h DDDDh
000100COh 0B2B2h 00010040h BDBDh
000100BOh 3333h 00010030h EEEEh
000100A0h 03B3h 00010020h BEBEh
00010090h 7777h 00010010h FFFFh
00010080h B7B7h 00010000h BFBFh

After the MMFM instruction is executed, the registers in the list have the
following values:

BO = 00010100h
B1 =1111B1B1h
B2 = 2222B2B2h
B4 = 3333B3B3h
B8 = 7777B7B7h

The other B-file registers (which weren’t specified in the register list) are
not affected by this instruction. Note that BO now contains the value
10100h; the last part of the data that was restored was for B1, and BO
points to the word past that data.

B12 = CCCCBCBCh
B13 = DDDDBDBDh
B14 = EEEEBEBEh
SP = FFFFBFBFh

Move Multiple Registers to Memory

MMTM

Syntax

Execution

Instruction
Words

Description

or

MMTM ARp, register list

For each register Rnin the register list,
Rp-32->Rp
32 bits of data at the address specified in Rn = Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0 0 0o 1 0 0 1 1 0 OfR]| Rd

binary representation of the register list

MMTM stores the contents of a specified list of either A or B file registers
(not both) in memory.

(] The Rp operand is a register that points to the first location in a block
of memory.
® The register list is a list of registers that are separated by commas

(such as A0, A1, A9). These are the registers that MMTM stores in
memory.

The MMTM and MMFM instructions are "stack” instructions for storing
multiple registers in memory and then retrieving their values. Both in-
structions use Rp as a ”“stack pointer” that contains the bit address of the
top of the stack. The stack grows toward lower addresses so that the bot-
tom of the stack is the highest address in the stack. MMTM stores the re-
gisters in memory. Before a register’s contents are “pushed” onto the stack,
the Rp is decremented by 32 bits; the register is then pushed, LSW first.
Thus, at the outset of the MMTM instruction, Rp must contain an incre-
mented value. This value is the address where you want to store the LSW
of the lowest-order register, plus 32 bits; this assures that Rp is predecre-
mented to point to the correct location in memory.

When MMTM execution is complete, the contents of the lowest-order reg-
ister in the list reside at the highest address in the memory “stack,” and Rp
points to the address of the highest-order register in the list.

Rp and the registers in the list must all be in the same register file. The re-
gisters in the list can be specified in any order; the lowest order register is
always saved first. Don’t include Rp as one of the registers in the register
list, because this produces unpredictable results. The original contents of
Rp should be aligned on a word boundary; the alignment of Rp affects the
instruction timing as shown in Machine States, below.

The second word of the MMFM instruction is a binary-mask representation
of the registers in the list. The R bit (bit 4) in the first word indicates which
register file is affected; the bits that are set to 1 in the mask indicate which
registers are restored. The bit assignments in the mask are:

Ao A1 A2 A3 a4 a5] a6 [A7] as [Ag [ato]at1]a12[a13]a14] sp
BO|B1|B2|B3|B4|B5|B6|B7|B8|BY|B10|B11|B12|B13|B14|SP
15(MSB) 0(LSB)

1211

MMTM

Move Multiple Registers to Memory

Machine
States

Status Bits

Examples

12-112

Cache Enabled Cache Disabled
Rp Aligned: 2+ 4n + (2) 8+4n + 2
Rp Nonaligned: 2 + 10n + (8) 10(n + 1)

N Set to the sign of the result of 0 - Rp. (This value is typically 1 if the
original contents of Rp are positive; otherwise, it is 0. The only ex-
ceptions to this are when Rp=80000000h, N is set to 0, and when
Rp=0, N is set to 1.)

C Unaffected

Z Unaffected

V Unaffected

This example saves the values of several A-file registers in memory:
MMTM Al,A0,A2,A4,A8,A12,A13,A14,SP

This instruction uses register A1 as the stack pointer. Assume that A1 =
100000h before instruction execution; this value is decremented by 32 to
point to the address where the contents of AQO (the lowest order register in
the list) are stored. Assume that the registers in the list contain the fol-
lowing values before instruction execution:

A0 = 0000A0AOh A12 = CCCCACACh
A2 = 2220A2A2h A13 = DDDDADADhN
A4 = 4444A4A4hK A14 = EEEEAEAEh

A8 = 8888A8A8h SP = FFFFAFAFh
MMTM saves these register values in memory as shown below:
Address Data Address Data
O00OFFFOOh AFAFh OOOFFF80h A8A8h
O00FFF10h FFFFh 000FFF90h 8888h
O00FFF20h AEAEh 000FFFAOh A4A4h
O000FFF30h EEEEh O0OFFFBOh 4444h
O00FFF40h ADADh O0OOFFFCCh A2A2h
000FFF50h DDDDh 000FFFDOh 2222h
O00FFF60h ACACh O0OFFFEOh AOAOh
000FFF70h CCCCh O000FFFFOh 0000h

After instruction execution, register A1 = O00FFFOOh. Note that A1 now
contains the value OFFFQOh; this is the address of the last portion of register
data that is saved.

Modulus - Signed MODS

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

MODS As, Rd
Rd mod Rs = Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 17 1 0 1 1 of Rs [r] Rd |

MODS performs a 32-bit signed divide of the 32-bit dividend in the desti-
nation register by the 32-bit value in the source register, and returns a
32-bit remainder in the destination register. The remainder is the same sign
as the dividend. The original contents of the destination register are always
overwritten.

Rs and Rd must be in the same register file.

40,43 (normal case)
41,44 if result = 80000000
36ifRs =0

Unaffected

Unaffected

Unaffected if RS=0, 7 if quotient is 0, 0 otherwise

7 if the quotient overflows (cannot be represented by 32 bits), 0 oth-
erwise

<NOZz

The following conditions set the overflow flag:

[] The divisor is O
[The quotient cannot be contained within 32 bits

Code Before After
A0 A1l NCzZV A0

MODS AO,Al 00000000h 00000000h 0Ox01 00000000h
MODS AO0,Al 00000000h 00000007h 0Ox01 00000007h
MODS AO,Al 00000000h FFFFFFF9h Ox01 FFFFFFF9h
MODS AO0,Al 00000004h 00000008h 0x10 00000000h
MODS AO,Al 00000004h 00000007h 0x00 00000003h
MODS AO,Al 00000004h 00000000h 0Ox10 00000000h
MODS AO,Al 00000004h FFFFFFF9h 1x00 FFFFFFFDh
MODS AC,Al 00000004h FFFFFFF8h 0x10 00000000h
MODS AO,Al FFFFFFFCh 00000008h 0x10 00000000h
MODS A0,Al FFFFFFFCh 00000007h 0x00 00000003h
MODS A0,Al FFFFFFFCh 00000000h 0x10 00000000h
MODS AO,Al FFFFFFFCh FFFFFFFOh 1x00 FFFFFFFDh
MODS A0,Al FFFFFFFCh FFFFFFF8h 0Ox10 00000000h

12-113

MODU

Modulus - Unsigned

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

12-114

MODU Rs, Rd
Rd mod Rs = Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[o 1 1 o 1 1 1] Rs | r | Rd |

MODU performs a 32-bit unsigned divide of the 32-bit dividend in the
destination register by the 32-bit value in the source register, and returns a
32-bit remainder in the destination register. The original contents of the
destination register are always overwritten.

Rs and Rd must be in the same register file.

35,38
36ifRs =0

N Unaffected

C Unaffected

Z Unaffected if RS=0, 7 if quotient is O, 0 otherwise
V 7 if divisor Rs equals 0, 0 otherwise

Code Before After
A0 A1 NCzV A1l

MODU AO,Al 00000000h 00000000h xx01 00000000h
MODU AO,Al 00000000h 00000007h xx01 00000007h
MODU AO,Al 00000000h FFFFFFFSh xx01 FFFFFFF9h
MODU AO,Al 00000004h 00000008h xx10 00000000h
MODU AO,Al 00000004h 00000007h xx00 00000003h
MODU AO,Al 00000004h 00000000h xx10 00000000h
MODU AO,Al 00000004h FFFFFFF9h xx00 00000001 h

Move Byte - Register to Indirect

MOVvB

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

MOVB Rs, *Rd
8 LSBs of Rs — *Rd

3 2 1 0

1514 13 12 11 10 9 8 7 6 5 4
[r] R |

[1 0o o o 1 1 of Rs

MOVB moves a byte from the source register to the memory address con-
tained in the destination register. The source operand byte is right justified
in the source register; only the 8 LSBs of the register are moved. The me-
mory address is a bit address and the field size for the move is 8 bits.

Rs and Rd must be in the same register file.

1+(3),7 (when the destination address is aligned on a byte boundary)
For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains the following values before instruction exe-
cution:

Address Data
5000h 0000h
5010h 0000h
Code Before After

A0 A1 @5000h @5010h
MOVB AO,*Al 89ABCDEFh 00005000h OOEFh 0000h
MOVB AO, *Al 89ABCDEFh 00005001h O01DEh 0000h
MOVB AQ, *Al 89ABCDEFh 00005009h ODEOOh 0001h
MOVB AQ,*Al 89ABCDEFh 0000500Ch FOOOh 000Eh

12-115

MovB Move Byte - Register to Indirect with Offset

Syntax MOVB Rs, *Rd(offset)

Execution 8 LSBs of Rs — *Rd + offset

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

10 1 0 1 0| Rs | R | Rd
offset

Description MOVB moves a byte from the source register to the destination memory
address. The source operand byte is right justified in the source register;
only the 8 LSBs of the register are moved. The destination memory address
is a bit address and is formed by adding the contents of the specified reg-
ister to the signed 16-bit offset. This is a field move, and the field size for
the move is 8 bits.
Rs and Rd must be in the same register file.

Machine

States 3+(3).9 (when the destination address is aligned on a byte boundary)

Status Bits

Examples

12-116

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains the foliowing values before instruction exe-

cution:

Address Data
10000h 0000h
10010h 0000h
Code

MOVB AO,*A1(0)
MOVB AO,*Al1(1)
MOVB AO,*Al1(9)

MOVB AQ,*Al1(12)
MOVB AO0,*A1(32767)
MOVB AO,*A1(-32768)

Before

A0

89ABCDEFh
89ABCDEFh
89ABCDEFh
89ABCDEFh
89ABCDEFh
89ABCDEFh

After
Al @10000h @10010h
00010000h00EFh 0000h
00010000h01DEh 0000h
00010000h DEOOh 0001h
00010000h FOOOh OO0OEh
00008001h00EFh 0000h
00018000h00EFh 0000h

Move Byte - Register to Absolute

MOVB

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

MOVB Rs, *DAddress
8 LSBs of'Rs — DAddress

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0o 0 0 0 0 1 0 1 1 1 1]|R]| Rs

16 LSBs of destination address

16 MSBs of destination address

MOVB moves a byte from the source register to the destination memory
address. The source operand byte is right justified in the source register;
only the 8 LSBs of the register are moved. The specified destination mem-
ory address is a bit address and the field size for the move is 8 bits.

Rs and Rd must be in the same register file.

1+(3),7 (when the destination address is aligned on a byte boundary)
For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains the following values before instruction exe-
cution:

Address Data
5000h 0000h
5010h 0000h
Code Before After

AO @5000h @5010h
MOVB A0,@5000h 89ABCDEFh 00EFh 0000h
MOVB A0,@5001h 89ABCDEFh 01DEh 0000h
MOVB A0, @5009h 89ABCDEFh DEOOh 0001h
MOVB AO0,@500Ch 89ABCDEFh FOOOh 000Eh

12-117

MovB Move Byte - Indirect to Register

Syntax MOVB *Rs, ARd

Execution byte at *Rs — Rd

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o o 1 1t 1] Rs [r] Rd |

Description MOVB moves a byte from the memory address contained in the source re-
gister to the destination register. The source memory address is a bit ad-
dress and the field size for the move is 8 bits. When the byte is moved into
the destination register, it is right justified and sign extended to 32 bits.
This instruction also performs an implicit compare to 0 of the field data.
Rs and Rd must be in the same register file.

Machine

States 3,6 (when the source data is aligned on a byte boundary)

Status Bits

Examples

12-118

For other cases, see MOVE and MOVB instructions Timing, Section 13.2.

N 7 if the sign-extended data moved into register is negative, 0 otherwise
C Unaffected

Z 1 if the sign-extended data moved into register is 0, 0 otherwise

vV 0

Assume that memory contains the following values before instruction exe-
cution:

Address Data
5000h OOEFh
5010h 89ABh
Code Before After

A0 A1l NCzVv
MOVB *A0,Al 00005000h FFFFFFEFh 1x00
MOVB *A0,Al 00005001h 00000077h 0x00
MOVB *A0,Al 00005008h 00000000h 0x10
MOVB *A0,Al 0000500Ch FFFFFFBOh 1x00

Move Byte - Indirect to Indirect MOVB

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

MOVB *Rs, *Rd
byte at *Rs -+ *Rd

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t 0o o 1 1 1 of Rs | R | Rd [

MOVB moves a byte from the source memory address to the destination
memory address. The source address is specified by the contents of Rs, and
the destination address is specified by the contents of Rd. Both memory
addresses are bit addresses and the field size for the move is 8 bits.

Rs and Rd must be in the same register file.

3+(3),7 (when the source data and destination address are aligned on byte
boundaries)

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains the following values before instruction exe-
cution:

Address Data
5000h CDEF
5010h 89AB
6000h 0000
6010h 0000
Code Before After

AO A1 @6000h @6010h
MOVB *A0,*Al 00005000h 00006000h OOEFh 0000h
MOVB *A0, *Al 00005000h 00006001h 01DEh 0000h
MOVB *AQ,*Al 00005000h 00006009h DEOOh 0001h
MOVB *A0Q, *Al 00005000h 0000600Ch FOOOh 000Eh
MOVB *A0, *Al 00005001h 00006000h OOF7h 0000h
MOVB *A0,*Al 00005001h 00006001h O1EEh 0000h
MOVB *A0, *Al 00005001 h 00006009h EEOOh 0001h
MOVB *A0, *Al 00005001h 0000600Ch 7000h 000Fh
MOVB *A0, *Al 00005009h 00006000h OOE6h 0000h
MOVB *A0, *Al 00005009h 00006001h 01CCh 0000h
MOVB *AO, *Al 00005009h 00006009h CCOOh 0001h
MOVB *A0, *Al 00005009h 0000600Ch 6000h 000Eh
MOVB *A0,*Al 0000500Ch 00006000h 00BCh 0000h
MOVB *A0, *Al 0000500Ch 00006001h 0178h 0000h
MOVB *A0, *Al 0000500Ch 00006009h 7800h 0001h
MOVB *A0,*Al 0000500Ch 0000600Ch CO0Oh 000Bh

12-119

MovB Move Byte - Indirect with Offset to Register

Syntax MOVB *Rs(offset), Rd

Execution byte at (*Rs + offset) = Rd

Instruction

Words 1% 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O

1t 0 1t o 1 1 1] Rs IR | Rd
offset

Description MOVB moves a byte from the source memory address to the destination
register. The source memory address is a bit address and is formed by ad-
ding the contents of the specified register to the signed 16-bit offset. The
field size is 8 bits. When the byte is moved into the destination register, it
is right justified and sign extended to 32 bits. This instruction also performs
an implicit compare to 0 of the field data.
Rs and Rd must be in the same register file.

Machine

States 5,11 (when the source data is aligned on a byte boundary)

Status Bits

Examples

12-120

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N 7 if the sign-extended data moved into register is negative, 0 otherwise
C Unaffected

Z 1 if the sign-extended data moved into register is 0, 0 otherwise

vV 0

Assume that memory contains the following values before instruction exe-
cution:

Address Data
10000h O0OEFh
10010h 89ABhH
Code Before After

A0 Al NCzZV
MOVB *A0(0),Al 00010000h FFFFFFEFh 1x00
MOVB *A0(1),Al 00010000h 00000077h 0x00
MOVB *A0(8),Al 00010000h 00000000h 0x10
MOVB *A0(12),Al 00010000h FFFFFFBOh 1x00
MOVB *A0(32767) ,Al 00008001h FFFFFFEFh 1x00
MOVB *A0(-32768),Al 00018000h FFFFFFEFh 1x00

Move Byte - Indirect with Offset

to Indirect with Offset MOVvB
Syntax MOVB *Rs(SOffset), *Rd(DOffset)
Execution byte at (*Rs + SOffset) — (*Rd + DOffset)
Instruction
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 1 0] Rs [R | Rd
source offset
destination offset
Description MOVB moves a byte from the source memory address to the destination
memory address. Both the source and destination memory addresses are
bit addresses and are formed by adding the contents of the specified regis-
ter to its respective signed 16-bit offset. The field size is 8 bits.
Rs and Rd must be in the same register file.
Machine
States 5+(3),9 (when the source data and destination address are aligned on byte

Status Bits

boundaries)

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-121

Move Byte - Indirect with Offset

MovB to Indirect with Offset
Examples Assume that memory contains the following values before instruction exe-

cution:

Address Data

10000h CDEFh

10010h 89ABh

11000h 0000h

11010h 0000h
Code Before After

A0 A1 @11000h @11010h

MOVB *A0(0),*A1(0) 00010000h 00011000h OOEFh 0000h
MOVB *A0(0),*Al(1) 00010000h 00011000h 01DEh 0000h
MOVB *A0(0),*A1(9) 00010000h 00011000h DEOOh 0001h
MOVB *A0(0),*A1(12) 00010000h 00011000h FOOOh 000Eh
MOVB *A0(0),*A1(32767) 00010000h 00009001h OOEFh 0000h
MOVB *A0(0),*Al(-32768) 00010000h 00019000h OOEFh 0000h
MOVB *A0(12),*A1(0) 00010000h 00011000h OOBCh 0000h
MOVB *A0(12),*Al1(1) 00010000h 00011000h 0178h 0000h
MOVB *AO(12),*A1(9) 00010000h 00011000h 7800h 0001h
MOVB *A0(12),*Al(12) 00010000h 00011000h COQOOh 000Bh
MOVB *A0(12),*Al1(32767) 00010000h 00009001h 00BCh 0000h
MOVB *A0(12),*Al(-32768) 00010000h 00019000h OOBCh 0000h
MOVB *A0(32767),*A1(0) 00008001h 00011000h OOEFh 0000h
MOVB *A0(32767),*A1(1) 00008001h 00011000h 01DEh 0000h
MOVB *A0(32767),*A1(9) 00008001h 00011000h DEOOh 0001h
MOVB *A0(32767),%*A1(12) 00008001 h 00011000h FOOOh 000Eh
MOVB *A0(32767),*A1(32767) 00008001h 00009001h OOEFh 0000h
MOVB *A0(32767),*A1(-32678) 00008001h 00019000h OOEFh 0000h
MOVB *A0(-32768),*A1(0) 00018000h 00011000h OOEFh 0000h
MOVB *A0(-32768),*A1(1) 00018000h 00011000h 01DEh 0000h
MOVB *A0(-32768),*A1(9) 00018000h 00011000h DEOGCHh 0001h
MOVB *A0(-32768) ,*A1(12) 00018000h 00011000h FOOOh 000Eh
MOVB *A0(-32768),*A1(32767) 00018000h 00009001h OOEFh 0000h
MOVB *A0(-32768) ,*Al(-32678) 00018000h 00019000h OOEFh 0000h

12-122

Move Byte - Absolute to Register MOVB

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

MOVB @SAddress, Rd
byte at SAddress = Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o 0 0 0 0 1 1 1 1 1 1[rR] Rd

16 LSBs of source address

16 MSBs of source address

MOVB moves a byte from the source memory address to the destination
register. The specified source memory address is a bit address and the field
size for the move is 8 bits. When the byte is moved into the destination
register, it is right justified and sign extended to 32 bits. This instruction
also performs an implicit compare to O of the field data.

Rs and Rd must be in the same register file.

5,14 (when the source data is aligned on a byte boundary)
For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N 7 if the sign-extended data moved into register is negative, 0 otherwise
C Unaffected

Z 1 if the sign-extended data moved into register is 0, O otherwise

vV 0

Assume that memory contains the following values before instruction exe-
cution:

Address Data
10000h Q0EFh
10010h 89ABh
Code After

A1l NCZV
MOVB @10000h,Al FFFFFFEFh 1x00
MOVB @10001h,Al 00000077h 0x00
MOVB @10008h,Al 00000000h Ox10
MOVB @1000Ch,Al FFFFFFBOh 1x00

12-123

MOVB

Move Byte - Absolute to Absolute

Syntax

Execution

Instruction
Words

Description
Machine

States

Status Bits

Examples

12-124

MOVB @SAddress, @DAddress
byte at SAddress — DAddress

1% 14 13 12 11 10 9 8 7 6 6 4 3 2 1 O

o 0 o0 O o o0 1 1 o 1 0o 0 0 o0 o0 o0

16 LSBs of source address

16 MSBs of source address

16 LSBs of destination address

16 MSBs of destination address

MOVB moves a byte from the source memory address to the destination
memory address. Both the source and destination addresses are interpreted
as bit addresses and the field size for the move is 8 bits.

7+(3),25 (when the source data and destination address are aligned on
byte boundaries)

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains the following values before instruction exe-
cution:

Address Data
10000h CDEFh
10010h 89ABh
11000h 0000h
11010h 0000h

Move Byte - Absolute to Absolute

Mmovs

MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB

@10000h,@11000h
@10000h,@11001h
@10000h,@11008h
@10000h,@1100Ch
@10001h,@11000h
@10001h,@11001h
@10001h,@1100%h
@10001h,@1100Ch
@10009h,@11000h
@1000%h,@11001h
@10009h,@1100%h
@10009h,@1100Ch
@1000Ch,@11000h
@1000Ch,@11001h
@1000Ch,@1100%h
@1000Ch,@1100Ch

After

@11000h
00EFh
01DEh
DEOOh
FOOOh
O00F7h
O1EEh
EEOOh
7000h
00E6h
01CCh
CCOOh
6000h
00BCh
0178h
7800h
C000h

@11010h
0000h
0000h
0001h
000Eh
0000h
0000h
0001h
000Fh
0000h
0000h
0001h
000Eh
0000h
0000h
0001h
000Bh

12-125

MOVE Move - Register to Register

Syntax MOVE Rs, Rd

Execution Rs - Rd

Instruction

Words 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1 0 0o 1 1]m] Rs [R | Rd |

Description MOVE moves the 32 bits of data from the source register to the destination
register. Note that this is not a field move; therefore, the field size has no
effect. The source and destination registers can be any of the 31 locations
in the on-chip register file. Note that this is the only MOVE instruction that
allows the source and destination registers to be in different files. This in-
struction also performs an implicit compare to O of the register data.

Fields The assembler sets bit 9 (the M bit) in the instruction word to specify
whether the move is within a register file or if it crosses the register files.
The assembler sets M to O if the source and destination registers are in the
same file; it sets M to 1 if the registers are in different files.
The assembiler sets bit 4 (the R bit) in the instruction word to specify which
file the registers are in. The assembler sets R to O if the registers are in file
A; it sets R to 1 if the registers are in file B.
Note that when M=0, R specifies the register file for both registers; if M=1,
R specifies the register file for the source register

Machine

States 1.4

Status Bits N 7 if the 32-bit data moved is negative, 0 otherwise
C Unaffected
Z 1 if the 32-bit data moved is 0, O otherwise
v 0

Examples Code Before After

AO A1 B1 NCzv

MOVE AO,Al O0O00FFFFh O000FFFFh xxxxxxxxh 0x00
MOVE AO,Al 00000000h 00000000h xxxxxxxxh 0x10
MOVE AO,Al FFFFFFFFh FFFFFFFFh xxxxxxxxh 1x00
MOVE AO,Bl 0000FFFFh xxxxxxxxh O0000FFFFh 0x00
MOVE AO,BLl 00000000h xxxxxxxxh 00000000h 0x10
MOVE AO,Bl FFFFFFFFh xxxxxxxxh FFFFFFFFh 1x00

12-126

Move Field - Register to Indirect

MOVE

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

MOVE Rs, *Rd [, F]
field in Rs = *Rd

3 2 1 O

10 9 8 7 6 5 4
[r R |

ol F | Rs

15 14 13 12 1"

[1 0o o o0 o

MOVE moves a field from the source register to the memory address con-
tained in the destination register. This memory address is a bit address.
The field size for the move is 1-32 bits, depending on the selected field size;
the field is right justified within the source register. The optional F param-
eter determines the field size and extension for the move:

F=0 selects FSO
F=1 selects FS1

The SETF instruction sets the field size and extension. Rs and Rd must be
in the same register file.

The following typical cases assume that the destination address is aligned
on a 16-bit boundary:

16-Bit Field 32-Bit Field
1+(1),5 1+(3),7

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains the following values before instruction exe-
cution:

Address Data
15500h 0000h
15510h 0000h
15520h 0000h
Register AO = FFFFFFFFh
Code Before After

A1 FS0/1 @15500h @15510h @15520h
MOVE A0, *Al1,0 00015500h B5/x 001Fh 0000h 0000h
MOVE A0, *Al,1 00015503h x/8 07F8h 0000h 0000h
MOVE A0, *Al,0 00015508h 13/x FFOOh 001Fh 0000h
MOVE AO,*Al,1 0001550Bh x/16 F800h O7FFh 0000h
MOVE AO,*Al,0 0001550Dh 19/x EOOOh FFFFh 0000h
MOVE AO,*Al,1l 0001550Ch x/24 FOOOh FFFFh OOOFh
MOVE AQ,*Al,0 00015512h 27/x 0000h FFFCh 1FFFh
MOVE A0, *Al,1 00015510h x/32 0000h FFFFh FFFFh

12-127

Move Field - Register to

MOVE Indirect (Postincrement)

Syntax MOVE Rs, *Rd+ [, F]

Execution field in Rs = *Rd
Rd + field size = Rd

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
{1 o o 1 o o]F| Rs | R | Rd j

Description MOVE moves a field from the source register to the memory address cor~
tained in the destination register. This memory address is a bit address.
After the move, the contents of the destination register are postincremented
by the selected field size. The field size for the move is 1-32 bits, depending
on the selected field size; the field is right justified within the source regis-
ter. The optional F parameter determines the field size and extension for the
move:
F=0 selects FSO
F=1 selects FS1
The SETF instruction sets the field size and extension. Rs and Rd must be
in the same register file.

Machine

States The following typical cases assume that the destination address is aligned

Status Bits

Examples

12-128

on a 16-bit boundary:

16-Bit Field 32-Bit Field
1+(1).5 1+(3).7

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains the following values before instruction exe-
cution:

Address Data

16500h 0000h
16510h 0000h
15520h 0000h

Register AO = FFFFFFFFh

Move Field - Register to
Indirect (Postincrement)

MOVE

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

AO,*Al+,0
AQ,*Al+,1
AO,*Al+,0
AO,*Al+,1
AQ,*Al+,0
AQ,*Al+,1
AQ,*Al+,0
AO0,*Al+,1

Before

A1
00015528h
00015525h
00015520h
0001551Dh
00015516h
00015507h
00015507h
00015500h

FS0/1
5/x
x/8

13/x
x/16
19/x
x/24
27/x
x/32

After

Al

0001552Dh
0001552Dh
0001552Dh
0001552Dh
00015529h
0001551Fh
0001551Fh
00015520h

@15500h @15510h @15520h

0000h
0000h
0000h
0000h
0000h
FF80h
FF80h
FFFFh

0000h
0000h
0000h
EO00Oh
FFCOh
7FFFh
FFFFh
FFFFh

1FO0h
1FEOh
1FFFh
1FFFh
01FFh
0000h
0003h
0000h

12-129

Move Field - Register to

MOVE Indirect (Predecrement)

Syntax MOVE Rs, -*Rd [, F]

Execution Rd - field size = Rd
field in Rs = *Rd

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
{1 0o 1 0o o ofF]| Rs I Rd |

Description MOVE moves a field from the source register to the memory address con-
tained in the destination register; the destination address is predecremented
by the field size. The memory address is a bit address. Before the move,
the field size is subtracted from the contents of the destination register to
determine the location that the field is moved to. (This value is also the fi-
nal value for the register.)
The field size for the move is 1-32 bits, depending on the selected field size;
the field is right justified within the source register. The optional F param-
eter determines the field size and extension for the move:
F=0 selects FSO
F=1 selects FS1
The SETF instruction sets the field size and extension. Rs and Rd must be
in the same register file.

Machine

States The following typical cases assume that the destination address is aligned

Status Bits

Examples

12-130

on a 16-bit boundary:

16-Bit Field 32-Bit Field
2+(1).6 2+(3).8

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains the following values before instruction exe-
cution:

Address Data

15500h 0000h
15510h 0000h
15520h 0000h

Register AO = FFFFFFFFh

Move Field - Register to
Indirect (Predecrement)

MOVE

Code Before

Al FS0/1
MOVE AO,-*Al1,0 0001530h 5/x
MOVE AO,-*Al,1l 000152Dh x/8
MOVE AO,-*Al1,0 0001528h 13/x
MOVE AQO,-*Al,1 0001528h x/16
MOVE AQ,-*Al,0 0001523h 19/x
MOVE AO,-*Al,1l 0001520h x/24
MOVE AO,-*A1,0 0001524h 27/x
MOVE AO,-*Al,1 0001520h x/32

After

A1l

000152Bh
0001525h
000151Bh
0001518h
0001510h
0001508h
0001508h
0001500h

@15500h @15510h @15520h

00G0h
0000h
0000h
0000h
0000h
FFOOh
FEQOOh
FFFFh

0000h
0000h
F800h
FFOOh
FFFFh
FFFFh
FFFFh
FFFFh

F800h
1FEOCh
00FFh
00FFh
0007h
0000h
000Fh
0000h

12-131

Move Field - Register to

MOVE Indirect with Offset

Syntax MOVE Rs, *Rd(offset) [, F]

Execution field in Rs = *(Rd + offset)

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 0 1 1 0 OfF| Rs [r | Rd
offset

Description MOVE moves a field from the source register to the destination memory
memory address. The destination memory address is a bit address and is
formed by adding the contents of the destination register to the signed
16-bit offset. The field size for the move is 1-32 bits, depending on the
selected field size; the field is right justified within the source register. The
optional F parameter determines the field size and extension for the move:
F=0 selects FSO
F=1 selects FS1
The SETF instruction sets the field size and extension. Rs and Rd must be
in the same register file.

Machine

States The following typical cases assume that the destination address is aligned

Status Bits

12-132

on a 16-bit boundary:

16-Bit Field 32-Bit Field
3+(1),7 3+(3).9

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

Unaffected
Unaffected
Unaffected
Unaffected

<NOZ2

Move Field - Register to

Indirect with Offset

MOVE

Examples

Code

MOVE AQ,*A1(0000h),1
MOVE A0, *A1(0001h),0
MOVE AO,*A1(000Fh),0
MOVE AO,*A1(0020h),1
MOVE AQ,*Al(OOFFh),0
MOVE AOQ,*Al1(OFFFh),0
MOVE AQ,*Al(7FFFh),1
MOVE AO,*Al(OFFF2h),1
MOVE A0, *A1(8000h),0
MOVE AO,*Al1(OFFFOh),0
MOVE AQ,*Al(OFFECh),1
MOVE AO,*A1(OFFECh),0
MOVE AQ,*A1(001Dh),0
MOVE AO,*A1(0020h),1

Assume that memory contains the following values before instruction exe-
cution:

Address Data
15530h 0000h
15540h 0000h
15550h 0000h
Register AO = FFFFFFFFh
Before After
Al FSO/1 @15530h @15540h @15550h

00015530h x/1 0001h 0000h 0000h
0001552Fh 5/x 001Fh 0000h 0000h
00015652Dh 8/x FOOOh 000Fh 0000h
0001551Ch x/13 FOOOh 01FFh 0000h
00015435h 16/x FFFOh 000Fh 0000h
00014531h 19/x FFFFh 0007h 0000h
0000D531h x/22 FFFFh 003Fh 0000h
00015540h x/25 FFFCh O07FFh 0000h
0001D530h 27/x FFFFh 07FFh 0000h
00015540h 31/x FFFFh 7FFFh 0000h
00015548h x/31 FFFOh FFFFh 0007h
0001554Dh 32/x FEOOh FFFFh O01FFh
00015520h 32/x EO0Oh FFFFh 1FFFh
00015520h x/32 0000h FFFFh FFFFh

12-133

MOVE

Move Field - Register to Absolute

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

12-134

MOVE Rs, @DAddress [, F]
field in Rs — DAddress

16 14 13 12 1
0o o o o0 o

1 9 8 7 6 5 4 3 2 1 0
1{F] 1 1 0o ofR] Rs
16 LSBs of destination address
16 MSBs of destination address

MOVE moves a field from the source register to the destination memory
address. The specified destination memory address is a linear bit address.
The field size for the move is 1-32 bits, depending on the selected field size;
the field is right justified within the source register. The optional F param-
eter determines the field size and extension for the move:

F=0 selects FSO
F=1 selects FS1

SETF sets the field size and extension.

The following typical cases assume that the destination address is aligned
on a 16-bit boundary:

16-Bit Field 32-Bit Field
3+(1),7 3+(3),9

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains these values before instruction execution:

Address Data
15500h 0000h
16510h 0000h
16520h 0000h
Register AO = FFFFFFFFh
Code Before After

FS0/1 @15500h @15510h @15520h
MOVE A0,@15500h,0 B5/x 001Fh 0000h 0000h
MOVE A0,@15503h,1 x/8 07F8h 0000h 0000h
MOVE A0,@15508h,0 13/x FFOOh 001Fh 0Q000h
MOVE A0,@1550Bh,1 x/16 F800h O07FFh 0000h
MOVE A0,@1l550Dh,0 19/x EOOCh FFFFh 0000h
MOVE A0,@15510h,1 x/24 0000h FFFFh OOFFh
MOVE A0,@15512h,0 27/x 0000h FFFCh 1FFFh
MOVE A0,@1550Ch,1 x/32 FOOCh FFFFh OFFFh

Move Field - Indirect to Register MOVE

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

MOVE *Rs, Rd [, F]
field at *Rs - Rd

165 14 13 12 11 10 9 8 7 6 b 3 2 1 0

4
[1 o o o o 1[F] Rs [Rr] Rd |

MOVE moves a field from the source memory address to the destination
register. The contents of the source register specify the address of the field.
When the field is moved into the destination register, it is right justified and
sign extended or zero extended to 32 bits, according to the value of FE.
This instruction also performs an implicit compare to 0 of the field data.

The field size for the move is 1-32 bits, depending on the selected field size;
the optional F parameter determines the field size and extension for the
move:

F=0 selects FSO
F=1 selects FS1

The SETF instruction sets the field size and extension. Rs and Rd must be
in the same register file.

The following typical cases assume that the source data is aligned on a
16-bit boundary:

16-Bit Field 32-Bit Field
3,6 5,8

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

1 if the field-extended data moved to register is negative, 0 otherwise
Unaffected
1 if the field-extended data moved to register is 0, 0 otherwise

<NOZ2

12-135

MOVE Move Field - /ndirect to Register

Examples Assume that memory contains the following values before instruction exe-

cution:
Address Data
15500h 7770h
15510h 7777h
Register A0 = 00015500h
Code Before After

FS0/1 FEO/1 Al NCZV
MOVE *A0,Al,1 x/1 x/1 00000000h Ox10
MOVE *A0,Al1,0 5/x 0/x 00000010h 0x00
MOVE *A0,Al,1l x/5 x/1 FFFFFFFOh 1x00
MOVE *A0,Al1,0 12/x 1/x 00000770h 0x00
MOVE *A0,Al,1 x/12 x/0 00000770h 0x00
MOVE *A0,Al,0 18/x 0/x 00037770h 0x00
MOVE *A0,Al,1 x/18 x/1 FFFF7770h 1x00
MOVE *AO,Al,0 27/x 1/x FF777770h 1x00
MOVE *A0,Al,1 x/27 x/0 07777770h 0x00
MOVE *A0O,Al1,0 31/x 0/x 77777770h 0x00
MOVE *AO,Al,1 x/31 x/1 F7777770h 1x00
MOVE *A0,Al,0 32/x x/x 77777770h 0x00

12-136

Move Field - Indirect to Indirect MOVE

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

MOVE *Rs, *Rd [, F]
field at *Rs - *Rd

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t o o o 1 ofF]| Rs [R | Rd |

MOVE moves a field from a source address to a destination address. Both
memory addresses are bit addresses; the source register contains the ad-
dress of the field and the destination register specifies the address that the
field is moved to. The field size for the move is 1-32 bits, depending on the
selected field size; the optional F parameter determines the field size and
extension for the move:

F=0 selects FSO
F=1 selects FS1

SETF sets the field size and extension. Rs and Rd must be in the same re-
gister file.

The following typical cases assume that the source data and the destination
address are aligned on 16-bit boundaries:

16-Bit Field 32-Bit Field
3+(1).7 5+(3).11

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

Unaffected
Unaffected
Unaffected
Unaffected

<NOZ2

12-137

MOVE Move Field - Indirect to Indirect

Examples Assume that memory contains the following values before instruction exe-

cution:

Address Data Address Data

15500h FFFFh 15530h 0000h

15510h FFFFh 15540h 0000h

15520h FFFFh 15550h 0000h
Code Before After

A0 A1l FS0/1 @155630h @15540h @15550h

MOVE *A0,*Al,1 00015500h 00015530h x/1 0001h 0000h 000Oh
MOVE *A0,*Al,0 00015500h 00015534h 5/x O01FOh 0000h 0000h
MOVE *A0,*Al,1 00015500h 0001553Ah x/10 FCOOh O000OFh 0000h
MOVE *A0,*Al,0 00015500h 0001553Fh 19/x 8000h FFFFh 0003h
MOVE *A0,*Al,1 00015504h 00015530h x/7 007Fh 0000h 0O000h
MOVE *A0,*Al,0 0001550Ah 00015530h 13/x 1FFFh 0000h 0000h
MOVE *A0,*Al,1 0001550Dh 00015534h x/8 OFFOh 0000h 0Q000h
MOVE *A0,*Al1,0 0001550Dh 00015530h 28/x FFFFh OFFFh 0000h
MOVE *A0,*Al,1 00015505h 00015535h x/23 FFEOh OFFFh 0000h
MOVE *A0,*Al,0 00015508h 00015536h 31/x FFCOh FFFFh 0O01Fh
MOVE *A0,*Al,1 00015508h 00015531h x/31 FFFEh FFFFh 0000h
MOVE *A0,*Al,0 0001550Ah 00015530h 32/x FFFFh FFFFh 0000h
MOVE *A0,*Al1,0 00015500h 0001553Ah x/32 FCOOh FFFFh O03FFh

12-138

Move Field - Indirect

(Postincrement) to Register MOVE

Syntax MOVE *Rs+,Rd /[, FJ]

Execution field at *Rs — Rd
Rs + field size = Rs

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 0o o 1 o 1]F]| Rs [r] Rd |

Description MOVE moves a field from memory to the destination register. The source
register contains the address of the field; after the move, the contents of the
source register are incremented by the field size. When the field is moved
into the destination register, it is right justified and sign extended or zero
extended, as specified by the selected field extension. This instruction also
performs an implicit compare to O of the field data.
The field size for the move is 1-32 bits, depending on the selected field size;
the optional F parameter determines the field size and extension for the
move:
F=0 selects FSO
F=1 selects FS1
The SETF instruction sets the field size and extension. Rs and Rd must be
in the same register file.

Machine

States The following typical cases assume that the source data is aligned on a

Status Bits

16-bit boundary:

16-Bit Field 32-Bit Field
3,6 5.8

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N 7 if the field-extended data moved to register is negative, 0 otherwise
C Unaffected

Z 1 if the field-extended data moved to register is 0, O otherwise

Vv 0

12-139

Move Field - Indirect

MOVE (Postincrement) to Register
Examples Assume that memory contains the following values before instruction exe-

cution:

Address Data

15500h 7770h

15510h 7777h

Register AO = 00015500h
Code Before After

FS0/1 FEO/1 AC Al NCzV

MOVE *AO+,Al,1 x/1 x/0 00015501h 00000000h 0Ox10
MOVE *A0+,Al,1 x/5 x/0 00015505h 00000010h O0x00
MOVE *AO+,Al,0 5/x 1/x 00015505h FFFFFFFOh 1x00
MOVE *A0+,Al,0 12/x 0/x 0001550Ch 00000770h 0x00
MOVE *A0+,2l,1 x/12 x/1 0001550Ch 00000770h 0x00
MOVE *A0+,Al1,0 18/x 1/x 00015512h FFFF7770h 1x00
MOVE *A0+,Al,1 x/18 x/0 00015512h 00037770h 0x00
MOVE *A0+,Al,0 27/x 0/x 0001551Bh 07777770h 0x00
MOVE *A0+,Al,1 x/27 x/1 0001551Bh FF777770h 1x00
MOVE *AO+,Al,0 31/x 1/x 0001551Fh F7777770h 1x00
MOVE *A0+,Al,1 x/31 x/0 0001551Fh 77777770h 0x00
MOVE *A0+,Al1,0 32/x X/ 00015520h 77777770h 0x00

12-140

Move Field - Indirect (Postincrement)

to Indirect (Postincrement) MOVE

Syntax MOVE *Rs+, *Rd+ [, F]

Execution field at *Rs —» *Rd
Rs + field size = Rs
Rd + field size » Rd

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
f1 o o 1 1 ofF]| Rs [R] Rd |

Description MOVE moves a field from one memory address to another. The source re-
gister contains the bit address of the field; the destination register contains
the bit address of field’s destination. After the move, the contents of both
instructions are incremented by the field size.
The field size for the move is 1-32 bits, depending on the selected field size;
the optional F parameter determines the field size and extension for the
move:
F=0 selects FSO
F=1 selects FS1
The SETF instruction sets the field size and extension.
If Rs and Rd specify the same register, the data read from the location
pointed to by the original contents of Rs is written to the location pointed
to by the incremented value of Rs(Rd). Rs and Rd must be in the same
register file.

Machine

States The following typical cases assume that the source data and the destination

Status Bits

address are aligned on 16-bit boundaries:

16-Bit Field 32-Bit Field
4,7 6+(2),11
For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.
N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-141

Move Field - Indirect (Postincrement)

MOVE to Indirect (Postincrement)
Examples Assume that memory contains the following values before instruction exe-

cution:

Address Data Address Data

15500h FFFFh 15530h 0000h

15510h FFFFh 15540h 0000h

15520h FFFFh 15550h 0000h

MOVE *AO0+,*Al+,F
Before After
F A0 Al FS0/1 A0 A1l @15530h @15540h @15550h
1 00015500h 0001553Dh x/1 00015501h 0001553Eh 2000h 0000h 0000h
0 00015505h 00015538h 5/x 0001550Ah 0001553Dh 1FOOh 0000h 0000h
1 0001550Ah 0001553Fh x/10 00015514h 00015549h 8000h 01FFh 0000h
0 0001550Dh 00015530h 19/x 00015520h 00015543h FFFFh 0007h 0000h
1 00015510h 00015532h x/7 00015517h 000156539h O01FCh 0000h 0000h
0 00015511h 0001553Ah 13/x 0001551Eh 00015547h FCOOh 007Fh 0000h
1 00015513h 0001553Fh x/8 0001551Bh 00015547h 8000h 007Fh 0000h
0 00015510h 0001553Ah 28/x 0001552Ch 00015556h FCOOh FFFFh 003Fh
1 00015518h 00015534h x/23 0001552Fh 0001554Bh FFFOh 07FFh 0000h
(4] 00015510h 00015530h 31/x 0001552Fh 0001554Fh FFFFh 7FFFh 0000h
1 00015511h 0001553Dh x/31 00015530h 0001555Ch EO0Oh FFFFh OFFFh
0 00015510h 0001553Fh 32/x 00015530h 0001555Fh 8000h FFFFh 7FFFh
1 00015500h 00015530h x/32 00015520h 00015550h FFFFh FFFFh 0000h

12-142

Move Field - Indirect

(Predecrement) to Register MOVE
Syntax MOVE -*Rs, Rd /[, F]
Execution Rs - field size = Rs
field at *Rs - Rd
Instruction
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
t1r o 1 0o o 1]F]| Rs [r] Rd |
Description MOVE moves a field from memory to the destination register. The source
register contains a bit address; before the move, the contents of the source
register are decremented by the field size to form the address of the fieid.
(This value is also the final value for the register.)
The field size for the move is 1-32 bits, depending on the selected field size;
the optional F parameter determines the field size and extension for the
move:
F=0 selects FSO
F=1 selects FS1
The SETF instruction sets the field size and extension.
When the field is moved into the destination register, it is right justified and
sign extended or zero extended to 32 bits according to the value of FE for
the particular F bit selected. This instruction also performs an implicit
compare to O of the field data.
Rs and Rd must be in the same register file. If Rs and Rd are the same re-
gister, the pointer information is overwritten by the data fetched.
Machine
States The following typical cases assume that the source data is aligned on a

Status Bits

16-bit boundary:

16-Bit Field 32-Bit Field
4,7 6.9

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N 7 if the field-extended data moved to register is negative, O otherwise
C Unaffected

Z 7 if the field-extended data moved to register is 0, O otherwise

vV 0

12-143

Move Field - Indirect

MOVE (Predecrement) to Register
Examples Assume that memory contains the following values before instruction exe-

cution:

Address Data

15500h 7770h

15510h 7777h

Register A0 = 00015520h
Code Before After

FS0/1 FEO/1 A0 A1 NCZV

MOVE -*A0,Al,1 x/1 x/0 0001551Fh 00000000h 0Ox10
MOVE -*A0,Al,0 5/x 1/x 0001551Bh 0000000Eh 0x00
MOVE -*A0,Al,1 x/5 x/0 0001551Bh 0000000Eh 0x00
MOVE -*A0,Al,0 12/x 0/x 00015514h 00000777h 0x00
MOVE -*A0,Al,1 x/12 x/1 00015514h 00000777h 0x00
MOVE -*A0,Al1,0 18/x 1/x 0001550Eh 0001DDDDh 0x00
MOVE -*a0,Al,1 x/18 x/0 0001550Eh 0001DDDDh 0x00
MOVE -*A0,Al1,0 27/x 0/x 00015505h 03BBBBBBh 0x00
MOVE -*A0,Al,1 x/27 x/1 00015505h 03BBBBBBh 0x00
MOVE -*A0,Al,0 31/x 1/x 00015501h 3BBBBBB8h 0x00
MOVE -*A0,Al,1l x/31 x/0 00015501h 3BBBBBB8h 0x00
MOVE -*A0,Al,0 32/x x/x 00015500h 77777770h 0x00

12-144

Move Field - Indirect (Predecrement)

to Indirect (Predecrement) MOVE

Syntax MOVE -*Rs, -*Rd [, F]

Execution Rs - field size = Rs
Rd - field size = Rd
(field)*Rs - (field)*Rd

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t o 1 0o 1 ofF| Rs IR] Rd |

Description MOVE moves a field from one memory address to another. Both registers
contain bit addresses; before the move, the contents of both registers are
decremented by the field size. The source register then contains the address
of the field, and the destination register specifies the destination address for
the move.
The field size for the move is 1-32 bits, depending on the selected field size;
the optional F parameter determines the field size and extension for the
move:
F=0 selects FSO
F=1 selects FS1
The SETF instruction sets the field size and extension.
Rs and Rd must be in the same register file. If Rs and Rd are the same re-
gister, then the final contents of the register are its original contents decre-
mented by twice the field size.

Machine

States The following typical cases assume that the source data and the destination

Status Bits

address are aligned on 16-bit boundaries:

16-Bit Field 32-Bit Field
4+(1),8 6+(3),12

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

Unaffected
Unaffected
Unaffected
Unaffected

<NOZ2

12-145

Move Field - /Indirect (Predecrement)

MOVE to Indirect (Predecrement)
Examples Assume that memory contains the following values before instruction exe-

cution:

Address Data Address Data

15500h FFFFh 15530h 0000h

156510h FFFFh 15540h 0000h

15520h FFFFh 15550h 0000h

MOVE -*A0,-*Al,F
Before After
F A0 A1l FS0/1 A0 Al @15530h @15540h @15550h
1 00015501h 00015531h x/1 00015500h 00015530h 0001h 0000h 0000h
0 00015505h 00015539h 5/x 00015500h 00015534h O01FOh 0000h 0000h
1 0001550Ah 00015544h x/10 0001550h0 0001553Ah FCOOh OO0OFh 0000h
0 00015513h 00015552h 19/x 00015500h 0001553Fh 8000h FFFFh 0003h
1 0001550Bh 00015537h x/7 00015504h 00015530h O007Fh 0000h 0000h
0 00015517h 0001553Dh 13/x 0001550Ah 00015530h 1FFFh 0000h 0000h
1 00015515h 0001553Ch x/8 0001550Dh 00015534h OFFOh 0000h 000Oh
0 00015529h 0001554Ch 28/x 0001550Dh 00015530h FFFFh OFFFh 0000h
1 0001551Ch 0001554Ch x/23 00015505h 00015535h FFEOh OFFFh 0000h
0 00015527h 00015555h 31/x 00015508h 00015536h FFCOh FFFFh 001Fh
1 00015527h 00015550h x/31 00015508h 00015531h FFFEh FFFFh 0000h
0 0001552Ah 00015550h 32/x 0001550Ah 00015530h FFFFh FFFFh 0000h
1 00015520h 0001555Ah x/32 00015500h 0001553Ah FCOOh FFFFh 03FFh

12-146

Move Field - Indirect with Offset to Register MOVE

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

MOVE *Rs(offset), Rd [, F]
field at (*Rs + offset) —» Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 1 0

4
1.0 1 1 0 1]F] Rs [r] Rd

offset

This MOVE instruction moves a field from a memory address to the desti-
nation register. The address of the source data is formed by adding a
signed, 16-bit offset to the contents of Rs. When the field is moved into
the destination register, it is right justified and sign extended or zero ex-
tended to 32 bits, according to the value of the current FE bit. This in-
struction also performs an implicit compare to O of the field data.

The field size for the move is 1-32 bits, depending on the selected field size;
the field is right justified within the source register. The optional F param-
eter determines the field size and extension for the move:

F=0 selects FSO
F=1 selects FS1

The SETF instruction sets the field size and extension.

Rs and Rd must be in the same register file.

The following typical cases assume that the source data is aligned on a
16-bit boundary:

16-Bit Field 32-Bit Field
5,11 713

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

N 7 if the field-extended data moved to register is negative, 0 otherwise
C Unaffected

Z 1 if the field-extended data moved to register is 0, 0 otherwise

v 0

12-147

MOVE Move Field - /ndirect with Offset to Register

Examples Assume that memory contains the following values before instruction exe-

cution:

Address Data

15530h 3333h

15540h 4444h

15550h 5555h
Code Before After

A0 FS0/1 FEO/1 A1 NCzZV.

MOVE *A0(0000h),Al,1 00015530h x/1 x/1 FFFFFFFFh 1x00
MOVE *A0(0003h),Al,1 0001552Fh x/2 x/0 00000000h 0x10
MOVE *A0(0001h),Al,0 0001552Fh 5/x 0/x 00000013h 0x00
MOVE *A0(OOOFh),Al,0 0001552Dh 8/x 1/x 00000043h 0x00
MOVE *A0(0020h),Al,1l 0001551Ch x/13 x/0 00000443h 0x00
MOVE *A0Q(OOFFh),Al,0 00015435h 16/x 1/x 00004333h 0x00
MOVE *AO(OQFFFh),Al,0 00014531h 19/x 1/x FFFC3333h 1x00
MOVE *AO(7FFFh),Al,1 0000D531h x/22 x/1 00043333h 0x00
MOVE *AQ(OFFF2h),Al,l 00015540h x/25 x/0 01110CCCh 0x00
MOVE *A0(8000h),Al,O0 0001 D530h 27/x 1/x FC443333h 1x00
MOVE *AO(OFFFOh),Al,0 00015540h 31/x 0/x 44443333h 0x00
MOVE *A0(OFFEOh),Al,1 00015558h x/31 x/1 D5444433h 1x00
MOVE *AOQ(OFFECh),Al,0 0001554Dh 32/x 0/x AAA22219h 1x00
MOVE *A0(001Dh),Al,0 00015520h 32/x 1/x AAAA2221h 1x00
MOVE *A0(0020h),Al,1 00015520h x/32 x/0 55554444h 0x00

12-148

Move Field - Indirect with Offset

to Indirect (Postincrement) MOVE

Syntax MOVE *Rs(offset), *Rd+ [, F]

Execution field at (*Rs + offset) = *Rd
Rd + field size - Rd

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 0 1 0 OfF| Rs [r] Rd
offset

Description MOVE moves a field from the one memory location to another. Both the
source and destination registers contain bit addresses. The source memory
address is formed by adding the contents of the source register to the
signed 16-bit offset. The destination register contains the address of the
field's destination; after the move, the contents of Rd are incremented by
the selected field size.
The field size for the move is 1-32 bits, depending on the selected field size;
the field is right justified within the source register. The optional F param-
eter determines the field size and extension for the move:
F=0 selects FSO
F=1 selects FS1
The SETF instruction sets the field size and extension.
Rs and Rd must be in the same register file.

Machine

States The following typical cases assume that the source data and the destination

Status Bits

address are aligned on 16-bit boundaries:

16-Bit Field 32-Bit Field
5+(1),12 7+(3),16

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

Unaffected
Unaffected
Unaffected
Unaffected

<NOZ2

12-149

MOVE

Move Field - Indirect with Offset

to Indirect (Postincrement)

Examples

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

12-150

cution:

Address
15500h
155610h
16520h

*A0(0000h), *Al+,1
*A0(0001h),*Al+,1
*A0 (000Fh) , *Al+,1
*A0(0020h) , *Al+,1
*A0(OOFFh) , *Al+,1
*AO (OFFFh), *Al+,1
*A0(7FFFh), *Al+,1
*A0 (OFFF2h) , *Al+,1
*A0(8000h) , *Al+,1
*A0 (OFFFOh) , *Al+,1
*A0 (OFFEOh) , *Al+,1
*A0 (OFFECh) ,Al+,1
*A0(001Dh) ,Al+,1
*A0(0020h) ,Al+,1

Data

0000h
0000h
0000h

Before

A0

00015530h
0001552Fh
0001552Dh
0001551Ch
00015535h
00015531h
0000D531h
00015540h

‘0001 D530h

00015540h
00015558h
0001554Dh
00015520h
00015520h

Address
15530h
15540h
15550h

Al FS0/1
0015500h x/1
00015504h 5/x
0001550Ch 8/x
000155)Dh x/13
0001550Ch 16/x
00015510h 19/x
00015508h x/22
0015500h x/25
00015503h 27/x
00015501h 31/x
00015508h x/31
0001550Ah 32/x
00015510h 32/x
00015510h x/32

Data

3333h
4444h
5555h

After

@15500h
A1l
00015501h 0001h
00015509h 0130h
00015514h 3000h
0001551Ah 6000h
0001551 Ch 3000h
00015523h 0000h 3333h
0001551Eh 3300h 0433h
00015519h OCCCh 0111h
0001551Eh 9998h 2221h
0001552Ah 6666h 8888h
00015527h 3300h 4444h
00015528h 3200h 4444h
00015530h 0000k 2221h
00015530h 0000h 4444h

0000h
0000h
0004h
0088h
0433h

Assume that memory contains the following values before instruction exe-

@15520h

@15510h

0000h
0000h
0000h
0000h
0000h
0004h
0000h
0000h
0000h
0000h
0055h
0155h
AAAAh
5555h

Move Field - Indirect with Offset
to Indirect with Offset MOVE

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

MOVE *Rs(SOffset), *Rd(DOffset) [, F]
field at (*Rs + SOffset) » (*Rd + DOffset)

15 14 13 12 11 10 9 8 7 6 b

4
1 0 1 1 1 O0]F| Rs | r | Rd

source offset

destination offset

This MOVE instruction moves a field from one memory location to another.
Both the source and destination registers contain bit addresses. The ad-
dress of the source address is formed by adding a signed 16-bit offset to
the contents of the source register. The address of the destination location
is formed by adding a signed 16-bit offset to the contents of the destination
register.

The field size for the move is 1-32 bits, depending on the selected field size;
the field is right justified within the source register. The optional F param-
eter determines the field size and extension for the move:

F=0 selects FSO
F=1 selects FS1

The SETF instruction sets the field size and extension.

Rs and Rd must be in the same register file.

The following typical cases assume that the source data and the destination
address are aligned on 16-bit boundaries:

16-Bit Field 32-Bit Field
5+(1).15 7+(3).19

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

Unaffected
Unaffected
Unaffected
Unaffected

<NOZ

12-151

Move Field - Indirect with Offset

MOVE to Indirect with Offset
Examples Assume that memory contains the following values before instruction exe-

cution:

Address Data Address Data

15500h 0000h 15530h 3333h

15510h 0000h 15540h 4444h

156520h 0000h 15550h 5555h
Code Before After

@15500h @15520h
A0 A1l FS0/1 @15510h

MOVE *A0(0000h),*A1(0000h),1 00015530h 0015500h x/1 0001h 0000h 000Ch
MOVE *A0(0001h),*A1(0000h),0 0001552Fh 00015504h 5/x 0130h 0000h 0000h
MOVE *A0(0OOOFh),*A1(000Fh),0 0001552Dh 000154FDh 8/x 3000h 0004h 0000h
MOVE *A0(0020h),*A1(001Dh),1 0001551Ch 000154FOh x/13 5000h 0088h 0000h
MOVE *AO(OOFFh),*Al1(OFFF8h),0 00015435h 00015514h 16/x 3000h 0433h 0000h
MOVE *AO(OFFFh),*Al1(OFFFh),0 00014531h 00014511h 19/x 0000h 3333h 0004h
MOVE *AQ(7FFFh),*A1(8000h),1 0000D531h 0001D508h x/22 3300h 0433h 0000h
MOVE *AO(OFFF2h),*Al1(7FFFh),1 00015540h 0000D501h x/26 OCCChO0111h 0000h
MOVE *A0(8000h),*A1(0020h),0 0001D530h 000154E3h 27/x 9998h 2221h 0000h
MOVE *AQ(OFFFOh),*A1(0010h),0 00015540h 000154F1h 31/x 6666h 8888h 0000h
MOVE *AO(OFFEOh),*Al1(OFFEOh),1 00015558h 00015528h x/31 3300h 4444h 0055h
MOVE *AO(OFFECh),*Al1(OFFECh),0 0001554Dh 0001551Dh 32/x 3200h 4444h 0155h
MOVE *A0(001Dh),*A1(0020h),0 00015520h 000154FOh 32/x 0000h 2221h AAAAh
MOVE *AQ(0020h),*A1(0020h),1 00015520h 000154FOh x/32 0000h 4444h 5555h

12-152

Move Field - Absolute to Register MOVE

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

MOVE @SAddress, Rd [, F]
field at SAddress —» Rd

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O

o o o o o 1[F{1 1 o 1]R| Rd

16 LSBs of source address
16 MSBs of source address

This MOVE instruction moves a field from memory to the destination reg-
ister. The field data for the move is contained at a source-memory bit ad-
dress. When the field is moved into the destination register, it is right
justified and sign extended or zero extended to 32 bits according to the
selected value of FE. This instruction also performs an implicit compare to
0 of the field data.

The field size for the move is 1-32 bits, depending on the selected field size;
the field is right justified within the source register. The optional F param-
eter determines the field size and extension for the move:

F=0 selects FSO
F=1 selects FS1

The SETF instruction sets the field size and extension.

The following typical cases assume that the source data is aligned on a
16-bit boundary:

16-Bit Field 32-Bit Field
515 7.13

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

7 if the field-extended data moved to register is negative, 0 otherwise
Unaffected

7 if the field-extended data moved to register is O, 0 otherwise

0

<NOZ2

12-153

MOVE Move Field - Absolute to Register

Examples Assume that memory contains the following values before instruction exe-

cution:
Address Data
15500h 7770h
15510h 7777h
Code Before After

FEO/1 FS0/1 A1l NCzZV
MOVE @15500h,Al,1 x/0 x/1 00000000h 0Ox10
MOVE @15500h,A1,0 0/x 5/x 00000010h 0x00
MOVE @15503h,Al,1 x/1 x/5 0000000ER 0x00
MOVE @15500h,Al1,0 0/x 12/x 00000770h 0x00
MOVE @1550Dh,Al,1 x/1 x/12 FFFFFBBBh 1x00
MOVE @15504h,Al,0 1/x 18/x FFFF7777h 1x00
MOVE @15500h,Al,1 x/0 x/18 00037770h 0x00
MOVE @15500h,Al1,0 0/x 27/x 07777770h 0x00
MOVE @15500h,Al,1 x/1 x/27 FF777770h 1x00
MOVE @15501h,a1,0 0/x 30/x 3BBBBBB8h 0x00
MOVE @15501h,Al,1 x/1 x/30 FBBBBBB8h 1x00
MOVE @15500h,A1,0 X/ X 32/x 77777770h 0x00

12-164

Move Field - Absolute to Indirect (Postincrement) MOVE

Syntax MOVE @SAddress, *Rd+ [, F]
Execution field at SAddress —» *Rd
Rd + field size = Rd
Instruction
Words 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0

1 1 0 1 o0 1|/Ffo o o ofR]| Rd
16 LSBs of source address
16 MSBs of source address

Description This MOVE instruction moves a field from one location in memory to an-
other. The source address is a 32-bit address; the destination address is
specified by the contents of Rd. After the move, the contents of the desti-
nation register are incremented by the field size.

The field size for the move is 1-32 bits, depending on the selected field size;
the field is right justified within the source register. The optional F param-
eter determines the field size and extension for the move:

F=0 selects FSO
F=1 selects FS1

The SETF instruction sets the field size and extension.

Rs and Rd must be in the same register file.

Machine
States The following typical cases assume that the source data and the destination

address are aligned on 16-bit boundaries:

16-Bit Field 32-Bit Field
5+(1),15 7+(3).19

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.
Status Bits N Unaffected

C Unaffected

Z Unaffected

V Unaffected

12-15656

MOVE Move Field - Absolute to Indirect (Postincrement)

Examples Assume that memory contains the following values before instruction exe-
cution:
Address Data Address Data
15500h FFFFh 15530h 0000h
15510h FFFFh 15540h 0000h
15520h FFFFh 155650h 0000h
Code Before After

@15500h @15526h
A0 A1l FEO/T A1l @15510h
MOVE @15500,*Al1+,1 000155630h 00015531h x/1 00015531h 0001h 0000h 0000h
MOVE @15500,*Al1+,0 00015534h 00015539h 5/x 00015539h 01FOh 0000h 0000h
MOVE @15500,*Al1+,1 0001553Ah 00015544h x/10 00015544h FCOOh 000Fh 0000h
MOVE @15500,*Al+,0 0001553Fh 00015562h 19/x 00015552h 8000h FFFFh 0003h
MOVE @15504,*Al+,1 00015530h 00015537h x/7 00015537h 007Fh 0000h 0000h
MOVE @1550A,*Al+,0 000155630h 0001653Dh 13/x 0001563Dh 1FFFh 0000h 000Ch
MOVE @1550D,*Al1+,1 00015534h 00015536h x/8 00015536h OFFOh 0000h 000Ch
MOVE @1550D,*Al1+,0 00015530h 0001654Ch 28/x 0001554Ch FFFFh OFFFh 0000h
MOVE @15505,*Al+,1 00015535h 0001554Dh x/23 0001554Dh FFEOh OFFFh 0000h
MOVE @15508,*Al+,0 00015536h 00015555h 31/x 000155556h FFCOh FFFFh 001Fh
MOVE @15508,*Al+,1 00015531h 00015548h x/31 00015548h FFFEh FFFFh 0000h
MOVE @1550A,*Al+,0 000156530h 00015550h 32/x 00015550h FFFFh FFFFh 0000h
MOVE @15500,*Al+,1 0001553Ah 0001555Ah x/32 0001555Ah FCOOh FFFFh O3FFh

12-156

Move Field - Absolute to Absolute MOVE

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

MOVE @SAddress, @DAddress [, F]
field at SAddress —+ DAddress

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0o 0o o 0 o 1[Ff1 1 1 0 0 0 0 0 O
16 LSBs of source address
16 MSBs of source address
16 LSBs of destination address
16 MSBs of destination address

This MOVE instruction moves a field from one location in memory to an-
other. Both memory addresses are 32-bit addresses.

The field size for the move is 1-32 bits, depending on the selected field size;
the field is right justified within the source register. The optional F param-
eter determines the field size and extension for the move:

F=0 selects FSO
F=1 selects FS1

The SETF instruction sets the field size and extension.

The following typical cases assume that the source data and the destination
address are aligned on 16-bit boundaries:

16-Bit Field 32-Bit Field
7+(1),12 9+(3),27

For other cases, see MOVE and MOVB Instructions Timing, Section 13.2.

Unaffected
Unaffected
Unaffected
Unaffected

<NOZ2

12-1567

MOVE Move Field - Absolute to Absolute

Examples Assume that memory contains the following values before instruction exe-

cution:

Address Data

15500h FFFFh

15510h FFFFh

15520h FFFFh

15530h 0000h

16540h 0000h

15550h 0000h

Code Before After

FS0/1 @15530h @15540h @15550h

MOVE @15500h,@15530h,1 x/1 0001h 0000k 000O0h
MOVE @15500h,@15534h,0 5/x 01FOh 0000h 0000h
MOVE @15500h,@1553Ah,1 x/10 FCOOh O0OFh 0000h
MOVE @15500h,@1553Fh,0 19/x 8000h FFFFh 0003h
MOVE @15504h,@15530h,1 x/7 007Fh 0000h 0000h
MOVE @1550Ah,@15530h,0 13/x 1FFFh 0000h 0000h
MOVE @1550Dh,@15534h,1 x/8 OFFOh 0000h 0000h
MOVE @1550Dh,@15530h,0 28/x FFFFh OFFFh 00OOh
MOVE @15505h,@15535h,1 x/23 FFEOh OFFFh 0000h
MOVE @15508h,@15536h,0 31/x FFCOh FFFFh 001Fh
MOVE @15508h,@15531h,1 x/31 FFFEh FFFFh 0000h
MOVE @1550Ah,@15530h,0 32/x FFFFh FFFFh 0000h
MOVE @15500h,@1553Ah,0 x/32 FCOOh FFFFh 03FFh

12-158

Move Immediate - 76 Bits MOVI

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

MOVI /W, Rd [, W]
IW - Rd

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O

0o 0o o 0o 1 0 0 1 1 1 ofR| Rd

16-bit value

MOVI stores a 16-bit, sign-extended immediate value in the destination
register. (/W in the instruction syntax represents the 16-bit value.)

The assembler uses the short form if the immediate value has been previ-
ously defined and is in the range -32,768 through 32,767. You can force
the assembler to use the short form by following the register operand with
W

MOVI IW,R4,W

The assembler truncates the upper bits and issue an appropriate warning
message.

2,8
N 7 if the data being moved is negative, 0 otherwise
C Unaffected
Z 7 if the data being moved is 0, 0 otherwise
vV 0
Code After

A0 NCzV
MOVI 32767,R0 00007FFFh 0x00
MOVI 1,A0 00000001h 0x00
MOVI 0,A0 00000000h 0x10
MOVI -1,A0 FFFFFFFFh 1x00
MOVI -32768,A0 FFFF8000h 1x00
MOVI 0000h,A0 00000000h 0x10
MOVI 7FFFh,A0 O00007FFFh 0x00

12-159

MOViI Move Immediate - 32 Bits
Syntax MOVI /L,Rd [, L]
Execution IL - Rd
Instruction
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0o 0 0 0 1 0 0 1 1 1 1]|R]| Rd
16 LSBs of IL
16 MSBs of IL
Description MOVI stores a 32-bit immediate value in the destination register. (/L in the
instruction syntax represents the 32-bit value.)
The assembler uses this opcode if it cannot use the MOVI IW,Rd opcode,
or if the long opcode is forced by following the register operand with ,L:
MOVI IL,R4,L
Machine
States 3,12

Status Bits

Examples

12-160

N 7 if the data being moved is negative, 0 otherwise
C Unaffected
Z 1 if the data being moved is 0, 0 otherwise

Vv 0
Code After

AO NCZV
MOVI 2147483647,A0 7FFFFFFFh 0x00
MOVI 32768,A0 00008000h 0x00
MOVI -32769,A0 FFFF7FFFh 1x00
MOVI -2147483648,A0 80000000h 1x00
MOVI 8000h, A0 00008000h 0x00
MOVI OFFFFFFFFh,AO FFFFFFFFh 1x00
MOVI OFFFFh,AO0,L FFFFFFFFh 1x00

Move Constant (5 Bits)

MOVK

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

MOVK K, Rd
K - Rd

10 9 8 7 6 65 4 3 2 1 O

[o o o 1 1 o] K [Rr] Rd |

MOVK stores a 5-bit constant in the destination register. (K in the in-
struction syntax represents the constant.) The constant is treated as an
unsigned number in the range 1-32, where K = 0 in the opcode corre-
sponds to a value of 32. The resulting constant value is zero extended to
32 bits.

Note that you cannot set a register to O with this instruction. You can clear
a register by XORing the register with itself, use CLR Rd (an alternate
mnemonic for XOR) to accomplish this. Both these methods alter the Z bit
(setitto 1).

15 14 13 12 11

1.4

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code After

A0
MOVK 1,A0 00000001h
MOVK 8,A0 00000008h
MOVK 16,30 00000010h
MOVK 32,A0 00000020h

12-161

MOVX Move X Half of Register

Syntax MOVX Rs, Rd

Execution RsX - RdX

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[+ 1 1 0o 1 1 of Rs [R | Rd |

Description MOVX moves the X half of the source register (16 LSBs) to the X half of
the destination register. The Y halves of both registers are unaffected.
You an also use the MOVX and MOVY instructions for handling packed
16-bit quantities and XY addresses. You can use the RL instruction to
swap the contents of X and Y.
Rs and Rd must be in the same register file.

Machine

States 1.4

Status Bits

Examples

12-162

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before After

A0 A1l A1l
MOVX A0,Al 00000000h FFFFFFFFh FFFFOOOOh
MOVX AO,Al 12345678h 00000000h 00005678h
MOVX AO,Al FFFFFFFFh 00000000h 00OO0FFFFh

Move Y Half of Register

MOVY

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

MOVY Rs, Rd
RsY - RdY

10 9 8 7 6 5 4 3 2 10
[R | R\ |

MOVY moves the Y half of the source register (16 MSBs) to the Y half of
the destination register. The X halves of both registers are unaffected.

15 14 13 12 11
t1r 1 1 0o 1 1 1] Rs

You an also use the MOVX and MOVY instructions for handling packed
16-bit quantities and XY addresses. You can use the RL instruction to
swap the contents of X and Y.

Rs and Rd must be in the same register file.

1.4

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before After

A0 A1l Al
MOVY AO,Al 00000000h FFFFFFFFh OOOOFFFFh
MOVY AO,Al 12345678h 00000000h 12340000h
MOVY AO,Al FFFFFFFFh 00000000h FFFFOO00h

12-163

MPYS Multiply Registers - Signed
Syntax MPYS RAs, Rd
Execution Rd Even: Rs x Rd — Rd:Rd+1
Rd Odd: Rs x Rd - Rd
Instruction
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo 1 o 1 1 1 of Rs | R | Rd |
Description MPYS performs a signed multiply of a variably-sized field in the source re-

12-164

gister by the 32 bits in the destination register. This produces a 32-bit to
a 64-bit result, depending on the register and field definitions. Note that
Rs and Rd must be in the same register file.

The value of field size 1 (FS1) defines the size of the multiplier in Rs. FS1
may have any even value n from 2 to 32 (thatis, n = 2, 4, 6 ... 30, 32).
The instruction executes a 32-bit-by-n-bit multiply — multiplying the 32 bits
in Rd by the n bits in Rs. All values are signed. The MSB of the source field
(bit n - 1 in Rs) defines the sign of the field; the bits to the left of bit n are
ignored. The MSB of Rd defines the sign of the multiplicand.

Contents of Rs (n = FS1): Contents of Rd:
31 n n-1 0 31 0
{ ignored | n-bit multiplier | 32-bit multiplicand |
T
sign bit sign bit

MPYS has two modes, depending on whether Rd is even or odd:

[) Rd Even:

MPYS multiplies the contents of Rd by the n-bit field in Rs, and stores
the result in two consecutive registers, Rd and Rd+1. (For example,
if Rd=B4, the result is stored in registers B4 and B5.) The result is
sign extended and right justified; the 32 MSBs are stored in Rd and
the 32 LSBs are stored in Rd+1. Note that all 32 bits of both registers
are used, regardless of the field size of the multiply.

Do not use A14 or B14 as the destination register, because Rd+1
(A15 or B15) is the stack pointer register (SP). It is not desirable to
write over the contents of the SP.

Contents of Rd (even register): o Contents of Rd+1 (odd register)(:)
1 31

| sign | n MSBs of result I 32 LSBs of result |

® Rd Odd:

MPYS multiplies the contents of Rd by the n-bit field in Rs, and stores
the 32 LSBs of the result in Rd; Rs is not changed. If the result is
?reater than 32 bits, the extra MSBs are discarded, regardless of the
ield size.

Contents of Rd (odd register):
31

32 MSBs are discarded [32 LSBs of result |

Multiply Registers - Signed MPYS

Machine

States 5 + FS1/2,8 + FS1/2

Status Bits N 7 if the result is negative, 0 otherwise
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Example 1 MPYS Al, AO
Before After
A0 Al FS1 A0 Al NCzVv
00000000h 00000000h 32 00000000h 00000000h Ox1x
7FFFFFFFh 7FFFFFFFh 32 3FFFFFFFh 00000001h OxOx
7FFFFFFFh FFFFFFFFh 32 FFFFFFFFh 80000001h 1x0x
FFFFFFFFh 7FFFFFFFh 32 FFFFFFFFh 80000001h 1x0x
FFFFFFFFh FFFFFFFFh 32 00000000h 00000001h OxO0x
80000000h 7FFFFFFFh 32 C0000000h 80000000h 1x0x
80000000h 80000000h 32 40000000h 00000000h 0xOx
80000001h 80000000h 32 3FFFFFFFh 80000000h 0xOx
8040156Fh 7FF3B074h 32 C0262CDCh 53E486F8h 1x0x
8040156Fh 7FF3B074h 24 000624B1h 53E486F8h 0x0x
8040156Fh 7FF3B074h 20 FFFE28B2h 594486F8h 1x0x
8040156Fh 7FF3B074h 16 000027B2h 17EC86F8h 0x0x
8040156Fh 7FF3B074h 14 000007C2h 1C0206F8h 0xOx
8040156Fh 7FF3B074h 8 FFFFFFC6h 1D0766F8h 1x0x
8040156Fh 7FF3B074h 6 00000005h FCFF3BF8h 0x0x
8040156Fh 7FF3B074h 4 FFFFFFFEh 01004158h 1x0x
8040156Fh 7FF3B074h 2 00000000h 00000000h 0x1x

Example 2 MPYS AO,Al
Before After
A0 A1 FS$1 A0 Al NCzVv
00000000h 00000000k 32 unchanged 00000000h O0x1x
7FFFFFFFh 7FFFFFFFh 32 unchanged 00000001h 0xO0x
7FFFFFFFh 7FFFFFFFh 32 unchanged 80000001h 1x0x
FFFFFFFFh 7FFFFFFFh 32 unchanged 80000001h 1x0x
FFFFFFFFh FFFFFFFFh 32 unchanged 00000001h 0xOx
80000000h 7FFFFFFFh 32 unchanged 80000000h 1x0x
80000000h 80000000h 32 unchanged 00000000h 0xOx
80000001h 80000000h 32 unchanged 80000000h 0xOx
7FF3B074h 80401056h 32 unchanged 53E486F8h 1x0x
7FF3B074h 80401056h 24 unchanged 53E486F8h 0x0x
7FF3B074h 80401056h 20 unchanged 594486F8h 1x0x
7FF3B074h 80401056h 16 unchanged 17EC86F8h 0x0x
7FF3B074h 80401056h 14 unchanged 1C0206F8h 0x0x
7FF3B074h 80401056h 8 unchanged 1D0766F8h 1x0x
7FF3B074h 80401056h 6 unchanged FCFF3BF8h 0x0x
7FF3B074h 80401056h 4 unchanged 01004158h 1x0x
7FF3B074h 80401056h 2 unchanged 00000000h 0Ox1x

12-165

MPYU Multiply Registers - Unsigned
Syntax MPYU Rs, Rd
Execution Rd Even: Rs x Rd — Rd:Rd+1
Rd Odd: Rs x Rd = Rd
Instruction
Words 16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1 o 1 1 1 1] Rs { R | Rd |
Description MPYU performs an unsigned multiply of a variably-sized field in the source

12-166

register by the 32 bits in the destination register. This produces a 32-bit to
a 64-bit result, depending on the register and field definitions. Note that
Rs and Rd must be in the same register file.

The value of field size 1 (FS1) defines the size of the multiplier in Rs. FS1
may have any even value n from 2 to 32 (thatis, n = 2, 4, 6 ... 30, 32).
The instruction executes a 32-bit-by-n-bit multiply - multiplying the 32 bits
in Rd by the n bits in Rs. All values are unsigned.

Contents of Rs (n = FS1): Contents of Rd:
31 n n-1 0 31 0
[ignored | n-bit multiplier | 32-bit multiplicand |

MPYS has two modes, depending on whether Rd is even or odd:

o Rd Even:

MPYU multiplies the contents of Rd by the n-bit field in Rs, and
stores the result in two consecutive registers, Rd and Rd+1. (For
example, if Rd=B4, the result is stored in registers B4 and B5.) The
result is zero extended and right justified; the 32 MSBs are stored in
Rd and the 32 LSBs are stored in Rd+1. Note that all 32 bits of both
registers are used, regardless of the field size of the multiply.

Do not use A14 or B14 as the destination register, because Rd+1
(A15 or B15) is the stack pointer register (SP). It is not desirable to
write over the contents of the SP.

Contents of Rd (even register): Contents of Rd+1 (odd register):
31 0 31 0

I 0s I n MSBs of resuit l 32 LSBs of result I

® Rd Odd:

MPYU multiplies the contents of Rd by the n-bit field in Rs, and
stores the 32 LSBs of the result in Rd; Rs is not changed. If the result
is greater than 32 bits, the extra MSBs are discarded, regardiess of the
field size.

Contents of Rd (odd register):
31

32 MSBs are discarded I 32 LSBs of result l

Multiply Registers - Unsigned MPYU
Machine
States Rs nonnegative: 5 + FS1/2, 8 + FS1/2
Rs negative: 6 + FS1/2, 9 + F§1/2
Status Bits N Unaffected
C Unaffected
2 17 if the result is 0, 0 otherwise
V Unaffected
Example 1 MPYU A1,A0
Before After
A0 A1 FS$1 A0 A1l NCzZV
FFFFOOOOh 10000000h 32 OFFFFOOOh 00000000h xxOx
FFFFOO00h 10001010h 32 1000000Fh EFFO0000h xxOx
FFFFOO0OOh 10001010h 16 0000100Fh EFFO0000h xxOx
FFFFOO00Oh 10001010h 8 0000000Fh FFFO0000h xxOx
FFFFOO00Oh 10001010h 4 00000000h 00000000h xx1x
08001056h 0003B074h 32 00001D83h DC4486F8h xx0x
08001056h 0003B074h 16 00000583h AB4286F8h xx0x
08001056h 0003B074h 14 00000183h A31786F8h xx0x
08001056h 0003B074h 8 00000003h AO00766F8h xxO0x
08001056h 0003B074h 6 00000001h AQ0035178h xx0x
08001056h 0003B074h 4 00000000h 20004158h xxOx
08001056h 0003B074h 2 00000000h 00000000h xx1x
Example 2 MPYU AO,Al
Before After
AO Al FS1 A0 A1l NCZV
10000000h FFFFOO00Oh 32 unchanged 00000000h xx0x
10001010h FFFFOOOOh 32 unchanged EFFO0000h xxOx
10001010h FFFFOO00h 16 unchanged EFFO0000h xx0x
10001010h FFFFOO00Oh 8 unchanged FFFO0000h xxOx
10001010h FFFFOO00h 4 unchanged 00000000h xx1x
0003B074h 08001056h 32 unchanged DC4486F8h xx0x
0003B074h 08001056h 16 unchanged AB4286F8h xx0x
0003B074h 08001056h 14 unchanged A31786F8h xx0x
0003B074h 08001056h 8 unchanged AQ0766F8h xx0x
0003B074h 08001056h 6 unchanged A0035178h xxO0x
0003B074h 08001056h 4 unchanged 20004158h xxOx
0003B074h 08001056h 2 unchanged 00000000h xx1x

12-167

NEG Negate Register
Syntax NEG ARd
Execution 2s complement of Rd - Rd
Instruction
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
o o 0o o o o 1 1 1 o 1]R]| Rd |
Description NEG stores the 2s complement of the contents of the destination register
back into the destination register.
Machine
States 1.4
Status Bits N 7 if the result is negative, 0 otherwise
C 1 if there is a borrow (Rd # 0), 0 otherwise
Z 1 if the result is O, 0 otherwise
V 17 if there is an overflow (Rd = 80000000h), 0 otherwise
Examples Code Before After
A0 NCZzV A0
NEG A0 00000000h 0010 00000000h
NEG AO 55555555h 1100 AAAAAAABh
NEG A0 7FFFFFFFh 1100 80000001h
NEG A0 80000000h 1101 80000000h
NEG A0 8000000th 0100 7FFFFFFFh
NEG A0 FFFFFFFFh 0100 00000001h

12-168

Negate Register with Borrow NEGB

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

NEGB Rd
(2s complement of Rd) - C = Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Loooooo1111o|R| Rd |

NEGB takes the 2s complement of the destination register’'s contents and
decrements by 1 if the borrow bit (C) is set; the result is stored in the des-
tination register. This instruction can be used in sequence with itseif and
with the NEG instruction for negating multiple-register quantities.

14

N 7 if the result is negative, O otherwise
C 1 if there is a borrow, 0 otherwise

Z 7 if the result is 0, 0 otherwise

V 7 if there is an overflow, 0 otherwise

Code Before After
AO C NCZV A0

NEGB A0 00000000h O 0010 00000000h
NEGB A0 00000000h 1 1100 FFFFFFFFh
NEGB A0 555555556h O 1100 AAAAAAABH
NEGB A0 55555555h 1 1100 AAAAAAAAQ
NEGB A0 7FFFFFFFh O 1100 80000001h
NEGB A0 7FFFFFFFh 1 1100 80000000h
NEGB A0 80000000h O 1101 80000000h
NEGB A0 80000000h 1 0100 7FFFFFFFh
NEGB A0 80000001h O 0100 7FFFFFFFh
NEGB A0 80000001h 1 0100 7FFFFFFEh
NEGB A0 FFFFFFFFh O 0100 00000001h
NEGB A0 FFFFFFFFh 1 0110 00000000h

12-169

NOP No Operation

Syntax NOP

Execution No operation

Instruction

Words 16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo o o o o o 1 1 0o o 0 0 o0 0 0 O]

Description The program counter is incremented to point to the next instruction. The
processor status is otherwise unaffected.
You an use the NOP instruction to pad loops and perform other timing
functions.

Machine

States 1.4

Status Bits

Example

12-170

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before After
PC PC
NOP 00020000h 00020010h

Complement Register

NOT

Syntax

Execution

Instruction
Words

Description
Machine
States
Status Bits

Examples

NOT Rd

NOT Rd - Rd

5 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
[0 0o 0o o0 o o 1 1 1 1 1]R| Rd |

NOT stores the 1s complement of the destination register's contents back

into the destination register.

1.4

N Unaffected
C Unaffected

Z 17 if the result is 0, 0 otherwise

V Unaffected

Code Before
AO

NOT AO 00000000h

NOT AO 55555555h

NOT AO FFFFFFFFh

NOT A0 80000000h

After

NCzvV
xx0x
xx0x
xx1x
xx0x

A0
FFFFFFFFh
AAAAAAAAN
00000000h
7FFFFFFFh

12-171

OR

OR Registers

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

12-172

OR As. Rd
Rs OR Rd — Rd

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 0o 1 o 1 of Rs [R | Rd |

This instruction bitwise-ORs the contents of the source register with-the
contents of the destination register; the result is stored in the destination
register.

Rs and Rd must be in the same register file.

1.4

N Unaffected
C Unaffected
Z 17 if the result is 0, 0 otherwise
V Unaffected

Code Before After

A0 A1l A1l NCzZV
OR A0,Al FFFFFFFFh 00000000h FFFFFFFFh xxOx
OR AQ,Al 00000000h FFFFFFFFh FFFFFFFFh xxOx
OR AQ,Al 55555555h AAAAAAAAh FFFFFFFFh xxOx
OR AQ0,Al 00000000h 00000000h 00000000h xx1x

OR Immediate (32 Bits) ORI

Syntax

Execution

Instruction

Words

Description

Machine
States

Status Bits

Examples

ORI /L, Rd
ILORRd = Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 0 60 0 1 0 1 1 1 0 1]R| Rd

16 LSBs of iL

16 MSBs of IL

This instruction bitwise-ORs a 32-bit immediate value with the contents of
the destination register and stores the result in the destination register. (/L
in the syntax represents the 32-bit value.)

312
N Unaffected
C Unaffected
Z 17 if the result is O, 0 otherwise
V Unaffected
Code Before After

A0 A0 NCzZV
ORI OFFFFFFFFh,AO 00000000h FFFFFFFFh xxO0x
ORI 0000000Ch,A0D FFFFFFFFh FFFFFFFFh xxOx
ORI OAAAAAAAAL,AQ 55555555h FFFFFFFFh xxOx
ORI 00000000h,A0 00000000h 00000000h xx1x

12-173

PIXBLT

Pixel Block Transfer - Binary to Linear

Syntax

Execution

Instruction
Words

Description

Implied
Operands

12-174

PIXBLT B, L

binary pixel array — linear pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo o o o 1 1 1 1 1 0 0 0 0 0 0 0]

This PIXBLT instruction expands, transfers, and processes a binary source
pixel array with a destination pixel array.

This instruction operates on two-dimensional arrays of pixels using linear
starting addresses for both the source and the destination. The source pixel
array is treated as a one bit per pixel array. As the PixBIt proceeds, the
source pixels are expanded and then combined with the corresponding
destination pixels based on the selected graphics operations.

Note that the parameters are entered exactly as shown in the syntax; that
is, the instruction is entered as PIXBLT B,L. The first parameter, B, indi-
cates that the starting address of the source array is a linear address but the
source array is a binary array. The second parameter, L, indicates that the
starting address of the destination array is a linear address. The foilowing
set of implied operands govern the operation of the instruction and define
the source and destination arrays.

B File Registers
Register Name Format Description
Bot SADDR Linear Source pixel array starting address
B1 SPTCH Linear Source pixel array pitch
B2t DADDR Linear Destination pixel array starting address
B3 DPTCH Linear Destination pixel array pitch
B7 DYDX XY Pixel array dimensions (rows:columns)
B8 COLORO Pixel Background expansion color
B9 COLOR1 Pixel Foreground expansion color
B10-B14t Reserved registers
1/0 Registers
Address Name Description and Elements (Bits)
C000000BOh| CONTROL | PP-Pixel processing operations (22 options)
T =Transparency operation
C0000150h | PSIZE Pixel size (1,2,4,8,16)
C0000160h | PMASK Plane mask — pixel format

t These registers are changed by PIXBLT execution.

Due to the pipelining of memory writes, the /ast 1/O register that you write
to may not, in some cases, contain the desired value when you execute the
PIXBLT instruction. To ensure that this register contains the correct value
for execution, you may want to follow the write to that location with an
instruction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

Pixel Block Transfer - Binary to Linear PIXBLT

Source Array

Source
Expansion

Destination
Array

Corner Adjust

Window
Checking

The source pixel array for the expand operation is defined by the contents
of the SADDR, SPTCH, and DYDX registers:

[At the outset of the instruction, SADDR contains the linear address
of the pixel with the lowest address in the array. During instruction
execution, SADDR points to the address of the next set of 32 pixels
to be read from the source array. When the transfer is complete,
SADDR points to the linear address of the first pixel on the next row
of pixels that would have been moved if the block transfer continued.

[SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array. For this PIXBLT instruction, SPTCH
can be any value.

® DYDX specifies the dimensions, in pixels, of both the source and
destination arrays. The DY portion of DYDX contains the number of
rows in the array; the DX portion contains the number of pixels per
row.

The actual values of the source pixels are determined by the interaction of
the source array with the contents of the COLOR1 and COLORO registers.
In the expansion operation, a 1 bit in the source array selects a pixel from
the COLOR1 register for operation on the destination array. A 0 bit in the
source array selects a COLORO pixel for this purpose. The pixels selected
from the COLOR1 and COLORO registers are those that align directly with
their intended position in the destination array word.

The location of the destination pixel block is defined by the contents of the
DADDR, DPTCH, and DYDX registers:

° At the outset of the instruction, DADDR contains the linear address
of the pixel with the lowest address in the array. During instruction
execution, DADDR points to the next pixel (or word of pixels) to be
modified in the destination array. When the block transfer is com-
plete, DADDR points to the linear address of the first pixel on the
next row of pixels that would have been moved if the block transfer
continued.

° DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array (typically this is the screen pitch).
DPTCH must be a multiple of 16.

) DYDX specifies the dimensions, in pixels, of both the source and
destination arrays. The DY portion of DYDX contains the number of
rows in the array; the DX portion contains the number of pixels per
row.

No corner adjust is performed for this instruction
PBH and PBV are’ ignored. The pixel transfer simply proceeds in the order
of increasing linear addresses.

You cannot use window checking with this PixBlt instruction. The con-
tents of the WSTART and WEND registers are ignored.

12-175

PIXBLT

Pixel Block Transfer - Binary to Linear

Pixel
Processing

Transparency

Plane Mask

Interrupts

Shift Register
Transfers

Machine
States

Status Bits

Examples

12-176

You can select a pixel processing option for this instruction by setting the
PPOP bits in the CONTROL register. The pixel processing operation is
applied to expanded pixels as they are processed with the destination array;
that is, the data is first expanded and then processed. There are 16 Boolean
and 6 arithmetic operations; the default case at reset is the replace (S -
D) operation. The 6 arithmetic operations do not operate with pixel sizes
of one or two bits per pixel. For more information, see Section 7.7, Pixel
Processing, on page 7-15.

You can enable transparency for this instruction by setting the T bit in the
CONTROL 1/0 register to 1. The TMS34010 checks for O (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

The plane mask is enabled for this instruction.

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBit is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed. '

The PIXBLT instruction uses several |/0O and B-file registers as implied op-
erands. [f an interrupt service routine modifies a register that the PIXBLT
uses as an implied operand, you must restore that register to the vaiue it had
when the routine began, before returning from the routine. (You can use
the MMFM and MMTM instructions to save and restore the B-file regis-
ters.) In order to maintain compatibility with future TMS340 devices, use
only the RET! instruction to return from an interrupt routine.

If the SRT bit in the DPYCTL 1/0 register is set, each memory read or write
initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

See PIXBLT Expand Instructions Timing, Section 13.5.

N Undefined
C Undefined
Z Undefined
V Undefined

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLT examples use the following implied
operand setup:

Register File B: 1/0 Registers:
SADDR (BO) = 00002030h PSIZE = 0010h
SPTCH (B1) = 00000100h

DADDR (B2) = 00033000h

Pixel Block Transfer - Binary to Linear PIXBLT

Example 1

Example 2

DPTCH (B3) = 00001000h
DYDX (B7) = 00020010h
COLORO (B8) = FEDCFEDCh
COLOR1 (B9) = BA98BA98h

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before
instruction execution.

Linear Da'ta

Address

02000h xxxxh, xxxxh, xxxxh, 1234h, xxxxh, xxxxh, xxxxh, xxxxh
02080h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, 5678h, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

33000h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh
33080h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

34000h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh
34080h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

This example uses the replace (S — D) pixel processing operation. Before
instruction execution, PMASK = 0000h and CONTROL = 0000h (T=0,
PP=00000).

After instruction execution, memory contains the following values:

Linear Data
Address

33000h FEDCh, FEDCh, BA98h, FEDCh, BAS8h, BA98h, FEDCh, FEDCh
33080h FEDCh, BA98h, FEDCh, FEDCh, BA98h, FEDCh, FEDCh, FEDCh

34000h FEDCh, FEDCh, FEDCh, BA98h, BA98h, BA98h, BA98h, FEDCh
34080h FEDCh, BA98h, BA98h, FEDCh, BA98h, FEDCh, BA98h, FEDCh

This example uses the (D - S) = D pixel processing operation. Before in-
struction execution, PMASK = 0000h and CONTROL = 4800h (T=0,
PP=10010).

After instruction execution, memory contains the following values:

Linear Data

Address

33000h 0123h, 0123h, 4567h, 0123h, 4567h, 4567h, 0123h, 0123h
33080h 0123h, 4567h, 0123h, 0123h, 4567h, 0123h, 0123h, 0123h

34000h 0123h, 0123h, 0123h, 4567h, 4567h, 4567h, 4567h, 0123h
34080h 0123h, 4567h, 4567h, 0123h, 4567h, 0123h, 4567h, 0123h

12-177

PIXBLT Pixel Block Transfer - Binary to Linear

Example 3 This example uses transparency with COLOR0O = 00000000h. Before in-
struction execution, PMASK = 0000h and CONTROL = 0020h (T=1,
W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

33000h FFFFh, FFFFh, BA98h, FFFFh, BA98h, BA98h, FFFFh, FFFFh
33080h FFFFh, BA98h, FFFFh, FFFFh, BA98h, FFFFh, FFFFh, FFFFh

34000h FFFFh, FFFFh, FFFFh, BA98h, BA98h, BA98h, BAS8h, FFFFh
34080h FFFFh, BA98h, BA98h, FFFFh, BA98h, FFFFh, BA98h, FFFFh

Example 4 This example uses plane masking
the four LSBs are masked. Before instruction execution, PMASK = Q00Fh
and CONTROL = 0000h (T=0, W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear Data
Address

33000h FEDFh, FEDFh, BA9Fh, FEDFh, BA9Fh, BA9Fh, FEDFh, FEDFh
33080h FEDFh, BA9Fh, FEDFh, FEDFh, BA9Fh, FEDFh, FEDFh, FEDFh

34000h FEDFh, FEDFh, FEDFh, BA9Fh, BA9Fh, BA9Fh, BA9Fh, FEDFh
34080h FEDFh, BASFh, BASFh, FEDFh, BA9Fh, FEDFh, BA9Fh, FEDFh

12-178

Pixel Block Transfer - Binary to XY PIXBLT

Syntax

Execution

Instruction
Words

Description

Implied
Operands

PIXBLT B, XY

binary pixel array = XY pixel array (with processing)

5 14 13 12 11 10 9 8 7 6 565 4 3 2 1 O

o 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0]

This PIXBLT instruction expands, transfers, and processes a binary source
pixel array with a destination pixel array.

This instruction operates on two-dimensional arrays of pixels using a linear
starting address for the source and an XY address for the destination. The
source pixel array is treated as a one bit per pixel array. As the PixBlt pro-
ceeds, the source pixels are expanded and then combined with the corre-
sponding destination pixels based on the selected graphics operations.

Note that the parameters are entered exactly as shown in the syntax; that
is, the instruction is entered as PIXBLT B,XY. The first parameter, B, indi-
cates that the starting address of the source array is a linear address but the
source array is a binary array. The second parameter, XY, indicates that the
starting address of the destination array is an XY address.

The following set of implied operands govern the operation of the in-
struction and define the source and destination arrays.

B File Registers
Register Name Format Description
BoT SADDR Linear Source pixel array starting address
B1 SPTCH Linear Source pixel array pitch
B2t DADDR XY Destination pixel array starting address
B3 DPTCH Linear Destination pixe! array pitch
B4 OFFSET Linear Screen origin (0,0)
B5 WSTART XY Window starting corner
B6 WEND XY Window ending corner
B7% DYDX XY Pixel array dimensions (rows:columns)
B8 COLORO Pixel Background expansion color
B9 COLOR1 Pixel Foreground expansion color
B10-B14f Reserved registers
1/0 Registers
Address Name Description and Elements (Bits)
C000000BOh| CONTROL | PP- Pixel processing operations (22 options)
W —Window clipping or pick operation
T -Transparency operation
C0000130h | CONVSP XY-to-linear conversion (source pitch)
Used for source preclipping.
C0000140h CONVDP XY-to-linear conversion (destination pitch)
C0000150h | PSIZE Pixel size (1,2,4,6,8,16)
C0000160h PMASK Plane mask — pixel format

t These registers are changed by PIXBLT execution.
t Used for common rectangle function with window hit operation (W=1).

12-179

PIXBLT

Pixel Block Transfer - Binary to XY

Source Array

Source
Expansion

. Destination
Array

12-180

Due to the pipelining of memory writes, the /ast 1/O register that you write
to may not, in some cases, contain the desired value when you execute the
PIXBLT instruction. To ensure that this register contains the correct value
for execution, you may want to follow the write to that location with an
instruction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

The source pixel array for the expand operation is defined by the contents
of the SADDR, SPTCH, DYDX, and (possibly) CONVSP registers:

° At the outset of the instruction, SADDR contains the linear address
of the pixel with the lowest address in the array. During instruction
execution, SADDR points to the address of the next set of 32 pixels
to be read from the source array. When the block transfer is complete,
SADDR points to the linear address of the first pixel on the next row
of pixels that would have been moved if the block transfer continued.

® SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array. SPTCH can be any value for this
PIXBLT. For window clipping, SPTCH must be a power of two, and
CONVSP must be set to correspond to the SPTCH value.

L CONVSP is calculated by taking the LMO of SPTCH; this value is
used for the XY calculations involved in XY addressing and window

clipping.

° DYDX specifies the dimensions, in pixels, of both the source and
destination arrays in pixels. The DY portion of DYDX contains the
number of rows in the array; the the DX portion contains the number
of pixels per row.

The actual values of the source pixels are determined by the interaction of
the source array with contents of the COLOR1 and COLORO registers. In
the expansion operation, a 1 bit in the source array selects a pixel from the
COLOR?1 register for operation on the destination array. A 0 bit in the
source array selects a COLORO pixel for this purpose. The pixels selected
from the COLOR1 and COLORO registers are those that align directly with
their intended position in the destination array word.

The location of the destination pixel block is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers:

® At the outset of the instruction, DADDR contains the XY address of
the pixel with the lowest address in the array; it is used with OFFSET
and CONVDP to calculate the linear address of the array. During in-
struction execution, DADDR points to the linear address of next
pixel (or word of pixels) to be modified in the destination array. When
the block transfer is complete, DADDR points to the linear address
of the first pixel on the next row of pixels that would have been
moved if the block transfer continued.

e DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array (typically this is the screen pitch).
DPTCH must be a power of two (greater than or equal to 16) and
CONVDP must be set to correspond to the DPTCH value.

Pixel Block Transfer - Binary to XY PIXBLT

[CONVDP is determined by taking the LMO of the DPTCH register;
this value is used for the XY calculations involved in XY addressing
and window clipping.

[] DYDX specifies the dimensions, in pixels, of both the source and
destination arrays. The DY portion of DYDX contains the number of
rows in the array; the DX portion contains the number of pixels per
row.

Corner Adjust No corner adjust is performed for this instruction. The transfer executes in

Window
Checking

Pixel
Processing

Transparency

the order of increasing linear addresses. PBH and PBYV are ignored.

You can use window checking with this instruction by setting the W bits
in the CONTROL register to the desired value. If you select window
checking mode 1, 2, or 3, the WSTART and WEND registers define the XY
starting and ending corners of a rectangular window.

0 No windowing. The entire pixel array is drawn and the WVP and V bits
are unaffected.

1 Window hit. No pixels are drawn. The V bit is set to O if any portion of
the destination array lies within the window. Otherwise, the V bit is set
to 1.

If the V bit is set to 0, the DADDR and DYDX registers are modified to
correspond to the common rectangle formed by the intersection of the
destination array with the rectangular window. DADDR is set to the XY
address of the pixe! in the starting corner of the common rectangle.
DYDX is set to the X and Y dimensions of the common rectangle.

If the V bit is set to 1, the array lies entirely outside the window, and the
values of DADDR and DYDX are indeterminate.

2 Window miss. If the array lies entirely within the active window, it is
drawn and the V bit is set to 0. Otherwise, no pixels are drawn, the V
and WVP bits are set to 1, and the instruction is aborted.

3 Window clip. The source and destination arrays are preclipped to the
window dimensions. Only those pixels that lie within the common rec-
tangle (corresponding to the intersection of the specified array and the
window) are drawn. If any preclipping is required, the V bit is set to 1.

You can select a pixel processing option for this instruction by setting the
PPOP bits in the CONTROL register. The pixel processing operation is
applied to expanded pixels as they are processed with the destination array;
that is, the data is first expanded and then processed. There are 16 Boolean
and 6 arithmetic operations; the default case at reset is the S = D operation.
The 6 arithmetic operations do not operate with pixel sizes of one or two
bits per pixel. For more information, see Section 7.7, Pixel Processing, on
page 7-15.

You can enable transparency for this instruction by setting the T bit in the
CONTROL 1/0 register to 1. The TMS34010 checks for O (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

12-181

PIXBLT

Pixel Block Transfer - Binary to XY

Plane Mask

Interrupts

Shift Register
Transfers

Machine
States

Status Bits

12-182

The plane mask is enabled for this instruction.

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

The PIXBLT instruction uses several /0 and B-file registers as implied op-
erands. If an interrupt service routine modifies a register that the PIXBLT
uses as an implied operand, you must restore that register to the value it had
when the routine began, before returning from the routine. (You can use
the MMFM and MMTM instructions to save and restore the B-file regis-
ters.) In order to maintain compatibility with future TMS340 devices, use
only the RETI instruction to return from an interrupt routine.

If the SRT bit in the DPYCTL 1/0 register is set, each memory read or write
initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

See PIXBLT Expand Instructions Timing, Section 13.5.

N Undefined
C Undefined
Z Undefined
V 7 if a window violation occurs, O otherwise; undefined if window

checking is not enabled (W=00)

Pixel Block Transfer - Binary to XY PIXBLT

Examples

Example 1

Before executing a PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLT examples use the following implied
operand setup.

Register File B: 1/0 Registers:
SADDR (BO0) = 00002010h PSIZE = 0008h
SPTCH (B1) = 00000010h CONVSP = 001Bh
DADDR (B2) = 00300022h CONVDP = 0013h
DPTCH (B3) = 00001000h

OFFSET (B4) = 00010000h

WSTART (B5) = 00000026h

WEND (B6) = 00400050h

DYDX (B7) = 00040010h

COLORO (B8) = 00000000h
COLOR1 (B9) = 7C7C7C7Ch

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before
instruction execution.

Linear Data

Address

2000h xxxxh, 0123h, 4567h, 89ABh, CDEFh, xxxxh, xxxxh, xxxxh
40000h to

43200h FFFFh

This example uses the replace (S = D) pixel processing operation. Before
instruction execution, PMASK = 0000h and CONTROL = 0000h (T=0,
W=00, PP=00000).

After instruction execution, memory contains the following values:
Linear Data
Address

40100h FFFFh, 7C7Ch, 0000h, 7COOh, 0000h, 007Ch, 0000h, 0000h
40180h 0000h, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

41100h FFFFh, 7C7Ch, 007Ch, 7C00h, 007Ch, 007Ch, 007Ch, 0000h
41180h 007Ch, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

42100h FFFFh, 7C7Ch, 7CO0h, 7COOh, 7CO0h, 007Ch, 7CO0h, 0000h
42180h 7COOh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

43100h FFFFh, 7C7Ch, 7C7Ch, 7C00h, 7C7Ch, 007Ch, 7C7Ch, 0000h
43180h 7C7Ch, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

12-183

PIXBLT

Pixel Block Transfer - Binary to XY

Example 2

Example 3

12-184

XY Addressing

X Address
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3
01 2 3 45 6 7 8 9 ABCDETFUO1T 2 3 4

30 FF FF 7C 7C 00 00 00 7C 00 00 7C 00 00 00 00 00 00 00 FF FF FF
31 FFFF7C7C7C 00 007C7C 007C007C 0000 007CO00 FF FF FF
32 FF FF7C7C007C007C007C7C 0000 7C 0000 007CFF FF FF
33FFFF7C7C7C7C007C7C7C7C007C7C00007C7CFF FF FF

o o> =<

This example uses the XOR pixel processing operation. Before instruction
execution, PMASK = 0000h and CONTROL = 2800h (T=0, W=00,
PP=01010).

After instruction execution, memory contains the following values:
X Address
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 33 3 3 3
01 2 345 6 7 8 9ABCDTETFUO0O1T 2 3 4
30 FF FF 83 83 FF FF FF 83 FF FF 83 FF FF FF FF FF FF FF FF FF FF
31 FF FF 83 83 83 FF FF 83 83 FF 83 FF 83 FF FF FF 83 FF FF FF FF
32 FF FF 83 83 FF 83 FF 83 FF 83 83 FF FF 83 FF FF FF 83 FF FF FF

33 FF FF 83 83 83 83 FF 83 83 83 83 FF 83 83 FF FF 83 83 FF FF FF

noo~xaaPp =<

This example uses transparency. Before instruction execution, PMASK =
0000h and CONTROL = 0020h (T=1, W=00, PP=00000).

After instruction execution, memory contains the following values:
X Address
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3
01 2 345 6 7 8 9ABCDTETFUOT1T 2 3 4
30 FF FF 7C7C FF FF FF 7C FF FF 7C FF FF FF FF FF FF FF FF FF FF
31 FF FF7C7C7CFF FF7C7C FF7C FF 7C FF FF FF 7C FF FF FF FF
32 FF FF7C7CFF7CFF7C FF7C7C FF FF 7C FF FF FF 7C FF FF FF

33 FF FF 7C7C 7C 7C FF 7C 7C 7C 7C FF 7C 7C FF FF 7C 7C FF FF FF

v 0saaP <

Pixel Block Transfer - Binary to XY PIXBLT

Example 4

Example 5

This example uses window operation 3 (clipped destination). Before in-
struction execution, PMASK = 0000h and CONTROL = 00COh (T=0,
w=11, PP=00000).

After instruction execution, memory contains the following values:

X Address
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3
01 2 3 45 6 7 8 9 ABCDETFUO1T 2 3 4

30 FF FF FF FF FF FF 00 7C 00 00 7C 00 00 00 00 00 00 00 FF FF FF
31 FF FF FF FF FF FF 00 7C 7C 00 7C 00 7C 00 00 00 7C 00 FF FF FF
32 FF FF FF FF FF FF 00 7C 00 7C 7C 00 00 7C 00 00 00 7C FF FF FF
33 FF FF FF FF FF FF 00 7C 7C 7C 7C 00 7C 7C 00 00 7C 7C FF FF FF

vuwo~aadP <

This example uses plane masking; the four LSBs of each pixel are masked.
Before instruction execution, PMASK = OFOFh and CONTROL = 0020h
(T=1, W=00, PP=00000).

After instruction execution, memory contains the following values:
X Address

2 2 2 2 2 2 2 22 3 3 3 3 3
1

2 2 2 2 2
1 6 7 8 9 ABCDETFO 2 3 4

Y 2 2
0 2 3 4 5
d 30 FF FF 7F 7F FF FF FF 7F FF FF 7 FF FF FF FF FF FF FF FF FF FF
" 31 FF FF 7F 7F 7F FF FF 7F 7F FF 7F FF 7F FF FF FF 7F FF FF FF FF
E 32 FF FF 7F 7F FF 7F FF 7F FF 7F 7F FF FF 7F FF FF FF 7F FF FF FF

33 FF FF 7F 7F 7F 7F FF 7F 7F 7F 7F FF 7F 7F FF FF 7F 7F FF FF FF

12-185

PIXBLT Pixel Block Transfer - Binary to XY

Example 6 This example shows how to use the PIXBLT B,XY instruction’s window
preclipping capabilitied when the source pitch is not a power of 2.

Ko o o e o o e o e - 2 . " - 4 . - = - - - "~ = = = = — = — - - -

* Assume that the registers have been loaded as follows:

* B0 = linear start address of source bitmap

* Bl = SPTCH (no restrictions)

* B2 = start y coord. ytop in 16 MSBs, start x coord.

* xleft 1in 16 LSBs

* B3 = DPTCH (must be power of 2)

* B4 = OFFSET

* B5 = WSTART

* B6 = WEND

* B7 = DY::DX (array height in 16 MSBs, array width in 16 LSBs)

* B8 = COLORO

* B9 = COLOR1

* FS1 >= 16 (assume multiplier for MPYS below is less than 16 bits)

* CONVSP will not be used.

* Implied operands in other I/O registers (incl. CONVDP) are valid.

: Window option = 3

—color—expand:

MOVY B2,B10 ;copy ytop

SUBXY B5,B10 ;window y overlap = ytop - ystart

JRYNN INWINDOW ;jump if ytop below top of window
* Need to clip destination array to top edge of clipping window

MOVY B5,B2 ;clip ytop to top of window

SRA 16,B10 ;shift y overlap to 16 LSBs

MOVE B1l,B1l1 ;copy SPTCH

MPYS B10,B11 ;({ overlap) * SPTCH

SUB B11,B0 ;clip SADDR to top of window

SLL 16,B10 ;shift y overlap to 16 MSBs

ADDXY B10,B7 ;clip DY to top of window

JRLS DONE ;jdone if DY<=0 (completely

. ;above window)
* PIXBLT instruction will do any additional clipping required
INWINDOW:

PIXBLT B, XY ;color expand bitmap to screen
* Restore registers and return
DONE :

RETS 0 ;done

.end

12-186

Pixel Block Transfer - Linear to Linear

PIXBLT

Syntax

Execution

Instruction
Words

Description

Implied
Operands

PIXBLT L, L

linear pixel array - linear pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
fo o o o 1 1 1 1 0 0 O O O O 0 O

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array.

This instruction operates on two-dimensional arrays of pixels using linear
starting addresses for both the source and the destination. As the PixBit
proceeds, the source pixels are combined with the corresponding destina-
tion pixels based on the selected graphics operations.

Note that the parameters are entered exactly as shown in the syntax; that
is, the instruction is entered as PIXBLT L,L. The first parameter, L, indi-
cates that the starting address of the source array is a linear address; the
second parameter, L, indicates that the starting address of the destination
array is also a linear address.

The following set of implied operands govern the operation of the in-
struction and define the source and destination arrays.

B File Registers
Register Name Format Description
BOT SADDR Linear Source pixel array starting address
B1t SPTCH Linear Source pixel array pitch
B2t¥ DADDR Linear Destination pixel array starting address
B3 DPTCH Linear Destination pixel array pitch
B7 DYDX XY Pixel array dimensions
(rows:columns)
B10-B14t Reserved registers
1/0 Registers
Address Name Description and Elements (Bits)
C000000B0Oh| CONTROL | PP-Pixel processing operations (22 options)
T =Transparency operation
PBH- PixBlt horizontal direction
PBV- PixBlt vertical direction
C0000150h | PSIZE Pixel size (1,2,4,8,16)
C0000160h PMASK Plane mask — pixel format

T These registers are changed by PIXBLT execution.
t You must adjust SADDR and DADDR to correspond to the corner selected by the
values of PBH and PBV. See Corner Adjust below for additional information.

Due to the pipelining of memory writes, the /ast 1/0 register that you write
to may not, in some cases, contain the desired value when you execute the
PIXBLT instruction. To ensure that this register contains the correct value
for execution, you may want to follow the write to that location with an
instruction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
/0 Registers.

12-187

PIXBLT

Pixel Block Transfer - Linear to Linear

Source Array The source pixel array for the processing operation is defined by the con-

Destination
Array

tents of the SADDR, SPTCH, and DYDX registers:

L] At the outset of the instruction, SADDR contains the linear address
of the pixel at the appropriate starting corner of the array as deter-
mined by the PBH and PBV bits in the CONTROL 1/0 register. (See
Corner Adjust below.) During instruction execution, SADDR
points to the next pixel (or word of pixels) to be read from the source
array. When the block transfer is complete, SADDR points to the
starting address of the next set of 32 pixels that would have been
moved had the block transfer continued.

{ SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array. SPTCH must be a multiple of 16.

(] DYDX specifies the dimensions, in pixels, of both the source and
destination arrays. The DY portion of DYDX contains the number of
rows in the array; the DX portion contains the number of pixels per
row.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, and DYDX registers:

® At the outset of the instruction, DADDR contains the linear address
of the pixel at the appropriate starting corner of the array as deter-
mined by the PBH and PBV bits in the CONTROL 1/0 register. (See
Corner Adjust below.) During instruction execution, DADDR
points to the next pixel (or word of pixels) to be modified in the des-
tination array. When the block transfer is complete, DADDR points
to the linear address of the first pixel on the next row of pixels that
would have been moved had the block transfer continued.

(] DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array. DPTCH must be a multiple of
16.

(] DYDX specifies the dimensions, in pixels, of both the source and
destination arrays in pixels. The DY portion of DYDX contains the
number of rows in the array, while the DX portion contains the num-
ber of columns.

Corner Adjust The PBH and PBYV bits in the CONTROL /0 register govern the direction

12-188

of the PixBIt. If the source and destination arrays overlap, then PBH and
PBV should be set to prevent any portion of the source array from being
overwritten before it is moved.

Note that this PIXBLT’s corner adjustment is unique. The PBH and PBV
bits control the direction of the PIXBLT; however, the adjustment of
SADDR and DADDR to point to the appropriate starting corner is not au-
tomatic. You must explicitly set these two registers to point to the selected
starting corners of the source and destination arrays, respectively, as indi-
cated by PBH and PBV. This facility allows you to use corner adjust for
screen definitions that do not lend themselves to XY addressing (those not
binary powers of two). In effect, you supply your own corner adjust oper-
ation in software and the PixBlt instruction provides directional control.

Pixel Block Transfer - Linear to Linear PIXBLT

Window
Checking

Pixel
Processing

Transparency

Plane Mask

® For PBH = 0 and PBV = 0, set SADDR and DADDR as they are
normally set for linear PixBlts. Set both registers to correspond to the
linear address of the first pixel on the first line of the array (that is,
the pixel with the lowest address).

® For PBH = 0 and PBV = 1, set SADDR and DADDR to correspond
to the linear address of the first pixel on the last line of the array.
In other words,

SADDR = (linear address of 1st source pixel) + [(DY-1) x SPTCH)]
and
DADDR = (linear address of 1st destination pixel) + [(DY-1) x DPTCH)]

® For PBH =1 and PBV = 0, set SADDR and DADDR to correspond
to the linear address of the pixe/ following the last pixel on the first
line of the array. In other words,

SADDR = (linear address of 1st source pixel) + (DX x PSIZE)
and
DADDR- = (linear address of 1st destination pixel) + (DX x PSIZE)

[} For PBH = 1 and PBV = 1, set SADDR and DADDR to correspond
to the linear address of the pixe/ following the last pixel on the last
line of the array. In other words,

SADDR = (linear address of 1st source pixel) + [(DY-1) x SPTCH)]
+ (DX x PSIZE)

and

DADDR = (linear address of 1st destination pixel) + [(DY-1) x
DPTCH)]+ (DX x PSIZE)

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

You can select a pixel processing option for this instruction by setting the
PPOP bits in the CONTROL register. The pixel processing option is applied
to pixels as they are processed with the destination array. Note that the
data is read through the plane mask and then processed. There are 16
Boolean and 6 arithmetic operations; the default case at reset is the repface
(S — D) operation. The 6 arithmetic operations do not operate with pixel
sizes of 1 or 2 bits per pixel. For more information, see Section 7.7, Pixel
Processing, on page 7-15.

You can enable transparency for this instruction by setting the T bit in the
CONTROL /0 register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

The plane mask is enabled for this instruction.

12-189

PIXBLT Pixel Block Transfer - Linear to Linear

Interrupts This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

The PIXBLT instruction uses several 1/0 and B-file registers as implied op-
erands. If an interrupt service routine modifies a register that the PIXBLT
uses as an implied operand, you must restore that register to the value it had
when the routine began, before returning from the routine. (You can use
the MMFM and MMTM instructions to save and restore the B-file regis-
ters.) In order to maintain compatibility with future TMS340 devices, use
only the RETI instruction to return from an interrupt routine.

Shift Register

Transfers If the SRT bit in the DPYCTL 1/0 register is set, each memory read or write
initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMSs support this capability.)

Machine
States See Section 13.4, PIXBLT Instructions Timing.
Status Bits N Undefined
C Undefined
Z Undefined
V Undefined
Examples Before executing a PIXBLT instruction, load the implied operand registers

with appropriate values. These PIXBLT examples use the following implied
operand setup.

Register File B: 1/0 Registers:
SADDR (BO) = 00002004h PSIZE = 0004h
SPTCH (B1) = 00000080h

DADDR (B2) = 00002228h

DPTCH (B3) = 00000080h

OFFSET (B4) = 00000000h

DYDX (B7) = 0002000Dh

Additional implied operand values are listed with each example.

For these examples, assume that memory contains the following data before
instruction execution.

Linear Data

Address

02000h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxxh, xxxxh
02280h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

12-190

Pixel Block Transfer - Linear to Linear PIXBLT

Example 1

Example 2

Example 3

This example uses the replace (S - D) pixel processing operation. Before
instruction execution, PMASK = 0000h and CONTROL = 0000h (T=0,
W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, 00xxh, 1110h, 2221h, x332h, xxxxh, xxxxh
02280h xxxxh, xxxxh, 00xxh, 1110h, 2221h, x332h, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

This example uses the (D - S) = D pixel processing operation. Before in-
struction execution, PMASK = 0000h and CONTROL = 4800h (T=0,
W=00, PP=10010).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, FFxxh, EEEFh, DDDEhxCCDh, xxxxh, xxxxh
02280h xxxxh, xxxxh, FFxxh, EEEFh, DDDEh,xCCDh, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

This example uses transparency. Before instruction execution, PMASK =
0000h and CONTROL = 0020h (T=1, W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, OFFxxh,111Fh, 2221h, x332h, xxxxh, xxxxh
02280h xxxxh, xxxxh, OFFxxh,111Fh, 2221h, x332h, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

12-191

PIXBLT Pixel Block Transfer - Linear to Linear

Example 4 This example uses plane masking (the MSB of each pixel is masked). Be-
fore instruction execution, PMASK = 8888h and CONTROL = 0000h
(T=0, W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, 88xxh, 9998h, AAA9h, xBBAh, xxxxh, xxxxh
02280h xxxxh, xxxxh, 88xxh, 9998h, AAA9h,xBBAh, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

12-192

Pixel Block Transfer - Linear to XY PIXBLT

Syntax

Execution

Instruction
Words

Description

Implied
Operands

PIXBLT L, XY

linear pixel array — XY pixel array (with processing)

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo o o o 1 1 1 1 0 0 1t 0 0 0 0 O]

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array.

This instruction operates on two-dimensional arrays of pixels using a linear
starting address for the source array and an XY address for the destination
array. As the PixBlt proceeds, the source pixels are combined with the
corresponding destination pixels based on the selected graphics operations.

Note that the parameters are entered exactly as shown in the syntax; that
is, the instruction is entered as PIXBLT L,XY. The first parameter, L, indi-
cates that the starting address of the source array is a linear address; the
second parameter, XY, indicates that the starting address of the destination
array is an XY address.

The following set of implied operands govern the operation of the in-
struction and define the source and destination arrays.

B File Registers

Register Name Format Description

Bot SADDR Linear Source pixel array starting address

B1 SPTCH Linear Source pixel array pitch

B2t# DADDR XY Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

B7% DYDX XY Pixel array dimensions (rows:columns)
B10~B14t Reserved registers

1/0 Registers

Address Name Description and Elements (Bits)

C000000BOh} CONTROL | PP-Pixel processing operations (22 options)
W - Window operations

T -—Transparency operation

PBH- PixBIt horizontal direction

PBV- PixBlt vertical direction

C0000130h CONVSP XY-to-linear conversion (source pitch)
Used for preclipping and corner adjust

C0000140h CONVDP XY -to-linear conversion (destination pitch)
C0000150h | PSIZE Pixel size (1,2,4,8,16)
C0000160h | PMASK Plane mask — pixel format

T These registers are changed by PIXBLT execution.
t Used for common rectangle function with window pick.

Due to the pipelining of memory writes, the /ast 1/0 register that you write
to may not, in some cases, contain the desired value when you execute the

12-193

PIXBLT

Pixel Block Transfer - Linear to XY

Source Array

Destination
Array

12-194

PIXBLT instruction. To ensure that this register contains the correct value
for execution, you may want to follow the write to that location with an
instruction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

The source pixel array for the processing operation is defined by the con-
tents of the SADDR, SPTCH, DYDX, and (possibly) CONVSP registers:

At the outset of the instruction, SADDR contains the linear address
of the pixel with the lowest address in the array. During instruction
execution, SADDR points to the next pixel (or word of pixels) to be
accessed in the source array. When the block transfer is complete,
SADDR points to the linear address of the first pixel on the next row
of pixels that would have been moved had the block transfer contin-
ued.

SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array. SPTCH must be a multiple of 16.
For window clipping or corner adjust, SPTCH must be a power of two
and CONVSP must be set to correspond to the SPTCH value.

CONVSP is determined by taking the LMO of the SPTCH register; this
value is used for the XY calculations involved in window clipping and
corner adjust.

DYDX specifies the dimensions, in pixels, of both the source and
destination arrays. The DY portion of DYDX contains the number of
rows in the array; the DX portion contains the number of pixels per
row.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers:

At the outset of the instruction, DADDR contains the XY address of
the pixel with the lowest address in the array; it is used with OFFSET
and CONVDP to calculate the linear address of the starting location
of the array. During instruction execution, DADDR points to the lin-
ear address of next pixel (or word of pixels) to be accessed in the
destination array. When the block transfer is complete, DADDR
points to the linear address of the first pixel on the next row of
pixels that would have been moved had the block transfer continued.

DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array (typically this is the screen pitch).
DPTCH must be a power of two (greater than or equal to 16).

CONVDP must be set to correspond to the DPTCH value. CONVDP
is determined by taking The LMO of the DPTCH register; this value
is used for the XY calculations involved in XY addressing, window
clipping and corner adjust.

Pixel Block Transfer - Linear to XY PIXBLT

[) DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

Corner Adjust The PBH and PBV bits in the CONTROL 1/0 register govern the direction

Window
Checking

Pixel
Processing

of the PixBlt. If the source and destination arrays overlap, then PBH and
PBV should be set to prevent any portion of the source array from being
overwritten before it is moved. This PixBlt performs the corner adjust
function automatically under the control of the PBH and PBV bits. |If
PBV=1, SPTCH must be a power of two and CONVSP should be valid.
The SADDR and DADDR registers shouid be set to correspond to the ap-
propriate format address of the first pixel on the first line of the source
(linear) and destination (XY) arrays, respectively.

You can use window checking with this instruction by setting the W bits
in the CONTROL register to the desired value. If you select window
checking mode 1, 2, or 3, the WSTART and WEND registers define the XY
starting and ending corners of a rectangular window.

0 No windowing. The entire pixel array is drawn and the WVP and V bits
are unaffected.

1 Window hit. No pixels are drawn. The V bit is set to 0 if any portion of
the destination array lies within the window. Otherwise, the V bit is set
to 1.

If the V bit is set to 0, the DADDR and DYDX registers are modified to
correspond to the common rectangle formed by the intersection of the
destination array with the rectangular window. DADDR is set to the XY
address of the pixel in the starting corner of the common rectangle.
DYDX is set to the X and Y dimensions of the common rectangle.

If the V bit is set to 1, the array lies entirely outside the window, and the
values of DADDR and DYDX are indeterminate.

2 Window miss. If the array lies entirely within the active window, it is
drawn and the V bit is set to 0. Otherwise, no pixels are drawn, the V
and WVP bits are set to 1, and the instruction is aborted.

3 Window clip. The source and destination arrays are preclipped to the
window dimensions. Only those pixels that lie within the common rec-
tangle (corresponding to the intersection of the specified array and the
window) are drawn. If any preclipping is required, the V bit is setto 1.

You can select a pixel processing option to use with this instruction by
setting the PPOP bits in the CONTROL register. The pixel processing op-
eration is applied to pixels as they are processed with the destination array.
Note that the data is read through the plane mask and then processed.
There are 16 Boolean and 6 arithmetic operations; the default case at reset
is the replace (S — D) operation. The 6 arithmetic operations do not op-
erate with pixel sizes of 1 or 2 bits per pixel. For more information, see
Section 7.7, Pixel Processing, on page 7-15.

12-195

PIXBLT

Pixel Block Transfer - Linear to XY

Transparency

Plane Mask

Interrupts

Shift Register
Transfers

Machine
States

Status Bits

12-196

You can enable transparency for this instruction by setting the T bit in the
CONTROL 1/0 register to 1. The TMS34010 checks for O (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

The plane mask is enabled for this instruction.

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

The PIXBLT instruction uses several I/0 and B-file registers as implied op-
erands. If an interrupt service routine modifies a register that the PIXBLT
uses as an implied operand, you must restore that register to the value it had
when the routine began, before returning from the routine. (You can use
the MMFM and MMTM instructions to save and restore the B-file regis-
ters.) In order to maintain compatibility with future TMS340 devices, use
only the RETI instruction to return from an interrupt routine.

If the SRT bit in the DPYCTL |/0 register is set, each memory read or write
initiated by the PixBIt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers (the TMS4461 VRAM supports this capability).

See PIXBLT Instructions Timing, Section 13.4.

N Undefined
C Undefined
Z Undefined
V If window clipping is enabled - 1 if a window violation occurs, 0 oth-

erwise; undefined if window clipping not enabled (W=005)

Pixel Block Transfer - Linear to XY PIXBLT

Examples

Example 1

Before executing a PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLT examples use the following implied
operand setup.

Register File B: 1/0 Registers:

SADDR (BO) = 00002004h CONVDP = 0017h

SPTCH (B1) = 00000080h PSIZE = 0004h

DADDR (B2) = 00520007h PMASK = 0000h

DPTCH (B3) = 00000100h CONTROL = 0000h

OFFSET (B4) = 00010000h (W=00, T=0, PP=00000)
WSTART (B5) = 0030000Ch

WEND (B6) = 00530014h

DYDX (B7) = 00030016h

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before
instruction execution.

Linear Data

Address

02000h 3210h, 7654h, BA98h, FEDCh, 3210h, 7654h, BA98h, FEDCh
02080h 3210h, 7654h, BA98h, FEDCh, 3210h, 7654h, BA98h, FEDCh
02100h 3210h, 7654h, BA98h, FEDCh, 3210h, 7654h, BA98h, FEDCh

15200h to
15480h 8888h

This example uses the replace (S — D) pixel processing operation. Before
instruction execution, PMASK = 7777h and CONTROL = 0000h (T=0,
W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

15200h 8888h, 1888h, 5432h, 9876h, DCBAhK,10FEh, 5432h, 8886h
15300h 8888h, 1888h, 5432h, 9876h, DCBAh,10FEh, 5432h, 8886h
15400h 8888h, 1888h, 5432h, 9876h, DCBAh,10FEh, 5432h, 8886h

XY Addressing

X A
000000000000000
0123456789ABCDE

52 8888888123456789ABCDEF0123458888
53 8888888123456789ABCDEF0123458888
54 8888888123456789ABCDEF0123458888

ddress
111111111111
FO1

1 1111
0123456789ABCDEF

v 02 P <

12-197

PIXBLT

Pixel Block Transfer - Linear to XY

Example 2

Example 3

Example 4

12-198

This example uses the (D subs S) = D pixel processing operation. Before
instruction execution, PMASK = 0000h and CONTROL = 4C00h (T=0,
w=00, PP=10011).

After instruction execution, memory contains the following values:
X Address

00000111111

00000000000 1111111111
123456789ABCDEFO0123456789ABCDEF

0
52 88888887654321000000008765432888
53 88888887654321000000008765432888

54 88888887654321000000008765432888

we o~ P> <

This example uses transparency with the (D subs S} = D pixel processing
operation. Before instruction execution, PMASK = 0000h and CONTROL
= 4C20h (T=1, W=00, PP=10011).

After instruction execution, memory contains the following values:
X Address

00000111111
B

0000000000 1111111111
3456789 CDEF0123456789ABCDEF

0
A
52 88888887654321888888888765432888
53 888888876543218888888887654328838

54 88888887654321888888888765432888

neo=saaP =<

This example uses window operation 3 (the destination is clipped). Before
instruction execution, PMASK = 0000h and CONTROL = 00COh (T=0,
W=11, PP=00000).

After instruction execution, memory contains the foliowing values:

X Address
00000000000000001111T11T111111T1111
0123456789ABCDEF0123456789ABCDEF

52 8888888888886789ABCDES8888888888
53 8888888888886 789ABCDES88888888888
54 88888888888888888888888888888888

v o=~aa)P <

Pixel Block Transfer - Linear to XY PIXBLT

Example 5

This example uses plane masking (the most significant bit is masked). Be-
fore instruction execution, PMASK = 8888h and CONTROL = 0000h
(T=0, W=00, PP=00000).

After instruction execution, memory contains the following values:
X Address

000000111111 1111111

00000000000 111
123456789ABCDEF0123456789ABCDEF

0
52 88888889ABCDEF89ABCDEF89ABCDESBS8S8
53 88888889ABCDEF89ABCDEF89ABCDESBS8S8

54 88888889ABCDEF89ABCDEF89ABCDESS8S

o o=~ P <

12-199

PIXBLT

Pixel Block Transfer - XY to Linear

Syntax

Execution

Instruction
Words

Description

Implied
Operands

12-200

PIXBLT XY, L

XY pixel array — linear pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 o o o 1 1 1 1 0 1 0 0 0 0 0 oOf

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array.

This instruction operates on two-dimensional arrays of pixels using an XY
starting address for the source pixel array and a linear address for the des-
tination array. As the PixBlt proceeds, the source pixels are combined with
the corresponding destination pixels based on the selected graphics oper-
ations.

Note that the parameters are entered exactly as shown in the syntax; that
is, the instruction is entered as PIXBLT XY,L. The first parameter, XY, in-
dicates that the starting address of the source array is an XY address; the
second parameter, L, indicates that the starting address of the destination
array is a linear address.

The following set of implied operands govern the operation of the in-
struction and define the source and destination arrays.

B File Registers

Register Name Format Description
Bot SADDR XY Source pixel array starting address
B1 SPTCH Linear Source pixel array pitch
B2t DADDR Linear Destination pixel array starting address
B3 DPTCH Linear Destination pixel array pitch
B4 OFFSET Linear Screen origin (0,0)
B7 DYDX XY Pixel array dimensions (rows:columns)
B10-B14t Reserved registers
1/0 Registers
Address Name Description and Elements (Bits)
C000000B0Oh| CONTROL | PP —Pixel processing operations (22 options)
T —Transparency operation
PBH - PixBIt horizontal direction
PBV - PixBIt vertical direction
C0000130h | CONVSP XY-to-linear conversion (source pitch)
Used for XY operations
C0000140h | CONVDP XY-to-linear conversion (destination pitch)
Used for XY operations
C0000150h | PSIZE Pixel size (1,2,4,8,16)
C0000160h | PMASK Plane mask — pixel format

Tt These registers are changed by PIXBLT execution.

Pixel Block Transfer - XY to Linear PIXBLT

Source Array

Destination
Array

Due to the pipelining of memory writes, the /ast /O register that you write
to may not, in some cases, contain the desired value when you execute the
PIXBLT instruction. To ensure that this register contains the correct value
for execution, you may want to follow the write to that location with an
instruction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

The source pixel array for the processing operation is defined by the con-
tents of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers:

At the outset of the instruction, SADDR contains the XY address of
the pixel with the lowest address in the array; it is used with OFFSET
and CONVSP to calculate the linear address of the starting location
of the array. During instruction execution, SADDR points to the next
pixel (or word of pixels) to be accessed from the source array. When
the block transfer is complete, SADDR points to the linear address
of the first pixel on the next row of pixels that would have been
moved had the block transfer continued.

SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array (typically this is the screen pitch).
SPTCH must be a power of two (greater than or equal to 16) unless
only one line is moved and CONVSP must be set to correspond to the
SPTCH value.

CONVSP is determined by taking the LMO of the SPTCH register; this
value is used for the XY calculations involved in XY addressing, win-
dow clipping and corner adjust.

DYDX specifies the dimensions, in pixels, of both the source and
destination arrays. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, DYDX, and (potentially) CONVDP registers:

At the outset of the instruction, DADDR contains the linear address
of the pixel with the lowest address in the array. During instruction
execution, DADDR points to the next pixel (or word of pixels) to be
modified in the destination array. When the block transfer is com-
plete, DADDR points to the linear address of the first pixel on the
next row of pixels that would have been moved had the block trans-
fer continued.

DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array. DPTCH must be a multiple of
16. For window clipping or corner adjust, DPTCH must be a power
of two and CONVDP must be set to correspond to the DPTCH value.

12-201

PIXBLT

Pixel Block Transfer - XY to Linear

® CONVDP is determined by taking the LMO of the DPTCH register;
this value is used for the XY calculations involved in window clipping
and corner adjust.

o DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array; the DX portion contains the number of columns.

Corner Adjust The PBH and PBV bits in the CONTROL /0O register govern the direction

Window
Checking

Pixel
Processing

Transparency

Plane Mask

Interrupts

12-202

of the PixBlt. If the source and destination arrays overlap, then PBH and
PBV should be set to prevent any portion of the source array from being
overwritten before it is moved. This PixBlt performs the corner adjust
function automatically under the control of the PBH and PBV bits. If
PBV=1, DPTCH must be a power of two and CONVDP must be valid. The
SADDR and DADDR registers should be set to correspond to the appro-
priate format address of the first pixel on the first line of the source (XY)
and destination (linear) arrays, respectively.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

You can select a pixel processing option to use with this instruction by
setting the PPOP bits in the CONTROL register. The pixel processing op-
eration is applied to pixels as they are processed with the destination array.
Note that the data is read through the plane mask and then processed.
There are 16 Boolean and 6 arithmetic operations; the default case at reset
is the S = D operation. The 6 arithmetic operations do not operate with
pixel sizes of one or two bits per pixel. For more information, see Section
7.7, Pixel Processing, on page 7-15.

You can enable transparency for this instruction by setting the T bit in the
CONTROL 1/0 register to 1. The TMS34010 checks for O (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

The plane mask is enabled for this instruction.

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

The PIXBLT instruction uses several 1/0 and B-file registers as implied op-
erands. If an interrupt service routine modifies a register that the PIXBLT
uses as an implied operand, you must restore that register to the value it had
when the routine began, before returning from the routine. (You can use
the MMFM and MMTM instructions to save and restore the B-file regis-

Pixel Block Transfer - XY to Linear PIXBLT

ters.) In order to maintain compatibility with future TMS340 devices, use
only the RETI instruction to return from an interrupt routine.

Shift Register

Transfers If the SRT bit in the DPYCTL 1/0 register is set, each memory read or write
initiated by the PixBit generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers (not all VRAMSs support this capability).

Machine
States See PIXBLT Instructions Timing, Section 13.4.
Status Bits N Undefined
C Undefined
Z Undefined
V Undefined
Examples Before executing a PIXBLT instruction, load the implied operand registers

with appropriate values. These PIXBLT examples use the following implied
operand setup.

Register File B: I/0 Registers:
SADDR (BO) = 00400001h CONVSP = 0018h
SPTCH (B1) = 00000080h PSIZE = 0004h
DADDR (B2) = 00002228h

DPTCH (B3) = 00000080h

OFFSET (B4) = 00000000h

DYDX (B7) = 0002000Dh

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before
instruction execution.

Linear Data

Address

02000h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxxh, xxxxh
02280h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

12-203

PIXBLT Pixel Block Transfer - XY to Linear

Example 1 This example uses the replace (S — D) pixel processing operation. Before
instruction execution, PMASK = 0000h and CONTROL = 0000h (T=0,
W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, 00xxh, 1110h, 2221h, x332h, xxxxh, xxxxh
02280h xxxxh, xxxxh, 00xxh, 1110h, 2221h, x332h, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

Example 2 This example uses the Os - D pixel processing operation. Before in-
struction execution, PMASK = 0000h and CONTROL = 0CO0h (T=0,
wW=00, PP=00011).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, 00xxh, 0000h, 0000h, x000h, xxxxh, xxxxh
02280h xxxxh, xxxxh, 00xxh, 0000h, 0000h, x000h, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

Example 3 This example uses transparency. Before instruction execution, PMASK =
0000h and CONTROL = 0200h (T=1, W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, FFxxh, 111Fh, 2221h, x332h, xxxxh, xxxxh
02280h xxxxh, xxxxh, FFxxh, 111Fh, 2221h, x332h, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh,xxxxh

12-204

Pixel Block Transfer - XY to Linear PIXBLT

Example 4 This example uses plane masking
the two MSBs of each pixel are masked. Before instruction execution,
PMASK = CCCCh and CONTROL = 0000h (T=0, W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, CCxxh, DDDChEEEDhA, xFFEh, xxxxh, xxxxh
02280h xxxxh, xxxxh, CCxxh, DDDChEEEDh, xFFEh, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

12-205

PIXBLT

Pixel Block Transfer - XY to XY

Syntax

Execution

Instruction
Words

Description

Implied
Operands

12-206

PIXBLT XY, XY
XY pixel array = XY pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo o o o 1 1 1 1 0o 1 1 0 0 0 0 0]

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array.

This instruction operates on two-dimensional arrays of pixels using XY
starting addresses for both the source and destination pixel arrays. As the
PixBit proceeds, the source pixels are combined with the corresponding
destination pixels based on the selected graphics operations.

Note that the parameters are entered exactly as shown in the syntax; that
is, the instruction is entered as PIXBLT XY, XY. The first XY indicates that
the starting address of the source array is an XY address; the second XY
indicates that the starting address of the destination array is also an XY
address.

The following set of implied operands govern the operation of the in-
struction and define the source and destination arrays.

B File Registers

Register Name Format Description
BOt SADDR XY Source pixel array starting address
B1 SPTCH Linear Source pixel array pitch
B2t# DADDR XY Destination pixel array starting address
B3 DPTCH Linear Destination pixel array pitch
B4 OFFSET Linear Screen origin (0,0)
BS WSTART XY Window starting corner
B6 WEND XY Window ending corner
B7% DYDX XY Pixel array dimensions (rows:columns)
B10-B14t Reserved registers
1/0 Registers
Address Name Description and Elements (Bits)

CO0000BOh | CONTROL | PP —Pixel processing operations (22 options)
W —Window clipping or pick operation

T —Transparency operation

PBH- PixBlt horizontal direction

PBV - PixBlt vertical direction

C0000130h | CONVSP XY-to-linear conversion (source pitch)
C0000140h | CONVDP XY-to-linear conversion (destination pitch)
C0000150h | PSIZE Pixel size (1,2,4,8,16)

C0000160h | PMASK Plane mask - pixel format

t These registers are changed by PIXBLT execution.
¥ Used for common rectangle function with window pick.

Pixel Block Transfer - XY to XY PIXBLT

Source Array

Destination
Array

Due to the pipelining of memory writes, the /ast I/O register that you write
to may not, in some cases, contain the desired value when you execute the
PIXBLT instruction. To ensure that this register contains the correct value
for execution, you may want to follow the write to that location with an
instruction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
I/ O Registers.

The source pixel array for the processing operation is defined by the con-
tents of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers:

At the outset of the instruction, SADDR contains the XY address of
the pixel with the lowest address in the array; it is used with OFFSET
and CONVSP to calculate the linear address of the starting location
of the array. During instruction execution, SADDR points to the next
pixel (or word of pixels) to be read from the source array. When the
block transfer is complete, SADDR points to the linear address of
the first pixel on the next row of pixels that would have been moved
had the block transfer continued.

SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array (typically this is the screen pitch).
SPTCH must be a power of two (greater than or equal to 16) and
CONVSP must be set to correspond to the SPTCH value.

CONVSP is determined by taking the LMO of the SPTCH register; this
value is used for the XY calculations involved in XY addressing, win-
dow clipping and corner adjust.

DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns,

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers:

At the outset of the instruction, DADDR contains the XY address of
the pixel with the lowest address in the array; it is used with OFFSET
and CONVDP to calculate the linear address of the starting location
of the array. During instruction execution, DADDR points to the next
pixel (or word of pixels) to be read from the destination array. When
the block transfer is complete, DADDR points to the linear address
of the first pixel on the next row of pixels that would have been
moved had the block transfer continued.

DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array (typically this is the screen pitch).
DPTCH must be a power of two (greater than or equal to 16) and
CONVDP must be set to correspond to the DPTCH value.

12-207

PIXBLT

Pixel Block Transfer - XY to XY

Window
Checking

Pixel
Processing

® CONVDP is determined by taking the LMO of the DPTCH register;
this value is used for the XY calculations involved in XY addressing,
window clipping and corner adjust.

{ DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

You can use window checking with this instruction by setting the W bits
in the CONTROL register to the desired value. If you select window
checking mode 1, 2, or 3, the WSTART and WEND registers define the XY
starting and ending corners of a rectangular window.

0 No windowing. The entire pixel array is drawn and the WVP and V bits
are unaffected.

1 Window hit. No pixels are drawn. The V bit is set to O if any portion of
the destination array lies within the window; otherwise, the V bit is set
to 1.

If the V bit is set to 0, the DADDR and DYDX registers are modified to
correspond to the common rectangle formed by the intersection of the
destination array with the rectangular window. DADDR is set to the XY
address of the pixel in the starting corner of the common rectangle.
DYDX is set to the X and Y dimensions of the common rectangle.

If the V bit is set to 1, the array lies entirely outside the window, and the
values of DADDR and DYDX are indeterminate.

2 Window miss. If the array lies entirely within the active window, it is
drawn and the V bit is set to 0; otherwise, no pixels are drawn, the V and
WVP bits are set to 1, and the instruction is aborted.

3 Window clip. The source and destination arrays are preclipped to the
window dimensions. Only those pixels that lie within the common rec-
tangle (corresponding to the intersection of the specified array and the
window) are drawn. If any preclipping is required, the V bit is set to 1.

You can select a pixel processing option to use with this instruction by
setting the PPOP bits in the CONTROL register. The pixel processing op-
eration is applied to pixels as they are processed with the destination array.
Note that the data is read through the plane mask and then processed.
There are 16 Boolean and 6 arithmetic operations; the default case at reset
is the replace (S = D) operation. The 6 arithmetic operations do not op-
erate with pixel sizes of one or two bits per pixel. For more information, see
Section 7.7, Pixel Processing, on page 7-15.

Corner Adjust The PBH and PBV bits in the CONTROL i/0 register govern the direction

12-208

of the PixBlt. If the source and destination arrays overlap, then PBH and
PBV should be set to prevent any portion of the source array from being
overwritten before it is moved. This PixBit performs the corner adjust

Pixel Block Transfer - XY to XY PIXBLT

Transparency

Plane Mask

Interrupts

Shift Register
Transfers

Machine
States

Status Bits

function automatically under the control of the PBH and PBV bits. The
SADDR and DADDR registers should be set to correspond to the appro-
priate format address of the first pixel on the first line of the source (XY)
and destination (XY) arrays, respectively.

You can enable transparency for this instruction by setting the T bitin the
CONTROL /0 register to 1. The TMS34010 checks for O (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

The plane mask is enabled for this instruction.

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

The PIXBLT instruction uses several 1/0 and B-file registers as implied op-
erands. If an interrupt service routine modifies a register that the PIXBLT
uses as an implied operand, you must restore that register to the value it had
when the routine began, before returning from the routine. (You can use
the MMFM and MMTM instructions to save and restore the B-file regis-
ters.) In order to maintain compatibility with future TMS340 devices, use
only the RETI instruction to return from an interrupt routine.

If the SRT bit in the DPYCTL |/0 register is set, each memory read or write
initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

See Section 13.4, PIXBLT Instructions Timing.

N Unaffected
C Unaffected
Z Unaffected
V If window clipping is enabled - 1 if a window violation occurs, 0 oth-

erwise; unaffected if window clipping not enabled

12-209

PIXBLT Pixel Block Transfer - XY to XY
Examples Before executing a PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLT examples use the following implied
operand setup.
Register File B: I/0 Registers:
SADDR (BO) = 00200004h CONVSP = 0016h
SPTCH (B1) = 00000200h CONVDP = 0016h
DADDR (B2) = 00410004h PSIZE = 0004h
DPTCH (B3) = 00000200h PMASK = 0000h
OFFSET(B4) = 00010000h CONTROL = 0000h
WSTART(B5) = 0030000%h (W=00, T=0, PP=00000)
WEND (B6) = 00420012h
DYDX (B7) = 00030016h
Additional implied operand values are listed with each example. For this
example, assume that memory contains the following data before in-
struction execution.
Linear Data
Address
14000h 3210h, 7654h, OBA98hFEDCh, 3210h, 7654h, OBASShFEDCh
14200h 3210h, 7654h, OBA98BhFEDCh, 3210h, 7654h, OBAS8hFEDCh
14400h 3210h, 7654h, OBAS8ShFEDCh, 3210h, 7654h, OBA98hFEDCh
18200h to
18680h 3333h
Example 1 This example uses the rep/ace (S —D) pixel processing operation. Before

12-210

instruction execution, PMASK = 0000h and CONTROL = 0000h (T=0,
W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear Data
Address
18200h 3333h, 7654h, BA98h, FEDCh, 3210h, 7654h, 3398h, 3333h

18400h 3333h, 7654h, BA98h, FEDCh, 3210h, 7654h, 3398h, 3333h
18600h 3333h, 7654h, BA98h, FEDCh, 3210h, 7654h, 3398h, 3333h

XY Addressing

X A
000000000000000
0123456789ABCDE

41 3333456789ABCDEF0123456789333333
42 3333456789ABCDEF0123456789333333
43 3333456789ABCDEF0123456789333333

ddress
0111 111111111
FO12

11111111
0 3456789ABCDEF

o oo <

Pixel Block Transfer - XY to XY PIXBLT

Example 2

Example 3

Example 4

This example uses the (D adds S) = D pixel processing operation. Before
instruction execution, PMASK = 0000h and CONTROL = 4400h (T=0,
W=00, PP=10001).

After instruction execution, memory contains the following values:

X Address
00000000000000C0OO0O1T1T1T1T1T11111T1T11111
0123456 789ABCDEF0123456789ABCDEF
41 3333789ABCDEFFFF3456789ABC333333
42 3333789ABCDEFFFF3456789ABC333333

43 3333789ABCDEFFFF3456789ABC333333

v oo <

This example uses transparency and the (D SUBS S) — D pixel processing
operation. Before instruction execution, PMASK = 0000h and CONTROL
= 4C20h (T=1, W=00, PP=10011).

After instruction execution, memory contains the following values:

X Address
00000000000000001111111111111111
0123456789ABCDEF0123456789ABCDEF

41 33333333333333333213333333333333
42 33333333333333333213333333333333
43 33333333333333333213333333333333

e o~xaadP <

This example uses window operation 3 (the destination is clipped). Before
instruction execution, PMASK = 0000h and CONTROL = 00COh (T=0,
W=11, PP=00000).

After instruction execution, memory contains the following values:

X Address
0000001111111 111111111
ABCDEF0123456789ABCDEF

41 3333333339ABCDEF0123333333333333
42 3333333339ABCDEF0123333333333333
43 33333333333333333333333333333333

wnoo=soadP <

12-21

PIXBLT Pixel Block Transfer - XY to XY

Example 5 This example uses plane masking
the third least significant bit is masked. Before instruction execution,
PMASK = 5555h and CONTROL = 0000h (T=0, W=00, PP=00000).

After instruction execution, memory contains the following values:

X Address
0000001T1T1T71T11111T1111111
ABCDEFO0123456789ABCDEF

41 3333113399BB99BB1133113399333333
42 3333113399BB99BB1133113399333333
43 3333113399BB99BB1133113399333333

poo~oaP =<

12-212

Pixel Transfer - Register to Indirect

PIXT

Syntax

Execution

Instruction
Words

Description

Implied
Operands

Pixel
Processing

Window
Checking

Transparency

Plane Mask

PIXT

pixel in Rs = *Rd

Rs, *Rd

(Note that Rd contains a linear address.)

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

f1 1 1 1 1 o of Rs IEN Rd |

This PIXT instruction transfers a pixel from a register to memory. The
source pixel is the 1, 2, 4, 8, or 16 LSBs of the source register, depending
on the pixel size specified in the PSIZE /0 register. The destination register
contains a linear address; the source pixel is transferred to this memory lo-
cation.

Rs and Rd must be in the same register file.

1/0 Registers
Address Name Description and Elements (Bits)
C000000B0Oh| CONTROL PP~ Pixel processing operations (22 options)
T =-Transparency operation
C0000150h | PSIZE Pixel size (1,2,4,6,8,16)
C0000160h | PMASK Plane mask - pixel format

Due to the pipelining of memory writes, the /ast 1/0 register that you write
to may not, in some cases, contain the desired value when you execute the
PIXT instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an in-
struction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

You can select a pixel processing option to use with this instruction by
setting the PPOP bits in the CONTROL register. The pixel processing op-
eration is applied to the pixel as it is transferred to the destination location.
The default case at reset is the replace option. For more information, see
Section 7.7, Pixel Processing, on page 7-15.

Window checking cannot be used with this instruction. The W bits are
ignored.

You can enable transparency for this instruction by setting the T bit in the
CONTROL 1/0 register to 1. The TMS34010 checks for O (transparent)
source pixels after it processes the source data. At reset, the default case
for transparency is off.

The plane mask is enabled for this instruction.

12-213

PIXT Pixel Transfer - Register to Indirect

Machine

States Pixel Processing Operation

PSIZE | Replace|Boolean| ADD | ADDS SUB SUBS | MIN/MAX

1,24,8(2+(3),8 4+(3),104+(3),11 B+(3),11 6+(3),12{6+(3),11| 5+(3).10
16 |2+(1),6 [4+(1).8 |4+(1).8 |5+(1).8 |5+(1),9 |6+(1),10] 5+(1).9

Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected
Examples PIXT AO,*Al
Before After
A0 A1l @20500h FSIZE PP PMASK @20500h

0000FFFFh ~ 00020500h 0000h 0001h 00000
0000FFFFh ~ 00020500h 0000h 0002h 00000

‘1I; 0000h 0001h
1) OOOOFFFFh 00020500h 0000h 0004h 00000

1)

1)

0000h 0003h
0000h 000Fh
0000h O0OFFh
0000h FFFFh
0000h 0600h
0000h 0500h
0000h 0000h
0000h 0100h
AAAAh 0400h

0000FFFFh ~ 00020500h 0000h 0008h 00000

0000FFFFh ~ 00020500h 0000h 0010nh 00000
1) 00000006h 00020508h 0000h 0004h 00000
2) 00000006h 00020508h 0300h 0004h 01010
3) 00000006h 00020508h 0100h 0004h 00001
4) 00000006h 00020508h 0100h 0004h 00001
5) 00000006h 00020508h 0000h 0004h 00000

Notes:

O-=0000000O0O+H

1) S replaces D

2) (S XOR D) replaces D

3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D is not replaced
5) S replaces unmasked bits of D

12-214

Pixel Transfer - Register to Indirect XY

PIXT

Syntax

Execution

Instruction
Words

Description

Implied
Operands

Window
Checking

PIXT Rs, *Rd. XY
(Note that Rd contains an XY address.)
pixel in Rs = *Rd.XY

3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4
[R | Rd |

f1 1 1 1 0o o of Rs

This PIXT instruction transfers a pixel from a register to memory. The
source pixel is the 1, 2, 4, 8, or 16 LSBs of the source register, depending
on the pixel size specified in the PSIZE I/0 register. The destination register
contains an XY address; the X value occupies the 16 LSBs of the register
and the Y value occupies the 16 MSBs. The source pixel is moved to the
XY address specified in Rd.

Rs and Rd must be in the same register file.

B File Registers
Register Name Format Description
B3 DPTCH Linear Destination pitch
B4 OFFSET Linear Screen origin (0,0)
B5 WSTART XY Window starting corner
B6 WEND XY Window ending corner
1/0 Registers
Address Name Description and Elements (Bits)
C000000BOh| CONTROL PP- Pixel processing operations (22 options)
W = Window clipping or pick operation
T -Transparency operation
C0000140h | CONVDP XY-to-linear conversion (destination pitch)
C0000150h | PSIZE Pixel size (1,2,4,8,16)
C0000160h PMASK Plane mask — pixel format

Due to the pipelining of memory writes, the /ast |/0 register that you write
to may not, in some cases, contain the desired value when you execute the
PIXT instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an in-
struction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

You can use window checking with this instruction by setting the W bits
in the CONTROL register to the desired value. If you select window
checking mode 1, 2, or 3, the WSTART and WEND registers define the XY
starting and ending corners of a rectangular window. When an attempt is
made to write a pixel inside or outside a window, the results depend on the
selected window checking mode:

12-215

PIXT Pixel Transfer - Register to Indirect XY

0 No window checking. The pixel is drawn and the WVP and V bits are
unaffected.

1 Window hit. No pixels are drawn. The V bit is set to O if the pixel lies
within the window; otherwise, it is set to 1.

2 Window miss. If the pixel lies outside the window, the V and WVP bits
are set to 1 and the instruction is aborted (no pixels are drawn). Other-
wise, the pixel is drawn and the V bit is set to 0.

3 Window clip. If the pixel lies outside the window, the V bit is set to 1
and the instruction is aborted (no pixels are drawn). Otherwise, the pixel
is drawn and the V bit is set to 0.

For more information, see Section 7.10, Window Checking, on page 7-26.

Pixel

Processing You can select a pixel processing option to use with this instruction by
setting the PPOP bits in the CONTROL register. The pixel processing op-
eration is applied to the pixel as it is transferred to the destination location.
The default case at reset is the rep/ace option. For more information, see
Section 7.7, Pixel Processing, on page 7-15.

Transparency You can enable transparency for this instruction by setting the T bit in the
CONTROL /0 register to 1. The TMS34010 checks for O (transparent)
source pixels after it processes the source data. At reset, the default case
for transparency is off.

Plane Mask The plane mask is enabled for this instruction.

Machine
States
Pixel Processing Operation Window
Violation
PSIZE | Replace | Boolean| ADD ADDS SUB SUBS |MIN/MAX|W=1|W=2{W=3
1,24,8|4+(3),10|6+(3),1216+(3),12|7+(3),13}7+(3),13}18+(3),14} 7+(3),13 | 6,9 | 6,9 | 4,7
16 4+(1),8 |6+(1),10{6+(1),10|7+(1)11|7+(1),11]8+(1),12} 7+(1),11 | 69| 69 | 4,7
Status Bits N Unaffected
C Unaffected
Z Unaffected
V 1 if the pixel lies outside the window and W=1, W=2, or W=3, 0 oth-

erwise. Unaffected if W=0.

12-216

Pixel Transfer - Register to Indirect XY

PIXT

Examples

Before

A0

O000OFFFFh
O0000FFFFh
0000FFFFh
0000FFFFh
0000FFFFh
00000006h
00000006h
00000006h
00000006h
00000006h
00000006h
00000006h
00000006h

Before executing a PIXT instruction, load the implied operand registers with
appropriate values. These PIXT examples use the following implied oper-

and setup.

Register File B:

DPTCH (B3) = 00000800h
OFFSET (B4) = 00000000h
WSTART (B5) = 00300020h

WEND (B6) = 00500142h
PIXT AO,*Al.XY
A1l @20500h

00400500h 0000h
00400280h 0000h
00400140h 0000h
004000A0h 0000h
00400050h 0000h
00400142h 0000h
00400142h 0300h
00400142h 0100h
00400142h 0100h
00400142h 0000h
00400142h 0000h
00400143h 0000h
00400143h 0000h

I/O Registers:
CONVDP = 0014h

PSIZE

0001h
0002h
0004h
0008h
0010h
0004h
0004h
0004h
0004h
0004h
0004h
0004h
0004h

PP
00000
00000
00000
00000
00000
00000
01010
00001

00001

00000
00000
00000
00000

XY Address in A1 = Linear Address 20500h

Notes:

1) S replaces D
2) (S XOR D) replaces D

3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D not replaced

5) S replaces unmasked bits

of D

COO0CO 200000000

PMASK

0000h
0000h
0000h
0000h
0000h
0000h
0000h
0000h
0000h
AAAAh
0000h
0000h
0000h

6) Window Option = 3, D inside window, S replaces D
7) Window Option = 3, D outside window, D not replaced, V bit set in

status register

After

@20500h
0001h
0003h
000Fh
00FFh
FFFFh
0600h
0500h
0000h
0100h
0400h
0600h
0000h
0000h

8) Window Option = 2, D outside window, D not replaced, WV interrupt
generated, V bit set in status register

12-217

PIXT Pixel Transfer - Indirect to Register

Syntax PIXT *Rs, Rd
(Note that Rs contains a linear address.)

Execution pixel at *Rs — Rd

Instruction

Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
11 1 1 1 0o 1] Rs | R | Rd |

Description This PIXT instruction transfers a pixel from memory to a register. The
source register contains a linear address; the pixel at this address is trans-
ferred into the destination register. When the pixel is moved into Rd, it is
right justified and zero extended to 32 bits according to the pixel size spe-
cified in the PSIZE /0 register.
Rs and Rd must be in the same register file.

Implied

Operands 1/0 Registers

Address Name Description and Elements (Bits)
C0000150h | PSIZE Pixel size (1,2,4,6,8,16)
C0000160h | PMASK Piane mask = pixel format

Due to the pipelining of memory writes, the /ast 1/0 register that you write
to may not, in some cases, contain the desired value when you execute the
PIXT instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an in-
struction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

Window

Checking Window checking cannot be used with this instruction. The W bits are
ignored.

Pixel

Processing Pixel processing cannot be used with this instruction.

Transparency Transparency cannot be used with this instruction.

Plane Mask The plane mask is enabled for this instruction.

Machine

States 4,7

Status Bits N Undefined
C Undefined
Z Undefined
V Setto 1 if the pixel is 1, set to O if the pixel is 0.

12-218

Pixel Transfer - Indirect to Register

PIXT

Examples

Assume that memory contains the following values:

Address
@20500h
@20510h

PIXT *AO,Al

Before

A0

00020500h
00020500h
00020500h
00020500h
00020500h
00020510h
00020500h
00020510h
00020500h
00020500h
00020510h

Data
OFFFFh
3333h

PSIZE

0001h
0001h
0002h
0002h
0004h
0004h
0008h
0008h
0010h
0010h
0010h

PMASK
0000h
FFFFh
0000h
5555h
0000h
9999h
0000h
5454h
0000h
BA98h
BA98h

After

A1l

00000001h
00000000h
00000003h
00000002h
0000000Fh
00000002h
000000FFh
00000023h
O000OFFFFh
00004567h
00000123h

12-219

PIXT

Pixel Transfer - Indirect to Indirect

Syntax

Execution

Instruction
Words

Description

Implied
Operands

Pixel
Processing

Window
Checking

Transparency

Plane Mask

12-220

PIXT

(Note that Rs and Rd contain linear addresses.)

*Rs, *Rd

pixel at *Rs — *Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
17 1 1 1 1 of Rs [R] Rd [

This PIXT instruction transfers a pixel from one memory location to another.
The source and destination registers both contain linear addresses. The
address in Rs is the address of the source pixel; the pixel is moved into the
address in Rd.

Rs and Rd must be in the same register file.

I/0 Registers
Address Name Description and Elements (Bits)
C000000BOh| CONTROL | PP- Pixel processing operations (22 options)
T =Transparency operation
C0000150h | PSIZE Pixel size (1,2,4,6,8,16)
C0000160h | PMASK Plane mask — pixel format

Due to the pipelining of memory writes, the /ast 1/0 register that you write
to may not, in some cases, contain the desired value when you execute the
PIXT instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an in-
struction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

You can select a pixel processing option to use with this instruction by
setting the PPOP bits in the CONTROL register. The pixel processing op-
eration is applied to the pixel as it is transferred to the destination location.
The default case at reset is the rep/ace option. For more information, see
Section 7.7, Pixel Processing, on page 7-15.

Window checking cannot be used with this instruction. The W bits are
ignored.

You can enable transparency for this instruction by setting the T bit in the
CONTROL /0 register to 1. The TMS34010 checks for O (transparent)
source pixels after it processes the source data. At reset, the default case
for transparency is off.

The plane mask is enabled for this instruction.

Pixel Transfer - Indirect to Indirect

PIXT

Machine
States
Pixel Processing Operation Window
Violation
PSIZE | Replace | Boolean| ADD ADDS SUB SUBS |MIN/MAXIW=1|{W=2|W=3
1,2,4,8[4+(3),10 [6+(3).12]6+(3),12[7+(3),13 [7+(3).13 [8+(3).14] 7+(3)13 | - | - | -
16 4+(1),8 |6+(1),10|6+(1),10{7+(1).,11 |7+(1),11 |8+(1),12 | 7+(1),11 - - -
Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected
Examples PIXT *AO0,*Al
Before After
A0 A1 @20500h PSIZE PP T PMASK (©@20500h @20510h
1) 00020500h 00020508h O000Fh 0001h 00000 O 0O0OOh 010Fh xxxx
1) 00020500h 00020508h O00Fh 0002h 00000 O 000Ch 030Fh xxxx
1) 00020500h 00020508h Q000Fh 0004h 00000 O 000Oh OFOFh xxxx
1) 00020500h 00020508h OOEFh 0008h 00000 O 000Ch EFEFh xxxx
1) 00020500h 00020508h 1234h 0010h 00000 O 000Ch 3434h xx12h
2) 00020500h 00020508h 030Fh 0004h 01010 0O 000Oh OCOFh xxxx
3) 00020500h 00020508h 010Eh 0004h 00001 O 000Oh 000Eh xxxx
4) 00020500h 00020508h 020Eh 0004h 00001 1 0000h 020Eh xxxx
5) 00020500h 00020508h 000Fh 0004h 00000 0 AAAAh 050Fh xxxx
Notes:
1) S replaces D
2) (S XOR D) replaces D
3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D not replaced
B) S replaces unmasked bits of D

12-221

PIXT Pixel Transfer - Indirect XY to Register
Syntax PIXT *Rs.XY, Rd
(Note that Rs contains an XY address.)
Execution pixel at *Rs.XY — Rd
Instruction
Words i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(v 1 1 1 0o o 1] Rs [R | Rd |
Description This PIXT instruction transfers a pixel from a memory location to a register.
The source register contains an XY address; the X value occupies the 16
LSBs of the register and the Y value occupies the 16 MSBs. The address
in Rs is the address of the source pixel; this pixel is moved into the desti-
nation register. When the pixel is moved into Rd, it is right justified and
zero extended to 32 bits according to the pixel size specified in the PSIZE
1/0 register.
Rs and Rd must be in the same register file.
Implied
Operands B File Registers
Register Name Format Description
B1 SPTCH Linear Source pitch
B4 OFFSET Linear Screen origin (0,0)
1/0 Registers
Address Name Description and Elements (Bits)
C0000130h | CONVSP XY-to-linear conversion (source pitch)
C0000150h PSIZE Pixel size (1,2,4,8,16)
C0000160h | PMASK Plane mask — pixel format
Due to the pipelining of memory writes, the /ast 1/O register that you write
to may not, in some cases, contain the desired value when you execute the
PIXT instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an in-
struction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/O Registers.
Window
Checking Window checking cannot be used with this instruction. The W bits are
ignored.
Pixel
Processing Pixel processing cannot be used with this instruction.
Transparency Transparency cannot be used with this instruction.
Plane Mask The plane mask is enabled for this instruction.
Machine
States 6,9

12-222

Pixel Transfer - Indirect XY to Register PIXT

Status Bits

Examples

N Undefined
C Undefined
Z Undefined
V Setto 1 if the pixel is 1, set to O if the pixel is 0.

These PIXT examples use the following implied operand setup.
Register File B: 1/0 Registers:

DPTCH (B3) = 800h CONVSP = 0014h

OFFSET (B4) = 00000000h

Assume that memory address @20500h contains CF3Fh before instruction
execution.

PIXT *A0.XY,Al

Before After

A0 PSIZE PMASK Al
00400500h 0001h 0000h 00000001h
00400500h 0001h FFFFh 00000000h
00400280h 0002h 0000h 00000003h
00400280h 0002h AAAAh 00000001h
00400140h 0004h 0000h 0000000Fh
00400140h 0004h 9999h 00000006h
004000A0h 0008h 0000h 0000003Fh
004000A0h 0008h 898%h 00000036h
00400050h 0010h 0000h 0000CF3Fh
00400050h 0010h 7310h 00008C2Fh
Note:

The XY addresses stored in register A1 in these examples translate to
the linear memory address 20500h. The pitch of the source was not
changed for any of these examples.

12-223

PIXT

Pixel Transfer - Indirect XY to Indirect XY

Syntax

Execution

Instruction
Words

Description

Implied
Operands

Window
Checking

12-224

PIXT *Rs.XY, *Rd.XY
(Note that Rs and Rd contain XY addresses.)
pixel at *Rs.XY — *Rd.XY

% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
{1 1 1 1 0o 1 of Rs { R | Rd |

This PIXT instruction transfers a pixel from one memory location to another.
The source and destination registers both contain XY addresses; the X value
occupies the 16 LSBs of the register and the Y value occupies the 16
MSBs. Rs contains the address of the source pixel; Rd contains the address
where the pixel is moved.

Rs and Rd must be in the same register file.

B File Registers
Format Description
Source pitch
Destination pitch
Screen origin (0,0)

Register Name
B1 SPTCH
B3 DPTCH
B4 OFFSET Linear
BS WSTART XY
B6 WEND XY

Linear

Linear

Window starting corner
Window ending corner
i/0 Registers

Description and Elements (Bits)

Address
C000000BOh

Name
CONTROL

PP- Pixel processing operations (22 options)
W ~Window clipping or pick operation
T -—Transparency operation

C0000130h
C0000140h
C0000150h
C0000160h

CONVSP
CONVDP
PSIZE
PMASK

XY-to-linear conversion (source pitch)

XY-to-linear conversion (destination pitch)
Pixel size (1,2,4,8,16)
Plane mask — pixel format

Due to the pipelining of memory writes, the /ast /0 register that you write
to may not, in some cases, contain the desired value when you execute the
PIXT instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an in-
struction that reads the same location (such as a MOVE SAddress,Rd in-
struction). For more information, refer to Section 6.2, Latency of Writes to
1/0 Registers.

You can use window checking with this instruction by setting the W bits
in the CONTROL register to the desired value. If you select window
checking mode 1, 2, or 3, the WSTART and WEND registers define the XY
starting and ending corners of a rectangular window. When an attempt is
made to write a pixel inside or outside a window, the resuits depend on the
selected window checking mode:

Pixel Transfer - Indirect XY to Indirect XY PIXT

0 No window checking. The pixel is drawn and the WVP and V bits are
unaffected.

1 Window hit. No pixels are drawn. The V bit is set to O if the pixel lies
within the window; otherwise, it is set to 1.

2 Window miss. If the pixel lies outside the window, the V and WVP bits
are set to 1 and the instruction is aborted (no pixels are drawn). Other-
wise, the pixel is drawn and the V bit is set to 0.

3 Window clip. If the pixel lies outside the window, the V bit is set to 1
and the instruction is aborted (no pixels are drawn). Otherwise, the pixel
is drawn and the V bit is set to O.

For more information, see Section 7.10, Window Checking, on page 7-25.

Pixel

Processing You can select a pixel processing option to use with this instruction by
setting the PPOP bits in the CONTROL register. The pixel processing op-
eration is applied to the pixel as it is transferred to the destination location.
The default case at reset is the rep/ace option. For more information, see
Section 7.7, Pixel Processing, on page 7-15.

Transparency You can enable transparency for this instruction by setting the T bit in the
CONTROL 1/0 register to 1. The TMS34010 checks for O (transparent)
source pixels after it processes the source data. At reset, the default case
for transparency is off.

Plane Mask The plane mask is enabled for this instruction.

Machine

States

Pixel Processing Operation Window

Violation
PSIZE | Replace | Boolean| ADD ADDS SUB SUBS |MIN/MAX|{W=1|{W=2|W=3
1,2,4,817+(3),13 |9+(3),15 {9+(3),15 10+(3),16[10+(3),16|11+(3),17/10+(3),16 | - |8,11]| 6,9
16 17+(1),11 [9+(1),13|9+(1),13 fO+(1),1410+(1),14[11+(1).1510+(1)14| - |811]| 6,9

Status Bits

Examples

N Unaffected

C Unaffected

Z Unaffected

V 7 if the pixel lies outside the window and W=1, W=2, or W=3, 0 oth-
erwise. Unaffected if W=0.

These PIXT examples use the following implied operand setup.

Register File B: I/0 Registers:
SPTCH (B1) = 800h CONVSP = 0014h
DPTCH (B3) = 800h CONVDP = 0014h

OFFSET (B4) = 00000000h
WSTART (B5) = 00300020h
WEND (B6) = 00500142h

PIXT *AO0.XY,*Al.XY

12-225

PIXT Pixel Transfer - Indirect XY to Indirect XY

Before After

A0 A1l @20500h PSIZE PP W T PMASK @20500h @20510h
1) 00400500h 00400508h O0O00Fh 0001h 00000 00 0 0000h O010Fh xxxx
1) 00400280h 00400284h O000Fh 0002h 00000 00 O 0000h O30Fh xxxx
1) 00400140h 00400142h O0O00Fh 0004h 00000 00 O 0OOOh OFOFh xxxx
1) 004000A0h 004000A1h OOEFh 0008h 00000 00 O 0000h EFEFh xxxx

1) 00400050h 00400051h CDEFh 0010h 00000 00 0 0000h CDEFh CDEFh
2) 00400140h 00400142k 0306h 0004h 01010 00 0 0000h 0506h xxxx
3) 00400140h 00400142h 0106h 0004h 00001 00 0 0000h 0006h xxxx
4) 00400140h 00400142h 0106h 0004h 10001 00 1 O000h 0106h xxxx
§) 00400140h 00400142h 0006h 0004h 00000 00 0 AAAAh 0406h xxxx
6) 00400140h 00400142h 0006h 0004h 00000 11 0 0000h 0606h xxxx
7) 00400140h 00400143h 0006h 0004h 00000 11 O 0000h 0006h xxxx
8) 00400140h 00400143h 0006h 0004h 00000 10 0 0000h 0006h xxxx

12-226

XY Address in AO = Linear Address 20500h

Notes:

1) Sreplaces D
2) (S XOR D) replaces D

3) (S AND D) = O, transparency is off, D is replaced

4) (S + D) = 0, transparency is on, D not replaced
5) S replaces unmasked bits of D
6) Window Option = 3, D inside window, S replaces D
7) Window Option = 3, D outside window, D not replaced, V bit set in

status register
8) Window Option = 2, D outside window, D not replaced, WV interrupt

generated, V bit set in status register

Pop Status Register from Stack POPST

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

POPST
*SP+ - ST

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0 0 o 0o o o 1 1 1 0 0 0 0 0 O]

POPST pops the status register from the stack and increments the SP by
32 after the status register is removed from the stack.

31302628272626242322212019 18 177 18154 131211109 8 7 6 43210

S
3
E
0

F80

Status Register

8,11 (SP aligned)
10,13 (SP nonaligned)

Set from bit 31 of stack status.
Set from bit 30 of stack status.
Set from bit 29 of stack status.
Set from bit 28 of stack status.
Set from bit 21 of stack status.

m<NO2

Assume that memory contains the following values before instruction exe-
cution:

Address Data
OFFO0000h 0010h
OFF00010h C000h

Code Before After
SP ST SP
POPST OFFO0000h C0000010h OFF00020h

12-227

PUSHST Push Status Register onto Stack
Syntax PUSHST
Execution ST - -*SP
Instruction
Words 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
[0 o 0o 0 o0 0 o 1 1 1 1 0 0 0 0 O]
Description PUSHST writes the status register contents to the address contained in the
SP-32.
31302028272626242322212019018 17168 54 13121110 9 8 7 6 6 4 3 2 1 0
F
N|C Fs1 E F80
R 0 —
Status Register
Machine
States 2+(3),8 (SP aligned)
2+(8),13 (SP nonaligned)
Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected
Example Code Before After
SP ST SP
PUSHST OFF00020h C0000010h OFF00000h
Memory contains the following values after instruction execution:
Address Data
OFF00010h 0010h
OFF00020h C000h

12-228

Copy Register into Status PUTST

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Example

PUTST Rs
Rs — ST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 o o o 0o o o 1 1 0o 1[R] Rs |

PUTST copies the contents of the specified register into the status register.

31302028272626242322212019 1817 161514 13121110 9 8 7 6 6§ 4 3 2 1 O
F

F&1 E F80

N L] P

Status Register

«0
o

Set to value of bit 31 in source register
Set to value of bit 30 in source register
Set to value of bit 29 in source register
Set to value of bit 28 in source register
Set to value of bit 21 in source register

m<NOZ

0

ode Before After

A0 ST ST
PUTST AO C0000010h XXXXXXXxXh C0000010h

12-229

RETI Return from Interrupt
Syntax RETI
Execution *SP+ - ST
*SP+ - PC
Instruction
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
fo o o o 1 o 6 1 0 1 0 0 0 O O O]
Description RETI returns to an interrupted routine from an interrupt service routine. The
instruction restores the ST and PC to their original values that were stored
on the system stack.
The stack is located in external memory and the top is indicated by the stack
pointer (SP). The stack grows in the direction of decreasing linear address.
The ST and PC are popped from the stack and the SP is incremented by
32 after each register is removed from the stack.
Note:
If the PBX status bit is set in the restored ST value, then the bit is
cleared and a PIXBLT or FILL is resumed, depending on the values
stored in the B-file registers.
The CONTROL register and any B-file registers modified by an interrupt
routine should be restored before RETI is executed. Otherwise, inter-
rupted PIXBLT and FILL instructions may not resume execution cor-
rectly.
Machine
States 11,14 (aligned stack)

Status Bits

Interrupts

12-230

15,18 (nonaligned stack)

N Copy of corresponding bit in stack location
C Copy of corresponding bit in stack location
Z Copy of corresponding bit in stack location
V Copy of corresponding bit in stack location
IE Copy of corresponding bit in stack location

If the IE bit in the restored ST is a 1, interrupts are enabled by the time the
RET! instruction finishes executing. [f an interrupt request is active during
the last state of the RETI instruction, and the interrupt is enabled in the
INTENB register, the interrupt will be taken immediately following the RETI.
Since interrupts are level-triggered, the interrupt service routine should
write to the interrupting device to clear the interrupt request before execut-
ing an RETI. The following example shows a typical interrupt service rou-
tine; in this example, the symbol DEVICE is the symbolic address of the
interrupting device.

Return from Interrupt RETI

Examples

CLR A0
MOVE A0, @DEVICE

RETI
In this example, the interrupt request is cleared by the MOVE instruction,
which writes a O to the device address.

Assume that memory contains the following values before instruction exe-
cution:

Address Data

CCCO0000h 0010h
CCCO0010h C000h
CCC0020h FFFOh
CCC0030h 0044h

Code Before After

SP ST PC SP
RETI CCC0000h C0000010h 0044FFFOh CCCO0040h

12-231

RETS Return from Subroutine

Syntax RETS /[NJ

Execution *SP = PC (/N defauits to 0)
SP + 32+ 16N - SP

Instruction

Words 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 o o0 o 1 0o o 1 o 1 1] N [

Description RETS returns from a subroutine by popping the program counter from the
stack and optionally incrementing the stack pointer.
The N parameter is optional; it can be a value between 0 and 32 that indi-
cates a number of words that are added to the stack pointer. If NV is speci-
fied, the stack pointer is incremented by 32 + 16N. If N is not specified,
the stack is incremented by 32. Execution then continues according to the
PC value loaded.

Machine

States 7,10 (Aligned stack)

Status Bits

Examples

12-232

9,12 (Unaligned stack)

1

1
N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains the following values before instruction exe-
cution:

Address Data
OFF00000h OFFFOh
OFF0O0010h 0001h

Code Before After

SP PC SP
RETS OFF00000h 0001 FFFOh OFF00020h
RETS 1 OFF00000h 0001FFFOh OFF00030h
RETS 2 OFF00000h 0001FFFOh OFF00040h
RETS 16 OFFO0000h 0001FFFOh OFF00120h
RETS 31 OFFO0000h 0001FFFQh OFF00210h

Store Revision Number

REV

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

REV Rd

revision number - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0 0 0 o0 0o o o o o 1][R] Rd |

REV stores the revision number of the TMS340 family device in the desti-
nation register. The revision number information is stored in the following
format:

31 16 15 32 0
0000000000001 jundefined

undefined

1,4

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before After
A1l A1l
REV A1 OFFFFFFFFh 00000008h

12-233

RL Rotate Left - Constant
Syntax RL K, Rd
Execution left-rotate Rd by K = Rd
Instruction
Words %5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[o o 1 1 o of K [R | Rd |
Description RL left-rotates the contents of the destination register by a specified num-
ber of bits. (This rotation is a barrel shift.) The rotate count is specified
by a 5-bit immediate value, or constant; this produces a rotation amount
of 0 to 31 bits. (K in the syntax represents the 5-bit constant.) This is a
circular rotate so that bits shifted out the MSB are shifted into the LSB.
c 31 0
mes8 Ls8 l
The assembler only accepts absolute expressions for the rotate count. |f the
specified rotation value is greater than 31, the assembler issues a warning
and set the K field in the opcode to the 5 LSBs of K.
The carry bit is set to the value of the last bit that is shifted out of the MSB
(this value is the same as the final value of the LSB). You can use a rotate
count of 0 to clear the carry and test a register for O simultaneously.
Machine
States 1.4

Status Bits

Examples

12-234

N Unaffected

C Set to value of last bit rotated out, 0 for rotate count of O
Z 1 if resultis O, O otherwise

V Unaffected

Code Before After
A1l NCzZV Al

RL O,Al 0000000Fh x00x 0000000Fh
RL 1,Al FO000000h x10x E0000001h
RL 4,Al FO000000h x10x 0000000Fh
RL 5,Al FO000000h x00x 0000001Eh
RL 30,Al FO000000h x10x 3C000000h
RL 5,Al 00000000h x01x 00000000h

Rotate Left - Register RL

Syntax

Execution

Instruction
Words

Operands

Description

Machine
States

Status Bits

Examples

RL As, Rd
jeft-rotate Rd by 5 LSBs of Rs = Rd

15 14 13 12 11 10 9 8 7 6 b 3 2 1 0

4
[o 1 1 0o 1 o of Rs [R | Rd |

Rs The five LSBs of the source register specify the left rotate count (a
value from 0 to 31). The 27 MSBs are ignored.

RL left-rotates the contents of the destination register by a specified num-
ber of bits. (This rotation is a barrel shift.) The rotate count is specified
by the 5 LSBs of Rs (the 27 MSBs are ignored); this produces a rotation
amount between 0 and 31 bits. This is a circular rotate; the bits that are
shifted out of the MSB of Rd are shifted into the LSB.

L qu

Note that the you must designate Rs with a keyword or symbol which has
been defined to be a register, for example, A9; otherwise, the assembler
uses the RL K,Rd instruction.

The carry bit is set to the value of the last bit that is shifted out of the MSB
(this value is the same as the final vaiue of the LSB).

Rs and Rd must be in the same register file.

1.4

N Unaffected

C Set to value of last bit rotated out, O for rotate count of O
Z 1 if resultis 0, 0 otherwise

V Unaffected

Code Before After

5 LSBs A0 Al NCzVv A1
RL AO,Al 00000 0000000Fh x00x 0000000Fh
RL AO,Al 00100 FO000000h x10x 0000000Fh
RL AO0,Al 00101 FO000000h x00x 0000001Eh
RL AO,Al 11111 FO000000h x00x 78000000h

RL AO0,Al XX XXX 00000000h x01x 00000000h

12-235

SETC Set Carry

Syntax SETC

Execution 1-C

Instruction

Words % 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 0 o o 1 1 o t 1 1 1 0 0 0 0 O]

Description SETC sets the carry bit (C) in the status register to 1. The rest of the status
register is unaffected.
This instruction is useful for returning a true/false value (in the carry bit)
from a subroutine without using a general-purpose register.

Machine

States 14

Status Bits N Unaffected
c 1

Examples

12-236

Z Unaffected
V Unaffected

Code Before After

ST NCzVv ST NCZV
SETC 00000000h 0000 40000000h 0100
SETC B0000010h 1011 FO000010h 1111

SETC 4000001Fh 0100 4000001Fh 0100

Set Field Parameters SETF

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

SETF FS,FE[, F]
FS, FE —» ST

i 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
fo o o o o 1]F] 1 o 1]JreE] FS |

SETF loads specified field size (FS) and field extension (FE) values into the
status register; depending on the value of the F parameter, this information
sets the field size and extension for either field O or field 1. (The remainder
of the status register is not affected.)

31302828272626242322212019 1817 61564 1312110 9 8 7 6
NiC

43210

3
omMmjon

Fs0

Status Register

® The FS parameter is a value between 1 and 32; it selects the field size.
(Note that an FS value of O in the opcode corresponds to an actual
selected field size of 32.)

® The FE parameter is a value of O or 1:
FE=0 selects zero extension for a field.
FE=1 selects sign extension for a field.

[] The F parameter is optional; the default value for F is 0. The F value
determines whether the SETF instruction sets the field size and ex-
tension for field O or for field 1.

F=0 selects FSO, FEO to be altered.
F=1 selects FS1, FE1 to be altered.

Each MOVE instruction also has an F parameter that selects the field size
and extension of either field O or field 1 for the individual move. You can
use the SETF instruction to prepare for MOVE instructions.

1,4 for F=0
2,5 for F=1
N Unaffected
C Unaffected
Z Unaffected
V Unaffected
Code Before After

ST ST
SETF 32,0,0 xxxxx000h xxxxx000h
SETF 32,1,0 xxxxx000h xxxxx020h
SETF 31,1,0 xxxxx000h xxxxx03Fh
SETF 16,0,0 xxxxx000h xxxxx010h
SETF 32,0,1 xxxxx000h xxxxx000h
SETF 32,1,1 xxxxx000h xxxxx800h
SETF 31,1,1 xxxxx000h xxxxxFCOh
SETF 16,0,1 xxxxx000h xxxxx400h

12-237

SEXT Sign Extend to Long

Syntax SEXT Rd/[,F]

Execution field in Rd - sign-extended field Rd

Instruction

Words 15 14 13 12 11t 10 9 8 7 6 5 4 3 2 1 O
[0 o o o o 1JF]1 o o ofr] Rd |

Description SEXT sign extends the right-justified field contained in the destination re-
gister by copying the MSB of the field data into all the nonfield bits of the
destination register. The size of the field is determined by the current field
size. The optional F parameter, which must be specified as a 0 or a 1, se-
lects the field size:
F=0 selects FSO for the field size.
F=1 selects FS1 for the field size.
The default value for F is O.

Machine

States 3,6

Status Bits

Examples

12-238

N 7 if the result is negative, 0 otherwise
C Unaffected

Z 17 if the result is 0, O otherwise

V Unaffected

Code Before After
FS0/1 A0 NCzV A0

SEXT AO0,0 17/x 00008000h 0x0x 00008000h
SEXT AO0,O0 16/x 00008000h 1x0x FFFF8000h
SEXT A0,0 15/x 00008000h Ox1x 00000000h
SEXT AO,1 x/17 00008000h 0Ox0x 00008000h
SEXT AO,1 x/16 00008000h 1x0x FFFF8000h
SEXT A0,1 x/15 00008000h Ox1x 00000000h

Shift Left Arithmetic - Constant

SLA

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

SLA K, Rd
left-shift Rd by K - Rd

4 3 2 1.0
[R | R& |

SLA left-shifts the contents of the destination register by a specified num-
ber of bits. The shift count is specified by a 5-bit constant (K in the syn-
tax); this is a value between 0 and 31.

15 14 13 12 11 10 9 8 7 6 5
[0 0o 1 o o of K

As shown in the diagram, Os are shifted into the least significant bits. The
last bit shifted out of the destination register (the original value of bit
32-K) is shifted into the carry bit. If either the new sign bit (N) or any of
the bits shifted out of the register differ from the original sign bit, the over-
flow bit (V) is set.

\'}
MSB
Dt— Change
Detect

c

0
- fe—o
Ls8

31
= shit <
Mes

The assembler accepts only absolute expressions for the shift count. If the
shift count is greater than 31, the assembler issues a warning and sets the
K field in the opcode to the 5 LSBs of K.

Note that SLA executes slower than SLL because it provides overflow de-
tection.

3,6

N 7 if the result is negative, 0 otherwise

C Set to the value of last bit shifted out, 0 for shift count of 0
Z 1 if a O result generated, O otherwise

V 7 if the MSB changes during shift operation, 0 otherwise

Code Before After

A1 A1l NCZV
SLA 0,Al 33333333h 33333333h 0000
SLA O,Al CCCCCCCCh cccceceeccech 1000
SLA 1,Al CCCCCCCCh 99999998h 1100
SLA 2,Al 33333333h cceceeececch 1001
SLA 2,Al CCCCCCCCh 33333330h 0101
SLA 3,Al CCCCCCCCh 66666660h 0001
SLA 5,Al CCCCCCCCh 99999980h 1101
SLA 30,Al CCCCCCCCh 00000000h 0111
SLA 31,A1 cceeccecch 00000000h 0011
SLA 31,Al 00000000h 00000000h 0010

12-239

SLA Shift Left Arithmetic - Register
Syntax SLA Rs, Rd
Execution left-shift Rd by 56 LSBs of Rs = Rd
Instruction
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo 1. 1 o o o o] Rs [R | Rd |
Description SLA left-shifts the contents of the destination register by a specified num-
ber of bits. The shift count is specified by the 5 LSBs of Rs (the 27 MSBs
are ignored); this produces a shift count from O to 31.
The last bit shifted out of the destination register (the original value of bit
32-K) is shifted into the carry bit. If either the new sign bit (N) or any of
the bits shifted out of the register differ from the original sign bit, the over-
flow bit (V) is set.
v
Change
Detect
31 0
L «—— st «—— J—o0
MSB LsB
Note that you must designate Rs with a keyword or symbol which has
been defined to be a register, for example, A9; otherwise, the assembler
uses uses the SLA K,Rd instruction. Rs and Rd must be in the same register
file.
Note that SLA executes slower than SLL because it provides overflow de-
tection.
Machine
States 36

Status Bits

Examples

12-240

N 7 if the result is negative, 0 otherwise

C Set to value of last bit shifted out, 0 for shift count of 0
Z 1 if the result is 0, 0 otherwise

V 1 if the MSB changes during shift operation, 0 otherwise

Code Before After

5 LSBs A0 Al Al NCzvVv
SLA AO,Al 00000 33333333h 33333333h 0000
SLA AO,Al 00000 CCCCCCCCh cceeeeecch 1000
SLA AO,Al 00001 CCCCCCCCh 99999998h 1100
SLA AO,Al 00010 33333333h cceceeecech 1001
SLA AO,Al 00010 CCCCcCCCCh 3333333Ch 0101
SLA AO,Al 00011 CCCCCCCCh 66666660h 0001
SLA AO,Al 00101 CCCCCCCCh 99999980h 1101
SLA AO,Al 11110 CCCCcCCCCh 00000000h 0111
SLA AO,Al 11111 Ccccecececch 00000000h 0011
SLA AO,Al 11111 00000000h » 00000000h 0010

Shift Left Logical - Constant SLL

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

SLL K, Rd
left-shift Rd by K - Rd

5 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
o o 1 0 o 1] K [R | Rd |

SLL left-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by a 5-bit constant (K in the syntax.),
which is a value between 0 and 31.

The last bit shifted out of the destination register (the original value of bit
32-K) is shifted into the carry bit. Os are shifted into the least significant
bits. This instruction differs from the SLA instruction only in its effect on
the overflow (V) bit.

C 31MSB) 0lLs8)

|! [« Shift < —j——o0

The assembler only accepts absolute expressions for the shift count. If the
specified shift count is greater than 31, the assembler issues a warning and
sets the K field in the opcode to the 5 LSBs of K.

1.4
N Unaffected
C 7 to the value of last bit shifted out, 0 for shift count of O
Z 1 if the result is 0, 0 otherwise
V Unaffected
Code Before After

Al A1l NCZV
SLL 0,Al 00000000h 00000000h x01x
SLL 0,Al 88888888h 88888888h x00x
SLL 1,Al 88888888h 11111110h x10x
SLL 4,Al 88888888h 88888880h x00x
SLL 30,Al FFFFFFFCh 00000000h x11x
SLL 31,a1l FFFFFFFCh 00000000h xO01x

12-241

SLL Shift Left Logical - Register
Syntax SLL Rs, Rd
Execution left-shift Rd by 5 LSBs of Rs = Rd
Instruction
Words 1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
fo 1 1 0o o o 1} Rs | R | Rd |
Description SLL left-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by the 5 LSBs of Rs (the 27 MSBs are
ignored); this produces a shift count between 0 and 31.
The last bit shifted out of the destination register (the original value of bit
32-K) is shifted into the carry bit. Os are shifted into the least significant
bits. This instruction differs from the SLA instruction only in its effect on
the overflow (V) bit.
c 3XMEB) 0(LsRB)
[E pm——earu—— M
Note that you must designate Rs with a keyword or symbol which has been
defined to be a register, for example, A9; otherwise, the assembler uses the
SLA K,Rd instruction.
Rs and Rd must be in the same register file.
Machine
States 1,4

Status Bits

Examples

12-242

N Unaffected

C Set to the value of last bit shifted out, 0 for shift value of 0
Z 7 if the result is 0, 0 otherwise

V Unaffected

Code Before After

5 LSBs AO A1l A1l NCZV
SLL AO,Al 00000 00000000h 00000000h x01x
SLL AO0,Al 00000 88888888h 88888888h x00x
SLL AO,Al 00001 88888888h 11111110h x10x
SLL AO0,Al 00100 88888888h 88888880h x00x
SLL AO0,Al 11110 FFFFFFFCh 00000000h x11x
SLL AO,Al 11111 FFFFFFFCh 00000000h x01x

Shift Right Arithmetic - Constant SRA

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

SRA K, Rd
right-shift Rd by K » Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
[40 0 1 0 1 OI 2s complement of K I R l Rd |

SRA right-shifts the contents of the destination register by a specified
number of bits. The shift count is specified by the 2s complement of a 5-bit
immediate value, or constant; this produces a shift count of 0 to 31. (K in
the syntax represents this 5-bit constant).

The last bit shifted out of the destination register (the original value of bit
K-1) is shifted into the carry bit. The sign bit (MSB) is extended into the
most significant bits.

31 30 0 c
[::iii———————» shitt —-————»-————*[]
o8
MSB

The assembler only accepts absolute expressions for the shift count. If the
specified shift count is greater than 31, the assembler issues a warning and
sets the K field in the opcode to the 2s complement of the 5 LSBs of K.

1,4

N 7 if the resuit is negative, 0 otherwise

C Set to the value of last bit shifted out, 0 for shift count of 0
Z 1 if the result is 0, 0 otherwise

V Unaffected

Code Before After

A1 Al NCZV
SRA 0,Al 00000000h 00000000h 001x
SRA 0,Al FFFFO0O00h FFFFOO00Oh 100x
SRA 8,Al 7FFFO000h O007FFFO0h 000x
SRA 8,Al FFFFO000h FFFFFFOOh 100x

SRA 30,Al 7FFFO000h 00000001h 010x
SRA 31,Al 7FFFO000h 00000000h 011x
SRA 31,Al FFFFOOO0K FFFFFFFFh 110x

12-243

SRA Shift Right Arithmetic - Register
Syntax SRA As, Rd
Execution right-shift Rd by 2s complement of 5 LSBs in Rs » Rd
Instruction
Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 1 1 o o 1 of Rs | r | Rd |
Description SRA right-shifts the contents of the destination register by a specified
number of bits. The shift amount is specified by the 2s complement of the
5 LSBs of Rs (the 27 MSBs of Rs are ignored); this produces a shift count
between 0 and 31.
The last bit shifted out of the destination register (the original value of bit
K-1) is shifted into the carry bit. The sign bit (MSB) is extended into the
most significant bits.
31 30 0 C
1
I:i? ; > shit > I———-DD
LSB
MSB
You must specify Rs with a keyword or a symbol which has been defined
to be a register, for example, A9; otherwise, the assembler uses the SRA
K,Rd instruction. Rs and Rd must be in the same register file.
Machine
States 1,4

Status Bits

Examples

12-244

N 7 if the result is negative, O otherwise

C ' Set to the value of last bit shifted out, 0 for shift count of 0
Z 1 if the result is 0, 0 otherwise

V Unaffected

Code Before After

5 LSBs AO A1l A1 NCzvV
SRA A0,Al 00000 00000000h 00000000h 001x
SRA AO,Al 00000 FFFFOOO00h FFFFOOOOh 100x
SRA AO,Al 11111 7FFFO000h 3FFF8000h 000x
SRA A0,Al 11111 FFFFO0OO0Oh FFFF8000h 100x
SRA AO,Al 11000 7FFFO000h 007FFFOOh 000x
SRA AO,Al 11000 FFFFOO00h FFFFFFOOh 100x
SRA AO,Al 00010 7FFFO000h 00000001h 010x
SRA AO,Al 00001 7FFFO000N 00000000h 011x
SRA A0,Al 00001 FFFFOO00h FFFFFFFFh 110x

Shift Right Logical - Constant SRL

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

SRL K. Rd
right-shift Rd by 2s complement of K - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0o 1 0o 1 1] 2scomplementofk [R | Rd |

SRL right-shifts the contents of the destination register by a specified
number of bits. The shift amount is specified by the 2s complement of a
5-bit immediate value; this produces a shift count between 0 and 31. (K
in the syntax represents the immediate value, or constant.)

The last bit shifted out of the destination register (the original value of bit
K-1) is shifted into the carry bit. Os are shifted into the most significant bits.

31 0 c
o— - Shift N {I
msB LsB

The assembler accepts only absolute expressions for the shift count. If the
specified shift amount is greater than 31, the assembler issues a warning
and set the K field in the opcode to the 2s complement of the 5 LSBs of K.

1.4

N Unaffected

C Set to the value of last bit shifted out, 0 for shift count of O
Z 1 if the result is 0, 0 otherwise

V Unaffected

Code Before After

Al A1l NCZV
SRL 0,Al 00000000h 00000000h x01x
SRL O,Al 7FFFFFFFh TJFFFFFFFh x00x
SRL 1,Al 7FFFFFFFh 3FFFFFFFh x10x
SRL 8,Al 7FFFO000h 007FFFO0h x00x
SRL 30,Al 7FFF0000h 00000001h x10x
SRL 31,Al 7FFFO000h 00000000h x11x
SRL 31,Al 3FFFO000h 00000000h x01x

12-245

SRL Shift Right Logical - Register

Syntax SRL ARs, Rd

Execution right-shift Rd by 2s complement of 5 LSBs in Rs — Rd

Instruction

Words 1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
fo 1 1 0o o 1 1] Rs [r] Rd |

Description SRL right-shifts the contents of the destination register by a specified
number of bits. The shift amount is specified by the 2s complement of the
5 LSBs of Rs (the 27 MSBs of Rs are ignored); this produces a shift value
of 0 to 31.
The last bit shifted out of the destination register (the original value of bit
K-1) is shifted into the carry bit. Os are shifted into the most significant bits.

31 0 [+
o— » hit »| ﬂ
Ms8 Ls8

You must specify Rs with a keyword or symbol which has been defined to
be a register, for example, A9; otherwise, the assembler uses the SRL K,Rd
instruction. Rs and Rd must be in the same register file.

Machine

States 14

Status Bits

Examples

12-246

N Unaffected

C Set to the value of last bit shifted out, 0 for shift count of O
Z 1 if the result is 0, 0 otherwise

V Unaffected

Code Before After

5 LSBs A0 A1l A1l NCZV
SRL AO,Al 00000 00000000h 00000000h x01x
SRL AO,Al 00000 7FFFFFFFh 7FFFFFFFh x00x
SRL AO,Al 11111 JFFFFFFFh 3FFFFFFFh x10x
SRL A0,Al 11000 7FFFO000h 007FFF00Oh x00x
SRL AO,Al 00010 7FFFO000h 00000001h x10x
SRL AO,Al 00001 7FFFO000h 00000000h x11x
SRL AO,Al 00001 3FFFO000h 00000000h x01x

Subtract Registers

SUB

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

SUB Rs, Rd

Rd - Rs - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 0 o o 1 of Rs [r] Rd |

SUB subtracts the contents of the source register from the contents of the
destination register and stores the result in the destination register.

You can accomplish multiple-precision arithmetic by using SUB in con-
junction with the SUBB instruction.

Rs and Rd must be in the same register file.

1.4

N
C
¥4
\"

Code

SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB

Al,AO
Al,RA0
Al,AOQ
A1,A0
Al,A0
Al,A0
aAl,A0
Al,RA0
Al,A0
Al,AQ

Before

A0
7FFFFFF2h
7FFFFFF2h
7FFFFFF1h
7FFFFFF1h
7FFFFFFFh
FFFFFFFDh
FFFFFFFDh
FFFFFFFEh
FFFFFFFFh
80000000h

7 if the result is negative, 0 otherwise
1 if there is a borrow, 0 otherwise

7 if the result is 0, 0 otherwise

7 if there is an overflow, 0 otherwise

A1l

7FFFFFF1h
7FFFFFF2h
7FFFFFF2h
FFFFFFFFh
FFFFFFFFh
FFFFFFFFh
FFFEFFFDh
FFFFFFFDh
00000001h
00000001 h

After

NCZV
0000
0010
1100
0100
1101

1100
0010
0000
1000
0001

A0

00000001h
00000000h
FFFFFFFFh
7FFFFFF2h
80000000h
FFFFFFFEh
00000000h
00000001 h
FFFFFFFEh
7FFFFFFFh

12-247

SUBB

Subtract Registers with Borro\

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

12-248

SUBB Rs, Rd
Rd - Rs - C - Rd (the carry bit acts as a borrow)

3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4
| R | Rd

[0 1 0o o o 1 1] Rs

SUBB subtracts both the contents of the source register and the carry t
from the contents of the destination register, and stores the result in ti
destination register.

You can use this instruction with the SUB, SUBK, and SUBI instructiol
for extended-precision arithmetic.

Rs and Rd must be in the same register file.

1.4

N 7 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise

Z 1 if the result is 0, 0 otherwise

V 1 if there is an overflow, 0 otherwise

Code Before After
c A0 A1l NCZV A0

SUBB A1l,A0 0 00000002h 00000001h 0000 00000001
SUBB Al,A0 1 00000002h 00000001h 0010 00000000
SUBB A1l,A0 0 00000002h 00000002h 0010 00000000
SUBB A1,A0 1 00000002h 00000002h 1100 FFFFFFFF
SUBB Al,A0 0 00000002h 00000003h 1100 FFFFFFFF
SUBB Al,A0 0 7FFFFFFERh FFFFFFFFh 0100 7FFFFFFF
SUBB Al,A0 0 7FFFFFFER FFFFFFFEh 1101 80000000
SUBB Al,A0 1 7FFFFFFEh FFFFFFFEh 0100 7FFFFFFF
SUBB Al,A0 0 FFFFFFFEh FFFFFFFFh 1100 FFFFFFFF
SUBB Al,A0 0 FFFFFFFEh FFFFFFFEh 0010 00000000
SUBB Al,A0 1 FFFFFFFEh FFFFFFFEh 1100 FFFFFFFF
SUBB Al,AO0 0 FFFFFFFEh FFFFFFFDh 0000 00000001
SUBB A1l,AO0 1 FFFFFFFEh FFFFFFFDh 0010 00000000
SUBB Al,A0 0 80000001h 0000000th 1000 80000000
SUBB Al,A0 1 80000001h 00000001h 0001 7FFFFFFF
SUBB Al,A0 0 80000001h 00000002h 0001 7FFFFFFF

Subtract Immediate - 76 Bits SUBI

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

SUBI /W, Rd [, W]
Rd - IW - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0o 0 0 0 1 0 1 1 1 1 1|R| Rd

1s complement of IW

SUBI subtracts a sign-extended, 16-bit immediate value from the contents
of the destination register, and stores the result in the destination register.
(The /W in the syntax represents a sign-extended, 16-bit immediate value.)

The assembler uses this form of the SUBI instruction if the immediate value
was previously defined and is in the range -32,768 to 32,767. You can
force the assembler to use the short form by by following the register op-
erand with ,W:

SUBI 1IW,R4,W

The assembler truncates any upper bits and issues an appropriate warning
message. You can accomplish multiple-precision arithmetic by using SUBI
in conjunction with the SUBB instruction.

2,8
N 7 if the result is negative, 0 otherwise
C 7 if a borrow is generated, 0 otherwise
Z 7 if the result is 0, 0 otherwise
V 7 if there is an overflow, 0 otherwise
Code Before After

A0 A0 NCZV
SUBI 32765,A0 00007FFEh 00000001h 0000
SUBI 32766,A0 00007FFEh 00000000h 0010
SUBI 32767,A0 00007FFEh FFFFFFFFh 1100
SUBI 32766,A0 80007FFEh 80000000h 1000
SUBI 32767,A0 80007FFEh 7FFFFFFFh 0001
SUBI -32766,A0 FFFF8001h FFFFFFFFh 1100
SUBI -32767,A0 FFFF8001h 00000000h 0010
SUBI -32768,A0 FFFF8001h 00000001h 0000
SUBI -32767,A0 FFFF8000h 7FFFFFFFh 0100
SUBI -32768,A0 7FFF8000h 80000000h 1101

12-249

SUBI

Subtract Immediate - 32 Bits

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

12-250

SUBI /L,Rd/[. L]
Rd-IL - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

0 0 0 0 1 1 0 1 0 0 O|R| Rd

1s compiement of 16 LSBs of IL

1s complement of 16 MSBs of IL

SUBI subtracts a signed 32-bit immediate value from the contents of the
destination register, and stores the result in the destination register. (The
IL in the syntax represents a signed 32-bit immediate value.)

The assembler uses this version of the SUBI instruction if it cannot use the
SUBI IW,Rd opcode, or if you request the long opcode by following the

register operand with ,L:
SUBI IL,R4,L

You can accomplish multiple-precision arithmetic by using SUBI in con-

junction with the SUBB instruction.

312

N 7 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise

Z 1 if the result is 0, 0 otherwise

V 1 if there is an overflow, 0 otherwise

Code Before After

A0 A0 NCZV
SUBI 2147483647,A0 7FFFFFFFh 00000000h 0010
SUBI 32768,A0 00008001h 00000001h 0000
SUBI 32769,A0 00008001h 00000000h 0010
SUBI 32770,A0 00008001h FFFFFFFFh 1100
SUBI 32768,A0 80008000h 80000000h 1000
SUBI 32769,A0 80008000h 7FFFFFFFh 0001
SUBI -2147483648,A0 80000000h 00000000h 0010
SUBI -32769,A0 FFFF7FFEh FFFFFFFFh 1100
SUBI -32770,A0 FFFF7FFEh 00000000h 0010
SUBI -32771,A0 FFFF7FFEh 00000001h 0000
SUBI -32770,A0 7FFF7FFDh 7FFFFFFFh 0100
SUBI -32771,A0 7FFF7FFDh 80000000h 1101

Subtract Constant SUBK

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

SUBK K, Rd
Rd - K = Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo o o 1 o 1] K [r] Rd |

SUBK subtracts the 5-bit constant from the contents of the destination re-
gister; the result is stored in the destination register. The K in the syntax
represents a constant that is treated as an unsigned number in the range
1-32. Note that K=0 in the opcode corresponds to the value 32; the as-
sembler converts the value 32 to 0. The assembler issues an error if you try
to subtract O from a register.

You can accomplish multiple-precision arithmetic by using SUBK in con-
junction with the SUBB instruction.

1.4
N 7 if the result is negative, O otherwise
C 17 if there is a borrow, 0 otherwise
Z 7 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise
Code Before After

A0 A0 NCVZ
SUBK 5,A0 00000009h 00000004h 0000
SUBK 9,A0 00000009h 00000000h0010
SUBK 32,A0 00000009h FFFFFFESh1100
SUBK 1,A0 80000000h 7FFFFFFFh0001

12-251

SUBXY

Subtract Registers in XY Mode

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

12-252

SUBXY Rs, Rd

RdX - RsX = RdX
RdY - RsY — RdY

1% 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
[1 1+ 1 0 o o 1] Rs [r] Rd |

SUBXY subtracts the source X and Y values individually from the destina-
tion X and Y values; the result is stored in the destination register.

You can use this instruction for manipulating XY addresses; it is particularly
useful for incremental figure drawing. These addresses are stored as XY
pairs in the register file.

Rs and Rd must be in the same register file.

1.4

N 7 if source X field = destination X field, 0 otherwise
C 17 ifsource Y field > destination Y field, O otherwise
Z 1 ifsourceY field = destination Y field, 0 otherwise
V 17 if source X field > destination X field, 0 otherwise

Code Before After

A0 Al A0 NCZV
SUBXY Al,A0 00090009h 00010001h 00080008h 0000
SUBXY Al,A0 00090009h 00090001h 00000008h 0010
SUBXY Al,A0 00090009h 00010009h 00080000h 1000
SUBXY Al,A0 00090009h 00090009h 00000000h 1010
SUBXY Al,A0 00090009h 00000010h 0009FFF9h 0001
SUBXY Al,A0 00090009h 00090010h O0000FFFSh 0011
SUBXY Al,A0 00090009h 00100000h FFF90009h 0100
SUBXY Al,A0 00090009h 00100009h FFF90000h 1100
SUBXY Al,A0 00090009h 00100010h FFFOFFFSh 0101

Software Interrupt TRAP

Syntax

Execution

Instruction
Words

Description

TRAP N

PC —» -*SP
ST - -*SP
trap vector N = PC

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 0 0 o 1 0 0 1 0o o o N

TRAP executes a software interrupt. The NV parameter is a trap number from
0 to 31 that selects the trap to be executed. During a software interrupt,

® The return address (the address of next instruction) is pushed on the
stack.

(The status register is pushed on the stack.

® The IE (interrupt enable) bit in ST is set to 0, disabling maskable in-
terrupts, and ST is set to 00000010h.

° Finally, the trap vector is loaded into the PC.

The TMS34010 generates the trap vector addresses as shown below:

Trap
_Number _Address
o] >FFFF FFEO Resst
1 >FFFF FFCO External Interrupt 1
2 >FFFF FFAO J External interrupt 2
3 >FFFF FF80 | p _
4 >FFFF FF60 |]
5 >FFFF FF40) _ Tr 3-7 |
4] >FFFF FF20 | ”I -
7 FFFF FF0O
8 >FFFF FEEO BHL Non Meskabie interrupt
19 FFFF FEAO B&%‘. . o
>rFT ay Inter
1 FFFF FEBO ﬁf Window Violation
12 >FFFF FEBO| 3 _]
13 FE40 |]
14 > FE20 |]
16 > FEOO []
16 > FDEO [_]
17 > FDCO{ .
18 > FDAO{
19 FFF FDBO [N
1 > D80 Treps 12-20
22 > FD20 [2
23 FDOO | .
24 > FCEO |~ 7
26 FCCOL n
28 >F FCAO N
27 >f FC8O [~ 7]
28 f FC80 |]
29 >f FC40 3
30 >FFFF FC20 JLL liegal Opcode
31 >FFFF FCOO :%'—ﬂ_:.
—!

The stack, which is located in external memory, grows toward lower ad-
dresses. The PC and ST are pushed on the stack MSW first, and the SP is
predecremented before each word is loaded onto the stack.

12-253

TRAP Software Interrupt

Notes:

1. The level O trap differs from all other traps; it does not save the old
status register or program counter. This may be useful in cases
where the stack pointer is corrupted or uninitialized; such a situ-
ation could cause an erroneous write.

2. The NMI bit does not affect the operation of TRAP 8.

For more information, refer to Section 8 (Interrupts, Traps, and Reset).

Machine
States 16,19 (SP aligned)

30,33 (SP nonaligned)
Status Bits N O

cC 0

Z 0

vV 0
Examples

Code Before After
PC SP PC SP ST

TRAP 0 xxxxxxxxh 80000000h FFFFFFEOh 80000000h 00000010h
TRAP 1 xxxxxxxxh 80000000h FFFFFFCOh 7FFFFFCOh 00000010h

TRAP 30 xxxxxxxxh 80000000h FFFFFC20h 7FFFFFCOh 00000010h
TRAP 31 xxxxxxxxh 80000000h FFFFFCOOh 7FFFFFCOh 00000010h

12-254

Exclusive-OR Registers XOR

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

XOR Rs, Rd
Rs XOR Rd - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
f[o 1 0 1 o 1 1] Rs [R | Rd |

XOR bitwise-exclusive-ORs the contents of the source register with the
contents of the destination register, and stores the result in the destination
register.

You can use this instruction to clear registers (for example, XOR B0,BO);
the CLR instruction also supports this function.

Rs and Rd must be in the same register file.

1.4
N Unaffected
C Unaffected
Z 7 if the result is 0, 0 otherwise
V Unaffected
Code Before After
AQ Al NCzV A1
XOR AO,Al FFFFFFFFh 00000000h xx0x FFFFFFFFh
XOR AO,Al FFFFFFFFh AAAAAAAAR xxOx 55555555h
XOR AO,Al FFFFFFFFh FFFFFFFFh xx1x 00000000h

12-255

XORI Exclusive-OR Immediate Value

Syntax XORI /L, Rd
Execution ILXORRd — Rd
Instruction
Words 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 1 1 1 1 OfR| Rd
16 LSBs of IL
16 MSBs of IL

Description XORI bitwise exclusive ORs a 32-bit immediate data with the contents of
the destination register and stores the result in the destination register. (The
/L parameter in the syntax above represents a 32-bit immediate value.)

Machine
States 312

Status Bits N Unaffected
C Unaffected
Z 1 if the result is 0, O otherwise
V Unaffected

Examples Code Before After
A0 NCZV A0
XORI OFFFFFFFFh,AQ 00000000h xx0x FFFFFFFFh
XORI OFFFFFFFFh,AQ AAAAAAAAh xxOx 55555555h
XORI OFFFFFFFFh,AO FFFFFFFFh xx1x 00000000h
XORI 00000000h,A0Q 00000000h xx1x 00000000h
XORI 00000000h,A0 FFFFFFFFh xx0x FFFFFFFFh

12-266

Zero Extend to Long ZEXT

Syntax

Execution

Instruction
Words

Description

Machine
States

Status Bits

Examples

ZEXT Rd[,FJ]
field in Rd — zero-extended field Rd

15 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0

o 0 o o o 1[F[1 o o 1|Rr] Rd |

ZEXT zero extends a right-justified field in the destination register by zero-
ing all the nonfield bits in Rd. The size of the field is determined by the
current field size. The optional F parameter, which must be specified as a
0 or a 1, selects the field size:

F=0 selects FSO for the field size.
F=1 selects FS1 for the field size.

The default value for F is O.

1,4
N Unaffected
C Unaffected
Z 7 if the result is 0, O otherwise
V Unaffected
Code Before After

FSO FS$1 AOQ NCzVv AQ
ZEXT AO0,O 32 X FFFFFFFFh xx0x FFFFFFFFh
ZEXT AO,0 31 X FFFFFFFFh xx0x 7FFFFFFFh
ZEXT AO0,O 1 X FFFFFFFFh xx0x 00000001h
ZEXT AO,O 16 X FFFFO00Ch xx1x 00000000h
ZEXT A0,1 X 16 FFFFOO0O0h xx1x 00000000h

12-257

instruction Set

12-258

Section 13

Instruction Timings

Section 12, The TMS34010 Instruction Set, describes each TMS34010 as-
sembly language instruction, including instruction cycle timings. This section
provides details pertaining to instruction timings for the following groups of

instructions:

Section Page
13.1 General INStIUCHIONS ...c.ooveeeiieeciiceeiece et r e be b e ere e nnesesares 13-2
13.2 MOVE and MOVB INStrUCLIONScccueerviimecreicereeeecericree e sresenieenens 13-4
13.3 FILL INStIUCLIONS .ooeieiiceeeeceeieeeeee et es st e s eaa s etassnaesee s 13-10
13.4 PIXBLT INSIUGHIONS ..oooevieeeiceecee ettt ettt see e saesreas 13-18
13.5 PIXBLT Expand INStrUCHIONSccocveeeericiecceerieece e 13-31

13-1

Instruction Timings - General Instructions

13.1 General Instructions

Note:

General instructions include all TMS34010 instructions except MOVEs,
MOVBs, FILLs, PIXBLTs, and LINE.

Each instruction description in Section 12 contains a Machine States field
that describes the instruction execution time in terms of the machine state. A
machine state is the fundamental time unit of the processor. Logically, it is the
time required to decode, interpret, and execute a single microinstruction in-
ternal to the CPU. Physically, a TMS34010 machine state is equal to a single
local clock period (the time from one LCLK1 low-to-high transition to the
next). For example, this value is 160 nanoseconds for a TMS34010 clocked
at 50 MHz, and 200 nanoseconds for a 40-MHz TMS34010.

The descriptions in the instruction discussions appear as:

Machine
States cache hit case, cache disabled case

These two values represent the number of CPU states required to execute the
instruction for each of two cases:

® The cache hit case gives the number of execution states if the in-
struction and its extension words reside entirely in cache. Thus, only
actual execution states (using the CPU) and external memory cycles for
data transfer are counted with the instruction.

® The cache disabled case gives the number of execution states if the
cache is disabled when the instruction is executed. In this case, external
memory cycles for fetching the instruction word and any extension
words are counted with the instruction in addition to states through the
CPU and memory states for data transfer. Cache is usually only disabled
during debugging.

Cache disabled timing is not necessarily worst case timing. It may sometimes
be exceeded when the cache is enabled but the instruction is not in the cache
(this is known as a cache miss).

13.1.1 Best Case Timing - Considering Hidden States

13-2

Best case timing occurs when an instruction is executed entirely in parallel
with the end of a previous instruction. According to some microprocessor
conventions, many TMS34010 instructions would have a best case timing of
O states. Since this is unrealistic, the convention used here assigns a finite
(nonzero) timing value but allows for instruction overlap by using the concept
of hidden states.

Hidden states are memory write cycles that occur at the end of a given in-
struction. Paralielism is achieved when the CPU is executing instructions at
the same time the memory controller is writing to memory. The machine states
consumed by the instructions that the CPU is executing hide the machine

Instruction Timings - General Instructions

states consumed by the write cycles. These hidden machine states are not
counted against the instruction that incurs them, but are counted against
subsequent instructions. If an instruction uses the local bus before all of the
hidden cycles have been overlapped by subsequent instructions, that in-
struction must wait for the hidden cycles to complete. Up to nine machine
states may be hidden by write cycles incurred by a single instruction.

In the timing charts in this section and in the Machine States portions of the
instruction descriptions, hidden states are indicated by parentheses as shown
below:

Machine
States cache hit case+ (hidden states),cache disabled case

13.1.2 Other Effects on Instruction Timing
Instruction timing varies, depending on:
® Whether the cache is enabled.
® Whether the instruction and extension words are in cache or not.

(] The field size and the word alignment of memory data manipulated
by the instruction.

The timing for some instructions (particularly the MOVE, MOVEB, LINE, FILL,
and PIXBLT instructions) is affected by the values of implied operands and
on the alignment and field sizes of any associated memory accesses.

In addition, several system-dependent factors that are not included in timing
values may further influence the instruction timings:

® Wait states on the local memory bus
Host accesses via the host port
Display refresh operations

DRAM refresh operations

HOLD/HLDA accesses

13-3

Instruction Timings - MOVE and MOVB Instructions

13.2 MOVE and MOVB Instructions

13-4

Timings for MOVE and MOVB instructions are in the following tables:

Table Page
13-1 MOVE and MOVB Memory-to-Register Timings 13-5
13-2 MOVE and MOVB Register-to-Memory Timings
13-4 MOVE Memory-to-Memory Timingscccccecvrerieininiecreenenceereennns 13-7

MOVE and MOVB instructions are field operations, so their timings are af-
fected by factors such as memory address, field size, and field extensions.
These factors define the field alignment, which in turn defines the number of
memory states required to insert or extract the field from memory. Figure 13-1
illustrates seven cases of alignment, labelied A-G, that are used in the MOVE
and MOVB timing tables.

Case A | Word N '
—16-Bit Fleld —

Case B

Cease C Word N+1 Word N |

32-Bt Fleld—————¥

CaseD | WordN+1 | WwordN |
————Fieid ——

Case E Word N+1 word N |

Field—>

CeseF | WordN+1 | wordN |
rey

* Fleid)
Cesea | WordN+2 | wordNet | wordN |
le Fleid »

Figure 13-1. Field Alignments in Memory

Case A A 16-bit field is aligned on word boundaries.

Cases B1-B3
The field length is less than 16 bits.

[In Case B1, the field starting address is not aligned to a word
boundary, aithough the end of the field coincides with the end
of the word.

Instruction Timings - MOVE and MOVB Instructions

Case C
Case D

Case E

Case F

Case G

® In Case B2, the field starting address is aligned to a word
boundary, but the end of the field does not coincide with the
end of the word.

® In Case B3, the field Iength is 14 bits or less, and neither the
start nor the end of the field is aligned to a word boundary.

A 32-bit field is aligned on word boundaries.

The field size is greater than 16 bits. The field starting address is not
aligned to a word boundary, although the end of the field coincides
with the end of a word.

The field size is greater than 16 bits. The field starting address is
aligned to a word boundary, but the end of the field does not coin-
cide with the end of a word.

The field straddles the boundary between two words. Neither the
start nor the end of the field is aligned to a word boundary.

The field size ranges from 18 to 32 bits, and the field straddles two
word boundaries. Neither the start nor the end of the field is aligned
to a word boundary.

13.2.1 Moves Between Registers and Memory

Table 13-1 lists the timing for memory-to-register moves for each case of the
destination alignment in Figure 13-1. Table 13-2 lists the timing for regis-
ter-to-memory moves. Note that there are no hidden states for memory-to-
register moves.

Table 13-1. MOVE and MOVB Memory-to-Register Timings

Instruction Field Alignment Type
AorB C.D, EF G
MOVB *Rs, Rd 3,6 58 -
MOVB *Rs(offset), Rd 511 713 -
MOVB @Address, Rd 514 7,16 -
MOVE *Rs, Rd 3.6 5.8 710
MOVE *Rs+, Rd 3,6 58 710
MOVE -*Rs, Rd 4,7 6.9 8,11
MOVE *Rs(offset), Rd 5,11 713 9,15
MOVE @Address, Rd 5,14 7.16 9,18

Notes:

1. Add 1 state to MOVES for sign extension.

2. The first number specifies the number of cycles required when the entire in-
struction is contained within cache (cache hit case). The second number
specifies the number of cycles required when the cache is disabled (cache
disabled case).

13-5

Instruction Timings - MOVE and MOVB Instructions

Table 13-2. MOVE and MOVB Register-to-Memory Timings

Field Alignment Type

Instruction

A BorC DorE F G
MOVB Rs, *Rd - 1+(3),7 - 1+(7),11 -
MOVB Rs, *Rd(offset) - 3+(3).7 - 3+(7).13 -
MOVB Rs, @Address - 1+(3).7 - 3+(7),13 -
MOVE Rs, *Rd 1+(1),5 1+(3),7 1+(5),9 1+(7).11 | 1+(9).,13
MOVE Rs, *Rd+ 1+(1).5 1+(3).7 1+(5).9 1+(7),11 1+(9),13
MOVE Rs, -*Rd 2+(1),6 2+(3),8 2+(5),10 2+(7),12 2+(9),14
MOVE Rs, *Rd(offset) 3+(1),9 3+(3)12 | 3+(b),14 | 3+(7)13] 3+(9).18
MOVE Rs, @Address 3+(1).13 | 3+(3).15 | 3+(5),17 | 3+(7).19 | 3+(9).21

Note: The first number specifies the number of cycles required when the entire instruction is contained
within cache (cache hit case). The second number specifies the number of cycles required when
the cache is disabled (cache disabled case). Hidden states are indicated by parentheses.

13.2.2 Memory-to-Memory Moves

13-6

Table 13-4 lists memory-to-memory move timings for each combination of
source and destination alignment. Table 13-3 lists numeric indices which are
used in Table 13-4. The indices are associated with each source and desti-
nation alignment pair (the alignments are shown in Figure 13-1 on page
13-4). To use these tables:

1)
2)
3)

Determine the source and destination alignment,

Locate the alignment and its index in Table 13-3, and
Use the index to select the correct column for a particular MOVE
addressing mode in Table 13-4.

Table 13-3. Alignment Indices for Memory-to-Memory Moves

Source Field Destination Field Alignment

Alignment A B c D E F G
A - - - - 3 _
B 2 - - - 3 _
C - 6 - - - 9
D -]l -17[7]181]8
E -l -l7]7]81]°¢
F 5 |-l7]l7]l8]%¢
G - {10]11{11}]12]13

Instruction Timings - MOVE and MOVB Instructions

Table 13-4. MOVE Memory-to-Memory Timings

Memory-to-Memory Index — Source to Destination

Instruction
1 2 3 4 5 6 7
MOVB *Rs, *Rd - 3+(3),7 |3+(7).13 - 5+(3),11 - -
MOVB *Rs(offset), - 5+(3),7 |5+(7).21 - 6+(3),13 - -
* Rd(offset)
MOVB @SAddr, @DAdar - 7+(3),7 | 7+(7).29 - 6+(3),12 - -
MOVE *Rs, *Rd 3+(1),7 | 3+(3),9 |3+(7),13] 5+(1).9 |5+(3),11|5+(3),11]5+(5),13
MOVE *Rs+, *Rd+ 47 4+(2).9 [4+(6)13] 6,9 [6+(2).11 [6+(2),11]6+(4),13
MOVE -*Rs, -*Rd 4+(1),8 |4+(3),10{4+(7),14]16+(1),10]16+(3),12|6+(3),12}6+(5),14
MOVE *Rs(offset), *Rd+ |56+(1),12 |5+(3),14|5+(7),18)7+(1),14|7+(3),16{7+(3),13|7+(5),15
MOVE *Rs(offset). 5+(1),15{5+(3),1715+(7),21|7+(1)17|7+(3),19]7+(3),16|7+(5),18
* Rd(offset)
MOVE @SAddr, *Rd+ 5+(1),15}5+(3),17{5+(7).21}|7+(1),17]7+(3),19|7+(3),16 | 7+(5),18
MOVE @SAddr, @DAddr 7+(1),23}7+(3),25|7+(7),29]9+(1),25{9+(3),27|9+(3),24|9+(5),26

Memory-to-Memory Index - Source to Destination

Instruction
8 9 10 1 12 13
MOVB *Rs, *Rd 5+(7),15 - - - - -
MOVB *Rs(offset), 7+(7),19 - - - - -
* Rd(offset)
MOVB @SAddr, @DAddr 9+(7).27 - - - - -
MOVE *Rs, *Rd 5+(7),15 | 5+(9),17 | 7+(3).13 | 7+(5),15 | 5+(7).17 | 9+(9),21
MOVE *Rs+, *Rd+ 6+(6),15 | 6+(8),17 | 8+(2),13 | 8+(4),15 | 6+(6),17 | 10+(8),21
MOVE -*Rs, -*Rd 6+(7),15 | 6+(9),18 | 8+(3).14 | 8+(5),16 | 6+(7),18 | 10+(9),22
MOVE *Rs(offset), *Rd+ | 7+(7),16 | 7+(9),19 | 9+(3),18 | 9+(5),20 | 7+(7),22 | 11+(9),26
MOVE *Rs(offset), T7+(7)19 | 7+(9),22 | 9+(3),21 | 9+(5),23 | 7+(7).25 | 11+(9),29
* Rd(offset)
MOVE @SAddr, *Rd+ 7+(7)19 | 7+(9),22 | 9+(3),21 | 9+(5),23 | 7+(7),25 | 11+(9),29
MOVE @SAddr, @DAddr 9+(7),27 | 9+(9),30 | 11+(3),29 { 11+(5),31] 9+(7).33' | 13+(9),37

Note: The number on the left specifies the number of cycles required when the entire instruction is con-
tained within cache (cache hit case). The number on the right specifies the number of cycles re-
quired when the cache is disabled (cache disabled case). Hidden states are indicated by
parentheses.

13-7

Instruction Timings - MOVE and MOVB Instructions

13.2.3 MOVE Timing Example

This example illustrates the timing for the following MOVE instruction:

hhkhkhkhkkhkhkhhkhkhkhkhkhkhhkhkhkkhhkkkhkhkhkkhkhkhhhkhkhhhkkhkhhhkhkhkhkrhkkk

* Example of a MOVE @SADDR,@DADDR instruction: *

* Source address = OES5Sh *

* Destination address = 161h *

* GSize of field 0 = 31 bits (FEO = don't care) *

khkhkkkkkkhkhkhkhkhkhkhkhkkkhkhkhkhkkkhhkhkhkkhkkhhhkhkkhkkkhkhkdkkkkkkk
SETF 31, O ; Set FSO field in ST
MOVE @O0E5h, @161lh, 0

This example moves 31 bits of data from one memory location to another
memory location (a memary-to-memory move). We know that the field size
is 31 bits because we FSO to 31 and then used field O for the move. To de-
termine the timing for this MOVE instruction, follow these steps:

1)

2)

13-8

Determine the field alignment of the source data.

The 31 bits of source data begin at address OESh and span three words.
Figure 13-2 below illustrates the alignment of the source data in mem-
ory; if you look at Figure 13-1 on page 13-4, you'll see that this is

alignment G.

110h 100h OFOh 0ECh _

)
(
A

Figure 13-2. Source Data, Alignment G

OESh

Determine the field alignment of the destination location.

The destination location begins at address 161h and spans two words.
Figure 13-3 illustrates alignment of the destination location; according
to Figure 13-1 (page 13-4), this is alignment E.

170h 160h 150h

(TN

N

>
L— 31 bits —-I \16‘"1

Figure 13-3. Destination Location, Alignment E

Instruction Timings - MOVE and MOVB Instructions

3)

4)

Find the alignment index for the combination of the source alignment
and the destination alignment.

Table 13-3 (page 13-6) shows the source-to-destination alignment in-
dices. The correct index for the combination of source alignment G with
destination alignment E is index 11.

Find the index for this instruction in Table 13-4 (page 13-7).

The example instruction, MOVE @OE5h, @161h, corresponds to MOVE
@SAddr,@Daddr in Table 13-4. Follow this row in the table across to
the entry beneath column 11. The timing listed in this entry,
11+(5).31, is the timing for the example instruction.

Thus, this MOVE example consumes 11 machine states (plus 5 hidden states)
if this code resides in cache. [f the instruction cache is not enabled, this ex-
ample consumes 31 machine states. The memory accesses at the end of the
MOVE consume 5 machine states, which may be hidden by subsequent
cache-resident instructions.

This example is for a memory-to-memory move. |If you want to determine the
timing for a memory-to-register or a register-to-memory move, use Table 13-2
or Table 13-1.

13-9

Instruction

Timings - FILL Instructions

13.3 FILL

Instructions

The total time for the FILL instruction is determined by adding a setup time to
a transfer time:

FILL time = FILL setup time + FILL transfer time

[] The setup sequence executes an initialization sequence, performing
any necessary setup operations and translations. (This may include
XY-to-linear conversions and window preclipping.) The result of the
setup includes the dimensions of the array that is to be moved.

® The transfer sequence performs the actual data transfer from the
source register to the destination array.

FILL setup and transfer timings are in the following tables:

Table Page
13-5 FILL Setup TIMEoceoieeeeeee ettt 13-10
13-6 FILL Transfer TimingT ..o 13-11

13.3.1 FILL Setup Time

FILL setup time is the overhead incurred by the FILL instructions from per-
forming initialization, XY conversions, and window operations. Window op-
erations are performed before the FILL transfer begins. Window options that
affect FILL setup timing include:

No window clipping (W=0)

A window clip that requires no change (array fits)

A window clip that affects the starting pointer (start adjust)

A window clip that affects the array transfer dimensions (dimension
adjust)

A window clip that affects both the starting and the ending pointers
(adjust both)

[] A window miss requesting an interrupt

[] A window hijt

Table 13-5 illustrates the effects of windowing operations on FILL setup tim-
ing. Corner adjust operations have no effect on FILL setup timing.

Table 13-5. FILL Setup Time

Window Operation Corner Adjust
. Array Start | Dimens | Adjust) 3 PBH=1 | PBH=0 | PBH=1
Instruction |W=0 | Fits | Adjust | Adjust | Both | Miss| Hit i pgv=0| PBV=1 | PBV=1
FILL L 4 - - - - - - - - -
FILL XY 6 9 16 12 20 - - - - -

Note: These timings are for the cache hit case; add 3 machine states for cache disabled timing.

13-10

For example, a FILL XY with preclipping that requires both the starting and
ending array corners to be adjusted would consume 20 states of setup time.

Instruction Timings - FILL Instructions

13.3.2 FILL Transfer Timing

Table 13-6 lists FILL transfer timings. Transfer timing is the time required (in
addition to the setup time) to execute the actual data transfer to memory.
Transfer timing is based on several parameters such as the number of rows in
the adjusted array (L), the number of words affected per row (N), graphics
operations (G), and four possible destination array alignments (A, B, C, and
D). These factors are described in the list that follows the table.

Table 13-6. FILL Transfer Timingt

Line Length

Array Alignments

A B c D
Short (N=1) (1+G)L + 2 (2+G)L + 2 (2+G)L + 1 (2+G)L +1
Medium (N=2) (2+2G)L + 2 (3+2G)L + 2 (3+2G)L + 2 (4+2G)L + 1
Long (N>3) (1+NG)L + 2 (2+NG)L + 5 (3+NG)L + 2 (8+NG)L +1

t Subtract any alignment/graphics adjustment from these values

Key:

L Number of rows (see page 13-11)

N Number of words per row (see page 13-12)

G Value derived from selected graphics operation (see Table 13-7 on page 13-13)

13.3.2.1 Number of Rows in the Adjusted Array (L)

The working dimensions (L rows x M pixels) for the fill are determined by the
originally supplied destination pointer (DADDR) and dimensions (DYDX) in
conjunction with window preclipping.

13.3.2.2 Alignment of Leading and Trailing Words in Rows

After clipping, the data transfer portion of the FILL treats the array as a series
of L rows of M pixels. These M pixels are spread across N words in each row
of the destination array. Figure 13-4 illustrates a single row of a destination

array in memory. The FILL algorithm resolves rows into three portions:

1)
2)
3)

The leading edge at the beginning of the row
The center N-2 words of the row
The trailing edge at the end of the row

Word Boundaries

Leading
Pixels

4——1—— M Pixels

Figure 13-4. Pixel Block Alignment in X

H“

t
_,s Tralling
]

Pixels

_

[P ——

13-11

Instruction Timings - FILL Instructions

As Figure 13-4 shows, a row of AN words includes one word each for the
leading and trailing parts of the transfer and N-2 words for the center portion.
The FILL always transfers the center portion of the row as a series of 16-bit
words. Thus, the alignment of the leading and trailing words in the row
characterize the alignment type of the array. Figure 13-5 illustrates the four
possible alignments (A, B, C, and D) of destination array rows within pixel
blocks in memory.

! Leading ——Center N-2 Words—— Tralling

— N Words ;:
Ec——Word Boundaﬂu——vi 1
Alignment A
| Leading w—Center N-2 Words— Tralng !
’ H
1
]
--------------- :
Alignment B !
_______________ : :
)
1)
1
]
]

ot © C —

_
§
;[
H
¥
N
5
I

Tralling

Alignment D L __|__|

Leading ——Center N-2 Words——»] Traling !

N Words

-a-
-

Figure 13-5. Pixel Block Alignments

Word alignment is constant from row to row because DPTCH is constrained
to be a multiple of 16 for most FiLLs. If a FILL is only one pixel wide, and all
the rows are contained in single words in memory, DPTCH may be any value.
If DPTCH is not a multiple of 16, word alignment may vary between cases B,
C, and D. Average timing for this situation may be derived using alignment
C. Worst case timing for this situation may be derived using alignment D.

713.3.2.3 Row Length (Number of Words N per Row)

13-12

Row length is determined by a combination of the computed array pointer
value in DADDR, the clipped DX dimension, and the pixel size stored in the
PSIZE register. The data transfer algorithm breaks down into one of three
cases, short, medium, or long, according to the number of words N in a row.
These three cases include:

(] Short case. The destination array row occupies only one word in me-
mory (N=1). In this case, only one write (or read-modify-write) opera-
tion is required to place the row into the destination array. Alignment

Instruction Timings - FILL Instructions

for the short case is either type A for exactly aligned arrays or type B, C,
or D for nonaligned arrays (which require a read-modify-write).

(Medium case. The destination row occupies two words in memory
(N=2). In this case, the row has no center portion and the array align-
ment is determined by the alignments of the first and last words in the
row.

[] Long case. The destination row occupies all or part of at least three
words (N>3). This is the general case for array alignment discussions.

13.3.2.4 Transfer Direction in X

Transfer direction does not apply to FiLLs. FILL transfers proceed a single
word of pixels at a time in the order of increasing X and increasing Y. This
corresponds to a transfer from left-to-right and top-to-bottom for the default
screen orientation.

13.3.2.5 Selected Graphics Operations (G)

Graphics operations such as plane masking, transparency, and pixel process-
ing influence FILL transfer timing because the destination pixels must be read
before they are replaced. However, the effects of these operations vary be-
cause they are performed by different portions of the TMS34010 hardware.
For instance, plane masking, transparency, and field insertion are ali performed
by the TMS34010 memory controller; any combination of these operations
uses 2 machine states for each word written. Pixel processing, on the other
hand, is performed by the TMS34010 CPU, and requires 2, 4, 5, or 6 states
per word (independently of other operations). The minimum cycle time for
any graphics operation, then, is 2 machine states (one memory cycle) using
the pixel processing rep/ace operation, with plane masking and transparency
disabled. Table 13-7 shows these values.

Table 13-7. Timing Values per Word for Graphics Operations (G)

Pixel Processing Operation

Other ADDS,suUB
Graphics Operation Replace Booleans MAX, or SUBS
or ADD MIN
No plane masking or 2 4 5 6
transparency .
Read-modify-write, plane 4 6 7 8
masking, or transparency

13-13

instruction Timings - FILL Instructions

13.3.2.6 Alignment/Graphics Adjustment

An additional adjustment may be necessary when plane masking or transpar-
ency are enabled and the alignment type is B, C, or D. As the second line of
Table 13-7 shows, if a particular word in a destination row has already been
read as part of a read-modify-write operation, no additional states are re-
quired to perform plane masking or transparency for that word. Since the
alignment types with misaligned edges (B, C, and D) already assume a RMW
(read-modify-write) on their respective edges, the effect of plane masking or
transparency can be ignored for these edges. That is, after you have calculated
the timing using the proper value for the graphics operation, you can subtract
2 states (cases B and C) or 4 states (case D) per row from the transfer timings
for the respective alignment cases. Case A requires no adjustment.

13.3.3 FILL Timing Examples

13-14

To determine the timing for a FILL instruction, add the FILL setup value to the
FILL transfer value and subtract the alignment adjustment:

FILL time = FILL setup time + FILL transfer time - alignment adjustment

FILL setup timings, transfer timings, and the effects of graphics operations are
listed in the following tables:

Table Page
13-5 FILL Setup TiMe ..cceeeieiierreteriee et ve s e et re s tessn e sreesesesnesneens 13-10
13-6 FILL Transfer Timingtocoovoeveeeieeee et .. 13-11

13-13

The following three examples illustrate timing for a FILL XY. The setup and
transfer timings for these examples are the same, except each uses a different
graphics operation. Figure 13-7 illustrates the destination array and window
used in these examples, as defined by the implied operands in Figure 13-6.
Note that the shaded portion is the area of intersection.

13-7 Timing Values per Word for Graphics Operations (G)

’k***

* Implied operand setup for FILL examples (assume *
* that the B register names and I/0 register names *
* are equated with the proper registers)
khkhkkkkhkkhkhhkhkhkxkhkhkhhkhkhhkkhkhkhkkhkkkhkhkhhhhhhhkhkhkhkhkhkkhkhkkkkk
MOVI 004400E4h, DADDR ; X=228, Y=68
MOVI 800Oh, DPTCH ; X extent = 512 pixels
; (at 4 bits per pixel)
CLR OFFSET
MOVI O0C4900EBh, WSTART ; X=235, Y¥Y=73

MOVI 005F0140h, WEND ; X=320, Y=95

MOVI 0014003Ch, DYDX ; DX=60, DY=20

MOVI 4h, AO

MOVE A0, @PSIZE ; Pixel size = 4 bits
MOVI 14h, AO

MOVE A0, @QCONVDP ; (LMO DPTCH)

MOVI OCh A0

MOVE A0, @CONTROL ; W=3, T=0, PPOP=0

CLR A0

MOVE AO, @PMASK ; Disable plane masking

Figure 13-6. Implied Operand Setup for FILL Example

Instruction Timings - FILL Instructions

Even word Even word
boundary boundary
DADDR —g §* 60 i
4 = = ~
(228,68) N-t_s'a_'plxele o word =13.62=14
WSTART ~ “«— M=53
- * (320,73)

WEND
* (320,45)

Figure 13-7. FILL XY Timing Example

Follow these steps to determine the number of machine states consumed by
this example:

1)

2)

Determine the setup time; refer to Table 13-5 on page 13-10.

Setup time comprehends the time required for windowing operations.
These examples use window preclipping (W bits=3); this option re-
quires the starting corner to be adjusted. As Table 13-5 (page 13-10)
shows, the setup time for a FILL XY with a starting corner adjust is 16
machine states. .

Determine the transfer time; refer to Table 13-6 on page 13-11.
Transfer time is affected by the number of words per row, line length,
and graphics operations.

a) Number of words per row: As Figure 13-7 shows, adjusting the
array by clipping it to the window dimensions produces a new Y
dimension, so L (the number of rows in the adjusted array) equals
15. '

b) Line length: Adjusting the array to fit the window also produces
a new X dimension of 53 pixels. The number of pixels divided by
the pixel size yields the number of words N per row; 53 divided by
4 produces 13.25, so N=14. Since N is greater than 3, this exam-
ple conforms to the long case. The trailing edge is word aligned
but the leading edge is not, so the alignment type is C.

As Table 13-6 shows, the transfer time for a FILL XY with these char-
acteristics is (3+NG)L + 2. The only variable in the following three
examples is G, which represents the selected graphics operations.

13-156

Instruction Timings - FILL Instructions

Example 13-1. Replace, No Transparency, No Plane Masking

The implied operand setup in Figure 13-6 selects the following graphics
options:

® Pixel processing rep/ace operation (PPOP=0),

® No transparency, and

® No plane masking.

According to Table 13-7 (page 13-13), variable G = 2. The FILL timing
for this instruction is determined as follows:

FILL time

FILL setup time + FILL transfer time
Adjust pointer + [3+(NxG)]L + 2
6 + [(3+ (14x2)]156 + 2

o

483 states

The FILL writes 795 pixels in these 483 states. (The portion of the array
lying within the window contains 795 pixels.)

Example 13-2. MAX, No Transparency, No Plane Masking

13-16

Select the pixel processing MAX option (be sure to retain the values of the
W bits and the T bit, which are also in the CONTROL register):

MOVI 50COh, AO
MOVE A0, @CONTROL ; MAX, wW=3, T=0

These instructions, in combination with the implied operand setup in Figure
13-6, select the following graphics options:

® Pixel processing MAX operation (PPOP=14h),
[J No transparency, and
[No plane masking.

According to Table 13-7, variable G = 5. The FILL timing is now calculated
as:

FILL time = FILL setup time + FILL transfer time

= Adjust pointer + [3+(NxG)]L + 2
16 + [3+ (5x14)]156 + 2
1.113 states

|

This FILL example consumes 1,113 machine states.

Instruction Timings - FILL Instructions

Example 13-3. XNOR with Transparency and Plane Masking

Select the pixel processing XNOR operation and enable transparency and
plane masking:

MOVI 14EOh, a0

MOVE A0, @QCONTROL ; XNOR, W=3, T=1
MOVI 1111h, AO

MOVE A0, @PMASK ; Use a plane mask

These instructions, in combination with the implied operand setup in Figure
13-6, select the following graphics options:

° Pixel processing XNOR operation (PPOP=05h),
® No transparency, and
® No plane masking.

According to Table 13-7, variable G = 6.

If plane masking or transparency is enabled, you must consider the array
alignment in the timing. This example conforms to alignment type C (as
shown in Figure 13-5 on page 13-12), which incurs a read-modify-write
at the leading edge of each row. The extra read in the RMW can be used
by the plane masking or transparency hardware, so an alignment/graphics
adjustment is necessary. The adjustment negates the effect of the extra read
cycles in each row that are attributed to the graphics operations. For this
example, the amount subtracted is 2L (the number of machine states for a
read cycle times the number of rows). The FILL timing is now calculated

as:
FILL time = FILL setup time + FILL transfer time - adjustment
= Adjust pointer + [3+(NxG)]L + 2 - 2L
=16 + [3+ (6x14)]15 +2 - (2x15)

1,293 states

This FILL example consumes 1,293 machine states.

13.3.4 Interrupt Effects on FILL Timing

A FILL instruction can be interrupted on a word boundary during the transfer
portion of the FILL algorithm. It can also be interrupted at the end of each
row. The context of the FILL is saved in reserved registers, and the PBX bit
is set in the copy of the status register that is pushed onto the stack. The worst
case latency caused by an interrupt is 20 machine states for the interrupt to
be recognized. The time for the context switch must be added to this. See
Section 8.5.1, Interrupt Latency (page 8-6) for context switch information.

13-17

Instruction Timings - PIXBLT Instructions

13.4 PIXBLT Instructions

PIXBLT instructions covered in this section include:

® PIXBLT L,L

o PIXBLT XY,L
o PIXBLT L.XY
® PIXBLT XY, XY

(PIXBLT B,L and PIXBLT B,XY are discussed in Section 13.5.)

The total PIXBLT instruction timing is obtained by adding a setup time to a
transfer time:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time

® The setup sequence executes an initialization sequence, performing
any necessary setup operations and translations. (This includes XY-
to-linear conversion and window preclipping.) The result of the setup
includes the dimensions of the source array.

® The transfer sequence performs the actual data transfer from the
source array to the destination array.

PIXBLT setup and transfer timings are in the following tables:

Table Page
13-8 PIXBLT Setup TiMeccoccevieirececee et 13-18
13-9 PIXBLT Transfer Timingtccocooviieeeeeeeceeeeeeeeee s 13-20

13.4.1 PIXBLT Setup Time

Table 13-8 lists PIXBLT setup times. Setup time is the overhead incurred by
the PIXBLT instructions in performing initialization, XY conversions, window
options, and corner adjust. Setup time is affected by both the window and
corner adjust operations. The effects of these operations are described in the
list that follows Table 13-8.

Table 13-8. PIXBLT Setup Time

Window Operation Corner Adjust
. Array Start | Dimens | Adjust .) PBH=1 | PBH=0| PBH=1
Instruction |W=0| Fits | Adjust | Adjust | Both | Miss| Hit §pBv=0| PBV=1 | PBV=1
PIXBLT L. L 7 - - - - - - - - -
PIXBLT XY, L 9 - - - - - - +1 +2 +4
PIXBLT L, XY 9 12 19 15 23 - - +1 +2 +4
PIXBLT XY, XY | 12 15 22 18 26 - - +1 +2 +4

13-18

For example, consider a PIXBLT XY,XY instruction with preclipping that re-
quires hoth the starting and ending array corners to be adjusted (PBH=1 and
PBV=0). The setup timing for this example would be 26+1=27 states.

Instruction Timings - PIXBLT Instructions

13.4.1.1 Window Operations

Window operations are performed before the PIXBLT transfer begins. Win-
dow options that affect PIXBLT setup timing include:

® No window checking (W=0)

A window clip that requires no change (array fits)

A window clip that affects the starting pointer (start adjust)

A window clip that affects the array transfer dimensions (dimension

adjust)

zvsz;\dow clip that affects both the starting and ending pointers (adjust
ol

® A window miss that requests an interrupt

® A window hit

13.4.1.2 Corner Adjust (PBH and PBV)

The TMS34010 may need to adjust the starting corner of the source and des-
tination arrays for the PIXBLT L XY, PIXBLT XY.,L, and PIXBLT XY,XY in-
structions. The default starting corner is the upper left corner of the array. This
can be altered by changing the values of the PBH and PBV (PIXBLT hori-
zontal and vertical) bits. Possible corner adjustments (with default origin
ORG=0) include:

[No corner adjust (PBH=0, PBV=0)

® Adjust to upper right corner (PBH=1, PBV=0)
® Adjust to lower left corner (PBH=0, PBV=1)
° Adjust to lower right corner (PBH=1, PBV=1)

The TMS34010 adjusts corners before PIXBLT execution begins. For each
combination of PBH and PBV, the TMS34010 adjusts the source and desti-
nation starting address pointers to point to the appropriate corner of the arrays.
This assures that the same pixel block is moved, despite the difference in X and
Y transfer directions.

The original source and destination pointers must be supplied through soft-
ware. The pointers should indicate the least significant pixel in the array, ex-
cept for PIXBLT L,L. For this instruction, the PBH and PBV bits affect only
the direction of the move; the TMS34010 does not adjust the starting corner.

13-19

Instruction Timings - PIXBLT Instructions

13.4.2 PIXBLT Transfer Timing

Table 13-9 lists PIXBLT transfer timings. Transfer timing is the time required
(in addition to the setup time) to execute the actual data transfer to memory.
Transfer timing is affected by several factors, including the number of rows in
the adjusted array (L), the number of words affected per row (N), graphics
operations (G), and four possible destination array alignments (A, B, C, and

D). These factors are described in the list that follows the table.

Table 13-9. PIXBLT Transfer Timingt
PBH =0
Row Lengths Destination Array Alignment
and Alignment A B C D
Short (N=1)
D>S (G+4)L + 5 (G+6)L + 3 (G+6)L + 3 (G+6)L + 3
D<S (G+4)L +5 (G+6)L + 3 (G+6)L + 3 (G+6)L + 3
Medium (N=2
D>S [2+(4+2G)]L + 5 | [4+(4+2G)]L +3 | [4+(4+2G)]L +5 | [6+(4+2G)]L + 3
D<S§ [4+(4+2G)]L + 4 | [6+(4+2G)]L +2 | [6+(4+2G)]L +4 | [8+(4+2G)]L + 2
Long (N>3)
D>S [(2+GIN]L +5 | [2+(2+G)N]L + 3 | [2+(2+G)N]L + 5 | [2+(4+G)N]L + 3
D<s [2+(2G)N]IL + 4 [4+(2G)N]L + 2 [4+(2G)N]L + 4 [6+(2G)N]L + 2
PBH =1
Row Lengths Destination Array Alignment
and Alignment A B C D
Short (N=1)
D>S (G+3)L + 8 (G+4)L +7 (G+a4)L + 7 (G+4)L + 7
D<S (G+3)L + 8 (G+4)L +7 (GH4)L + 7 (G+4)L +7
Medium (N=2)
D>8§ [24(4+2G)]L + 4 | [4+(4+2G)]L + 3 | [4+(4+2G)]L +4 | [6+(4+2G)]L + 3
D<S [4+(4+2G)]L +5 | [6+(4+2G)]L +4 | [6+(4+2G)]JL + 5 | [7+(4+2G)]L + 4
Long (N>3)
D>8§ [1+(2+G)N]L + 4 | [3+(2+G)N]L + 3 | [3+(2+G)N]L + 4 | [B+(2+G)N]L + 3
D<s [3+(2+G)N]L +5 | [4+(2+G)N]L + 4 | [6+(2+G)N]L +5 | [6+(2+G)N]L + 4

t Subtract any alignment/graphics adjustment from these values

Key:
L

Number of rows in the array (see page 13-20)
N Number of destination words per row (see page 13-22)

G Value dependent on selected graphics operation (see Table 13-10 on page 13-24)
D>S First destination to source alignment case (see page 13-22)
D<S Second destination to source alignment case (see page 13-22)

13-20

Instruction Timings - PIXBLT Instructions

13.4.2.1 Number of Rows in the Array (L)

The working dimensions (L rows by N words) for the block transfer are de-
termined by the original destination pointer (DADDR) and dimensions
(DYDX) in conjunction with window preclipping. L represents the number
of rows in the clipped array.

13.4.2.2 Alignment of Leading and Trailing Words in Rows

After clipping, the data transfer portion of the PIXBLT treats the array as a se-
ries of L rows of M pixels. These M pixels are spread across N words in each
row of the destination array. N and L affect the transfer timing. Alignment
does not vary from row to row because DPTCH is constrained to be a power
of two.

Figure 13-8 illustrates a single row of a destination array in memory. The
PIXBLT algorithm resolves rows into three portions:

1) The leading edge at the beginning of a row
2) The center N-2 words of the row
3) The trailing edge at the end of the row

Word Boundaries

Leadin Trallin
Pai’ [Center N-2 Words ——» eny

H“
i

4—————— M Pixels ——mM8M—»

Figure 13-8. Pixel Block Alignment in X

As Figure 13-8 shows, a row of NV words includes one word each for the
leading and trailing parts of the transfer and N-2 words for the center portion.
The PIXBLT always transfers the center portion of the row as a series of 16-bit
words. Thus, the alignment of the leading and trailing portions characterize
the alignment type of the array. Figure 13-9 illustrates the four possible
alignments (A, B, C, and D) of a destination array.

13-21

Instruction Timings - PIXBLT Instructions

! Leading ——Center N-2 Wordes——» Tralling

" N Words "
i le——Word Boundaries ——»; ;
Alignment A
i leading l——Center N-2 Words——»! Tralng |
‘ |
1
1
_______________ 1)
Nignment B i
_______________ ___| :
]
)
1
]
1

Monment & -

T
| Lesding %——Center N-2 Words——»} Traling !

Leading ——Center N-2 Wordes——»! Tralling

-3

N Words

= A

Figure 13-9. Pixel Block Alignments

13.4.2.3 Row Length (Number of Words N per Row)

13-22

Row length is determined by a combination of the computed array pointer
value in DADDR, the clipped DX dimension, and the pixel size stored in the
PSIZE register. The data transfer algorithm breaks down into one of three
cases, short, medium, or long, according to the number of words N in a row.
These three cases include:

® Short case. The destination array row occupies only one word in me-
mory (N=1). In this case, only one write (or read-modify-write) opera-
tion is required to place the row into the destination array. Alignment
for the short case is either type A for exactly aligned arrays or type B, C,
or D for nonaligned arrays (which require a read-modify-write).

] Medium case. The destination row occupies two words in memory
(N=2). In this case, there is no center portion to the row and the array
alignment is determined by the alignments of the first and last words in
the row.

® Long case. The destination row occupies all or part of at least three
words (N>3). This is the general case for array alignment discussions.

Instruction Timings ~ PIXBLT Instructions

13.4.2.4 Relative Alignment of Source Rows to Destination Rows

The alignment of the leading pixels in a source row with respect to a destina-
tion row influences PIXBLT transfer timing. This alignment determines
whether one or two words are required from the source array to fully write the
first word of the destination array. This initial condition can be divided into
two cases:

D>S The four LSBs of the destination address are greater than the four
LSBs of the source address. This implies that the amount of data
available from the first word of the source array exceeds the amount
needed to write to the first word of the destination array. The write to
the destination array can proceed immediately.

D<S The four LSBs of the destination address are less than the four LSBs
of the source address. This implies that the amount of data to be
written to the first word of the destination array exceeds the amount
available from the first word of the source array. Another word must
be read from the source array.

Alignment Case 1: D2 8
1

Destination Array

iﬂ—WOrd Boundaries —»!
Allonmerrltc“ezzb<s
]

I Dastln.ntlon Array

Word Boundarles—vi
Increasing bit address N

Figure 13-10. Source to Destination Alignments

13-23

Instruction Timings - PIXBLT Instructions

13.4.2.5 Transfer Direction in X (PBH)

PIXBLT transfers proceed a word of data at a time in a consistent direction in
X and Y. The default direction is from the smallest word address to the largest,
corresponding to left-to-right and top-to-bottom for the defauit screen orien-
tation. The vaiues of the PBH and PBYV bits determine the transfer direction
in Xand Y.

For the four regular PIXBLTs (without expand), PBH determines the order in
which words are written on each row of the destination array:

PBH=0: Words within rows are written in the order of increasing addresses.

PBH=1: Words are written in the order of decreasing addresses. The value
of PBH influences the per-row transfer timings of these PIXBLTs.

The sense of the PBV bit determines the order in which rows are transferred
to the destination array.

PBV=0: Rows are transferred in the order of increasing addresses.
PBV=1: Rows are transferred in the order of decreasing addresses.

This value affects the setup timing, but not the transfer timing.

13.4.2.6 Selected Graphics Operations (G)

13-24

Graphics operations such as plane masking, transparency, and pixel process-
ing influence PIXBLT transfer timing because the destination pixels must be
read before they are replaced. However, the effects of these operations vary
because they are performed by different portions of the TMS34010 hardware.
For instance, plane masking, transparency, and field insertion are all performed
by the TMS34010 memory controller hardware; any combination of these
operations uses 2 machine states for each word written. Pixel processing, on
the other hand, is performed by the TMS34010 CPU, and requires 2, 4, 5, or
6 states per word independent, of other operations. The minimum time for any
graphics operation, then, is 2 machine states(one memory cycle) using the
replace operation with plane masking and transparency disabled. These values
are shown in Table 13-10.

Table 13-10. Timing Values per Word for Graphics Operations (G)

Pixel Processing Operation

Other ADDS,SUB
Graphics Operation Replace Booleans MAX or SUBS
or ADD MiIN
No plane masking or 2 4 5 6
transparency
Read-modify-write, plane 4 6 7 8
masking, or transparency

Instruction Timings - PIXBLT Instructions

13.4.2.7 Alignment/Graphics Adjustment

An additional adjustment may be necessary when plane masking or transpar-
ency are enabled and the alignment type is B, C, or D. As the second line of
Table 13-10 shows, if a particular word in a destination row has already been
read as part of a read-modify-write operation, no additional states are re-
quired to perform plane masking or transparency for that word. Since the
alignment types with misaligned edges (B, C, and D) already assume a RMW
(read-modify-write) on their respective edges, the effect of plane masking or
transparency can be ignored for these edges. That is, after you have computed
the timing using the proper vaiue for the graphics operation, you can subtract
2 states (case B and C) or 4 states (case D) per row from the row timings for
the respective alignment cases. Case A requires no adjustment.

13-25

Instruction Timings - PIXBLT Instructions

13.4.3 PIXBLT Timing Examples

13-26

To determine PIXBLT timing, add the PIXBLT setup value to the PIXBLT
transfer value and subtract the alignment adjustment:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time
- alignment adjustment

PIXBLT setup timings, transfer timings, and the effects of graphics operations
are in the following tables:

Table Page
13-8 PIXBLT Setup Time eeeteerenree e s e e s te et et e ne e renns 13-18
13-9 PIXBLT Transfer Timingtcccoevineocnneirnese e reenensee s 13-20
13-10 Timing Values per Word for Graphics Operations (G) 13-24

The following three examples illustrate timing for a PIXBLT XY,L. The setup
and transfer timings for these examples are the same, except each uses a dif-
ferent graphics operation. Figure 13-12 illustrates the destination array and
window used in these examples, as defined by the implied operands in Figure
13-11. The shaded portion of Figure 13-12 is the destination array.

khkkkkhhkhhhkhkkhkhkhhkkkhkkkhkhkhkkhkhhkhhkhkhkhkkhkhkkhhkhkhkkkhkkkkkkk

* Implied operand setup for PIXBLT XY, L examples *

* (assume that the B register and I/0 register *

* names are equated with the proper registers) *

EE RS S SR RS SRR AR SR SRS R R AR RS XSRS R RS ES AR RS R REEE S
MOVI 003AO00OE6h, SADDR
MOVI 800h, SPTCH

X=230, Y= 58

X extent = 512 pixels
(at 4 bits per pixel)
linear address

X extent = 512 pixels

MOVI O0OOQO30E8, DADDR
MOVI 800h, DPTCH
MOVI 00040000, OFFSET

Ne e Ne Ne S

CLR WSTART ; ignored

CLR WEND ; ignored

MOVI OOOF0036, DYDX ; DY=15, DX=54
MOVI 4h, AO

MOVE A0, @PSIZE ; Pixel size = 4

MOVI 14h, AO
MOVE A0, CONVSP

MOVE A0, CONVDP ; ignored

CLR AO

MOVI A0, PMASK ; Disable plane masking
MOVI 0300h, AO

MOVE A0, @CONTROL ; PBH=1l, PBV=1

Figure 13-11. Implied Operand Setup for PIXBLT Timing Examples

Instruction Timings - PIXBLT Instructions

54 »

%

/

Even word
boundary
SADDR —g3* 54 >
(230,58)
15
Adjusted source
v gtarting comer

Figure 13-12. PIXBLT XY,L Timing Example

To calculate the number of machine steps consumed by these PIXBLT exam-
ples, follow these steps:

1)

2)

Determine the setup time; refer to Table 13-8 (page 13-18). Setup
timing comprehends windowing and corner-adjust operations.

a) Windowing: Windowing is not enabled for this example (W=0, 9
states).

b) Corner adjust. PBH=1 and PBV=1, so the starting corner must
be adjusted in both the X and Y dimensions (+4 states).

As Table 13-8 shows, the setup time for a PIXBLT XY,L with these op-
erations is 9 + 4 machine states.

Determine the transfer time; refer to Table 13- (page 13-20).
Transfer time comprehends the direction of the move, array and row
alignments, and line lengths.

[PBH=1.

® Number of rows in the array: The Y dimension is 15, so L=15.

(] Number of words in a row: The X dimension is 54 pixels, and the
pixel size is four; 54 divided by 4 produces 13.5, so the number of
words per row, N, = 14,

L] Row length and alignment. N is greater than 3, so this example
conforms to the long case.

13-27

Instruction Timings - PIXBLT Instructions

® The four LSBs of DADDR are greater than the four LSBs of
SADDR (D>8S).

® Destination array alignment. The trailing edge is word aligned but
the leading edge is not, so the alignment type is C.

As Table 13-9 shows, the transfer time for this PIXBLT instruction is
[6+(2+G)N]L + 4. The only variable in the following three examples
is G, which represents the selected graphics operations.

Example 13-4. Replace, No Transparency, No Plane Masking

13-28

The implied operand setup in Figure 13-11 selects the following graphics
options:

(] Pixel processing replace operation (PPOP=0),
L No transparency, and
® No plane masking.

According to Table 13-10 on page 13-24, variable G = 2. The total ma-
chine states required for this instruction are:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time
=9+4 + [6+(2+G)NIL + 4
=13 + (5+4x14)x15 + 4
= 932 states

The instruction in this example consumes 932 machine states.

Instruction Timings - PIXBLT Instructions

Example 13-56. MAX Option, No Transparency, No Plane Masking

Select the pixel processing MAX option (be sure to retain the values of the
W bits and the T bit, which are also in the CONTROL register):

MOVI 50COh, AO
MOVE AO, @CONTROL ; MAX, W=3, T=0

These instructions, in combination with the implied operand setup in Figure
13-11, select the following graphics options:

[] Pixel processing MAX operation (PPOP=14h),
[No transparency, and
] No plane masking.

According to Table 13-10, variable G = 5. Thus, the timing equation be-

comes:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time
=9+4 + [6+(2+G)NIL + 4

=13 + (5+7x14)x15 + 4

1562 states

The instruction in this example consumes 1,562 machine states.

13-29

Instruction Timings - PIXBLT Instructions

Example 13-6. XNOR with Transparency and Plane Masking

Select the pixel processing XNOR operation and enable transparency and |
plane masking:

MOVI 14EOh, AO

MOVE A0, @CONTROL ; XNOR, W=3, T=1
MOVI 1111h, AO

MOVE A0, @PMASK ; Use a plane mask

These instructions, in combination with the implied operand setup in Figure
13-11, select the following graphics options:

° Pixel processing XNOR operation (PPOP=05h),
® No transparency, and
[] No plane masking.

According to Table 13-10, variable G = 6.

If plane masking or transparency is enabled, you must consider the array
alignment in the timing. Alignment type C incurs a read-modify-write at the
leading edge of each row. The extra read included in the RMW can be used
by the plane masking or transparency hardware, so an alignment/graphics
adjustment is necessary. The adjustment negates the effect of the extra read
cycles in each row that are attributed to the graphics operations. For this
example, the amount subtracted is 2L (the number of machine states for a
read cycle times the number of rows). The timing is now calculated as:

PIXBLT time = PIXBLT setup time+ PIXBLT transfer time - adjustment
9+4 + [b+(2+G)NIL +4 - 2L

13 + (6+8x14)x15 +4 - (2x15)
1772 states

i nn

The instruction in this example consumes 1,772 machine states.

13.4.4 The Effect of Interrupts on PIXBLT Instructions

13-30

The PIXBLT instruction may be interrupted on a destination word boundary
during the transfer portion of the algorithm. It may also be interrupted at the
end of any row in the array. The context of the PIXBLT is saved in reserved
registers. The PBX bit is set in the copy of the ST register that is pushed to
the stack. The worst case latency caused by an interrupt is 20 machine states
for the interrupt to be recognized. The time for the context switch must be
added to this; see Section 8.5.1, Interrupt Latency (page 8-6) for context
switch timing.

Instruction Timings - PIXBLT Expand Instructions

13.5 PIXBLT Expand Instructions

PIXBLT expand instructions include:

® PIXBLT B,L
® PIXBLT B.XY

To determine PIXBLT expand instruction timing, add a setup time to a transfer
time:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time

(] The setup sequence executes an initialization sequence, performing
any necessary setup operations and translations. (This includes XY-
to-linear conversion and window preclipping.) The result of the setup
includes the dimensions of the source array.

® The transfer sequence performs the actual data transfer from the
source array to the destination array.

PIXBLT setup and transfer timings are in the following tables:

Table
13-11 PIXBLT Expand Setup Timeccccoceoviiieieniieee et
13-12 PIXBLT Expand Transfer Timingt

13.5.1 PIXBLT Setup Time

PIXBLT setup time is the overhead incurred by the PIXBLT instructions from
performing initialization, XY conversions, and window operations.

Window operations are performed before the PIXBLT transfer begins. Win-
dow options that affect PIXBLT setup timing include:

No window checking (W=0)

A window clip that requires no change (array fits)

A window clip that affects the starting pointer (adjust start)

A window clip that affects the array transfer dimensions (dimension
adjust)

A window clip that affects both the starting and ending pointers (adjust
both)

(] A window miss that requests an interrupt

® A window hit

Table 13-11 shows the effect of these options on the PIXBLT setup time.
Corner adjust operations have no effect on PIXBLT setup timing.

13-31

Instruction Timings - PIXBLT Expand Instructions

Table 13-11. PIXBLT Expand Setup Time

Window Operation Corner Adjust

Array Start | Dimens | Adjust . . PBH=1 | PBH=0 | PBH=1
0| Fits | Adjust | Adjust | Both | Miss| Hit | pBv=0| PBV=1| PBV=1

PIXBLT B, L | 4 - - - - Z Z - - -
PIXBLT B, XY | 6 9 17 12 21 = - - = -

Instruction |W

For example, a PIXBLT B,XY with the preclipping option requiring an adjust-
ment to the end corner of the array requires 12 states of setup time.

13.5.2 PIXBLT Transfer Timing

Table 13-12 shows transfer timing for PIXBLT expand instructions. Transfer
timing is the time required (in addition to the setup time) to execute the actual
data transfer to memory. Transfer timing is affected by several factors, in-
cluding the number of rows in the adjusted array (L), the number of words
affected per row (N), graphics operations (G), the four possible destination
array alignments (A, B, C, and D), and the arrangement of words in source
rows. These factors are described in the {ist that follows the table.

Table 13-12. PIXBLT Expand Transfer Timingt

Destination Alignment Transfer Timing

Short case (3+2R+G)L + 3

Medium case)
Alignment A or C (3+2R+NG)L + 3
Alignment B or D (6+2R+NG)L + 3

Long case
Alignment A [(3+2R+2GP)S + 2V + NG]L+ 3
Alignment D [(8+2R+2GP)S + 2V + YG + 8]L+ 3

Subtract any alignment/graphics adjustment from these values

T
Key:

L Number of rows in the array (below)

N Number of destination words per row (see page 13-33)

R Number of source words involved in set (see page 13-33)

S Number of 32-bit sets in long source rows (DX/32), except for the case
of an even number of sets; in this case, S is the number of 32-bit sets
minus 1 (DX/32 - 1) (see page 13-35)

V Number of source words involved in reading source pixels at end of
row after all the complete 32-bit sets have been transferred P Current
pixel size

G Value dependent on selected graphics operations (see Table 13-13)

Y Number of remaining destination words affected in a given row after

S 32-bit sets are written

13-32

Instruction Timings - PIXBLT Expand Instructions

13.5.2.1 Number of Rows in the Array (L)

The working dimensions (L rows x N words) for the block transfer are deter-
mined by the original destination pointer (DADDR) and dimensions (DYDX)
in conjunction with window preclipping. The symbol L is used to represent
the number of rows in the clipped destination array.

713.5.2.2 Alignment of Leading and Trailing words in Rows

After clipping, the data transfer portion of the PIXBLT treats the array as a se-
ries of L rows of M pixels. These R pixels are spread across N words in each
row of the destination array. NV and L affect the transfer timing. This alignment
does not vary from row to row because DPTCH is constrained to be a multiple
of 16 for binary PIXBLTs.

Figure 13-13 illustrates a single row of a destination array in memory. The
PIXBLT algorithm resolves rows into three portions:

1) The leading edge at the beginning of the row
2) The center N-2 words of the row
3) The trailing edge at the end of the row

Word Boundaries

Leading
Pixels

4———1—— M Pixel§ ——mM———»

4—— Center N-2 Words——» [raling

H;

Figure 13-13. Pixel Block Alignment in X

As Figure 13-13 shows, a row of N words includes one word each for the
leading and trailing parts of the transfer and V-2 words for the center portion.
PIXBLT expand instructions always transfer the center portion of the row as a
series of 16 bit words, and are not affected by the alignment of the leading
word. Thus, the alignment of the trailing words in the row characterize the
alignment type for the row. Figure 13-14 illustrates the four possible align-
ments (A, B, C, and D) of a row in the destination array.

13-33

Instruction Timings - PIXBLT Expand Instructions

v

| Leadng i— Center N-2 Words —

Tralling

mignment8 | ———I

| Leading M——Center N-2 Words —!

Traliing

Alignment C L -

Leading —— Center N-2 Words —»)}

Trailing

ormert© — 1]

Leading ——Center N-2 Words ——»)

-— N Words

Tralling

Figure 13-14. Pixel Block Row Alignments

13.5.2.3 Row Length (N Words per Row)

Row length is determined by a combination of the computed array pointer
value in DADDR, the clipped DX dimension, and the pixel size stored in the
PSIZE register. The data transfer algorithm breaks down into one of three
cases, short, medium, or long, according to the number of words NV in a row.

These three cases include:

Short case. A row of source array pixels is contained in 16 bits or less
and the expanded data involves only one word of the destination array

per row (N=1). Alignment does not affect the short case.

Medium case. A row of source array pixels is contained in 32 bits or
less but the expanded data involves more than one word of the destina-
tion array per row (N>1). In this case, the array alignment is determined
by the alignments of the last word in the row. Thus, alignments A,C and

B,D have equal transfer timings.

Long case. A row of source array pixels is contained in more than 32
bits. The expanded data involves multiple words in the destination array
row. In this case, the array alignment is determined by the alignments
of the last word in the row. Thus, alignments A and B and alignments

C and D have equal transfer timings.

13-34

Instruction Timings - PIXBLT Expand Instructions

Note that the timings for the short and medium row lengths are not affected
by the alignment of the first word on each row of the destination array. That
is, the destination array row transfer can start with either a write or a read-
modify-write. The long case is treated as a series of 32-pixel medium cases
followed by a short case (if necessary) at the end of each row. Each 32-pixel
set is expanded and written to the destination in a serial fashion, without op-
timizing for beginning and ending alignments. Thus, the timing for the long
case becomes a product of the number of 32-pixel sets (S) and the timing for
each set, plus the timing for expanding any remaining segment of the source
array (less than or equal to 32 bits) that is left in the row. Note that the re-
maining segment of the source array may have an alignment type (B or C) that
is different from the preceding 32-bit sets.

13.5.2.4 Arrangement of Source Rows

As discussed in the Row Length section, the number of bits in a row of the
source array affects the time required to perform the PIXBLT transfer algorithm.
The short and medium cases have explicit timings based on the number of
words read from the source row, R. Note that the timings for the short and
medium row lengths are not affected by the alignment of the last word on each
row of the destination array. That is, the destination array row transfer can
either end with a write or a read-modify-write.

The long case is treated as a series of 32-pixel segments. Each 32-pixel set
is expanded and written to the destination in a serial fashion without opti-
mizing for beginning and ending alignments for the source or destination. The
final portion of the transfer may be up to a 32-pixel “partial” segment. Thus,
the timing for the long case becomes a product of the timing for each set and
the number of 32-pixel sets (S), plus the timing for expanding any remaining
segment of the source array (up to 32 bits). Note that the alignment of the
remaining segment of the source array is determined by the original (clipped)
source array alignment.

The PIXBLT does not attempt to optimize read operations from the source ar-
ray; therefore, depending on the alignment of the source array, either two or
three words may need to be read in order to obtain a 32-bit set of source pixels
for expansion. This value, R, is the number of source words involved in a
32-bit set of source pixels and may be either two or three. The timings are
affected by R as wells as the number of such complete 32-bit sets S in a
source row.

The bits remaining after all of the complete 32-bit sets on a row have been
moved are transferred. Depending on the number of remaining bits and the
alignment of the source array, either one, two, or three words may need to be
read in order to obtain the remaining set of source pixels for expansion. This
value, V, is the number of of source words read to obtain the final segment
while Y is is the number of destination words involved for this fragment.

13-356

Instruction Timings - PIXBLT Expand Instructions

13.5.2.5 Transfer Direction in X (PBH Bit)

These PIXBLT instructions proceed a single word of pixels at a time in the di-
rection of increasing X and increasing Y. This corresponds to left-to-right and
top-to-bottom for the default screen orientation. Setting the PBH and PBV
bits has no effect.

13.5.2.6 Selected Graphics Options (G)

Graphics operations such as plane masking, transparency, and pixel process-
ing influence PIXBLT transfer timing because the destination pixels must be
read before they are replaced. However, the effects of these operations are
performed by different parts of the TMS34010 hardware. For instance, plane
masking, transparency, and field insertion are all performed by the TMS34010
memory controller hardware; any combination of these operations uses 2 ma-
chine states for each word written. Pixel processing, on the other hand, is
performed by the TMS34010 CPU, and requires 2, 4, 5, or 6 states per word
independent of other operations. The minimum time for any graphics opera-
tion, then, is 2 machine states (one memory cycle) using the replace oper-
ation with plane masking and transparency disabled. These values are shown
in Table 13-13.

Table 13-13. Timing Values per Word for Graphics Operations (G)

Pixel Processing Operation

Other ADDS.SUB
Graphics Operation Replace Booleans MAX or SUBS
or ADD MIN
No plane masking or 2 4 5 6
transparency
Read-modify-write, plane 4 6 7 8
masking, or transparency

13.5.2.7 Alignment/Graphics Adjustment

13-36

An additional adjustment may be necessary when plane masking or transpar-
ency are enabled and the alignment type is B, C, or D. As the second line of
Table 13-13 shows, if a particular word in a destination row has already been
read as part of a read-modify-write operation, no additional states are re-
quired to perform plane masking or transparency for that word. Since the
alignment types with misaligned edges (B, C, and D) already assume a RMW
(read-modify-write) on their respective edges, the effect of plane masking or
transparency can be ignored for these edges. That is, after you have calculated
the timing using the proper value for the graphics operation, you can subtract
2 states (cases B and C) or 4 states (case D) per row from the row timings for
the respective alignment cases. Case A requires no adjustment.

Instruction Timings - PIXBLT Expand Instructions

13.56.3 PIXBLT Timing Examples

PIXBLT timing is calculated by adding the PIXBLT setup value to the PIXBLT
transfer value:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time
- alignment adjustment

PIXBLT setup timings, transfer timings, and the effects of graphics operations
are listed in the following tables:

Table Page
13-11 PIXBLT Expand Setup Timeccecoenviiirierecee et 13-32
13-12 PIXBLT Expand Transfer Timingt ..o ..13-32
13-13 Timing Values per Word for Graphics Operations (G) 13-36

The following three examples illustrate timing for a PIXBLT B,XY that ex-
pands a 10-by-10 font (L=10) into eight bits per pixel with color. The setup
and transfer timings for these examples are the same, except each uses a dif-
ferent graphics operation. Figure 13-16 illustrates the destination array and
window used in these examples, as defined by the implied operands in Figure
13-15. The shaded portion in Figure 13-16 is the destination array.

khkkhkkkhhkhkkkhhkkdhkhkkhkhkxhkhkhkkhkhkkhkkhkhkkbhkhkhkhhkhkhkkhkkkhkkkkk

* Implied operand setup for PIXBLT B, XY examples *
* (assume that B register and I/0 regiser names *
* are equated to with proper registers) *
kkkkkkkkkhkhhhkhkhkhkkhkhkhkhhkhhkhkdhhkhkhkkhkkhkkhkhkhkkxkkkkkkhkk
MOVI OOO3E2E8h, SADDR linear address
MOVI 00ADOh, SPTCH X extent = 2768 pixels
MOVI 0032010Bh, DADDR X=267, Y= 50
MOVI 800h, DPTCH X extent = 512 pixels
MOVI 00040000h, OFFSET

o wowe Ny

CLR WSTART ; ignored

MOVI 01000100h, WEND ; ignored

MOVI OOOAOOOAh, DYDX ; DX=10, DY=10

MOVI 8h, A0

MOVE A0, @PSIZE ; Pixel size = 8 bits

MOVI 14h, AO

MOVE AO, @CONVDP

MOVE AO, @CONVSP ; ignored

CLR A0

MOVE AO, @PMASK

MOVI 0300h, AO

MOVE AO, @CONTROL ; W=0,T=0,PP=0,PBH=1,PBV=1

Figure 13-15. Implied Operand Setup for PIXBLT-Expand Examples

13-37

Instruction Timings - PIXBLT Expand Instructions

13-38

4+————2,768 pixels per row ————»
+— 10—
>3E2E8 ¥

L 12 —>

DADDRﬁ'

““““

] R \\\§ N e e

Figure 13-16. PIXBLT B,XY Timing Example

Follow these steps to determine the number of machine states consumed in
these PIXBLT examples:

1)

2)

Determine the setup time; refer to Table 13-11 (page 13-32). Setup
time comprehends the machine states consumed by windowing and
corner adjust operations;

a) Windowing: Is not enabled for this example.

b) Corner adjust: PBH and PBV are ignored.

As Table 13-11 shows, the setup time for this PIXBLT is 6 machine
states.

Determine the transfer time; refer to Table 13-12 (page 13-32).
Transfer time comprehends the number and alignment of rows in the
array, row length, the direction of the move, and the graphics operations.

a) Number of words per row: The source is part of a packed font.
The source array starts in the middle of a word and extends into the
next word, so two words are read for each row of the font (R=2).

b) Number of rows in the array: The Y dimension is 10 (L=10).

c) Neither the leading nor the trailing edges are word aligned, so the
alignment type is D.

d) Array alignment. The X dimension is 10 pixels wide, but with
alignment type D, an extra word is involved for both the leading
and trailing pixels; the pixel size is eight, so 12 divided by 2 (two
pixels per word) produces N=6. Since the width is less than 32
pixels (10), but more than one word of the destination is affected,
this example is a medium case.

Instruction Timings - PIXBLT Expand Instructions

As Table 13-12 shows, the transfer timing is (6+2R+2GN)L + 3. The
only variable in the timing for these three examples is the selected
graphics operations.

Example 13-7. Replace, No Transparency, No Plane Masking

The implied operand setup in Figure 13-15 selects the following graphics
options:

[] Pixel processing rep/ace operation (PPOP=0),
[] No transparency, and
L] No plane masking.

According to Table 13-13, variable G = 2. The total machine states re-
quired for this instruction are:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time
=6 + (6+2R+NG)L + 3
=6 + (B+2x2+6x2)x10+3
= 219 states

This examples consumes 219 machine states as it reads, expands, and
writes these 100 pixels.

Example 13-8. MAX, No Transparency, No Plane Masking

Select the pixel processing MAX option (be sure to retain the values of the
W bits and the T bit, which are also in the CONTROL register):

MOVI 50COh, AO
MOVE AO, @CONTROL ; MAX, W=3, T=0

These instructions, in combination with the implied operand setup in Figure
13-15, select the following graphics options:

[] Pixel processing MAX operation (PPOP=14h),
[] No transparency, and
L] No plane masking.

According to Table 13-13, variable G=5; the timing equation becomes:

PiXBLT time = PIXBLT setup time + PIXBLT transfer time
=6 + (b+2R+NG)L + 3
=6 + (6+2x2+6x5)x10+3
= 399 states

The instruction in this example consumes 399 machine states.

13-39

Instruction Timings - PIXBLT Expand Instructions

Example 13-9. XNOR with Transparency and Plane Masking

Select the pixel processing XNOR operation and enable transparency and
plane masking:

MOVI 14EOh, AO

MOVE AO, @QCONTROL ; XNOR, W=3, T=1
MOVI 1111h, AO

MOVE AQ, @PMASK ; Use a plane mask

These instructions, in combination with the implied operand setup in Figure
13-15, select the following graphics options:

[] Pixel processing XNOR operation (PPOP=05h),
[] No transparency, and
[] No plane masking.

According to Table 13-13, variable G = 6.

If plane masking or transparency is enabled, you must consider the array
alignment in the timing. Alignment type D incurs a read-modify-write at the
leading and trailing edges of each row. The extra read included in the RMW
can be used by the plane masking or transparency hardware, so an
alignment/graphics adjustment is necessary. The adjustment negates the
effect of the extra read cycles in each row that are attributed to the graphics
operations. For this example, the amount subtracted is 4L (the number of
machine states for a read cycle times 2 times the number of rows). The
timing is now calculated as:

PIXBLT time = PIXBLT setup time+ PIXBLT transfer time - adjust-
ment
=6 + (6+2R+NG)L + 3 -4L
=6 +(56+2x2 +6x6)x10+3 - (4x10)
= 419 states

The instruction in this example consumes 419 machine states.

13.5.4 The Effect of Interrupts

The PIXBLT instruction may be interrupted on a destination word boundary
during the transfer portion of the algorithm. It may also be interrupted at the
end of any row in the array. The context of the PIXBLT is saved in reserved
registers. The PBX bit is set in the copy of the ST register that is pushed to
the stack. The worst case latency caused by an interrupt is 20 machine states
for the interrupt to be recognized. The time for the context switch must be
added to this; see Section 8.5.1, Interrupt Latency (page 8-6) for context
switch timings.

13-40

Appendix A
TMS34010 Data Sheet

Appendix A - TMS34010 Data Sheet

A-2

GRAPH

TMS34010
ICS SYSTEM PROCESSOR

JANUARY 1986 — REVISED JUNE 1988

® Instruction Cycle Time:
— 132 ns ... {TMS34010-60)
— 160 ns . . . (TMS34010-50)
— 200 ns . .. (TMS34010-40)

® Fully Programmable 32-Bit General-Purpose
Processor with 128-Megabyte Address
Range

® Pixel Processing, XY Addressing, and
Window Checking Built into the Instruction
Set

& Programmable 1, 2, 4, 8, or 16-Bit Pixel
Size with 16 Boolean and 6 Arithmetic Pixel
Processing Options (Raster-Ops)

® 30 General-Purpose 32-bit Registers and
32-bit Stack Pointer

® 256-Byte LRU On-Chip Instruction Cache

Direct Interfacing to Both Conventional
DRAM and Muitiport Video RAM

® Dedicated 8/16-Bit Host Processor Interface
and HOLD/HLDA Interface

® Programmable CRT Control (HSYNC,
VSYNC, BLANK)

® High-Level Language Support

Full Line of Hardware and Software
Development Tools Including a *'C’’
Compiler

68-Leaded Packaging (PLCC)
5-Voit CMOS Technology

description

FN PACKAGE
{TOP VIEW)

55 =
NUU!(’
x1Zz|z|Z
3EERE
= o 'Y
I > }(
{=]
—J
T

~ (1 RUN/EMU

=
=) E >
L m:{ 122 BlOZD

The TMS34010 Graphics System Processor (GSP) is an advanced high-performance CMOS 32-bit
microprocessor optimized for graphics display systems. With a built-in instruction cache, the ability to
simultaneously access memory and registers, and an instruction set designed specifically for raster graphics
operation, the TMS34010 provides user-programmable control of the CRT interface as well as the memory
interface (both standard DRAM and multiport video RAM). The 1-gigabit address space is completely bit-
addressable on bit boundaries using variable width data fields {1 to 32 bits). Additional graphics addressing
modes support 1, 2, 4, 8, and 16-bit wide pixels. The TMS34010 is exceptionally well-supported by graphics
software interface standards such as CGI/VDI, DGIS, and MS-Windows, as well as a full line of hardware
and software support tools. Current support is highlighted in the TMS34010 Third Party Reference Guide

(literature number SPVBOG66A).

architecture

The TMS34010 is a CMOS 32-bit processor with hardware support for graphics operations such as PixBlts
(raster ops) and curve-drawing algorithms. Also included is a complete set of general-purpose instructions
with addressing tuned to support high-level languages. In addition to its ability to address a large external
memory range, the TMS34010 contains 30 general-purpose 32-bit registers, a hardware stack pointer

This document contains information on products
in more than one phase of development. The status
of each device is indicated on the page(s) specifying
its electrical characteristics.

xas

Te
INSTRUMENTS

Copyright © 1986, Texas Instruments Incorporated

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

A-4

TMS34010

GRAPHICS SYSTEM PROCESSOR

and a 256-byte instruction cache. On-chip functions include 28 programmable 1/O registers that contain
CRT control, input/output control, and instruction parameters. The TMS34010 directly interfaces to dynamic
RAMs and video RAMs and generates video monitor control signals. It also accommodates a conventional
HOLD/HLDA shared access as well as a separate, generalized interface for communicating with any standard

host processor.

pin descriptions

PIN
NAME NUMBER 1/0 DESCRIPTION
Host Interface Bus Pins
HCS 66 | Host chip select
HDO-HD15 44-51, 53-60 /0 Host bidirectional data bus
HFSO, HFS1 67, 68 | Host function select
HINT 42 o Host interrupt request
HLDS 63 | Host lower data select
HUDS 62 1 Host upper data select
HRDY 43 o] Host ready
HREAD 64 | Host read strobe
HWRITE 65 | Host write strobe
Local Bus Interface Pins
RAS 38 (o] Local row-address strobe
CAS 39 o} Local column-address strobe
DDOUT 36 (o] Local data direction out
DEN 37 o] Local data enable
LADO-LAD15 10-17, 19-26 110 Local address/data bus
AL 34 o} Local address latched
LCLK1, LCLK2 28, 29 o] Local output clocks
ONT1, OINT2 6,7 | Local interrupt request pins
LRDY 9 I Local ready
TR/QE 41 o Local shift register transfer or output enable
W 40 o) Local write strobe
INCLK 5 | input clock
Hold and Emulation
HOLD 8 i Hold request
RUN/EMU 2 ! Run/Not emulate
HLDA/EMUA 33 o} Hold acknowledge or emulate acknowledge
Video Timing Signals
BLANK 32 0 Blanking
HSYNC 30 170 Horizontal sync
VCLK 4 t Video clock
VSYNC 31 110 Vertical sync
Miscellanecus
RESET 3 | Reset
vee 27, 61 | Nominal 5-volt power supply
Vsg 1, 18, 35, 562 | Ground

{i’
Texas
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

system block diagram

o — e e

GRAPHICS SYSTE

M PROCESSOR CHIP BOUNDARY

1
! {
Hong et HOST-GRAPHICS GRAPHICS | CONVENTIONAL
INTERFACE PROCE |
PROCESSOR v SSOR i DRAMS
|
{ PROGRAM AND
1\ DATA STORAGE
(GRAPHICS MEMORY BUS
N T
|
I
1 FRAME BUFFER
DRAM- SCREEN- CRT i
REFRESH REFRESH TIMING |]
CONTROL CONTROL CONTROL | | T
! VIDEO o
! rams| | CRT
e —_ _ 1 - MONITOR
- —————— e |
VO REGISTERS |
EXTERNAL | | g !
INTERRUPT ::_r> INTERRUPT I INSTRUCTION I
REQUESTS INSTRUCTION
i REGISTERS ¢: CACHE E— DECODE |
RESET —ob 1 !
I | |
I ! I
HOS1 | HOST ' |
INTERFACE CF"_:) INTERFACE <:: re————r |p————) :
BUS REGISTERS]
| | PROGRAM I |
: II COUNTER 0 :
I | STATUS ! I
SYNC AND ’\:Lr> VIDEO TIMING t REGISTER 1 I
BLANKING REGISTERS T L ALU | |
: o : MICROCONTROL | |
—————————— - GPR FILE A | ROM :
! |
LOCAL MEMORY GPR FILE B : |
CONTROL K= i !
REGISTERS STACK POINTER |4 i
. |
U ———— 4 I
EXECUTION UNIT i
AV. cLock
LOCAL MEMORY INTERNAL CLOCK OUTPUTS
CONTROL LOGIC CIRCUITRY cLOCK
AND BUFFERS C:: INPUTS
IS A il

LOCAL MEMORY
INTERFACE BUS

FIGURE 1. TMS34010 INTERNAL ARCHITECTURE

Texas

*p

INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

A-5

TMS34010
GRAPHICS SYSTEM PROCESSOR

The TMS34010 provides single-cycle execution of most common integer arithmetic and Boolean operations
from its instruction cache. Additionally, the TMS34010 incorporates a hardware barrel shifter that provides
a single-state bidirectional shift and rotate function for 1 to 32 bits.

A microcoded local memory controller supports pipelined memory write operations of variable-size fields
that can be performed in parallel with subsequent instruction execution.

TMS34010 graphics processing hardware supports pixel and pixel-array processing capabilities for both
monochrome and color systems that have a variety of pixel sizes. The hardware incorporates two-operand
raster operations with Boolean and arithmetic operations, XY addressing, window clipping, window checking
operations, 1 to n bits per pixel transforms, transparency, and plane masking. The architecture further
supports operations on single pixels (PIXT instructions) or on two-dimensional pixel arrays of arbitrary size
(PixBlts).

The TMS34010’s flexible graphics processing capabilities allow software-based graphics algorithms without
sacrificing performance. These algorithms include: arbitrary window size, custom incremental curve drawing,
and two-operand raster operations.

register files

Boolean, arithmetic, byte, and field move instructions operate on data within the TMS34010's general-
purpose register files. The TMS34010 contains thirty-one 32-bit registers, including a system stack pointer
(SP). The SP is accessible to both Register File A and B as the sixteenth register. Transfers between registers
and memory are facilitated via a complete set of field MOVE instructions with selectable field sizes. Transfers
between registers are facilitated via the MOVE instruction.

The fifteen general-purpose registers in Register File A are used for high-level language support and assembly
language programming. The fifteen registers in Register File B are dedicated to special functions during
PixBlts and other pixel operations, but can be used as general-purpose registers at other times.

{iﬁ
Texas
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010

GRAPHICS SYSTEM PROCESSOR

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A1l

A12

A13

A14

SsP

31(MSB}

O(LSB)

1

STACK POINTER

—

program counter (PC)

31(MSB) '

BO SAII)DR

B1 SP'I:CH

B2 DAE‘)DR

B3 DP‘II'CH

B4 OFF‘SET

B5 WST'ART

B6 WE.ND

B7 DYPX

88 COLPRO

B9 COLPR1

B10 TEMPORARIY REGISTER
B11 TEMPORARIY REGISTER
B12 TEMPORARIY REGISTER
B13 TEMPORARIY REGISTER
B14 TEMPORAR'Y REGISTER

SP STACK POINTER

0(LSB)

SOURCE ADDRESS
(PIXBLTS)

SOURCE PITCH
DESTINATION ADDRESS
{PIXBLTS AND FILLS)
DESTINATION PITCH
OFFSET

WINDOW START

WINDOW END

DELTA Y/ DELTA X
COLORO
(BINARY PIXBLTS)

COLOR1
(BINARY PIXBLTS, FILLS AND DRAV)
~

THESE ARE USED AS TEMPORARY
~ STORAGE FOR PIXBLT AND
FILL INSTRUCTIONS.

FIGURE 2. REGISTER FILES A AND B

The TMS34010’s 32-bit program counter register points to the next instruction-stream word to be fetched.
Since instruction words are aligned to 16-bit boundaries, the four LSBs of the PC are always zero.

instruction cache

An on-chip instruction cache contains 256 bytes of RAM and provides fast access to instructions. It operates
automatically and is transparent to software. The cache is divided into four 64-byte segments. Associated
with each segment is a 23-bit segment address register to identify the addresses in memory corresponding
to the current contents of the cache segment. Each cache segment is further partitioned into eight
subsegments of four words each. Each subsegment has associated with it a present (P) flag to indicate
whether the subsegment contains valid data.

i
Texas ‘J
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 7700t

A-7

TMS34010
GRAPHICS SYSTEM PROCESSOR

SEGMENT STI:RT ADDRESS FLAGS

AL
en o [11]
.

- o
L m
o
L w
b=

i

l*‘lml‘ﬂth‘-’l~ldl°J}

T

LU

L

NToTolsJw[n]=>T9]

[NJeJolsJw]n]=To]

E

L]

L
Lz
Len
[l
F=

+ o

2]

—

L en
L e -

[STeoJo]sJelnw][=T92]

DATA REGISTERS
T) S—

SUBSEGMENT 0

SUBSEGMENT 1

SUBSEGMENT 2

SUBSEGMENT 3

SUBSEGMENT 4

SUBSEGMENT 5

SUBSEGMENT 6

» SEGMENT 0

SUBSEGMENT 7

s

l——— 16—l

SUBSEGMENT 0

SUBSEGMENT 1

SUBSEGMENT 2

SUBSEGMENT 3

SUBSEGMENT 4

SUBSEGMENT 5

SUBSEGMENT 6

SUBSEGMENT 7

SUBSEGMENT 0

SUBSEGMENT 1

SUBSEGMENT 2

SUBSEGMENT 3

SUBSEGMENT 4

SUBSEGMENT 5

SUBSEGMENT 6

SUBSEGMENT 7

SUBSEGMENT 0

SUBSEGMENT 1

SUBSEGMENT 2

SUBSEGMENT 3

SUBSEGMENT 4

SUBSEGMENT 5

SUBSEGMENT 6

SUBSEGMENT 7

7

rSEGMENT 2

WORD 0

WORD 1

WORD 2

WORD 3

l>—16—e»|

MOST
RECENTLY-8»|
USED

LEAST
RECENTLY-&»)

USED

SUBSEGMENT 2
OF SEGMENT 1

LRU
STACK

> SEGMENT 3

FIGURE 3. INSTRUCTION CACHE

A-8

*p

EXAS
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

The cache is loaded only when an instruction requested by the TMS34010 is not already contained within
the cache. A least-recently-used (LRU) algorithm is used to determine which of the four segments of the
cache is overwritten with the new data. For this purpose, an internal four-by-two LRU stack is used to
keep track of cache usage.

status register

The status register (ST) is a special-purpose 32-bit register dedicated to status codes set by the results
of implicit and explicit compare operations and parameters used to specify the length and behavior of fieids
Oand 1.

313029282726252423222120191817161514131211 10 9 8 7 6

T i

h
m

m -

-

N - Sign bit IE - Interrupt enable bit

C - Carry bit FE1 - Field extension bit 1

Z - Zero bit FS1 - Field size bit 1

V - Overflow bit FEO - Field extension bit O
PBX - PixBlt executing FSO - Field size bit O

FIGURE 4. STATUS REGISTER

fields, bytes, pixels, and pixel arrays

A 26-bit address output by the TMS34010 selects a 16-bit word of physical memory; logically, however,
the TMS34010 views memory data as fields addressable at the bit level. Primitive data types supported
by the TMS34010 include: bytes, pixels, two 1- to 32-bit fields, and user-defined pixel arrays.

Fields O and 1 are specified independently to be from 1 to 32 bits in length. Bytes are special 8-bit cases
of the field data type, while pixels are 1, 2, 4, 8 or 16 bits in length. In general, fields (including bytes)
may start and terminate on arbitrary bit boundaries; pixels must pack evenly into 16-bit words.

pixel operations

Pixel arrays are two-dimensional data types of user-defined width, height, pixel depth (number of bits per
pixel), and pitch (distance between rows). A pixel or pixel array may be accessed by means of either its
memory address or its XY coordinates. Transfers of individual pixels or pixel blocks are influenced by the
pixel processing, transparency, window checking, plane masking, or corner adjust operations selected.

I/O registers

The GSP contains an on-chip block of twenty-eight 16-bit I/0 registers mapped into the TMS34010's
memory address space. They can be accessed either by the TMS34010’s CPU or by the host processor
via the host interface. The 1/O registers contain control parameters necessary to configure the operation
of the following interfaces: interface to host processor (5 I/O registers), interface to local memory (6
registers), video timing and screen refresh functions {15 registers), and externally and internally generated
interrupts (2 registers). The I/O registers also furnish status information on these interfaces.

{ip
TeExAs A9
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

ADDRESS REGISTER

4 Ad
0C00001FOh REFCNT
0C00001ECH DPYADR
0C00001D0h | VCOUNT
0C00001COh | HCOUNT
0C00001B0h DPYTAP
0C00001A0h |]
0C0000190h | RESERVED |
0C0000180h |]
0C0000170h
0C0000160h PMASK
0C0000150h PSIZE
0C0000140h CONVDP
0C0000130h CONVSP
0C0000120h INTPEND
0C0000110h INTENB
0C0000100h | HSTCTLH
0CO0000FOh HSTCTLL
0COO000EOh | HSTADRH
0C00000D0h | HSTADRL
0C00000COh | HSTDATA
0C00000B0h | CONTROL
0C00000ACK DPYINT
0C0000090h | DPYSTRT
0C0000080h DPYCTL
0C0000070h VTOTAL
0C0000060h VSBLNK
0C0000050h VEBLNK
0C0000040h VESYNC
0C0000030h HTOTAL
0C0000020h HSBLNK
0C0000010h HEBLNK
0C0000000h HESYNC

host interface registers

The host interface registers are provided for communications between the TMS34010 and the host
processor. The registers are mapped into five of the 1/O register locations accessible to the TMS34010.
These same registers are mapped into four locations in the GSP interface to the host.

One of the registers is devoted to host interface control functions such as the passing of interrupt requests
and 3-bit status codes from host to TMS34010 and from TMS34010 to host. Other control functions
available to the host processor include flushing the instruction cache, halting the TMS34010, and

DRAM REFRESH COUNT
DISPLAY ADDRESS
VERTICAL COUNT
HORIZONTAL COUNT
DISPLAY TAP POINT

PLANE MASK

PIXEL SIZE

CONVERSION (DESTINATION PITCH)
CONVERSION (SOURCE PITCH)
INTERRUPT PENDING
INTERRUPT ENABLE

HOST CONTROL (8 MSB'S)
HOST CONTROL (8 LSB’S)
HOST ADDRESS (16 MSB'S)
HOST ADDRESS (16 LSB'S)
HOST DATA

CONTROL

DISPLAY INTERRUPT
DISPLAY START

DISPLAY CONTROL

VIDEO TOTAL

VERTICAL START BLANK
VERTICAL END BLANK
VERTICAL END SYNC
HORIZONTAL TOTAL
HORIZONTAL START BLANK
HORIZONTAL END BLANK
HORIZONTAL END SYNC

FIGURE 5. I/0 REGISTERS

transmitting a non-maskable interrupt request to the TMS34010.

A-10

Texas
INSTRUMENTS

*p

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

The remaining host registers are used for block transfers between the TMS34010 and host processor.
The host uses these registers to indirectly access blocks within the TMS34010’s local memory. Two of
the 16-bit registers contain the 32-bit address of the current word location in memory. Another 16-bit
register buffers data transferred to and from the memory by the host processor. The host interface can
be programmed to automatically increment the pointer address following each transfer to provide the host
with rapid access to a block of sequential addresses.

memory interface control registers

Six of the I/O registers are dedicated to various local memory interface functions including:

Frequency and type of DRAM refresh cycles

Pixel size

Masking (write protection) of individual color planes
Various pixel access control parameters

— Window checking mode

— Boolean or arithmetic pixel processing operation
— Transparency

— PixBit direction control

video timing and screen refresh

Fourteen /O registers are dedicated to video timing and screen refresh functions. The TMS34010 generates
the horizontal sync (HSYNC), vertical sync (VSYNC), and blanking (BLANK) signals used to drive a video
monitor in a graphics system. These signals are controlled by means of a set of programmable video timing
1/0 registers and are based on the input video clock, VCLK. VCLK does not have to be synchronous with
respect to INCLK, the TMS34010’s CPU input clock.

The TMS34010 directly supports multiport video RAMs (VRAMSs) by generating the memory-to-register
load cycles necessary to refresh the display being shown on the video monitor. The memory locations
from which display information is taken, as well as the number of horizontal scan lines displayed between
memory-to-register load cycles, are programmable. VRAM tap point addresses are also fully programmable
to support horizontal panning.

The TMS34010 supports various screen resolutions and either interlaced or noninterlaced video. The
TMS34010 can optionally be programmed to synchronize to externally generated sync signals so that
graphics images created by the TMS34010 can be superimposed upon images created externally. The
external sync mode can also be used to synchronize the video signals generated by two or more TMS34010
chips in a multiple-TMS34010 graphics system.

interrupt interface registers

Two dedicated I/O registers monitor and mask interrupt requests to the TMS34010, including two externally
generated interrupts and three internally generated interrupts. An internal interrupt request can be generated
on one of the following conditions:

¢ Window violation: an attempt has been made to write a pixel to a location inside or outside a
specified window boundary.

* Host interrupt: the host processor has set the interrupt request bit in the host control register.

e Display interrupt: a specified line number in the frame has been displayed on the screen.

A nonmaskable interrupt occurs when the host processor sets a particular control bit in the host interface
registers. The TMS34010 reset function is controlled by a dedicated pin.

i
Texas {' A-11
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

memory controller/local memory interface

The memory controller manages the TMS34010’s interface to the local memory and automatically performs
the bit alignment and masking necessary to access data located at arbitrary bit boundaries within memory.
The memory controller operates autonomously with respect to the CPU. It has a "“write queue’’ one field
(1 to 32 bits) deep that permits it to complete the memory cycles necessary to insert the field into memory
without delaying the execution of subsequent instructions. Only when a second memory operation is
required before the memory controller has completed the first operation is the TMS34010 forced to defer
instruction execution.

The TMS34010 directly interfaces to all standard dynamic RAMs and, in particular to JEDEC standard
64K and 256K video RAMs such as the TMS4161 and TMS4461 Multiport VRAMs. The TMS34010
memory interface consists of a triple-multiplexed address/data bus plus the associated control signals.
Row address, column address, and data are multiplexed over the same address/data lines. DRAM refresh
is supported with a variety of modes including CAS-before-RAS refresh.

TMS34010 memory map

From the programmer’s point of view, the TMS34010 treats data and instructions as residing in the same
memory space.

BIT 2321
(LAST BIT IN MEMORY)
ADDRESS
OFFFFFFFOI ¥
INTERRUPT
64 WORDS VECTORS
OFFFFFCOOh
OFFFFFBFOh [215 wioore
RESERVED
OFFFFEO0Oh
OFFFFDFFOh)
GENERAL
226_1024 WORDS USE
0C0002000h
0C0001FFOh
512 WORDS RESERVED
0C0000200h
0C00001FOh
INTERNAL 1/0
32 WORDS REGISTERS
0C0000000h
OBFFFFFFOh
3x226 WORDS GENERAL
USE
000000000h 1
I . 16 . BITO

(FIRST BIT IN MEMORY)
FIGURE 6. MEMORY MAP

{i,
Texas
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

A-12

TMS34010
GRAPHICS SYSTEM PROCESSOR

instruction set

The TMS34010 instructions fall into three categories. The graphics instructions manipulate pixel data,
accessed via memory addresses or XY coordinates. They provide support for graphics operations such
as array and raster ops, pixel processing, windowing, plane masking, and transparency. The move
instructions comprehend bit addressing and field operations; they manipulate fields of data using linear
addressing for transfer to and from memory and the register file. The TMS34010 general-purpose
instructions provide a complete set of arithmetic and Boolean operations on the register file as weli as
general program control and data processing. Partial timing information is provided in the table below.
The two values given for jump instructions in the Minimum Cycles column indicate the jump and no-jump
conditions, respectively. Full timing information can be obtained in the TMS34070 User’s Guide (number
SPVUOO1A).

The following abbreviations are used below in the opcodes: S (source register), D (destination register),
R (register file select), F (field select), K (constant), M (cross A/B file boundary), Z (draw option), code
(jump select code), X (don’t care), N (trap select and stack adjust), RS (source register), RD (destination
register), xxxx (address displacement), IL (32-bit immediate operand), and IW (16-bit immediate operand).

GRAPHICS INSTRUCTIONS

NO. MINIMUM STATUS
SYNTAX DESCRIPTION WORDS CYCLES 16-BIT OPCODE BITS
MSB LSB
ADDXY Rs, Rd Add Registers in XY Mode 1 1 1110 000S SSSR DDDD N C Z V
CMPXY Rs, Rd Compare X and Y Halves of Registers 1 3 1110 010S SSSRDDDD N C Z V
CPW Rs, Rd Compare Point to Window 1 1 1110 011S SSSR DDDD — — — V
CVXYL Rs, Rd Convert XY Address to Linear Address 1 3 1110 100S SSSR DDDD — — — —
DRAV Rs, Rd Draw and Advance 1 t 1111 011S SSSR DDDD — — — V
FILL L Fill Array with Processed Pixels: Linear 1 T 0000 1111 1100 0000 — — — —
FILL XY Fill Array with Processed Pixels: XY 1 T 0000 11t1 1110 0000 — — — V
LINE Z Line Draw 1 T 1101 1111 Z001 1010 — — — V
MOVX Rs, Rd Move X Half of Register 1 1 1110 110S SSSR DDDD — — — —
MOVY Rs, Rd Move Y Half of Register 1 1 1110 111S SSSR DDDD — — — —
PIXBLT B,L Pixel Block Transfer: Binary to Linear 1 t 0000 1111 1000 0000 — — — —
PIXBLT B,XY Pixel Block Transfer and Expand: Binary to XY 1 T 0000 1111 1010 0000 — — — V
PIXBLT L,L Pixel Block Transfer: Linear to Linear 1 t 0000 1111 0000 0000 — — — —
PIXBLT L,XY Pixel Block Transfer: Linear to XY 1 t 0000 1111 0010 0000 — — — V
PIXBLT XY, L Pixel Block Transfer: XY to Linear 1 t 0000 1111 0100 0000 — — — —
PIXBLT XY, XY Pixel Block Transfer: XY to XY 1 t 0000 1111 0110 0000 — — — V
PIXT Rs,*Rd Pixel Transfer: Register to Indirect 1 t 1111 100S SSSR DDDD — — — —
PIXT Rs, *Rd.XY Pixel Transfer: Register to Indirect XY 1 t 1111 000S SSSR DDDD — — — V
PIXT *Rs, Rd Pixel Transfer: Indirect to Register 1 4 1111 101S SSSR DDDD — — — —
PIXT *Rs,*Rd Pixel Transfer: Indirect to Indirect 1 t 1111 1108 SSSR DDDD — — — —
PIXT *Rs.XY, Rd Pixel Transfer: Indirect XY to Register 1 6 1111 001S SSSR DDDD — — — -—
PIXT *Rs.XY,*Rd.XY Pixel Transfer: Indirect XY to Indirect XY 1 t 1111 010S SSSR DDDD — — — V
SUBXY Rs,Rd Subtract Registers in XY Mode 1 1 1110 001S SSSR DDDD N C Z2 V

TNumber of cycles depends on pixel size and/or pixel array size and graphics option selected. See TMS34010 User’s Guide (SPVUOO1A).

{ip
TeExAas A13
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON, TEXAS 77001

TMS34010

GRAPHICS SYSTEM PROCESSOR

SYNTAX

MOVB Rs, *Rd

MOVB *Rs,Rd

MOVB *Rs, *Rd

MOVB Rs, *Rd(offset)
MOVB *Rs{offset),Rd
MOVB *Rs(offset), *Rd{offset)

MOVB Rs,@Daddress
MOVB @Saddress,Rd
MOVB @Saddress,@Daddress
MOVE Rs,Rd

MOVE Rs, *Rd,F

MOVE Rs, - *Rd,F

MOVE Rs,*Rd +,F

MOVE *Rs,Rd,F

MOVE - *Rs,Rd,F

MOVE *Rs+,Rd,F

MOVE *Rs,*Rd,F

MOVE - *Rs, - *Rd,F
MOVE *Rs+,*Rd + ,F
MOVE Rs, *Rdl(offset),F
MOVE *Rs(offset),Rd,F
MOVE *Rs(offset), *Rd + ,F

MOVE *Rs{offset), *Rd(offset),F

MOVE Rs,@Daddress,F
MOVE @$Saddress,Rd,F
MOVE @Saddress, *Rd + ,F
MOVE @Saddress, @Daddress,F

Move Byte:
Move Byte:
Move Byte:
Move Byte:
Move Byte:
Move Byte:
with offset.
Move Byte:
Move Byte:
Move Byte:

MOVE INSTRUCTIONS

NO. MINIMUM
WORDS CYCLES

DESCRIPTION

Register to Indirect

Indirect to Register

Indirect to Indirect

Register to indirect with offset.
Indirect with offset. to Register
Ind. with offset. to Ind.

Register to Absolute
Absolute to Register
Absolute to Absolute

Move Register to Register

Move Field:
Move Field:
Move Field:
Move Field:
Move Field:
Move Field:
Move Field:
Move Field:
Move Field:
Move Field:
Move Field:
Move Field:
{post-inc)

Move Field:
with offset.
Move Field:
Move Field:
Move Field:
Move Field:

Register to Indirect

Register to Indirect (pre-dec)
Register to Indirect (post-inc)
Indirect to Register

Indirect (pre-dec) to Register
Indirect (post-inc) to Register
Indirect to Indirect

Ind. (pre-dec) to Ind. {pre-dec)
Ind. (post-inc) to Ind. (post-inc)
Register to Indirect with offset.
Indirect with offset. to Register
Ind. with offset. to Ind.

Ind. with offset. to Ind.

Register to Absolute
Absolute to Register
Absolute to Indirect (post-inc)
Absolute to Absolute

NN = = o

NN = = oo a 3o om ool W W W

N

W www

B e T T T e B B A Y - et =+ =+

-+

-+ —+ =+ =+ —+

STATUS

16-BIT OPCODE BITS
MSB LsBe

1000 110S SSSR DDDD — — —
1000 111S SSSRDDDD N — Z
1001 110S SSSR DDDD — — —
1010 110S SSSR DDDD — — —

1010 111S SSSRDDDD N — Z

1011 110S SSSR DDDD — — —
0000 0101 111R SSSS — — —
0000 0111 111RDDDD N — Z
0000 0011 0100 0000 — — —
0100 11MS SSSRDDDD N — Z
1000 OOFS SSSR DDDD — — —
1010 OOFS SSSR DDDD — — —
1001 OOFS SSSR DDDD — — —
1000 O1FS SSSRDDDD N — Z
1010 O1FS SSSRDDDD N — Z
1001 O1FS SSSRDDDD N — Z
1000 10FS SSSR DDDD — — —
1010 10FS SSSR DDDD — — —
1001 10FS SSSR DDDD — — —
1011 OOFS SSSR DDDD — — —
1011 O1FS SSSRDDDD N — Z

1101 OOFS SSSR DDDD — — —

1011 10FS SSSR DDDD — — —
0000 O1F1 100R SSSS
0000 O1F1 101RDDDD N — Z
1101 01F0 OOOR DDDD — — —
0000 01F1 1100 0000 — — —

TNumber of cycles depends on field size and alignment. See TMS34010 User's Guide (SPVUOO1A).

A-14

Texas
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON, TEXAS 77001

hid

TMS34010
GRAPHICS SYSTEM PROCESSOR

GENERAL INSTRUCTIONS

NO. MINIMUM STATUS
SYNTAX DESCRIPTION WORDS CYCLES 16-BIT OPCODE BITS
MsB LsSB
ABS Rd Store Absolute Value 1 1 0000 0011 100R DDDD N - Z O
ADD Rs,Rd Add Registers 1 1 0100 000S SSSR DDDD N C Z V
ADDC Rs,Rd Add Register with Carry 1 1 0100 001S SSSR DDDD N C Z V
ADDI IW,Rd Add Immediate (16 Bits) 2 2 0000 1011 QOOR DDDD N C Z V
ADDI IL,Rd Add Immediate (32 Bits) 3 3 0000 1011 OOIR DDDD N C Z V
ADDK K,Rd Add Constant (5 Bits) 1 1 0001 OOKK KKKR DDDD N C Z V
AND Rs,Rd AND Registers 1 1 0101 000S SSSR DDDD — - Z —
ANDI IL,Rd AND Immediate {32 Bits) 3 3 0000 1011 100R DDDD — - Z —
ANDN Rs,Rd AND Register with Complement 1 1 0101 001S SSSR DDDD — - Z —
ANDNI IL,Rd AND Not Immediate {32 Bits) 3 3 0000 1011 100R DDDD — - Z —
BTST K,Rd Test Register Bit - Constant 1 1 0001 11KK KKKR DDDD — - Z —
BTST Rs,Rd Test Register Bit - Register 1 2 0100 101S SSSR DDDD — - Z
CLR Rd Clear Register 1 1 0101 011D DDDR DDDD — — —
CLRC Clear Carry 1 1 0000 0011 0010 0000 — 0 — —
CMP Rs,Rd Compare Registers 1 1 0100 100S SSSR DDDD N C Z V
CMPI IW,Rd Compare Immediate (16 Bits) 2 2 0000 1011 O10R DDDD N C Z V
CMPI IL,Rd Compare Immediate (32 Bits) 3 3 0000 1011 O11IR DDDD N C Z V
DEC Rd Decrement Register 1 1 0001 0100 OO1R DDDD — —
DINT Disable Interrupts 1 3 0000 0011 0110 0000 — - — —
DIVS Rs,Rd Divide Registers Signed 1 40 0101 1008 SSSR DDDD N - Z V
DIVU Rs,Rd Divide Registers Unsigned 1 37 0101 101S SSSR DDDD — - Z V
EINT Enable Interrupts 1 3 0000 1101 0110 0000 — - — —
EXGF Rd,F Exchange Field Size 1 1 1101 01F1 OOOR DDDD — - — —
LMO Rs,Rd Leftmost One 1 1 0110 101S SSSR DDDD — - Z —
MMFM Rs,Register List Move Multiple Registers from Memory 2 t 0000 1001 101R DDDD — - — —
MMTM Rd,Register List Move Multiple Registers to Memory 2 t 0000 1001 100R DDDD — — — —
MODS Rs,Rd Modulus Signed 1 40 0110 1108 SSSR DDDD N - Z V
MODU Rs,Rd Modulus Unsigned 1 35 0110 111S SSSR DDDD — — Z V
MOVI IW,Rd Move Immediate (16 Bits) 2 2 0000 1001 110R DDDD N - Z O
MOV! IL,Rd Move Immediate (32 Bits) 3 3 0000 1001 11MR DDDD N — 2 O
MOVK K,Rd Move Constant (5 Bits) 1 1 0001 10KK KKKR DDDD — - — —
MPYS Rs,Rd Multiply Registers (Signed) 1 5+F—21 0101 1108 SSSR DDDD N - Z —
MPYU Rs,Rd Multiply Registers {Unsigned) 1 5+E-§—1 0101 111S SSSR DDDD — - 2 —
NEG Rd Negate Register 1 1 0000 0011 101R DDDD N C Z V
NEGB Rd Negate Register with Borrow 1 1 0000 0011 110R DDDD N C Z V
NOP No operation 1 1 0000 0011 0000 0000 — — — —
NOT Rd Complement Register 1 1 0000 0011 111R DDDD - - Z -—
OR Rs,Rd OR Registers 1 1 0101 010S SSSR DDDD — - Z —
ORI IL,Rd OR Immediate (32 bits) 3 3 0000 1011 101R DDDD — — Z —
RL K,Rd Rotate Left - Constant 1 1 0011 OOKK KKKR DDDD — C Z —
RL Rs,Rd Rotate Left - Register 1 1 0110 100S SSSR DDDD — C Z —
SETC Set Carry 1 1 0000 1101 1110 0000 — 1 — —
SETF FS,FE,F Set Field Parameters 1 1,2 0000 O1F1 O1FS SSS§ — - — —
SEXT Rd,F Sign Extend to Long 1 3 0000 O1F1 OOOR DDDD N — Z —
TNumber of cycles depends on number of registers in list and stack alignment. See TMS34010 User’s Guide (SPVUOO1A).
Texas WP
EXAS A-15
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS34010

GRAPHICS SYSTEM PROCESSOR

NO. MINIMUM STATUS
SYNTAX DESCRIPTION WORDS CYCLES 16-BIT OPCODE BITS
MSB LSB
SLA K,Rd Shift Left Arithmetic - Constant 1 3 0010 OOKK KKKR DDDD N C Z V
SLA Rs,Rd Shift Left Arithmetic - Register 1 3 0110 000S SSSR DDDD N C Z V
SLL K,Rd Shift Left Logical - Constant 1 1 0010 O1KK KKKR DDDD — C Z —
SLL Rs,Rd Shift Left Logical - Register 1 1 0110 001S SSSR DDDD — C Z —
SRA K,Rd Shift Right Arithmetic - Constant 1 1 0010 10KK KKKR DDDD N C Z —
SRA Rs,Rd Shift Right Arithmetic - Register 1 1 0110 010S SSSR DDDD N C Z —
SRL K,Rd Shift Right Logical - Constant 1 1 0010 11KK KKKR DDDD — C Z —
SRL Rs,Rd Shift Right Logical - Register 1 1 0110 011S SSSR DDDD — C Z -—
SUB Rs,Rd Subtract Registers 1 1 0100 010S SSSR DDDD N C Z V
SUBB Rs,Rd Subtract Registers with Borrow 1 1 0100 011S SSSR DDDD N C Z V
SUBI IW,Rd Subtract Immediate (16 Bits) 2 2 0000 1011 MMMR DODDD N C Z V
SuBl IL,Rd Subtract Immediate (32 Bits) 3 3 0000 1101 OOOR DDDD N C Z V
SUBK K,Rd Subtract Immediate (5 Bits) 1 1 0001 O1KK KKKR DDDD N C Z V
XOR Rs,Rd Exclusively OR Registers 1 1 0101 011S SSSR DDDD — — Z —
XORI IL,Rd Exclusively OR Immediate Value (32 Bits) 3 3 0000 1011 110D DDDD —- — Z -—
ZEXT Rd,F Zero Extend to Long 1 1 0000 O1F1 OO01R DDDD — — Z —
PROGRAM CONTROL AND CONTEXT SWITCHING
NO. MINIMUM STATUS
SYNTAX DESCRIPTION WORDS CYCLES' 16-BIT OPCODE BITS
mss LsSB

CALL Rs Call Subroutine Indirect 1 6 0000 1001 OO1R DDDD — — — —
CALLA Address Call Subroutine Absolute 3 6 0000 1101 0101 1111 — - — —
CALLR Address Call Subroutine Relative 2 5 0000 1101 0011 1111 — — — —
DSJ Rd,Address Decrement Register and Skip Jump 2 3,2 0000 1101 100R DDDD — — — —
DSJEQ Rd,Address Conditionally Decrement Register and Skip Jump 2 3,2 0000 1101 101R DDDD - — — —
DSJNE Rd,Address Conditionally Decrement Register and Skip Jump 2 3,2 0000 1101 110R DDDD — — — —
DSJS Rd,Address Decrement Register and Skip Jump - Short 1 2,3 0011 1Dxx xxxR DDDD — — — —
EMU Initiate Emulation 1 6 0000 0001 0000 0000 — — — —
EXGPC Rd Exchange Program Counter with Register 1 2 0000 0001 001R DDDD — — — —
GETPC Rd Get Program Counter into Register 1 1 0000 0001 O10R DDDD — — — —
GETST Rd Get Status Register into Register 1 1 0000 0001 100R DDDD — — — —
JAcc Address Jump Absolute Conditional 3 3,4 1100 code 1000 0000 — — — —
JRcc Address Jump Relative Conditional 2 3,2 1100 code 0000 0000 — — — —
JRcc Address Jump Relative Conditional - Short 1 2.1 1100 code xXXX XXXX — — — —
JUMP Rs Jump Indirect 1 2 0000 0001 O11R DDDD — — —
POPST Pop Status Register from Stack 1 8 0000 0001 1100 0000 — — — —
PUSHST Push Status Register onto Stack 1 2 0000 0001 1110 0000 ~ — — —
PUTST Rs Copy Register into Status 1 3 0000 0001 101IR DDDD N C Z V
RETI Return from Interrupt 1 11 0000 1001 0100 0000 N C Z V
RETS (N) Return from Subroutine 1 7 0000 1001 O11N NNNN — — — —
REV Rd Get Revision Number 1 1 0000 0000 001R DDDD — - — —
TRAP N Software Interrupt 1 16 0000 1001 OOON NNNN O O O O

tWhere two numbers appear, the first number assumes that the jump is taken, and the second assumes that the jump is not taken.

TeExas ‘9
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

A-16

TMS34010
GRAPHICS SYSTEM PROCESSOR

development systems and software support

Texas Instruments, together with third party suppliers, offers a full range of hardware and software
development tools for the TMS34010. The support environment is aimed at four areas of support with
the key tools based on the IBM PC, DEC VAX, SUN, MAC II, APOLLO and TI Professional computers:

DESIGNER

Hardware

Software

Languages

Systems

TOOLS
XDS-22 Real Time Emulator (with PC-based Debugger Interface)
PC Software Development Board (with Debugger Interface)
Assembly Language Package, including:
Assembler, Linker, Archiver, ROM Object Format Converter , Software Simulator (PC only)
Graphics/Math Function Library
Bit-Mapped Font Library
CCITT Data Compression/Decompression Function Library
8514A Emulation Function Library
C Compiler Package including:
TMS34010 C Compiler
Runtime Support
Window Management Support
Image Processing Support
Graphics Interfaces and Standards
Debugger Adaptation Software

Further support is provided through a network of Regional Technology Centers (RTCs).

{i,
TeExAs
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

A-17

TMS34010
GRAPHICS SYSTEM PROCESSOR

TMS340 FAMILY HARDWARE AND SOFTWARE SUPPORT

SILICON PART NUMBER
Graphics System Processor 68-Pin PLCC TMS34010FNL
Video System Controiler 68-Pin PLCC TMS34061FNL
Color Palette 22-Pin DIP TMS34070NL
64Kx1 Multiport Memory 22-Lead PLCC (120 and 150 ns) TMS4161FML
64Kx1 Muitiport Memory 22-Pin DIP (120 and 150 ns) TMS4161NL
64Kx4 Multiport Memory 24-Pin DIP (120 and 150 ns) TMS4461NL

OPERATING

SOFTWARE TOOLS COMPUTER SYSTEM PART NUMBER

TMS34010 Assembler Package:
Assembler, Linker, Archiver, IBM/TI PC MS-DOS 2.11+ TMDS3440808002

Object Format Converter, Simulator
TMS34010 Assembler Package:

Assembler, Linker, Archiver, VAX VMS TMDS3440200059
Object Format Converter VAX ULTRIX TMDS3440200069
VAX System V TMDS3440200089

HP System V TMDS3440500089

Sun System V TMDS3440550086

Mac 11 MPW TMDS3440560021

Apollo System V TMDS$3440570088

TMS34010 C Compiler Package IBM/TI PC MS-DOS 2.11+ TMDS3440805002
VAX VMS TMDS3440205059

VAX ULTRIX TMDS3440205069

VAX System V TMDS3440205089

HP System V TMDS3440505089

Sun System V TMDS3440555086

Mac Il MPW TMDS3440565021

Apollo System V TMDS3440575088

Combination packages:
Assembler, Linker, Archiver, IBM/TI PC MS-DOS 2.11+ TMDS3440804003
Object Format Converter, Simulator,
C Compiler with runtime support

TMS34010 Graphics/Math

Function Library 1BM/T1 PC - Source TMDS3440802202
VAX - Source TMDS3440802208
TMS34010 Bit-Mapped Font Library {BM/TI PC MS-DOS 2.11+ TMDS3440802302
VAX ALL TMDS3440202308
TMS34010 CCITT Function Library IBM/TI PC MS-DOS 2.11+ TMDS3440802102
VAX All TMDS3440202108
TMS34010 8514/A Emulation LibrafMDS- IBM/TIPC, MS-DOS 2.11 +
3440
8020
02
TMS34010 PC Debugger Development Package 1BM/T! PC MS-DOS 2.11+ TMDS3440806002
(For Internal Use)
TMS34010 PC Debuffer Development Package IBM/TI PC MS-DOS 2.11+ TMDS3440806003
(For Resale)
HARDWARE TOOLS COMPUTER VERSION PART NUMBER
TMS34010 XDS-22 Real-Time Emulator with BT&T u.s. TMDS3469910000
Europe TMDS3469981000
Color Graphics Controller Board (TMS34061, TMS34070} IBM/TI PC TMDS3471804000
TMS34010 Software Development Board IBM/TI PC TMDS3411804420
DESIGN KITS PART NUMBER
TMS340 Graphics Design Kit, including TMS34061, TMS34070, TMS4161s TMS340GDK
TMS34010 Graphics Design Kit, including TMS34010, TMS34070, TMS4461s, PC Assembler TMS34010GDK
\'g
TExas
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

reset

Reset puts the TMS34010 into a known initial state. It is entered when the input signal at the RESET
pin is asserted low. RESET must remain active low for a minimum of 40 local clock (LCLK1 and LCLK2)
periods to ensure that the TMS34010 has sufficient time to establish its initial internal state.

While RESET remains asserted, all outputs are in a known state, no DRAM-refresh cycles take place, and
no screen-refresh cycles are performed.

At the low-to-high transition of the RESET signal, the state of the HCS input determines whether the
TMS34010 will be haited or begin executing instructions. The TMS34010 may be in one of two modes,
host-present or self-bootstrap mode.

1. Host-Present Mode

If HCS is high at the end of reset, TMS34010 instruction execution is halted and remains haited
until the host clears the HLT (halt) bit in HSTCTL (host control register). Following reset, the eight
RAS-only refresh cycles required to initialize the dynamic RAMSs are performed automatically by the
TMS34010 memory control logic. As soon as the eight RAS-only cycles are completed, the host is
allowed access to TMS34010 memory. At this time, the TMS34010 begins to automatically perform
DRAM refresh cycles at regular intervals. The TMS34010 remains halted until the host clears the
HLT bit. Only then does the GSP fetch the level-O vector address from location OFFFFFFEOh and begin
executing its reset service routine.

2. Self-Bootstrap Mode

If HCS is low at the end of reset, the TMS34010 first performs the eight RAS-only refresh cycles
required to initialize the DRAMs. Immediately following the eight RAS-only cycles, the TMS34010
fetches the level-O vector address from location OFFFFFFEOh, and begins executing its reset service
routine.

Unlike other interrupts and software traps, reset does not save previous ST or PC values. This is because
the value of the stack pointer just before a reset is generally not valid, and saving its value on the stack
is unnecessary. A TRAP O instruction, which uses the same vector address as reset, similarly does not
save the ST or PC values.

asserting reset

A reset is initiated by asserting the RESET input pin at its active-tow level. To reset the TMS34010 at power
up, RESET must remain active low for a minimum of 40 local clock periods after power levels have become
stable. At times other than power up, the TMS34010 is also reset by holding RESET low for a minimum
of 40 clock periods. The 40-clock interval is required to bring TMS34010 internal circuitry to a known
initial state. While RESET remains asserted, the output and bidirectional signals are driven to a known state.

The TMS34010 drives its RAS signal inactive high as long as RESET remains low. The specifications for
certain DRAM and VRAM devices, including the TMS4161, TMS4164 and TMS4464 devices, require that
the RAS signal be driven inactive-high for 100 microseconds during system reset. Holding RESET low for 150
microseconds will cause the RAS signal to remain high for the 100 microseconds required to bring the
memory devices to their initial states. DRAMs such as the TMS4256 specify an initial RAS high time of
200 microseconds, requiring that RESET be held low for 250 microseconds. In general, holding RESET
low for ¢ microseconds ensures that RAS remains high initially for £ —50 microseconds.

Texas % A-19

INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

suspension of DRAM-refresh cycles during reset

An active-low level at the RESET pin is considered to be a power-up condition, and DRAM refresh is not
performed until RESET goes inactive high. Consequently, the previous contents of the local memory may
not be valid after a reset.

initial state following reset

While the RESET pin is asserted low, the TMS34010’s output and bidirectional pins are forced to the states
listed below.

INITIAL STATE OF PINS FOLLOWING A RESET

OUTPUTS DRIVEN OUTPUTS DRIVEN BIDIRECTIONAL
TO HIGH LEVEL TO LOW LEVEL PINS DRIVEN TO
HIGH IMPEDANCE
DDOUT BLANK HSYNC
HRDY VSYNC
DEN HDO-HD15
AL LADO-LAD15
TR/QE
RAS
CTAS
w
HINT
HLDA/EMUA

Immediately following reset, all I/O registers are cleared (set to Oh), with the possible exception of the
HLT bit in the HSTCTL register. The HLT bit is set to 1 if HCS is high just prior to the low-to-high
transition of RESET.

Just prior to execution of the first instruction in the reset routine, the TMS34010’s internal registers are
in the following state:

* General-purpose register files A and B are uninitialized.
¢ The ST is set to 00000010h.
* The PC contains the 32-bit vector fetched from memory address OFFFFFFEOh.

TMS34010 local memory interface

The TMS34010 local memory interface consists of a triple-multiplexed address/data bus on which row
addresses, column addresses, and data are transmitted. The associated memory control signals support
direct interfacing to both DRAMs and VRAMs. At the beginning of a typical memory cycle, the address
is output in multiplexed fashion as a row address followed by a column address. The remainder of the
cycle is used to transfer data between the TMS34010 and memory.

{i’
TeExas
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

TMS34010 local memory interface

The TMS34010 local memory interface consists of a triple-multiplexed address/data bus on which row
addresses, column addresses, and data are transmitted. The associated memory control signals support
direct interfacing to both DRAMs and VRAMs. At the beginning of a typical memory cycle, the address
is output in multiplexed fashion as a row address followed by a column address. The remainder of the
cycle is used to transfer data between the TMS34010 and memory.

ROW COoLUMN

TMS34010 AppRess | abpress | PATA
RE IAQ 15
26 TR 14
25 29 13
24 28 12
23 27 11
22 14 10
21 13 9
20 12 8
19 11 7
18 10 3
17 9 5
16 8 4
15 7 3
14 6 2
13 5 1
12 4 0

r 32-BIT MEMORY ADDRESS |

l‘IB-BIT DATA WORD]

Pt 1

BIT 31 BIT 0 BIT 15 BIT O
(MSB) (LSB) (MSB) (LSB)
RF = DRAM-REFRESH BUS STATUS BIT

IAQ = INSTRUCTION ACQUISITION BUS STATUS BIT

TR = VRAM SHIFT-REGISTER-TRANSFER BUS STATUS BIT

FIGURE 7. TRIPLE MULTIPLEXING OF ADDRESSES AND DATA

The following types of memory cycles are supported: read, write, VRAM memory-to-shift-register, VRAM
shift-register-to-memory, RAS-only DRAM refresh and CAS-before-RAS DRAM refresh. The functional
timing for these cycles is shown in the next six figures. Each memory cycle is a minimum of two machine
states (a state is one local clock period) in duration. The seventh figure indicates the timing signals output
during an internal cycle, i.e., a cycle during which no memory access takes place. An internal cycle is
one state in duration.

During a memory cycle, the row address, column address, and data are transmitted over the same physical
bus lines. The manner in which logical addresses are output at the memory interface makes external
multiplexing hardware unnecessary, while supporting a wide variety of memory configurations. For example,
in Figure 7, 16 consecutive address bits (5 through 20) are output on LAD1-LADS8 during the row and
column address times. Output along with the address are bus status signals that indicate when DRAM
refresh cycles, screen refresh (VRAM memory-to-shift-register) cycles, and instruction fetch cycles are
occurring.

*i’
TeExas A-21
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

The following remarks apply to memory timing in general. A row address is output on LADO-LAD15 at
the start of the cycle, and is valid before and after the fall of RAS. Next a column address is output on
LADO-LAD15. The column address is valid briefly before and after the falling edge of LAL, but is not valid
at the falling edge of CAS. The column address is clocked into an external transparent latch
(e.g., a 74AS373 octal latch) on the falling edge of LAL to provide the hold time on the column
address required for dynamic RAMs and video RAMs. A transparent latch is required in order that the row
address be available at the outputs of the latch during the start of the cycle.

Very large memory configurations may require external buffering of data lines. The DEN signal serves as
the drive-enable signal to external bidirectional buffers, e.g., 74AS245 octal buffers. The DDOUT signal
serves as the direction control for the buffers.

When an I/0O register is addressed by the TMS34010, a special memory read or write cycle is performed.
During this cycle, the external RAS signal falls, but the external CAS remains inactive- high for the duration
of the cycle.

The timing shown in the first six functional timing diagrams assumes that the LRDY input remains high
during the cycle. The LRDY pin is pulled low by slower memories requiring a longer cycle time. The
TMS34010 samples the LRDY input at the end of Q1, as indicated in the figures. If LRDY is low, the
TMS34010 inserts an additional state, called a ‘wait’’ state, into the cycle. Wait states continue to be
inserted until LRDY is sampled at a high level. The cycle then completes in the manner indicated in the
functional timing diagrams. A wait state is one local clock period in duration. Three additional timing diagrams
provide examples of cycles extended by wait states.

The LRDY input is ignored by the TMS34010 during internal cycles.

A hold/hold acknowledge capability is also built into the local memory interface to allow external devices
to request control of the bus. After acknowledging a hold request, the TMS34010 releases the bus by
driving its address/data bus and control outputs into high impedance.

A-22

{i’
Texas
INSTRUMENTS

POST OFFICE BOX 1443 ® ROUSTON. TEXAS 77001

TMS34010

GRAPHICS SYSTEM PROCESSOR

write cycle timing

A-23

S

Q
Q

’V
XK

X
.

A

&

Q
Q2

\/
a

5
XK

XXX
XXX

TXRX
RIXXR

Q

9.

7
A

-
[}
——— —_— ——— N —_ — ———e
< //
S - 4 bt S N
<
© -
=} <
o
N
[}
S S Y B I A de 1 B W B
-
[}
||||||||||||||| J.I\IIII I S NIII!IIIII
3
M —_— —— ol K“H IIIIIIIIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIII j IS SIS I I S,
3
2 2
o T
—_——— e [S SR < ————— e e e nlu lllllllllllllll
kS
N
[+]
-
g
- ~ 0) = 7 = m 2 =
X x = < < T =] i 3
8 a e 4 3] = fa) g
a pu] 3 Ll a
o
0
E4
-

2

)
Q

’V
X

%

X

’v
&KX

"'
00

XX

X7

()

00
XX

TR
o

“
o

v
)

v
9.

&
A

Q
Q

v

9

0
‘0

X
&

"‘V"
0&’

Q

A‘

Q)

{ip
Texas
STRUMENTS

s
A

)
Y,

Q

)
XXX

X
X

’v
X
POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

‘V
Q &

A

’V
Q

()

Q
9,

\/
A

35
XX

.v
“

A

v‘v

Q

v
9,

¢

0
XX

IR
XK

X

X

‘v
.A

'V
X

v,
Al

Q)
K

’v
X2

v

9
a

v
2

X

&

7
A

LRDY

read cycle timing

GRAPHICS SYSTEM PROCESSOR

TMS34010

® HOUSTON. TEXAS 77001

Texas *@

STRUMENTS

IN

Qa3 : Q4
|
|
|
I
|
|
1\
|
|
|

\
ROW
X°°L /
1
|
|
|
|
|
I
|
|
|
|
|
T
|
|
|
(HIGH) —
|
|
|
|
T
|
|
|
|
1
|
|
|

—
/

[}
lllVlllll |||v|lll:l.rl.||l.V llllllllllllllllllll —_— —
~N 0D 2] =] izl Ll -
X X = << < < = =} 2 2
3 a) I3 - (3] < [a) Q
a = < - W
o
a
<
-

POST OFFICE BOX 1443

LRDY

A-24

TMS34010

GRAPHICS SYSTEM PROCESSOR

memory-to-register cycle timing

Q1

<
o 2
£ N
——— . ——— H lllllllllllllllllll] e e e e S By e et S e S ol S . S ey
a
o 5
g
—)] [N de L
N
o
-
° > pd
J
< 3
3
b &
\ 3 B
2
@ el
N
j >
-
° /
N |t -
T e E g = B E 5
a} o = 3 I3 a a
= = = B

LADO-LAD15

LRDY

A-25

TeExas ‘9

STRUMENTS

IN

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS34010

GRAPHICS SYSTEM PROCESSOR

register-to-memory cycle timing

LCLK1

LCLK2

LADO-LAD15

0Ol
by
l

g

3
Ed
Rl

o)
m
2|

DDOUT

LRDY

Q1

Q2

Q3

/

Q4

a1

Q2

Q3 Q4

Q1

)

ROW

coL.

UNDEFINED

NG

e

A-26

EXAS
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010

GRAPHICS SYSTEM PROCESSOR

]
< -
o
2 J
o 2
c fre
w
\ o
2y ~——g—— e —— e — — — — — — ———
oo }
~N
[=]
P S ——— VRpupuny [S —— [U K — - —— s e e e e o e e e e]
-
o
- - —_—f
[iy — - —_—) -} —_ —_
(=}
2 o
.m [e] 1
= M \ T I z
| I T ety [[—— 1] I B - ——
2 ES z I
o C
> N
2}]
£ I//l
] —_ —_) S]
@
ol
-
L 3
2 /l /
M ———— —_———— 1 —_ —_———— —_—
= o v)
a | P: = _A < 2 B 5 i 5
3 [=] o = 3] "3 o o
> 9 g q = 2
= - (]
5)
¥ a
_S g
<<
oc

LRDY

A-27

TeExas {i’

STRUMENTS

IN

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010

GRAPHICS SYSTEM PROCESSOR

CAS-before-RAS refresh cycle timing

LCLK1

LCLK2

LADO-LAD15

|
7

r
b
=<

O
7

gl

3
R

l=]
m)
2

DDOUT

LRDY

Q1

Q2

/

Q3

Q4

[o}}

Q2

Q3

Q4

a1

ROW

UNDEFINED

_7__.____.___

A

—————e e e

A-28

xas P

INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010

GRAPHICS SYSTEM PROCESSOR

internal cycles back to back

l —— .ll
-
o
_— _—) b I I B
M.u ||||||||| SO N S S —— ﬁ llllllllll - — -
[}
g
~N
o a
w
2
clb-—4—— .} [EES S———
w
o
- 2
o 2
e e s e e, —— —— — T Iuﬁ ———— —— b e et
<
g ——f—————T— b — — —— e . . e e G e e e i Sl e e et e s s e]
It SR, EIIPR S —————————
2]
o
T 3 T T
\ — - DN Bemmme [CJ— [P N R
< I S H
N
[=]
R A DG VN A N .
-
(=]
— _ | I —_— DN R S RN B A N S
- N 0 7]
g 3 2 2 R e BB E 5
3]) < < - o < o =3
-] 4 = [a]
Y a
a
<
-t

LRDY

A-29

TEXAS ¢

STRUMENTS

IN

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010

GRAPHICS SYSTEM PROCESSOR

write cycle with one wait state

LCLK1

LCLK2

LADO-LAD15

|

DDOUT

LRDY

|-—WAIT

STATE —.‘

Imlozloa’mlm|oz|03|04|o1|uz|03|o4|m|02

TN T
TN TN TN
T CE——
TN
BERESE LT
| AT
HEIg I g N f

A-30

TeExas

*p

INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

read cycle with one wait state

r—WAIT STATE ——DI
Q2

Q1 Q2 Q3 Q4 Q1 Q3 Q4 (e}] Q2

Qa3 | Q4
1
LCLK1 / |
|
|
|

LCLK2 1\

|
\ 1 I |

LADO-LAD7 ROW coL DON'T CARE DATA

Q1 02

1 T
| { |
| | |
1 |
RAS i\
|
|
T | ———
AL / | \ |
u—
— |
CAS |
|
|
| |
w (HIGH)
—— |
TR/QE }
}
1
| |
N |
DEN |
|
|
|
|
DDOUT ;
+
N
I]]
LRDY DON'T CARE DON'T CARE
T {IP
EXAS A-31

INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

I—— WAIT smre——l

IQ1IQZ,QSIQ4IQ1I02|03IQ4|Q1IQZIQ3|04|Q1I02

register-to-memory cycle with one wait state

GRAPHICS SYSTEM PROCESSOR

TMS34010

)

.A

)
KLY

00
XXX

XK DON'T CARE
A’A AVAVAVAVAVAVA

Q

9

RO
KK

TeExas J&’

STRUMENTS

IN

| [[[
i ! I | I
i
I | [
I | I
I I
I {
I I I [
I I
I I i I i
I I I i I
1 A 1 L 1
UNDEFINED
i [T
I I !
I | !
! l
L I
i
i
I
I
I
!
i
i
I
I
I
I
i
|
|
i
I
I
i
—
I
!
L
I
I
I
I
I
]‘,
I
I
I
]
i

||||||| - b B s R e ———
EDZIC N B A NG I

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

DON'T CARE

2
]
o«
lllllll - L I I
~ 1)
< g a 2 & < = I Z 5
a = < o - () = a =}
] S 7 [2
a o =]
=1
<
-

LRDY

A-32

TMS34010
GRAPHICS SYSTEM PROCESSOR

absolute maximum ratings over operating free-air temperature range

Supply voltage, VCOC - - - - oo 7V
INPUL VOItAGE TANGE . . . o o ot et e et e -0.3Vt 20V
Off-state output voltage rangettt -2Vto7V
Operating free-air temperature ranget 0°C to 70°C
Storage temperature FaNGE« v vt e —-10°C to 150°C

TStresses beyond those listed under ‘Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating
only. Functional operation of the device at these or any other conditions beyond those indicated in the '’‘Recommended Operating Cenditions’’
section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Voltage values are with respect to the Vgg pins of the chip.

recommended operating conditions

MIN NOM MAX UNIT
Vee Supply voltage 4.75 50 5.25 \
Vss Supply voltaget (o] o] 4] v
IoH High-level output current -400 wA
loL Low-level output current 2.0% mA
TA Operating free-air temperature o] 70 °C

tCare should be taken by card designers to provide a minimum inductance path between the Vgg pins and system ground in order to
minimize Vgg noise.
$Output current of 2.0 mA is sufficient to drive five low-power Schottky TTL loads or 10 advanced low-power Schottky TTL loads (worst case).

DC electrical characteristics

ADVANCE INFORMATION

PARAMETER TEST CONDITIONS Mint TYP¥ maxt UNIT
High-level input All input
VIHS |?na eveT1l'an|l; el mptult\leLK 22 Vee+0-3
voltage, -lev exce
IH3 Vvottag id Vee = 5.0V v
signal
INCLK 3.0 Vee+0.3
Low-level input All input
ow-level inpu inputs _0.3 0.8
V|L voltage, TTL-level except INCLK v
signal
INCLK -0.3 0.8
VoH High-levet ?utput voltage, Vee = min, 26 v
TTL-level signal loH = max,
VoL Low-level o‘utput voltage, Ve = max, 0.6 v
TTL-level signal loL = max,
| High-impedance leakage current, Ve =max Vp=2.8V 20 A
O pidirectional pins cc= Vp=0.6V -20 #
All i t: t
] Input current RU’:}%;XCSD V|=Vgg to Vec +20 A
Vce = max, 40 MHz 125
Icc Supply current Ve = max, 50 MHz 150 mA
Ve = max, 60 MHz 175
C Input capacitance 10 pF
Output it; t
o utpus capacn. ance {excep 10 pF
address/data lines)

tFor conditions shown as *‘min’* or “‘max,’’ use the appropriate value specified under “Recommended Operating Conditions."
*All typical values are at V=5V, Tp=25°C.
SRUN/EMU will be no-connected in a typical configuration. The nominal pull-up current will be 250 pA.

ADVANCE INFORMATION concerns new products in

glhonnm.risii:r data and .u-::' a::o?ifieatim:s are TEXAS % A-33
subject to change without notice. INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS34010 ADVANCE
GRAPHICS SYSTEM PROCESSOR INFORMATION

NOTE
Advance information notices apply only to the TMS34010-60.

signal transition levels

FIGURE 8. TTL-LEVEL OUTPUTS

TTL-level outputs are driven to a minimum logic-high level of 2.6 volts and to a maximum logic-low level
of 0.6 volts. Output transition times are specified as follows.

For a high-to-low transition on a TTL-compatible output signal, the level at which the output is said to
be ““no longer high’’ is 2.0 volts, and the level at which the output is said to be ‘‘low’’ is 0.8 volts. For
a low-to-high transition, the level at which the output is said to be ‘'no longer low’’ is 0.8 volts, and the
level at which the output is said to be ‘‘high’’ is 2.0 volts.

2
2
(@) FIGURE 9. TTL-LEVEL INPUTS
m
E Transition times for TTL-compatible inputs are specified as follows. For a high-to-low transition on an input
- signal, the level at which the input is said to be ‘’no longer high’* is 2.2 volts, and the level at which the
o input is said to be ““low’’ is 0.8 volts. For a low-to-high transition on an input signal, the level at which
o the input is said to be “'no longer low’’ is 0.8 volts, and the level at which the input is said to be ‘‘high”’
g is 2.2 volts.
?' test measurement
P The test load circuit shown in Figure 10 represents the programmable load of the tester pin electronics,
g which are used to verify timing parameters of TMS34010 output signals.
. ——
TESTER PIN .
ELECTRONICS oL

VLoAD

Where: gL = 2.0 mA DC level verification (all outputs)
IoH = 400 gA (all outputs)
VLOAD = 1.5 V DC level verification
0.7 V Timing verification
CT = 65 pF typical load circuit capacitance

FIGURE 10. TEST LOAD CIRCUIT

{ip
Texas
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

A-34

TMS34010
GRAPHICS SYSTEM PROCESSOR

timing parameter symbology

Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten
the symbols, some of the pin names and other related terminology have been abbreviated as follows:

AL TAL HS HSYNC or VSYNC

C CAS ICK INCLK

CA Column address LR LRDY

CK LCLK1 and LCLK2 QE TR/QE, when used as output enable
CK1 LCLK1 R RAS

CK2 LCLK2 RA Row address

CS HCS RS HREAD

D Data RY HRDY

DD DDOUT S HREAD or HWRITE

EN DEN TR TR/QE, when used as shift register enable
F HFSO, HFS1 VCK VCLK

HK HLDA/EMUA w W

HR HOLD WS HWRITE

Lowercase subscripts and their meaning are:

a access time
c cycle time (period)
d delay time
h hold time
su setup time
t transition time
w pulse duration (width)
The following additional letters and symbols and their meaning are:
High
Low
Valid
High impedance
No longer low
No longer high

“-oN<rET

{i,
TEXAS A-35
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

TMS34010 ADVANCE
GRAPHICS SYSTEM PROCESSOR INFORMATION

host interface timing parameters

The timing parameters for host interface signals are shown in the next four figures. The purpose of these
figures and the accompanying table is to quantify the timing relationships among the various signals. The
explanation of the logical relationships among signals will be found in the TMS34070 User’s Guide {(number
SPVUOO1A).

The write stobe referred to in the following table is the enabling signal during a write to one of the host
interface registers (see comment 2 on the next page). Similarly, the read strobe is the enabling signal during
a read.

Quarter clock time tQ, which appears in the following table, is one quarter of a local output clock period,
or twice the input clock period, tc(jCK)-

TMS34010-50
NO. PARAMETER TMS3401040 | rms3a010-60 | unIT
MIN MAX MIN MAX
Setup time of HWRITE/HREAD high or HFSO,
1 | tsu(Fv-sL) -) 10 10 ns
HFS1 valid to read or write strobel
> 2 td(wsL-Dv) Delay from write strobe | to data in valid, write cycle 2tq 2tq ns
U Delay from read or write strobe low to next
t - +1 7tq+10 s
< 3 d(SL-SL) read or write strobel 7ta+10 a n
> } 4 tw(SL) Duration of read or write strobe low 80 80 ns
2 Delay from read or write strobe high to next
5 t, - 60 60
(@) diSH-SL) 044 or write strobed ns
m 6 | th(wsH-Dv) Hold time of data in valid after write strobe high, write cycle 10 10 ns
— Hold time of HWRITE/HREAD high or HFSO,
2 7 th(SH-FV) .)) 10 10 ns
HFS1 valid after read or write strobe high
m Hold time of data high impedance after read strobel, 5 5
O 8 th(RSL-DZ) read cycle 0 0 ns
w Delay from read strobe low to data out valid,
9 1, - 90 90
g d(RSL-DV) read cycle with no wait ns
E' 10 | th(RSH-DV) Hold time of data out valid after read strobef, read cycle 0 0o ns
Delay from read strobe high to data out high impedance,
- 11]t X 308 308
o d(RSH-DZ) read cycle ns
Z 12 th(CSL-RYH) Hold time of HRDY high after HCS|, cycle with wait 0 0 ns
13 | t4(cst-RyL) Delay from HCS low to HRDY low, cycle with wait 40 40 ns
14 | tw(RYL) Pulse duration of HRDY low, cycle with wait t t ns
15 | t4(RYL-RYH) Delay from HRDY! to HRDY high, cycle with wait o+ o* ns
Hold time of write strobe low after HRDYT,
16 1 A 40 40
h{RYH-WSL) write cycle with wait ns
17 td(RYH-Dv) Delay from HRDY1 to data out valid, read cycle with wait 40 40 ns
Hold time of read strobe low after HRDY?,
18 t - 40 40 ns
h{RYH-RSL) read cycle with wait

NOTE: Advance information notices apply only to the TMS34010-60.

tParameter 14 is a function of local bus memory contention. This parameter is not tested. Refer to the TMS34010 User’s Guide for details.
tpParameter 15 is specified as minimum O ns to indicate that a low-going pulse on HRDY can be arbitrarily narrow.

8These values are derived from characterization and are not tested.

i
A36 TeEXxAs {’
i INSTRUMENTS

POST OFFICE 80X 1443 @ HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

general comments on host interface timing
The following general comments apply to host interface timing:

1. The HRDY signal is enabled by an active-low level on the HCS input. When HCS is inactive-high,
HRDY is forced high regardless of the internal state of the device. Low-going transient pulses on
HCS may result in low-going transient pulses on HRDY, but otherwise have no effect unless
accompanied by active levels on other control signals.

2. A host interface write cycle occurs when HCS, HWRITE, and HLDS are low, or when HCS,
HWRITE, and HUDS are low. The combination of these signals defines a write strobe. In either case,
the last of the three signals to make the high-to-low transition is the strobe (write strobe) that begins
the cycle. The first of the three signals to make the low-to-high transition ends the cycle. Similarly,
a host interface read cycle occurs when H_CS-, HREAD, and HLDS are low, or when HCS, HREAD,
and HUDS are low. The combination at these signals define a read strobe. In either case, the last
of the three signals to make the high-to-low transition is the strobe (read strobe) that begins the
cycle. The first of the three signals to make the low-to-high transition ends the cycle. All access
times are specified with respect to the strobing edges that begin and end the cycle.

3. During a host interface read or write, HWRITE and HREAD must not be active-low simultaneously.

4. Host interface input signals HCS, HUDS, HLDS, HFSO, HFS1, HREAD, and HWRITE are assumed
to be asynchronous with respect to the output clocks LCLK1 and LCLK2.

host interface timing: write cycle with no wait

HFSO, HFS1 m VALID FUNCTION SELECT M

i 1
1 - —— 7 ——]

HREAD
_/L__ 7
[3 -
] !
o i
HCS, HWRITE, T
ALDS, AUDS = . r—"-" —l \
le—— 4 —
f—2 —i le—s —
DT KK
HDO-HD15 XXXOXKERXXRUKAY, VALD PATAIN - XXX
HRDY

‘Q’?
Texas
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

A-37

TMS34010
GRAPHICS SYSTEM PROCESSOR

host interface timing: read cycle with no wait

VALID FUNCTION SELECT

HFSO0, HFS1 W

1-nd
- — 71—l
HAWRITE /, f\
] l— 7 —
1 -
3
o ——
ACS, AREAD b\
RLDS. AUDS \ }-——— 5——n
le——a— i 1 1
re—s-9 ja— 10—
8
HDO-HD15 HI-Z = {, vauooataour X
HRDY

host interface timing: write cycle with wait

VALID FUNCTION SELECT

HFSO0, HFS1 m
|
]

-1 - 7
HREAD ;I .'\

P—t— 1 j— 7 —
3 L]
|
a :

HWRITE,
ALDS, HUDS f: 5 1_|
3 -
S : -
HCS
N / |
j—-13 16 | j— 5 —f
12] o
| l——14—
HRDY |
15— 6
2 —t
\/ V‘V".V.V.V"‘V’V"’V’
HDO-HD15 (X BNXRY VALID DATA IN
T {l’
A-38 EXAS

INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

host interface timing: read cycle with wait

VALID FUNCTION SELECT m

HFS0, HFS1

"
)

i
HWRITE i
_./;;_1_.: ’ b—7—ﬂR—-—
J— 3 -
I — |
FILDS, HUDS i h—sl
| p—
7ics '_I j . N
1 -
ra—-13 |.—18——-{
12 —ja—ul :_ 14
HRDY |
| A
re——15 i 1
eV kg Mt
SXSEKKKKERKSEN. onta ot

{iP
Texas
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

A-39

TMS34010 ADVANCE
GRAPHICS SYSTEM PROCESSOR INFORMATION

reset timing

The timing parameters for device reset are shown in the next two figures. The purpose of these figures
is to quantify the timing relationships among the RESET, HCS, and LCLK1 signals. RESET and HCS are
asynchronous inputs that are internally synchronized by latches internal to the TMS34010. The timing
relationships specified for these signals relative to LCLK1 need be met only to guarantee recognition of
a transition of one of these signals at a particular clock edge. The explanation of the logical relationships
among signals will be found in the TMS340170 User’s Guide.

Quarter clock time tQ which appears in the following table, is one quarter of a local output clock period,
or twice the input clock period, tc(ICK)-

TMS34010-50
TMS34010-40
NO. PARAMETER TMS34010-60 UNIT
MIN MAX MIN MAX
Duration of HCS low to configure GSP to run
19 t, 4tq +55 4tq +55
w(CSL) in self-bootstrap mode Q 0 ns
Setup time of HCS low to RESET? to configure
20 |t N 8tq +55 8tq+55
> sulCSL-REH) the GSP to run in self-bootstrap mode Q Q ns
Duration of RESET low to ensure that GSP
21 t, 160t —40 160tq—-40
2 wi(REL) is properly reset a Q ns
Delay from HCSt to RESET high, end of reset,
22 |t X atg-s0t 4tg-50T| ns
; d(CSH-REH) to configure GSP to run in self-bootstrap mode Q Q
Setup time of RESET valid to LCLK1{ to
O | 2 | tsurevckin or oC T vale e a0t Pr ns
m guarantee recognition at a particular clock edge
- 24 " Hold time of RESET valid after LCLK1 low to 10 10t ns
Z h(CK1L-REV) guarantee recognition at a particular clock edge
g | Setup time of ACS valid to LCLK1! to
25 |t . 40% a0% ns
o su(CSV-CK1L) guarantee recognition at a particular clock edge
26 thiCK1L-CSV) Hold time of HCSV Yalid after L(?LK1 low to 10t 10t ns
guarantee recognition at a particular clock edge
E' NOTE: Advance information notices apply only to the TMS34010-60.
w TParameter 22 is the maximum amount by which the RESET low-to-high transition can be delayed after the HCS low-to-high transition
o and still guarantee that the GSP is configured to run in self-bootstrap mode (HLT bit=0) following the end of reset. HCS may be heid
2 low for some time past the low-to-high RESET transition, and will be ignored by the GSP for 17 local clock periods following the clock

edge at which the low-to-high RESET transition is detected. Following completion of the eight RAS-only cycles that automatically follow

reset, however, a low HCS level will be interpreted as a chip select.
+RESET and HCS are asynchronous inputs. The specified setup and hold times of these signals with respect to the high-to-low transition
of LCLK1 need be met only to guarantee that a transition of RESET or HCS is detected by the device at a particular clock edge.

reset: asynchronous timing relationships

A-40

{i’
Texas
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

ADVANCE TMS34010
INFORMATION GRAPHICS SYSTEM PROCESSOR

reset: synchronous timing relationships

Lok m
|

23 m—ef |
| : be—t-24

RESET' >< VALID ><
|

25—t |
| el 26

HCS X: VALID X

tRESET and ACS are asynchronous inputs. The specified setup and hold times of RESET or HCS with respect to the high-to-low LCLK1
transition must be met only to guarantee that a RESET or HCS transition is detected by the device at a particular clock edge.

I
[
s

local bus timing parameters

The following six figures show the timing parameters for the signals of the local memory interface bus,
often simply referred to as the local bus. The purpose of these figures and the accompanying tables is
to quantify the timing relationships among the various signals. The explanation of the logical relationships
among signals will be found in the TMS340710 User’s Guide (number SPVUO0O1).

A number of parameter values are expressed in terms of quarter clock time tq, which is one quarter of
a local clock period, or twice the input clock period, t¢(ICK)-

Input clock INCLK is divided internally by 8 to produce output clocks LCLK1 and LCLK2. Transitions of
the other local interface output signals are also generated as delays from INCLK transitions. The divide-
down logic that converts INCLK to the internal clocks used to generate LCLK1 and LCLK2 introduces
significant propagation delays from the transitions of INCLK to the corresponding transitions of LCLK1
and LCLK2. While the frequency of INCLK is precisely eight times the frequency of LCLK1 or LCLK2, no
timing relationship other than the frequency is specified between transitions of input clock INCLK and
transitions of the output clocks LCLK? and LCLK2.

ADVANCE INFORMATION

No. PARAMETER TMS34010-40 | TMS34010-50 | TMS34010-60 |
MIN MAX MIN MAX MIN MAX

27 | teuck) Period of INCLK 25 62.5 20 625 16.5 62.5 ns

28 | twickH) Pulse duration of INCLK high gt gt 6.5% ns

29 tw(ICKL) Pulse duration of INCLK low gt 8 6.5% ns

30 | tyick) Transition time (rise and fall) of INCLK 2t 8t 2t 8t 21 8f ns

NOTE: Advance information notices apply only to the TMS34010-60.
TThese values are based on computer simulation and are not tested.
*This pulse width is tested at 1.4 volits.

local bus timing: input clock

e— 27—
le—— 28—l I —l - b
i 8 | - 29 >l | 30 \ :-— 30 |

I

%

Texas
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

A-41

TMS34010 ADVANCE
GRAPHICS SYSTEM PROCESSOR INFORMATION

local bus timing parameters (continued)

Quarter clock time tQ, which appears in the following table, is one quarter of a local output clock period,
or 2t¢(ICK)-

TMS34010-50
NO. PARAMETER TMS34010-40 TMS34010-60 UNIT
MIN MAX MIN MAX
31 | te(cK) Period of local clocks LCLK1 and LCLK2 atcuc.(,f Stc“c'()f ns
32 | tw(CKH) Pulse duration of local clock high 2tq-10 2tg~10 ns
33 | tw(CKL) Pulse duration of local clock low 2tq—-10 2tq-10 ns
34 | th{CK1H-CK2L) Hold time of LCLK2 low after LCLK1 high tq—-10 to-10 ns
35 | thick1L-CK2H) Hold time of LCLK2 high after LCLK1 low tqg—-10 tqg—-10 ns
36 | th(CK2H-CK1H) Hold time of LCLK1 high after LCLK2 high tQ-10 tq—-10 ns
37 | th(CK2L-CK1L) Hold time of LCLK1 low after LCLK2 low tq—-10 tq-10 ns
38 | th(CK1H-CK2H) Hold time of LCLK2 high after LCLK1 high 3tq-10 3tqg-10 ns
39 | th{cK1L-CK2L) Hold time of LCLK2 low after LCLK1 low 3tq-10 3tq-10 ns
40 | th(CK2H-CK1L) Hold time of LCLK1 low after LCLK2 high 3tq-10 3tq-10 ns
41 | th{CK2L-CK1H) Hold time of LCLK1 high after LCLK2 low 3tq-10 3tq-10 ns
42 |y Transition time (rise and fall) of LCLK1 or LCLK2 10 10 ns
43 | tsu(RAV-CK2H) Setup time of row address valid to LCLK21 4tq - 25 4tq-15 ns
44 | tg,(CAV-CK2H) Setup time of column address valid to LCLK21 21q-25 2tq-156 ns
45 | tgu(LRV-CK2H) Setup time of LRDY valid to LCLK2? 30% 30% ns
46 | th(CK2H-LRY) Hold time of LRDY valid after LCLK2 high o¥ [} ns
47 | tsy(RAV-CK1L) Setup time of row address valid to LCLK1) tqQ-25 tq-15 ns
48 | tsy(CAV-CK1H) Setup time of column address valid to LCLK11 tQ-25 tq—-156 ns
49 | tgy(ALH-CK1L) Setup time of TAL high to LCLK1!} 2tq-20 2tq-10 ns

NOTE: Advance information notices apply only to the TMS34010-60.

TThis is a functional minimum and is not tested. This parameter can also be specified as 4t(qy.

LRDY is a synchronous input sampled during the low-to-high transition of LCLK2. The specified setup and hold times must be met for
the device to operate properly.

NOLLYINHO4NI 3ONVAQY

Texas {"

INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

A-42

TMS34010
GRAPHICS SYSTEM PROCESSOR

local bus timing: output clock and LRDY signal

Q1 a2 Q3 Q4 a1 Q2 Q3 Q4 Q1
31 >
32—l I
33 > | 42——1| :4— 42——| :‘-—
i |
LCLK1 /1 i iy |
11 1
| il |
j@———38 |
le-354 . ao] I
| Jr- 36 = | f !
| . j 37> e 39
Fe34-m |
1] je—— 33—
LCLK2 I_; | I_ : } 7':
. | |]
49— L 48 -2 } -—32__., : = :
1 | |
47 | |
I E_ s 43 _} 42— !—— 42— }4——
: : f——— 4 ——— -

LRDY

LADO- !
LAD15 I ! ROW coL

{
1 \
|
1
]
4
]
!

=
f=

XAS Jy A-43

Te
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010 ADVANCE
GRAPHICS SYSTEM PROCESSOR INFORMATION
TMS34010-40 TMS34010-50 TMS34010-60
NO. PARAMETER "N MAX NN WMAX P MAX UNIT
50 | tg(RL-RL) Delay from RAS! to RAS! 8tg ! stgt 8tqf ns
Setup time of row address
1 | — -20 tg-1 tqQ—
51 | tsuRAV-RL 440 RASL ta-2 Q-15 Q-15 ns
Hold time of row address valid
52 | th(RL- — -20 tq-10 tQ-5
hIRL-RAV) oo FAS low tg-2 Q Q ns
63 tw(RH) Pulse duration, RAS high 3tq—20 3tg-10 3tq-5 ns
54 | tw(RL) Pulse duration, RAS low 5tq - 20 510~ 10 5tq—-10 ns
Setup time of column address
65 |t 5 — 0.5tq~20 0.5tq-10 0.5tq— 10
SU(CAV-ALL) | 14 1o TALL Q Q Q ns
Hold time of column address
56 | th(ALL-CAV) valid after TAT low 0.5tqg—-15 0.5tq—-10 0.5tqg-10 ns
Hold time of RAS high
67 th(ALH-RH) after TAT high 2tq-20 2tq-10 2tq—-10 ns
Hold time of LAL low
- - -1 -1
> 58 th(RL-ALL) after FAS low 6tq—-20 6tq—-10 6tq-10 ns
Hold time of RAS low
2 59 | thCLAL o puer ORE Jow 3tq-20 3tq-10 3tq-10 ns
> Hold time of W high after
2 60 th(RH-WH) after RAS high, shift register 2tq-20 2tg-10 2tq-10 ns
o transfer follows read
m 61 ¢ Setup time of column address 20 tn—10 tr—1
_ SU(CAV-CL) | 1o TASL Q Q Q-10 ns
2 Hold time of LAL low
2 - -20 4tq-10 4tq-10
m | 52 [heLA o BT low 4q-2 Q Q ns
o Hold time of TAL low
- . -15 .6tq-10 0.5tq -1
o o) 83 I thicH-ALL) after CAS high, write cycle 0.5tq-1 0.5tq Q-10 ns
g Hold time of CAS high
- sy .6tq — .5tq—1 .5tq —
> 64 th(ALL-CH) after TAT low 0.5tq—-156 0.5tq-10 0.5tq-10 ns
- Hold time of RAS high
— 65 |t - 2.5tq-15 2.5tq-10 2.5tq-10
o h(CH-RH) ¢ TAS high Q 5tq Q ns
2 66 | tw(cL) Pulse duration, CAS low 3.5tq~25 3.5tg—10 3.5tq-10 ns
Hold time of CAS high
67 th(RL-CH) after RAS low 2tq-20 2tq~10 2tq-10 ns
Delay time from RAS low
68 td(RL-CL) t0 TS low 2tq+20 2tq+10 2tq+10 ns
Hold time of W high after
69 th(CH-WH) CAS high, shift register 1.6t~ 15 1.6t~ 10 1.5tq-10 ns
transfer follows read
Hold time of CAS low
7 —_— . -2 .5t -1 5.5t~ 1
0 th(RL-CL} after RAS low 5.5tq—-25 5.5t~ 10 tq—10 ns
71 tw(CH) Pulse duration, CAS high 4.5tq- 15 4.5tq-10 4.5tq-10 ns
Hold time of TAL low after
72 - . - .5tq—1 0.5t~ 1
th(WH-ALL) W high, write cycle 0.5t 15 0.5tq-10 Q-10 ns
Setup time of W high to CAS!,
73 | tsu{WH-CL) end of write 4.5t 15 4.5tq-10 4.5t9 - 10 ns
NOTE: Advance information notices apply only to the TMS34010-60.
TThis is a functional minimum and is not tested.
TEXAS bi
A-44
INSTRUME

NTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

local bus timing: the RAS, CAS, and LAL outputs

_ '>J W

& |° 7 __‘;_

e i

—_— -4 I T—- } ": [
i gy e
- l“'\ 8. O{_ % t
g [Ty

Q3
50

Q1
54
56
4

e
58
59
YV P —
70

Q4
XX
—

[e———68
e

3
2 U § b
e I
ge K 2 2 &
0 joc d O
- g
-

XAS Q’ A-45

TE
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

TMS34010 ADVANCE
GRAPHICS SYSTEM PROCESSOR INFORMATION

local bus timing parameters (continued)

Quarter clock time tQ, which appears in the following table, is one quarter of a local output clock period,

or 2te(ICK)-
TMS34010-50
NO. PARAMETER TMS34010-40 TMS34010-60 UNIT
MIN MAX MIN MAX
Setup time of W low to RAS!, shift register
74 t, - tqQ- -10
su(WL-RL) transfer cycle Q-20 to ns
Hold time of W low after RAS low, shift
th(RL- - -1
s hRL-WL) register transfer cycle ta-20 tq-10 ns
Setup time of TR/QE low to RAS!, shift
76 t, - - ~-10
su(TRL-RL) register transfer cycle ta-20 ta-1 ns
Hold time of TR/QE low after RAS low, shift
7 R - P
7 thiRL-TRL) register transfer cycle 4tq-20 4q-10 ns
Hold time of TR/QE low after CAS low, shift
g 78 th(CL-TRL) register transfer cycle 2q-20 2tq-10 ns
< 79 |+ Setup time of TR/QE high to RAS?, shift . -10 ns
> SUTRH-RH) o ister transfer cycle Q-20 Q
2 Setup time of TR/QE high to CAS?, shift
0 ? - 1.5tq-25 1.5tg-10
O 8 SU(TRH-CH) register transfer cycle a Q ne
m NOTES: 1. Advance information notices apply only to the TMS34010-60.
E 2. Parameters 81 and 82 intentionally omitted.
"1 | local bus timing parameters: shift register transfer cycle
E | @ | @ | e | e | a1 | a2 a3 a4 | a1 | a2 |
LADO-
> ROW
= o5 X row X oo X X
o
RAS _
|
]
|
CAS _ {
75 !
74 | |
I !
| 1
w _"/ : 79 \
e 78—l jo—380 —l
76 —jat———m| 77 |
TR/QE S \
i
A-46 I EXAS b
NSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

ADVANCE
INFORMATION

TMS34010
GRAPHICS SYSTEM PROCESSOR

locai bus timing parameters (continued)

Quarter clock time tQ, which appears in the following table, is one quarter of a local output clock period,

or 2tc(ICK)-
TMS34010-50
TMS34010-40
NO. PARAMETER TMS34010-60 UNIT
MIN MAX MIN MAX
Access time from RAS low to data
83 | ta(RL- 5.5tq - 40" 5.5t0~251| ns
a(RL-DV) in valid, read cycle 5ta a
84 | tgy(CH-ALH) Setup time of CAS high to LALt 0.5tq- 15 0.5tg- 10 ns
85 | tgy(ENH-ALH) Setup time of DEN high to TALT 0.5tq—-15 0.5tq-10 ns
Access time from CAS low to data
86 | ta(CL- .51g - 407 3.5tq-251
a(CL-DV) in valid, read cycle 351 Q-25 ns
Hold time of data in valid after CASt,
87 t N 0 o ns
h(CH-DV} read cycle
Hold time of row address high impedance after
88 | th(cH- 1.5tg~10% 1.5tq-10¥ ns
h(CH-RAZ) CAS high, end of read cycle Q a Z
Hold time of TR/QE low after CAS low, O
89 | - 3.5tg-25 3.5tq-10 ns
h(CL-QEL) read cycle Q Q ;
Setup time of column address high impedance
90 |t . — tq-10% tg-10%
SUlCAZ-QEL) , TR/GEL, read cycle Q Q ns g
Hold time of data in valid after TR/QET,
91 | th(QEH-DV) 0 o} ns o
read cycle
Delay time from CAS! to TR/QE low, o
92 td(CL-QEL) tq+20 tq+10 ns LL
read cycle Z
03 |4 Access time from TR/QE low to data 2.5t 401 25tn—251| ns —
alQEL-DV) 4, yaiid, read cycle =ta =t Wl
Hold time of row address high impedance o
94 |y K —_—— 1.51g-10% 1.5tq - 10% ns
h(QEH-RAZ} after TR/QE high, end of read cycle Q=10 Q Z
95 | twiQEL) Pulse duration, TR/GE low, read cycle 2.5tq - 25 2.5t9-10 ns <
96 . Delay time from CAS low 1420 t+10 >
" — ns
d(CL-ENL) 1 BEN low, read cycle a Q (]
97 4 Hold time of data in valid after DEN?, o o n <
- s
h(ENH-DV) read cycle
Setup time of column address high impedance
98 t . _— ~10% —10%
SU(CAZ-ENL) BENI, read cycle 1q-10 to-10 ns
99 4 Hold time of next row address high impedance 1.5t 10% 1.5t — 10 ns
h(ENH-RAZ) ¢or BEN high, end of read cycle i -t
100 | ¢ Access time from DEN low to data in valid, 2 5t —a0! 2.5t - 251 ns
alENLDV) g cycle ~ta >t
101 ¢ Hold time of DDOUT high after DEN high, 3te— 20 at 10 ns
PENH-DDH}Y .4 follows write cycle Q a
Setup time of DDOUT low to DENI,
102 | t - -20 tq-10
su{DDL-ENL) read cycle tQ Q ns
NOTE: Advance information notices apply only to the TMS34010-60.
T44q is added to these values for each wait state inserted.
*These values are derived from characterization and are not tested.
i
TeExas b A-47

INSTRUMENTS

POST OFFICE BOX 1443 ® HQUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

local bus timing: read cycle

?

O
>
i

'

———teee e

Y

)
..:2‘

I

e
i

I
DDOUT l\.l

1
o
w

,j_i

A-48 Texas ‘?

E
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

ADVANCE
INFORMATION

TMS34010
GRAPHICS SYSTEM PROCESSOR

local bus timing parameters (continued)

Quarter clock time tQ, which appears in the following table, is one quarter of a local output clock period,

or 2tc(ICK)-
TMS34010-40 TMS34010-50
NO. PARAMETER TMS34010-60 UNIT
MIN MAX MIN MAX
Hold time of DDOUT low after DEN high,
103 |t - 1.5t9-15 1.6tq-10
h(ENH-DDL) . 4 cycle Q Q ns
104 | tgy(DV-WL) Setup time of data out valid to W/, write cycle tQ—20 tQ-15 ns
105 |4 Hold time of data out valid after W low, 4t 20 - 10 ns
h(WL-DV) write cycle a Q
106 | tgy(WL-RH) Setup time of W low to RAS!, write cycle 2tq—-20 2tq-10 ns
Hold time of data out valid after RAS low,
- -2 -
107 | th(RL-DV) write cycle 7tq-20 7tg-10 ns
108 | ¢ Hold time of data out valid after CAS high, 1.5t 15 1.6t 10 ns Z
h(CH-DV) write cycle >t ta o
— — —-—
109 | tgu(WL-CH) Setup time of W low to CAS!, write cycle 2.5tq - 25 2.5tq- 10 ns ||—
110 1+ Hold time of data out valid after CAS low, 5t — 20 5t 10 ns <
h{CL-DV) write cycle Q Q E
11 ¢ Hold time of data out valid after W high, 1.5t 15 1.5t 10 ns I
h(WH-DV) write cycle -t ->ta o
12 | tyw(wt) Pulse duration, W low 2.5tq-25 2.5tq-10 ns L
113 | th(CL-WL) Hold time of W low after CAS low, write cycle | 3.5tq—25 3.6tq-10 ns Z
Setup time of column address valid to Wt,
114 : 4.5tq 30 4.5tq-15 L
SulCAV-WH) e cycle 5ta Q ns O
1156 | th(RL-WL) Hold time of W low after RAS low, write cycle | 5.5tq—25 5.5t - 10 ns Z
Setup time of row address valid to W1, <
116 |t X .6tq — .5t -1
su(RAV-WH) cycle 6.6tq - 35 6.5t9 - 15 ns >
117 | tsu(ENL-WH) Setup time of DEN low to Wi, write cycle tq—-20 tq-10 ns Q
118 | th(WH-ENL) Hold time of DEN low after W high, write cycle| 1.5tq—15 1.6tg-10 ns <
119 | ¢ Setup time of DDOUT high to DEN{, 3tq 20 at 10 ns
su(DDH-ENL) \1ite foliows read Q Q
NOTE: Advance information notices apply only to the TMS34010-60.
i
v A-49

EXAS
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

local bus timing: write cycle -

lo‘|°2I°3|°4I°“°2I°3|°4|°1I

LADO-

LAD15 ROW X coL X DATA
l-———105—-—ﬁv
lg———— 106 ——l

104
RAS
L
i
| 107
|
i F———ws————d,
As)
: =t
: { 110
i I e 112 —]
1 1
w [I
i f !
! { ! le 113
| ! -
| } }— 114
: fe 115
e 116
:n117—! —=
[i
BEN N Y
[
:-n—-—-119————1|
DDOUT }'
i
A-50 TeExas JU
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

ADVANCE
INFORMATION

TMS34010
GRAPHICS SYSTEM PROCESSOR

local bus timing parameters {continued)

Quarter clock time tQ, which appears in the following table, is one quarter of a local output clock period,

or 2tc(ICK)-

TMS34010-50
TMS34010-40
NO. PARAMETER TMS34010-60 UNIT
MIN MAX MIN MAX
120 | tsu(HRV-CK2H) Setup time of HOLD valid to LCLK21 501 40t ns
121 | th(CK2H-HRv) Hold time of HOLD valid after LCLK2 high of of ns
122 |+ Setup time of HLDA/EMUA output valid o - 20 ¢ 10
Su(HKV-CK2L) potore LCLK2! Q a ne
123 | th(ck2L-HKL) Hold time of HLDA/EMUA low, after LCLK2 low tq-15 tq-15 ns
Delay from LCLK2 high to LAD pins high
124 |t - * ¥
diCK2H-DZ) impedance, bus release 30 30 ns
125 | tgy(RH-CK1H) Setup time of RAS high to LCLK11 tq-20 tQ-10 ns
Hold time of RAS driven high after LCLK1
126 |t K tg-10% -10%
h(CK1H-RH} high, bus release Q tQ-10 ns g
Delay from LCLK2 high to RAS high impedance, —
127 |t - * ¥
d(CK2H-R2Z) pi6 release 30 30 ne E
128 | tgy(ALH-CK2H) Setup time of LAL high to LCLK2t tq-20 tqg-10 ns E
129 |4 Hold time of TAL driven high after LCLK11, 5t 5
NICKIL-ALH) g release ns g
Delay from LCLK1 low to LAL high impedance,
130 | tgickiL-aL2) elay from ow to igh impedance 301 30t ns LL
bus release Z
Setup time of CAS, W, and TR/GE high =
131 | ¢t X . - . -
su{CH-CK1H) 0 LCLK11 0.5tq-156 0.5tq-10 ns w
Hold time of CAS, W, and TR/QE Q
132 | - tg-10% tg-10¥
h(CKTH-CH) i after LCLK1 high, bus release Q a ns 2
Delay from LCLK2 high to CAS, W, and TR/QE <
133 |t - 30% 30+
d(CK2H-C2Z) high impedance, bus release ns >
134 | tgu(ENH-CK2H) Setup time of DEN or DDOUT high to LCLK 1! tq-20 tQ-10 ns Q
135 | 4 Hold time of DEN and DDOUT high after to— 10t tn—10% <
K - - ns
RICKZH-ENH) | ¢ k14, bus release Q a
Delay from LCLK1 low to DEN and DDOUT
136 | t, - 30+ 30+
d(CKI1L-ENZ) high impedance, bus release ne
Hold time of LAD bus high impedance
137 | ¢ - -5# -5¥
hCK2H-DZ) apier LeLK2! 5 ° e
Hold time of RAS, CTAS, W, LAL, and TR/QE
138 | ¢ - ’ T -5t -5%
hICK2H-RZ) i impedance after LCLK11 5 ns
Delay from LCLK1 high to RAS, CAS, W, LAL,
139 |t X —_— 30 30
d(CK1H-RH) and TR/QE driven high, resume bus control ns
Hold time of RAS high after LCLK2 high,
140 |t - tq-15 tq-10
h(CK2H-RH) resumes bus control Q aQ ne
Hold time of CTAS, W, and TR/QE high
141 |t - —5% —5%
h(CK2H-CH) after LCLK2 high, resume bus control ns
NOTE: Advance information notices apply only to the TMS34010-60.
tHOLD is a synchronous input sampled during the low-to-high transition of LCLK2. The specified setup and hold times must be met for
the device to operation properly.
#These values are derived from characterization and are not tested.
T *IP
EXAS A-51

INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

GSP releases control of local bus

Q2 I Q3 I Q4 | Q1 | Q2

LCLK1

5
5
T

I p—-t—121 : !
:1—120—.' i : :
|
HOLD Y 11
L
f— 122 —»| [
} 123—b—>: !
ALDA/EMUA \' '|/ 124 {..
|
11
1]
—
LADO-LAD15 l I HI-Z
! :——f-127l
b—— 126 +—1
125 —t—— 1! HE
L |
RAS /" : | HI-Z
| 129
128 -Ha—w] |
il } [
__ T |
TAL [133-pe—m N—hiz—
ja— 132}
131~ 1 Il f—ut-136
! H |
CAS,. W |
I;_S/T)WE / { —1-Hi-Z
—1-—135————:|
| |
134—4'¢—-| !:
BEN, DDOUT f Nz

{i’
A-52 TeExas
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

GSP resumes control of local bus

Qa3

I

s ___ /7 N

w120l | o

. — j-—121 | | |

SRS | |
w /S] NIV R

122 —t—anf | : !

A 1123 :

|

!

1)

o | fa—137

LADO-LAD15

Ed
N

1!
|
T
138—ed lja— |
(1 | pt—mt-140
139 - | IL |
| !
RAS HI-Z { o } \
|142——\ |-
} —> “-—143
|
| B;—————-
DEN, DDOUT HI-Z L } d
138 in— |
‘39,"11!"7-—1 l—141
oA, W 2 L X
R/QE 138——! l;‘—
139——'.}:-—
|
AL HI-Z 1

XAS ‘!’ A-53

Te
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010 ADVANCE
GRAPHICS SYSTEM PROCESSOR INFORMATION

local bus timing parameters (continued)

Quarter clock time tQ, which appears in the following table, is one quarter of a local output clock cycle,

or 2t¢(ICK)-
TMS34010-50
TMS34010-40
NO. PARAMETER TMS34010-60 UNIT
MIN MAX MIN MAX
Hold time of DEN, DDOUT high impedance
142 | 4 X -57 -5t ns
h(CK2H-ENZ) after LCLK2 high, resume bus control
Delay from LCLK2 high to DEN, and DDOUT
143 | t, - 30 30 ns
d(CK2H-ENH) driven high, resume bus control
Setup time of row address valid to RASI,
144 |t | 2tq-25 2tq-15 ns
sulRAV-RL) cag.pefore-RAS refresh o a
Hold time of row address valid after RAS low,
145 | ¢ - p—— _— tqg—-20 tq-10 ns
hRL-RAV) £R5-before-RAS refresh Q Q
Pulse duration, RAS high, start of
146 | t, — _— 4tq-20 4tq-10 ns
> wiRH) TAS-before-RAS refresh Q Q
U Pulse duration, RAS low, CAS-before-RAS
< 147 | tw(RL) refresh 4tq-20 4tq - 10 ns
> 128 |+ Setup time of row address valid to LAL!, to—20 015 ns
= SURAV-ALL) £25 before-RAS refresh a a
c) Hold time of row address valid after LAL low,
m 149 | t N —_— —— 2tq-20 2tq-10 ns
ALL-RAV] £ betore-RAS refresh a Q
2 150 | ¢ Hold time of RAS high after LAL low, ta - 20 tn—10 s
- hIALL-RH) CAS-before-RAS refresh Q Q
(@) Setup time of RAS high to TAL!,
151 |t - _— i tq-20 tq-10 ns
o SulRH-ALH) TRS-before-RAS refresh a a
g Setup time of CAL high to CAS!,
152 |t - _— s tq—-20 tqo—-10 ns
> SUlALH-CLl £ pefore-RAS refresh a a
= Setup time of CAS low to [ALI,
— 153 | t, - — I, tQ-20 tq—-10 ns
o su(CL-ALL) CAS-before-RAS refresh a Q
Setup time of RAS high to CASI,
2 - —— — 2tq-2 2tq-10
184 | tsulRH-CL) CAS-before-RAS refresh Q-20 Q ne
Setup time of CAS low to RAS!,
155 | t, - . _— 21q-20 2tq-10 ns
55 | sulCL-RL AT before-RAS refresh a a
Hold time of CAS low after RAS low,
156 | t - 4.5tq—25 4.5t1—-10 ns
h(RL-CL) TAS-before-RAS refresh a a
Pulse duration, CAS low,
— 6.5t —25 6.5t - 10 S
157 | twicl) TAS-before-RAS refresh Q Q=Y "
Setup time of CAS high to RASI,
158 | t, - _— —_— 3.5tq - 15 3.5t - 10 ns
SU(CH-RL) CAS-before-RAS refresh ta 'a
NOTE: Advance information notices apply only to the TMS34010-60.
TThese values are derived from characterization and are not tested.
TEXAs bi
A-54 E

INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

GRAPHICS SYSTEM PROCESSOR

TMS343010
CAS-before-RAS DRAM refresh cycle timing
|04|Q1|oz[03|o4|o1|02|03|u4|01|
LADO-)(
LAD15 X ROW X UNDEFINED
145
y-—144——-: 147
RAS [
_/ ! \
146
143—&.———.* | |
150 i 1 151
i ‘q—m?—ﬁ
TAL / K
— | I
{ : 153H
i 1 [e——155—= o
| 152—fe—l | f—— 56—
f—— 154 —= | H !
r 157 1
N | y;‘_——
CAS \
158

{i’
Texas A-55
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

INFO

ADVANCE
RMATION

local bus timing parameters (continued)

Quarter clock time tQ, which appears in the following table, is one quarter of a local output clock cycle,

NOILVINHO4NI 3ONVAQY

or 2tg(ICK)-
TMS34010-50
TMS34010-
NO. PARAMETER 3 40 TMS34010-60 UNIT
MIN MAX MIN MAX
Hold time of RAS high after LCLK2 high, all
159 | th(CK2H-RH) cycles except internal and tQ-15 tq-10 ns
CAS-before-RAS refresh
Setup time of RAS low to LCLK24, all cycles
160 |t - tq-20 tq-10
su(RL-CK2L) except internal and CAS-before-RAS refresh Q Q ns
Hold time of RAS high after LCLK1 low,
— — - tq—10
161 | thicKIL-RH) CAS-before-RAS refresh ta-18 a ns
Setup time of RAS low to LCLK11,
162 |t - — tqQ—-20 tq-10 ns
SU(RL-CK1H) CAS-before-RAS refresh a Q
Hold time of RAS low after LCLK1 low,
163 |t X tq-15 tg-10 ns
h(CKIL-RL) all cycles except internal a a
Setup time of RAS high to LCLK 11,
164 | tsuRH-CK1H) all cycles except internal ta-20 ta-10 ns
Hold time of CAL high after LCLK2 low,
165 - 0.5t -15 0.5t - 10 ns
6 th(CK2L-ALH) all cycles except internal Q Q
Setup time of LAL low to LCLK11,
166 - 0.5tq-15 0.5t - 10 ns
66 | tsulALL-CKIH) cycles except internal Q Q
167 |4 Hold time of TAL low after LCLK2 low, 15 - 10 ns
hHCK2L-ALL) all cycles except internal Q Q
Setup time of TAL high after LCLK21,
168 | t. - tqQ-20 tq-10 ns
Su(ALH-CK2H) all cycles except internal a Q
Hold time of CAS high after LCLK1 high,
169 |t - tq-15 tqg-10 ns
hCKTH-CH} EAT.before-RAS refresh Qa a
Setup time of CAS low to LCLK{,
- tq-20 tQ-10 S
170 | tsuicL-cK1L) CAS-before-RAS refresh Q a n
Hold time of CAS high after LCLK2 low,
171 | th{CK2L-CH) cycles except internal, tqQ-15 tqg—-10 ns
DRAM refresh and CAS-before-RAS refresh
Setup time of CAS low to LCLK21,
172 | tgy(CL-CK2H) all cycles except internal, DRAM refresh, tQ-20 ta-10 ns
and CAS-before-RAS refresh
Hold time of CAS low after LCLK2 low, all
173 | ¢ - 0.5tq-15 0.5tq—-10 ns
h{CK2L-CL} cycles except internal and DRAM refresh Q Q
Setup time of CAS high to LCLK11, all
174 |t - 0.5tq—-15 0.5tq—-10 ns
Su(CH-CK1H} cycles except internal and DRAM refresh Q Q
Hold time of W high after LCLK1 high
' tqg—-15 tq—-10 ns
175 | thiCKIH-WHITR shift register transfer Q Q
Setup time of W low to LCLK1!,
- tq-20 tq-10 ns
176 | tsuWL-CK1LITR shift register transfer a Q

NOTE: Advance information notices apply only to the TMS34010-60.

A-56

i
Texas {’
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

ADVANCE

INFO

RMATION

GRAPHICS SYSTEM PROCESSOR
TMS34010

local bus timing parameters (conciuded)

Quarter clock time tQ, which appears in the following table, is one quarter of a local output clock cycle,

or 2t¢(ICK)-

TMS34010-50
NO. PARAMETER TMS34010-40 TMS34010-60 UNIT
MIN MAX MIN MAX
177 | tickawy) Ho}d time of W low after LCLK1 low, Q15 tq-10 ns
shift register transfer
78 | WO e arer a-20 a-10 e
179 | th{CK1H-WH) Hold time of W high after LCLK1 high, write tq—-15 Q- 10 ns
180 | tgy(wL-CK1L) Setup time of W low to LCLK1!, write tq—-20 tq-10 ns
181 | th{CK2L-WL) Hold time of W low after LCLK2 low, write 0.5t9— 15 0.5t - 10 ns
182 | tgy(WH-CK1H) Setup time of W high to LCLK11, write 0.5tq—- 156 0.5tq-10 ns
193 | WCKILTAN ot g st |0 .
e aw | |3
d time of TRIGE o~ =
avw |~ |k
186 | teu(TRH-CK2U) Se}up tir.ne of TR/QE high to LCLK2!, 1q-20 tg-10 ns E
shift register transfer
187 | th(CK1H-QEH) Hold time of TR/QE high after LCLK1 high, read tq—15 tq-10 ns @)
188 | tsy(QEL-CK1L) Setup time of TR/QE low to LCLK1!, read tq-20 tq-10 ns I'ZL
189 | th(ck2L-QEL) Hold time of TR/QE low after LCLK2 low, read| 0.5tq—15 0.5t - 10 ns —
190 | tgy(QEH-CK1H) Setup time of TR/QE high to LCLK1T, read 0.5tq-15 0.5tq—10 ns L
191 | th(CK2L-ENH} Hold time of DEN high after LCLK2 low, write tQ-15 tg—10 ns U
192 | tsy(ENL-CK2H) Setup time of DEN low to LCLK21, read tq-20 tq—-10 ns Z
193 | th(CK1H-ENL) Hold time of DEN low after LCLK1 high, write tq-15 tqg-10 ns <
194 | tgy(ENH-CK1L) Setup time of DEN high to LCLK1!, write tqg-20 tg—-10 ns B
195 | th(CK1H-ENH) Hold time of DEN high after LCLK1 high, read tq— 15 tQ-10 ns <
196 | tgu(ENL-CK1L) Setup time of DEN low to LCLK1!, read tq—-20 tq~10 ns
197 | th(CK2L-ENL) Hold time of DEN low after LCLK2 low, read 0.5t9-15 0.5t - 10 ns
198 | tgu(ENH-CK1H) Setup time of DEN high to LCLK11, read 0.5tq - 16 0.5t - 10 ns
198 | th(Ck2L-DDH) Hold time of DDOUT high after LCLK2 low, read tQ—-15 tq—-10 ns
200 tsu(DDL-CK2H) Setup time of DDOUT low to LCLK2t, read tQ-20 tq-10 ns
201 | th(CK1H-DDL) Hold time of DDOUT low after LCLK1 high, read tgQ—-15 tq-10 ns
202 | tgy(DDH-CK1L) Setup time of DDOUT high to LCLK1{, read tg—20 tq-10 ns
NOTE: Advance information notices apply only to the TMS34010-60.
TExas {'P A-57

INSTRUMENTS

PQOST OFFICE BOX 1443 @ HOUSTON, TEXAS 77001

TMS34010

GRAPHICS

SYSTEM PROCESSOR

local bus timing: relationship of control signals to clocks

|o1|02|03|04|o1loz|03|04|o1|oz|

1 | } | 1] !
! I I b I
| | i :
LeLk2 _/__l_m_l A } } ! L/ i
— ! | |
| 159 ey Fe—ertt161 Lo 1] jle—et-160 !
i 11 | oot 160 P! 163 fme—ent 1 I
B a— je—ei-162 ! 1l —T t
s A T A B
' |
| ! [| | | |
| e 204 o
U 20gqe—ef |l —=j bet65 | roo ==t |08
t | ! —.”'.*166] 16?--————"” e
AL } i '_ | ! l i l|7]
1 T R
be—i-169 | | BRI P ! b= L174 I
i | -»-——}—1‘70 ! el 172 | 173 }-—L-, |
I T
TAS } X N } { 1/
I 1 ! T% ! t { : [
o178 177 | =179 1 1814 |‘—| [
| bwwb176_ II beebi78 ! llm—ot-180 | | 1= top182 !
- | TN il !
| : : I[-.—a-r-188 I —ed H190 !
fe—=i-183
| ! 74—t || 186-ei jal | | !
! fm—er-184 | !l !Ilqss-;—} I —-! "‘1‘185 {
TRIGE ‘\ ' {Z j} :l--c-193 |
:"’{"‘92 : 1'?8-—1 Ll— { f——et-194
fp—H195 | 197 fe- | L]
BEN N "\':"’"195 ,{/ Voo
DEN) : !
191 q—=i
199 , I-—;-ZOO i 2024[———..1[
201—{———‘ P
DDOUT \ Vi
i
A-58 Texas b
INSTRUMENTS

POST OFFICE BOX 1443 @ HOUSTON. TEXAS 77001

ADVANCE TMS34010
INFORMATION GRAPHICS SYSTEM PROCESSOR

video interface timing parameters

The timing parameters for TMS34010 video interface signals are shown in the next three tables and diagrams.
The video interface includes the following TMS34010 pins: VCLK (video input clock), BLANK
(blanking), HSYNC (horizontal sync, bidirectional), and VSYNC (vertical sync, bidirectional). HSYNC and
VSYNC are inputs if external sync mode is enabled; otherwise they are outputs.

video input clock timing parameters

TMS34010-50
NO. PARAMETER TMS34010-40 TMS34010-60 | UNIT
MIN MAX MIN MAX
205 | te(vCK) Period of video input clock VCLK 100 80 ns
206 | tw(VCKH) Pulse duration of VCLK high 40 30 ns
207 | tw(VCKL) Pulse duration of VCLK low 40 30 ns
208 | ty(vCK) Transition time (rise and fall} of VCLK 5t 5t ns

NOTE: Advance information notices apply only to the TMS34010-60.
TThis value is determined through computer simuiation and is not tested.

video input clock timing (@)
=
e— —— 205——— <
H—zos—-i :___207__.: 208w :—— 208 ——} — s
- N YN B
L
video interface timing parameters: outputs 2
-—
TMS34010-50 L

™ 010-40
NO. PARAMETER S34 TMS34010-60 UNIT o
MIN MAX MIN MAX 2
209 | tg(vCKL-HSL) Delay from VCLK low to HSYNC, VSYNC, or BLANK low 30 30 ns <
210 | tgqvckL-HSH) Delay from VCLK low to HSYNC, VSYNC, or BLANK high 30 30 ns >
211 | th(yCKL-HSH) Hold time of HSYNC, VSYNC, or BLANK high after VCLK{ 0 0 ns D
212 | th(vCKL-HSL) Hold time of HSYNC, VSYNC, or BLANK low after VCLK{ o o ns <

NOTE: Advance information notices apply only to the TMS34010-60.

video output timing

| f-200-wd | la—st-210
ke 2118 | 2124 :
HSYNC, | i
VSYNC 11 ! |
(OUTPUTS)] $
: p 2099 I 210
h—211-; = 212 —ja—a|
|
BLANK K_l

XAS *@ A-59

E
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

ADVANCE
INFORMATION

video interface timing: external sync inputs

TMS34010-50
NoO. PARAMETER TMS34010-40 | TMS34010-60 | UNIT
MIN MAX MIN MAX
213 | tgu(HSV-VCKH) Setup time of HSYNC, VSYNC valid to VCLK?T 20t 20t ns
214 | th(vckH-Hsv) Hold time of HSYNC, VSYNC valid after VCLK high 20t 20t ns
215 | tgu(HSH-VCKH) Setup time of HSYNC, VSYNC high to VCLK? 20% 20 ns

NOTE: Advance information notices apply only to the TMS34010-60.
tSpecified setup and hold times on asynchronous inputs are required only to guarantee recognition at indicated clock edge.
+This value is determined through computer simulation.

A B s []
Ve m
; j § —
— [——214 —m| | [—215—
> HSYNC, a—213—m} r——214——d |
VSYNC |
O (INPUTS) {
§ (NOTE 1) (NOTE 2)
o NOTES: 1. If the falling edge of the sync signal occures more than th(sy.vCH) past VCLK edge A, and at least tg,(Sv-VCH) before edge
m B, the transition will be detected at edge B instead of edge A.
2. If the rising edge of the sync signal occurs more than th(gy-vCH) Past VCLK edge C, and at least tg(gv-vCH) before edge
E D. the transition will be detected at edge D instead of edge C.
o
-6-'
’
A-80 Texas b

INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON, TEXAS 77001

TMS34010
GRAPHICS SYSTEM PROCESSOR

MECHANICAL DATA

4,50 (0.177)
4,24 (0.167)
2,79 (0.110)
r———zm (0.095)
i 1.36(0.063) ... 0,25 (0.010) R MAX
[1,19 (0.047) < IN 3 PLACES
Nl mlamlamBlalamBaBmBmBoBomb el ol ol el o e———— ol
_£—-1,27 0.050) T.p. I h
(SEE NOTE B) [t]
—r i !
{ l
{ 1]
1 4
1 1
[t 1]
23,62 (0.930) 0 i 25,27 (0.995)
23,11 (0.910) d h 25,02 (0.985)
(AT SEATING PLANE)
Q) 24,33 (0.956)
1 1 24,13710.950)
i] (SEE NOTE A)
1 1]
1 1]
1 1]
1 1]
0 : 037 = S e R A RTA—R-R-2-a-a-a=2=
| 55510027 ° 122 (0.048) , 4.
| i 24,33 (0.956) oo noTE A)—w]] 1,07 (0.042)
| 24,13 (0.950)
| 25,27 {0.995)
SEATING PLANE I 3503 16.985)
0,81 (0.032)

“‘ 0.66 (0.026)
:[-1,52 (0.060) MIN
Il {
i 0,64 (0.025) MIN
0,51 (0.020)

[
0.36 (0.014)

LEAD DETAIL

NOTES: A. Centerline of center pin each side is within 0,10 (0.004) of package centerline as determined by this dimension.
B. Location of each pin is within 0,127 (0.005) of true position with respect to center pin on each side.

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.

{i’
Texas A-61
INSTRUMENTS

POST OFFICE BOX 1443 ® HOUSTON. TEXAS 77001

SPVS002B
Printed in U.S.A,

Appendix B

System Design Considerations

Please read these emulation guidelines before starting a system design that
requires use of an XDS emulator. In-circuit emulators place added constraints
on the system hardware and software design; the XDS TMS34010 emulator
minimizes these constraints as much as possible. Many of the emulator signals
come directly from the device itself keeping the delays to a minimum. The
information provided in this appendix will allow your design to be compatible
with the TMS34010 XDS emulator.

Topics in this section include:

Section
B.1 Pin LOAdING ..o s
Signal Timing and Delay
Transmission Line Phenomena
Host Port Operation
Reset Buffering
Local Ready Timing
Memory Substitution
Write Protecting Memory

Tracing and Cache ...t

0 w0 0w w
CONOOPRWN

Appendix B - System Design Considerations

B.1 Pin Loading

B-2

The loading provided by the emulator differs from the device loading; in some
cases, this additional loading can cause a system to fail or pass. For instance,
within the emulator the VCLK and INCLK clocks are buffered by an AS157
device. If the target clocks are driven by an AS driver over a long distance, the
system may operate satisfactorily with the emulator’s loading. When the de-
vice is used, the clocks can ring, causing the system to fail.

To minimize ringing caused by the emulator, all the outputs and 1/Os are ter-
minated with 22-ohm series resistors. Most of the signals are connected di-
rectly to the target connector to minimize the added delays. Table B-1 shows
the device loads that are placed on the emulator pins.

In Table B-1, pin refers to the emulator target pin. An arrow (—) indicates
that the specified device drives the device(s) it the arrow points to. Devices
in parallel are separated by commas; devices in series are in brackets. As an
example, consider LADO; the pin connects to a 22-ohm series resistor, and the
other side of the resistor is connected to an ALS245, AS573, and the
TMS34010.

Table B-1. Loading

Pin Signal 1/0 Loading
1 Vss
2 RUN/EMU pin, 4. 7KPU, ALS08
3 RESET | pin, 4.7KPU, TIBPAL-12, TMS9901, ALS574, AS257
— [ALSO8 + ASO4 + ALSO8 + AS874 + AS04] —
TMS34010
4 VCLK I pin, 330PU, 510PD, A5157 — TMS34010
5 INCLK | pin = [AS157] - TMS34010
6 TINT1 ! pin, 4.7KPU = [AS257] = TMS34010
7 TINT2 | pin, 47KPU - [AS257] - TMS34010
8 HOLD | pin, 4.7KPU, AS874, TMS34010
9 LRDY (o} pin, 4.7KPU, [TIBPAL-12] = TMS34010
10 LADO 1/0 | pin = [22S] — ALS245, AS573, TMS34010
11 LAD1 170 pin = [228] = ALS245, AS573, TMS34010
12 LAD2 1/0 | pin = [228] — ALS245, AS573, TMS34010
13 LAD3 1/0 | pin = [228] — ALS245, AS573, TMS34010
14 LAD4 1/0 | pin = [228] - ALS245, AS573, TMS34010
15 LADS 1/0 | pin = [228] - ALS245, AS573, TMS34010
16 LAD6 1/0 | pin = [228] — ALS245, AS573, TMS34010
17 LAD7 1/0 | pin = [22S] — ALS245, AS573, TMS34010
18 VSs
19 LADS8 1/0 | pin = [228] = ALS245, AS573, TMS34010
PD = Pull down
PU = Pull up

S - Series resistor
[] — Devices in series
pin ~ Emulator target cable pin

Appendix B - System Design Considerations

Table B-1. Loading (Continued)

Pin Signal 1/0 Loading
20 LADS 1/0 pin = [22S] — ALS245, AS573, TMS34010
21 LAD10 1/0 | pin = [228] — ALS245, AS573, TMS34010
22 LAD11 1/0 | pin = [22S] — ALS245, AS573, TMS34010
23 LAD12 1/0 | pin = [228] = ALS245, AS573, TMS34010
24 LAD13 1/0 | pin = [228] — ALS245, AS573, TMS34010
25 LAD14 1/0 | pin = [22S] — ALS245, AS573, TMS34010
26 LAD15 I/0 | pin = [22S] = ALS245, AS573, TMS34010
27 Vee
28 LCLK1 (o] TMS34010, AS244, AS04 — [22S] — pin
29 LCLK2 0 TMS34010, AS244 — [22S] — pin
30 HSYNC 1/0 | TMS34010, ALS573 = [22S] - pin
31 VSYNC 1/0 | TMS34010, ALS573 — [22S] = pin
32 BLANK 0 TMS34010, ALS573 — [22S] — pin
33 HLDA/EMU (o} TMS34010 — [ASO8 + 10S8] — pin
34 LAL o] TMS34010, 100KPU, AS11, AS04 = [22S] = pin
35 Vss
36 DDOUT 0 TMS34010 - [TIBPAL-12 + 22S] = pin
37 DEN o} TMS34010 = [TIBPAL-12 + 22S] = pin
38 RAS 0 TMS34010 AS157, 100KPU — [22S] = pin
39 CAS 0 TMS34010 — [TIBPAL-12 + 22S] — pin
40 WRITE 0 TMS34010 = [TIBPAL-12 + 22S] - pin
41 TR/QE (o} TMS34010 = [TIBPAL-12 + 22S] = AL244, pin
42 HINT (8} TMS34010 ALS244 — [22S] - pin
43 HRDY [0) TMS34010 = [AS08 + 10S] —* pin
44 HAD15 1/0 | TMS34010 - [22S] — pin
45 HAD14 1/0 | TMS34010 — [22S] - pin
46 HAD13 1/0 | TMS34010 = [22S] — pin
47 HAD12 1/0 | TMS34010 — [22S] — pin
48 HAD11 1/0 | TMS34010 — [22S] —* pin
49 HAD10 1/0 | TMS34010 — [22S] - pin
50 HAD9 1/0 | TMS34010 — [22S] —* pin
51 HADS8 1/0 | TMS34010 — [22S] = pin
52 Vgs

PD — Pult down

PU - Pull up

S - Series resistor

[] - Devices in series
pin — Emulator target cable pin

B-3

Appendix B - System Design Considerations

Table B-1. Loading (Concluded)

Pin Signal 1/0 Loading

53 HAD7 i/0 | TMS34010 — [22S] - pin

54 HADG6 1/0 | TMS34010 = [22S] — pin

55 HADS 1/0 | TMS34010 — [22S] — pin

56 HAD4 1/0 | TMS34010 = [22S] - pin

57 HAD3 1/0 | TMS34010 — [22S] — pin

58 HAD2 1/0 | TMS34010 — [22S] — pin

59 HAD1 1/0] TMS34010 - [22S] — pin

60 HADO 1/0 | TMS34010 = [22S] — pin

61 Vee

62 HUDS ! pin, 1T00KPU, TMS34010

63 HLDS | pin, T00KPU, TMS34010

64 HREAD | pin, 100KPU, ALS573, TMS34010

65 HWRITE 1 pin, 1T00KPU, AS573, TMS34010

66 HCS ! pin, 47KPU — [AS232 + AS08 + TMS34010] —
ALSOQ0, ALS74, TIBPAL-12, LS02

67 HFSO I pin, 100KPU, ALS573, TMS34010

68 HFS1 ! pin, 100KPU, ALS573, TMS34010

PD - Pull down
PU - Pull up

S = Series resistor
[1 - Devices in series
pin — Emulator target cable pin

B.2 Signal Timing and Delay

The target cable delays all signal timings by approximately four nanoseconds;
the following signals impose an additional delay:

Signal Delay Signal Delay
VCLK 6ns CAS 12ns
INCLK ©6ns WRITE 12ns
LINT1 6ns TR/QE 12ns
LINT2 6ns LRDY 12ns
DDOUT 12ns HRDY 6ns
DEN 12ns HCS 12ns

Remember these additional delays when you are calculating system timings.
The cable delays should cancel out when comparing the signal to the clock;
for instance, the clock is delayed by four nanoseconds and so is the address.
The problem comes from setup times required by the TMS34010. For in-
stance, CAS out is delayed by 16 nanoseconds and data-in is delayed by four
nanoseconds. This 20 nanoseconds must be added to the memory access
time. For this reason, it is important not to use CAS to control LRDY. Both

Appendix B - System Design Considerations

LRDY and CAS are delayed by 12 nanoseconds; combined, this adds 24 na-
noseconds to the LRDY setup, which violates the device requirements.

B.3 Transmission Line Phenomena

B.4 Host

Since the XDS target cable is approximately 20 inches long, use of advanced
CMOS or fast/advanced Schottky-TTL may cause line reflections (ringing
above input thresholds) on input lines to the XDS. Series termination resistors
(22 to 68 ohms) can help to eliminate this problem. In some cases where
significant additional signal length is added to XDS outputs, the series resis-
tors on the XDS may not be sufficient to control reflections. In this case, ad-
ditional corrective actions may be necessary.

Port Operation

The emulator host port supports two modes of operation:

e The first mode blocks the host port while the emulator is in control mode

(that is, not running) and when the XDS emulator requires its internal
TMS34010 as a resource. Systems that access the host port when in
control mode have HRDY inactive when they start an access and remain
inactive until the emulator is put into run mode. This is a problem for
PCs because they use DMA cycles to perform DRAM refresh and are
prevented from performing any further memory cycles.

® The second mode of operation allows host accesses while the emulator
is in control mode. When the emulator is halted, a snapshot is taken of
the 1/0 registers before transferring control to the user. While halted, the
host has access to the TMS34010’s 1/0 registers and memory space.
Data read from the 1/0 and memory space may not represent the actual
data as the host can be changing the data through the host port. Data
written through the XDS user interface to any 1/0O registers or memory
locations used by the host port can cause unpredictable results. This
mode is the typical dual-allocation problem that is prevalent in multiport
memory systems.

B.5 Reset Buffering

The RESET input from the target system is buffered so that reset cannot abort
a memory cycle that is in progress. This is necessary to prevent corruption of
the substitution memory. Reset is ANDed with RAS and TAS and clocked on
the rising edge of LCLK1. If reset is active and RAS and CAS are inactive, then
reset is applied to the processor. While the RESET input is active, internal
emulator logic provides CAS-before-RAS refreshes for emulator memory, but
not for your system memory; target memory is not refreshed during reset.
Therefore, you shouldn’t perform a target reset following a download of object
code into target memory, because this may destroy the contents of target me-
mory.

Appendix B - System Design Considerations

If the target system also generates a reset during the emulator-TMS34010 re-
set, and HCS is high (which, under normal circumstances, would halt the
TMS34010), the emulator reset takes precedence and does not halt the
TMS34010.

B.6 Local Ready Timing

The ready logic requires special attention; the target system should not depend
on having CAS to clear ready. This can cause a deadlock situation if the me-
mory is write protected. In this case, the emulator blocks the TAS output to
the target and the target system is locked waiting for CAS to release LRDY.
Thus, if you are working with the emulator and write-protecting memory, your
ready logic should use a combination of RAS and clock delays instead of CAS.

B.7 Memory Substitution

The 256K bytes of substitution memory is implemented with two banks of
64Kx4 DRAMs. This memory can be mapped on 2K word boundaries. The
memory can be selected as write-only using the memory protect feature de-
scribed below. When a memory access is made that is mapped into substi-
tution memory the signals are modified as follows:

® DEN, CAS, WR, and TR/QE are blocked from going active.

® Ready is accepted from the target to allow adding wait states to the
substitution memory.

Ready should not be controlled by DEN, CAS, WR or TR/QE because these sig-
nals are blocked and a deadlock condition would take place.

All the other signals operate as though a standard memory cycle were taking
place. Be aware that when you’re using substitution memory, it can only be
accessed by the processor and host port and cannot be accessed when the
TMS34010 is put into hold. The target system should not drive the LAD bus
unless CAS and DEN are active.

B.8 Write Protecting Memory

B-6

The emulator allows memory to be write-protected in blocks of 2048 words.
The memory can be external memory as well as the substitution memory. The
memory write operations are inhibited by blocking the TAS output. As with
the substitution memory, ready should not be controlled by CAS because a
deadlock condition will take place. External system memory is only write
protected from CPU and host accesses and not DMA accesses initiated with
a HOLD/HOLDA sequence.

Appendix B - System Design Considerations

B.9 Tracing and Cache

Please note that the breakpoint trace and timing capabilities are used to mon-
itor bus activity. The TMS34010’s pipelined-cache-based architecture fetches
the current instruction and the three associated instructions in the cache sub-
segment when a cache miss occurs. This is indicated as four fetches even
though only one instruction may be executed. Also, when the cache is ena-
bled, code already located in cache does not generate any instruction-fetch
activity on the memory bus when it is executed. If you want to create a com-
plete trace history, run the TMS34010 with cache disabled. By disabling
cache, all instructions executed are moved over the external memory bus every
time they are executed, allowing them to be captured in the trace buffer.

B-7

Appendix B - System Design Considerations

B-8

Appendix C
Software Compatibility with Future GSPs

This appendix provides guidelines for writing TMS34010 programs that will
be compatible with future versions of TMS340x0 devices. In some cases,
following these guidelines may not produce the fastest TMS34010 code;
however, your code should run without modification on future GSPs.

These guidelines cover several areas:

Section
C.1 General GUIdEIINESccooreiiiniirircire e et
.2 Graphics Compatibilityc.ccocu.....

Memory Map Compatibility
I/0O Register and Video Timing Compatibilityccccccvevreinniniencnn C-4
Interrupts Compatibilityc..oovveiiei e e C-4
Host Interface Compatibilitycccccveiveiirnieeirr e C-5

00000
OO WN

C-1

Appendix C - Software Compatibility with Future GSPs

C.1 General Guidelines

C.2 Graphics

C-2

Future GSPs may have different instruction execution times than the
TMS34010 has; therefore, timing loops based on TMS34010 instruction
execution time may not be compatible with future GSPs. Even if future
devices are generally faster than the TMS34010, specific cases may run
slower. To avoid this, timing could be based on DPYINT (the display
interrupt) or on an external time source (via LINT1 or TINT2). Note that
if you use DPYINT, you must consider different display resolutions and
refresh rates.

For optimum performance on future GSPs, align data on 32-bit bound-
aries (instead of 16-bit boundaries). This could reduce the number of
memory cycles for future GSPs, and in most cases will have little impact
on the TMS34010. In particular, keeping the stack pointer (SP) aligned
to 32-bit boundaries will speed up subroutine calls and interrupts.

Future GSPs may use the reserved bits in the status register and in the
1/0 registers. During context switches, the values of reserved bits should
be saved and restored as if they were valid; do not assume that these bits
have known values. If you don’t follow this guideline, your code may
inadvertently enable/disable new options or features.

Uniess otherwise noted in this user's guide, when reserved bits have a
value of 0, they will cause future GSPs to behave like the TMS34010.
However, you should not set these bits to 0, because this may incorrectly
reset a bit.

Use the REV instruction to determine which version of the GSP you are
using. You can use this instruction to decide whether to enable or dis-
able version-dependent code.

Instruction cache statistics characteristics (inciuding cache size, loading
order, number of bytes loaded per cache miss, and time per cache fetch)
may differ between versions of GSPs. Code should not depend on the
state of any of these characteristics.

Compatibility

Extend the values in the COLORO and COLOR1 registers to 32 bits. The
TMS34010 uses only the 16 LSBs of these registers; future GSPs may
use all 32 bits.

Treat the PMASK register as a 32-bit register. The TMS34010 uses only
the 16 bits at address 0C0000160h; however, future GSPs may also use

the 16 bits at address 0C0000170h. Whenever you save/restore the

value at 0C0000160h, you should also save/restore the value at
0C0000170h.

When you save/restore the graphics context (this includes all graphics
operations control registers), you should also save/restore the 1/0 reg-

Appendix C - Software Compatibility with Future GSPs

isters that are reserved in the TMS34010 1/0 register map (addresses
0C0000130h-0C00001A0N).

At initialization, load register B13 with all 1s. Future GSPs may use B13
as a pattern register; if you don’t set B13 to the suggested value, future
devices may draw a patterned line where the TMS34010 would draw a
solid line.

If an instruction uses the CONVSP register, then SPTCH (B1) must
agree with CONVSP (the 5 LSBs of CONVSP must equal the 1s com-
plement of logyo SPTCH, which is given by the LMO of SPTCH). Future
GSPs may have instructions that use SPTCH to determine the pitch val-
ues instead of using CONVSP; that is, the instruction may perform the
logs conversion automatically.

Set the 11 MSBs of CONVSP to 0; the TMS34010 ignores the values
of these bits, but future GSPs may use these bits.

If an instruction uses the CONVDP register, then DPTCH (B3) must
agree with CONVDP (the 5 LSBs of CONVDP must equal the 1s com-
plement of logz DPTCH, which is given by the LMO of DPTCH). Future
GSPs may have instructions that use DPTCH to determine the pitch va-
lues instead of using CONVDP; that is, the instruction may perform the
logo conversion automatically.

Set the 11 MSBs of CONVDP to 0; the TMS34010 ignores the values
of these bits, but future GSPs may use these bits.

C.3 Memory Map Compatibility

The 32 16-bit words following the TMS34010 1/0 registers (addresses

‘0C0000200h-0C0O0003F0h) are currently reserved. Future GSPs may

use these addresses for additional 1/0 registers, so do not write code that
uses these addresses.

Do not use any reserved addresses in the TMS34010 memory map; fu-
ture GSPs may use these locations. Specifically, address OFFFFEQO0QOh,
which is currently reserved, may be used for system configuration infor-
mation.

Appendix C - Software Compatibility with Future GSPs

C.4 1/0 Register and Video Timing Compatibility

Future GSPs may use different I/0O registers to control video timing and
VRAM shift register control. The vertical and horizontal counters may
still be accessible at their current locations. DPYADR, DPYCTL,
DPYSTRT, and DPYTAP may have new functions and/or addresses.
HESYNC, HEBLNK, HSBLNK, HTOTAL, VESYNC, VEBLNK, VSBLNK,
and VTOTAL may have similar functions but different addresses. These
video control functions may be redefined so that future GSPs can take
advantage of new advances in video RAM technology.

Code that accesses video timing registers should be separated from other
code so that you can easily replace it.

Future GSPs may use different DRAM refresh methods; the TMS34010
provides control every 32 or 64 CPU cycles, and it may be necessary to
have more control.

C.5 Interrupts Compatibility

Interrupt service routines should not make assumptions about the state
of the stack (except for the location of the ST and the PC). Future GSPs
may push additional parameters or status information on the stack before
pushing the PC and ST.

Note:

You must use RETI to return from an interrupt service routine. This en-
sures that any additional parameters that future GSPs may push on the
stack will also be popped from the stack, and also ensures that the correct
internal registers will be restored.

° PIXBLT interruption may behave differently on future GSPs. An inter-
rupted PIXBLT may store status information on the stack instead of in
registers, and different information may be stored.

Note:
Do not modify values stored in the register file by an interrupted PIXBLT.
Future GSPs may not use this information or these locations.

[] Opcodes that the TMS34010 flags as illegal may be valid opcodes for
future GSPs. Therefore, if you want to use a software trap, use the TRAP
instruction instead of an illegal opcode.

[] Traps 3-7 and 12-15 are reserved for future interrupts.

c-4

Appendix C - Software Compatibility with Future GSPs

C.6 Host Interface Compatibility

Certain features of the TMS34010 host interface may need to be imple-
mented in external hardware for future GSPs. However, the host inter-
face registers and their functions will remain the same so that TMS34010
code that uses these registers will be compatible with future GSPs.

Code written for a host processor that accesses the GSP host interface
may have to be modified to comprehend a modified host interface.

C-5

Appendix C - Software Compatibility with Future GSPs

C-6

Appendix D

Glossary

aliasing: A stairstep effect on a raster display of a line or arc segment.

antialiasing: A method for reducing the severity of aliasing effects seen in
lines and edges drawn on a bit-mapped display device. This method adjusts
the intensity of a pixel used to represent a portion of a line or edge according
to the pixel’s distance from the line or edge. Antialiasing requires that the
display device be capable of producing one or more intermediate intensity
levels between bright and off.

asynchronous communications: A method of transmitting data in which
the timing of character placement of connecting transmitting lines is not crit-
ical. The transmitted characters are preceded by a start and followed by a stop
bit, thus permitting the interval between characters to vary.

aspect ratio: The ratio of width to height. For the rectangular picture
transmitted by a television station, the aspect ratio is 4:3.

back porch: The portion of a horizontal blanking pulse that follows the
trailing edge of the horizontal synchronizing pulse.

background illumination: The average brightness of a screen.

bandwidth: The number of bits per second that can be transferred by a
device.

binary array: Alternate name for a two-dimensional bit map in which each
pixel is represented as single bit.

BitBlIt: Bit aligned block transfer. Transfer of a rectangular array of pixel
information from one location in a bitmap to another with potential of applying
1 of 16 boolean operators during the transfer.

bit map: 1. The digital representation of an image in which bits are mapped
to pixels. 2. A block of memory used to hold raster images in a device-specific
format.

bit plane: Hardware used as a storage medium for a bit map.

black level: The amplitude of the composite signal at which the beam of the
picture tube is extinguished (becomes black) to blank retrace of the beam.
This level is established at 75% of the signal amplitude.

blanking signal: Pulses used to extinguish the scanning beam during hor-
izontal and vertical retrace periods.

D-1

Appendix D - Glossary

D-2

breakpoint: A place in a routine specified by an instruction, instruction di-
git, or other condition, where the routine may be interrupted by external in-
tervention or by a monitor routine.

clipping: Removing parts of display elements that lie outside a given boun-
dary, usually a window or a viewport.

composite video: The color-picture signal plus all blanking and synchro-
nizing signals. The signal includes luminance and chrominance signals, verti-
cal- and horizontal-sync pulses, vertical- and horizontal-sync pulses,
vertical-and horizontal-blanking pulses, and the color-burst signal.

DAC: Digital-to-analog converter. A device that converts a digital input
code to an analog output voltage or current. The analog output level repres-
ents the value of the digital input code.

direct access: Pertaining to the process of obtaining data from, or placing
data into, storage where the time required for such access is independent of
the location of the data most recently obtained or placed in storage.

display area: The rectangular part of the physical display screen in which
information coded in conformance with a video encoding standard is visibly
displayed. The display area does not include the border area.

display element: A basic graphic element that can be used to construct a
display image.

display memory: The area of memory which is used to hold the graphics
image output to the video monitor.

display pitch: The difference in memory addresses between two pixels that
appear in vertically adjacent positions (one directly above the other) on the
screen.

display unit: A device which provides a visual representation of data.

dot clock: The dot clock cycles the rate at which video data is output to a
CRT monitor.

DRAM refresh: The operation of maintaining data stored in dynamic
RAMs. Data are stored in dynamic RAms as electrical charges across a grid
of capacitive cells. The charge stored in a cell will leak off over time.

execution unit: The portion of a central processing unit that actually exe-
cutes the data operations specified by program instructions.

field: 1. A group of contiguous bits in a register or memory dedicated to a
particular function or representing a single entity. 2. A software-configurable
data type in the TMS34010 whose length can be programmed to be any value
in the range 1 to 32 bits.

fill: Solid coloring or shading of a display surface, often achieved as a pat-
tern of horizontal segments.

frame: 1. The time required to refresh an entire screen. 2. The screen image
output during a single vertical sweep.

Appendix D - Glossary

frame buffer: A portion of memory used to buffer rasterized data to be
output to a CRT display monitor. The contents of the frame buffer are often
referred to as the bit map of the display and contain the logical pixels corre-
sponding to the points on the monitor screen.

front porch: The portion of a horizontal blanking pulse that precedes the
leading edge of the horizontal sync pulse.

GKS: Graphical Kernel System. An application programmer’s standard in-
terface to a graphics display.

glue logic: The small- and medium-scale-integrated devices necessary to
complete the interface between two or more large or very-large-scale inte-
grated devices.

gray scale: A scale of light intensities from black to white.

GSP: Graphics System Processor. A single-chip device embodying all the
processing power and control capabilities necessary to manage a high-
performance bit-mapped graphics system. The TMS34010 is the first such
device.

high-impedance: The third state of a three-state output driver, in which the
output is driven neither high or low but behaves as an open connection.

hold signal: A signal from a device capable of controlling a processor bus
(for example, a processor or a DMA controller) which the device sends to a
bus arbiter to request control of the bus. Typically, the arbiter signals the
granting of the request by sending a hold-acknowledgement signal to the re-
questing device.

hold time: The minimum amount of time that valid data must be present at
an input after the device is clocked to ensure proper data acceptance.

horizontal blanking interval: The time during which the display is
blanked to cover the horizontal retracing of the electron beam.

horizontal sync: The synchronization signal that enables horizontal retrace
of the electron beam of a CRT display.

icon: A graphic symbol representing a menu item.

interlaced scanning: A system of TV-picture scanning. Odd-numbered
scanning lines, which make up an odd field, are interlaced with the even-
numbered lines of an even field. The two interlaced fields constitute one
frame. In effect, the number of transmitted pictures is doubled, thus reducing
flicker.

lookup table: A table used during scan conversion of the digital image that
converts color-map addresses into the actual color values displayed.

LRU: Least-recently-used cache-replacement algorithm. When a cache miss
occurs, a cache-replacement algorithm selects which cache segment will be
overwritten, based on the likelihood that the data in the discarded segment
will not be needed again for some time. The LRU algorithm selects the seg-
ment which was used least recently.

D-3

Appendix D - Glossary

D-4

mask: A pattern of characters that is used to control the retention or elimi-
nation of portions of another pattern of characters.

memory map: A map of memory space partitioned into functional blocks.

monotonicity: The quality of proceeding in a uniform manner. For exam-
ple, the analog level output from a DAC should increase with each increase in
the value of the digital input code.

multiplexing: Refers to a process of transmitting more than one set of sig-
nals at a time over a single wire or communications link.

NABTS: North American Broadcast Teletext Specification

NAPLPS: Abbreviation for the North American Presentation Level Protocol
Syntax, which is a proposed standard for Videotex services.

nonmaskable interrupt: An interrupt request that cannot be disabled.

NMI: Nonmaskable interrupt. The NMI is an interrupt that is permanently
enabled; it cannot be disabled.

NTSC: Abbreviation for the National Television System Committee, a group
representing a wide range of interests in the television broadcast and video
industry. The NTSC is instrumental in developing standards.

operand: That which is operated upon. An operand is usually identified by
an address part of an instruction.

origin: The zero intersection of X and Y axes from which all points are cal-
culated.

overlay: The plane of a graphics display that can be superimposed on an-
other plane.

pack: To compress data in a storage medium by eliminating redundant in-
formation in such a way that the original data can later be recovered.

palette: A digital lookup table used in a computer graphics display for
translating data from the bit map into the pixel values to be shown on the
display.

pan: Apparent horizontal or vertical movement of a computer graphics screen
(or window) over an image contained in a frame buffer that is too large to be
completely displayed in a single static picture.

phase: The time interval for each clock period in a system is divided into two
phases. One phase corresponds to the time the clock signal is high, and the
other phase corresponds to the time the clock signal is low.

PHIGS: The programmer’s Hierarchical Interactive Graphics Standard

pipelining: A design technique for reducing the effective propagation delay
per operation by partitioning the operation into a series of stages, each of
which performs a portion of the operation. A series of data is typically clocked
through the pipeline in sequential fashion, advancing one stage per clock pe-
riod.

Appendix D - Glossary

pitch: The difference in starting addresses of two adjacent rows of pixels in
a two-dimensional pixel array.

pixel: Picture element. 1. The smallest controllabie point of light on a CRT
display screen. 2. In a bit-mapped display, the logical data structure that
contains the attributes to be shown at the corresponding physical pixel posi-
tion on the CRT display screen.

pixel processing operation: A specified Boolean or arithemetic operation
used to combine two pixel values (source and destination).

PixBIt: (Abbreviation of Pixel Block transfer) Operations on arrays of pixels
in which each pixel is represented by one or more bits. PixBIt operations are
a superset of BitBIt operations, and include not only the commonly-used
boolean functions, but also integer arithmetic and other muiti-bit operations.

plane: (Also bit plane or color plane.) A plane is a bit-map layer in a display
device with multiple bits per pixel. I the pixel size is n bits, and the bits in
each pixel are numbered 0 to n-1, plane O is made up of bits numbered 0 from
all the pixels, and the plane n-1 is made up of bits numbered n-1 from all the
pixels. A layered graphics display allows planes or groups of planes to be
manipulated independently of the other planes.

primary colors: A set of three colors from which all other colors may be
regarded as derived; hence, any of a set of visual stimuli from which all colors
may be produced by mixture. Each primary color must be different from the
others, and a combination of two primaries must be capable of producing a
third. In color television, the three primary colors are red, green and blue.

propagation delay: The time required for a change in logic level at an input
to a circuit to be translated into a resulting change at an output.

protocol: A set of rules, formats, and procedures governing the exchange
of information between peer processes at the same level.

pulse width: Pulse width, T,,. The time interval between specified refer-
ence points on the leading and trailing edges of the pulse waveform.

Random Access Memory (RAM): A memory from which all information
can be obtained at the output with approximately the same time delay by
choosing an address randomly and without first searching through a vast
amount of irrelevant data.

raster: A rectangular grid of picture elements whose intensity levels are
manipulated to represent images. In a bit-mapped display, the bits within a
portion of the memory referred to as the frame buffer are mapped to the raster
pattern of a CRT monitor.

raster display: A CRT display generated by an electron beam that illumi-
nates the CRT by sweeping the beam horizontally across the phosphor surface
in a predetermined pattern, providing substantially uniform coverage of the
display area.

raster graphics: Computer graphics in which a display image is composed
of an array of pixels arranged in rows and columns.

D-5

Appendix D - Glossary

D-6

Raster-Op: The arithmetic or logical combination operation that takes place
during the transfer of pixel arrays from one location to another.

raster scan: The grid pattern traced by the electron beam on the face of the
CRT in a television or similar raster-scan display device.

ready signal: A signal from a memory or a memory-mapped peripheral that
informs the processor when it is ready to complete a memory cycie. Slower
memories or memory-mapped peripherals must extend the length of the me-
mory cycle by negating the ready signal (in other words, by sending the pro-
cessor a "not ready” signal until such time as the cycle can be completed.

resolution: The number of visible distinguishable units in the device coor-
dinate space.

refresh: Method which restores charge on capacitance which deteriorates
because of leakage.

reset: To restore to normal action.

resolution: The number of visible distinguishable units in the device coor-
dinate space.

retrace: The line traced by the scanning beam or beams of a picture tube
as it travels from the end of one horizontal line or field to the beginning of the
next line or field.

RGB monitor: Red-Green-Blue Monitor. An RGB monitor is a CRT moni-
tor capable of displaying colors and having separate inputs for the three sig-
nals used to drive the red, green and blue guns of the CRT.

relative coordinates: Location of a point relative to another data point.

rotate: To transform a display or display item by revolving it around a spe-
cified axis or center point.

scale: A size change made by multiplying or dividing the coordinate dimen-
sions by a constant value.

scale factor: The value by which you divide or multiply the display dimen-
sions in a scaling operation.

scaling: Enlarging or reducing all or part of a display image by multiplying
the coordinates of display elements by a constant value.

scan line: A horizontal line traced across a CRT by the electron beam in a
television or similar raster-scan device.

screen refresh: The operation of dumping the contents of the frame buffer
to a CRT monitor in synchronization with the movement of the electron beam.

scrolling: Moving t
segment: A collection of display elements that can be manipulated as a unit.

sequencing: Control method used to cause a set of steps to occur in a
particular order.

Appendix D - Glossary

setup time: The minimum amount of time that valid data must be present
at an input before the device is clocked to ensure proper data acceptance.

shift register transfer: A transfer between the RAM storage and internal
shift register in a video RAM.

sprite: A graphic object of a specified pattern appearing on its plane in a
position determined by a single coordinate pair, specifying the sprite’s location
on the screen in the horizontal and vertical axis.

stairstepping: A visual effect seen in bit-mapped display devices which
produce images by brightening or dimming individual picture elements (or
pixels) contained in a two-dimensional grid of such elements. Stairstepping
(also called aliasing) is the rough or jagged appearance of lines and edges
which are not perfectly horizontal or vertical, resulting from transitions of the
line or edge from one row or column of elements to another.

superimposed: Refers to the process that moves data from one location to
another, superimposing bits or characters on the contents of specified lo-
cations.

tap point: The column address provided to a VRAM during a memory-to-
shift-register cycle. The column address specifies the point at which the shift
register is to be “tapped;” in other words, which cell of the shift register is to
be connected to the serial output of the VRAM.

trace: A line of the graphics display.

transformation: Geometric alteration of a graphics display, such as scaling,
translation, or rotation.

transparency: When a pixel with the attribute of transparency is written to
the screen, it is effectively invisible, and does not alter that portion of the
screen it is written to. For example, in a pixel array containing the pattern for
the letter A4, all pixels surrounding the A pattern could be given a special value
indicating that they are transparent. When the array is written to the screen,
the A pattern, but not the pixels in the rectangle containing it, would be in-
visible.

VDI: Virtual Device Interface. The standard interface between the device-
independent and the device-dependent levels of a graphics system.

VDM: Virtual Device Metafile. A standard mechanism for retaining and and
transporting graphics data and control information at the level of the Virtual
Device Interface.

vertical blanking interval: The time during which the display is blanked
to cover the vertical retracing of the electron beam.

vertical blanking pulse: A positive or negative pulse developed during
vertical retrace and appearing at the end of each field. It is used to blank out
scanning lines during the vertical retrace interval.

vertical sync: The synchronization signal that enables vertical retrace of the
electron beam of a CRT display.

video display processor: A microprocessor device dedicated to the tasks
of display memory management (storage, retrieval, and refresh) and gener-

D-7

Appendix D - Glossary

D-8

ation of all required video, control, and synchronization signals required by a
TV display or CRT monitor.

video overlay: The mixing of one video signal with another such that parts
of the image carried by the first signal replace the corresponding parts of the
image carried by the second signal.

video RAM, VRAM: Video Random-Access Memory. A dual-ported me-
mory device for computer graphics applications, containing two interfaces;
one interface to allow a processor to read or write data from an internal mem-
ory array; a second interface to provide a serial stream of screen refresh data
to a CRT display device.

viewport: The specified window on the display surface that marks the limits
of a display.

virtual coordinate system: A coordinate system created by mapping a
portion of the world coordinate system to the space available on your device.

virtual space: Space referenced with the coordinates defined by the appli-
cation.

wait state: A clock period inserted into a memory cycle in order to permit
accesses of slower memories and slower memory-mapped peripherals.

window: A specified rectangular area of a virtual space shown on the dis-
play.

window clipping: Allowing text and graphics drawing to occur only within
a specified rectangular window on the screen.

wire frame: A three-dimensional image displayed as a series of line seg-
ments outlining its surface.

zoom: To scale a display or display item so it is magnified or reduced on the
screen.

Index

A

ABS instruction 12-35
absolute branch 5-19

absolute operands 12-5

ADD instruction 12-36

add with saturation 7-16
ADDC instruction 12-37

ADDI instruction 12-38, 12-39
ADDK instruction 12-40
addressing 3-2-3-3

addressing modes 12-4
ADDXY instruction 12-41
A-file registers 5-2

airbrush effect 7-23

ALU 1-6

AND instruction 12-42

ANDI instruction 12-43

ANDN instruction 12-44
ANDNI instruction 12-45
antialiasing 7-23
applications 1-8
arithmetic instructions
array pitch 4-16

12-19

B

background color register 5-15
bank selection 11-25

barrel shifter 1-6

B-file registers 5-3, 5-5-5-17

BLANK 2-9,9-3

blanking 2-9, 6-27, 6-29, 6-49, 6-51
block diagram 1-5

Boolean operations 7-17

Boolean pixel processing 6-13
Bresenham line algorithm 7-2, 7-10
BTST instruction 12-46, 12-47

bulk initialization of VRAMs 9-18, 9-26
bus request priorities 11-4

bus request signal 2-10

byte addressing 10-20

bytes 4-1

BO (SADDR) 5-6

B1 (SPTCH) 5-7

B10 (COUNT) 5-17
B11 (INC1) 5-17
B12 (INC2) 5-17
B13 (PATTRN) 5-17
B13 (TEMP) 5-17
B2 (DADDR) 5-8
B3 (DPTCH) 5-10
B4 (OFFSET) 5-11
B5 (WSTART) 5-12
B6 (WEND) 5-13
B7 (DYDX) 5-14
B8 (COLORO) 5-15
B9 (COLOR1) 5-16
C

C bit 5-18

C compiler 1-12
cache disable 6-14
cache hit 5-22
cache miss 5-22

cache replacement algorithm 5-21
CALL instruction 12-48
CALLA instruction 12-49
CALLR instruction 12-50
Cartesian coordinates 4-16
CAS 2-7,11-2
CD bit 5-24,6-11,6-14
CF bit 5-23,5-24,6-32, 6-33
chip select pin 2-5
clearing...

aregister 12-51

the carry bit 12-52
clock timing logic 1-7
CLR instruction 12-51
CLRC instruction 12-52
CMP instruction 12-53
CMPI instruction 12-54, 12-55
CMPXY instruction 12-56
Cohen-Sutherland algorithm 7-30
color planes 7-12
color-expand operation 7-5
COLORO register 5-15
COLOR1 register 5-16

Index-1

column address strobe 2-7 refresh cycles 6-11

compare instructions 12-19 refresh interval 6-46
compare point to window 7-3 refresh rate 6-11
context switching instructions 12-29 DRAM refresh 11-11,11-12, 11-25
CONTROL 6-11 DRAV instruction 12-67
CONTROL register 6-11 draw and advance 7-10
CONVDP 7-4 DSJ instruction 12-70
CONVDP register 4-12,6-15 DSJEQ instruction 12-71
conversion factor 6-15, 6-16 DSJNE instruction 12-73
CONVSP 7-4 DSJS instruction 12-75
CONVSP register 4-12,6-16 DUDATE bits 6-19, 6-20
COUNT register 5-17 DXV bit 6-19, 6-22
CPW instruction 12-57 DYDX register 5-14
CVXYL instruction 12-59
E
D
EINT instruction 12-76

DADDR register 5-8 EMU instruction 12-77
data enable pin 2-7 emulation 2-10
data paths 1-6,5-25 enabling interrupts 12-76
data select pins 2-5 ENV bit 6-19
data structures EXGF instruction 12-78

bytes 4-1 EXGPC instruction 12-79

fields 4-1,4-2-4-5 external interlaced video 9-17

pixel arrays 4-1 external interrupts 8-3

pixels 4-1,4-6-4-10 external synchronization 9-15
DDOUT 2-7,11-2 external video 6-19

DEC instruction 12-61

DEN 2-7,11-2

destination address register 5-8

destination conversion factor 6-15 F
destination pitch register 5-10

development tools list 1-3 ; .

DIE bit 6-40 Egobgit 45%1 8

DINT 'instruction 12-62 FE1 bit 5-18

DIP bit 6-41 field size 5-18, 5-19
direct operands 12-6 fields 4-1,4-2-4-5

display interrupt 8-5, 9-13
display memory 9-18
display pitch 4-10, 5-7, 5-10, 6-15,

addressing 4-2
alignment 4-3
extraction 4-2

6-16,9-18 inserti -2, 4-
DIVS instruction 12-63 's?zs:mir_'z 4-2,4-5
DIVU instruction 12-65 fil 7-5
dot rate 9-14 i { - -
DPTCH register 5-10, 6-15 i .;gf;',‘y“‘"?'_‘m‘z 80, 12-84
DPYADR register 6-17 i -
DPYCTL register 6-19 foreground colar register 5-10
DPYINT register 6-23 FSO bits _ 5-
DPYSTRT register 624 FSO bits 5-18
DPYTAP register 6-25 FS1 bits 5-18

DRAM 6-11,11-5 function select pins 2-5

Index-2

G

general-purpose register files 1-5, 5-2-
5-17

GETPC instruction 12-89

GETST instruction 12-90

graphics instructions 12-26

graphics standards 1-2

H

halt latency 10-19

halt program execution 6-35

HCOUNT register 6-26

HCS 2-5,10-2

HDO-HD15 2-6,10-2

HEBLNK register 6-27

HESYNC register 6-28

HFSO, HFS1 2-5,10-2

hidden states 13-2

HIE bit 6-40

HINT 2-6,10-2

HIP bit_ 6-41

HLDA/EMUA 2-10

HLDS 2-5,10-2

HLT bit 5-23, 6-3, 6-32, 6-35

HOLD 2-10

hold and emulation signals 2-4, 2-10
HLDA/EMUA 2-10
HOLD__ 2-10
RUN/EMU 2-10

hold interface 11-18

hold request 11-4

horizontal back porch 9-5

horizontal front porch 9-5

horizontal sync 2-9

horizontal timing 9-12

horizontal timing registers
HCOUNT 6-26,9-4
HEBLNK 6-27,9-4
HESYNC 6-28,9-4
HSBLNK 6-29,9-4
HTOTAL 6-39,9-4

horizontal video timing 9-6, 9-7

host interface 10-1, 10-24
bandwidth 10-22
data transfer 10-8
indirect accesses of local

memory 10-11

reads and writes 10-4
ready signal to host 10-8
registers 6-7

HSTADRH 10-3
HSTADRH register 6-30
HSTADRL 6-31,10-3
HSTCTL 10-3
HSTCTLH 6-32,10-3
HSTCTLL 6-36,10-3
HSTDATA 6-38, 10-3
selection 10-2

signals 10-2

timing examples 10-5

host.interface bus pins 2-3, 2-5

HCS 2-5

HDO-HD15 2-6

HFSO,HFS1 2-5

HINT 2-6
HLDS 2-5
HRDY 2-6
HREAD 2-5
HUDS 2-5
HWRITE 2-5

host interrupt 8-5

host read/write strobes 2-5
host-present mode 8-10, 8-13
HRDY 2-6,10-2,10-8
HREAD 2-5,10-2

HSBLNK register 6-29

HSD bit 6-19

HSTADRH register 6-30
HSTADRL register 6-31
HSTCTLH register 6-32
HSTCTLL register 6-36
HSTDATA register 6-38
ASYNC 2-9, 6-22, 6-26, 9-3
HTOTAL register 6-39

HUDS 2-5,10-2

HWRITE 2-5,10-2

1/0 registers 1-6, 6-1-6-52
addressing 6-2
atreset 6-3
host interface registers 6-7
interrupt interface registers 6-8
latency of writes 6-4
local memory interface registers 6-8
memory map 6-2
summary 6-5
video timing and screen refresh regis-

ters 6-9

IE bit 5-18

illegal opcode interrupts 8-9

illegal operand 8-5

Index-3

immediate operands 12-4
implied graphics operands 5-5
INC instruction 12-91

INCLK 2-7,11-2

INCR bit 6-32, 6-34, 10-11
incremental algorithms 7-10

INCW bit 6-32, 6-35, 10-11
INC1 register 5-17
INC2 register 5-17

indirect accesses of local memory
indirect branch 5-19
indirect operands 12-7, 12-8, 12-9,
12-10, 12-11
in XY mode 12-11
with offset 12-8
with postincrement
with predecrement
input clock 2-7
instruction cache 1-6, 5-20-5-25
cache disable 6-14
cache flush 6-33
cache hit 5-22
cache miss 5-22
cache replacement algorithm 5-21
disabling 5-24

12-9
12-10

downloading new code 5-23

flushing 5-23

LRU stack 5-21

operation 5-22

Pflag b5-22

segment miss 5-22

segments 5-21

SSA register 5-21

subsegment miss 5-22
instruction set 12-1

addressing modes 12-4

arithmetic instructions 12-19

compare instructions 12-19

condition codes 12-31

graphics instructions 12-26

jump instructions 12-30

logical instructions 12-19

move instructions 12-20

operand formats 12-4

program control instructions

shift instructions 12-32
instruction words 5-20
INTENB register 6-40
interlaced dlsplay 9 25
interlaced video 9-11, 5-1
internal interrupts 8-5
interrupt interface

12-29

-
7

Index-4

10-11

registers 6-8
INTENB 6-40, 8-3
INTPEND 6-41, 8-3
interruptible instructions 7-8

interrupts 2-6, 8-1-8-8
display interrupt 6-23, 8-5, 9-
enable bit 5-18

external interrupts 8-3
host interrupt 8-5

13

host interrupt request signal 2-6

IE bit 5-18

illegal opcode interrupts 8-9
illegal operand 8-5
INTENB 6-40

internal interrupts 8-5
interrupt request pins 8-3
interrupt requests 6-37
INTIN bit 6-37
INTOUT bit 6-37
INTPEND 6-41

local interrupt request signals 2-8

nonmaskable interrupt 6-32, 6-33,
8-5

priorities 8-2, 8-5

processing 8-6

registers 8-3

RESET 2-11

stack operations 3-8

vector addresses 8-2

window interrupt 8-5
intersecting rectangles 7-3
INTIN bit 6-36, 6-37
INTOUT bit 6-36, 6-37
INTPEND register 6-12, 6-41

J

12-92

12-94,12-96
12-98
12-30

JAcc instruction
JRcc instruction
JUMP instruction
jump instructions

K

L

LADO-LAD15 2-8,11-2
LAL 2-7,11-2
LBL bit 6-32, 6-34
LCLK1,LCLK2 2-8,11-2
LCSTRT bits 6-24
line clipping 7-29
LINE instruction 12-99
linear addressing 4-10
LINT1,LINT2 2-8,8-3,11-2
LMO instruction 12-108
LNCNT bits 6-17, 6-24
local address/data bus 2-8
local memory interface 11-1, 11-30
addressing mechanisms 11-23
hold interface timing 11-18
1/0 register access cycles 11-13
internal cycles 11-13
memory bus request priorities 11-4
read cycle 11-8
read-modify-write operations 11-15
registers 6-8
CONTROL 6-11,11-3
CONVDP 6-15,11-3
CONVSP 6-16,11-3
PMASK 6-43,11-3
PSIZE 6-45,11-3
REFCNT 6-46,11-3
register-transfer cycles 11-9
signals 11-2
timing 11-5-11-22
wait states 11-16
write cycle 11-7

local memory interface pins 2-4, 2-7-2-8

CAS 2-7
DDOUT 2-7
DEN 2-7
INCLK 2-7
LADO-LAD15 2-8
LAL 2-7
LCLK1,LCLK2 2-8
LINT1,LINT2 2-8
LRDY 2-8
RAS 2.7
TR/QE 2-7
w 2.7
local read/write strobes 2-7
logical instructions 12-19
logical pixels 4-6

LRDY 2-8,11-2

M

MAX operation 7-16

memory bus request priorities 11-4

memory map 3-4

message buffers 6-36, 6-37

microcontrol ROM 1-7

midpoint subdivision 7-30

MIN operation 7-16

MMFM instruction 12-109

MMTM instruction 12-111

MODS instruction 12-113

MODU instruction 12-114

MOVB instruction 12-115,12-116, 12-
117,12-118, 12-119, 12-120, 12-121,
12-123,12-124

MOVE instruction 12-126, 12-127, 12-
128, 12-130, 12-132, 12-134, 12-135,
12-137,12-139, 12-141, 12-143, 12-
145,12-147,12-149, 12-1561, 12-153,
12-1565,12-157, 12-1569, 12-160

move instructions 12-20

MOVK instruction 12-161

MOVX instruction 12-162

MOVY instruction 12-163

MPYS instruction 12-164

MPYU instruction 12-166

MSGIN bits 6-36

MSGOUT bits 6-36, 6-37

multiple-GSP systems 9-15

N

N bit 5-18

NEG instruction 12-168

NEGB instruction 12-169

NIL bit 6-19, 6-22

NMI bit 6-32

non-branch 5-19

noninterlaced video 9-9
nonmaskable interrupt 6-8, 6-32, 8-5
nonmaskable interrupt mode 6-33
NOP instruction 12-170

NOT instruction 12-171

Index-5

(0

OFFSET register 4-12, 5-11
on-screen memory 9-18
OR instruction 12-172
ORG bit 6-19, 6-20

ORIl instruction 12-173
outcode 7-30

output clocks 2-8

P
P flag 5-22
panning 9-25

PATTRN register 5-17
PBH bit 6-11,6-12
PBV bit 6-11,6-13
PBX bit 5-18
PC 5-19
pick window 7-26
picture elements 4-6
pin descriptions 2-2
pinout 2-2
pitch 7-4
pitch conversion factors 4-12
PixBlt direction 6-13
PIXBLT instruction 12-174,12-179,
12-187, 12-193, 12-200, 12-206
PixBlts 4-15, 7-4
pixel array 4-15
pixel block transfers 4-15, 7-4
pixel processing 6-13, 7-15
pixels 4-1,4-6-4-10
addressing 4-6
on the screen 4-7
pixel size 6-45
PSIZE register 6-45
representation in a register 4-6
size 4-6
storage in memory 4-7
XY addressing 4-8
PIXT instructions 12-213, 12-215, 12-
218, 12-220, 12-222,12-224
plane mask 7-12
plane masking 6-43

DAACUK ramictar 8472
H o

VAT I Uy Iowy -

POPST instruction 12-227
postclipping 7-29

PP bit 6-11

PPOP bits 6-13

preclipping 7-29

program control instructions 12-29

index-6

program counter 1-5, 5-19
PSIZE register 4-12, 6-45
PUSHST instruction 12-228
PUTST instruction 12-229

R

RAS 2-7,11-2

REFCNT register 6-46

references 1-11

register file A 5-2

register file B 5-3, 5-5-5-17

register-direct operands 12-6

related documentation 1-12

relative branch 5-19

replace operation 7-18

RESET 2-11, 8-10-8-13
effect on cache 5-21
effect on instruction cache 8-11
effect on TMS34010 registers 8-12
effects on 1/0 registers 6-3
HLT bit 6-35

RETI instruction 12-230

RETS instruction 12-232

REV instruction 12-233

RINTVL bits 6-46

RL instruction 12-234,12-235

row address strobe 2-7

row and column addressing 11-6

ROWADR bits 6-46

RR bit_6-11

RUN/EMU 2-10

S

SADDR register 5-6

scan line counter 6-17

screen origin 4-8, 6-19, 6-20
screen refresh 6-21, 6-24, 9-1-9-27
screen refresh enable 6-19
screen size limits 9-2
screen-refresh address 6-17
screen-refresh cycles 9-18

sSDB 1-12

segment miss 5-22
self-bootstrap mode 8-10, 8-13
self-modifying code 5-23
SETC instruction 12-236

SETF instruction 12-237

SEXT instruction 12-238

shift instructions 12-32

shift register transfer enable pin 2-7
shift register transfers 6-19
sign (N) bit 5-18
SLA instruction 12-239, 12-240
SLL instruction 12-241, 12-242
software development board 1-12
software traps 8-9
source address register 5-6
source conversion factor 6-16
source pitch register 5-7
SP 1-6,3-6,5-2,5-4
SPTCH register 5-7,6-16
SRA instruction 12-243, 12-244
SRE bit 6-19, 6-21
SRFADR bits 6-17, 6-24
SRL instruction 12-245, 12-246
SRSTRT bits 6-24
SRT bit 6-19, 6-21
SSA register 5-21
ST 5-18
stack 3-6-3-11
multiple-register operations 3-8
operation during a subroutine 3-9
operation during interrupts 3-9
structure 3-7
32-bit register operations 3-8
stack pointer 5-2, 5-4
starting address of array 4-15, 7-7
starting corner selection 7-7
status register 1-5, 5-18-5-19
strobes 10-4
SUB instruction 12-247
SUBB instruction 12-248
SUBI instruction 12-249, 12-250
SUBK instruction 12-251
subroutine calls 12-48, 12-49, 12-50
subsegment miss 5-22
subtract with saturation 7-16
SUBXY instruction 12-252

T

Tbit 6-11
tap point register 6-25
TEMP register 5-17
TR/QE 2-7,11-2
transparency 7-11
enabling (T bit) 6-12
TRAP 8-9
TRAP instruction 12-253
traps 8-9
two-dimensional arrays 4-15, 7-4

\"

V bit 5-18
and window checking 7-25

VCLK 2-9,9-3

VCOUNT register 6-23, 6-48

VEBLNK register 6-49

vector addresses 8-2

vertical back porch 9-5

vertical front porch 9-5

vertical sync 2-9

vertical timing registers
VCOUNT 6-48,9-4
VEBLNK 6-49, 9-4
VESYNC 6-50, 9-4
VSBLNK 6-51, 9-4
VTOTAL 6-52,9-4

vertical video timing 9-8-9-12

VESYNC register 6-50

video clock 2-9

video enable 6-19

video timing 9-1-9-27

video timing and screen refresh
display address 6-17, 6-19
display interrupt 6-23
registers 6-9

DPYADR 6-17

DPYCTL 6-19
DPYINT 6-23
DPYSTRT 6-24
DPYTAP 6-25
HCOUNT 6-26, 9-4
HEBLNK 6-27,9-4
HESYNC 6-28, 9-4
HSBLNK 6-29, 9-4
HTOTAL 6-39, 9-4
VCOUNT 6-48,9-4
VEBLNK 6-49, 9-4
VESYNC 6-50, 9-4
VSBLNK 6-51, 9-4
VTOTAL 6-52,9-4

video timing signals 9-3

video timing signals 2-4, 2-9

BLANK 2-9

HSYNC 2-9

VCLK 2-9

VSYNC 2-9

VRAM 11-5

VRAMs 6-9,9-18
bulk initialization 9-26
tap point address 6-25
VSBLNK register 6-51

Index-7

VSYNC 2.9,6-22,9-3
VTOTAL register 6-52

w

W 2-7,11-2
Wbit 6-11,6-12
WEND register 5-13
window checking 4-16, 6-12, 7-25
window clipping 7-27
window end address register 5-13
window hit detection 7-26
window interrupt 8-5
window miss detection 7-27
window start address register 5-12
windows 5-12,5-13

WEND register 5-13

WSTART register 5-12
WSTART register 5-12
WVE bit 6-40
WVP bit 6-41

Index-8

X

XOR instruction 12-255
XORI instruction 12-256
XY addressing 4-8, 4-10, 4-11, 4-14,
5-14
benefits 4-11
DYDX register 5-14
format 4-11
OFFSET register 5-11
XY -to-linear conversion 4-12, 6-15,
6-16
X1E bit 6-40
X1P bit 6-41
X2E bit 6-40
X2P bit 6-41
X3E bit 6-40
X3P bit 6-41

Y4

Zbit 5-18
ZEXT instruction 12-257

August 1988 Reader Response Card

TMS34010 User’'s Guide

We want to provide you with the best documentation possible - please help us by answering
these questions and returning this card.

Is this manual adequate in helping you to understand the TMS34010 and how to use it
within a system? Please explain.

How do you use this book — did you (or will you) read it from front to back, or do you use
it mainly as a reference?

Are the descriptions of graphics operations (transparency, pixel processing, XY addressing,
etc.) clear and complete?

Is the Instruction Set (Section 12) clear? Is it easy to use as a reference?

What kinds of examples would you like to be included in this manual?

What information would you add to or delete from the Reference Card?

What would you add or change that would make this manual more accurate or easy to read?

Additional comments:

Thank you for taking the time to fill out this card.

Your Name:

Company and Application:

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 6189 HOUSTON, TEXAS

POSTAGE WILL BE PAID BY ADDRESSEE

Technical Publications Manager
Texas Instruments Incorporated
Semiconductor Group M/S 640
P.O. Box 1443

Houston, Texas 77251-9879

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

&
Texas
INSTRUMENTS
Printed in U.S.A., August 1988 SPVUO01A

1604899-9703

